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1. Periodicity and bifurcation in capillary boiling1. Periodicity and bifurcation in capillary boiling 



  

1. Motivation.
Nucleate boiling transfers large amounts of heat per 
unit mass.

S.G. Bankoff  AIChE J. (1958):  Grooves may function as vapor traps.
V. K. Dhir,  Ann. Rev. Fluid Mech. (1998) Review.

Principles of Heat Transfer , 
Kreith 1993

In nucleate boiling, phase 
change occurs at fractures 
or small cavities on the 
walls.



  

Artificial nucleation sites: 
Commercially available surface geometries that promote high performance 
nucleate boiling.

Omegapiezo

Omegapiezo High performance boiling surface, 
sintered porous surface.

Sintered material copper mesh: 100um-150um

SDK Technik GmbH



  

Two models considered for studying artificial nucleation sites. 

Model 1. 
Heating wire at the bottom of the capillary.
Capillary diameter= 0.5 mm , length=4 mm

Model 2. 
Concentric heating wire 

Capillary diameter= 0.7 mm, length = 60 mm



  

 Capillary model 1

Diameter 0.85 mm

Diameter 1.4 mm

4 mm



  

Observations with Model 1: Bubble transit at the tip of the capillary 
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Observations with Model 1 

Average long interval ~ 0.18 s
Average short interval ~0.075 s

Large interval between 
bubbles 

Small interval between 
bubbles
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 Visualization 
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Origin of the double frequency…

liquid packet

monitor 1

monitor 2

monitor 1
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…but liquid packet and natural bubble departure sometimes 
coincide 

liquid package

Velocity of the liquid 
packet inside the capillary

~32 mm/s 



  

Observations indicate that the liquid packets can be formed by 
two mechanisms:

liquid accumulation at the 
bottom of the capillary.

waves on the descending 
liquid films.



  

Power spectrum

* 1000 bubbles, 160 packages.

Single bubbles (~5.5 Hz) Short period events (~12 Hz)
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Return map for the time interval T  between subsequent bubbles.
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Model for the time interval T  between subsequent bubbles.
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Experiment Model
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 Capillary model 2

Wire diameter 
0.254 mm

Capillary
Internal diameter 
1.4 mm

 60 mm

Upper and lower 
ends move



  

Observations with Model 2: Bubble transit at the tip of the capillary 

Period doubling 
a) 15 W/m,  b) 18 W/m, c) 22 W/m,  d) 24 W/m

a) b)

c) d)
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Observations with Model 2: Return maps 

Period doubling 
a) 15 W/m,  b) 18 W/m, c) 22 W/m,  d) 23 W/m

a) b)

c) d)
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Observations with Model 2: Bifurcation diagram 
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Summary 
 
*We studied capillary boiling as a model of  artificial 
nucleation.

* Bubble emission (and heat transfer) depend strongly on the 
geometry and on the dynamical interaction of  liquid and vapor 
inside the capillary.

* Period doubling of bubble emissions has been observed for 
long capillaries.



  

2. Quasi 2D-vortices generated by the Lorentz force 2. Quasi 2D-vortices generated by the Lorentz force 
in an electrolytein an electrolyte



  

 Electrolyte container

Working fluid: Sodium bicarbonate solution
Fluid layer depth: 4 mm

Maximum magnetic field: 0.33 T
Magnet diameter: 19 mm

Electrical current : Jo = 5-100 mA



  

Experimental setup

Particle Image Velocimetry



  

Scaling

Distance: magnet diameter        D
                fluid layer depth         h
Time:                                          D /
Velocity (1):                               U  = /D  
Electrical current:                       Jo
Magnetic field:                           Bo
Lorentz force:                             JoBo
Velocity (2):    U/D ~JoBo        U= JoBoD / 
Electrical conductivity                   

22

2



  

Nondimensional parameters

• Reynolds number 

Re = UD/ =JoBoD / = U/U
• Hartmann number

Ha =Bo D (/)1/2

• Depth of the fluid layer
h = h/D

3



  

Re

0 15 304

Experimental observations.

Ha = 0.3
h = 0.21
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4.5 cm

Velocity field, upper layer (z = 3.75 mm)

Jo =25 mA

Ha=0.3

Re=75



  

Stream lines
 Jo =25 mA, Re = 75, Ha =0.3
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Velocity

vmax = 6.7 mm/s  = 1.05 s-1

Vorticity

Jo =25 mA, Re = 75, Ha =0.3
x

y



  

Composante vitesse v (I=25mA, h=3.5mm, y=y_yeux)
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Jo = 10 mA, Re=30, Ha=0.3 Jo =100 mA, Re= 304, Ha=0.3

Stream lines



  

Vitesse = f(I)

y = -8E-07x2 + 0.0002x + 0.0005
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Transversal section
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Velocity profiles as functions of  z
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Laser beam

Camera

Beam splitterLayer of electrolyte

Glass
Magnet



  

Free surface

Contours of velocity magnitude

Magnet

Maximum 
velocity
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Steady, two dimensional model
(likely to be useful for the upper regions of the fluid layer)
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Governing equations, two dimensional model
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Magnetic field for a point dipole

Evaluated at z=0
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Vorticity equation

Stream function

Magnetic induction
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Vorticity equation order Re

Stream function

The solution diverges for r=0 and r:

 cosln)1( rr

 similar  to the Stokes paradox



  

The solution is not altogether usless...

GK Batchelor

Salas, Cuevas & Ramos, Magnetohydrodynamics, 37 (2001)



  

Numerical solution is required

* Solution to the full system of equations, including 
induced and nonlinear terms

 
* Two dimensional physical model like the one 

described before, but considering a finite size magnet

* Finite volume discretization method



  
Re=60, Ha=0.2 Re=300, Ha=0.2

Numerical results
Stream lines dipolar magnetic filed 



  
Re= 30 (60), Ha=0.2

Comparison with experiments



  Re=300, Ha=0.2

Comparison with experiments



  

Summary

*A class of electromagnetically driven flows in shallow
  fluid layers has been observed.

 *For the experimental conditions examined, the influence of 
  the bottom wall extends up to approximately 3 mm.

*A two dimensional model that includes nonlinear effects 
 captures some features of the experimental observations.
 

 



  

3. Natural convection in a centrifuge3. Natural convection in a centrifuge
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Centrifuge



  

Pr=6, A=0.28, Ra = 2.5 x 10,  Ta = 1.7 x 10 
764
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Summary

* No Rotation* No Rotation: One single, no axisymmetric cell 
(AA’), four vortices (BB’)

* Rotation* Rotation: Time dependent flow, characteristic time 
55 s.



  

The End


