PYŁ L

Lodz University of Technology

Parametric version of the Minty–Browder Theorem and its applications

Marek Galewski

join results with Michał Bełdziński and Igor Kossowski

Warszawa 9th October 2023

Plan

1 Motivation and preliminaries

Avramescu Theorem

2 Theoretical results

- Preliminary Results
- Main Result
- Relations to the Krasnoselskii fixed point theorem

3 Applications to the nonlinear systems

- Nonlocal *q*-Laplace equation
- Perturbed *p*-Laplace equation
- System of nonlinear equations
- Example

Avramescu Theorem

Theorem 1 (Avramescu Theorem)

Let (X, d) be a complete metric space, C - a closed convex subset of a normed space $(Y, \|\cdot\|)$. Moreover let $F : X \times C \longrightarrow X$ and $G : X \times C \longrightarrow C$ be continuous mappings. Assume that the following conditions are satisfied:

There is a constant $L \in [0, 1)$, such that:

 $d(F(u, v), F(w, y)) \leq Ld(u, w)$ for all $u, w \in X$ and $v \in V$;

• $G(X \times C)$ is a relatively compact subset of Y.

Then, there exists $(u_0, v_0) \in X \times C$ satisfying

$$\left\{ \begin{array}{l} F(u_0,v_0) = u_0, \\ G(u_0,v_0) = v_0. \end{array} \right.$$

C. Avramescu, "Some remarks on a fixed point theorem of Krasnoselskii," Electron. J. Qual. Theory Differ. Equ., vol. 2003, p. 15, 2003, Id/No 5

I. Benedetti, T. Cardinali, and R. Precup, "Fixed point-critical point hybrid theorems and application to systems with partial variational structure," J. Fixed Point Theory Appl., vol. 23, no. 4, p. 19, 2021, Id/No 63

Avramescu Theorem

Theorem 2

Let (X, d) be a complete metric space, C - a closed convex subset of a normed space $(Y, \|\cdot\|)$. Assume that $F : X \times C \longrightarrow X$ and $G : X \times C \longrightarrow C$ are continuous. Assume that the following conditions are satisfied:

• there is a continuous function $L: C \longrightarrow (0, 1)$, such that:

 $d(F(u, v), F(w, v)) \le L(v) d(u, w)$ for all $u, w \in X$ and $v \in C$;

• $G(X \times C)$ is a relatively compact subset of Y;

Then, there exists $(u_0, v_0) \in X \times C$ with:

$$\begin{cases} F(u_0, v_0) = u_0, \\ G(u_0, v_0) = v_0. \end{cases}$$

Avramescu Theorem

Theorem 2

Let (X, d) be a complete metric space, C - a closed convex subset of a normed space $(Y, \|\cdot\|)$. Assume that $F : X \times C \longrightarrow X$ and $G : X \times C \longrightarrow C$ are continuous. Assume that the following conditions are satisfied:

• there is a continuous function $L: C \longrightarrow (0, 1)$, such that:

 $d(F(u, v), F(w, v)) \le L(v) d(u, w)$ for all $u, w \in X$ and $v \in C$;

• $G(X \times C)$ is a relatively compact subset of Y;

Then, there exists $(u_0, v_0) \in X \times C$ with:

$$\begin{cases} F(u_0, v_0) = u_0, \\ G(u_0, v_0) = v_0. \end{cases}$$

Proof.

For any $v \in C$, by the Banach Contraction Principle, there exists a unique $S(v) \in X$ such that

F(S(v), v) = S(v).

Moreover, the mapping $S: C \longrightarrow X$ is continuous. Applying the Schauder Fixed Point Theorem to an operator $G(S(\cdot), \cdot): C \longrightarrow C$ we get the assertion.

Parametric Browder-Minty Theorem

Theorem 3 (Parametric Browder-Minty Theorem)

Assume that Y is a metric space, while X is a reflexive Banach space. If $A : X \times Y \longrightarrow X^*$ is an operator such that:

- $A(\cdot, y)$ is radially continuous and strictly monotone for all $y \in Y$;
- $A(u, \cdot)$ is continuous for every $u \in X$;
- for every $y_0 \in Y$ there exists an open neighbourhood V of y_0 and a coercive function $\gamma : [0, \infty) \longrightarrow \mathbb{R}$ such that

 $\langle A(u, y), u \rangle \ge \gamma(||u||) ||u||$ for all $y \in V$ and $u \in X$.

Then for every $y \in Y$ there exists a unique u_y such that $A(u_y, y) = 0$. Moreover $y_n \to y$ in Y implies $u_{y_n} \to u_y$ in X.

M. Beldziński, M. Galewski, and I. Kossowski, "Dependence on parameters for nonlinear equations—abstract principles and applications," Mathematical Methods in the Applied Sciences, vol. 45, no. 3, pp. 1668–1686, 2021

Parametric Browder-Minty Theorem

Theorem 3 (Parametric Browder-Minty Theorem)

Assume that Y is a metric space, while X is a reflexive Banach space. If $A : X \times Y \longrightarrow X^*$ is an operator such that:

- $A(\cdot, y)$ is radially continuous and strictly monotone for all $y \in Y$;
- $A(u, \cdot)$ is continuous for every $u \in X$;
- for every $y_0 \in Y$ there exists an open neighbourhood V of y_0 and a coercive function $\gamma : [0, \infty) \longrightarrow \mathbb{R}$ such that

 $\langle A(u, y), u \rangle \ge \gamma(||u||) ||u||$ for all $y \in V$ and $u \in X$.

Then for every $y \in Y$ there exists a unique u_y such that $A(u_y, y) = 0$. Moreover $y_n \to y$ in Y implies $u_{y_n} \to u_y$ in X.

M. Beldziński, M. Galewski, and I. Kossowski, "Dependence on parameters for nonlinear equations—abstract principles and applications," Mathematical Methods in the Applied Sciences, vol. 45, no. 3, pp. 1668–1686, 2021

Lemma 4

Assume that X is a real and reflexive Banach space. Then there exists a demicontinuous, bounded, coercive and strictly monotone operator $J : X \longrightarrow X^*$ such that J(0) = 0.

J. Lindenstrauss, "On nonseparable reflexive Banach spaces," Bull. Am. Math. Soc., vol. 72, pp. 967–970, 1966

General assumptions

I X and Y are real normed spaces, while X is reflexive.

2 Operator $F: X \times Y \longrightarrow X^*$ satisfies the following assumptions:

- $F(\cdot, v)$ is monotone and radially continuous for every fixed $v \in Y$;
- $F(u, \cdot)$ is continuous for every $u \in X$;
- there exists function $\gamma : [0, \infty)^2 \longrightarrow \mathbb{R}$ such that

$$\langle F(u,v),u\rangle \ge \gamma(||u||,||v||)$$

and that

$$\lim_{x\to\infty}\gamma(x,y)=\infty$$

uniformly with respect to y on every bounded interval.

3 Operator $G: X \times Y \longrightarrow Y$ is compact and

$$\left. \begin{array}{c} u_n \rightarrow u \text{ in } X \\ v_n \rightarrow v \text{ in } Y \end{array} \right\} \implies G(u_n, v_n) \rightarrow G(u, v) \text{ in } Y.$$

Recall that operator $T: E \longrightarrow F$ is called *compact* if it is continuous and if it maps bounded subsets of *E* onto relatively compact subsets of *F*.

Main Result

Theorem 5

Assume that there exists a bounded and convex set $C \subset Y$ such that $G(X \times C) \subset C$. Then there exists at least one solution to

$$\begin{cases} F(u, v) = 0, \\ G(u, v) = v \end{cases}$$
(P)

Main Result

Theorem 5

Assume that there exists a bounded and convex set $C \subset Y$ such that $G(X \times C) \subset C$. Then there exists at least one solution to

$$\begin{cases} F(u, v) = 0, \\ G(u, v) = v \end{cases}$$
 (P)

Proof.

Let $J: X \longrightarrow X^*$ be as in Lemma 4. For $n \in \mathbb{N}$ we define $F_n: X \times Y \longrightarrow X^*$ by $F_n(u,v) = F(u,v) + \frac{1}{n}J(u)$. For every $n \in \mathbb{N}$, $v \in Y$ there exists a unique $u_n(v)$ such that $F_n(u_n(v), v) = 0$. Moreover $Y \ni v \longmapsto u_n(v) \in X$ is strong-weak continuous. Moreover

 $\gamma(||u_n(v)||, ||v||) \le 0$ for all $v \in Y$ and $n \in \mathbb{N}$.

Hence $S := \{u_n(v) : n \in \mathbb{N}, v \in C\}$ is a bounded set. By the Schauder Fixed Point Theorem, applied to $G(u_n(\cdot), \cdot) : C \longrightarrow C$, there exists $u_n \in X$, $v_n \in Y$ such that

$$F(u_n, v_n) = -\frac{1}{n}J(u_n)$$
 and $G(u_n, v_n) = v_n$.

We get $v_n \to v$ (up to subsequence) and (also up to subsequence) $u_n \to u$. Then G(u, v) = v. Relation F(u, v) = 0 follows by the Minty Trick.

J. Franců, "Monotone operators. A survey directed to applications to differential equations," *Applications of Mathematics*, vol. 35, no. 4, pp. 257–301, 1990

M. Galewski, Basic monotonicity methods with some applications (Compact Textb. Math.). Cham: Birkhäuser, 2021

Theorem 6 (Krasnoselskii)

Let D be a closed bounded convex subset of a Banach space X, $A : D \longrightarrow X$ a contraction and $B : D \longrightarrow X$ a continuous mapping with B(D) relatively compact. If

 $A(x) + B(y) \in D$ for every $x, y \in D$

then the mapping A + B has at least one fixed point. I. Benedetti, T. Cardinali, and R. Precup, "Fixed point-critical point hybrid theorems and application to systems with partial variational structure," J. Fixed Point Theory Appl., vol. 23, no. 4, p. 19, 2021, Id/No 63 M. A. Krasnosel'skij, "Some problems of nonlinear analysis. Translat. by H. P. Thielman," Transl., Ser. 2, Am. Math. Soc., vol. 10, pp. 345–409, 1958

We say that A: $H \longrightarrow H$ is one-sided contraction if there exists m < 1 such that

$$\langle A(u) - A(w), u - w \rangle \le m ||u - w||^2 \quad \text{for all } u, w \in H.$$
(1)

Theorem 7

Assume that $A: H \longrightarrow H$ is a radially continuous one-sided contraction and $B: H \longrightarrow H$ is continuous and compact. Then there exists $\lambda_0 > 0$ such that for all $\lambda \in [0, \lambda_0]$ the mapping $u \longmapsto A(u) - \lambda B(u)$ has a fixed point, or in other words, equation

$$A(u) = \lambda B(u) + u \tag{2}$$

has a solution.

Theorem 7

Assume that $A: H \longrightarrow H$ is a radially continuous one-sided contraction and $B: H \longrightarrow H$ is continuous and compact. Then there exists $\lambda_0 > 0$ such that for all $\lambda \in [0, \lambda_0]$ the mapping $u \longmapsto A(u) - \lambda B(u)$ has a fixed point, or in other words, equation

$$A(u) = \lambda B(u) + u \tag{2}$$

has a solution.

Proof. Take $r = \frac{\|A(0)\|}{1-m}$ and define $P_r : H \longrightarrow H$ by $P(u) := \begin{cases} u & \text{if } \|u\| \le r, \\ \frac{u}{\|u\|} & \text{if } \|u\| > r. \end{cases}$ Put $\lambda_0 := \frac{1}{1+\sup_{\|u\|\le r} \|B(u)\|}$ and fix $\lambda < \lambda_0$. Let X = Y = H, F(u, v) = u - A(u) - v, and $G(u, v) = \lambda B(P_r(u))$. Identifying H with H^* via the Riesz Representation, we can apply Theorem 5 and obtain $u_0 \in H$ such that $u_0 - A(u_0) = \lambda B(P_r(u_0))$. Therefore using (1) we get

 $\|u_0\|((1-m)\|u_0\| - \|A(0)\|) \le \langle u_0 - A(u_0), u_0 \rangle = \lambda \langle B(P_r(u_0)), u_0 \rangle \le \|u_0\|,$

which gives $||u_0|| \le r$ and hence u_0 solves (2). Since λ was taken arbitrary from $[0, \lambda_0]$, we get the assertion.

Theorem 8

Let C be a closed convex subset of a Hilbert space $H, A : H \longrightarrow H$ is a radially continuous one-sided contraction and $B : C \longrightarrow H$ is continuous with B(C) relatively compact. If

$$u = A(u) + B(v) \text{ and } v \in C \text{ imply that } u \in C,$$
(3)

then the mapping A + B has at least one fixed point.

Theorem 8

Let C be a closed convex subset of a Hilbert space H, A : $H \longrightarrow H$ is a radially continuous one-sided contraction and B : $C \longrightarrow H$ is continuous with B(C) relatively compact. If

$$u = A(u) + B(v) \text{ and } v \in C \text{ imply that } u \in C,$$
(3)

then the mapping A + B has at least one fixed point.

Proof.

By the Strongly Monotone Principle, a mapping $I - A : H \longrightarrow H$ is a bijection with a continuous inverse. Let $T : C \longrightarrow X$ be given by

$$T(u) := (I - A)^{-1} (B(u)).$$

By (3) we have $T(C) \subset C$. Since T(C) is relatively compact, the assertion follows by the Schauder Fixed Point Theorem.

Main Result

Theorem 9

Assume that there exists a function ψ : $[0,\infty)^2 \longrightarrow [0,\infty)$ such that

 $\|G(u,v)\|\leq \psi(\|u\|,\|v\|);$

If there exists R > 0 such that

 $\gamma(x, y) \le 0 \text{ and } y \le R \text{ imply that } \psi(x, y) \le R.$ (4)

then system (P) has at least one solution.

Main Result

Theorem 9

Assume that there exists a function $\psi : [0, \infty)^2 \longrightarrow [0, \infty)$ such that

 $\|G(u,v)\| \leq \psi(\|u\|,\|v\|);$

If there exists R > 0 such that

 $\gamma(x, y) \le 0 \text{ and } y \le R \text{ imply that } \psi(x, y) \le R.$ (4)

then system (P) has at least one solution.

Proof.

Let us denote $D_R := \{v \in Y : ||v|| \le R\}$. Define F_n and $u_n(v)$ as in the proof of Theorem 5. Let $G_n : D_R \longrightarrow Y$ be given by $G_n(v) = G(u_n(v), v)$. Then G_n is continuous. Moreover, since $||v|| \le R$ and since γ is uniformly coercive, set $S := \{u_n(v) : n \in \mathbb{N}, v \in D_R\}$ is bounded. Therefore

$$G_n\left(D_R\right) \subset G\left(S \times D_R\right)$$

and hence G_n is compact. Now we show that $G_n: D_R \longrightarrow D_R$. Let $||v|| \le R$. Then

$$||G_n(v)|| = ||G(u_n(v), v)|| \le \psi \left(||u_n(v)||, ||v|| \right)$$

Moreover $0 = \langle F_n(u_n(v), v), u_n(v) \rangle \geq \gamma(||u_n(v)||, ||v||)$ and hence $||G_n(v)|| \leq R$ by (4). By the Schauder Fixed Point Theorem, applied to G_n , there exists $v_n \in D_R$ such that $G_n(v_n) = v_n$. Mimicking the proof of Theorem 5, we get the assertion.

Nonlocal *q*-Laplace equation

Let us fix $u \in C[0, 1]$ and consider the following nonlinear system

$$\begin{cases} -\frac{d}{dt} \left(|\dot{v}(t)|^{q-2} \dot{v}(t) \right) = g(t, u(t), v(t)) & \text{for } t \in (0, 1), \\ v(0) = \int_0^1 h_0(v(s)) dA_0(s), \quad v(1) = \int_0^1 h_1(v(s)) dA_1(s), \end{cases}$$
(P_q)

where $q > 1, g: [0, 1] \times \mathbb{R} \longrightarrow \mathbb{R}, h_0, h_1 : \mathbb{R} \longrightarrow \mathbb{R}$ are continuous and $A_0, A_1 : [0, 1] \longrightarrow \mathbb{R}$ have bounded variations.

Lemma 10

For every $u, v \in C[0, 1]$ there is exactly one c = c(u, v) such that

$$\int_0^1 \psi_q^{-1} \left(c(u,v) - \int_0^s g(\tau, u(\tau), v(\tau)) d\tau \right) ds = \int_0^1 h_1(v(s)) dA_1(s) - \int_0^1 h_0(v(s)) dA_0(s).$$

Moreover, the mapping $C[0,1] \times C[0,1] \ni (u,v) \mapsto c(u,v) \in \mathbb{R}$ *is continuous.*

Here and further on, a function associated with q-Laplacian is denoted by $\psi_q \colon \mathbb{R} \longrightarrow \mathbb{R}$, that is

$$\psi_q(\zeta) = |\zeta|^{q-2} \zeta.$$

Nonlocal q-Laplace equation

Proof.

For fixed $u, v \in C[0, 1]$ we define

$$\Theta_{(u,v)}(c) = \int_0^1 \psi_q^{-1} \left(c - \int_0^s g(\tau, u(\tau), v(\tau)) d\tau \right) ds - \int_0^1 h_1(v(s)) dA_1(s) + \int_0^1 h_0(v(s)) dA_0(s) ds + \int_0^$$

Since ψ_q is continuous and strictly increasing, then so is function $\Theta_{(u,v)}$. Moreover, we have $\lim_{|c|\to\infty} |\Theta_{(u,v)}(c)| = \infty$. Hence $\Theta_{(u,v)}(c) = 0$ for a unique c = c(u, v). Next, the monotonicity of ψ_q yields

$$c(u,v) \leq \psi_q \left(\int_0^1 h_1(v(s)) dA_1(s) - \int_0^1 h_0(v(s)) dA_0(s) \right) \pm \sup_{0 \leq t \leq 1} |g(t,u(t),v(t))|$$

Now, let $u_n \to u_0$ and $v_n \to v_0$ in C[0, 1]. Then $c(u_n, v_n) \to c$ up to the subsequence. Moreover

$$\lim_{n\to\infty}\Theta_{u_n,v_n}\left(c(u_n,v_n)\right)=\Theta_{u_0,v_0}(c),$$

which gives $c = c(u_0, v_0)$.

Nonlocal *q*-Laplace equation

We define $T: C[0,1] \times C[0,1] \longrightarrow C[0,1]$ by the formula

$$T(u,v)(t) = \int_0^t \psi_q^{-1} \left(c(u,v) - \int_0^s g(\tau, u(\tau), v(\tau)) d\tau \right) ds + \int_0^1 h_0(v(s)) dA_0(s),$$

where c is defined in Lemma 10.

Lemma 11

For every $u \in C[0, 1]$, the function $v \in C[0, 1]$ is a solution to (P_q) if and only if it is a fixed point of operator $T(u, \cdot)$.

We impose the following assumptions on *g*:

If there are numbers $0 \le A, B, C, 0 < r \le (p-1)(q-1)$ and $0 < \theta < q-1$ such that

$$|g(t, u, v)| \le A|u|^r + B|v|^{\theta} + C \quad \text{for all } t \in [0, 1] \text{ and } u, v \in \mathbb{R};$$

2 there exists a number $\alpha_i > 0$ such that $|h_i(v)| \le \alpha_i |v|$ for all $v \in \mathbb{R}$, j = 0, 1;

 $(2\alpha_0 \operatorname{Var} A_0 + \alpha_1 \operatorname{Var} A_1) < 1, \text{ where } \operatorname{Var} \xi \text{ stands for a variation of a function } \xi.$

q-Laplace equation

Theorem 12

For every $u \in C[0, 1]$ the problem (P_a) admits at least one solution.

q-Laplace equation

Theorem 12

For every $u \in C[0, 1]$ the problem (P_q) admits at least one solution.

Proof.

Since second assumption holds, we get

$$\left| \int_{0}^{1} h_{0}(v(s)) dA_{0}(s) \right| \le \alpha_{0} \|v\|_{\infty} \operatorname{Var} A_{0}.$$
(5)

According to the proof of Lemma 10, for every $s \in [0, 1]$ we have

$$|c(u,v) - g(s,u(s),v(s))| \le \psi_q \left(\left(\alpha_1 \operatorname{Var} A_1 + \alpha_0 \operatorname{Var} A_0 \right) \|v\|_{\infty} \right) + 2 \left(A \|u\|_{\infty}^r + B \|v\|_{\infty}^{\theta} + C \right).$$

The above estimation combined with (5) gives

$$\|T(u,v)\|_{\infty} \leq \left(\alpha_1 \operatorname{Var} A_1 + 2\alpha_0 \operatorname{Var} A_0\right) \|v\|_{\infty} + \left(2A\|u\|_{\infty}^r + 2C\right)^{\frac{1}{q-1}} + (2B)^{\frac{1}{q-1}} \|v\|_{\infty}^{\frac{\theta}{q-1}}.$$

Since the third assumption holds and $\theta < q - 1$, we have $||T(u, v)||_{\infty} \le R$ whenever $||v||_{\infty} \le R$ for sufficiently large R > 0. Operator $T(u, \cdot)$ is completely continuous, hence the existence of solution to (P_q) is a consequence of the Schauder Fixed Point Theorem.

Perturbed *p*-Laplace equation

Let $\varphi: \Omega \times \mathbb{R} \times [0, \infty) \longrightarrow \mathbb{R}$ and assume that there exist continuous function $M: [0, \infty) \longrightarrow (0, \infty)$ and constant m > 0, such that for a.e. $x \in \Omega$, all $y \in \mathbb{R}$ and $s \ge r \ge 0$ there is:

- $\blacksquare \varphi(\cdot, y, r)$ is Lebesgue measurable;
- **2** $\varphi(x, \cdot, r)$ and $\varphi(x, y, \cdot)$ are continuous;
- $m \le \varphi(x, y, r) \le M(|y|);$

For $p \ge 2$ we define $D_{p,\varphi}$: $W_0^{1,p}(0,1) \times C[0,1] \longrightarrow W^{-1,p'}(0,1)$ by

$$\langle D_{p,\varphi}(u,v),w\rangle = \int_0^1 \varphi\bigl(t,v(t),|\dot{u}(t)|^{p-1}\bigr)|\dot{u}(t)|^{p-2}\dot{u}(t)\dot{w}(t)dt.$$

Lemma 13

- $D_{p,\varphi}(\cdot, v)$ is monotone and radially continuous for every fixed $v \in Y$;
- $D_{p,\omega}(u, \cdot)$ is continuous for every $u \in X$;
- for every $u \in W_0^1(0, 1)$ and $v \in C[0, 1]$ we have

$$\langle D_{p,\varphi}(u,v),u\rangle \ge m \|u\|_{W_0^{1,p}}^p.$$

Perturbed *p*-Laplace equation

Take a function $f : [0,1] : \mathbb{R} \times \mathbb{R} \longrightarrow \mathbb{R}$ such that for all $u, v \in \mathbb{R}$ and a.e. $t \in [0,1]$ there is:

- **I** $f(\cdot, u, v)$ is Lebesgue measurable;
- **2** $f(t, \cdot, v)$ is continuous and nonincreasing;
- $f(t, u, \cdot)$ is continuous;
- **4** there exists a nondecreasing function $\delta : [0, \infty) \longrightarrow \mathbb{R}$ satisfying

$$\delta(v) \ge \sup_{\substack{0 \le t \le 1 \\ -v \le \xi \le v}} |f(t, 0, \xi)|.$$

Define S: $W_0^{1,p}(0,1) \times C([0,1]) \longrightarrow W^{-1,p'}(0,1)$ by the formula

$$\langle S(u,v),w\rangle = \int_0^1 \varphi(t,v(t),|\dot{u}(t)|^{p-1})|\dot{u}(t)|^{p-2}\dot{u}(t)\dot{w}(t)dt - \int_0^1 f(t,u(t),v(t))w(t)dt.$$

Lemma 14

For all $u \in W_0^{1,p}(0,1)$ and every $v \in C[0,1]$ there is

$$\langle S(u,v),u\rangle \ge m \|u\|_{W_0^{1,p}}^p - \frac{1}{\lambda_p} \delta(\|v\|_{\infty}) \|u\|_{W_0^{1,p}}.$$

Here
$$\lambda_p = \inf \left\{ c > 0 : \int_0^1 |u(t)|^p dt \le c \int_0^1 |\dot{u}(t)|^p dt \text{ for all } u \in W_0^{1,p}(0,1) \right\}$$

System of nonlinear equations

$$\begin{cases} -\frac{d}{dt} \left(\varphi \left(t, v(t), |\dot{u}(t)|^{p-1} \right) |\dot{u}(t)|^{p-2} \dot{u}(t) \right) = f(t, u(t), v(t)) & \text{for } t \in (0, 1), \\ -\frac{d}{dt} \left(|\dot{v}(t)|^{q-2} \dot{v}(t) \right) = g(t, u(t), v(t)) & \text{for } t \in (0, 1), \\ u(0) = u(1) = 0, & (P_{p,q}) \\ v(0) = \int_0^1 h_0(v(s)) dA_0(s), \quad v(1) = \int_0^1 h_1(v(s)) dA_1(s). \end{cases}$$

Theorem 15

Assume that there exists $0 \le a, b$ and $\sigma < \frac{(p-1)(q-1)}{r}$ such that

 $|\delta(y)| \le a|y|^{\sigma} + b \quad for \ all \ y \in \mathbb{R}.$

Then system $(P_{p,q})$ has at least one solution.

Proof.

We apply Theorem 9 taking $X = W_0^{1,p}(0, 1), Y = C[0, 1], F = S$ and G = T.

Example

$$\begin{cases} -\frac{d}{dt} (|\dot{u}(t)|\dot{u}(t)) = |v(t)|^2 - v(t)^2 u(t)^5 - v(t)^4 u(t) + t^2 & \text{for } t \in (0, 1), \\ -\frac{d}{dt} (|\dot{v}(t)|^2 \dot{v}(t)) = v(t) \cos(v(t)) + u(t) \sqrt{|u(t)|} + \cos(u(t)) + v(t) \sin(t) & \text{for } t \in (0, 1), \\ u(0) = u(1) = 0, \\ v(0) = \int_0^1 \sin(v(s)) dA_0(s), \quad v(1) = \int_0^1 \cos(v(s)) dA_1(s), \end{cases}$$
(6)

where $A_0, A_1 : [0, 1] \longrightarrow \mathbb{R}$ are arbitrary functions with a finite variation. To apply Theorem 15 we let p = 3, q = 4 and define $\varphi, f, g : [0, 1] \times \mathbb{R} \times \mathbb{R} \longrightarrow \mathbb{R}$ by

$$\begin{split} \varphi(t, u, v) &= 1, \\ f(t, u, v) &= |v|^2 - v^2 u^5 - v^4 u + t^2, \\ g(t, u, v) &= v \cos(v) + u \sqrt{|u|} + \cos(u) + v \sin(t) \end{split}$$

Then δ : $[0, \infty) \longrightarrow [0, \infty)$ is given by $\delta(v) = v^2 + 1$ and

 $|g(t,u,v)| \le 2|v| + |u|^{3/2} + 1 \quad \text{for all } t \in [0,1] \text{ and } u,v \in \mathbb{R}.$

Therefore solvability of system (6) follows by Theorem 15.

References

- C. Avramescu, "Some remarks on a fixed point theorem of Krasnoselskii," *Electron. J. Qual. Theory Differ. Equ.*, vol. 2003, p. 15, 2003, Id/No 5.
- [2] I. Benedetti, T. Cardinali, and R. Precup, "Fixed point-critical point hybrid theorems and application to systems with partial variational structure," J. Fixed Point Theory Appl., vol. 23, no. 4, p. 19, 2021, Id/No 63.
- [3] M. Bełdziński, M. Galewski, and I. Kossowski, "Dependence on parameters for nonlinear equations—abstract principles and applications," *Mathematical Methods in the Applied Sciences*, vol. 45, no. 3, pp. 1668–1686, 2021.
- [4] J. Lindenstrauss, "On nonseparable reflexive Banach spaces," Bull. Am. Math. Soc., vol. 72, pp. 967–970, 1966.
- [5] J. Franců, "Monotone operators. A survey directed to applications to differential equations," *Applications of Mathematics*, vol. 35, no. 4, pp. 257–301, 1990.
- [6] M. Galewski, *Basic monotonicity methods with some applications* (Compact Textb. Math.). Cham: Birkhäuser, 2021.
- [7] M. A. Krasnosel'skij, "Some problems of nonlinear analysis. Translat. by H. P. Thielman," *Transl., Ser. 2, Am. Math. Soc.*, vol. 10, pp. 345–409, 1958.