Diffusion and velocity relaxation of a Brownian particle
iImmersed in a viscous compressible fluid
confined between two parallel plane walls

Ubbo Felderhof, RWTH Aachen

Many processes in physical chemistry and biology are dominated
by the process of diffusion.

In geometry on a small scale, i. e. membranes, thin liquid fims, pores,
one has to worry about the influence of geometry
on the diffusion coefficient.

Near a wall diffusion becomes anisotropic and one has to deal with
a diffusion tensor  pH(h) dependent on the distance h to the wall.

KT o
In bulk D= a3 Einstein 1905
with friction coefficient ¢ =6rna Stokes 1850
n  shear viscosity a particle radius

Near a wall D(h) =KT i(h)  with mobility tensor () = g(h)_l
parallel xy-plane
ﬁ(h) = /uxx (h)(exex + eyey) + luzz (h)ezez
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h) = g [1-—— = = Lorentz 1907
i () = 1] T h] 1, (h) = 1,1 5 h]
Lo = 1 Higher order correction terms first worked out by Faxén
67na 1925

At present the mobilities  (h)and 4, (h) are known very precisely.

Similar results for a particle between two plane walls

ty(h,L) and g, (h,L) L
Hyx (E’

" (%, L) = ﬂ0[1—1.452%] BUF 2005

a L) = u[1-1.0042]  Faxen 1925
To first order in — h



So far we considered static diffusion tensor D(h, L)

For fast processes it may be necessary to generalize to a
frequency-dependent tensor B(h, L, o)

Again there is an Einstein-type relation D(h, L, w) =kTy(h, L, w)

where  y(h,L,®) isthe admittance tensor for the geometry h, L
at frequency @

For applied force E(t)=ReE, e™
the particle velocity is U(t) =Re U e
with ’

U, =y(h L w)E,
The diffusion process is related to velocity relaxation by
D(w) = Teiwt (v(t)v(0))dt
with velocity correlation func?[ion <v(t)v(0)>

For  {Vv(t)v(0)) =(v(0)v(0))e "™ with <V(O)v(0)>=rl;—T1

p
this gives the Einstein relation D(0) = KT
t
More generally D(w) =— kT
Corresponding to admittance Y (@)= “iom, + £ (o)

In confined geometry  D(w) = kT (w)

V(w) = ijeiwt <V(t)V(O)> dt fluctuation-dissipation theorem
KT
0
By inverse Fourier transform

(v(t)v(0)) = ;—:—T ]i V(w)e ' dw

t>0
This may be used to calculate <v(t)v(0)> in confined geometry.
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At high frequency V(w) ~ 1 as @ —>

The behavior at low frequency is of particular interest,
since it is related to the long-time behavior. This is affected by the geometry.

Alder and Wainwright found 1970 in computer simulation
(v(t)v(0)) 0t as t— o

This was first understood from kinetic theory, later from hydrodynamics.

The admittance of a sphere in an incompressible fluid
behaves at low frequency as

Y. ()= 67377a [1+ aa+O(a2)] o= /_'%

This yields by Tauberian theorem
(v(t)v(0)) ~ kT1 L /2

)3/2

as [
1270(7v

V= Kinematic viscosity

n
o,

Quite generally for f(a)) = Te“”‘ f(t)dt
0

Tauberian theorem small ® behavior <—=> large t behavior
of f(w) of ()

conversely large » behavior <~ small t behavior
of f(w) of  f(t)

The converse theorem has also played a role in physics.
Following earlier remarks by Lorentz, and work by H. Weyl,
there is a famous paper by Mark Kac

,»,Can one hear the shape of a drum?*



CAN ONE HEAR THE SHAPE OF A DRUM?

MARK KAC, The Rockefeller University, New York ol
To George Eugene Uhlenbeck on the occasion of his sixty-fifth birthday :

“La Physique ne nous donne pas
I’occasion de résoudre des problémes . . .
fait presentir la solution.” H. POINCARE.

Before I explain the title and introduce the theme of the lecture I sho
to state that my presentation will be more in the nature of a leisurely e
than of an organized tour. It will not be my purpose to reach a specified ¢
tination at a scheduled time. Rather I should like to allow myself on
occasions the luxury of stopping and looking around. So much effort is |
spent on streamlining mathematics and in rendering it more efficient,
solitary transgression against the trend could perhaps be forgiven.

Fic. 1

1. And now to the theme and the title.

It has been known for well over a century that if a membrane £, held fixed
along its boundary I (see Fig. 1), is set in motion its displacement (in the direc-
tion perpendicular to its original plane)

F(x, y;1) = FG; 1

obeys the wave equation
8*F
— = ¢2?F,
a1?

where ¢ is a certain constant depending on the physical properties of the mem-
brane and on the tension under which the membrane is held.
I shall choose units to make c2=3.






In his paper Kac actually reduces the acoustic problem to a diffusion problem:

Consider the conditional probability of finding a particle at r at time t
when it starts out at 0 at time 0

P(r,t|0,0)
P behaves like particle density and therefore satisfies a_P _ DV2P
ot
The fundamental solution is —r?
P(r,t]0,0) = exp[—]

(47 Dt)*? ADt

Mean square displacement <r2> = I r’P(r,t|0,0)dr =6Dt

I.e. size of probability cloud grows as \ﬁ

Kac considered P(0,t]0,0) = 1 - t>0
(47Dt)
Write this as integral of decaying exponentials
K 1
A)exp[-At]dA =
Johewl-aldi= s
then g(4) = 1 VA r(3/2)=Jr
(47D)** I'(3/2) -
1
in agreement with Tauberian theorem \/z < =7
r'(3/2) t
large ] small t
small 4 large 1

In this case both types of behavior are realized at the same time.



Similarly in a viscous incompressible fluid ~ v(r,t) satisfies
the linearized Navier-Stokes equation

ov
p—=nV’v-Vp V-v=0
ot
ov
For &- impulse at t=0 pE—nV2v+Vp =PS(r)S(t)
fundamental solution v(r,t) = 1 T(r,t)-P t>0
4n
At the origin v(0,1) :L 1 t=3/2p all t
47 v
1 312
= t P
12 p(zv)*'?

corresponds precisely to the long-time behavior of Brownian particle
found from /¢ termin Y, (®)

This shows that the velocity correlation function of a Brownian particle

is closely related to the Green function of the hydrodynamic
equations of motion.

But the Green function depends on geometry.

One can expect that in particular the long-time behavior is
strongly dependent on geometry.

Gotoh and Kaneda (1982) found that in the presence of a single plane wall

the long-time behavior is

(v, ()Y, (0)) 0 3 (v. (v, @)Ut
| found (2005) that the latter result is incorrect. Both correlation functions
behave as
Cu(t) = AL C, (1)~ A"
with coefficients A, AZZ The second coefficient may be

<0, depending on particle mass.
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Velocity correlation function for a fluid with a single wall
was studied in computer simulation by Pagonabarraga, Hagen, Lowe,

Frenkel 1998
It turned out that fluid compressibility has a significant effect.

In bulk compressible fluid one can calculate the velocity correlation
function again from the admittance Y, (o)
Result:

KT

127p(7v)%?

t—3/2 + At—5/2

(v, (v, (0)) =

with a coefficient A that is negative if the fluid is sufficiently compressible,
I.e. the decay is not monotonic, but can change sign

BUF, JChemPhys 2005

Y. ()= 1 with a complicated expression for the

—lom, +¢ /(@) friction coefficient
Zwanzig, Bixon 1970
Bedeaux, Mazur 1974
Metiu et al. 1977

¢ (w) depends on shear viscosity, bulk viscosity, density, compressibility

Again a wall causes modification of the behavior, but | found that
the coefficients A, and A,, of the t=>/2 long-time behavior

are independent of compressibility, BUF 2005

(limit to bulk behavior not simple)

For a fluid confined between two walls Pagonabarraga et al.
found a dramatic change of behavior (1997,1998)

C,o (1) = (v, (t)v,(0)) ~ AL with ~ A<0

no details were shown

They made more elaborate analysis in 2D: fluid between two lines.
In that case

Co (t) = <Vx (t)Vx (O)> ~ At with A<O0

They gave expression for A.



Recently | have calculated the coefficient A of the t=3/2 long-time tail in 3D.

Result:
9 h? (L- h)2 KT

Cxx (t) - <Vx (t)vx (O)> ~ - 27[ L5 pCZtZ

C, isthe adiabatic (long-wave) sound velocity

Note the result is independent of viscosity.

Again the behavior follows from a Tauberian theorem.

The admittance tensor in any geometry can be expressed as
Y (1, 0) =¥, (0)| 1+ A@)C(0)F, (1, 0) |

bulk Faxén type coefficents calculated
by Bedeaux, Mazur 1974

Is the reaction field tensor, depends on geometry.

ﬁa(l’o,a))
ﬁ(rm w) = !i_)nr‘][G(n ) —Go(r—r,)]

In point approximation

Bulk Green function Go (r -, a)) is known.

| have calculated ~ G(I, 1y, @)  for compressible viscous fluid

between two planes.

At @ = 0 this gives results mentioned earlier:

1y, (0) = o[+ 67mak, (0)]  4,(0) = s [1+67naF,, (0)]

Mo (N, L) = L [1-1.0042 at h=L/2 Faxén 1925
XX 67[77& h

67na



Tauberian theorem is applied to the low frequency behavior

Fu(h L) = | X, + 2ah-36e2 L=
47[77h 3

a’h Ina+O(a2)}
—lwp
7
Here X, is given by a complicated integral over wavenumber g,

coming from Fourier expansion in the xy-plane.
This gives the steady-state results.

o =

The next term %ah leads to cancellation of the bulk t=3/2 tail.

The mathematical origin of this term is already quite subtle.
Usually the term linear in ./, comes from an integral over wavenumber
of the form q?

fm)jqu4_2m

(04

cutoff for large g diffusion pole

f(a)= % \/% —%a exp[ga’lerfe[\/ga]

Expansion in powers of o  yields

f(a):%\/g—%aJrO(a)

independent of the cutoff, such a term gives rise to the bulk t=3/2 tail.

2
Instead the term 7 @N comes from a branch cut in the complex

g-plane, rather than a simple pole.

Inthe lastterm  =_ 7 _ YV s the acoustic damping length.

The a’Ina  singularity comes from an acoustic diffusion pole
(overdamped sound wave), but with weight g rather than g?



The corresponding diffusion coefficient is D= Co L
12v

The xx element of the reaction field tensor can be expressed as

1 o8}
Folh L o) =~ f,(a,0)adg
75

The function f (g,) behaves forsmall 0 and @ as

2 2 2 o 2 201 _h)\2 242
fx(q,a))zq g +a° -0 -2« +h(L h) 36a°&

202 9? + & L g°LF +12a%&°

branch cut same as for single wall diffusion pole

In the pole term we use the integral

0

1 .
qu faz expl-gq°ldg =7 e™ E (ga’)

0

Expansion yields the ¢?In¢ term, and this gives the t=2 tail.

Define relaxation functions 7/xx(t) and 7/22(t) from

KT KT
Cro (1) =— 75 (1) C,(1)=—7r,
mp m,
}/xx(o) =1 g (O):l
Vo)
0 N ——



In|7/xx(t)| 2
In|7/zz(t)| 2
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