Comparison of selected methods of modelling of heat transfer in perfused biological tissue

M. Stańczyk

Institute of Fundamental Technological Research Polish Academy of Sciences Warsaw

March 1, 2005

・ロト ・四ト ・モト ・ 王

Overview

- I heat transfer in perfused tissues—where it is important?
- existing modelling techniques,
- 3 the DIscrete VAsculature modelling program (DIVA),
- alternate method to model counter-current vessels (GRID),
- ⑤ DIVA↔GRID comparison: assumptions, advantages, limitations,
- 6 test simulation results,
- ⑦ conclusions.

M. Stańczyk Comparison of heat transfer modelling methods...

Sar

Heat Transport in Perfused Tissues

TISSUE

soft		hard	
.e	+ hyperthermic treatments, + burn injury, + electrical shock	 + hyperthermic treatments, + bone cutting, + bone drilling, + bone cement polymerisation, 	
hig	 + thermal shock, + extremal environmental conditions 	+ frictional boating in	
		joints and prostheses	
	 + extremal environmental conditions + Cryotherapy + frostbite 		
low			
	+ cryosurgery, + cryopreservation	+ Cryopreservation of bone grafts	

Reasons for interest:

- evaluation of effectiveness of hyperthermic treatments and the assessment of the danger involved,
- assessment of the heat dissipation rate in soft tissues,
- investigations of thermoregulatory mechanisms,

3

④ others.

M. Stańczyk Comparison of heat transfer modelling methods...

TEMPERATURE

E

5900

Blood Temperatures throughout the Vascular Tree

M. Stańczyk

Comparison of heat transfer modelling methods...

Ξ

990

Modelling Techniques

M. Stańczyk Comparison of heat transfer modelling methods...

San

Continuum Models

Pennes Equation (Pennes 1948):

$$\rho_{\rm t} c_{\rm t} \frac{\partial T_{\rm t}}{\partial t} = \lambda_{\rm t} \nabla^2 T_{\rm t} + w_{\rm bl} c_{\rm bl} (T_{\rm a} - T_{\rm t}) + q_{\rm m}$$

Directed Perfusion Model (Wulff 1974):

$$\rho_{\rm t} c_{\rm t} \frac{\partial T_{\rm t}}{\partial t} = \lambda_{\rm t} \nabla^2 T_{\rm t} - \rho_{\rm bl} c_{\rm bl} \mathbf{U} \cdot \nabla T_{\rm t} + q_{\rm m}$$

Effective Conductivity Models (e.g. Weinbaum-Jiji 1985 here):

$$\overline{\rho c} \frac{\partial T_{t}}{\partial t} = \nabla \cdot (\boldsymbol{\lambda}_{eff} \nabla T_{t}) - \frac{n\lambda_{t}}{\sigma} \left(\frac{\pi r \lambda_{bl} P e}{2\lambda_{t}}\right)^{2} (\nabla \cdot \mathbf{I}) (\mathbf{I} \cdot \nabla T_{t}) + q_{m}$$

M. Stańczyk Comparison of heat transfer modelling methods...

イロト イロト イヨト イヨト 三日

Sar

Features of Continuum Models

They:

- (1) describe the heat flow in terms of a single temperature T_t ,
- 2 rest on strong assumptions concerning the blood-tissue thermal equilibration,
- ③ will often yield erroneous results whenever thermal loading deviates significantly from normothermia,
- require a number of model-specific parameters to be fitted to experimental results,
- I are unable to describe the local effects of large blood vessels.

M. Stańczyk Comparison of heat transfer modelling methods...

Sar

Features of Vascular Models

They:

- describe the heat flow in terms of a blood temperature defined in the vascular system domain and tissue temperature defined in the tissue region,
- 2 blood-tissue thermal equilibration results from the model,
- 3 describe the local effects of large blood vessels.

M. Stańczyk Comparison of heat transfer modelling methods...

990

Vascular Modelling Concept

M. Stańczyk Comparison of heat transfer modelling methods...

(ロ) (同) (E) (E) (E)

Sar

DIVA Overview

- created in 1994–1998 by team of 4–8 people in Utrecht University, works on adapting DIVA to mass transfer problems are still going on today,
- capable of 3D simulations in arbitrary regions,
- several extensions exist: simulation of ferromagnetic seeds and electrodes used for hyperthermic treatment,
- numerous applications,
- implemented in C++ (around 1 MB of OO code),
- makes use of Hierarchical Document Format library developed at NCSA (USA),

Bibliography:

A. Kotte, *Design of a numerical model for describing the heat transfer due to vascular trees*, Ph.D. thesis, Utrecht University, 1998.

G. van Leeuven, *Numerical modelling of heat transfer in hyperthermia*, Ph.D. thesis, Utrecht University, 1998.

J. deBree, A 3-D anatomy based treatment planning system for interstitial hyperthermia, Ph.D. thesis, Utrecht University, 1998.

M. Stańczyk Comparison of heat transfer modelling methods...

Sar

Basic Data Structures

Туре	Source	Storage
Tissue Anatomy	CT/MRI/prescribed	HDF file
Material Data	prescribed	GOF file
Vasculature Structure	CT/MRI/computer	GOF file
	generation/prescribed	
Blood Flow	prescribed	GOF file

- HDF: Hierarchical Data Format (NCSA, USA), standarized binary file, access from C/C++/Fortran via HDF library function calls (freely available, documentation exists)
- GOF: Generic Object Format (Utrecht University, the Netherlands), textual file, documentation available

M. Stańczyk Comparison of heat transfer modelling methods...

(ロ) (同) (E) (E) (E)

The GRID

200

Vascular Tree Description

M. Stańczyk Comparison of heat transfer modelling methods...

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

Blood Temperature Determination Method

Radial heat balance around infinite circular vessel:

$$\rho_{\rm t} c_{\rm t} \frac{\partial T_{\rm t}}{\partial t} = \frac{1}{r} \frac{\partial}{\partial r} \left(\lambda r \frac{\partial T_{\rm t}}{\partial r} \right) + P$$

Convective heat flux from blood to the vessel wall:

$$q\big|_{r=r_{\rm ves}} = -rac{{\sf Nu}\lambda_{\sf bl}}{2r_{\sf ves}}(T_{\sf t}(r_{\sf ves})-T_{\sf blood})$$

Therefore, assuming $T_t(R) = \text{const.}$ for some R one can express $q|_{r=r_{\text{ves}}}$ in terms of $T_t(R)$, Nu, λ , λ_{bl} , R, r_{ves} ...

M. Stańczyk Comparison of heat transfer modelling methods...

The GRID

Sar

Estimation of Vessel Wall Flux

Estimation set voxel

For each vascular bucket two tissue voxel sets are maintained:

- exchange set: where heat to/from the bucket is delivered,
- estimation set: whose temperatures serve as T_t(R) to calculate the vessel wall heat flux estimation,

All sets are determined in run-time

イロト イロト イヨト イヨト 三日

M. Stańczyk Comparison of heat transfer modelling methods...

Bleed-off

No mass balance at vessel junctions is enforced, any possible imbalance contributes to the perfusion in the appropriate voxel sink set (giving rise to the local Pennes-like term)

after A. Kotte, *Design of a numerical model for describing the heat transfer due to vascular trees*, Ph.D. thesis, 1998.

M. Stańczyk Comparison of heat transfer modelling methods...

イロト イポト イヨト イヨト

The GRID

Example Applications

Analysis of the head temperature rise due to cellular phone

after G. van Leeuven, 1999

M. Stańczyk Comparison of heat transfer modelling methods...

1

The GRID

200

Example Applications

A 3-D anatomy based treatment planning system for interstitial hyperthermia

after Jacob de Bree, Ph.D. thesis 1998

M. Stańczyk Comparison of heat transfer modelling methods...

(ロ) (同) (E) (E) (E)

Introduction	The DIVA	The GRID	DIVA GRID comparison	Test simulation	Conclusions
		GR	ID Overview		

- created in 2005 in IFTR PAS by a single person,
- capable of limited range of simulations for a 2D region,
- implemented in C++ (around 100 kB of OO code),
- rudimentary GUI implemented with the use of Qt library.

Bibliography:

M. Stańczyk, *Vascular model of heat transfer in perfused tissue*, [in:] Blood Flow Modelling and Diagnostics, T.A. Kowalewski [ed.], Abiomed Lecture Notes, **6**:451–487

na a

Basic Data Structures

Туре	Source	Storage
Tissue Anatomy	generic, fixed	
Tissue Mesh	generic, computer	grid file
	generated	
Material Data	prescribed at runtime	
Vasculature Structure	computer generated	tree file
Blood Flow	computer generated	tree and
		grid files

- tree: dedicated textual file format for storage of vascular tree information,
- grid: dedicated textual file format for storage of meshed vascular tree information, along with the finite element tissue mesh: node coordinates and connectivity.

M. Stańczyk Comparison of heat transfer modelling methods...

DQC

Initial calculations

Blood flows and pressures are calculated once (assuming no deformation of vessels or temperature-dependence is present) at the stage of vascular tree generation

M. Stańczyk

Comparison of heat transfer modelling methods...

< D > < B > < E > < E >

Estimation of Vessel-Tissue Heat Flow Rate

Energy balance equation for a single vessel:

Wall flux is decomposed into vessel-vessel and vessel-tissue fluxes:

$$q_{w} = \underbrace{\bar{\sigma}_{cc}\lambda_{t}(T_{cc}(s) - T(s))}_{\text{vessel-vessel flux}} + \underbrace{\bar{\sigma}_{t}\lambda_{t}(T_{t}(s) - T(s))}_{\text{vessel-tissue flux}}$$

M. Stańczyk Comparison of heat transfer modelling methods...

Artery Temperature:

$$\rho_{\rm bl}c_{\rm bl}\frac{\partial T_{\rm a}}{\partial t} = \sigma_{\rm cc}\lambda_{\rm t}(T_{\rm v}-T_{\rm a}) + \sigma_{\rm t}\lambda_{\rm t}(T_{\rm t}-T_{\rm a}) - \rho_{\rm bl}c_{\rm bl}v\frac{\partial T_{\rm a}}{\partial s}$$

Vein Temperature:

$$\rho_{\rm bl}c_{\rm bl}\frac{\partial T_{\rm v}}{\partial t} = \sigma_{\rm cc}\lambda_{\rm t}(T_{\rm a} - T_{\rm v}) + \sigma_{\rm t}\lambda_{\rm t}(T_{\rm t} - T_{\rm v}) + \rho_{\rm bl}c_{\rm bl}v\frac{\partial T_{\rm v}}{\partial s}$$

M. Stańczyk Comparison of heat transfer modelling methods...

Sar

Tissue Temperature Estimation

The vessel pair-tissue heat flux per unit length of the segment:

$$\hat{q}_{\mathsf{I}} = 2\sigma_{\mathsf{t}}\lambda_{\mathsf{t}}\left(\frac{T_{\mathsf{a}}+T_{\mathsf{v}}}{2}-T_{\mathsf{t}}\right)$$

The vessel pair-tissue heat flux per single i'th terminal:

$$\hat{q}_{\text{term}} = \pi \rho_{\text{bl}} c_{\text{bl}} r_i^2 v_i (T_{\text{a}}^e - T_{\text{v}}^e)$$

M. Stańczyk Comparison of heat transfer modelling methods...

(日) (四) (E) (E) (E)

Sar

Tissue Temperature Estimation

Tissue temperature is described by the usual heat conduction equation:

$$\rho_{\mathsf{t}} c_{\mathsf{t}} \phi_{\mathsf{t}} \frac{\partial \mathcal{T}_{\mathsf{t}}}{\partial t} = \lambda_{\mathsf{t}} \nabla^2 \mathcal{T}_{\mathsf{t}} + q_{\mathsf{m}} + q_{\mathsf{bl}}$$

 ϕ_t : volumetric tissue fraction,

 $q_{\rm bl}:$ volumetric blood heat, calculated for each $k{\rm th}$ element of the mesh

$$q_{\mathsf{bl}}(x)\big|_{x\in\mathsf{element}_k} = \frac{1}{V^{(k)}} \sum_{\substack{i=\mathsf{segment}\\i\in\mathsf{element}_k}} \left(\int_{\mathsf{start}_i}^{\mathsf{end}_i} \hat{q}_{\mathsf{l}}^{(i)} dl + \hat{q}_{\mathsf{term}}^{(i)} \chi_{\mathsf{term}}(i) \right)$$

where $\chi_{\text{term}}(i) = 1$ if i'th segment is a terminal and 0 otherwise

M. Stańczyk Comparison of heat transfer modelling methods...

イロト イポト イラト イラト 一日

Model similarities

- models include representation of specific vasculature of the tissue region,
- separate geometrical representation and numerical discretization of the vessels and the tissue,
- complete blood equilibration in terminal vessels (in GRID by design, in DIVA by necessity),
- thermal coupling of the blood vessels and the tissue via source terms present in designated voxels.

Sar

Differences between Models

	GRID	DIVA
problem dimension	2D only	3D only
tissue temperature calcula-	FEM	FDM
tion method		
basic unit of vascular tree rep-	counter-current	single vessel seg-
resentation	vessel pair seg-	ment
	ment	
vascular unit form geometry	straight line	parametric curve
bifurcations in vascular tree	only binary	arbitrary
		5
flow conservation	automatically pre-	arbitrary bleed-off
flow conservation	automatically pre- served	arbitrary bleed-off may be prescribed
flow conservation	automatically pre- served	arbitrary bleed-off may be prescribed at any depth of the
flow conservation	automatically pre- served	arbitrary bleed-off may be prescribed at any depth of the tree
flow conservation unknown blood temperature	automatically pre- served three per segment	arbitrary bleed-off may be prescribed at any depth of the tree arbitrary number
flow conservation	automatically pre- served three per segment	arbitrary bleed-off may be prescribed at any depth of the tree arbitrary number of buckets per seg-

M. Stańczyk Comparison of heat transfer modelling methods...

Differences between Models-cont'd

	GRID	DIVA
blood-tissue heat flux	proportional to local	based on analytical
	(avg. blood temp.)- tissue temp. differ- ence	approximation and tis- sue temperature gra- dient sampled at mul- tiple points (estima- tion set)
blood-tissue thermal coupling	source term in "host element" of each seg- ment	source term in voxels of exchange voxel set of each bucket

M. Stańczyk Comparison of heat transfer modelling methods...

◆□ > ◆□ > ◆臣 > ◆臣 > 三臣 - のへで

Setup for Numerical Test

Perfusion of the tissue slice $11 \times 11 \times 2$ mm:

M. Stańczyk Comparison of heat transfer modelling methods...

Vascular Connectivity

- in 3D simulation (DIVA) two symmetrical trees are used and the distance between them is equal to segment diameter at its endpoint,
- in 2D simulation (GRID) a single countercurrent tree is used.

3

DQC

M. Stańczyk

Comparison of heat transfer modelling methods...

Boundary and Initial Conditions

- initial tissue temperature $T_{t0}=20^\circ C$,
- inlet arterial temperature $T_{a} = 37^{\circ}$ C,
- "interior" wall: adiabatic,
- "exterior" wall: isothermal at 20°C,
- "side" walls in 3D problem (DIVA): adiabatic.

The thermal equilibration of the system is simulated and the steady-state is recorded.

M. Stańczyk Comparison of heat transfer modelling methods...

< ロ > < 同 > < 三 > < 三 > < 三 > < ○ < ○ </p>

Test Results

Averaged Tissue Temperature

M. Stańczyk Comparison of heat transfer modelling methods...

< ロ > < 回 > < 回 > < 回 > < 回 >

Ξ

Test Results

Blood Loop Temperature

M. Stańczyk Comparison of heat transfer modelling methods...

・ロト ・日下・ ・ヨト

문 문 문

Test Results: Tissue Temperature (DIVA)

M. Stańczyk

Comparison of heat transfer modelling methods...

Test Results: Tissue Temperature (GRID)

M. Stańczyk

Comparison of heat transfer modelling methods...

500

Test Results

Blood Temperature as a Function of Spatial Coordinate

M. Stańczyk Comparison of heat transfer modelling methods...

< A

Conclusions

- DIVA system is a flexible and adaptable tool for calculation of heat transfer in vascularized tissues,
- the calculation method employed in GRID presents some potential for more efficient calculation of the counter-current arterio-venous trees when certain geometrical constraints are fulfilled,
- at the present stage of development the GRID program offers no alternative to the DIVA.

NQ CV