Parametric version of the Minty-Browder Theorem and its applications

Marek Galewski

join results with Michał Bełdziński and Igor Kossowski

Warszawa $9^{\text {th }}$ October 2023

1 Motivation and preliminaries
■ Avramescu Theorem

2 Theoretical results
■ Preliminary Results

- Main Result

■ Relations to the Krasnoselskii fixed point theorem

3 Applications to the nonlinear systems
■ Nonlocal q-Laplace equation

- Perturbed p-Laplace equation
- System of nonlinear equations

■ Example

Avramescu Theorem

Theorem 1 (Avramescu Theorem)

Let (X, d) be a complete metric space, C - a closed convex subset of a normed space $(Y,\|\cdot\|)$. Moreover let $F: X \times C \longrightarrow X$ and $G: X \times C \longrightarrow C$ be continuous mappings. Assume that the following conditions are satisfied:

- There is a constant $L \in[0,1)$, such that:

$$
d(F(u, v), F(w, y)) \leq L d(u, w) \quad \text { for all } u, w \in X \text { and } v \in V
$$

- $G(X \times C)$ is a relatively compact subset of Y.

Then, there exists $\left(u_{0}, v_{0}\right) \in X \times C$ satisfying

$$
\left\{\begin{array}{l}
F\left(u_{0}, v_{0}\right)=u_{0}, \\
G\left(u_{0}, v_{0}\right)=v_{0} .
\end{array}\right.
$$

$\overline{\text { C. Avramescu, "Some remarks on a fixed point theorem of Krasnoselskii," Electron. J. Qual. Theory Differ. Equ., vol. 2003, }}$ p. 15, 2003, Id/No 5
I. Benedetti, T. Cardinali, and R. Precup, "Fixed point-critical point hybrid theorems and application to systems with partial variational structure," J. Fixed Point Theory Appl., vol. 23, no. 4, p. 19, 2021, Id/No 63

Avramescu Theorem

Theorem 2

Let (X, d) be a complete metric space, C - a closed convex subset of a normed space $(Y,\|\cdot\|)$. Assume that $F: X \times C \longrightarrow X$ and $G: X \times C \longrightarrow C$ are continuous. Assume that the following conditions are satisfied:

■ there is a continuous function $L: C \longrightarrow(0,1)$, such that:

$$
d(F(u, v), F(w, v)) \leq L(v) d(u, w) \quad \text { for all } u, w \in X \text { and } v \in C
$$

- $G(X \times C)$ is a relatively compact subset of Y;

Then, there exists $\left(u_{0}, v_{0}\right) \in X \times C$ with:

$$
\left\{\begin{array}{l}
F\left(u_{0}, v_{0}\right)=u_{0} \\
G\left(u_{0}, v_{0}\right)=v_{0}
\end{array}\right.
$$

Avramescu Theorem

Theorem 2

Let (X, d) be a complete metric space, C - a closed convex subset of a normed space $(Y,\|\cdot\|)$. Assume that $F: X \times C \longrightarrow X$ and $G: X \times C \longrightarrow C$ are continuous. Assume that the following conditions are satisfied:

■ there is a continuous function $L: C \longrightarrow(0,1)$, such that:

$$
d(F(u, v), F(w, v)) \leq L(v) d(u, w) \quad \text { for all } u, w \in X \text { and } v \in C ;
$$

- $G(X \times C)$ is a relatively compact subset of Y;

Then, there exists $\left(u_{0}, v_{0}\right) \in X \times C$ with:

$$
\left\{\begin{array}{l}
F\left(u_{0}, v_{0}\right)=u_{0} \\
G\left(u_{0}, v_{0}\right)=v_{0}
\end{array}\right.
$$

Proof.

For any $v \in C$, by the Banach Contraction Principle, there exists a unique $S(v) \in X$ such that

$$
F(S(v), v)=S(v) .
$$

Moreover, the mapping $S: C \longrightarrow X$ is continuous. Applying the Schauder Fixed Point Theorem to an operator $G(S(\cdot), \cdot): C \longrightarrow C$ we get the assertion.

Parametric Browder-Minty Theorem

Theorem 3 (Parametric Browder-Minty Theorem)

Assume that Y is a metric space, while X is a reflexive Banach space. If $A: X \times Y \longrightarrow X^{*}$ is an operator such that:

- $A(\cdot, y)$ is radially continuous and strictly monotone for all $y \in Y$;

■ A(u,) is continuous for every $u \in X$;

- for every $y_{0} \in Y$ there exists an open neighbourhood V of y_{0} and a coercive function $\gamma:[0, \infty) \longrightarrow \mathbb{R}$ such that

$$
\langle A(u, y), u\rangle \geq \gamma(\|u\|)\|u\| \quad \text { for all } y \in V \text { and } u \in X .
$$

Then for every $y \in Y$ there exists a unique u_{y} such that $A\left(u_{y}, y\right)=0$. Moreover $y_{n} \rightarrow y$ in Y implies $u_{y_{n}} \rightharpoonup u_{y}$ in X.
$\overline{M .}$ Betdziíski, M. Galewski, and I. Kossowski, "Dependence on parameters for nonlinear equations-abstract principles and applications," Mathematical Methods in the Applied Sciences, vol. 45, no. 3, pp. 1668-1686, 2021

Parametric Browder-Minty Theorem

Theorem 3 (Parametric Browder-Minty Theorem)

Assume that Y is a metric space, while X is a reflexive Banach space. If $A: X \times Y \longrightarrow X^{*}$ is an operator such that:

- $A(\cdot, y)$ is radially continuous and strictly monotone for all $y \in Y$;
- $A(u, \cdot)$ is continuous for every $u \in X$;
- for every $y_{0} \in Y$ there exists an open neighbourhood V of y_{0} and a coercive function $\gamma:[0, \infty) \longrightarrow \mathbb{R}$ such that

$$
\langle A(u, y), u\rangle \geq \gamma(\|u\|)\|u\| \quad \text { for all } y \in V \text { and } u \in X .
$$

Then for every $y \in Y$ there exists a unique u_{y} such that $A\left(u_{y}, y\right)=0$. Moreover $y_{n} \rightarrow y$ in Y implies $u_{y_{n}} \rightharpoonup u_{y}$ in X.
$\overline{\text { M. Betdziníski, M. Galewski, and I. Kossowski, "Dependence on parameters for nonlinear equations-abstract principles and }}$ applications," Mathematical Methods in the Applied Sciences, vol. 45, no. 3, pp. 1668-1686, 2021

Lemma 4

Assume that X is a real and reflexive Banach space. Then there exists a demicontinuous, bounded, coercive and strictly monotone operator $J: X \longrightarrow X^{*}$ such that $J(0)=0$.
J. Lindenstrauss, "On nonseparable reflexive Banach spaces," Bull. Am. Math. Soc., vol. 72, pp. 967-970, 1966

General assumptions

$\square X$ and Y are real normed spaces, while X is reflexive.
[2 Operator $F: X \times Y \longrightarrow X^{*}$ satisfies the following assumptions:

- $F(\cdot, v)$ is monotone and radially continuous for every fixed $v \in Y$;
- $F(u, \cdot)$ is continuous for every $u \in X$;
- there exists function $\gamma:[0, \infty)^{2} \longrightarrow \mathbb{R}$ such that

$$
\langle F(u, v), u\rangle \geq \gamma(\|u\|,\|v\|)
$$

and that

$$
\lim _{x \rightarrow \infty} \gamma(x, y)=\infty
$$

uniformly with respect to y on every bounded interval.
3. Operator $G: X \times Y \longrightarrow Y$ is compact and

$$
\left.\begin{array}{r}
u_{n} \rightharpoonup u \text { in } X \\
v_{n} \rightarrow v \text { in } Y
\end{array}\right\} \Longrightarrow G\left(u_{n}, v_{n}\right) \rightarrow G(u, v) \text { in } Y .
$$

Recall that operator $T: E \longrightarrow F$ is called compact if it is continuous and if it maps bounded subsets of E onto relatively compact subsets of F.

Main Result

Theorem 5
Assume that there exists a bounded and convex set $C \subset Y$ such that $G(X \times C) \subset C$. Then there exists at least one solution to

$$
\left\{\begin{array}{l}
F(u, v)=0 \tag{P}\\
G(u, v)=v
\end{array}\right.
$$

Main Result

Theorem 5

Assume that there exists a bounded and convex set $C \subset Y$ such that $G(X \times C) \subset C$. Then there exists at least one solution to

$$
\left\{\begin{array}{l}
F(u, v)=0 \tag{P}\\
G(u, v)=v
\end{array}\right.
$$

Proof.

Let $J: X \longrightarrow X^{*}$ be as in Lemma 4. For $n \in \mathbb{N}$ we define $F_{n}: X \times Y \longrightarrow X^{*}$ by $F_{n}(u, v)=F(u, v)+\frac{1}{n} J(u)$. For every $n \in \mathbb{N}, v \in Y$ there exists a unique $u_{n}(v)$ such that $F_{n}\left(u_{n}(v), v\right)=0$. Moreover $Y \ni v \longmapsto u_{n}(v) \in X$ is strong-weak continuous. Moreover

$$
\gamma\left(\left\|u_{n}(v)\right\|,\|v\|\right) \leq 0 \quad \text { for all } v \in Y \text { and } n \in \mathbb{N} .
$$

Hence $S:=\left\{u_{n}(v): n \in \mathbb{N}, v \in C\right\}$ is a bounded set. By the Schauder Fixed Point Theorem, applied to $G\left(u_{n}(\cdot), \cdot\right): C \longrightarrow C$, there exists $u_{n} \in X, v_{n} \in Y$ such that

$$
F\left(u_{n}, v_{n}\right)=-\frac{1}{n} J\left(u_{n}\right) \quad \text { and } \quad G\left(u_{n}, v_{n}\right)=v_{n} .
$$

We get $v_{n} \rightarrow v$ (up to subsequence) and (also up to subsequence) $u_{n} \rightarrow u$. Then $G(u, v)=v$. Relation $F(u, v)=0$ follows by the Minty Trick.

[^0]
Relations to the Krasnoselskii fixed point theorem

Theorem 6 (Krasnoselskii)

Let D be a closed bounded convex subset of a Banach space $X, A: D \longrightarrow X$ a contraction and $B: D \longrightarrow X$ a continuous mapping with $B(D)$ relatively compact. If

$$
A(x)+B(y) \in D \text { for every } x, y \in D
$$

then the mapping $A+B$ has at least one fixed point.
I. Benedetti, T. Cardinali, and R. Precup, "Fixed point-critical point hybrid theorems and application to systems with partial variational structure," J. Fixed Point Theory Appl., vol. 23, no. 4, p. 19, 2021, Id/No 63
M. A. Krasnosel'skij, "Some problems of nonlinear analysis. Translat. by H. P. Thielman," Transl., Ser. 2, Am. Math. Soc., vol. 10, pp. 345-409, 1958

We say that $A: H \longrightarrow H$ is one-sided contraction if there exists $m<1$ such that

$$
\begin{equation*}
\langle A(u)-A(w), u-w\rangle \leq m\|u-w\|^{2} \quad \text { for all } u, w \in H . \tag{1}
\end{equation*}
$$

Relations to the Krasnoselskii fixed point theorem

Theorem 7

Assume that $A: H \longrightarrow H$ is a radially continuous one-sided contraction and $B: H \longrightarrow H$ is continuous and compact. Then there exists $\lambda_{0}>0$ such that for all $\lambda \in\left[0, \lambda_{0}\right]$ the mapping $u \longmapsto A(u)-\lambda B(u)$ has a fixed point, or in other words, equation

$$
\begin{equation*}
A(u)=\lambda B(u)+u \tag{2}
\end{equation*}
$$

has a solution.

Relations to the Krasnoselskii fixed point theorem

Theorem 7

Assume that $A: H \longrightarrow H$ is a radially continuous one-sided contraction and $B: H \longrightarrow H$ is continuous and compact. Then there exists $\lambda_{0}>0$ such that for all $\lambda \in\left[0, \lambda_{0}\right]$ the mapping $u \longmapsto A(u)-\lambda B(u)$ has a fixed point, or in other words, equation

$$
\begin{equation*}
A(u)=\lambda B(u)+u \tag{2}
\end{equation*}
$$

has a solution.

Proof.

Take $r=\frac{\|A(0)\|}{1-m}$ and define $P_{r}: H \longrightarrow H$ by

$$
P(u):=\left\{\begin{array}{cc}
u & \text { if }\|u\| \leq r, \\
\frac{u}{\|u\|} & \text { if }\|u\|>r .
\end{array}\right.
$$

Put $\lambda_{0}:=\frac{1}{1+\sup _{\|u\| \leq \leq r}\|B(u)\|}$ and fix $\lambda<\lambda_{0}$. Let $X=Y=H, F(u, v)=u-A(u)-v$, and $G(u, v)=\lambda B\left(P_{r}(u)\right)$. Identifying H with H^{*} via the Riesz Representation, we can apply Theorem 5 and obtain $u_{0} \in H$ such that $u_{0}-A\left(u_{0}\right)=\lambda \boldsymbol{B}\left(P_{r}\left(u_{0}\right)\right)$. Therefore using (1) we get

$$
\left\|u_{0}\right\|\left((1-m)\left\|u_{0}\right\|-\|A(0)\|\right) \leq\left\langle u_{0}-A\left(u_{0}\right), u_{0}\right\rangle=\lambda\left\langle\boldsymbol{B}\left(P_{r}\left(u_{0}\right)\right), u_{0}\right\rangle \leq\left\|u_{0}\right\|,
$$

which gives $\left\|u_{0}\right\| \leq r$ and hence u_{0} solves (2). Since λ was taken arbitrary from $\left[0, \lambda_{0}\right]$, we get the assertion.

Relations to the Krasnoselskii fixed point theorem

Theorem 8

Let C be a closed convex subset of a Hilbert space $H, A: H \longrightarrow H$ is a radially continuous one-sided contraction and $B: C \longrightarrow H$ is continuous with $B(C)$ relatively compact. If

$$
\begin{equation*}
u=A(u)+B(v) \text { and } v \in C \text { imply that } u \in C, \tag{3}
\end{equation*}
$$

then the mapping $A+B$ has at least one fixed point.

Relations to the Krasnoselskii fixed point theorem

Theorem 8

Let C be a closed convex subset of a Hilbert space $H, A: H \longrightarrow H$ is a radially continuous one-sided contraction and $B: C \longrightarrow H$ is continuous with $B(C)$ relatively compact. If

$$
\begin{equation*}
u=A(u)+B(v) \text { and } v \in C \text { imply that } u \in C, \tag{3}
\end{equation*}
$$

then the mapping $A+B$ has at least one fixed point.

Proof.

By the Strongly Monotone Principle, a mapping $I-A: H \longrightarrow H$ is a bijection with a continuous inverse. Let $T: C \longrightarrow X$ be given by

$$
T(u):=(I-A)^{-1}(B(u)) .
$$

By (3) we have $T(C) \subset C$. Since $T(C)$ is relatively compact, the assertion follows by the Schauder Fixed Point Theorem.

Main Result

Theorem 9

Assume that there exists a function $\psi:[0, \infty)^{2} \longrightarrow[0, \infty)$ such that

$$
\|G(u, v)\| \leq \psi(\|u\|,\|v\|)
$$

If there exists $R>0$ such that

$$
\begin{equation*}
\gamma(x, y) \leq 0 \text { and } y \leq R \text { imply that } \psi(x, y) \leq R . \tag{4}
\end{equation*}
$$

then system (P) has at least one solution.

Main Result

Theorem 9

Assume that there exists a function $\psi:[0, \infty)^{2} \longrightarrow[0, \infty)$ such that

$$
\|G(u, v)\| \leq \psi(\|u\|,\|v\|) ;
$$

If there exists $R>0$ such that

$$
\begin{equation*}
\gamma(x, y) \leq 0 \text { and } y \leq R \text { imply that } \psi(x, y) \leq R . \tag{4}
\end{equation*}
$$

then system (P) has at least one solution.

Proof.

Let us denote $D_{R}:=\{v \in Y:\|v\| \leq R\}$. Define F_{n} and $u_{n}(v)$ as in the proof of Theorem 5. Let $G_{n}: D_{R} \longrightarrow Y$ be given by $G_{n}(v)=G\left(u_{n}(v), v\right)$. Then G_{n} is continuous. Moreover, since $\|v\| \leq R$ and since γ is uniformly coercive, set $S:=\left\{u_{n}(v): n \in \mathbb{N}, v \in D_{R}\right\}$ is bounded. Therefore

$$
G_{n}\left(D_{R}\right) \subset G\left(S \times D_{R}\right)
$$

and hence G_{n} is compact. Now we show that $G_{n}: D_{R} \longrightarrow D_{R}$. Let $\|v\| \leq R$. Then

$$
\left\|G_{n}(v)\right\|=\left\|G\left(u_{n}(v), v\right)\right\| \leq \psi\left(\left\|u_{n}(v)\right\|,\|v\|\right)
$$

Moreover $0=\left\langle F_{n}\left(u_{n}(v), v\right), u_{n}(v)\right\rangle \geq \gamma\left(\left\|u_{n}(v)\right\|,\|v\|\right)$ and hence $\left\|G_{n}(v)\right\| \leq R$ by (4). By the Schauder Fixed Point Theorem, applied to G_{n}, there exists $v_{n} \in D_{R}$ such that $G_{n}\left(v_{n}\right)=v_{n}$. Mimicking the proof of Theorem 5, we get the assertion.

Nonlocal q-Laplace equation

Let us fix $u \in C[0,1]$ and consider the following nonlinear system

$$
\begin{cases}-\frac{d}{d t}\left(|\dot{v}(t)|^{q-2} \dot{v}(t)\right)=g(t, u(t), v(t)) & \text { for } t \in(0,1) \\ v(0)=\int_{0}^{1} h_{0}(v(s)) d A_{0}(s), \quad v(1)=\int_{0}^{1} h_{1}(v(s)) d A_{1}(s) & \end{cases}
$$

where $q>1, g:[0,1] \times \mathbb{R} \longrightarrow \mathbb{R}, h_{0}, h_{1}: \mathbb{R} \longrightarrow \mathbb{R}$ are continuous and $A_{0}, A_{1}:[0,1] \longrightarrow \mathbb{R}$ have bounded variations.

Lemma 10

For every $u, v \in C[0,1]$ there is exactly one $c=c(u, v)$ such that

$$
\int_{0}^{1} \psi_{q}^{-1}\left(c(u, v)-\int_{0}^{s} g(\tau, u(\tau), v(\tau)) d \tau\right) d s=\int_{0}^{1} h_{1}(v(s)) d A_{1}(s)-\int_{0}^{1} h_{0}(v(s)) d A_{0}(s)
$$

Moreover, the mapping $C[0,1] \times C[0,1] \ni(u, v) \longmapsto c(u, v) \in \mathbb{R}$ is continuous.
Here and further on, a function associated with q-Laplacian is denoted by $\psi_{q}: \mathbb{R} \longrightarrow \mathbb{R}$, that is

$$
\psi_{q}(\zeta)=|\zeta|^{q-2} \zeta
$$

Nonlocal q-Laplace equation

Proof.

For fixed $u, v \in C[0,1]$ we define

$$
\Theta_{(u, v)}(c)=\int_{0}^{1} \psi_{q}^{-1}\left(c-\int_{0}^{s} g(\tau, u(\tau), v(\tau)) d \tau\right) d s-\int_{0}^{1} h_{1}(v(s)) d A_{1}(s)+\int_{0}^{1} h_{0}(v(s)) d A_{0}(s) .
$$

Since ψ_{q} is continuous and strictly increasing, then so is function $\Theta_{(u, v)}$. Moreover, we have $\lim _{|c| \rightarrow \infty}\left|\Theta_{(u, v)}(c)\right|=\infty$. Hence $\Theta_{(u, v)}(c)=0$ for a unique $c=c(u, v)$. Next, the monotonicity of ψ_{q} yields

$$
c(u, v) \lesseqgtr \psi_{q}\left(\int_{0}^{1} h_{1}(v(s)) d A_{1}(s)-\int_{0}^{1} h_{0}(v(s)) d A_{0}(s)\right) \pm \sup _{0 \leq t \leq 1}|g(t, u(t), v(t))|
$$

Now, let $u_{n} \rightarrow u_{0}$ and $v_{n} \rightarrow v_{0}$ in $C[0,1]$. Then $c\left(u_{n}, v_{n}\right) \rightarrow c$ up to the subsequence. Moreover

$$
\lim _{n \rightarrow \infty} \Theta_{u_{n}, v_{n}}\left(c\left(u_{n}, v_{n}\right)\right)=\Theta_{u_{0}, v_{0}}(c)
$$

which gives $c=c\left(u_{0}, v_{0}\right)$.

Nonlocal q-Laplace equation

We define $T: C[0,1] \times C[0,1] \longrightarrow C[0,1]$ by the formula

$$
T(u, v)(t)=\int_{0}^{t} \psi_{q}^{-1}\left(c(u, v)-\int_{0}^{s} g(\tau, u(\tau), v(\tau)) d \tau\right) d s+\int_{0}^{1} h_{0}(v(s)) d A_{0}(s)
$$

where c is defined in Lemma 10 .

Lemma 11

For every $u \in C[0,1]$, the function $v \in C[0,1]$ is a solution to $\left(\mathrm{P}_{q}\right)$ if and only if it is a fixed point of operator $T(u, \cdot)$.

We impose the following assumptions on g :
II there are numbers $0 \leq A, B, C, 0<r \leq(p-1)(q-1)$ and $0<\theta<q-1$ such that

$$
|g(t, u, v)| \leq A|u|^{r}+B|v|^{\theta}+C \quad \text { for all } t \in[0,1] \text { and } u, v \in \mathbb{R} ;
$$

2. there exists a number $\alpha_{j}>0$ such that $\left|h_{j}(v)\right| \leq \alpha_{j}|v|$ for all $v \in \mathbb{R}, j=0,1$;
$3\left(2 \alpha_{0} \operatorname{Var} A_{0}+\alpha_{1} \operatorname{Var} A_{1}\right)<1$, where $\operatorname{Var} \xi$ stands for a variation of a function ξ.

q-Laplace equation

Theorem 12
For every $u \in C[0,1]$ the problem $\left(\mathrm{P}_{q}\right)$ admits at least one solution.

q-Laplace equation

Theorem 12

For every $u \in C[0,1]$ the problem $\left(\mathrm{P}_{q}\right)$ admits at least one solution.

Proof.

Since second assumption holds, we get

$$
\begin{equation*}
\left|\int_{0}^{1} h_{0}(v(s)) d A_{0}(s)\right| \leq \alpha_{0}\|v\|_{\infty} \operatorname{Var} A_{0} \tag{5}
\end{equation*}
$$

According to the proof of Lemma 10, for every $s \in[0,1]$ we have

$$
|c(u, v)-g(s, u(s), v(s))| \leq \psi_{q}\left(\left(\alpha_{1} \operatorname{Var} A_{1}+\alpha_{0} \operatorname{Var} A_{0}\right)\|v\|_{\infty}\right)+2\left(A\|u\|_{\infty}^{r}+B\|v\|_{\infty}^{\theta}+C\right)
$$

The above estimation combined with (5) gives

$$
\|T(u, v)\|_{\infty} \leq\left(\alpha_{1} \operatorname{Var} A_{1}+2 \alpha_{0} \operatorname{Var} A_{0}\right)\|v\|_{\infty}+\left(2 A\|u\|_{\infty}^{r}+2 C\right)^{\frac{1}{q-1}}+(2 B)^{\frac{1}{q-1}}\|v\|_{\infty}^{\frac{\theta}{q-1}} .
$$

Since the third assumption holds and $\theta<q-1$, we have $\|T(u, v)\|_{\infty} \leq R$ whenever $\|v\|_{\infty} \leq R$ for sufficiently large $R>0$. Operator $T(u, \cdot)$ is completely continuous, hence the existence of solution to $\left(\mathrm{P}_{q}\right)$ is a consequence of the Schauder Fixed Point Theorem.

Perturbed p-Laplace equation

Let $\varphi: \Omega \times \mathbb{R} \times[0, \infty) \longrightarrow \mathbb{R}$ and assume that there exist continuous function $M:[0, \infty) \longrightarrow(0, \infty)$ and constant $m>0$, such that for a.e. $x \in \Omega$, all $y \in \mathbb{R}$ and $s \geq r \geq 0$ there is:
$11 \varphi(\cdot, y, r)$ is Lebesgue measurable;
』 $\varphi(x, \cdot, r)$ and $\varphi(x, y, \cdot)$ are continuous;
3 $m \leq \varphi(x, y, r) \leq M(|y|)$;
$4 \varphi(x, y, r) r \leq \varphi(x, y, s) s$.
For $p \geq 2$ we define $D_{p, \varphi}: W_{0}^{1, p}(0,1) \times C[0,1] \longrightarrow W^{-1, p^{\prime}}(0,1)$ by

$$
\left\langle D_{p, \varphi}(u, v), w\right\rangle=\int_{0}^{1} \varphi\left(t, v(t),|\dot{u}(t)|^{p-1}\right)|\dot{u}(t)|^{p-2} \dot{u}(t) \dot{w}(t) d t .
$$

Lemma 13

- $D_{p, \varphi}(\cdot, v)$ is monotone and radially continuous for every fixed $v \in Y$;
- $D_{p, \varphi}(u, \cdot)$ is continuous for every $u \in X$;
- for every $u \in W_{0}^{1}(0,1)$ and $v \in C[0,1]$ we have

$$
\left\langle D_{p, \varphi}(u, v), u\right\rangle \geq m\|u\|_{W_{0}^{1, p}}^{p} .
$$

Perturbed p-Laplace equation

Take a function $f:[0,1]: \mathbb{R} \times \mathbb{R} \longrightarrow \mathbb{R}$ such that for all $u, v \in \mathbb{R}$ and a.e. $t \in[0,1]$ there is:
II $f(\cdot, u, v)$ is Lebesgue measurable;
[$f(t, \cdot, v)$ is continuous and nonincreasing;
3 $f(t, u, \cdot)$ is continuous;
4 there exists a nondecreasing function $\delta:[0, \infty) \longrightarrow \mathbb{R}$ satisfying

$$
\delta(v) \geq \sup _{\substack{0 \leq t \leq 1 \\-v \leq \xi \leq v}}|f(t, 0, \xi)| .
$$

Define $S: W_{0}^{1, p}(0,1) \times C([0,1]) \longrightarrow W^{-1, p^{\prime}}(0,1)$ by the formula

$$
\langle S(u, v), w\rangle=\int_{0}^{1} \varphi\left(t, v(t),|\dot{u}(t)|^{p-1}\right)|\dot{u}(t)|^{p-2} \dot{u}(t) \dot{w}(t) d t-\int_{0}^{1} f(t, u(t), v(t)) w(t) d t .
$$

Lemma 14

For all $u \in W_{0}^{1, p}(0,1)$ and every $v \in C[0,1]$ there is

$$
\langle S(u, v), u\rangle \geq m\|u\|_{W_{0}^{1, p}}^{p}-\frac{1}{\lambda_{p}} \delta\left(\|v\|_{\infty}\right)\|u\|_{W_{0}^{1, p}} .
$$

Here $\lambda_{p}=\inf \left\{c>0: \int_{0}^{1}|u(t)|^{p} d t \leq c \int_{0}^{1}|\dot{u}(t)|^{p} d t\right.$ for all $\left.u \in W_{0}^{1, p}(0,1)\right\}$.

System of nonlinear equations

$$
\begin{cases}-\frac{d}{d t}\left(\varphi\left(t, v(t),|\dot{u}(t)|^{p-1}\right)|\dot{u}(t)|^{p-2} \dot{u}(t)\right)=f(t, u(t), v(t)) & \text { for } t \in(0,1), \\ -\frac{d}{d t}\left(|\dot{v}(t)|^{q-2} \dot{v}(t)\right)=g(t, u(t), v(t)) & \text { for } t \in(0,1), \tag{p,q}\\ u(0)=u(1)=0, & \\ v(0)=\int_{0}^{1} h_{0}(v(s)) d A_{0}(s), \quad v(1)=\int_{0}^{1} h_{1}(v(s)) d A_{1}(s) .\end{cases}
$$

Theorem 15
Assume that there exists $0 \leq a, b$ and $\sigma<\frac{(p-1)(q-1)}{r}$ such that

$$
|\delta(y)| \leq a|y|^{\sigma}+b \quad \text { for all } y \in \mathbb{R}
$$

Then system $\left(\mathrm{P}_{p, q}\right)$ has at least one solution.

Proof.

We apply Theorem 9 taking $X=W_{0}^{1, p}(0,1), Y=C[0,1], F=S$ and $G=T$.

Example

$$
\begin{cases}-\frac{d}{d t}(|\dot{u}(t)| \dot{u}(t))=|v(t)|^{2}-v(t)^{2} u(t)^{5}-v(t)^{4} u(t)+t^{2} & \text { for } t \in(0,1) \tag{6}\\ -\frac{d}{d t}\left(|\dot{v}(t)|^{2} \dot{v}(t)\right)=v(t) \cos (v(t))+u(t) \sqrt{|u(t)|}+\cos (u(t))+v(t) \sin (t) & \text { for } t \in(0,1), \\ u(0)=u(1)=0 & \\ v(0)=\int_{0}^{1} \sin (v(s)) d A_{0}(s), \quad v(1)=\int_{0}^{1} \cos (v(s)) d A_{1}(s)\end{cases}
$$

where $A_{0}, A_{1}:[0,1] \longrightarrow \mathbb{R}$ are arbitrary functions with a finite variation. To apply Theorem 15 we let $p=3, q=4$ and define $\varphi, f, g:[0,1] \times \mathbb{R} \times \mathbb{R} \longrightarrow \mathbb{R}$ by

$$
\begin{aligned}
& \varphi(t, u, v)=1 \\
& f(t, u, v)=|v|^{2}-v^{2} u^{5}-v^{4} u+t^{2} \\
& g(t, u, v)=v \cos (v)+u \sqrt{|u|}+\cos (u)+v \sin (t) .
\end{aligned}
$$

Then $\delta:[0, \infty) \longrightarrow[0, \infty)$ is given by $\delta(v)=v^{2}+1$ and

$$
|g(t, u, v)| \leq 2|v|+|u|^{3 / 2}+1 \quad \text { for all } t \in[0,1] \text { and } u, v \in \mathbb{R} .
$$

Therefore solvability of system (6) follows by Theorem 15.

References

[1] C. Avramescu, "Some remarks on a fixed point theorem of Krasnoselskii," Electron. J. Qual. Theory Differ. Equ., vol. 2003, p. 15, 2003, Id/No 5.
[2] I. Benedetti, T. Cardinali, and R. Precup, "Fixed point-critical point hybrid theorems and application to systems with partial variational structure," J. Fixed Point Theory Appl., vol. 23, no. 4, p. 19, 2021, Id/No 63.
[3] M. Bełdziński, M. Galewski, and I. Kossowski, "Dependence on parameters for nonlinear equations-abstract principles and applications," Mathematical Methods in the Applied Sciences, vol. 45, no. 3, pp. 1668-1686, 2021.
[4] J. Lindenstrauss, "On nonseparable reflexive Banach spaces," Bull. Am. Math. Soc., vol. 72, pp. 967-970, 1966.
[5] J. Franců, "Monotone operators. A survey directed to applications to differential equations," Applications of Mathematics, vol. 35, no. 4, pp. 257-301, 1990.
[6] M. Galewski, Basic monotonicity methods with some applications (Compact Textb. Math.). Cham: Birkhäuser, 2021.
[7] M. A. Krasnosel'skij, "Some problems of nonlinear analysis. Translat. by H. P. Thielman," Transl., Ser. 2, Am. Math. Soc., vol. 10, pp. 345-409, 1958.

[^0]: J. Franců, "Monotone operators. A survey directed to applications to differential equations," Applications of Mathematics, vol. 35, no. 4, pp. 257-301, 1990
 M. Galewski, Basic monotonicity methods with some applications (Compact Textb. Math.). Cham: Birkhäuser, 2021

