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Avramescu Theorem

Theorem 1 (Avramescu Theorem)
Let (𝑋, 𝑑) be a complete metric space, 𝐶 – a closed convex subset of a normed space (𝑌 , ‖ ⋅ ‖).
Moreover let 𝐹 ∶ 𝑋 ×𝐶 ⟶ 𝑋 and 𝐺∶ 𝑋 ×𝐶 ⟶ 𝐶 be continuous mappings. Assume that the
following conditions are satisfied:

There is a constant 𝐿 ∈ [0, 1), such that:

𝑑
(

𝐹 (𝑢, 𝑣), 𝐹 (𝑤, 𝑦)
)

≤ 𝐿𝑑(𝑢,𝑤) for all 𝑢,𝑤 ∈ 𝑋 and 𝑣 ∈ 𝑉 ;

𝐺(𝑋 × 𝐶) is a relatively compact subset of 𝑌 .
Then, there exists (𝑢0, 𝑣0) ∈ 𝑋 × 𝐶 satisfying

{

𝐹 (𝑢0, 𝑣0) = 𝑢0,
𝐺(𝑢0, 𝑣0) = 𝑣0.

C. Avramescu, “Some remarks on a fixed point theorem of Krasnoselskii,” Electron. J. Qual. Theory Differ. Equ., vol. 2003,
p. 15, 2003, Id/No 5

I. Benedetti, T. Cardinali, and R. Precup, “Fixed point-critical point hybrid theorems and application to systems with partial
variational structure,” J. Fixed Point Theory Appl., vol. 23, no. 4, p. 19, 2021, Id/No 63



Avramescu Theorem

Theorem 2
Let (𝑋, 𝑑) be a complete metric space, 𝐶 – a closed convex subset of a normed space (𝑌 , ‖ ⋅ ‖).
Assume that 𝐹 ∶ 𝑋 ×𝐶 ⟶ 𝑋 and 𝐺∶ 𝑋 ×𝐶 ⟶ 𝐶 are continuous. Assume that the following
conditions are satisfied:

there is a continuous function 𝐿∶ 𝐶 ⟶ (0, 1), such that:

𝑑
(

𝐹 (𝑢, 𝑣), 𝐹 (𝑤, 𝑣)
)

≤ 𝐿 (𝑣) 𝑑(𝑢,𝑤) for all 𝑢,𝑤 ∈ 𝑋 and 𝑣 ∈ 𝐶;

𝐺(𝑋 × 𝐶) is a relatively compact subset of 𝑌 ;
Then, there exists (𝑢0, 𝑣0) ∈ 𝑋 × 𝐶 with:

{

𝐹 (𝑢0, 𝑣0) = 𝑢0,
𝐺(𝑢0, 𝑣0) = 𝑣0.

Proof.
For any 𝑣 ∈ 𝐶 , by the Banach Contraction Principle, there exists a unique 𝑆(𝑣) ∈ 𝑋 such that

𝐹 (𝑆(𝑣), 𝑣) = 𝑆(𝑣).

Moreover, the mapping𝑆 ∶ 𝐶 ⟶ 𝑋 is continuous. Applying the Schauder Fixed Point Theorem
to an operator 𝐺(𝑆(⋅), ⋅)∶ 𝐶 ⟶ 𝐶 we get the assertion.
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Parametric Browder-Minty Theorem

Theorem 3 (Parametric Browder-Minty Theorem)
Assume that 𝑌 is a metric space, while 𝑋 is a reflexive Banach space. If 𝐴∶ 𝑋 × 𝑌 ⟶ 𝑋∗ is
an operator such that:

𝐴(⋅, 𝑦) is radially continuous and strictly monotone for all 𝑦 ∈ 𝑌 ;
𝐴(𝑢, ⋅) is continuous for every 𝑢 ∈ 𝑋;
for every 𝑦0 ∈ 𝑌 there exists an open neighbourhood 𝑉 of 𝑦0 and a coercive function
𝛾 ∶ [0,∞) ⟶ ℝ such that

⟨𝐴(𝑢, 𝑦), 𝑢⟩ ≥ 𝛾(‖𝑢‖)‖𝑢‖ for all 𝑦 ∈ 𝑉 and 𝑢 ∈ 𝑋.

Then for every 𝑦 ∈ 𝑌 there exists a unique 𝑢𝑦 such that 𝐴(𝑢𝑦, 𝑦) = 0. Moreover 𝑦𝑛 → 𝑦 in 𝑌
implies 𝑢𝑦𝑛 ⇀ 𝑢𝑦 in 𝑋.
M. Bełdziński, M. Galewski, and I. Kossowski, “Dependence on parameters for nonlinear equations—abstract principles and
applications,” Mathematical Methods in the Applied Sciences, vol. 45, no. 3, pp. 1668–1686, 2021

Lemma 4
Assume that𝑋 is a real and reflexive Banach space. Then there exists a demicontinuous, bounded,
coercive and strictly monotone operator 𝐽 ∶ 𝑋 ⟶ 𝑋∗ such that 𝐽 (0) = 0.
J. Lindenstrauss, “On nonseparable reflexive Banach spaces,” Bull. Am. Math. Soc., vol. 72, pp. 967–970, 1966
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General assumptions

1 𝑋 and 𝑌 are real normed spaces, while 𝑋 is reflexive.
2 Operator 𝐹 ∶ 𝑋 × 𝑌 ⟶ 𝑋∗ satisfies the following assumptions:

𝐹 (⋅, 𝑣) is monotone and radially continuous for every fixed 𝑣 ∈ 𝑌 ;
𝐹 (𝑢, ⋅) is continuous for every 𝑢 ∈ 𝑋;
there exists function 𝛾 ∶ [0,∞)2 ⟶ ℝ such that

⟨𝐹 (𝑢, 𝑣), 𝑢⟩ ≥ 𝛾(‖𝑢‖, ‖𝑣‖)

and that
lim
𝑥→∞

𝛾(𝑥, 𝑦) = ∞

uniformly with respect to 𝑦 on every bounded interval.
3 Operator 𝐺∶ 𝑋 × 𝑌 ⟶ 𝑌 is compact and

𝑢𝑛 ⇀ 𝑢 in 𝑋
𝑣𝑛 → 𝑣 in 𝑌

}

⟹ 𝐺(𝑢𝑛, 𝑣𝑛) → 𝐺(𝑢, 𝑣) in 𝑌 .

Recall that operator 𝑇 ∶ 𝐸 ⟶ 𝐹 is called compact if it is continuous and if it maps bounded
subsets of 𝐸 onto relatively compact subsets of 𝐹 .



Main Result

Theorem 5
Assume that there exists a bounded and convex set 𝐶 ⊂ 𝑌 such that 𝐺(𝑋 × 𝐶) ⊂ 𝐶 . Then there
exists at least one solution to

{

𝐹 (𝑢, 𝑣) = 0,
𝐺(𝑢, 𝑣) = 𝑣 (P)

Proof.
Let 𝐽 ∶ 𝑋 ⟶ 𝑋∗ be as in Lemma 4. For 𝑛 ∈ ℕ we define 𝐹𝑛 ∶ 𝑋 × 𝑌 ⟶ 𝑋∗ by
𝐹𝑛(𝑢, 𝑣) = 𝐹 (𝑢, 𝑣) + 1

𝑛𝐽 (𝑢). For every 𝑛 ∈ ℕ, 𝑣 ∈ 𝑌 there exists a unique 𝑢𝑛(𝑣) such that
𝐹𝑛(𝑢𝑛(𝑣), 𝑣) = 0. Moreover 𝑌 ∋ 𝑣⟼ 𝑢𝑛(𝑣) ∈ 𝑋 is strong-weak continuous. Moreover

𝛾(‖𝑢𝑛(𝑣)‖, ‖𝑣‖) ≤ 0 for all 𝑣 ∈ 𝑌 and 𝑛 ∈ ℕ.

Hence 𝑆 ∶= {𝑢𝑛(𝑣) ∶ 𝑛 ∈ ℕ, 𝑣 ∈ 𝐶} is a bounded set. By the Schauder Fixed Point Theorem,
applied to 𝐺(𝑢𝑛(⋅), ⋅)∶ 𝐶 ⟶ 𝐶 , there exists 𝑢𝑛 ∈ 𝑋, 𝑣𝑛 ∈ 𝑌 such that

𝐹 (𝑢𝑛, 𝑣𝑛) = − 1
𝑛𝐽 (𝑢𝑛) and 𝐺(𝑢𝑛, 𝑣𝑛) = 𝑣𝑛.

We get 𝑣𝑛 → 𝑣 (up to subsequence) and (also up to subsequence) 𝑢𝑛 ⇀ 𝑢. Then 𝐺(𝑢, 𝑣) = 𝑣.
Relation 𝐹 (𝑢, 𝑣) = 0 follows by the Minty Trick.

J. Franců, “Monotone operators. A survey directed to applications to differential equations,” Applications of Mathematics, vol. 35,
no. 4, pp. 257–301, 1990
M. Galewski, Basic monotonicity methods with some applications (Compact Textb. Math.). Cham: Birkhäuser, 2021
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Relations to the Krasnoselskii fixed point theorem

Theorem 6 (Krasnoselskii)
Let 𝐷 be a closed bounded convex subset of a Banach space 𝑋, 𝐴∶ 𝐷 ⟶ 𝑋 a contraction and
𝐵∶ 𝐷 ⟶ 𝑋 a continuous mapping with 𝐵(𝐷) relatively compact. If

𝐴(𝑥) + 𝐵(𝑦) ∈ 𝐷 for every 𝑥, 𝑦 ∈ 𝐷

then the mapping 𝐴 + 𝐵 has at least one fixed point.
I. Benedetti, T. Cardinali, and R. Precup, “Fixed point-critical point hybrid theorems and application to systems with partial
variational structure,” J. Fixed Point Theory Appl., vol. 23, no. 4, p. 19, 2021, Id/No 63
M. A. Krasnosel’skij, “Some problems of nonlinear analysis. Translat. by H. P. Thielman,” Transl., Ser. 2, Am. Math. Soc.,
vol. 10, pp. 345–409, 1958

We say that 𝐴∶ 𝐻 ⟶ 𝐻 is one-sided contraction if there exists 𝑚 < 1 such that

⟨𝐴(𝑢) − 𝐴(𝑤), 𝑢 −𝑤⟩ ≤ 𝑚‖𝑢 −𝑤‖2 for all 𝑢,𝑤 ∈ 𝐻. (1)



Relations to the Krasnoselskii fixed point theorem

Theorem 7
Assume that 𝐴∶ 𝐻 ⟶ 𝐻 is a radially continuous one-sided contraction and 𝐵∶ 𝐻 ⟶ 𝐻
is continuous and compact. Then there exists 𝜆0 > 0 such that for all 𝜆 ∈ [0, 𝜆0] the mapping
𝑢⟼ 𝐴 (𝑢) − 𝜆𝐵 (𝑢) has a fixed point, or in other words, equation

𝐴 (𝑢) = 𝜆𝐵 (𝑢) + 𝑢 (2)

has a solution.

Proof.
Take 𝑟 = ‖𝐴(0)‖

1−𝑚 and define 𝑃𝑟 ∶ 𝐻 ⟶ 𝐻 by

𝑃 (𝑢) ∶=
{

𝑢 if ‖𝑢‖ ≤ 𝑟,
𝑢

‖𝑢‖ if ‖𝑢‖ > 𝑟.

Put 𝜆0 ∶= 1
1+sup

‖𝑢‖≤𝑟 ‖𝐵(𝑢)‖
and fix 𝜆 < 𝜆0. Let 𝑋 = 𝑌 = 𝐻 , 𝐹 (𝑢, 𝑣) = 𝑢 − 𝐴(𝑢) − 𝑣, and

𝐺(𝑢, 𝑣) = 𝜆𝐵(𝑃𝑟(𝑢)). Identifying𝐻 with𝐻∗ via the Riesz Representation, we can apply Theorem
5 and obtain 𝑢0 ∈ 𝐻 such that 𝑢0 − 𝐴(𝑢0) = 𝜆𝐵(𝑃𝑟(𝑢0)). Therefore using (1) we get

‖𝑢0‖((1 − 𝑚)‖𝑢0‖ − ‖𝐴(0)‖) ≤ ⟨𝑢0 − 𝐴(𝑢0), 𝑢0⟩ = 𝜆⟨𝐵(𝑃𝑟(𝑢0)), 𝑢0⟩ ≤ ‖𝑢0‖,

which gives ‖𝑢0‖ ≤ 𝑟 and hence 𝑢0 solves (2). Since 𝜆 was taken arbitrary from [0, 𝜆0], we get
the assertion.
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Relations to the Krasnoselskii fixed point theorem

Theorem 8
Let 𝐶 be a closed convex subset of a Hilbert space 𝐻 , 𝐴∶ 𝐻 ⟶ 𝐻 is a radially continuous
one-sided contraction and 𝐵∶ 𝐶 ⟶ 𝐻 is continuous with 𝐵(𝐶) relatively compact. If

𝑢 = 𝐴(𝑢) + 𝐵(𝑣) and 𝑣 ∈ 𝐶 imply that 𝑢 ∈ 𝐶, (3)

then the mapping 𝐴 + 𝐵 has at least one fixed point.

Proof.
By the Strongly Monotone Principle, a mapping 𝐼 − 𝐴∶ 𝐻 ⟶ 𝐻 is a bijection with
a continuous inverse. Let 𝑇 ∶ 𝐶 ⟶ 𝑋 be given by

𝑇 (𝑢) ∶= (𝐼 − 𝐴)−1
(

𝐵(𝑢)
)

.

By (3) we have 𝑇 (𝐶) ⊂ 𝐶 . Since 𝑇 (𝐶) is relatively compact, the assertion follows by the
Schauder Fixed Point Theorem.
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Main Result

Theorem 9
Assume that there exists a function 𝜓 ∶ [0,∞)2 ⟶ [0,∞) such that

‖𝐺(𝑢, 𝑣)‖ ≤ 𝜓(‖𝑢‖, ‖𝑣‖);

If there exists 𝑅 > 0 such that

𝛾(𝑥, 𝑦) ≤ 0 and 𝑦 ≤ 𝑅 imply that 𝜓(𝑥, 𝑦) ≤ 𝑅. (4)

then system (P) has at least one solution.

Proof.
Let us denote 𝐷𝑅 ∶= {𝑣 ∈ 𝑌 ∶ ‖𝑣‖ ≤ 𝑅}. Define 𝐹𝑛 and 𝑢𝑛(𝑣) as in the proof of Theorem 5.
Let 𝐺𝑛 ∶ 𝐷𝑅 ⟶ 𝑌 be given by 𝐺𝑛(𝑣) = 𝐺(𝑢𝑛(𝑣), 𝑣). Then 𝐺𝑛 is continuous. Moreover, since
‖𝑣‖ ≤ 𝑅 and since 𝛾 is uniformly coercive, set 𝑆 ∶= {𝑢𝑛(𝑣) ∶ 𝑛 ∈ ℕ, 𝑣 ∈ 𝐷𝑅} is bounded.
Therefore

𝐺𝑛
(

𝐷𝑅
)

⊂ 𝐺
(

𝑆 ×𝐷𝑅
)

and hence 𝐺𝑛 is compact. Now we show that 𝐺𝑛 ∶ 𝐷𝑅 ⟶ 𝐷𝑅. Let ‖𝑣‖ ≤ 𝑅. Then

‖𝐺𝑛(𝑣)‖ = ‖𝐺(𝑢𝑛(𝑣), 𝑣)‖ ≤ 𝜓
(

‖𝑢𝑛(𝑣)‖, ‖𝑣‖
)

Moreover 0 = ⟨𝐹𝑛(𝑢𝑛(𝑣), 𝑣), 𝑢𝑛(𝑣)⟩ ≥ 𝛾(‖𝑢𝑛(𝑣)‖, ‖𝑣‖) and hence ‖𝐺𝑛(𝑣)‖ ≤ 𝑅 by (4). By the
Schauder Fixed Point Theorem, applied to 𝐺𝑛, there exists 𝑣𝑛 ∈ 𝐷𝑅 such that 𝐺𝑛(𝑣𝑛) = 𝑣𝑛.
Mimicking the proof of Theorem 5, we get the assertion.



Main Result
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𝑆 ×𝐷𝑅
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and hence 𝐺𝑛 is compact. Now we show that 𝐺𝑛 ∶ 𝐷𝑅 ⟶ 𝐷𝑅. Let ‖𝑣‖ ≤ 𝑅. Then

‖𝐺𝑛(𝑣)‖ = ‖𝐺(𝑢𝑛(𝑣), 𝑣)‖ ≤ 𝜓
(

‖𝑢𝑛(𝑣)‖, ‖𝑣‖
)

Moreover 0 = ⟨𝐹𝑛(𝑢𝑛(𝑣), 𝑣), 𝑢𝑛(𝑣)⟩ ≥ 𝛾(‖𝑢𝑛(𝑣)‖, ‖𝑣‖) and hence ‖𝐺𝑛(𝑣)‖ ≤ 𝑅 by (4). By the
Schauder Fixed Point Theorem, applied to 𝐺𝑛, there exists 𝑣𝑛 ∈ 𝐷𝑅 such that 𝐺𝑛(𝑣𝑛) = 𝑣𝑛.
Mimicking the proof of Theorem 5, we get the assertion.



Nonlocal 𝑞-Laplace equation

Let us fix 𝑢 ∈ 𝐶[0, 1] and consider the following nonlinear system

⎧

⎪

⎪

⎨

⎪

⎪

⎩

− 𝑑
𝑑𝑡

(

|�̇�(𝑡)|𝑞−2�̇�(𝑡)
)

= 𝑔(𝑡, 𝑢(𝑡), 𝑣(𝑡)) for 𝑡 ∈ (0, 1),

𝑣(0) = ∫

1

0
ℎ0(𝑣(𝑠))𝑑𝐴0(𝑠), 𝑣(1) = ∫

1

0
ℎ1(𝑣(𝑠))𝑑𝐴1(𝑠),

(P𝑞)

where 𝑞 > 1, 𝑔∶ [0, 1] × ℝ ⟶ ℝ, ℎ0, ℎ1 ∶ ℝ ⟶ ℝ are continuous and 𝐴0, 𝐴1 ∶ [0, 1] ⟶ ℝ
have bounded variations.

Lemma 10
For every 𝑢, 𝑣 ∈ 𝐶[0, 1] there is exactly one 𝑐 = 𝑐(𝑢, 𝑣) such that

∫

1

0
𝜓−1
𝑞

(

𝑐(𝑢, 𝑣) − ∫

𝑠

0
𝑔
(

𝜏, 𝑢(𝜏), 𝑣(𝜏)
)

𝑑𝜏
)

𝑑𝑠 = ∫

1

0
ℎ1(𝑣(𝑠))𝑑𝐴1(𝑠) − ∫

1

0
ℎ0(𝑣(𝑠))𝑑𝐴0(𝑠).

Moreover, the mapping 𝐶[0, 1] × 𝐶[0, 1] ∋ (𝑢, 𝑣) ⟼ 𝑐(𝑢, 𝑣) ∈ ℝ is continuous.

Here and further on, a function associated with 𝑞-Laplacian is denoted by 𝜓𝑞 ∶ ℝ ⟶ ℝ, that is

𝜓𝑞(𝜁 ) = |𝜁 |𝑞−2𝜁.



Nonlocal 𝑞-Laplace equation

Proof.
For fixed 𝑢, 𝑣 ∈ 𝐶[0, 1] we define

Θ(𝑢,𝑣)(𝑐) = ∫

1

0
𝜓−1
𝑞

(

𝑐 − ∫

𝑠

0
𝑔
(

𝜏, 𝑢(𝜏), 𝑣(𝜏)
)

𝑑𝜏
)

𝑑𝑠−∫

1

0
ℎ1(𝑣(𝑠))𝑑𝐴1(𝑠)+∫

1

0
ℎ0(𝑣(𝑠))𝑑𝐴0(𝑠).

Since 𝜓𝑞 is continuous and strictly increasing, then so is function Θ(𝑢,𝑣). Moreover, we have
lim

|𝑐|→∞ |Θ(𝑢,𝑣)(𝑐)| = ∞. Hence Θ(𝑢,𝑣)(𝑐) = 0 for a unique 𝑐 = 𝑐(𝑢, 𝑣). Next, the monotonicity
of 𝜓𝑞 yields

𝑐(𝑢, 𝑣) ⋚ 𝜓𝑞

(

∫

1

0
ℎ1(𝑣(𝑠))𝑑𝐴1(𝑠) − ∫

1

0
ℎ0(𝑣(𝑠))𝑑𝐴0(𝑠)

)

± sup
0≤𝑡≤1

|𝑔(𝑡, 𝑢(𝑡), 𝑣(𝑡))|

Now, let 𝑢𝑛 → 𝑢0 and 𝑣𝑛 → 𝑣0 in 𝐶[0, 1]. Then 𝑐(𝑢𝑛, 𝑣𝑛) → 𝑐 up to the subsequence. Moreover

lim
𝑛→∞

Θ𝑢𝑛 ,𝑣𝑛
(

𝑐(𝑢𝑛, 𝑣𝑛)
)

= Θ𝑢0 ,𝑣0 (𝑐),

which gives 𝑐 = 𝑐(𝑢0, 𝑣0).



Nonlocal 𝑞-Laplace equation

We define 𝑇 ∶ 𝐶[0, 1] × 𝐶[0, 1] ⟶ 𝐶[0, 1] by the formula

𝑇 (𝑢, 𝑣)(𝑡) = ∫

𝑡

0
𝜓−1
𝑞

(

𝑐(𝑢, 𝑣) − ∫

𝑠

0
𝑔(𝜏, 𝑢(𝜏), 𝑣(𝜏))𝑑𝜏

)

𝑑𝑠 + ∫

1

0
ℎ0(𝑣(𝑠))𝑑𝐴0(𝑠),

where 𝑐 is defined in Lemma 10.

Lemma 11
For every 𝑢 ∈ 𝐶[0, 1], the function 𝑣 ∈ 𝐶[0, 1] is a solution to (P𝑞) if and only if it is a fixed point
of operator 𝑇 (𝑢, ⋅).

We impose the following assumptions on 𝑔:
1 there are numbers 0 ≤ 𝐴,𝐵, 𝐶 , 0 < 𝑟 ≤ (𝑝 − 1)(𝑞 − 1) and 0 < 𝜃 < 𝑞 − 1 such that

|𝑔(𝑡, 𝑢, 𝑣)| ≤ 𝐴|𝑢|𝑟 + 𝐵|𝑣|𝜃 + 𝐶 for all 𝑡 ∈ [0, 1] and 𝑢, 𝑣 ∈ ℝ;

2 there exists a number 𝛼𝑗 > 0 such that |ℎ𝑗 (𝑣)| ≤ 𝛼𝑗 |𝑣| for all 𝑣 ∈ ℝ, 𝑗 = 0, 1;

3
(

2𝛼0 Var 𝐴0 + 𝛼1 Var 𝐴1
)

< 1, where Var 𝜉 stands for a variation of a function 𝜉.



𝑞-Laplace equation

Theorem 12
For every 𝑢 ∈ 𝐶[0, 1] the problem (P𝑞) admits at least one solution.

Proof.
Since second assumption holds, we get

|

|

|

|

|

∫

1

0
ℎ0(𝑣(𝑠))𝑑𝐴0(𝑠)

|

|

|

|

|

≤ 𝛼0‖𝑣‖∞ Var 𝐴0. (5)

According to the proof of Lemma 10, for every 𝑠 ∈ [0, 1] we have

|𝑐(𝑢, 𝑣) − 𝑔(𝑠, 𝑢(𝑠), 𝑣(𝑠))| ≤ 𝜓𝑞
((

𝛼1 Var 𝐴1 + 𝛼0 Var 𝐴0
)

‖𝑣‖∞
)

+ 2
(

𝐴‖𝑢‖𝑟∞ + 𝐵‖𝑣‖𝜃∞ + 𝐶
)

.

The above estimation combined with (5) gives

‖𝑇 (𝑢, 𝑣)‖∞ ≤
(

𝛼1 Var 𝐴1 + 2𝛼0 Var 𝐴0
)

‖𝑣‖∞ +
(

2𝐴‖𝑢‖𝑟∞ + 2𝐶
)

1
𝑞−1 + (2𝐵)

1
𝑞−1

‖𝑣‖
𝜃
𝑞−1
∞ .

Since the third assumption holds and 𝜃 < 𝑞 − 1, we have ‖𝑇 (𝑢, 𝑣)‖∞ ≤ 𝑅 whenever ‖𝑣‖∞ ≤ 𝑅
for sufficiently large 𝑅 > 0. Operator 𝑇 (𝑢, ⋅) is completely continuous, hence the existence of
solution to (P𝑞) is a consequence of the Schauder Fixed Point Theorem.



𝑞-Laplace equation

Theorem 12
For every 𝑢 ∈ 𝐶[0, 1] the problem (P𝑞) admits at least one solution.

Proof.
Since second assumption holds, we get

|

|

|

|

|

∫

1

0
ℎ0(𝑣(𝑠))𝑑𝐴0(𝑠)

|

|

|

|

|

≤ 𝛼0‖𝑣‖∞ Var 𝐴0. (5)

According to the proof of Lemma 10, for every 𝑠 ∈ [0, 1] we have

|𝑐(𝑢, 𝑣) − 𝑔(𝑠, 𝑢(𝑠), 𝑣(𝑠))| ≤ 𝜓𝑞
((

𝛼1 Var 𝐴1 + 𝛼0 Var 𝐴0
)

‖𝑣‖∞
)

+ 2
(

𝐴‖𝑢‖𝑟∞ + 𝐵‖𝑣‖𝜃∞ + 𝐶
)

.

The above estimation combined with (5) gives

‖𝑇 (𝑢, 𝑣)‖∞ ≤
(

𝛼1 Var 𝐴1 + 2𝛼0 Var 𝐴0
)

‖𝑣‖∞ +
(

2𝐴‖𝑢‖𝑟∞ + 2𝐶
)

1
𝑞−1 + (2𝐵)

1
𝑞−1

‖𝑣‖
𝜃
𝑞−1
∞ .

Since the third assumption holds and 𝜃 < 𝑞 − 1, we have ‖𝑇 (𝑢, 𝑣)‖∞ ≤ 𝑅 whenever ‖𝑣‖∞ ≤ 𝑅
for sufficiently large 𝑅 > 0. Operator 𝑇 (𝑢, ⋅) is completely continuous, hence the existence of
solution to (P𝑞) is a consequence of the Schauder Fixed Point Theorem.



Perturbed 𝑝-Laplace equation

Let 𝜑∶ Ω × ℝ × [0,∞) ⟶ ℝ and assume that there exist continuous function
𝑀 ∶ [0,∞) ⟶ (0,∞) and constant 𝑚 > 0, such that for a.e. 𝑥 ∈ Ω, all 𝑦 ∈ ℝ and 𝑠 ≥ 𝑟 ≥ 0
there is:

1 𝜑(⋅, 𝑦, 𝑟) is Lebesgue measurable;
2 𝜑(𝑥, ⋅, 𝑟) and 𝜑(𝑥, 𝑦, ⋅) are continuous;
3 𝑚 ≤ 𝜑(𝑥, 𝑦, 𝑟) ≤𝑀(|𝑦|);
4 𝜑(𝑥, 𝑦, 𝑟)𝑟 ≤ 𝜑(𝑥, 𝑦, 𝑠)𝑠.

For 𝑝 ≥ 2 we define 𝐷𝑝,𝜑 ∶ 𝑊
1,𝑝
0 (0, 1) × 𝐶[0, 1] ⟶ 𝑊 −1,𝑝′ (0, 1) by

⟨𝐷𝑝,𝜑(𝑢, 𝑣), 𝑤⟩ = ∫

1

0
𝜑
(

𝑡, 𝑣(𝑡), |�̇�(𝑡)|𝑝−1
)

|�̇�(𝑡)|𝑝−2�̇�(𝑡)�̇�(𝑡)𝑑𝑡.

Lemma 13

𝐷𝑝,𝜑(⋅, 𝑣) is monotone and radially continuous for every fixed 𝑣 ∈ 𝑌 ;
𝐷𝑝,𝜑(𝑢, ⋅) is continuous for every 𝑢 ∈ 𝑋;

for every 𝑢 ∈ 𝑊 1
0 (0, 1) and 𝑣 ∈ 𝐶[0, 1] we have

⟨𝐷𝑝,𝜑(𝑢, 𝑣), 𝑢⟩ ≥ 𝑚‖𝑢‖𝑝
𝑊 1,𝑝

0

.



Perturbed 𝑝-Laplace equation

Take a function 𝑓 ∶ [0, 1]∶ ℝ ×ℝ ⟶ ℝ such that for all 𝑢, 𝑣 ∈ ℝ and a.e. 𝑡 ∈ [0, 1] there is:
1 𝑓 (⋅, 𝑢, 𝑣) is Lebesgue measurable;
2 𝑓 (𝑡, ⋅, 𝑣) is continuous and nonincreasing;
3 𝑓 (𝑡, 𝑢, ⋅) is continuous;
4 there exists a nondecreasing function 𝛿∶ [0,∞) ⟶ ℝ satisfying

𝛿(𝑣) ≥ sup
0≤𝑡≤1
−𝑣≤𝜉≤𝑣

|𝑓 (𝑡, 0, 𝜉)|.

Define 𝑆 ∶ 𝑊 1,𝑝
0 (0, 1) × 𝐶([0, 1]) ⟶ 𝑊 −1,𝑝′ (0, 1) by the formula

⟨𝑆(𝑢, 𝑣), 𝑤⟩ = ∫

1

0
𝜑(𝑡, 𝑣(𝑡), |�̇�(𝑡)|𝑝−1)|�̇�(𝑡)|𝑝−2�̇�(𝑡)�̇�(𝑡)𝑑𝑡 − ∫

1

0
𝑓
(

𝑡, 𝑢(𝑡), 𝑣(𝑡)
)

𝑤(𝑡)𝑑𝑡.

Lemma 14
For all 𝑢 ∈ 𝑊 1,𝑝

0 (0, 1) and every 𝑣 ∈ 𝐶[0, 1] there is

⟨𝑆(𝑢, 𝑣), 𝑢⟩ ≥ 𝑚‖𝑢‖𝑝
𝑊 1,𝑝

0

− 1
𝜆𝑝
𝛿(‖𝑣‖∞)‖𝑢‖𝑊 1,𝑝

0
.

Here 𝜆𝑝 = inf
{

𝑐 > 0 ∶ ∫ 1
0 |𝑢(𝑡)|𝑝𝑑𝑡 ≤ 𝑐 ∫ 1

0 |�̇�(𝑡)|𝑝𝑑𝑡 for all 𝑢 ∈ 𝑊 1,𝑝
0 (0, 1)

}

.



System of nonlinear equations

⎧

⎪

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎪

⎩

− 𝑑
𝑑𝑡

(

𝜑
(

𝑡, 𝑣(𝑡), |�̇�(𝑡)|𝑝−1
)

|�̇�(𝑡)|𝑝−2�̇�(𝑡)
)

= 𝑓 (𝑡, 𝑢(𝑡), 𝑣(𝑡)) for 𝑡 ∈ (0, 1),

− 𝑑
𝑑𝑡

(

|�̇�(𝑡)|𝑞−2�̇�(𝑡)
)

= 𝑔(𝑡, 𝑢(𝑡), 𝑣(𝑡)) for 𝑡 ∈ (0, 1),

𝑢(0) = 𝑢(1) = 0,

𝑣(0) = ∫

1

0
ℎ0(𝑣(𝑠))𝑑𝐴0(𝑠), 𝑣(1) = ∫

1

0
ℎ1(𝑣(𝑠))𝑑𝐴1(𝑠).

(P𝑝,𝑞)

Theorem 15
Assume that there exists 0 ≤ 𝑎, 𝑏 and 𝜎 < (𝑝−1)(𝑞−1)

𝑟 such that

|𝛿(𝑦)| ≤ 𝑎|𝑦|𝜎 + 𝑏 for all 𝑦 ∈ ℝ.

Then system (P𝑝,𝑞) has at least one solution.

Proof.
We apply Theorem 9 taking 𝑋 = 𝑊 1,𝑝

0 (0, 1), 𝑌 = 𝐶[0, 1], 𝐹 = 𝑆 and 𝐺 = 𝑇 .



Example

⎧

⎪

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎪

⎩

− 𝑑
𝑑𝑡

(

|�̇�(𝑡)|�̇�(𝑡)
)

= |𝑣(𝑡)|2 − 𝑣(𝑡)2𝑢(𝑡)5 − 𝑣(𝑡)4𝑢(𝑡) + 𝑡2 for 𝑡 ∈ (0, 1),

− 𝑑
𝑑𝑡

(

|�̇�(𝑡)|2�̇�(𝑡)
)

= 𝑣(𝑡) cos(𝑣(𝑡)) + 𝑢(𝑡)
√

|𝑢(𝑡)| + cos(𝑢(𝑡)) + 𝑣(𝑡) sin(𝑡) for 𝑡 ∈ (0, 1),

𝑢(0) = 𝑢(1) = 0,

𝑣(0) = ∫

1

0
sin

(

𝑣(𝑠)
)

𝑑𝐴0(𝑠), 𝑣(1) = ∫

1

0
cos

(

𝑣(𝑠)
)

𝑑𝐴1(𝑠),

(6)
where 𝐴0, 𝐴1 ∶ [0, 1] ⟶ ℝ are arbitrary functions with a finite variation. To apply Theorem 15
we let 𝑝 = 3, 𝑞 = 4 and define 𝜑, 𝑓 , 𝑔∶ [0, 1] ×ℝ ×ℝ ⟶ ℝ by

𝜑(𝑡, 𝑢, 𝑣) = 1,

𝑓 (𝑡, 𝑢, 𝑣) = |𝑣|2 − 𝑣2𝑢5 − 𝑣4𝑢 + 𝑡2,

𝑔(𝑡, 𝑢, 𝑣) = 𝑣 cos(𝑣) + 𝑢
√

|𝑢| + cos(𝑢) + 𝑣 sin(𝑡).

Then 𝛿∶ [0,∞) ⟶ [0,∞) is given by 𝛿(𝑣) = 𝑣2 + 1 and

|𝑔(𝑡, 𝑢, 𝑣)| ≤ 2|𝑣| + |𝑢|3∕2 + 1 for all 𝑡 ∈ [0, 1] and 𝑢, 𝑣 ∈ ℝ.

Therefore solvability of system (6) follows by Theorem 15.
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