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What Science is about - definition, tasks, assumptions, methodology, results.

Science consists in activities leading to cognition and understanding of universe.

Science is based on a number of assumptions the main ones of which are as

follows: the universe is at all cognizable with senses available to humans, the

universe always provides true data, there exist general principles governing the

universe that are invariable in space and time.

The main method of scientific activities is abductive reasoning (not deductive), i.e.

operation in conditions of limited cognitiveness (irremovable uncertainty).

The main result of science are models of reality, logical, internally consistent, no

more complex than it is necessary, clear and as accurate as possible, i.e.

knowledge about the universe.

An important task of science is to document and disseminate knowledge.

Feliks Koneczny’s Quincunx (the pentnomial of being), i.e. Good (Ethics finding

its source in religion), Truth (Knowledge finding its source in science), Health,

Well-being and Beauty, as a determinant of different civilizations (ways of

collective life). Beauty being a Unifying Force between spiritual (Good, Truth) and

material (Health, Well-being) determinants of civilization.

Role of science in humanity.

Science is not exercised for itself or for gaining knowledge about universe only

but it is a necessary measure and intermediate step towards acquiring wisdom

(personal and collective), i.e. using knowledge for attaining good.

Session 1 – synopsis
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Introduction, problem formulation.

The question arises what factors caused such broad widespread, use and

popularity of tensorial calculus (tensors)?

When and how the notion of a tensor came to existence?

What tensors actually are, and/or how they can be understood/

interpreted?

What are the specific properties – eigenproperties, of tensors and what is

the best manner to deal with them?

An effort is here undertaken to address listed above and some other

issues taking Cauchy stress tensor (second order symmetric tensor) as a

generic example.

While the problems are discussed here with the use of Cauchy stress

tensor, all the obtained here results mutatis mutandis transfer to all

second order symmetric tensors, having possibly miscellaneous

interpretations in wide variety of pure science, engineering and/or other

fields of application.
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Introduction, science.

Our present examination belongs to the fundamental problems of science

in this sense that modeling tool is developed useful and convenient, and

precise for formulation of scientific problems, description of physical

phenomena, documentation and proliferation of scientific results.

Plenty of misunderstandings exists regarding fundamental tasks and

targets of scientific activities and the place and role of science in human

life.

Due to that before we move on to discuss the main theme, i.e. tensors, let

us outline and prepare the place of the drama and its scenery, i.e. discuss

what are activities, problems, conditions and limitations involved with

Science.
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Introduction, science.

What is the motivation for running scientific activities, what is the target of

science and what are its results?

Motivation CURIOSITY of the universe

Target COGNITION and UNDERSTANDING of the universe

Results KNOWLEDGE about the universe

So, Science means acquiring knowledge about the Universe.

(from Latin scientia, meaning cognition, knowledge of things)

Science is an effort to discover and to know - and thus broaden the human

understanding on how the physical world works.

Science no less important task is

documentation and public dissemination

of knowledge about universe

(and not keeping it secret or confidential).
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Introduction, science.

Scientific activities methodology is based (out of necessity) 

On Abduction (abductive reasoning), Not Deduction (deductive reasoning)!

Critical for abductive reasoning is operation in conditions of uncertainty, 

limited information/knowledge.

When examining any physical phenomenon there are always present

consciously known and/or unknown factors that

a) do not affect the course of the phenomenon, and/or

b) are constant and due to that have a constant influence, 

(indistinguishable from the influence of other controlled factors).

There are many reasons for such situation, e.g. limitation of our senses.

Application sciences methodology, e.g. Engineering is based on deduction.

Deduction: allows you to derive b as a consequence of a : in other words, deduction is the 

process of deriving conclusions from what is already known.

Induction: allows you to derive a as a precondition of b : in other words, induction is the 

process of deriving causes from known effects in the casual connection "a implies b".

Abduction: allows you to pose a hypothesis (general rule) a as an explanation for b (specific 

case/-es): in other word, abduction is the process of formulating the best guess hypothesis in 

the conditions of incomplete, limited information/knowledge.
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Introduction, science.

The result of the abductive methodology is the best result (assessment)

based on the knowledge and experience to which we have access.

All the time we assume so called good will in conduct of scientist.

A very good example of abductive methodology result taken from our daily

life is medical diagnosis. The medical examination uses abductive

methodology but has different target and rationale than scientific activity.

Employment of abductive methodology (out of necessity) in scientific work

has very strong consequence, i.e. it can be reasonably regarded that

All Scientific Knowledge, among others scientific theories (results of

scientific activity) represents models of reality, and not reality itself.

ASSUMPTIONS underlying the SCIENTIFIC ACTIVITIES

The laws of the universe are invariant in time and space.

The laws of the universe, at all can be recognized.

The universe "doesn't cheat", when giving us the answers to our

questions, e.g. in the form of results of experimental tests.
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Introduction, science.

So, how actually scientists run research?

Scientific research process

Data -> Information -> Knowledge

(usually a long-term and cyclic process)

Using controlled methods (research), scientists use observable physical

evidence of natural phenomena to collect data, next analyze and order it to

create information, and next structure this last to build predictive models to

gain knowledge that logically explains the processes ongoing in universe.

Practice of scientific methods is based on properly designed real and/or

thought experiments, results of which are to enable revealing the actual

causes and course of physical phenomena and their effects.

A very astute opinion on scientific research expressed professor Jan Rychlewski:

"… The goal of Natural Sciences (Science), … , is not to search for

absolute truths, but to construct models describing reality in a way that is

completely internally consistent, as clear and elegant as possible and

sufficiently accurate. ..."

after Jan Rychlewski, Dimensions and Similarity, PWN,1991; Appendix C: Newton's Mechanics.
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Introduction, science.

In ancient Greece, where science was born, there were a lot of

philosophers, in modern times there are many scientists, but philosophers

are very hard to find.

Ancient great Greek thinkers practiced Natural Philosophy, under which

they conducted activities aimed at penetrating the secrets of nature, not

only to get to know them, but to become wise people.

Science was treated as an intermediate (partial) step in this process.
(lat. Philosophia < gr. φιλοσοφία < gr. φιλέω (love, cherish, adore) and gr. σοφία (wisdom);

in verbatim translation "love of wisdom".)

Scientist:        Data ->  Information -> Knowledge

Philosopher:  Data ->  Information -> Knowledge -> Wisdom 

Knowledge: the entirety of reliable information and understanding about real world along

with the ability to use these assets.

Wisdom: is the ability and willingness to use knowledge to do Good.

discernment about right and wrong (Socrates);

the ability to use reason accurately and do what is best (R. Descartes);

The source for recognition what is "Good" is Religion as the source of Ethics.

Contrasting and/or interchanging Science and Religion is a misunderstanding. These are 

two different categories (complementary to each other, not opposing/excluding each other).
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Introduction, science.

Knowledge (together with education) is often equated with wisdom.

This is a misjudgment.

A person can be well educated, possess deep knowledge and still

can be not wise.

Contemporary scientists extremely often terminate their activity on

acquiring/gaining knowledge. It seems that it would be sensible to return to

the original Greek thought and treat science as a step to the goal of acquiring

wisdom (personal and collective).

The most eminent Polish philosopher, Feliks Koneczny, identified the so-

called Quincunx (pentnomial of being)

as a determinant of different civilizations (ways of collective life), i.e.

Good (Ethics finding its source in religion), Truth (Knowledge finding its 

source in science), Health, Well-being and Beauty.

Good an Truth are considered spiritual elements, Health and Well-being are 

considered physical elements and Beauty is considered connecting link 

between spiritual and physical factors of collective (and individual) life.   

Quincunx can be treated as a measure enabling determination of diversity of 

different civilizations (methods of the system of collective life).
Koneczny F., O wielości cywilizacji (in Polish), Kraków, 1935.

There exist English translation of this work by Toynbee A., On plurality of civilizations, London 1962.
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Tensors as lingua franca of all natural and engineering sciences. Algebraic-

Geometric Dualism of tensors. This dualism proves to be very convenient and

useful in formulating and documenting general laws of universe. Cauchy stress as

precursor of tensor concept. Cauchy stress as macroscopic measure of internal

forces interaction between particles in microscale of observation. Scales of

observation. The idea of Representative Volume Element (RVE). Limitations of

human perception/senses in cognition of universe. Tensors as excellent modeling

objects of reality. Gregorio Ricci-Curbastro a father of tensorial calculus (1888-

1892). Woldemar Voigt coining the term tensor in its contemporary meaning

(1898).

Session 2 - synopsis
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Tensorial calculus, native language of natural sciences.

Juliusz Słowacki  „Beniowski”, Pieśń 5

Chodzi mi o to, aby język giętki My point is that the gift of the gab

Powiedział wszystko, Said everything,

co pomyśli głowa: what the head will think: 
A czasem był jak piorun jasny, prędki, And sometimes be like thunder bright, swift  

A czasem smutny jako pieśń stepowa, And sometimes sad as a steppe song

A czasem jako skarga nimfy miętki, And sometimes as a nymph’s complaint tender

A czasem piękny jak aniołów mowa... And sometimes beautiful as Angels’ speech..

Aby przeleciał wszystka ducha skrzydłem    To flash over all the soul on wing.

Strofa być winna taktem, nie wędzidłem. Stanza should be tact, not the snaffle.

When contemplating on the place of tensorial calculus and tensors in human

life. One can readily come to the conclusion that it makes a native language

for describing and documenting in convenient and quantitatively exact

manner knowledge about natural sciences, e.g. in physics or engineering

sciences.

Care must be taken not to entangle the phenomenon description with the

phenomenon itself. This is a methodological error.
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Algebraic-Geometric Dualism of tensors.

Pragmatically, science deals with phenomena space-time relations in

their cause and effect aspect.

Such relations tell what, where and when is happening.

For centuries, also today, "where" has been expressed in the language of

geometry. However, it turned out that there are great advantages when

the quantitative methods and language of algebra are used for such a

description.

Tensor calculus (tensors) is, in a way, the crowning achievement of the

process of algebraization of geometry.

However, it turns out that the reverse geometrization of tensors, i.e.

perceiving tensors as geometric objects proves to be very useful and

convenient in building models of universe.

Algebraic-Geometric Dualism of tensors.
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History, Cauchy's non perpendicular pressures.

Augustin Cauchy’s landmark lecture before the Paris Académie in 1822,

and publication of the abstracts from the lecture in 1823 deliver sound

reason to judge that the concept of second order symmetric tensors were

introduced into science and engineering by Cauchy himself.

Cauchy A., Recherches sur l'equilibre et le mouvement interieur des corps solides ou uides, elastiques ou 

non-elastiques (in French), Bull Soc Filomat, Paris 913, 1823.

See, also e.g. Azadi E, Cauchy tetrahedron argument and the proofs of the existence of stress tensor, a 

comprehensive review, challenges, and improvements, 2017 pp. 1-34,  arXiv:1706.08518v3
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History, Cauchy's non perpendicular pressures.

Upon decreasing the volume of tetrahedron (V→0) the

body and inertia forces become negligible in comparison

to surface forces. Then, taking advantage of geometri-

cal relations and Cauchy lemma simple transformations

lead to the following balance of traction forces

See also, Chapter 4 in Truesdell C., Essays in the History of Mechanics. Springer-Verlag New York Inc, 1968
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History, Cauchy's constitutive model of forces (material interactions).

It is worth reflection what actually Cauchy has done.

From philosophical point of view the Cauchy's contribution can be treated

as a step towards development of constitutive theory of forces.

The motivation behind Cauchy's work was development of theory of

elasticity, which he achieved by a very original move of generalizing the

Euler's notion of normal pressure acting on surface element to introduce

the idea of force traction, which can be oblique to surface on which it acts.

The Cauchy's tetrahedron argument can be understood as a certain

continuum model of force describing in an averaged manner the

microscopic interactions between molecules (through surfaces) – a

transition from molecular interactions towards continuous medium

interactions.

The model actually laid on the foundations of continuum mechanics.

In his original presentation and publications Cauchy was not talking about

stress tensor but about pressures, one of the reasons surely must have

been that the tensor notion yet did not exist at that time.
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Pragmatic justification for development and introduction of quite complex

and abstract apparatus of tensorial calculus is creation of a tool for

"mathematization" of real physical space and real physical phenomena.

For example in order that a sentence:

"Stress state  exists at material location P." had

precise quantitative mathematical and physical sense.

One of the most ingenious idea of

science is ability to skillfully distinguish

isolated systems and their division into

material particle (Representative Volume

Element - RVE) usually small, and its

surroundings, which mutually interact.
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Too small scale 

of observation

Appropriate scale of observation
Too large scale 

of observation

Picture: robertwwilliams.wordpress.com

What tensors are, and how they can be understood?, 

perception of physical phenomena.

So, what the tensors actually are, and how we can understand them from

more pragmatic point of view?

Anecdotally, we can say that we are in a position of six blind man trying to

find out what an elephant is ?

We must adopt a right scale of observation and right viewpoint to get

information that we want.
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Limitations or capabilities of human perception of physical 

phenomena?

Our senses have interesting limitations or maybe capabilities?,

that we do see (objectively) different objects depending on how we look.

Fliegende Blatter, a German humor magazine published in Munich (October 23, 1892, p. 147).

Another interesting property of our senses is that we can have only one

specific interpretation of what we see at specific instant.
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What tensors are, and how they can be understood?,

usefulness of tensors as objects modeling reality.

Let us return to proceed in general terms.

Tensors gained its today omnipresence in science and technology

because they proved to be excellent modeling objects.

The same type of tensors enable description of, among the other:

- state of real objects (e.g. temperature, velocity, deformation, stress,

strain, energy),

- properties of real objects (e.g. thermal expansion, piezoelectric effects,

elastic stiffness or compliance)

- loading of real objects (e.g. force or displacement load)

Tensors of various orders proved to be very convenient and reliable

modeling tools in description and/or prediction of broad range of various

real phenomena. This delivers motivation to understand as best as

possible what tensors actually are and what are their eigenproperties –

represented by their various invariants. Fine comprehension of tensor

objects themselves can deliver better insight and facilitate deep

understanding of specific real physical situations modeled with their aid.
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What tensors are, and how they can be understood?

There exist at least several definitions of a tensor notion.

Types of definitions of a tensor:

- algebraic definition, in which tensor is treated as algebraic object an
element of advanced algebraic structure called tensorial linear space ( Tq ).

- operational definition, in which tensor is understood as a linear operator

transforming one tensorial object into another tensorial object linearly.

- geometric definition, in which tensor is envisioned as a geometrical object

with specific "shape" and orientation with respect to some fixed reference/

coordinates frame.

Depending on specific targets of research and/or analysis one or the other

approach to tensors can be more useful and/or convenient.

For example, for purposes of modeling of real physical space and real

physical phenomena it is convenient to treat tensors as geometrical

objects but in order to obtain some precise quantitative results using

tensorial calculus, it is appropriate to treat tensors as algebraic objects.
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Algebraic definition of a tensor.

Formal algebraic definition of tensors that: Tensors are elements of

tensorial linear spaces Tq is actually very similar to the entry devoted to

headword horse in the first Benedykt Chmielowski's Polish Encyclopedia

entitled "New Athens" from 1745-1746, i.e.

"Horse, how it is everybody sees."

Both recalled above definitions are practically

meaningless unless broad background informa-

tion is already available to the readers of them.

Here and attempt is undertaken to bring such

background information regarding tensors so

that one could say at the end of this work,

"Tensor, how it is everybody sees" ,

and this with profound understanding of the

matter.

While not easily accessible and quite hermetic at first sight, actually the

algebraic tools of tensor calculus are indispensable in obtaining any

quantitative results.
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Algebraic definition of a tensor,

Gregorio Ricci-Curbastro's absolute differential calculus.

The mathematical grounds of tensor calculus/analysis with all the

fundamental underlying formal apparatus was originally developed by

Gregorio Ricci-Curbastro in the years 1888-1892.

Tonolo A., Commemorazione di Gregorio Ricci-Curbastro nel primo centenario della nascita, Rendiconti del 

Seminario Matematico della Università di Padova (in Italian), tome 23 (1954), p. 1-24.

Voigt W., Die fundamentalen physikalischen Eigenschaften der Kristalle in elementarer Darstellung (in 

German), Verlag Von Veit & Comp. 1898, Leipzig.

The motivation behind this development was

completely different from this of Cauchy, namely it

was investigation on invariance of quadratic forms

and Ricci-Curbastro called the technique absolute

differential calculus.

Ricci-Curbastro can be regarded as father of tensor

notion as it is invariance feature with respect to

coordinate systems, which is the essence and

profound sense of tensorial objects.

The term tensor in its contemporary meaning was

coined by Woldemar Voigt in his work from 1898.
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Algebraic definition of a tensor,

Gregorio Ricci-Curbastro's absolute differential calculus.

Tonolo A., Commemorazione di Gregorio Ricci-Curbastro nel primo

centenario della nascita, Rendiconti del Seminario Matematico della

Università di Padova:

G. RICCI-CURBASTRO

1. Delle derivazioni covarianti e controvarianti e

del loro uso nella Analisi applicata, «Studi editi

dalla Università di Padova a commemorare

l’ottavo centenario della origine della Università

di Bologna», Vol. III, [1888].

2. Sopra certi sistemi di funzioni, «Rend. Acc.

Lincei», Vol. V, [1889].

3. Di un punto della teoria delle forme quadratiche

ternarie, «Ibidem». Résumé de quelques

travaux sur les systèmes variables de fonctions,

« Bull. Sc. Math.», T. XVI, [1892].

4. Di alcune applicazioni del Calcolo differenziale 

Label of wine produced to this 

day by Ricci-Curbastro family.

In vino veritas.
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Algebraic definition of a tensor. The following ideas/concepts can be identified to

form preliminary steps leading to and enabling formulation of algebraic definition

of tensors and quantitative (numerical) operations on them (tensor calculus):

Cartesian Coordinates System (Rene Descartes, 1637), Group (Evariste Galois,

1830), Abelian Group (Camile Jordan, 1870), Field of Real Numbers, Linear

(Vector) Space (Peano, 1888), Euclidean Vector Space (Gibbs, 1881 and

Heaviside, 1893), Euclidean Point (Affine) Space (Affinitas, Leonard Euler, 1748),

Tensor Space (Gregorio Ricci-Curbastro, 1888-1992) (in bottom top order).

The Euclidean Point Space is at present commonly accepted model or real

physical space. The most important information to acquire from algebraic

definition of tensors is that tensor makes an inseparable integrity of a basis and

its components (representation) in the basis. Expression of physical laws in

tensorial form assures their invariance (symmetry) with respect to a group of

transformations of changing coordinates system (translations and/or rotations).

The physical laws have precisely the same tensorial form regardless of adopted

coordinates system. This is an immense advantage and achievement of tensorial

calculus.

Session 3 - synopsis
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Algebraic definition of a tensor.

A Euclidean tensor of order q and dimension n is and algebraic structure,
an element of linear tensorial space Tq, which is generated by the q-fold

tensorial product of n dimensional Euclidean vector spaces En. When the
same basis is accepted in all spaces En then any tensor T belonging to Tq

can be presented in the form,

where a set of q versors eiEn is a basis of Euclidean vector space En, a

set of nq simple tensors ei⊗ej⊗…⊗em (q-fold tensorial product of versors ei)
is a basis of space Tq≡En

(1)⊗…⊗En
(q), and numbers Tij…m are called

components of tensor T – its representation in basis {ei⊗ej⊗…⊗em}.

By algebraic structure, it is understood a set composed of finite number of

sets of elements and finite number of mappings of Cartesian products of

these sets into these sets. The mappings are called operations.

Tensorial linear space is higher level (complex) algebraic structure

composed of lower level (simpler) algebraic structures.

... ... , ,..., 1,.., , ,ij m i j m q i n

components basis  (q- fold)

T i j m n E      T e e e T e



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Algebraic definition of a tensor.

The most important information to acquire from algebraic definition of tensors

(elements of a linear space) is that tensor makes integrity of a basis and

components, i.e. representation of the tensor in the basis.

When the basis is fixed, isomorphism exists between tensor and its representation

(components) in this basis, i.e. the tensor can be identified with its components.

... ...ij m i j m

Components basis

T   T e e e


Abelian Group G  →   Field K

Vector Space L over field K

Euclidean vector space En

Tensorial space Tq

basis {ei}

scalar product (a·b) → orthogonality

int. product (a:b), ext. product (a b)

elements with quantitative operations on them

The components of a tensor transform in linear

manner with change of the coordinate system.

For example

where R is so called rotation tensor

Note: Care must be exercised because in general the basis of a tensor

can be changed in non-linear manner.

,i i ij i j ki ij jl k l kl k l kl ki ij jlR R R R                  e Re e e e e e e

2{ ; , det( ) 1}T    R RR 1 R 
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Algebraic definition of a tensor.

contraction oper.

( ; , : ) tr( )q nE R  a

 scalar and vector product

( ; ) ,nE R    a b a b

basis

( ({ }; ), , ({ }; , ) ) { }iL K    e

({ }, )G 

The following algebraic structures of growing complexity make building

blocks of tensorial linear space from the most simple to the most complex:

→ Tensorial linear space Tq

→ Euclidean point (affine) space En

Gibbs (1881) Heaviside (1893)

→ Euclidean vector (linear) space En

Peano (1888)

→ Vector space L over field K

→ Field K

→ Abelian Group GA Jordan (1870)

→ Group G Galois (1830)

Descartes

→ Cartesian coordinates (1637)

( " " )operation is comutativeg h h g   

({ }; , )K  

affixed basis

({ }; ), ( , ) ( ,{ })n O O iP O X OX O    e


x

Ogden R.W., Non-linear elastic deformations. Dover Publications, Inc. 1997.

Ostrowska-Maciejewska J., Podstawy i Zastosowania Rachunku Tensorowego, IPPT PAN, Reports, Warsaw, 2007.

Spencer A.J.M., Continuum Mechanics, Dover Publications Inc., 2004.

https://mathshistory.st-andrews.ac.uk/Miller/mathword/ Earliest Uses of Some Words of Mathematics

Elements Operations, "Tools", e.g.

g
ro

w
in

g
 c

o
m

p
le

x
it
y

1 ( )( , ... , )n coordinates systemx x
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Algebraic definition of a tensor, Group (Abelian Group) G .

Group G

An algebraic structure G≡( {G}, ) is called a Group G when

{G} is a non-empty set of elements, and is operation (mapping)

assigning an element from {G} to any pair of elements from {G}

Operation must satisfy the following axioms:

: ( , ) { } { } { }g h G G g h G     

Abelian Group (commutative group) is a group, which operation

is commutative

For example, a set of all rotations of real space around fixed axis is a

commutative group.

,g h G
g h h g


  

1 2 3
1 2 3 1 2 3

, ,
( ) ( )

g g g G

e G g G

g G h G

g g g g g g

e g g e g

g h h g e



 

 

    

   

   



 

 

it is associative

neutral element of the group exists

inverse element exists




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Algebraic definition of a tensor, Field K.

Field K

An algebraic structure K≡( {K}, +,  ) is called a Field K when

{K} is a non-empty set of elements, and +,  are operations (mappings)

assigning an element from {K} to any pair of elements from {K}

the following axioms must be true,

set {K} with operation "+" is Abelian group,

set {K} without neutral element of Abelian group ({K},+),

i.e. "0" is also Abelian group,

: ( , ) { } { } { },K K K         : ( , ) { } { } { },K K K        

({ }, )K 

({ } 0, )K  

operation  is distributive with respect to operation +,

For example, set of all real numbers with summation and multiplication 

operations  is a field ({R},+,).

, , { }
( ) .

  
      


     


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Algebraic definition of tensor, vector (linear) space L.

Vector (Linear) space L

Algebraic structure L ≡ ( ({L},), , ({K},+,) ) is called linear space L
over field K when the following axioms are true:

is Abelian group

is field

({ }, )L 

({ }, ,* )K 

Operation  of multiplication of elements from {L} by elements from set {K}

has the following properties

: ( , ) { } { } { }A K L A A L       

,

,

,

1

( )

( )

( ) ( )

1

A B

A

A

A

A B A B

A A A

A A

A A



 

 

  

   

  

 

 

 

 

  

  





 

 

 

 

 

 

 

 

For example, set of all vectors in the plane with their summation and multiplication

by real numbers is linear space.

+ is distributive with respect to 

 is distributive with respect to +

 is associative

neutral element of field K exists
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Algebraic definition of tensor, vector (linear) space L.

Linear space L is called n – dimensional and denoted by Ln, when it does

exists linearly independent set of elements of order n in it, and it does not

exist linearly independent set of elements of order greater than n.

Basis of space Ln, it is called every linearly independent set of elements 

A1, A2, …, An  Ln.

When the set A1, A2, …, An  Ln is a basis in Ln then each element A of 

space Ln can be expressed in the form

The set A1, A2, …, An allows for generation of all elements of space Ln .

Basis and dimension of vector (linear) space L

Each set of elements A1, A2, …, An  L such, that from equality

it results that

is called linearly independent set of order n.

1 1 2 2 0n nA A A     

1 2 0n     

1 2
1 1 2 2

, , ,n n
n n

A
A A A A

  
  

 
    




 
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Algebraic definition of a tensor, Euclidean vector space En.

Euclidean vector space En

Linear space Ln (n-dimensional) over field of real numbers R, equipped

with scalar product operation defined on its elements, is called Euclidean

vector space En.

Bilinear form is called scalar product

when it has the following properties:

: ( , ) { } { }L L R    a b a b

,

, ,

,

( ) , ( )

( ) ( )

0 0 0

n

n

n

n

E

E

E

E
and for


  





 



  

           

    

    





 



a b

a b c

a b

a

a b b a

a b c a b a c a b c a c b c

a b a b a b

a a a a a



Scalar product enables introduction of the concepts of vector norm 

(modulus) and the concept of angle between vectors.

:
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Algebraic definition of a tensor, Euclidean vector space En.

Norm and angle between vectors in Euclidean vector space En.

Norm (modulus) of vector a, it is called a real number a satisfying the

following conditions

Vector a, for which |a|=1 is called a versor.

Angle  between vectors a and b can be determined from the formula

Scalar product enables introduction of the notion of orthonormal basis.

Basis ei is orthonormal when the following conditions are satisfied 

Vectors of orthonormal basis are mutually orthogonal and are versors.

1/2

,

| | ( )

| | 0, | | 0 0, | | | | | |

| | | | | |   Schwartz inequality
nE

a

for  



  

   

   
a b

a a a

a a a a a

a b a b

cos( ) , 0
| || |

  


  
a b

a b

, | | 1, , 1,...,i j ij i i j n   e e e
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Algebraic definition of a tensor, Euclidean point (affine) space En.

Euclidean point (affine) space En (affine space)  Euclidean vector space En

Euclidean point space En of dimension n is an algebraic structure

En≡({P}, En, ), where {P} is a set of elements (points), and  is

associated operation (mapping) uniquely (in one-to-one manner) assigning

to each ordered pair of points A, B  En a vector from vector space En

Mapping  satisfies the following axioms,

x denotes vector radius of point X with respect to selected, fixed point O.

Upon selection, fixing, point O from space En, it can be defined one-to-one

mapping between points from Euclidean point space En and vectors from

Euclidean vector space En, i.e. arithmetization of space En can be attained

: ( , ) { } { } nA B P P AB E    


, , ,
, ,

n n n n nA B A B C O X E
AB BA AC AB BC OX

    
         x

     

x   

1 1: ( , ) , , : ( )O O n n O OO X OX E O X       x x x =


 

Affine space is homogeneous, no any special element is distinguished,

like e.g. "zero" element.
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Algebraic definition of tensor, Euclidean point space En .

Commonly accepted, convenient, model of real physical space.

Three dimensional Euclidean Point Space E3 with fixed coordinates

frame (O, ei) (i=1,2,3) is commonly accepted as convenient mathematical

model of real physical space.

Euclidean point space En is not a vector (linear) space, because it does

not posses required structure of linear space, e.g. addition of its elements

is not defined as required in definition of vector (linear) space.

Mapping  , defining addition of vectors to points, enables acquiring

functionality of vector space En - taking advantage of elements of its

structure.

Each pair (O, ei), where OEn, eiEn is called coordinates system of point

space En associated with vector space En. Point O is a hooking point of

the coordinates system and ei are basis versors of space En.

In continuum mechanics we are mainly working with Euclidean (vector)

space E3 when modeling real physical phenomena. This in view of existe-
nce of bijection between spaces E3 and E3 - upon fixing reference point O.

1 2 3

1

1 1 2 2 3 3
, ,n

k k
E   

   
 

    
a

a e e e e

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Algebraic definition of a tensor, Dimensional Affine Space.

Care must be exercised because there exists another concept/definition of affine

space, in which affinity results from assigning different dimensions to the

coordinate axes of the space.

Geometry in which properties of figures are examined invariant with respect to

units of measure adopted on axes of coordinate system is called affine geometry.

Space subject to affine geometry is called affine vector space (after Edmund

Karaśkiewicz, p.355)

Operation of change of physical units of measure, and/or change of length scale of

line segments and/or transition into non-orthogonal coordinate systems does not

change the (depicted) physical relation.

Karaśkiewicz E., Zarys teorii wektorów i tensorów, II Wyd., PWN, Warszawa, 1974.

Rychlewski J., Wymiary i Podobieństwo, PWN, Warszawa, 1991. 

Length of vector in such defined (dimensional) affine space does not have physical sense.

p

V

p1

p2

1

10 V

1

10

p p

V

1

10

v2

v1



A. Ziółkowski 38

Algebraic definition of a tensor, tensorial linear spaces Mnm .

Tensorial Product of linear spaces

Linear space Mnm  Ln  Nm arising from Cartesian product Ln  Nm is

called Tensorial Product of linear spaces Ln and Nm over field K.

Dimension of space Mnm is m·n.

Product operation  of elements from set {L} by elements from set {N}

by conjecture has the following properties

: ( , ) { } { } ( )n m n m n mL N         A a A a      

,

,

( )

( )

( )

n m

n m

n m

A a b

A B a

A b

A a b A a A b

A B a A a B a

A b A b


 

 

 

  

     

     

  

 

 

  

 

 

  

+  is distributive with respect to 

 is distributive with respect to +

 is associative
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Algebraic definition of a tensor, tensorial linear space Tq .

Tensorial linear space Tq and Euclidean tensors T

The q-tuple tensorial product of n-dimensional vector Euclidean spaces

En is called tensorial space Tq of Euclidean tensors with dimension n and

order q.

Elements of Euclidean tensorial spaces are called Euclidean Tensors.

In continuum mechanics the most widespread use gained Euclidean

tensors with dimension 3.

Examples of tensorial spaces with different order (rank) are:

Tq = R space of real numbers,

T1 = E 3 space of 3D vectors,

T2 = E 3 ⊗ E 3 space 3D second order tensors.

Any second order symmetric tensor can be expressed in the form

Ostrowska-Maciejewska J., Podstawy i Zastosowania Rachunku Tensorowego, IPPT PAN, Reports, Warsaw, 2007.

( )(1) (2) ( )

1
...

q q i

q n n n n q
i

E E E E


      T 

(1) (2)

2 3 3 ,sym T

ij i j ij jiA E E where A A       A e e A A
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Tensors as linear transformations operators. Tensors as geometrical objects.

Symmetry as universal philosophical category characterizing structures of

organization of all systems in the universe. Permutation operation on tensors.

Internal and external symmetries of tensors. Groups of orthogonal and proper

orthogonal tensors as tools for distinguishing of isotropic and hemitropic tensors.

Coordinates systems versus reference frames. Various convenient bases of

second order symmetric tensors. Absolute notation and indicial notation of

tensors. Hooke's tensor expressed in standard notation as fourth order tensor in

three dimensional space and equivalently expressed in Kelvin notation as second

order tensor in six dimensional space. Second order and fourth order unity

tensors as generators of various projectors.

Session 4 - synopsis
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Operational definition of a tensor, constitutive models of materials

are based on this interpretation.

Tensors can be treated as a linear operators transforming one tensorial

object (space) into another tensorial object (space) linearly.

For example, fourth order tensor L  T4 upon its multiplication

(contraction) with second order tensor   T2 transforms this tensor into

some other second order tensor   L =  T2.

The linear operators were and are subject of broad and vivid research

activities, documented in rich literature on the subject.

For example, actually such domains as linear optimization, linear control

theory or linear stability analysis are varieties of linear operators analysis.

The most common approach to tensors treated as linear operations takes

the form of matrix calculus.

L

Input System Output

;  L L   
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Geometrical definition of a tensor.

Tensors can be interpreted as geometrical objects possessing specific

orientation in physical space (reference frame) and specific features

(eigenproperties) - number of which depends e.g. on order of the tensor.

e3

e2

e1

0

nII

nI

nIII

coordinates 
system

reference 
frameP

Second order symmetric tensors carry information on their orientation in

reference frame and on up to three linearly independent eigenproperties.

Fourth order symmetric tensors (with Hooke's tensor symmetries - in fixed

basis taking the form H=H<1234>=H<2134>=H<1243> ~ Hijkl=Hjikl=Hklij) can

describe up to eighteen linearly independent eigenproperties.

Tensors information content and complexity grows

with their increasing order and dimension of

vector space generating respective tensor space.

Scalars (zero order tensors) does not bear

information on their orientation in reference frame

(physical space).

Vectors (first order tensors) carry information on

their orientation in reference frame, and on one

feature (eigenproperty) expressed by their moduli.
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Coordinates system versus Reference frame.

A pair (affixed basis) composed of a point O belonging to Euclidean point
space (OE3) and a set of basis versors {ei} of associated with it

Euclidean vector space (eiE3) is called coordinates system (coordinates

frame). Frequently, in shortcut, the coordinates system is denoted by the

set of basis vectors only.

In continuum mechanics besides coordinates system it is used concept of

reference frame. "Physically" both sets are composed of some anchoring

point and a set of basis vectors, e.g. {O, ei}.

The difference between coordinates system and

reference frame is in their functionality. The

coordinates system makes a reference for determi-

nation of vector (tensor) location and components,

while the reference frame makes a reference for

examination of e.g. motions (kinematics).

Depending on the need and convenience in

examination of specific problem the same pair {O,

ei} can be adopted for coordinates frame and

reference frame or different pairs can be adopted.

e3

e2

e1

0

nII

nI

nIII

coordinates 
system

reference 
frameP
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Algebraic definition of a tensor, symmetries of tensors.

Symmetry concept plays pivotal role in tensorial calculus (tensors) and its

applications.

A general, very capacious modern definition of symmetry can be

formulated as follows (by the present author) :

Definition of Symmetry

Symmetry is the invariance (constancy, steadiness, stability) of some

feature (geometric, physical, biological, information, etc.) of an object (an

object can be a geometric system, a material object, a natural

phenomenon, a physical law, a social relationship, a process in time, a

physical field, etc.) after subjecting it to action of transformations from a

certain group (transformations can be shifts, mirror images, rotations,

changes of order, etc.) with respect to which symmetry is considered.

Symmetry can be perceived as a certain universal philosophical category

(property) characterizing the organization structure of all systems existing 

in the universe (Weyl, Symmetry, 1952).

Weyl H., Symmetry, Princeton University Press, New Jersey, 1952.
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Definition of internal symmetry of a tensor.

Before we proceed further Let us deliver more information on the concepts

of internal and external symmetries of tensors. This properties are

extensively used in modeling real phenomena with the aid of tensors.

Definition A Permutation operation  on a tensor T (T) p-th order is a

linear mapping defined by the following formula

where (1),…,(p) is a preset permutation of the first p natural numbers

(1,…, p) and T12…p are components of tensor T

The permutation operation can be equivalently interpreted/treated as a

permutation of the components of the tensor T written out in fixed basis.

It is convenient to introduce the following more compact notation for

permutation operation

When it is known that only two indices permute it is convenient to use still more short

denotation e.g. T<4,2>≡T<1432> .

12... 1 2 12... (1) (2) ( ): ... ... ,

(1), (2), ... , ( ) , ,

p p p p

p

T T

p

   

    

          

    

T T e e e T e e e

T T 

(1) (2)... ( ) 1 2(1), (2),..., ( ) ... p

p pp T              T T e e e 

( (1) (2) ... ( )(1), ... , ( ) pp            T T T
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Definitions of internal symmetry of a tensor.

The set of all permutations operations acting in the space of tensors of a
fixed order (e.g. T p) constitutes the group P. This allows to introduce the

concept of internal symmetry of tensors. The group P is discreet, its size

is finite and equals p! elements, for example, for tensors of the 4-th order

there are 4!=24 elements of this group.

Definition An internal symmetry group of a tensor T  Tp is a subset of

the permutation group P, whose elements satisfy the condition

Tensors T satisfying the above condition are called (internally) symmetric

tensors with respect to permutations of indices.

A tensor T is (internally) symmetric over a pair of indices (,), if equality

holds, , i.e., if the elements of the tensor T represen-

ntation in any fixed basis when swapping the places of the indices (,)

are the same. In the case of fourth-order tensors, the symmetry with

respect to permutation operation <1324> means that T=T<1234>= T<1324>, tj.

Tijkl=Tikjl in any fixed basis.

Definition A tensor is absolutely (internally) symmetric when the group of

its symmetries is the entire set of permutations .

{ ; };        T TT T   

,

... ..... .. ... ..... . .T T 

   

   T T

 T 
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Definition of external symmetry of a tensor.

Definition A set of second order tensors Q with properties,

is a group and is called the group of orthogonal tensors.

Definition A subset of orthogonal tensors for which det (Q)=+1

is a group and is called the special orthogonal group or rotation group (SOn).

Definition (  ) A group of external symmetry of tensor T  T p (p denotes 

order of the tensor) we call a subset of all orthogonal tensors Q, which 

satisfy the following condition

Tensors T that satisfy condition (  ) are called (externally) symmetric with 
respect to orthogonal transformations Q  OT.

Definition  Tensor is isotropic when the group of its external symmetry is 
the whole set of orthogonal tensors OT=O.

Definition  Tensor is hemitropic (also called proper-isotropic) when the 

group of its external symmetry is the whole set of proper orthogonal 
tensors OT=R.

2{ ; , det 1}T T     Q QQ Q Q 1 Q 

2{ ; , det( ) 1},T     Q QQ 1 Q   

...{ ; }, ; ( ... )T T ia jb kc ab cQ Q Q T      Q Q T T TQ   







A. Ziółkowski 48

Second order symmetric Euclidean (Cartesian) tensors.

We will focus attention on second order symmetric tensors in three

dimensions in the remainder of the work.

According to general representation theorem the basis of second order

Eulerian tensors space T2 can be constructed from nine so called dyads

{ii  ij}, (i, j=1,2,3), where ii are versors of basis of 3-dimensional linear

vector space E3 - generating tensor space T2 .

For the versors ii usually there are adopted orthonormal versors {ei},

ii  ij  ei  ej. In such a case customarily Eulerian tensors are called

Cartesian tensors. The second order tensors can be expressed with the

aid of nine dyads eiej (i, j = 1..3) as follows,

In the case of so called symmetric second order tensors their components

fulfill condition T=TT (Tij=Tji). This means that their 3x3 representation

matrix has only 6 linearly independent components.

Symmetric second order tensors make six-dimensional subspace of

general second order tensors space (T2
sym  T2).

2

, 1,3

ij i j

i j

T


   e e T
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Second order symmetric tensors, notations and interpretations.

It is important to carefully distinguish between different notations used for

tensors, as information may be differently distributed between the tensor

basis and its components depending on the notation.

The following notations are very commonly used in the case of second

order symmetric tensors (Cauchy tensor is used here as working example)

   

, 1,3 1, 6

11 12 13

12 22 23 1 2 3 4 5 6

13 23 33

, , ,

, , , , , , , , , .

ij i j K K I I II II III III

i j K

I II III

    

  

           

  

 

     

 
 
 
 

 e e a N N N  

1 11 2 22 3 33 4 23 5 13 6 12

1
1 1 1 2 2 2 3 3 3 4 2 3 3 22

1 1
5 1 3 3 1 6 1 2 2 12 2

, , , 2 , 2 , 2 ,

, , , ( ),

( ), ( ); .K L KL

           



     

         

         

e e e e e e e e e e

e e e e e e e e

a a a a

a a a a

1 11 2 22 3 33 4 23 5 13 6 12

51 2 3 4

, , , 2 , 2 , 2 ,

1 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 1 01 1 1
0 0 0 , 0 1 0 , 0 0 0 , 0 0 1 , 0 0 0 , 1 0 0

2 2 20 0 0 0 0 0 0 0 1 0 1 0 1 0 0 0 0 0

           

    

     

           
          
                         

a a a a a 6

{ }i j 






e e


a

where (I,II,III) denote principal values and (nI, nII, nIII) are principal direc-

tions (eigenvectors) of the tensor . The principal axes nJ are rotated with

respect to laboratory frame axes (e1,e2,e3) by three (Euler) angles (1,2,3).

( )

J J J

J J i

 



N n n

n n e

2|| || ( )tr 
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Absolute and indicial notation in tensorial calculus.

Absolute notation and indicial notation

A list below delivers a "recipe" for rewriting any tensorial formula written in 

absolute notation in the usual Cartesian index notation, i.e. in a fixed 

Cartesian basis.

2 3

1/2 1/2

1/2

, , , ,

, ,

, ,

, ,

| | ( ( )

| | ( )

i ij ijkl

ij

i j i jk

ij kl

ij jk ij jk kl

ij j ij i j

ij ij

ijkl ijkl

n C

n m n

n n m

C C







 

    

 

 





  

 





  



n C

1

n m n

n n m

C





 

 

 

  

12... (1) (2)... ( )

, (

ij jk

ij ij

ijkl kl

ijkl ij kl

ijkl ijkl

ijkl klpq

T T

ij kl jl

ij kl pq st jlqt

p p

C

C

A B

C S

Q Q

Q Q Q Q C

T T  

 

 



 







 

 

  

 



   

 

  

C

C

A B

C S

Q Q Q QQ 1)

Q C

T



 

 



 

 

"   " - contraction over two indices, " · " – full contraction, "  " – contraction 

over two indices (higher order tensors), "  " – orthogonal transformation,  

"      " – permutation operation, "    " – tensorial product.  
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Absolute and indicial notation in tensorial calculus.

Example of absolute notation, indicial notation and graphical illustration of 

operation of orthogonal tensors on second order tensors.

The set of orthogonal tensors is used to define external symmetry of 

tensors.

2

2

...

{ ; , det 1}

{ ; , det( ) 1},

{ ; }, ; ( ... )

T T

T

p

T T ia jb kc ab cQ Q Q T

     

     

       

Q QQ Q Q 1 Q

Q QQ 1 Q

Q Q T T TQ

 

   

    

11 12 13 11 12 13 11 21 31

21 22 23 12 22 23 12 22 32

31 32 33 13 23 33 13 23 33

~

, (

T

T T

ij kl jl

ij kl pq st jlqt

Q Q Q Q Q Q
Q Q Q Q Q Q
Q Q Q Q Q Q

Q Q

Q Q Q Q C

  
  
  



     
       

          

   

 

Q Q Q

Q Q Q QQ 1)

Q C

 

 
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Fourth order symmetric tensors, notations and interpretations.

Linear elasticity - Hooke's constitutive law

2 4

( 3) ( 3)

11 1111 1122 1133 1123 1132 1113 1131 1112 1121

22 2211 2222 2233 2223 2232 2213 2231 2212 2221

33 33

23

32

13

31

12

21

~ , , , , 1,..,3; , ,ij ijkl kl n nC i j k l

C C C C C C C C C

C C C C C C C C C

C

 



















      

 
 
 
 
 
  
 
 
 
 
 
 

C C     

11 3322 3333 3323 3332 3313 3331 3312 3321

2311 2322 2333 2323 2332 2313 2331 2312 2321

3211 3222 3233 3223 3232 3213 3231 3212 3221

1311 1322 1333 1323 1332 1313 1331 1312 1321

3111 3122 3133 3123 31

C C C C C C C C

C C C C C C C C C

C C C C C C C C C

C C C C C C C C C

C C C C C

11

22

33

23

32

13

32 3113 3131 3112 3121 31

1211 1222 1233 1223 1232 1213 1231 1212 1221 12

2111 2122 2133 2123 2132 2113 2131 2112 2121 21

C C C C

C C C C C C C C C

C C C C C C C C C



















   
   
   
   
   
   
   
   
   
   
   
   

Hooke's tensor possess the following external symmetries 

C<1234>= C <2134>= C <1243>= C <3412> ~  Cjikl = Cijlk = Cijkl = Cklij

what allows for treating it as second order tensor in six dimensional space.
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Fourth order symmetric tensors, notations and interpretations.

( 6) ( 6)

1111 1122 1133 1123 1113 111211

22 2211 2222 2233 2223 2213 2212

33
3311 3322 3333 3323 3313 3312

23
2311

13

12

~ , , 1,...,6, , ,

2 2 2

2 2 2

2 2 2

2 2 2

2

2

Ke Ke Ke

K KL L n nC K L

C C C C C C

C C C C C C

C C C C C C

C

 













       

 
 
 
 

 
 
 
  

C C     

11

22

33

23
2322 2333 2323 2313 2312

13
1311 1322 1333 1323 1313 1312

12
1211 1222 1233 1223 1213 1212

1
1 1 1 2 2 2 3 3 3 4 2 32

22 2 2 2

22 2 2 2 2 2

22 2 2 2 2 2

, , , [

Ke

C C C C C

C C C C C C

C C C C C C













   
   
   
   
   
   
   
      

       a e e a e e a e e a e e 3 2

1 1
5 1 3 3 1 6 1 2 2 1 ( 6)2 2

1 1 2 2 3 3 4 4 5 5 6 6 ( 6)

],

[ ], [ ]; , , , 1,..,6,

2 2 2 , .

K L KL K n

Ke

ij i j K K n

K L

       





 

           

         

e e

a e e e e a e e e e a a a

e e a a a a a a a 





It is Kelvin notation, which enables to achieve full tensorial equivalence of

interpretation of symmetric tensors of the second and fourth order (Hooke's

symmetries) from a 3-dimensional space, as vectors and second-order tensors

from a 6-dimensional space, and the opposite,

{ ~ }

{ ~ }

ijkl kl ij

Ke Ke Ke Ke Ke Ke

C

C  

  

  

  

   

C

C

 

 

( 3) ( 6)

( 3) ( 6)

, , , , , 1,..,3, , 1,..,6,

,

n n ij ji K

n n ijkl jikl klij KL LK

i j k l K L

C C C C C

   

 

       

          C C

   

     

K La a
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Fourth order symmetric tensors, notations and interpretations.

In computational mechanics very frequently there is used so called Voigt notation

Note: Care must be exercised because Voigt notation is not consistent with

principles of tensorial calculus.

11 1111 1122 1133 1123 1113 1112

22 2211 2222 2233 2223 2213 2212

33 3311 3322 3333 3323 3313 3312

23 2311 2322 2333 2323 2313 2312

13 1311 1322 1333 1323 1313 1312

12 1211 1222 1233

C C C C C C

C C C C C C

C C C C C C

C C C C C C

C C C C C C

C C C













 
 
 
  
 
 
 
 

11 1 11 12 13 14 15 16

22 2 21 22 23 24 25 26

33 3 31 32 33 34 35 36

23 4 41 42 43 44 45 46

13 5 51 52 53 54 5

1223 1213 1212 12 6

2 2 2

2 2 2

2 2 2

2 2 2 2

2 2 2

2

Vo
C C C C C C

C C C C C C

C C C C C C

C C C C C C

C C C C C

C C C

 

 

 

 

 

 

     
     
     
      
     
     
     
     

1

2

3

4

5 56 5

61 62 63 64 65 66 6

2

2 2 2

Vo

C

C C C C C C













   
   
   
   
   
   
   
   

11 11 1 22 22 2 33 33 3

23 4 23 13 5 13 12 6 12

~ ( ) ( ),

, , ,

2 , 2 , 2

Vo Vo Vo Vo Vo Vo

ij ijkl kl K KL L KL LK

Vo Vo Vo

Vo Vo Vo

C C C C C C C       

        

        

         

     

     

C C  

2 2|| || || ||Vo

ijklC C 

11 23 13
2 2 2 2 2 2 2 2

12 22 23 11 22 33 23 13 12

13 23 33

2 2 2 2 2 2 2 2

1 2 3 4 5 6 11 22 33 23 13 12

1 2 3 4 5 6

~ || || || || 2( ),

~ [ , , , , , ] || || || || ,

~ [ , , , , , ] || ||

ij ij

T Vo

K ij

T Vo

K





  
          

  

              

       

 
         

  

        

 

 



 2 2 2 2 2 2 2 2

11 22 33 23 13 12

2 2 2 2 2 2 2 2

1 2 3 4 5 6 11 22 33 23 13 12

|| || ,

~ [ , , , , , ] || || 4 4 4 || || .

ij

Vo T

K ij

      

              

      

        

1 1 1 1
2 2 2 2

~Vo

K K ij ij         
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Symmetric tensors, unit tensors 0,1, 2 and 4-th order.

  (4 )

1 1 1 0 0 0 1 0 0 0 0 0
1 1 1 0 0 0 0 1 0 0 0 0

1 1 0 0
1 1 1 0 0 0 0 0 1 0 0 0

1 ~ 1 , ~ 0 , ~ 0 1 0 , ~ , ~
0 0 0 0 0 0 0 0 0 1 0 0

0 0 0 1
0 0 0 0 0 0 0 0 0 0 1 0
0 0 0 0 0 0 0 0 0 0

s

 
 

     
     

        
  

1 1 1 1 I

scalar,   vector,   2 - order tensor,        4 - order symmetric tensors

(2)

(4 ) 3,2 4,21 1
2 2

0 1

( ), ( ),

[ ] ~ ( ) ~

( , , , 1,2,3,  , 1, ,6)

ij ij kl

s

ik jl il kj KL

i j k l K L

  

       

 
 
 
 
 
  

 

    

  

1 1 1 1

1 1 1 1I

Unit tensors of zero, first, second and fourth order

K La aK La a
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Symmetric tensors, unit tensors as projectors.

1
1111 22 333

1
2211 22 333

1
3311 22 333

23

13

12

1 1 1 0 0 0( )

1 1 1 0 0 0( )

1 1 1 0 0 0( ) 1

0 0 0 0 0 0 00 3

0 0 0 0 0 0 00

0 0 0 0 0 0 00

m

m

m

   

   

   







       
      
     
      

       
     
     
     

      

J

1 2 1 1
11 1111 22 333 3 3 3

1 1 2 1
22 11 22 333 3 3 3

1 1 1 2
33 11 22 333 3 3 3

23 23

13 13

12 12

(2 ) 0 0 0

( 2 ) 0 0 0

( 2 ) 0 0 0

0 0 0 1 0 0

0 0 0 0 1 0

0 0 0 0 0 1

s

s

s

s

s

s

  

  

  







       
        
    
        

     
    
    
    

    

K

22

33

23

13

12









 
 
 
 
 
 
 
 
 

(4 )1 1
3 3

(4 ) 1
3

( )  , , , ,

  , , 0,

s

ij kl m

s

m

  



      

        

1 1 1 I

I 1 1 1

J JJ J J J K

K KK K JK s K
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Various tensorial bases. Standard Cartesian basis, Kelvin basis for symmetric

tensors, Principal directions basis (finding source in spectral decomposition of

second order symmetric tensors), Eigenstrains basis (finding source in spectral

decomposition of fourth order symmetric tensors), Symmetry basis (finding source

in material symmetry), Laboratory frame basis. Various sets of invariants of second

order symmetric tensors e.g. main (basic) invariants, principal invariants, principal

invariants of deviator. Some useful physical interpretations of invariants. Various

decompositions of tensors, e.g. decomposition into symmetric and antisymmetric

part, decomposition into spherical and deviatoric part, decomposition into isotropic

and anisotropic part, spectral decomposition, polar decomposition. Possibility of

parametrization of Cauchy stress tensor with some set of three linearly

independent invariants and Euler angles. Characteristic equation of full second

order symmetric tensor and characteristic equation of its deviator. Principal values

of second order symmetric tensor. It turns out that decomposition of Cauchy stress

into spherical and deviatoric part is equivalent to decomposition into isotropic and

anisotropic part. Explicit relations between principal invariants of second order

symmetric tensor and principal invariants of its deviator.

Session 5 - synopsis



A. Ziółkowski 58

Second order symmetric tensors, bases of tensor space.

1. Standard (Cartesian) basis

2. Kelvin basis

3. Principal directions basis

4. Hooke's tensor eigenstresses basis

Note: Problem for eigenstresses in full notation (9x9) is equivalent to problem for

eigenstresses in Kelvin notation (6x6) but not in Voigt notation (6x6)

Ziółkowski A. G. Parametrization of Cauchy Stress Tensor Treated as Autonomous Object Using Isotropy Angle and

Skewness Angle, Engineering Transactions, 70, 3, pp. 239–286, 2022, doi: 10.24423/EngTrans.2210.20220809. Full text

available freely at the link: https://et.ippt.gov.pl/index.php/et/article/view/2210
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Bases of second order symmetric tensors space.

It was already mentioned that basis of tensor space can be freely selected.

However, depending on the target of the analysis some bases are more

convenient than the other, e.g. suitable selection of the basis makes

analytical and/or numerical computations more simple and/or effective.

Let us list some convenient bases of second order symmetric tensors

space useful in the further discussion:

i) Laboratory frame basis. Such a basis is selected for example in view of

convenient expression of imposed boundary conditions, e.g. loadings

and/or constraints.

ii) Symmetries oriented basis. Such basis is selected to be collinear with

axes of some kind of material symmetry or geometrical shape/layout of

examined engineering structure/device. For example, it is chosen to be

collinear with natural axes of symmetry of (anisotropic) material.

iii) Principal axes basis. Such a basis is selected when it is subject matter

justified or convenient to work with principal values of second order

symmetric tensor only.

iv) Eigenstates (Eigenstresses) basis. Such a basis might be convenient in

formulation of strength of materials criteria.
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Features of second order tensors.

The second order symmetric tensor is fully characterized (defined) by six

components/parameters (linearly independent) being its representation in

some fixed coordinates system (basis). The components of a tensor

change in linear manner with rotation of coordinates system.

From six components of second order symmetric tensor, there can be:

- constructed infinite number of sets, each consisting of three invariants of

the tensor (linearly independent). Such invariants do not change when

basis (coordinates system) of the tensor is changed.

- extracted a set of complementary parameters, three Euler angles,

characterizing orientation of the tensor object, treated as geometric entity,

with respect to axes {ei} of the specific coordinates system (usually

collinear with some convenient laboratory/reference frame) and generating

basis of tensor space {eiej}. Euler angles do change (are not invariants)

with change of coordinates system (tensor space basis).

Note: The notion of invariants of a tensor, the tensor itself being invariant with

respect to a change of coordinates system sounds like "butterfish butter" –

tautology, but actually it rather delivers a hint that the idea of a tensor is quite

complex.
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Second order symmetric tensors, various useful sets of invariants 

(eigenproperties).

Three linearly independent tensor invariants constructed from a second

order symmetric tensor components, invariant under change of

coordinates system (basis), can be treated as characteristic features

(eigenproperties) of the specific tensor. They deliver convenient

specification (description) of the tensor when it is treated as a geometrical

object.

Actually, infinite number of triad sets of second order symmetric tensor

invariants can be constructed {I1
, I2

, I3
}.

Construction/Selection of specific set of invariants and their usefulness

depends on the area of study and/or specific examined problem.

For example this might be ("Length", Width", "Height") or ("Hue",

"Brightness", "Saturation").
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Second order symmetric tensors, various useful sets of invariants 

(eigenproperties).

Tensorial modeling description Reality
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nIII

L
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H
OV

Growing information content

with growing tensor order:

Scalar description (1 datum),

e.g. a ~ [a1]
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Second order symmetric tensors, various useful sets of tensor 

invariants (eigenproperties)

Various invariants of second order symmetric tensors find useful physical

interpretations and applications in different scientific and/or technological

research areas. For example,

trace of stress tensor has very important physical interpretation of

pressure

⅓tr() = ⅓ii = −p,

trace of strain tensor only approximately describes volumetric changes of

the material

⅓tr() = ⅓ii ≈ dV/dV0 ,

determinant of deformation gradient tensor delivers exact measure of

volumetric changes

det(F) = dV/dV0.

Different sets of tensor invariants deliver, can be treated, as various

parameterizations of tensor eigenproperties.
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Second order symmetric tensors, set of basic (main) invariants.

The common set of second order symmetric tensor invariants {Ib1,Ib2,Ib3}

most frequently encountered in mathematical studies are so called basic

invariants, in some publications also called main invariants,

2 2 2 3 3

1 2 3( ) , ( ) || || , ( )b b bI tr I tr I tr         1 1 1      

where ||||=(ijij)
1/2 denotes norm of a tensor, 1 (ij) denotes unit tensor

in second order tensors space. The dot symbol denotes full (double)

contraction of second order tensors a·b (aijbij).

The popularity of basic invariants comes from computational effective-

ness of their determination, which requires only multiplication of tensor

matrix representation, for which very effective numerical algorithms exist.

In continuum mechanics alternative set of linearly independent invariants

so called principal values {I,II,III} of second order symmetric tensor

gained popularity and is in widespread use. The reason for that is their

physical interpretation, e.g. in the case of stress tensor they very well

characterize the effort state of a medium under specific loading.
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Second order symmetric tensors, various decompositions.

A number of various decompositions of tensors exist, for example:

- decomposition into symmetric and antisymmetric part

- decomposition into spherical and deviatoric part

- isotropic decomposition

- spectral decomposition

- polar decomposition

They are found to be useful for various purposes.
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Second order symmetric tensors, stress tensor characteristic 

equation (spectral decomposition of second order symmetric tensor).

The principal values are determined as roots of so called characteristic

equation for principal values

3 2

1 2 3

( ) 0 det( ) 0

0

, , , ,
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where nI, nII, nIII are principal directions (eigenvectors) of a tensor . It is

adopted naming convention here that  I ≥  II ≥  III .

The following denotation was introduced for principal invariants

symbol det(·) denotes determinant operation, m is mean value of principal

values, and ijk is permutation symbol.

The set of three coefficients {I1,I2,I3} appearing in characteristic equation

for determination of principal values of second order symmetric tensor are

called principal invariants.

2 21 1 1
1 2 32 2 6
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Second order symmetric tensors, decomposition into spherical 

(isotropic) and deviatoric (anisotropic) parts.

Any second order tensor can be decomposed into direct sum of spherical

part and deviatoric part

sph denotes spherical part, s is deviator of the tensor.

The direct sum decomposition means that sum of any two spherical

tensors (a1, b1) always gives spherical tensor (a+b)1, and that sum of

any two deviatoric tensors (sa,sb) always gives deviatoric tensor sab.

Thus, deviatoric decomposition leads to division of the space of second

order symmetric tensors into two separate, complementary (orthogonal)

subspaces T2
sym = P D.
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Second order symmetric tensors, decomposition into spherical 

(isotropic) and deviatoric (anisotropic) parts.

Decomposition of second order symmetric tensor into

spherical part m1 and deviatoric part s,

is equivalent with its decomposition into

isotropic part and anisotropic part.

The spherical part of the tensor (m1) is isotropic in conventional sense,

that is it does no change under application of any proper orthogonal

(rotation) tensor QR, where R is a group of all proper orthogonal

tensors. So, deviatoric part is anisotropic.
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Second order symmetric tensors, stress tensor deviator 

characteristic equation.

In analogy to characteristic equation for principal values of full stress

tensor , there can be formulated characteristic equation for eigenvalues

of tensor deviator s, coefficients of which makes a set of principal

invariants of tensor deviator {J1,J2,J3} defined as follows

The opposite sign in definition of second invariant of deviator (J2≥0) in

comparison to definition of second invariant of full tensor (I2) assures that

it is always nonnegative. The J2 invariant gained widespread use due to

its physical interpretation of shear stress intensity measure.

Note: Care must be exercised because the sign of second invariant of deviator is changed

to opposite in comparison to second invariant of the "full" tensor.

3 2 3

1 2 3 2 3

2 31 1
1 2 32 3

21 1 1
1 2 32 2 6

0 , , 0,

( ) 0, ( ), det( ) ( ),

0, || | 0 ( ), det( ) ( )

I II III

ij ji ijk pqr ip jq kr

s J s J s J s s s J J

J tr J tr J tr

J J s s J s s s 

        

    

   

1s s

s s s s

s | s

3 3 2

3 12( 0s J IJ s      32 0)II   



A. Ziółkowski 70

Second order symmetric tensors, deviator characteristic equation.

The characteristic equation for principal values of deviator can be solved

upon substitution of s=(2/3)1/2(2J2)
1/2cos() to obtain explicit formulas for

stress deviator principal values {sI, sII, sIII}

The full stress tensor and its principal values can be expressed as follows

where ef denotes so called effective stress

L is called Lode angle, and is called normalized third invariant of

deviator. The following identities prove useful

Malvern L., Introduction to the Mechanics of a Continuous Medium, Prentice-Hall Inc., Englewood Cliffs, N J, 1969.
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Second order symmetric tensors, relations between invariants of 

full tensor and invariants of its deviator.

The invariants I, J, 123 can be expressed in terms of general

components of stress tensor and in terms of its principal values as follows
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The following relations are valid for basic (main), principal and deviator

principal invariants Ib, I, J
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The concept of Haigh-Westergaard (H-W) space – the space of Cauchy stress

principal values. The H-W space does not posses standard structure of vector

(linear) space - summing of two vectors in this space is physically meaningless.

One point in H-W space represents infinitely many stress tensors having the same

principal values but different principal directions. The H-W space can be interpreted

as space of numerical markers of Cauchy stress tensor orbits. The concept of

octahedral plane, motivated by stress tensors decomposition into spherical and

deviatoric part. Graphical representation of critical surface, e.g. plastic yield flow of

isotropic materials in H-W space. Three-fold (mirror) symmetry of isotropic critical

surface in H-W-space, an excellent example of symmetry Principle of Ornament.

The concept of octahedral and meridional cross sections of isotropic critical

surface. The cylindrical set of coordinates in H-W space, i.e. pressure, effective

stress, Lode (mode) angle. The Murzewski's isomorphic coordinates in H-W space

(1958), i.e. modulus of spherical part, modulus of shear part and mode (Lode)

angle. The very useful advantage of isomorphic coordinates is that they preserve

correct shapes (distances and angles) of critical surfaces in octahedral and

meridional cross sections. Tensorial decomposition of stress tensor into spherical

(isotropic) and deviatoric (anisotropic) parts versus vectorial decomposition of

octahedral traction into octahedral normal stress and octahedral shear stress.

Session 6 - synopsis
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Second order symmetric tensors,

Haigh-Westergaard Cauchy stress principal values space.

Haigh and independently Westergaard in 1920 tried to establish some

criteria of material strength, i.e. evaluate when the material will start to

yield plastically when submitted to multiaxial loading. They intuitively

conjectured that for isotropic elastic materials Euler angles of stress

tensor, describing orientation of principal axes in laboratory frame, should

not influence material strength, and can be neglected.

Basing on this conjecture, they proposed to introduce three dimensional

principal values vector space with orthogonal coordinates frame

composed of principal directions of stress tensor (I,II,III). The principal

values of stress tensor are Cartesian coordinates of points in this space.

The principal values space was coined the name Haigh-Westergaard

space, according to Maugin.

Haigh B. P., The strain-energy function and the elastic limit, Engineering (London), Jan. 30, 1920, pp. 158-160.

Westergaard H. M., On the resistance of ductile materials to combined stresses in two or three directions perpendicular to 

one another, J.F.I., May 1920, pp. 627-640.

see page 14, Maugin G., Thermomechanics of plasticity and Fracture, Cambridge University Press, 1992.
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Second order symmetric tensors,  

Haigh-Westergaard (H-W) Cauchy stress principal values space.

Graphical illustration of Haigh-Westergaard space together with elements

frequently used in modeling of materials, octahedral plane(-s) and isotropy axis.
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It is worth pointing out that an infinite number of non-coaxial stress tensors having

the same principal values (I,II,III) but different principal directions/orientations

(nI ,nII, nIII ) reduce to a single point representation in the H-W space.
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Second order symmetric tensors,

critical surfaces for isotropic materials in Haigh-Westergaard space.

Graphical illustration of hypothetical critical surface (e.g. plastic yield flow,

phase transition, etc,) for some isotropic material in Haigh-Westergaard

(H-W) space.

Alternative coordinate systems:
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Sometimes in the literature it is

raised a problem of ambiguity

resulting from different ordering

of principal values. Please note

that this problem actually disappears upon adopting, e.g., coordinates (p, r , L).

Then, the source of the "problem" can be immediately identified to be in six-fold

("permutation") symmetry exhibited by any/all isotropic critical surfaces.
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Second order symmetric tensors,

Principle of Ornament.

Isotropic critical surfaces in Haigh-Westergaard space make an excellent

example of the symmetry Principle of Ornament.

: repetition operation

(rotation by 72
o
)

•{ }   

 


motif


ornament

: ornament

: motif

 

 Example of ornament borrowed

from Hermann Weyl’s book,

Symmetry, 1952.

Illustration of the Principle of Ornament,

an ornament is generated using specific

motif and specific repetition operation.

Rychlewski J. Symmetry of Causes and Effects, PWN, 1991. 
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Second order symmetric tensors,

different coordinate systems in Haigh-Westergaard space.

In Haigh-Westergaard space in place of stress principal values (I ,II, III )

coordinates system any set of three linearly independent stress tensor

invariants (I*I , I*II, I*III) may be adopted as a system of coordinates.

A very popular set of this kind are (cylindrical) coordinates − pressure,

effective stress, Lode angle

They are used for example to present plastic flow yield, damage, failure or

phase transition critical surfaces for different materials in

- octahedral (p=const, ef, L) and/or

- meridional (p, ef, L=const) two dimensional cross sections.

In the continuum mechanics and materials literature often the coordinates

(p, r=(sI
2+sII

2+sIII
2)1/2, L) or (3p, r ,L) are encountered.

The problem with all listed above sets of coordinates is that they distort

actual 3D shape of the critical surfaces in 2D meridional projections.

2 2 2 0 131
3 2

( ( ), ( ), 30 ( 3 / ( )) ).I II III ef I II III L II I IIIp s s s tg s s s              

0 02 2 2
3 3 3cos( ), cos( 120 ), cos( 240 )I m L II m L III m Lr r r               
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Second order symmetric tensors, non-isomorphic and isomorphic 

coordinates in H-W space.

Graphical illustration of distortion of 2D projections of 3D critical surface

upon using non-isomorphic coordinates in comparison

to using isomorphic coordinates in Haigh-Westergaard

space.

Murzewski J., A probabilistic theory of plastic and brittle behaviour of quasi-homogeneous materials, 

Archives of Mechanics, 1960 (Received 1st,, 1958), 2, 12, pp. 203-227.

Janusz Murzewski was the first researcher who in 1958 consciously introduced

isomorphic coordinates in Haigh-Westergaard space, i.e. those preserving correct

shapes (distances and angles) of critical surfaces in respective cross sections,

according to the present author literature survey.
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Second order symmetric tensors,

isomorphic coordinates in H-W space.

Murzewski isomorphic cylindrical coordinates are as follows

Stress tensor and its principal values expressed in Murzewski's

coordinates take the following form

1 3/21
2 3 23

2

1/2 21
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An alternative to (√3m, r=√(2J2), L) isomorphic coordinates for meridional cross

sections in Haigh-Westergaard space is pair of variables (oct=m, oct=r/√3). These last

coordinates, with denotation (1↔oct, 2↔oct), were already used in 1929 by

Burzyński in proposed by him extended plastic yield strength criterion for linearly

elastic, isotropic solids.
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Second order symmetric tensors, vectorial decomposition of 

octahedral traction vector.

Tensorial decomposition of tensor 

into spherical (isotropic) and deviatoric (anisotropic) parts

should be carefully distinguished from

Vectorial decomposition of octahedral traction (stress vector)

into octahedral normal stress and octahedral shear stress, which values

can be expressed in terms of principal values as follows,

1

3

2 2

2 2 1/2

( ),

t , t || || (1 / 3) || ||,

(1 / 3)( ) ( ) ,

[|| || ] 2

oct oct I I II II III III

oct oct t oct oct oct oct oct oct oct

oct oct oct oct oct I I II II III III I II III m

oct oct oct J



  

   

    

 

   

      

          

  

n n n n

n n n t

n n n n n n n n n

t

t

t

t







2 / 3 / 3.r

1 1

3 3

1 1

6 2

( , , ) cos sin , ,

( ) , || || || || || || 1,

(2 ), ( );

I I

I I

I I

L oct L oct L oct sph oct

oct I II III oct oct oct

oct I II III oct II III J J J

z r z r r z 

 

 

   





    

      

      

N N N N

N N N N 1 N N N

N N N N N N N N n n

  

3/2

2 3 2( 3 , 2 , 3 6 / (2 ) )m Lz r J J J   



A. Ziółkowski 81

Second order symmetric tensors, vectorial decomposition of 

octahedral traction vector.
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Tensorial decomposition of stress tensor  into

spherical (isotropic) part m1 and deviatoric (anisotropic) part s
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Vectorial decomposition of octahedral traction t(n) into

octahedral normal stress oct1 and octahedral shear stress octs/|s| .
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Second order symmetric tensors,

isomorphic coordinates in H-W space.

It can be noticed that behind the idea of isomorphic coordinates stands

the (orthogonal) decomposition of second order symmetric tensor into

(spherical + deviatoric) ↔ (isotropic + anisotropic) parts.

I

II

III

0

m

m

 
22r J

III

II

I

s

Pure shear

I
III

1

2
(

)
oct

oct


n
n

Uniaxial 

Compression

Uniaxial 
Tension

L

m1

2( 3 , 2 , )m LJ 

2 2 2|| || || || || ||m 1 s

m1

s

Isomorphic coordinates

III

oct

n

I

oct


n

sII

sI

m

sIII

I =
 II

   =
 III

iso
tro

py a
xis

3 3 3
33/2 3 3

2

1 3 3 3 3 27
cos(3 ) 2 1,1

2 2
L

ef

J J J
J

J r



          



A. Ziółkowski 83

The concept and definition of Lode angle. Valentin Novozhilov to be the first (1951)

to express Lode angle (Cauchy stress shear mode angle) in terms of stress

principal invariants. Open scientific problem: lack of lucid (clear) physical

interpretation of Lode angle. Pure shears as convenient elementary (atomic)

elements of stress deviators space. Pure shears as excellent reference comparison

states for any stress deviator (shear stress). Precise mathematical definition of

pure shear (plane shear). Two classes of pure shears: pure shears with common

direction and pure shears with common axis. Group of pure shears with common

axis makes an excellent modeling idealization of uniform macroscopic plastic slip.

Group of pure shears with common shear direction makes an excellent modeling

idealization of macroscopic compound martensitic twin.

Session 7 - synopsis
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Second order symmetric tensors, Lode angle expressed in terms of 

principal values and principal invariants.

Originally Lode expressed shear mode angle (today called Lode angle) in terms of

stress tensor principal values

This formula is very inconvenient (inefficient) from numerical standpoint

because first there must be calculated principal values of stress tensor (with

the aid of principal invariants) and only later the value of Lode angle can be

computed. Upon some reflection it is clear that Lode angle can be calculated

directly from stress tensor principal invariants (without computing principal

stresses). This gives large savings in computational effort.

The present author, upon historical survey of the literature, found that the first

researcher who explicitly expressed Lode angle in terms of second and third

stress deviator invariants was Valentin Novozhilov, in a paper from 1951.

Actually he published relevant formulas for mode angle  defined by him with

sinus function, whereas Lode angle L is defined with cosine function.

Given by him relation is as follows

Novozhilov V.V., О связи между напряжениями и деформациями в нелинейно упругой среде (in Russian) On relations 

between stresses and strains in non-linear elastic media, Prikl. Mat. Mekh. XV, 1951, pp. 183-194.
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Second order symmetric tensors,

Lode angle lack of lucid physical interpretation.

In this place one can get impression that everything what could be done

regarding parametrization of Cauchy stress tensor Has already been

done. However, more careful analysis proves that it is not the case.

The m and r = √(2J2) coordinates have clear physical interpretations of

pressure (with negative sign), and modulus (norm) of deviatoric (shear)

part of stress tensor. However, Lode angle L coordinate does not have

clear physical interpretation.

From mathematical standpoint Lode angle describes angle between

projection of specific stress tensor  and projection of corresponding

(having the same modulus) uniaxial tension tensor, on octahedral plane.

In a search for better parameter describing mode of shear stress, possess-

ing lucid and meaningful physical interpretation, we will turn our attention

to the selection of adequate reference comparison stress state.

For example, in elasticity such physically meaningful reference

comparison state makes unloaded, undeformed configuration/state of

elastic body, i.e., state of (zero stress, zero strain).
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Second order symmetric tensors, 

pure shear as an atomic element of any deviator.

In search of physically meaningful, rational, shear stress reference

comparison state to be used in parametrization of Cauchy stress, let us

give some thought to a problem of what is the most elementary (atom)

non-trivial form of second order tensor?

The first thought coming to ones mind is a tensor, which has only single

nonzero diagonal entry in its matrix representation, e.g. diag(a,0,0). Such

representation has for example the uniaxial tension (extension) and/or

uniaxial compression tensors.

The option with single nonzero off-diagonal component

is excluded due to symmetry requirement.

Upon further reflection, it can be realized that uniaxial tension tensor is not

as simple as it seems, and in fact several elemental (atom) components

can be distilled from it along the lines of deviatoric decomposition of the

second order symmetric tensors .( )m 1 s

0 0
0 0 0 ?
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Second order symmetric tensors, 

pure shear as an atomic element of any deviator.

The most elementary component of uniaxial tensor that can actually be

identified as irreducible to more simple modes, is the spherical tensor,

spherical elementary mode, having three identical in value diagonal

components diag(⅓ a, ⅓ a, ⅓ a).

The spherical elementary mode can be physically interpreted as

describing the simplest 3D layout of action of forces in physical space, i.e.

forces operating uniformly in all three physical directions, what

corresponds to action of pressure only.

Alternatively it can be physically interpreted as describing 3D kinematics

of displacements taking place uniformly in physical space, corresponding

to change of volume only.

1 2
3 3

1 1
3 3

1 1
3 3

0 0 0 00 0
0 0 0 0 0 0 0
0 0 0 0 0 0 0

a aa
a a

a a
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Second order symmetric tensors,

pure shear as an atomic element of any deviator.

The remaining deviator of uniaxial tensor proves to be always decompo-

sable, in general in infinitely many ways, into two so called pure shear

modes, e.g. diag(⅔a, -⅓a, -⅓a) = diag(⅓a, -⅓a, 0) + diag(⅓a, 0, -⅓a).

Thus, pure shear modes prove to be the most elementary irreducible

deviator modes.

The pure shear - deviatoric elementary (atomic) mode, can be physically

interpreted as the most simple 2D (plane) layout of action of forces in

physical space, i.e. forces operating uniformly in all parallel planes having

fixed common normal axis

Alternatively 2D kinematics of displacements taking place uniformly in

planes with common normal axis, and proportional to the distance from

some fixed plane, similarly like it is in the case of sliding tile of cards.
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Let us recall some more information about pure shear mode. In particular,

precise mathematical definition of pure shear mode.

A second order tensor is called a pure shear when the following conditions

are fulfilled, after Blinowski and Rychlewski 1984,

several other equivalent definitions can be found in original publication

Depending on the selection of coordinates system the following two very

characteristic, easily recognizable tensor representations of pure shear

can be specified

where versors e1, e2 are called shear directions; a plane determined by the

pairs (e1, e2) or (n1, n2) is called shear plane; straight line along versor e3

(n1) is called shear axis. It is clear that pure shears are planar tensors.

Second order symmetric tensors, some more information on

very special characteristics of pure shear mode.

31
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Blinowski A., Rychlewski J. Pure shears in the mechanics of materials, Math.Mech.Solids, 3,4, 1998, pp. 471-503.
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Second order symmetric tensors, some more information on

very special characteristics of pure shear mode.

Graphical illustration of the same pure shear tensor  shown in two

coordinate systems rotated by 45 degrees, which result in two very

characteristic for pure shear tensorial representations.

Pure Shear tensor
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Blinowski A., Rychlewski J. Pure shears in the mechanics of materials, Math.Mech.Solids, 3,4, 1998, pp. 471-503.
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Second order symmetric tensors, some more information on

very special characteristics of pure shear mode.

In accordance with the above nomenclature there can be distinguished

two very useful classes of pure shears, namely shears with common

shear direction and shears with common shear axis. Two parameter family

of pure shears with common shear direction (n) and family of pure shears

with common shear axis (k) can be expressed in the following

mathematical form,

All possible pure shears having common shear direction n parallel to axis

e3 can be generated with freely selected vector x orthogonal to direction n.

All pure shears with common shear axis k parallel to axis e3 can be

generated with arbitrarily selected vector y orthogonal to shear axis k and

vector z mutually orthogonal to vectors k and y .
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Blinowski A., Rychlewski J. Pure shears in the mechanics of materials, Math.Mech.Solids, 3,4, 1998, pp. 471-503.
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Second order symmetric tensors, some more information on

very special characteristics of pure shear mode.

The pure shears prove to be excellent modeling idealizations of many

commonly encountered, actual physical situations.

For example

- uniform plastic slip deformation can be understood in modeling terms as

a group of pure shears with common axis,

- compound martensitic twin formation can be understood as

a pair of two pure shears with common shear direction.

Experimental setups leading to pure shear stress or strain are very

frequently used in experimental mechanics to determine, e.g., material

properties.
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Second order symmetric tensors, some more information on

very special characteristics of pure shear mode.

Plastic slip deformation can be understood

in modeling terms as a group of pure

shears with common axis.

Calister W.D. Materials Science and Engineering: An Introduction, Willey, 1996.

P. Sittner, O. Molnarova, X. Bian, L. Heller & H. Seiner , Tensile Deformation of B19′ Martensite in Nanocrystalline NiTi 

Wires, Shape Memory and Superelasticity, 9, p.11–34 (2023) 

Compound martensitic twin formation can be

understood as a pair of two pure shears with

common shear direction.

shear axis shear direction
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Second order symmetric tensors, some more information on

very special characteristics of pure shear mode.

It has been demonstrated by Blinowski and Rychlewski that population of

all pure shears generates complete subspace of all deviators. This is so

because any deviator can be decomposed into a sum of two pure shears,

in particular orthogonal ones.

Pure shears themselves do not create a linear subspace because what is

obvious from previous statement sum of two pure shears is not always a

pure shear.

Pure shears can be regarded as elementary (atom) building blocks of

deviators subspace.

All pure shears have the same "shape" in this sense that any and all pure

shears can be obtained from single fixed preselected pure shear by

rotating it with all possible orthogonal tensors Q (QTQ=1) .

It is worth noting that sum of whatever number of pure shears will never

result in spherical tensor.
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New structural parametrization of stress tensor with: i) stress modulus, ii) isotropy

angle and iii) skewness angle (linearly connected with Lode angle). Concept of

orbit of a tensor. Diameter of tensor orbit as quantitative measure of a tensor

sensitivity to group of three dimensional rotations. Concept of Rychlewski's

anisotropy factor based on diameter of tensor orbit as universal quantitative

measure of tensor anisotropy degree. Anisotropy factor of stress tensor expressed,

in a very simple and elucidating manner, with explicit formula involving isotropy

angle and skewness angle. Identification of open scientific problem: why anisotropy

factor decreases with deviatoric part of stress tensor departing from comparison

pure shear mode.

Session 8 - synopsis
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Second order symmetric tensors,

new structural parametrization of Cauchy stress.

Let us introduce a new set of invariant parameters characterizing second

order symmetric tensors. The set seems to be especially convenient for

mechanical studies because it leads to simplification of many formulas

expressing tensor properties and facilitates their physical interpretation.

The new structural parametrization uses newly introduced concepts of

i) isotropy angle iso and

ii) skewness angle sk.

The new generic structural parameterization is motivated by

a) isotropic decomposition of stress tensor

b) pure shear states, identified to be atomic elements of space of

deviators, adopted as reference comparison shear stress state.

The new parametrization conveniently describes and transparently

reveals a kind of internal structure of the second order symmetric tensors,

when interpreted as modeling objects of mechanical phenomena.
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Second order symmetric tensors,

new structural parametrization of Cauchy stress.

The concept of isotropy angle iso and skewness angle sk.

Graphical illustration of direct sum decomposition of second order

symmetric tensor into spherical (isotropic) and deviatoric (anisotropic)

parts in Haigh-Westergaard (H-W) principal values space  =m1+s, ms).

Segments drawn with green color in

octahedral planes mark respective projections

of some hypothetical critical surface, e.g.

plastic flow yield surface 0.2(m, s,sk).
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Second order symmetric tensors,

new structural parametrization of Cauchy stress.

Graphical illustration of elements of isomorphic cylindrical coordinates

description of tensor deviator in octahedral plane; sk is skewness angle,

L denotes Lode angle.

The concept of isotropy angle iso and skewness angle sk.
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Second order symmetric tensors,

new structural parametrization of Cauchy stress.

Let us introduce the following definition of the isotropy angle iso

The isotropy angle enables extraction of spherical (isotropic) part and

deviatoric (anisotropic) part of the tensor in very straightforward and

convenient manner.

The sine and cosine functions of isotropy angle can also be treated as

convenient normalized factors (indexes) describing magnitude of spherical

and/or deviatoric parts relative to overall magnitude (modulus) of the

second order symmetric tensor.

2
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Second order symmetric tensors,

new structural parametrization of Cauchy stress.

Let us introduce the following definition of the skewness angle sk

The skewness angle in mathematical terms describes departure of the

actual tensor deviator from corresponding pure shear (reference

comparison mode), i.e. deviator having the modulus equal to the modulus

of the original tensor deviator, but which third invariant is equal to zero

(J3=0). The Skewness angle is linearly connected with Lode angle.

The following connections exists between so called Lode parameter L

and skewness angle
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Second order symmetric tensors,

new structural parametrization of Cauchy stress.

So, the new generic structural parameterization of second order symmetric

tensor employs the following three invariants

1 1 1 1
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The newly proposed parameterization can be conveniently adapted for

many purposes in specific areas of application. For example to express

Murzewski isomorphic coordinates, or principal values of stress tensor
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Second order symmetric tensors, concept of orbit of a tensor.

A set { Q} of all tensors that can be obtained by rotation of stress tensor

 with any orthogonal tensor QR is called an orbit of a tensor

The notion of orbit will be used in definition of quantitative measure of

tensors anisotropy, i.e. anisotropy factor.

Actually the concept of tensor orbit and based on it measure of tensor

anisotropy degree - anisotropy factor, is applicable to tensors of any

degree, see the original works by Rychlewski.
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m m
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Rychlewski J. Zur Abschätzung der Anisotropie, ZAMM, 65, 255-258, 1985. Exists Polish  translation  of the work, 

Rychlewski J., Ziółkowski A. (tłumacz), O szacowaniu Anizotropii, 2020 available under the link: 

Rychlewski J., On evaluation of anisotropy of properties described by symmetric second-order tensors,

Czech. J. Phys. B34, pp. 499-506, 1984.
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Second order symmetric tensors, anisotropy factor as normalized 

maximum diameter of tensor orbit.

The problem arises how to measure tensor anisotropy ?

Rychlewski proposed the following measure of tensor anisotropy, which

he called degree of anisotropy, which is here called anisotropy factor

d() denotes diameter of tensor orbit defined as maximum distance

between any two members in the orbit of tensor

 denotes diameter of the tensor orbit, d is distance generated by usual

tensorial norm ||.||, ,  denote any two tensors in the tensor orbit, Q is

any proper orthogonal (rotation) tensor.

Rychlewski J., On evaluation of anisotropy of properties described by symmetric second-order tensors, 

Czech. J. Phys. B34, pp. 499-506, 1984.
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Second order symmetric tensors, anisotropy factor as normalized 

maximum diameter of tensor orbit.

Rychlewski has proved that diameter of the orbit of second order symmetric

tensor is equal to and next he showed that anisotropy factor

can be expressed in the following form

Rychlewski J., On evaluation of anisotropy of properties described by symmetric second-order tensors, 

Czech. J. Phys. B34, pp. 499-506, 1984.
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where max denotes maximum shear stress of the tensor . It is clear that

anisotropy factor is still another invariant of tensor , and taking it formally

makes a fundamental measure of sensitivity of the tensor  to rotations.

Note: It is important and interesting open scientific task to create clear

(lucid) graphical illustration of the tensor orbit concept.
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Second order symmetric tensors, anisotropy factor as normalized 

maximum diameter of tensor orbit.

Taking advantage of new parametrization of second order tensor

anisotropy factor can be expressed in the following extremely simple and

elucidating form,

The first term in the above formula clearly shows that anisotropy degree of

second order symmetric tensor grows with growing fraction of its

deviatoric part, reaching maximum for pure deviators ( cos(iso=0)=1 ).

The second term shows that the most anisotropic deviators are pure

shears ( cos(sk=0)=1 ).

The anisotropy factor decreases with deviatoric part departing from

respective comparison pure shear mode. Proposition on how to explain

the reasons for this rather puzzling behavior of anisotropy factor will be

presented further in the sequel.
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Second order symmetric tensors, anisotropy factor as normalized 

maximum diameter of tensor orbit.

Graphical illustration of variation of anisotropy factor in dependence on

isotropy angle and skewness angle ,

and illustration of anisotropy factor variation in octahedral  plane (m=0).
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Statistical-physical interpretation of principal invariants of shear (deviator) stress

tensor. Correspondence between shear stress principal invariants and statistical

central moments. Formal identity of formulas expressing skewness (shear stress

mode) angle of Cauchy stress tensor and Fischer-Pearson skewness coefficient.

Micro pure shears generating macroscopic shear stress interpreted as population

of directional dipoles. Novozhilov's formula connecting maximum (macroscopic)

shear stress – reached when population of micro pure shears is ordered in the

same direction, with average (macroscopic) shear stress obtained for arbitrary

population of micro pure shears (directional dipoles) population. Physical

interpretation of skewness angle sk as orientational standard deviation

(directional disorder) of population of micro pure shears. Interpretation of

skewness angle as macroscopic measure of entropy of population of micro pure

shears generating specific macroscopic stress state – measure of entropy of

stress tensor. Decrease of anisotropy factor with departure of deviatoric part of

stress tensor from comparison pure shear mode identified to be effect of growing

directional disorder (entropy) of micro pure shears population.

Session 9 - synopsis
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Second order symmetric tensors,

statistical interpretation of mode angle of deviator.

In order to identify some physical interpretation of skewness angle let us

note that very simple and straightforward connections exist between prin-

cipal invariants of deviator J and statistical central moments i, namely

It is worth noting that also in statistical sense there exists "orthogonal"

decomposition of the tensor  into spherical and deviatoric parts.

It takes place in this sense that for spherical part only the first central

moment is different from zero and all the remaining central moments are

equal to zero

while for the deviator first central moment is different from zero and in

general all part remaining central moments can be not equal to zero
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Polyanin A., Manzhirov A., Handbook of mathematics for engineers and scientists,

Taylor & Francis, Boca Raton, 2007
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Second order symmetric tensors,

statistical interpretation of mode angle of deviator.

Substitution of the expressions obtained for the central moments of stress

tensor deviator into the formula for Fischer-Pearson skewness coefficient,

and comparing such obtained relation with formula defining shear mode

angle sk reveals existence of the following connection

3 3
1 3 33/2 3/2

2 2
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3 3 3 3 , sin(3 )
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sk

J s s s
g J J

J r r r
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The above elucidating relation reveals that angle sk can be interpreted as

a measure of some kind of second order tensor "skewness" and justifies

assigning the deviator mode angle  sk the name skewness angle.

The question arises, what kind of skewness and in what sense the angle

sk describes?

1sin(3 ) 2 1,1sk g    

Polyanin A., Manzhirov A., Handbook of mathematics for engineers and scientists,

Taylor & Francis, Boca Raton, 2007
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Second order symmetric tensors,

statistical interpretation of mode angle of deviator.

In statistical literature there exist very well known interpretations of central

moments.

The first moment (μ1) describes the mean value of some feature in the

population of objects.

The square root of the second central moment (μ2
1/2) is called standard

deviation. It describes the magnitude of scatter, or non-uniformity, or

disorder of the population statistics around its mean.

The third central moment (μ3) normalized with standard deviation

describes the non-symmetry or "skewness" of the population statistics

towards the left or right wing of its distribution.

Mean value 1

Standard 

deviation 2

Mean < Median < Mode

Left skewed 3 < 0

Mean = Median = Mode

Symmetric 3 = 0

Mode < Median < Mean

Right Skewed 3 > 0
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Second order symmetric tensors,

physical interpretation of skewness angle.

When trying to assign some reasonable physical interpretation to

skewness angle – characterizing shear stress mode, the specific situation

must be taken into account that it is defined, with quantity which first

central moment is always equal to zero ( 1(s)=⅓J1≡0 ), i.e. deviator of a

tensor.

This apparently requires reinterpretation of the understanding of the

meaning of central moments of stress tensor.

The clue for such reinterpretation can be found in rather little known work

of V.V. Novozhilov from 1952 entitled "On the physical meaning of stress

invariants".
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Second order symmetric tensors,

physical interpretation of skewness angle.

Novozhilov demonstrated that second principal invariant of deviator, which

is linearly proportional to second central moment (2=⅔J2), is proportional

to average shear stress (av) of tensor  calculated over all directions on

unit sphere

Novozhilov V.V., О физическом смысле инвариантов напряжения, используемых в теории пластичности

(in Russian), Prikl. Mat. Mekh. XVI, 1952, pp. 617-619
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where av is average shear stress over all possible directions on unit

sphere, also called by Novozhilov shear stress intensity,  is shear stress

traction operating on elementary surface d of unit sphere, I, II, III are

principal stresses, lI, lII, lIII are direction cosines determining orientation of

normal to surface d in relation to principal directions of tensor . Please

note that av /||s||=1/√5=0.447=const
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Second order symmetric tensors,

physical interpretation of skewness angle.

The Novozhilov's result from 1952 combined with statistical interpretation

of stress tensor invariants delivers a hint that tensor deviator s can be

interpreted as a macroscopic tensorial measure describing orientational

effect resulting from the action of a population of micro pure shears,

treated as a pool of (microscopic) directional dipoles.

Then, second central moment of deviator 2(s), i.e. shear stress intensity

av (linearly proportional to J2) gains interpretation of scalar macroscopic

measure describing quantitatively in average manner orientational effect

originating from action of directional dipoles (population of micro pure

shears).

We have identified the qualitative physical feature described by shear

(deviator) stress, i.e. that it can be interpreted as (macroscopic) directional

dipole.
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Second order symmetric tensors,

physical interpretation of skewness angle.

If some macroscopic resultant directional effect occurs, then what are the

possible extreme values for such orientational effect,

and in what situations such extrema appear?

In order to address the question of why variation of orientational effect

appears (e.g. anisotropy factor) and in what situations the extrema appear,

an analogy with magnetic and/or electric dipoles comes to ones mind.

Namely, whenever state of some type of directional entities (orientational

dipoles population) determines the macroscopic (average) value of

resultant orientational property then

the more ordered (directionally) is the state of directional entities population

the larger is the resultant (overall) directional effect

(the value of parameter describing this effect).
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As parameter well describing quantitatively the resultant (total) directional

effect, the maximum shear stress max can be identified.

Novozhilov, in his work from 1952, presented the following relation linking

maximum shear stress max with average shear stress av

It can be noticed that at fixed strength of shearing characterized by

modulus of stress deviator ||s||=const (av=const), the largest directional

effect, i.e. greatest value of parameter max takes place at (macroscopic)

pure shear mode, i.e., when sk=0, and the smallest directional effect

occurs at uniaxial tension/compression mode when sk=300.

Second order symmetric tensors,

physical interpretation of skewness angle.

1 1 1
max 2 2 2

0 0

3 max max max5 5 5
2 2 2 2

( ) || || cos( ( 5 ) cos( ),

3 / 2 cos( ) 1,

( 30 ) ( ) ( 0 )
1.39 cos( ) 1.58

                               

I III sk av sk

sk

sk s sk
sk

av av av

uniaxial tension / compr.

     



     


  

       

 

  
        

s

                           pure shear
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Second order symmetric tensors,

physical interpretation of skewness angle.

Now we can identify statistical interpretation of deviator principal invariants.

Second principal invariant of tensor deviator can be assigned physical

interpretation of directional mean value characterizing size of directional

effect .

Third principal invariant of tensor deviator

can be assigned physical interpretation of directional standard deviation

characterizing directional (orientational) disorder, variance of population of

elementary pure shears (directional dipoles) around their average

orientation.

The same physical interpretation of directional standard deviation can be

attributed to the skewness angle sk treated as quantity derivative from

normalized third principal invariant of deviator.

The statistical interpretation of skewness angle sk enables rational

explanation of signaled earlier mysterious reduction of anisotropy degree

of the stress tensor with its deviator departure from pure shear mode.

3 1sin(3 ) 2 ,skJ g 

3 1 1
2 25 5 5

2 || || 0.447 || ||av J    s s
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Second order symmetric tensors,

notion of internal entropy of stress tensor.

This can be achieved upon recognizing that the state of population of

elemental micro pure shears, generating macroscopic pure shear mode, is

the most ordered directionally state, and the state of elemental micro pure

shears generating macroscopic uniaxial tension/compression mode is the

most disordered/ scattered directionally state.

It is known from thermodynamics that good measure of the degree of

internal order (disorder) of any system is entropy.

Thus, it can be conjectured that decrease of the value of anisotropy factor

of second order tensor with departure of its deviator from pure shear

mode, i.e. with growth of absolute magnitude of skewness angle, can be

attributed to increase of internal entropy of the tensor understood as

growth of orientational scatter in population of micro pure shears

generating specific mode of tensor deviator.

The above gives grounds to call the term cos(sk) entropic part of tensor

anisotropy, cos(iso) can be called deviator modulus part of tensor

anisotropy.
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Second order symmetric tensors,

physical interpretation of skewness angle.

The presented discussion can be concluded with the evaluation that the

value of skewness angle describes, delivers information on:

- magnitude of internal entropy of the stress tensor,

[The change of internal entropy finds reflection in changing value of

anisotropy factor; the greater is internal order (smaller internal entropy)

the bigger is the value of anisotropy factor.]

- magnitude of skewness of the population of micro pure shears.

[The negative skewness (J3<0) shifts the direction of the projection of

tensor deviator on the octahedral plane towards the direction of the

projection of the first (greatest) principal value,]

and

the positive skewness (J3>0) shifts the direction of the projection of

tensor deviator on the octahedral plane towards the direction of the

projection of the third (smallest) principal value from the direction of

pure shear mode (J3=0).
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Constitutive (Hooke's) law for anisotropic linear elastic materials. Uncoupling of

Cauchy stress of anisotropic linear elastic material into six linearly independent

homogeneous, proportionality laws, i.e. energy-orthogonal decomposition of

Cauchy stress tensors in a basis of elastic eigenstresses. True (Kelvin) moduli of

elasticity. Hooke's tensor expressed in Kelvin notation. Isometric and non-isometric

tensorial bases. Components (representations) of isotropic tensors are not

invariant in all orthonormal bases, but they are invariant in all isometric bases.

eigenstresses of Hooke's tensor (solutions of its characteristic equation) make up

orthogonal isometric bases. Fourth order isotropic unit tensors and their

representations in different bases. Christoffel (acoustic) second order symmetric

tensor. Open scientific problem identified, i.e. development of very useful

classification (structuring) of elastic waves in anisotropic materials characterized

by Hooke's tensor with different external symmetries taking advantage of spectral

decomposition of Hooke's tensor. Rychlewski's classification of elastic materials

delivers hint that such a structure of elastic waves in anisotropic elastic materials

exists. Open scientific problem identified, i.e. development of strength of elastic

material hypotheses taking advantage of the information that elastic energy stored

in the elastic material can always be decomposed into six mutually independent

parts.

Session 10 - synopsis
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Second order symmetric tensors,

interaction with external system (environment).

In the previous discussion on the properties of second order symmetric tensors the

Cauchy stress tensor was considered as an autonomous object.

It appears that tensors similarly like people behave differently depending on an

interaction with environment (external circumstances).

It is interesting that taking into account interaction of second order symmetric

tensor with some external objects creates possibility for introduction of still another

bases (notation) of second order tensors.

Let us assume that it is prescribed fourth order symmetric tensor ST4
sym, which

may be interpreted physically to represent elastic properties of some material. In

such a case it is called Hooke's tensor.

Then the problem for eigenvalues (eigenstresses) of this 4-th order tensor can be

posed and solved, i.e. roots can be found of so called characteristic equation of S.

The characteristic equation of fourth order symmetric tensor takes the form of six

order polynomial equation with real coefficients. In the most general case the

solution of characteristic equation is composed of 6 different eigenvalues (),

Rychlewski J., On Hooke’s Law, J. Appl. Math.&Mech. 1984, 48, 3, pp. 303-314, 0021-8928/84 Pergamon

Press Ltd. (English translation from Russian original published in PMM, U.S.S.R.)

(4 )

4 2, det( ) 0 , ; 1,..,6.sym s sym

K KT T K          S S S I  
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Interaction of tensors,

spectral decomposition of fourth order symmetric tensors.

Rychlewski in 1983 showed that Hooke’s tensor S can be expressed with

the aid of eigentensors  corresponding to all different eigenvalues 

(Kelvin moduli) of characteristic equation, in the following form,

Naturally Kelvin moduli  and corresponding to them 4-th order

eigentensors ⊗ generate spectral decomposition of the whole space

of fourth order symmetric (Hooke's) tensors.

The set of second order eigentensors {}, =1,6 may be accepted as

- an orthogonal basis of second order symmetric tensors (T2
sym space),

and the set {}, =1,6 can be adopted as

- an orthogonal basis of fourth order symmetric tensors (T4
sym space).

(4 )

2

(4 )

1 6

(4 ) (4 ) 1
2

det( ) 0 , ; , , 1,..,6,

... , ... ,

~ ( ); , 1,6, , , , 1...3, ~ [1,1,1,1,1,1].

s sym

s

I I VI VI I I VI VI

s s

ijkl ik jl il jk

T

I i j k l diag

    



     

 

      

         

         

    

S S I

S I

I

    

       

Rychlewski J., (translator Ziółkowski  A.), CEIIINOSSSTTUV Mathematical structure of elastic bodies, pp. 1-131, 2023, 

IPPT PAN, Warsaw, Poland.. (English translation from Russian original published in 1983.)

https://www.researchgate.net/publication/376594979_CEIIINOSSSTTUV_Mathematical_structure_of_elastic_bodies
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Interaction of tensors,

energy decomposition of stress tensor.

Taking advantage of the spectral decomposition of Hooke's tensor, the

following decomposition of Cauchy stress tensor can be obtained

The above decomposition (notation) is called energy-orthogonal

decomposition of stress tensors (space) for a given elastic body S.

Energy-orthogonal decomposition of stress tensors with respect to set of

eigenstresses {}, =1,6 is unique when all the Kelvin moduli  have

different values.

For fixed tensor S, the six components () (parts ) are invariants of

stress tensor , in standard sense, i.e. they do not change when the

coordinates system (basis {ei} ) is changed.

It may be said that () are invariants of  in interaction with S (()
 ↔S).

1 2 3 4 5 6

(4 )

(1) (6) ( )

, ,

... , , ( , 1,...,6).s

I VI

  

 



    

       

       

S

I ω

        

    
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Interaction of tensors,

Hooke's law for isotropic materials 

Example of energy decomposition (isotropic elastic materials)

Hooke's law for an isotropic material in Kelvin (notation) has the form

Isotropic elastic material has the following set of elastic eigenstates,

(this can be verified by direct calculation)

The set of tensor hK makes an orthonormal basis for second order symmetric

tensors. This set is very frequently encountered in the literature without explaining

its special property of being solution to (isotropic) characteristic equation.
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Definition of isometric tensorial bases.

Definition  Two orthonormal bases are isometric, with respect to a proper 
orthogonal group, when a rotation tensor QT2 exists (QQT=1), such that

cf., e.g., chapter 4 in Ostrowska–Maciejewska textbook.

Not all orthonormal tensorial bases are isometric with respect to the proper

orthogonal group. For example, Kelvin basis {aK} is not isometric

with the {h} basis, resulting from spectral decomposition of isotropic

Hooke’s tensor,

Isotropic tensors have identical representation components in all mutually

isometric orthonormal bases, but isotropic tensors in general have

different representation components in orthonormal bases, which are not

mutually isometric.

Note. It is worth noting that all (single-handed) orthonormal bases in three-

dimensional Euclidean space are isometric.

, { }.Q Q

i j K K i j K      e e a a Qe Qe a h

3, ( , ... , ), , ,i i j

i i j ietc E            p Qe p p Qe Qe e p

Ostrowska-Maciejewska J., Podstawy i Zastosowania Rachunku Tensorowego, IPPT PAN, Warsaw, 2007.

http://prace.ippt.gov.pl/IFTR Reports 1 2007.pdf



A. Ziółkowski 125

Second order symmetric tensors, 

isometric and non-isometric bases.

Two bases of second order symmetric tensors aK and hK are non-isometric
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Fourth order symmetric tensors, 

different representations of tensors in non-isometric bases.

Representations of the fourth order isotropic tensors  in two non-isometric 

orthonormal bases aK and hK may be different
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Second order symmetric tensors,

interaction with external system (environment).

A very interesting loop has been encircled. Ricci-Curbastro motivated by

the idea of quadratic forms invariance devised objects − and the whole

mathematical apparatus, which predicts that in the case of second order

symmetric tensor its six components transform in linear manner with

change of coordinates system.

Next, it was identified that from these six components there can always be

formed a set of three linearly independent invariants independent from the

change of coordinates system, and a set of another three parameters

changing with change of coordinates system. This, when tensor is

considered an autonomous object – an analogy with a free vector comes

to ones mind.

When the tensor is considered in some environment, in interaction with

other tensors then it turned out that six invariants can be formed out of its

components – and analogy with hooked vector comes to ones mind.
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Second order symmetric tensors,

interaction with external system (environment).

Let us consider the following situation in order to better understand in

what sense the hooking of the tensor takes place.

Let us take two autonomous (free) tensors, e.g. stress tensor and not

coaxial with it strain tensor, a typical situation for non-isotropic materials.

Each of these tensors is fully described by three invariants and three Euler

angles. Respective Euler angles characterize orientation of each tensor

with respect to any conceivable coordinates system (laboratory reference

frame). While these angles change with change of coordinate system

(reference frame) the relative orientation of specific stress tensor with

respect to specific non-coaxial strain tensor does not change.

Upon the tensors interaction, e.g. taking their scalar product, only their

relative orientation is important, what manifests itself in reported possibility

of generating six invariants.

So, hooking of the tensor means that orientation of the principal axes of

the first or the second tensor take over the role of reference frame and no

other reference frame is needed, does not play any role.
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Second order symmetric tensors,

energy orthogonal decomposition

Rychlewski's energy orthogonal decomposition of Cauchy stress resulting

from spectral decomposition of Hooke’s tensor delivers yet another very

inspiring and prolific hint for running research works.

It demonstrates that when with some physical phenomenon (start of

plastic yield flow, cracking, damage, phase transition, etc) there can be

associated some fourth order tensor H − possessing symmetries such as

Hooke's tensor, then loadings inducing the occurrence of the phenomenon

can be divided/decomposed, in the most general case, into maximum 6

classes of loadings, depending on the external symmetry of the tensor H.

When, for example, safety of the structure is analyzed in view of the

phenomenon then different coefficients of safety will in general be

applicable in order to assure secure operation of the structure submitted

to specific class of loadings. This in turn gives grounds for introduction of

weighted effective stress notion. For example, in the form of quadratic

involving tensor H and stress tensor  (~ H). Such quantity will enable

more precise evaluation of effort of materials (also other utility features)

then classical effective stress notion ef . Actually, this is return to the

original idea of von Mises from 1928, but now better justified.
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Second order symmetric tensors,

energy orthogonal decomposition.

Importance of distinguishing classes of loadings

While in majority of situations taking into account prevailing type/class of

loadings (design loads) lead to safe exploitation of engineering structure. In

some situations neglected (in design) specific class of loadings can lead to

catastrophic situations

video: Railroad tank car vacuum implosion, Tom Brattain, 

https://www.youtube.com/watch?v=Zz95_VvTxZM&t=2s
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Second order symmetric tensors,

Christoffel anisotropic waves equation.

Christoffel E.S. in 1877 published work in which he formulated the problem

of propagation of plane waves in anisotropic elastic media.

Christoffel showed that the problem of solution of the anisotropic waves

propagation can be reduced to the eigenvalues problem of second order

symmetric matrix

The matrix has been later identified to be representation the so so-called

acoustic (Christoffel) tensor (n)≡nCn having the components ik= Cijkl nj nl,

where n denotes a wave propagation direction (phase) vector.

Christoffel wave equation reveals that generally in solid anisotropic elastic

medium three plane waves can propagate in any direction n. They have

mutually perpendicular polarizations.

Christoffel E B. Ueber die Fortpflanzung von Stossen durch elastische feste Korper,

Annali di Matematica,  VIII, 1877.
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Second order symmetric tensors,

Christoffel anisotropic waves equation.

The wave with polarization p closest to

the propagation direction vector n is

called quasi-longitudinal (QL) wave.

The two remaining waves are called

quasi-transversal (QT).

Experiments show that in metals

the QL wave propagates approximately

two times more quickly than QT waves.

Royer D., Valier-Brassier T., Elastic waves in Solids 1, Propagation, Iste, Wiley, 2022.

Rychlewski J., Elastic waves under unusual anisotropy, J. Mechanics and Physics of Solids, 49, 2001, pp.2651–2666
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According to the spectral decomposition formula of Hooke's tensor, the

Christoffel (acoustic) tensor can be expressed as follows

Hint. The above formula suggests that acoustic (elastic) waves in

anisotropic media can be divided into finite set of classes of waves.

Similarly like all symmetries of crystallographic materials are structured

into 32 classes of symmetry. Structuralization of elastic waves in

anisotropic materials makes an interesting open scientific problem.
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Second order symmetric tensors,

Christoffel anisotropic waves equation.

Example

Cubic symmetry material has three distinct Kelvin moduli of single, double

and triple multiplicity. The eigenstates of cubic materials Hooke’s tensor

presented in parametric form are as follows (where θ,φ,ψ, are parameters

which can take values from <0, π/2>)

Spectral decomposition of Hooke's tensor for cubic symmetry materials

and acoustic tensor can be presented in the form
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Hooke's law for isotropic materials. How and why it happens that elastic energy of

linear elastic materials does not depend on skewness angle (third stress invariant).

The mathematical reason for that can be identified in collinearity of stress and

strain tensors. Pierre Curie symmetry principle of Causes and Effects delivers lucid

explanation for otherwise mysterious fact that plastic flow condition of some elasti-

cally isotropic materials is non-isotropic (deviates from Huber-Mises condition).

This reason is non-isotropy of stress tensor, i.e. the cause inducing plastic flow.

Open scientific problem is identified that scalar measure of energy is somehow

insufficient because it is devoid of information about microscopic internal ordering

(entropy) of stress tensor, which causes that some stress loadings nominally

leading to the same value of scalar values of elastic energy are more destructive

than the other. This calls for development of the concept of energy containing

information about microscopic ordering of loadings (depend also on skewness

angle), i.e. the concept of „ordered energy” („directed energy”). For example, it is

known that among shear loadings with the same deviator modulus (the same value

of scalar elastic energy) the pure shear loading is the most damaging (dangerous).

Simple shear and planar shear as experimental testing layouts implementing pure

shear. Interesting observation of Jan Rychlewski who proved that experimental

results of only five linearly independent pure shear loadings tests enable unique

determination whether the material is elastically isotropic.

Session 11 - synopsis
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Second order symmetric tensors,

interaction with external system (environment).

The classical Hooke's law describing elastic properties of isotropic linear

elastic material leads to the following constitutive relations between stress

and strain tensors,

(4 )
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where S, C denote linear elastic, isotropic stiffness and compliance

tensors, λ, μ denote Lame constants, μ=G is shear modulus, E, K are

Young and Bulk modules,  denotes Poisson's ratio, , d are strain and

strain deviator, respectively, I(4s) is fourth order, symmetric unit tensor.
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Second order symmetric tensors,

interaction with external system (environment).

In the case of linear elastic isotropic materials elastic energy stored in the

material fully decouples into part connected with pressure and part

connected with distortion, what corresponds with decomposition of stress

tensor (elastic strain tensor) into volumetric and shearing parts,

in view of property

The above formula delivers immediate proof of the following,

Theorem 1:

Elastic energy of linear elastic, isotropic material does not and cannot 

depend on skewness angle sk , Lode angle L.

While the formula (*) is very common knowledge, the present author has

not encountered in the literature explicitly formulated in Theorem 1 its

direct consequence.

Probably because being so obvious, it very often escapes attention, or it is

somehow forgotten.
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Second order symmetric tensors,

interaction with external system (environment).

Why the formula for elastic energy of linear elastic, isotropic materials

does not depend on the skewness angle can be fully grasped when one

computes expression for elastic energy, in a little more elaborate manner,

using decomposition of stress and strain tensors in principal axes

coordinates system. The following sequence of relations is valid,

Note: This specific case delivers a hint that in the concept of macroscopic

scalar energy it is lost some important information on the interactions on

micro level. It suggests that development of more comprehensive, precise,

concept of ordered (directed) energy might be very useful.

2 21 1
9 2

0 02 2 2
3 3 3

2 2
3

1 1
2 ( ) ( ( ) ) ( ( ) )

2 4

cos( ), cos( 120 ), cos( 120 ),

( , , )

[cos( ) cos(

mK

I m ef L II m ef L III m ef L

m ef L I I II II III III m

ef L I L

tr tr
K

 


           

      

  

         

       

     

   

C 1 1

n n n 1 s

n

s s || s ||

|| s || s s

    

 

0 0

0 02
3

2 2 2 0 2 0 2 232 2 2
23 3 2 3

120 ) cos( 120 ) ]

[cos( ) cos( 120 ) cos( 120 ) ]

( ) [cos ( ) cos ( 120 ) cos ( 120 )] ( ) 2

II L III

ef L I L II L III

ef L L L ef ef J



   

     

   

    

       

n n

n n n



A. Ziółkowski 138

Second order symmetric tensors,

interaction with external system (environment).

In numerous works devoted to more advanced materials research, linear

elastic, isotropic constitutive relation is assumed for the investigated

material behavior, and next frequently it is searched e.g. "elastic energy"

criterion of material effort depending on Lode angle.

In view of Theorem 1 such proceedings lead at the best to methodological

inconsistencies. Their removal requires in each specific case clearly

formulated and well justified additional assumptions, usually missing.

What factors can be identified to be responsible for very often encountered

in experimental works dependence of e.g. critical stress of plastic yielding

on skewness (Lode) angle, besides at the same time material apparently

exhibiting with good approximation linear elastic and isotropic behavior.

There can be identified at least there such factors (causes):

i) material is actually not linear elastic,

ii) material is not isotropic,

iii) so called, internal constraints actually operate in the material (of force or

kinematic character, of known or unknown physical origins).
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Second order symmetric tensors,

interaction with external system (environment).

The first factor (i) can be identified to be the primary reason, why it is a

standard that elastic energy functions proposed for rubberlike and/or poly-

meric materials as potentials for derivation of their constitutive relations

are proposed as functions of all three principal invariants of strain tensor.

Due to that, correctly, it is assumed for polymeric materials that their

elastic energy depends on skewness (Lode) angle of strain tensor.

In the case of polymers also the second factor (ii) plays the role.

Elasticity in polymeric materials is physically generated by change of

internal entropy of these materials and not internal energy.

Due to that polymeric material, even when isotropic at zero loading,

changes its internal symmetry, usually into transversely isotropic one,

when loaded to moderate strains. It returns to original symmetry (isotropy)

upon removal of loading.

Typical situation when the third factor (iii) becomes important is in the

case of for example composite materials, in which there are present,

some kind of reinforcement elements.
Müller I., History of Thermodynamics, Springer, Berlin, 2007. pp. 111-112 Ziółkowski A., Methodology and micromechanical

estimation of macroscopic elastic energy, coherence energy, and phase transition strains for SMA materials, Researchgate

10.13140/RG.2.2.30420.50561, 2018 pp. 31-33.



A. Ziółkowski 140

Second order symmetric tensors,

interaction with external system (environment).

There exists one more factor finding roots in Pierre Curie's

Principle of Superposition of Dissymmetries, which says:

Since certain causes produce certain effects, the elements of symmetry of the

causes must find reflection in the elements of symmetry of the caused effects.

When certain effects exhibit a certain dissymmetry, this dissymmetry must

manifest itself in the causes that generated these effects.

The input (stress  ) is anisotropic, in general.

The system (material described with Hooke's tensor) is isotropic.

The result (critical condition, e.g., for plastic flow) can be isotropic or anisotropic

depending on the "symmetrization strength" of the system (here material).

C f cr( )=0

Input

anisotropic

System

isotropic

Output

can be isotropic or 

anisotropic

Curie P., Ziółkowski A. (author of Polish translation and Commentary) O symetrii zjawisk fizycznych, 

symetrii pola elektrycznego i pola magnetycznego (in Polish). Studia Historiae Scientiarum 22, pp. 23–67, 

2023 (original work in French, 1894). DOI: 10.4467/2543702XSHS.23.002.17693.

https://www.researchgate.net/publication/374524761_O_symetrii_zjawisk_fizycznych_symetrii_pola_elektr

ycznego_i_pola_magnetycznego
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Second order symmetric tensors,

experimental testing layouts of simple shear versus planar shear.

Considerable attention has been devoted in the present work to the

theoretical issues connected with pure shear mode/state.

Let us discuss at present so called "planar shear" and "simple shear", i.e.,

two major experimental testing layouts leading to actual physical

realization of the pure shear.

A lot of misunderstandings exist in the literature regarding difference

between simple shear versus planar shear testing.

In mechanics the "pure shear mode" is considered in terms of not only

stress but also in terms of strain. These later interpretation, i.e. pure shear

strain, is more convenient for the present discussion.

No conceptual difference between stress and strain interpretation of pure

shear mode exists when tested material is isotropic because in such a

case straightforward equivalence exists between stress and strain tensors

due to their coaxiality.
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The simple shear and planar shear testing layouts belong to the class of

biaxial tests. In order to clarify the issues, simple shear and planar shear

are both pure shear modes of deformation because in both cases trace

and determinant of strain tensor during testing are equal to zero,

The difference in kinematics, i.e. physical motion of material points, exists

between these two testing layouts.

While different kinematics means different deformation gradients, the

principal values of stretch tensor U (F=RU) are exactly the same in both

layouts, though differently situated in laboratory frame.

Here, only the most important characteristics of simple and planar shear

are succinctly and explicitly recalled in order to possibly facilitate taking

decision on the selection of one or the other experimental layout for

attaining specific experimental research tasks.

More detailed discussion of pure shear and simple shear interested reader

can find for example in Ogden and/or Ziółkowski.

Second order symmetric tensors,

experimental testing layouts of simple shear versus planar shear.

3( ) 0, det( ) 0 ( ) 0tr tr     

Ogden R.W., Non-linear elastic deformations. Dover Publications, Inc. 1997.

Ziółkowski A., Simple shear test in identification of constitutive behavior of materials submitted to large 

deformations – hyperelastic materials case, Engng. Trans., 54, 4, 2006, pp. 251-269.
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Second order symmetric tensors,

experimental testing layouts of simple shear versus planar shear.

The major matching feature of simple shear and planar shear

testing layouts is identical strain pattern shared by both layouts.

This finds reflection in identical values of principal stretches.

In the case of simple shear principal stretches take the form,

where  denotes so called shear parameter.

In the case of planar shear principal stretches take the form,

When ss is equated to ps one to one correspondence can be immediately

found between  and L .

In both experimental testing layouts volume is preserved

where dv denotes elementary volume in actual configuration and dV is

elementary volume in initial configuration.
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Second order symmetric tensors,

experimental testing layouts of simple shear versus planar shear.

The major distinctive feature differing simple shear from planar shear is that

- in simple shear layout principal axes constantly rotate, while

- in planar shear layout principal axes remain fixed relative to laboratory

frame at all times during advancement of shear loading.

The u i denote Lagrangian principal axes, L denotes orientation angle of Lagrangian

principal axes with respect to fixed laboratory frame, E(0) denotes logarithmic Lagrangian

strain measure, λJ are principal stretches
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Second order symmetric tensors,

experimental testing layouts of simple shear versus planar shear.

The simple shear testing layout is very popular (standard) in experimental

testing of behavior and/or properties of metallic materials.

The planar shear testing layout is very often used (standard) in

examination of polymeric materials.

Many additional factors, besides strain pattern, may have influence on

choosing one layout or the other. For example stiffness of metallic

samples prevents early warping of the sample during simple shear testing.

On the other hand testing metallic sheets in pure shear scheme might

require considerably larger forces in comparison to simple shear scheme

of testing.

It is worth to indicate that loadings used in testing of metallic samples as a

standard does not involve change of symmetry of the material.

In the case of testing polymeric materials used in their testing loadings as

a standard do induce change of their symmetry – due to entropic origin of

polymeric elasticity, e.g. initially isotropic polymeric material changes its

symmetry to transversely isotropic under testing load. From the above

discussion it can be concluded that execution of simple shear and pure

shear tests on the same material allows to evaluate the influence of

principal axes rotation on the behavior of the material.
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and in response to these loadings, the shear moduli determined from charts

- elaborated on the base of experimental data, will show to have

the same value Then, this will prove that the tested material is

isotropic, linear elastic.

Second order symmetric tensors,

tests for determination of isotropy of elastic materials.

A very interesting experimental application of pure shear modes is that results of 5

tests in which linear elastic material is submitted to a set of 5 linearly independent

pure shear loadings enable to uniquely determine experimentally whether the

material is elastically isotropic. This finding was published for the first time in

Spanish language by Jan Rychlewski in 1984. It has been recalled by Blinowski

and Rychlewski in a very concise form in 1998 (see proof of Theorem 4.1).

The result gives at the same time information what is the minimum number of tests

necessary and sufficient for finding out whether the elastic material is isotropic.

Indeed, when linear elastic material is submitted to five tests with pure shear

loadings, for example the ones with the following representations in the fixed

laboratory frame,
3 52 41
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Rychlewski J. Una propriedad notable de los materiales elasticos isotropos (On some remarkable property of 

isotropic elastic materials), Ciencias Tecnicas. Fisicas y Matematicas, Vol 5, pp. 99-104, 1984. 

Blinowski A., Rychlewski J. Pure shears in the mechanics of materials, Math. Mech. Solids, 3,4, pp. 471-503, 1998.
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The concept of triaxiality factor or a measure characterizing magnitude of pressure

forces in relation to shear forces. Wierzbicki and Xue constraint equation for

triaxiality factor valid in biaxial stress states. Explicit relations linking triaxiality

factor and skewness (Lode) angle in biaxial tests. Observation that radial lines

(rays) coming out from the origin of rectangular coordinates system of biaxial tests

domain (two dimensional) are simultaneously lines of constant values of triaxiality

factor and lines of constant values of skewness angle. Parametrization of biaxial

tests domain. Existence of three one to one relations between skewness angle and

triaxiality factor in biaxial tests domain. Limitations of biaxial tests in examination of

material properties. Convenient numerically formulas for determination of

skewness (Lode) angle from the value of triaxiality factor in biaxial tests.

Observation that the value of triaxiality factor exceeding two thirds (⅔) value in

biaxial tests makes an excellent indicator that conditions of biaxiality were lost and

general triaxial stress state starts to exist.

Session 12 - synopsis
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Second order symmetric tensors, triaxiality factor.

In 1959 Davies and Connelly introduced so called triaxiality factor, defined

as quotient of stress first principal invariant divided by effective stress

They were motivated in this proposal by supposition, correct in view of

their own and later research, that spherical tension (m) called by them

rather exotically triaxial tension has strong influence on the loss of ductility

of metals, and the need to have some parameter to describe this effect.

The name triaxiality factor for the parameter is rather unfortunate because

it gives false impression that not pressure but general 3D multiaxial stress

states are subject of description with this parameter.

The triaxiality factor gained considerable attention and use when

Wierzbicki and his collaborators pointed out that not only spherical tension

(negative pressure) but also Lode angle can considerably influence

ductility and other properties of metals.

Davies E.A., Connelly F.M., Stress Distribution and Plastic Deformation in Rotating Cylinders of 

Strain-Hardening Material, J. Applied Mech., March 1959, pp. 25-30.

1 2/ 3 3 / , 0DC m ef efI J     
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Second order symmetric tensors, constraint relation for Triaxiality 

factor in biaxial (planar - 2D) tests.

The class of biaxial tests is defined by the condition that always one of the

principal values of stress tensor is equal to zero ( III=0 ).
According to the ordering convention of principal values this could be smallest, middle or the

largest principal value ( I  I I  I I I) but usually, conventionally it is written that the third

principal value is zero, regardless of the standard ordering convention.

Wierzbicki and Xue in 2005 found that in the case of biaxial tests unique

relation exists between Lode angle (normalized principal third invariant of

deviator) and triaxiality factor, formula (8) in Bai and Wierzbicki

Wierzbicki et. al. adopted slightly modified definition of the triaxiality factor

than the original one

Since that time triaxiality factor started to be very frequently used in charts

as governing parameter to present experimental results obtained in biaxial

tests in order to present influence the value of Lode angle on various

properties of metals and other materials.
Bai, Y., Wierzbicki, T., A new model of metal plasticity and fracture with pressure and Lode dependence, 

Int. J. Plast. 24, 6, 2008, pp. 1071-1096.

227 1
3 2 3

cos(3 ) ( ).LJ      

1
3

/ .m ef DC    
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Second order symmetric tensors,

property of planar (2D) tensors arising in biaxial tests.

During whatever kind of biaxial tests, in view of  III≡0 , two control

parameters only, e.g., two principal values { I, II}, uniquely determine

any set of three principal stress invariants fully characterizing stress

tensor treated as sovereign object, e.g. {m,J2,J 3}. Some other convenient

pair of control parameters can be selected, for example {m, }.

Tthe following relations are valid in the case of biaxial tests,

Thus, for biaxial tests ( III=0 ) the following inequality is valid

The above reveals interesting information that effective stress − measure

of shearing stresses intensity, is always greater from absolute value of

mean stress for any planar (2D) stress state appearing in biaxial tests.

1
3
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Second order symmetric tensors,

property of planar (2D) tensors arising in biaxial tests.

The observation can be reformulated as follows

Property

The modulus of deviatoric (shearing) part of any non-zero (non-trivial)

planar tensor is always greater than the modulus of pressure part.

Direct consequence of the above property is the conclusion that

- no purely spherical (isotropic) planar tensors exist, or equivalently

- the only purely spherical (isotropic) planar tensor is zero tensor.

Giving the above physical interpretation it can be stated that

in the case of any not trivial planar tensor its shearing part dominates over

its spherical part.

3
2 2|| || 2 | | 0mJ   s
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Second order symmetric tensors, explicit relations linking Triaxiality 

factor and Skewness angle in biaxial tests.

Wierzbicki and Xue constraint relation valid for biaxial tests can be expres-

sed in the equivalent form of classical third power polynomial equation

where instead of Lode angle the Skewness angle was used as governing

parameter. This equation can be solved with the same method as the one

used for finding stress principal values from characteristic equation.

The solution can be written in the following form

3 3271 2 1
33 27 2 3

sin(3 ) 0; / , sin(3 ) [ ]sk m ef skJ              

In the above formulas standard denotation convention of principal 

stresses ( I II I I I)  and the following identities were employed,
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Second order symmetric tensors, in biaxial tests paths of constant 

value of triaxiality factor  are paths of constant value of  sk angle.

Valid for biaxial tests explicit relations linking triaxiality factor and

skewness angle   sk are three bijections (one to one relations) in three

separate areas (sharing edges) making together entire two parameters

domain (half-plane) of biaxial tests states ( I II; III=0),

Theorem I

The radial lines (rays) coming out from the origin ( I=0 , II=0) of

coordinates frame of biaxial tests domain, i.e., half plane  I  II, are lines

of constant values of triaxiality factor =const and at the same time lines

of constant values of skewness (Lode) angle  sk=const.

Proof

The radial lines running from the origin can be described as follows,

In the case  I=0,  I I can take any value, and it is =-⅓=c onst,  sk=-30 0= c onst

2 1/2
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Second order symmetric tensors, 

parametrization of biaxial tests domain.

Graphical illustration of biaxial tests domain parametrization in terms of parameters

(m, ef, sk).

The f( cr)=0 illustrates some hypothetical convex, critical surface (e.g. plastic yield),

for which critical values of effective stress depend on skewness angle.
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Second order symmetric tensors, property of relations linking 

(m,ef, sk) in biaxial tests.

Theorem II

The relations m( ef, sk) ,  ef (m, sk) ,  sk (m, ef), are bijections (one to

one relations) in three complementary areas of the whole domain of biaxial

tests domain parameterized with ( I  II;  III =0), except on the line

m= I+ II =0 , on which  sk==0 for any value of  ef=3 I.

Proof

It is straightforward to show that:

- skewness angle  sk maintains constant value on radial lines running from

the origin ( I=0 , II=0) of biaxial tests domain coordinates frame,

- mean value of stress m maintains constant value on 45 degrees slanted

lines in the biaxial test domain,

- effective stress  ef maintains constant value on ellipsoids with centers in

the origin ( I=0 , II=0) of biaxial tests domain.

In view of the above, at any specific point of three subdomains of biaxial tests

domain (mutually separate), the value of any variable chosen from triple set

{ m, ef, sk} can be uniquely determined by the values of two remaining ones.

On line m= I+ II =0 it is

(m= I+ II =0)  (J 3=0,  ef =3 I)   sk==0. q.e.d.
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Insufficiency of biaxial (planar) tests for experimental examination of 

materials behavior sensitivity to skewness (Lode) angle.

An important open problem of experimental mechanics of materials is

determination of critical stress states surfaces conditioning initiation of

some physical processes in materials, for example plastic yield flow,

damage, cracking or start of phase transition. In that respect the following

observation can be formulated.

Corollary I

In the case of convex critical surface with the aid of whatever type of

biaxial test, for any fixed value of mean stress (pressure) m=m
*, critical

effective stress ef
* can be determined for only single value of skewness

(Lode) angle sk
*.

In the case of convex critical surface with the aid of whatever type of

biaxial test, for any fixed value of skewness (Lode) angle sk
*, critical

effective stresses ef
* can be determined for only three values of mean

stress (pressure) m=m
*

The above Corollary I is direct consequence of Theorems I and II.
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Insufficiency of biaxial (planar) tests for experimental examination of 

materials behavior sensitivity to skewness (Lode) angle.

The direct conclusion from the Corollary I is that planar (biaxial) tests,

among them very common tension (compression)-torsion tests on tubular

samples (also the ones with internal pressure), are not suitable for

executing methodologically correct experimental examination of the

influence of skewness (Lode) angle on materials behavior.

This is so because using biaxial tests only, no sufficient experimental data

can be collected to reliably separate the influence of mean stress and/or

skewness angle on the possible variations of critical effective stresses.

One value for any fixed pressure and/or three values for any fixed

skewness angle are rather insufficient for such purpose.

This observation delivers a clear incentive for development and use of

experimental techniques in which all three parameters characterizing

stress state can be independently controlled to induce in the specimen not

only 2D planar stress state but fully 3D complex stress state loadings.

They should make possible determination of critical effective stresses, or

other parameters, e.g. example effective fracture strains in the whole

domain of skewness angle values at freely prescribed, fixed mean stress.
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Second order symmetric tensors, triaxiality factor as convenient 

indicator for loss of biaxiality.

Hint I

Formulas for triaxiality factor valid for biaxial tests show that in such a

case the values of triaxiality factor must always remain in the range

< -⅔, ⅔ >, while in general case of unconditioned 3D multiaxial tests the

triaxiality factor can take any value from the range  < -, >.

In many experimental mechanics publications, in which results from

biaxial tests are presented, there can be noticed values of triaxiality factor

exceeding the two third value ⅔ , which may seem to be incorrect.

However, experimental observation of triaxiality factor greater than ⅔

rather indicates that conditions of biaxiality were lost, and in the sample

true general triaxial stress state started to exist.

This delivers a hint to develop experimental methodologies, in which

triaxiality factor is used as an effective indicator of passing from plane

(2D) state of stress to three dimensional (3D) state of stress.
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Second order symmetric tensors, convenient numerically formulas 

for determination of skewness (Lode) angle in biaxial tests.

Hint II

The uncoupled relations linking triaxiality factor and skewness angle

 sk are very convenient for numerical computations, because they

enable determination of the value of skewness (Lode) angle  sk from the

value of triaxiality factor  more efficiently than Wierzbicki, Xue formula,

Selection of the proper formula for calculation of skweness angle does

not require computation of principal values of stress tensor because it can

be decided upon the value of  falling into specific range of values of  .

For example when *=0.51< ⅔ ,⅓> then  sk*=sin-1(1.5*)+600.

The above formula is more efficient numerically then the formula
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Second order symmetric tensors, disadvantage of presenting biaxial 

tests results using triaxiality factor as a parameter.

Hint III

Triaxiality factor  is not convenient operand, in general, to be used for

presentation of experimental biaxial tests results.

This is so because when taken at its face value it contains tangled

together information on two in principle linearly independent parameters

characterizing (loading) stress tensor, i.e. m and ef., so this entangle-

ment projects to the presented results making them somehow blurred.

In the case of biaxial tests in view of the existence of one to one relation

between triaxiality factor and skewness (Lode) angle, actually constant

value of triaxiality factor corresponds to constant value of skewness

(Lode) angle. It is advisable to directly use skewness angle as governing

parameter in charts presenting experimental biaxial tests results. Possibly,

with information indicating the mode of loading: tensioning (0<I,II),

mixed (II<0<I) or compressive (II,I < 0).

In this manner specific information presented in the chart will be delivered

in transparent, methodologically unambiguous manner.
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Summary and concluding remarks. Other physical interpretations of second order

tensors. Two Novozhilov (material) tensors very useful in materials

characterization. Christoffel (acoustic) tensor very useful in characterization of

waves propagation. Observation that Hooke's tensor for two dimensional (2D)

materials can be presented in the form of second order symmetric tensor. Physical

interpretations of invariants valid for Cauchy stress are invalid/meaningless for 2D

Hooke's tensor. List of some interesting open scientific problems identified as a

result of this study.
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Summary and Concluding Remarks

1. Historical survey is delivered, necessarily quite compact, on how, why,

when and by whom the key steps in development of tensor notion and

tensor calculus were achieved, looking primarily from the perspective of

mechanical community. The survey gives grounds to the view that the

prime philosophical and practical reasons why tensors became the

language of all advanced engineering and the other sciences is invariance

(when changing coordinates system) and linearity.

2. The analysis is focused on identification and finding possibly best

manner of description of eigenproperties of Euclidean, second order

symmetric tensors. The Cauchy stress tensor, generic instant of

symmetric second order tensor, is taken as primary subject of the

discussion due to obvious for mechanical community reasons.

All the presented observations, conclusions, remarks and proposals are

mutatis mutandis applicable to any second order symmetric tensor, which

may possibly find application in modeling description of state and/or

properties of real physical phenomena and/or objects.
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Summary and Concluding Remarks

3. It is pointed out that tensors make very rich and comprehensive idea

and can be viewed and/or understood from many different perspectives

for example as: algebraic objects, matrices, linear transformations or

geometrical objects.

It is very succinctly recalled mathematically precise algebraic definition of

tensors together with a set of underlying it algebraic structures. This to

show what is the complete building structure necessary and sufficient to

reach the notion of the tensor on technical side of being able to execute

precise mathematically quantitative analyses.

This section excellently illustrates that mere craftsmanship of technical

algebraic calculations does not allow fully grasping all the richness, flavors

and beauty of tensor notion.

It is observed that some difficult aspects of tensors and tensor calculus

can be much easier overcome when they are treated as geometrical

objects. Advantage is taken of algebraic-geometric duality of tensors. In

the case of second order symmetric tensor, this means an object

characterized by three features (set of three invariants) and specific

orientation in space (set of three Euler angles).
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Summary and Concluding Remarks

4. There are explained several, as it would seem at first sight paradoxes,

and it is delivered information not widely known or at least perceived in

mechanical community.

For example, how comes that second order symmetric tensor, an object

invariant with respect to change of coordinates system - the very

philosophical idea underlying tensor concept, characterized by six linearly

independent components has only three invariants of its components?

It is shown that actually six invariants of the second order symmetric

tensor can be uniquely constructed when the tensor is considered in

interaction with other tensorial objects (some environment).

Another example is as follows. It is not a common knowledge or at least it

is not commonly perceived, the existence of so called non-isometric

orthonormal tensorial bases, i.e., bases which are generated in different

manner than tensorial product of rotated basis (triple orthogonal unit

vectors) of 3D Euclidean space generating higher order tensor spaces.

Isotropic tensors have identical representation components in mutually

isometric orthonormal bases, but isotropic tensors in general have

different representation components in orthonormal bases, which are not

mutually isometric.
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5. Continuum mechanics literature is plenty of discussions on different

sets of invariants of second symmetric order tensors, e.g., interpreted as

stress or strain tensor. However, it is not adequately underlined that

actually infinite number of triplets of invariants can be distinguished for

second order symmetric tensors.

There has been explicitly specified the most popular sets of triplets of

invariants of second order tensor, e.g. basic (main) invariants, set of

principal values, principal invariants, with their unique naming and mutual

mathematical relations between them.

While the relevant formulas are known, they are scattered among many

different publications (books and papers) with many different denotations.

Gathering them in one place and their specification in consistent notation

makes very convenient and handy reference resource.
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6. Historical survey is delivered and state of the art review of the parametric

description of Cauchy stress tensor, generic instant of second order

symmetric tensors, to reach the so called isomorphic orthogonal cylindrical

coordinates (3·m, r =(2J2)
1/2, L) where m is mean value of stress, r is

modulus of deviator and L is Lode angle.

It is put right here erroneous information, spread widely since several years

in mechanical literature, about so called Haigh-Westergaard (H-W) space.

Haigh and independently Westergaard, nearly at the same time in 1920,

introduced the concept of 3D space in which principal values of stress

(I,II,III) were proposed as independent coordinates (parameters), and

this is the actual definition of Haigh-Westergaard space.

Disseminated in many continuum mechanics papers information that

cylindrical orthogonal coordinates (3·m, r =(2J2)
1/2,L) make Haigh-

Westergaard space is incorrect information.

The set of specific orthogonal cylindrical coordinates (3·m, r=(2J2)
1/2,L)

based on invariants of stress tensor, according to the present author best

knowledge were for the first time introduced in 1958 by J. Murzewski.
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7. It is proposed completely new generic parametrization of the Cauchy

stress tensor employing new notions of so called isotropy angle and

skewness angle (shear stress mode angle), this last to replace Lode

angle. The definition of skewness angle is based on the notion of

reference comparison state. It is proposed to accept pure shear as

reference comparison state for defining the skewness angle.

8. The physical interpretation is delivered of pure shears to be elementary

(atomic) elements of any deviator of second order symmetric tensor. The

pure shears can be identified to be generators of deviatoric space of

second order symmetric tensors.

9. It is derived and explicitly specified completely new formula for index of

anisotropy degree of second order symmetric tensors based on the notion

of a tensor orbit, this being further advancement of the original Jan

Rychlewski ideas. The Rychlewski’s anisotropy degree index (factor)

based on tensor orbit is much more precise and subtle measure than the

index based on the size of modulus of tensor deviator only.

The formula for anisotropy factor becomes extremely simple when it is

expressed in terms of isotropy angle and skewness angle.
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10. It is delivered statistical interpretation of the invariants of the Cauchy

stress tensor.

Firstly, results of this precursory approach delivered motivation and

justification for giving the deviatoric (shear) part of Cauchy stress (second

order symmetric) tensor mode angle, which defining reference comparison

state is pure shear, the name “skewness” angle.

Secondly, the statistical interpretation allowed for identifying the reason

and deliver explanation why the degree of anisotropy of Cauchy stress

decreases with its departure from pure shear stress.

Thirdly, the statistical interpretation of the Cauchy stress invariants

delivered grounds for introduction of the concept of internal entropy of the

Cauchy stress.

In this manner a very interesting link has been discovered between

continuum mechanics and thermodynamics.
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11. It is expounded that elastic energy of linear elastic isotropic material

does not and cannot depend on skewness (Lode) angle. This is in

contrast with the conjectures made in many papers that the material is

assumed to be linear elastic and at the same time strength criteria for the

same material, based on stored in it elastic energy, is assumed to be

dependent on Lode angle. Such an action is a methodological error.

Lack of presence of skewess angle (carrying information on force

interactions on micro level) in the formula for (macroscopic) energy

delivers hint that development of new more comprehensive concept (and

definition) of ordered (directed) energy might be very useful.

12. It is shortly outlined that interaction of second order symmetric tensor

with other tensorial objects, e.g. fourth order (Hooke's) tensor representing

elastic properties of a material, enables construction of not only three but

six quantities remaining invariant upon change of coordinates system.

It is indicated that this gives premises for introduction and development of

a notion of weighted effective stress, for example in the shape of stress

quadratic form, which takes into account interaction of stress tensor with

other tensorial object characterizing material in order to improve the

classical effective stress notion.
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13. It is clearly explained essential difference between very popular in

experimental mechanics, testing layouts of so called simple shear and

planar shear tests, being practical implementations of pure shear. In the

first case principal axes rotate constantly with increasing loading while in

the second the orientation of principal axes remain all the time stationary

with respect to laboratory reference frame. The kinematics in simple shear

and kinematics in planar shear testing layouts, described by deformation

gradient F, are different but strains are exactly the same in the both layouts.

14. History of introduction of triaxiality factor into mechanical literature is

presented very concisely. It is derived new, by solving third degree

polynomial introduced by Wierzbicki and Xiao, original explicit formulas

linking triaxiality factor and skewness angle (Lode angle) valid in the case

biaxial tests.

It is indicated that with the use of biaxial tests only it is impossible in correct

methodologically manner to precisely separate out the influence of mean

stress and skewness angle on strength of material, a factor very important
when formulating. e.g. criteria of plastic yielding, phase transition start or initiation of

fracture. The finding delivers strong argument for experimental mechanics

researchers to develop 3D multiaxial tests adequate for the purpose.
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15. A very strong need and demand can be contemporary noticed for

development of efficient methods of computer visualization of second

order (and higher order) tensorial fields.

The classical visualization approaches e.g. in the form of principal axes

ellipsoid can be evaluated as not insufficient but rather a completely

unsatisfactory.

The present study indicates that it is practically impossible to deliver

efficient and lucid graphical representation of second order symmetric

tensor fields without its prior structuralization (construction of adequate

set of invariants).

The set of invariants must be constructed in such a way to relevantly

describe the features of interest. The present study showed that even

second order symmetric tensors structure is too reach to show graphically

all of its properties simultaneously.

Without structuring the visualization results usually prove to be very

obscure, incomprehensible and intricate. Proposed here new parametri-

zation of the Cauchy stress eigenproperties delivers good example of

such structuralization for visulization purposes.
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V. Novozhilov tensors, E.B. Christoffel (acoustic) tensor.

V.V. Novozhilov drew attention to two very interesting tensors

These are second order symmetric tensors constituting linear isotropic

functions of Hooke's tensor, i.e. material tensors of the body.

Tensor  describes the body's reaction to spherical deformation. If  = 1

then σ = C · 1=  . Taking advantage of spectral decomposition of Hooke's

tensor, it can be expressed as follows

Tensor  plays a role in the dynamics of elastic waves. Taking advantage

of spectral decomposition of Hooke's tensor, acoustic tensor can be

expressed as follows

E.B. Christoffel acoustic tensor is also second order symmetric tensor

Novozhilov V.V. Theory of elasticity, Sudpromgiz, Leningrad, 1958.

Rychlewski J. Mathematical structure of elastic bodies, IPPT PAN Reports, Warszawa 2023;

(English translation of original in Russian 1984).
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2D materials Hooke's tensor.

A very interesting physical interpretation of second order symmetric

tensors makes two dimensional materials Hooke's tensor

Blinowski A. , Ostrowska-Maciejewska J., Rychlewski J., Two-dimensional Hooke’s tensors − isotropic 

decomposition, effective symmetry criteria, Arch. Mech., 48, 2, pp. 325-345, Warszawa 1996.

The Novozhilov's tensors, Christoffel tensor, 2D-Hooke's tensor, being

second order symmetric tensors, require and deserve separate works,

analogous to this presented here for Cauchy stress tensor, for

identification of meaningful physically and useful sets of their invariants.
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List of identified open scientific problems

In connection with elaboration new parametrization of Cauchy stress

tensor several interesting open scientific problems could be identified:

1. Development of lucid graphical illustration of the tensor orbit concept.

2. Development of classification (structuring) of elastic waves in

anisotropic materials taking advantage of spectral decomposition of

Hooke's tensor.

3. Development of strength of elastic material hypotheses taking

advantage of the information that energy stored in the elastic material can

always be decomposed into six mutually independent parts.

4. Development of extended definition of energy, that is elaboration of a

concept of energy measure, which will contain information on entropy of

microscopic force interactions, the "ordered (directed) energy".
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Master of Polish School of Mechanics

Jan Rychlewski

(1934-2011)

I dedicate this work to Professor Jan Rychlewski my teacher 

and tutor in tensorial calculus Andrzej Ziółkowski.
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vis vitalis
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Some supplementary information,

wisdom.

Jan Kochanowski z "Wykładu cnoty”;  from the "Lecture on Virtues"

"Dwie tedy rzeczy człowieka szlachcią: obyczaje a rozum,

obyczaje z cnót pochodzą, a rozum z nauki,

obiedwie rzeczy w sobie mieć rzecz nieprzepłacona człowiekowi.

Ale jeśli tylko przy jednej masz zostać,

raczej przy cnocie niż przy nauce zostań,

bo NAUKA BEZ CNOTY, jako miecz u szalonego,

I SOBIE, I LUDZIOM SZKODZI,

cnota, choć dobrze sama będzie, chwalebna jest i pożyteczna".

"Two things then give a man nobility: morals and reason;

morals come from virtue, and reason from science;

to have both attributes, a thing priceless to man.

But if you only have to stay with one,

stay with virtue rather than with science,

because SCIENCE WITHOUT A VIRTUE, as a sword at the crazyman,

HARMS ITSELF AND PEOPLE;

virtue, even if it is alone, is glorious and profitable."
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Some supplementary information,

linear elasticity (Hooke's) constitutive law.

Robert Hooke initially (1676) announced his law of elastic materials

behavior, linking force with deformation, in the form of Latin anagram

ceiiinosssttuv

He decoded his anagram two years later (1678) to read

ut tensio sic vis   (F=kx)

or in the form that we know it today

 = L
where  and  denote stress and strain tensors, L denotes Hooke's

tensor.

J. Rychlewski (1983) “CEIIINOSSSTTUV”. Mathematical structure of elastic bodies [in

Russian], Technical Report 217, Inst. Mech. Probl. USSR Acad. Sci., Moskva.
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Some supplementary information,

linear elasticity (Hooke's) constitutive law.

Spectral decomposition of elastic stiffness (Hooke's) tensor

A motivating question arises execution of how many and what kind of

experimental tests is necessary and effective to uniquely determine

elastic properties of the most general elastic, anisotropic material, or

speaking otherwise all components of elastic stiffness (compliance)

tensor?

Experimental answer to this question as a first delivered Woldemar Voigt

in 1887 in favor of 21 constants. Enlightening structure of this constants

was for the first time revealed by Jan Rychlewski in 1983, where he

proved that any symmetric fourth order tensor can be spectrally

decomposed into 6 mutually orthogonal subspaces. Each subspace is

characterized by stiffness (Kelvin) modulus K – scalar, and elastic

eigenstate K -symmetric second order tensor (K=1,..,6). Each elastic

eigenstate is characterized by 2 so called stiffness distributors 

(=1,..,12).

Rychlewski (1984) J. Elastic energy decompositions and limit criteria [in Russian], Uspekhi Mekh., 7, 3.

Rychlewski J. (1985) Unconventional approach to linear elasticity, Arch. Mech.
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spectral decomposition of elastic stiffness (Hooke's) tensor.

In summary set of 21 components/parameters determining any symmetric

stiffness tensor can be divided into 3 classes

6 + 12 + 3 =21

1. The first group consists of 6 Kelvin moduli I,.., VI

2. The second group consists of 12 stiffness distributors 1, … , 12, 

generators of 6 elastic eigenstates I,..,  VI

3. The third group consists of 3 Euler angles I, 2, 3

The 18 parameters from the first and the second group are invariants of 

elastic stiffness tensor.

See also Kowalczyk–Gajewska K., Ostrowska –Maciejewska J. (2009) Review on spectral 

decomposition of Hooke’s tensor for all symmetry groups of linear elastic material, Arch. Mech.

Question: When 21 components of elastic stiffness tensor determined in an experimental

testing program, with fixed reference frame, for two otherwise unknown specimen shows to

have the same values.

Does that mean the specimen were made of the same material?

(The answer is No. A.Z.)
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qualitatively different types of (micro) ordering patterns in materials.

Both positional and 

orientational order

orientational order but 

no positional order

no positional order, some 

orientational order (Note AZ).

no positional order, more  

orientational order (Note AZ).

(a)                                     (b)                                           (c)                                           (d)

Abeyaratne presented nice schematic diagram illustrating different types of

possible ordering patterns characterizing different materials, in Figure 13.1 on

page 372 of his Lecture notes.

Abeyaratne , Continuum Mechanics, Vol. 2, Lecture Notes on the mechanics of elastic solids.

http://web.mit.edu/abeyaratne/lecture notes.html 
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Notes


