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Shape Optimization

1 Direct method of calculus of variations: regularization and
shape calculus;

2 State equation, cost functional, numerical method of
solution: finite elements;

3 Phase field method for problems depending on
characteristic functions: a possibility to use the
homogenization method;

4 Level set method based on the shape gradent and/or on
the topological derivative concept.
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Shape Optimization

1 The convergence of simple gradient method for numerical
solution of shape optimization problems is still not known.

2 We have a result on the convergence in two spatial
dimensions for a model problem.

The regularization of the cost is required in order to assure
the existence of an optimal shape.
The regularization term can be considered as a cost of
manufacturing so the parameter is not small.
in numerical methods of shape optimization the
discretization of the continuous gradient is exclusively used,
the exact gradient is expensive.
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Shape optimization is useful in structural mechanics.
Numerical shapes obtained by some computations are used
for design of cars, aircrafts, ships and other structures.
Shape optimization is also a domain of Mathematics in the
fields of Calculus of Variations, Free Boundary Problems or
more generally Theory of Partial Differential Equations. The
main applications are solids, fluids, gases, or new materials.
The starting points in mathematical analysis were the
monographs by O. Pironneau (Optimal Shape Design for Elliptic
Systems, Springer, 1984), J.S. and J.-P. Zolesio (Introduction to
Shape Optimization, Springer, 1992), M. Delfour and J.-P.
Zolesio (Shapes and Geometries, SIAM, 2001, 2011).
The case of compressible Navier-Stokes equations is studied in
great details in the monograph by J.S. and P.I. Plotnikov
(Compressible Navier-Stokes equations. Theory and shape
optimization. Birkhauser, 2012).
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The presentation is based on two papers. The first is a review
prepared on the invitation from the journal. The second is a
companion paper with some proofs of new results presented for
the first time in [1].

1 Pavel I. Plotnikov, J.S.
Geometric Aspects of Shape Optimization
J. Geometric Analysis
Special issue on Shape Optimization, 54 pages

2 Pavel I. Plotnikov, J. S.
Gradient flow for Kohn-Vogelius functional.
https://hal.archives-ouvertes.fr/hal-03896975
HAL INRIA-CNRS, (2022) 72 pages.
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The methods used in shape optimization which require
mathematical analysis:

1 Shape calculus (also Topological derivatives);
2 Phase fields models: the characteristic function of

unknown domain is replaced by a phase field;
3 Level set method: for given functional the shape gradient or

the topological derivative is used in the Hamilton-Jacobi
equation without mathematical justification;

4 Our Model Problem:
Gradient flow for Kohn-Vogelius functional.

Jan Sokolowski Shape Optimization



Introduction
Model Problem

We restrict the analysis to R2. We need the state equation and
the shape functional to be minimized. We use the notation.

1 Ω = Ωi ∪ Γ ∪ Ωe

2 J(Ωi) = J(Γ)
3 regularization term E(Γ)
4 the shape optimization problem

min
Γ
{J(Γ) + E(Γ)}

J(Γ) is the shape functional and E(Γ) governs the regularity of
the curve Γ or the cost of manufacturing.
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Let us assume that a material occupy the a bounded region Ω
in the space of points x ∈ Rd , d = 2,3. Without loss of
generality, we can assume that the boundary of Ω is infinitely
differentiable. Furthermore, we will assume there are two
disjoint open arcs ΓN , ΓD ⊂ ∂Ω such that cl ΓN ∪ ΓD = ∂Ω. The
inclusion, which is unknown and must be determined together
with the solution, occupies the subdomain Ωi ⋐ Ω with the
boundary Γ. The equilibrium equations for the electric field
potential u : Ω → R in the simplest case can be written as

div (a∇u) = 0 in Ω,

a∇u · n = hn on ΓN , u = hd on ΓD.
(1)

Here n is the outward normal vector to ∂Ω, hn is a given
voltage, and hd is a given distribution of the electric potential.
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The conductivity a is defined by the equalites

a = 1 in Ωe, a = a0 in Ωi , (2)

where a0 is a given positive constant. If ΓD ̸= ∅, then problem
(1) has a unique solution u ∈ W 1,2(Ω). If in addition, the arcs
ΓN , ΓD belong to different connected components of ∂Ω,
hn,hd ∈ C∞(∂Ω), and ∂Ω belongs to the class C∞, then
u ∈ C∞(Ω). The problem on the identification of the inclusion
Ωi is formulated as follows. For a given function g : ΓD → R it is
necessary to find an inclusion Ωi such that the solution to
problem (1) satisfies the extra boundary condition

a∇u · n = g on ΓD. (3)
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It is assumed that g satisfies the orthogonality condition∫
ΓD

g ds +

∫
ΓN

hn ds = 0.

More generally, the problem of identification is to determine the
shape of the inclusion by the additional boundary condition.
This inverse problem is ill-posed and in general case has no
solution. In practice, its approximate solution can be found by
solving the variational problem

min
Ωi∈A

J(Ωi), (4)

where the objective functional J(Ωi) is a positive function that
vanishes if and only if a solution to problem (1) satisfies the
condition (3), A is some class of admissible inclusions.
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The most successful choice of the objective functional is the
Kohn-Vogelius energy functional, which is defined as follows,

J(Ωi) =

∫
Ω

a∇(v − w) · ∇(v − w)dx . (5)

Here v ,w : Ω → R satisfy the equations and boundary
conditions

div a∇v = 0 div a∇w = 0 in Ω, (6)
a∇v · n = g w = hd on ΓD, (7)
a∇v · n = hn a∇w · n = hn on ΓN . (8)
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In order to solve the Shape Optimization Problem from
mathematical point of view we need:

1 Propose a regularization of the cost in order to assure the
existence of an optimal shape;

weak regularization: perimeter L;
strong regularization: the Willmore functional of the mean
curvature of Γ;

2 Show the shape differentiablity of the cost and of the
regularization part;

3 Find the Hessian of the cost;
4 Define the nonlinear PDE of parabolic type which governs

the minimization process;
5 Prove the well posedness of the nonlinear, degenerate

PDE which gives an optimal shape for the regularized
minimization process.
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Our approach to assure the existence of an optimal domain is
to penalize the shape perimeter by adding a regularizing term
to the objective functional:

ϵp L+ J (9)

Here L is the perimeter of Ωi , ϵp > 0 is the regularization
parameter. If Γ = ∂Ωi is a regular manifold, then L is the area of
Γ in 3D case and the length of Γ in 2D case.
However, an optimal domain may be irregular, thus
impossible to manufacture.
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The stronger regularization is obtained if we impose constraints
on the curvatures of Γ. This approach also was motivated by
the theory of image processing. The only possible conformally
and geometrically invariant penalization functional depending
on curvatures is the Willmore functional defined by the equality

Ee(Γ) =

∫
Γ
|H|2 ds, (10)

where H is the mean curvature of Γ. In 2D case Ee coincides
with the famous Euler elastica functional. Therefore, we can
define the strong regularization of an objective function as
follows

E + J, where E = ϵe Ee + ϵp L. (11)

Jan Sokolowski Shape Optimization



Introduction
Model Problem

The most important question of the theory is the construction of
a robust algorithm for the numerical study of shape optimization
problems. The standard approach is to use the steepest
descent method based on the shape calculus developed by
Sokolowski and Zolesio (1992), see also Delfour and Zolesio
(2001). The shape calculus works for inclusions Ωi with the
regular boundary Γ = ∂Ωi . In this setting, the objective function
J is considered as a functional defined on the totality of smooth
curves Γ. This assumption is natural from the practical point of
view. Without loss of generality we may restrict our
considerations by the class of twice differentiable immersions
(parametrized surfaces, curves) f : Sd−1 → Rd with Γ = f (Sd−1)
diffeomorphic to the sphere Sd−1. In this framework, we will use
the denotation J(f ) along with the denotation J(Γ). The main
goal of the shape calculus is to develop the method of
differentiation of objective functions with respect to shapes of
geometrical objects.
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Following the general method of the shape calculus, we define
the shape derivative of an objective function. To this end,
choose an arbitrary vector field X : Sd−1 → Rd and consider the
immersion

f t(θ) = f (θ) + tX (θ), t ∈ (−1,1), θ ∈ Sd−1.

The manifolds Γt = f t(Sd−1), t ∈ (−1,1), define the
one-parametric family of perturbations of Γ. The shape
derivative J̇ of J in the direction X is defined by the equality

J̇(Γ) [X ] =
d
dt

J(Γt)
∣∣∣
t=0

. (12)
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If it admits the Hadamard representation

J̇(Γ) [X ] =

∫
Γ
ϕn · X ds, ϕ ∈ L1(Γ), (13)

where n is the inward normal to Γ = ∂Ωi , then the vector field

dJ(θ) := ϕ(θ)n(θ), θ ∈ Sd−1, (14)

is said to be the gradient of J at the point f . The same definition
holds for the geometric energy functional E
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The steepest descent method and the gradient flow. It follows
from the definition that the shape gradient dJ can be regarded
as a normal vector field on Γ. If f is sufficiently smooth, for
example f ∈ C2+α, then the mapping f + δ dJ (f ) defines an
immersion of Sd−1 into Rd for all sufficiently small δ > 0. In the
steepest descent method, the optimal immersion f and the
corresponding shape Γ = f (Sd−1) are determined as a limit of
the sequence of immersions

fn+1 = fn − δ
(

dE(fn) + dJ(fn)
)
, n ⩾ 0, (15)

and the corresponding sequence of surfaces Γn = fn(Sd−1).
Here the energy E is defined (11), δ is a fixed positive number,
usually small, f0 is an arbitrary admissible initial shape.
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Relation (15) can be considered as the time discretization of
the Cauchy problem

∂t f (t) = −
(

dE(f (t)) + dJ(f (t))
)
, f (0) = f0 (16)

Since E(f (t)) + J(f (t)) is a decreasing function of t , solution to
problem (16) can be considered as approximate solution to the
penalized variational problem

min
(
E + J

)
Hence the existence of a solution to Cauchy problem (16)
guarantees the well-posedness of the steepest descent
method. In its turn, the existence of the limit lim

t→∞
f (t)

guarantees the convergence of the method.
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The shape gradient of the Kohn-Vogelius functional
Assume that

∂Ω, Γ ∈ C2+α, h ∈ C2+α(∂Ω), g ∈ C1+α(∂Ω)), α ∈ (0,1).

Denote by v−,w− the restrictions of v , w on Ωe and by v+,w+

the restrictions of v , w on Ωi . For every function Φ with Φ− and
Φ+ continuous in Ωe and Ωi , the denotation

[
Φ
]
, stands for the

jump of Φ across Γ,[
Φ
]
(x) = lim

Ωe∋y→x
Φ−(y)− lim

Ωi∋y→x
Φ+(y) for all x ∈ Γ.

For strong solutions to transmission problem we have[
a∂nv

]
≡

[
a∇v

]
·n = 0,

[
a∂nw

]
≡

[
a∇w

]
·n = 0,

[
v
]
=

[
w
]
= 0.
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With this notation the gradient dJ of the Kohn-Vogelius
objective function is defined as follows,

dJ = 2
(
a∂nv

[
∂nv

]
−a∂nw

[
∂nw

]
)n−

[
a∇v ·∇v −a∇w ·∇w

]
n,
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Geometric functionals.
The standard formulation of the geometric flow equations deals
parametrized curves (surfaces). Further we will assume that
the interface admits the representation Γ = f (S1) where the
immersion f : S1 → R is unknown and should be defined along
with the solution to the geometric flow problem. f (S1). Note that
f a 2π periodic function of the angle variable θ ∈ R/2πZ. the
element of the length of Γ equals

ds =
√

g(θ)dθ,

where g is the only nontrivial coefficient of the first fundamental
form of the curve Γ.
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In this setting, the derivative with respect to the arc-length
variable s

∂s =
1
√

g
∂θ

becomes the nonlinear differential operator depending on f .
Hereinafter we assume that the point f (θ) is going around Γ in
the positive counterclockwise direction while the parameter θ
increases. The tangent vector

τ(θ) = ∂sf (θ) := |∂θf |−1 ∂θf (θ),

and the normal vector

n(θ) = τ⊥(θ) = (−τ2, τ1),

form the positive oriented moving frame on Γ. Notice that n is
the unit inward normal vector to ∂Ωi = Γ
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The curvature vector k is defined by the equalities

k(θ) = ∂sτ(θ) = ∂2
s f (θ). (17)

Notice that the curvature vector field k is orthogonal to τ and is
directed along the normal vector n.
The Euler elastic energy Ee and the perimeter L are defined by
the equalities

Ee =

∫
Γ

k2

2
ds, L =

∫
Γ

ds =

∫ 2π

0

√
g dθ (18)

Without loss of generality we can take the penalization energy
in the form

E = Ee + L =

∫
Γ

( k2

2
+ 1

)
ds, (19)
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The gradient of E is given by the following lemma.

Lemma
Under the above assumptions, we have

dEe(f ) = ∇s∇s k +
1
2
|k |2 k , dL = −k , (20)

dE(f ) = ∇s∇s k +
1
2
|k |2 k − k . (21)

Here the connection ∇s for every vector field Φ : Γ → R2, is
defined by the equality

∇s Φ = ∂sΦ− (∂sΦ · τ) τ. (22)
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Gradient flow equations
We are now in a position to specify the gradient flow equation

∂t f + dE + dJ = 0, f (0) = f0. (23)

for the penalized Kohn-Vogelius functional. Applying Lemma 1
we can rewrite equation (23) in the form

∂t f + ∇s∇s k +
1
2
|k |2 k − k + dJ = 0 for t > 0, f (0) = f0. (24)

Here the gradient dJ is defined by relation (3) and can be
regarded as nonlinear nonlocal operator acting on Γ. Hence
(24) is a nonlinear operator equation. It may be considered as a
nonlocal perturbation of the elastic flow equation

∂t f + ∇s∇s k +
1
2
|k |2 k − k = 0 for t > 0, f (0) = f0.
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In the literature, this equation is also named as straightening
equation and, 1D-Willmore flow equation. Now we have almost
complete theory of this equation in the literature, we use the
methods developed in the papers on such an equation in our
analysis.
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H.1 The Jordan curve Γ ⊂ Ω satisfies the energy condition

1
2

∫
Γ
|k2|ds + L ⩽ E0.

H.2 There is ν > 0 with the property

dist (Γ \ Γ3κ, Γ2κ) ⩾ ν,

where κ, depending only on E0, is given.
H.3 There is ρ > 0 such that dist (Γ, ∂Ω) > ρ.
Every curve Γ satisfying Conditions H.1-H.3 is a Jordan curve
of the class C1+α, 0 < α < 1/2. It splits the domain Ω into two
parts. The first Ωi ⋐ Ω (inclusion)is the one-connected domain
with boundary Γ. The second is the curvilinear annulus
Ωe = Ω \ Ωi bounded by Γ and ∂Ω. For simplicity, we will
assume that ∂Ω is a Jordan curve of the class C∞.
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Existence theory Assume that the initial data satisfy the
following conditions:
I.1 The even integer number m ⩾ 10
I.2 The initial curve Γ0 = f0 satisfies conditions H.1-H.3.
I.3 There is a constant Em such that∫

Γ0

|∇r
sk0|2 ds ⩽ Em for all 0 ⩽ r ⩽ m. (25)

I.4 The length element
√

g0 = |∂θf0| satisfies the condition

∥
√

g0∥Cm−5(S1) ⩽ cg < ∞.. (26)
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Theorem
Assume that the initial data satisfy Conditions I.1-I.4. Then
there is a maximal T ∈ (0,∞] with the following properties.
Problem (23) has a solution f such that

f ∈ C(0,T ;Cm−5(S1)), ∂t f ∈ C(0,T ;Cm−9(S1)). (27)

Moreover, the Jordan curves Γ(t) = f (t , S1), t ∈ [0,T ), are
separated from ∂Ω. If T < ∞, then there is a sequence f (tj),
tj → T as j → ∞, such that dist (Γ(tj), ∂Ω) → 0 , or (and) f (tj)
converge in C1(S1) as j → ∞ to some immersion f∞ such that
the limiting curve Γ∞ has a self-intersection.
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