CALCIUM WAVES
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Endoplasmic
reticulum

e in vertebrates majority of body C'a®T stored in
bones

e cxtracellular concentration - about 1-2 mM
e intracellular concentration - about 0.1 pM

e E(S)R - endoplasmic(sarcoplasmic) reticulum -
internal reservoirs from which  Ca*™  can be
released. Concentration range: 10 - 100 pM




outside the
cell

ATPase
pump

W\

\3.— _ - Endoplasmic
Reticulum
cell

Jon,e _ buffered

cytoplasm Ca2*

J0‘1‘f,e




ROC SOC (TRPs),
farc

Agonist o A
Receptor I Il ll Plasma
= —ELf_ embrane
Ca2+

G-protein (G, Gy,) IP,;

Cardiac

F)iad Tubule 7% - RyR1

Foot DHPR
Skeletal
Triad Tubule
Lysosome
Store
Mitochondria ONak
Ca?* . PMCATPase
Ca2+ Ca?+/Na+ exchanger Ca?+

The same but more schematically



CALCIUM WAVES and OSCILLATIONS

Enable communication from one side of a cell to another or
hetween cells
synchronize a glohal multicellular response to a local
stimulus

e Many processes are Ca?* dependent (regulated)

e Many extracellular signals induce an increase in
cytosolic

Ca2+

The speed of intracellular and intercellular plane
waves: 5-20 m

Concentration of intracellular (cytosol) calcium oscillate
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EXAMPLES

1. Calcium waves during the fertilization of a
starfish eqg

time 0 sec 10 sec 20 sec 40 sec



2. (Spiral) Waves in Xenopus oocyte (600 m)

3. Waves in Medaka eggs (1000 m)
(connected with mechanical deformation)




6.Calcium Waves in Phagocytosis (Petty, Kindzelskii, 2003)

A wave traveling around the cell's
perimeter splits in two, with the
second wave encircling the
phagosome. This second wave
allows the digestive enzymes to

enter the phagosome and destroy
the target.

When a mutation is infroduced,
phagocytosis is not completed
because the calcium wave circles
the cell and bypasses the
phagosome altogether.




4. Intercellular calcium waves in epithelial cells

1886 {7 3 Sec

Ca2+ wave travels from cell to cell around
the acinus.

Its function is to increase the efficiency of

enzyme secretion of the acinus,
presumably by coordinating the secretion
of each individual cell with that of its
neighbours.




Mechanisms of Calcium propagation

Diffusion of calcium between release sites. Ca** released
fromone Ca? - sensitive pool diffuses to neighbouring pools
and initiates further release via calcium induced calcium
release. Repetition of this process generate an advancing
front of high calcium concentration.

Additional factors: the role of IP3 and Ryanodine receptors
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Intercellular
calcium waves:

The transitions
between the cells

are due of the diffusion
of IP,
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THE TWO-POOL MODEL

j—:ZT—kC—f{C,CS),
(j;: :f(ﬂ1cs)

c - concentration of calcium inside the eytoplasm
c, - concentration of calcium in the C'a®*t-sensitive pool

——

f(":-.u CS) = Juptﬂ.‘i:e — Jrclease — kfcﬁj

r - a steady flux of C'a®** caused by I Py from I Pjy-sensitive stores
kc - the flux pumped out of the cytoplasm
kscs - the rate C'a* leaks from C'a**-sensitve pools
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The parameters for the two-pool model:
k=10/s; K, M; K, =2 M; K,=0.9 M;

vV, = 65 M/s; V, = 500 M/s ; k., = 1/s ;

m=2 ; n=2; p =4 ;
Let vy = Ky /K1, w=u+~u (i.e. w= K (c+¢,)). Then

(fj_tf = [ (’lU—’)/’lU)?

dv

EZE*ﬂw—Vﬁmzf%Fwwﬁ

e =0.04.




Some other models:
1. Atri model (1993, e.g. Spiral waves in Xenopus oocyte)

2. De Young — Keizer model (1992 )

The open probability
of the IP, receptor as

a function of [Ca**].
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Experiment (Bezprozvanny)
and De Young-Keizer
model




De Young andKeizer model

IPR; - 3 equivalent and independent subunits.
Each subunit has an 7 P3 binding site, an activating
C'a binding site, and an inactivating C'a binding
site. The state of the subunit S;., 7,7,k = 0, 1.
The conducting state - S110. @i - the fraction of
units in the state .Sj;j.
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we must consider diffusion of calcium ions

Ca
The Kupferman model
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1) The Ca*t source is continuously and uniformly
distributed throughout the cell volume. 2) The con-
centration of I P3 is suthiciently large. 3) The chan-
nels are closed if the local C'a?t concentration is
below a critical threshold. Cf. and are activated in-

To analyze the propagation of calcium waves .

——
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stantancously when the concentration exceeds CY.

4) C'a”*" is pumped out from the cytosol at a rate
proportional to the concentration, with rate con-
stant I'. 5) Buffers and calcinm inactivation chan-
nels are ignored.



Buffers

Big proteins (e.g. calmodulin, parvalbumin, calse-

questrin, calretinin or EGTA) which can bind free
calcium (up to 99%).

Calmodulin
B; + Ca*t = Ca**B,. binds 0,2,4
Ca ions;
atomic mass
du 16700 Da
— = DAu + — b, ,
> w+ f(u Z v;)]
82;1- i i
8t == Di&@’i — [k‘_’Ui' — Jf+ﬁ(bo — ’U@)L

(1)

i=1,....n, v;=|[Ca*" B,
f(+)isof bistable type: f(u) = 0 has exactly three

solutions: wy, uz > uy and us € (uq, uz).




Constant steady states

Pp= (up, v . oM, k=1,2,3,

TN

where

L
(k. 4+ K\ uF)

1 2 3 -
Uj<vj<vj? j—lj...??’l

?

P1<P2<P3.

clx,t)=clx-n—uvt), blxr, t)=>blz-n—vt)




(Kazmierczak, Peradzynski, Volpert)

THEOREM 1. Let D, Dy, : be positive.

Then there erists a uniqgue heteroclinic travelling
wave solution to the systernm satisfying

lime . o (u(&), v1(£), (€)= (ut, vy,
lime o (u(€), 01(E) .- - - on(€)) = (0
11m|5|ﬁw(’u} (5) ’Ul (5) ; n(g))

Immobile buffers

For ID; — 0O the above solution tends to a unique
heteroclinic travelling wave solution of the degener-
ate systern.

J. Tsai, J. Sneyd, Existence and stability of traveling waves in buffered systems,

STAM J. Appl. Math., 66 (2005)




Mechanochemical effects

Murray, Oster, Maini

0 Dk () 418+ Clkb—kyelb,—b)]

ot

% — vazb — C[Iﬁ_b — k_|_C(6=k — b)]?

6 =V -u -dilation, u - displacement field




Mechanical forces
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e =1/2(Vu+ Vu')

E

0 & + 01| - elastic part of the stress tensor

'“1% + ,tLg%I - VIscots part

7(e) - traction tensor, pu - volume forces




O, t) =0(x -n—ot), cle,t)=clx -n—ot),

bla,t) = blx-n — vt).

For p = 0 one obtains:

—pvbh + K (c)f + 7(c) = o

D."+vd+ fle)+~04+(1/3)[k_b—k c(b,—b)] = 0

Dy + ot — (1/53%)[k_ b — k,c(b, — b)] = 0,

Assumption 1. The function f(c)+~vK 1(c)(o—
7(c)) s bistable with ¢, c3 > ¢ the stable zeros
and co € (¢, c3) the unstable zero. O




Objective: for all g > 0 and # > 0 sufticiently

small prove the existence of a travelling wave such
that

[, C(S) = (1, i C(S) = (3,
lim,. o 0(s) = K~ (c1)(0 = 7(cy)).
lim, . 0(s) = K Ye3)(0 — 7(c3)).

C1 C3

SEIElDG b(S) N b*k+ k_|_61 + k_? §— 00 N b*k+k_|_63 + lﬁ_'

lim b(s)




Di(c,n)d" — Ds(e)c? + vd+

(1 + S(e) t[fle) +~[h+ (o —7(e) K] +
F.(ng,n.n", c d,v)=20

7' — Wic,n)3 *n + F,(n,n,c,d,v) =0,

where
n=k_b— ki clb, —b).

b. L fo
S(e) = ="
(e) (L + )2 ke

D, + DS — Dykim =n
1+ .9 '
21,5
(L +c)(1+95)

Ds (e, n) = m = (k_+kic).

DQ(C) —




Theorem Let us consider the system

oU
ot

un) is a vector-valued function, A is a diagonal
: . : N N
nonnegative-definite matriz and Ct > F(-) : RY — IR . Let

— AAU + F(U).

where v = (uq,

OF)
> 0, i,7=1,....N,i+# 7j.
ou, = , J sy Ny T F g

Further, let the function F(uw) vanish in a finite number of points
w_,wo, Uy, (k=1,...,m) with w_ < w, < w,. Let us assume that all
the eigenvalues of the matrices F(w_) and F(wy) lie in the left half-
plane, and that the matrices F(uy), (k= 1,...,m) are irreducible and
have at least one eigenvalue in the right half-plane. Then there exists a
unique monotone traveling wave, v.e., a constant q and a twice contin-
wously differentiable monotone vector-valued function U (), & = x—qt,
satisfying system

AU" +qU" 4+ F(U) = 0,

and such that

Jlim V) =we, Jim U'(6) =0






