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Derive a variety of micromechanical models of 
complex fluids from same basic ingredients

  Inertial Particle Motion

~Incompressible (M < 0.1)

  No slip

Particle-fluidFluctuating stress

LBE is a suitable computational framework

Solutions of polymers

Liquid crystals

Colloids

and biopolymers Porous Media

Inertial & Local

1. Solid particles-Newtonian Mechanics
2. Continuum fluid-Navier-Stokes equations
3. Stick boundary conditions couple particles 

and fluid.Valid for particles > 30nm
(Add: charge, chemical bonds, inertia)

Computational framework for HI in a wide 
range of materials, flows, and scales.



 

Outline: Applications of DNS to suspensions 
and particle fluid systems

 Lattice-models for fluid dynamics

 Lattice-Boltzmann method

 3 examples

 Settling of particle clusters at small Re

 Reactive flows in porous media (Stokes flow)

 Polymer solutions (with Brownian motion)

 Closing thoughts



 

Lattice-gas models for suspensions

 Lattice-gas models were introduced to simplify kinetic 
theory (Square lattice-HPP)

 FHP (‘86) showed that a hexagonal lattice gas could solve 
Navier-Stokes equations in 2D.

 LCF (‘88) used the FHP model to calculate viscosity and 
self-diffusion in a 2D colloidal suspension

 Projected 4D FCHC model for 3D simulations (Henon ’87)

 Moving boundary condition (FL ’89)

 Hydrodynamic interactions (LF ’90)

 But: LG models are too noisy; Sc ~ 1: Not Galilean invariant

 LBE (HS-with linearized collision operator) 



 

LBE model introduces a discrete velocity 
distribution: local collisions and propagation

Initial State:
   x momentum
+ xy shear stress:

Post-Collision:
x momentum only

Propagation
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Hydrodynamic fields are moments of the 
discrete velocity distribution ni(r,t)
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Mass

Momentum

3D model has 19 velocities ci: 000, 100 & 110 directions

Viscous 
Stress

Euler 
Stress



 

Macrodynamic behavior from
Chapman-Enskog analysis
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Equilibrium distribution is chosen to give correct Euler stresses

(Same low-order moments as Maxwell-Boltzmann distribution)

Define macroscopic length and time scales:



 

Expand space and time derivatives
to 2nd order and collect terms
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To first order:

To 2nd order:
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Incompressible on t2 scale

"Lattice viscosity“-eliminates grid diffusion



 

Lattice-Boltzmann approximates
Navier-Stokes on “large” scales
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Combining results from different time scales:

Navier-Stokes fluid dynamics in low velocity limit
Leading order errors are 2 2 and .M xD

0.3M <



 

Moving boundary condition by additional 
mass transfer-continuously varying velocity

Mass transfer prevents artificial pressure gradients
Boundary conditions conserve global fluid mass
Momentum transferred into particle forces and torques

Stationary
Boundary

Moving
Boundary

inD µ ×u c



 

Lubrication forces important in dense 
suspensions; dominant in shear flows

Impractical to resolve flow 
in gap by any multi-
particle method: grid 
based, multipole, or 
boundary element.

Add lubrication forces pair 
by pair

Single patch point ~ 0.5Dx
Similar results for other 

components of F & T
2 additional patch points
 (independent of a)
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Settling of a cluster of particles shows strong 
inertial effects even for Re ~ 1. 

Cluster of 100-1000 particles

a) Rec < 1:  Cluster maintains shape

Gradually sheds particles

b) Rec > 1:  Forms ring structure

No shedding of particles

Breaks into smaller rings (Nicolai)
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D:\tladd\Presentations\Videos\cluster.exe


 

Computational details

1812 particles: diameter 5.4 Dx: Rc ~ 15a :  ~ 0.55: Rec ~ 5

Periodic unit cell: 1024 x 400 x 400

~160 million grid points; 100,000 steps

16 P4 Xeons connected by Gigabit ethernet: 32 cpu’s

32 MSUPS aggregate performance: Run time ~150 hours

New cluster: 192 dual-core P4’s with Gigabit ethernet

Observed good scaling up to 96 processors (~300 MSUPS)

But still only limited inter-switch bandwidth (20Gbits/sec)

Good scaling requires high performance switch

Extreme Networks x450a-48t ($6500)



 

• Sample size 15.2 ´ 9.9 cm

• Initial mean aperture                      mm

• dissolved until                     at Pe = 54 and Pe = 216

• high resolution data on fracture topography

Dissolution in a rough fracture. Modeling 
experiments by Detwiler et al., (GRL 2003)

water

KDP (potassium-
-dihydrogen phosphate)

rough glass surface

0 0.126h =

02h h=



 

Velocity field calculated from implicit LBE

3D Stokes equations

• Sub-grid scale boundary conditions

• Steady-state solution determined 
directly, using conjugate gradients

more than 2 orders of magnitude faster than standard LBE
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Random walk improvements

Classical random walk:

~ 103 particles per cell needed 
for accurate calculation of

'
1

m

m
¹

0( )J c

0( )sJ k c c= -

Variable mass random walk:
• Tracking one particle at a time
• Works for linear kinetics only



 

Aperture growth at Pe = 54

experiment simulation

07 h

0

02h h=

• Channels form, grow, and compete for the flow
• Only a few channels survive at the end
• Strongly non-linear process

D:\tladd\Presentations\Videos\dissolution.exe


 

Key problem in simulating polymer solutions 
is the very long time scales.

Characteristic polymer relaxation time

For 100 unit chain, 102 steps per monomer diffusion time
~106 steps per Zimm time

Need a short cycle time (< 10-3s) to permit useful simulations 
of long-chains.

Brownian dynamics restricted to chains < 100 monomers since 
cycle time is proportional to  

Use point particles to obtain a polymer simulation method
Inertial equivalent of Brownian dynamics.
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Brownian motion can be added to LBE via 
fluctuations in fluid stress (controlled)

Add Gaussian white noise at each node

So that the fluctuation dissipation relation is satisfied
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Velocity correlation function of a 
suspended particle agrees 
quantitatively with dissipative 
decay of velocity and with 
Boussinesq equation



 

Collision operators for 
MRT, M10, BGK
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Collision operators and hydrodynamic size

lk = 0 for k = 0, 1, 2, 3: conservation laws

MRT: six independent, non-zero lk (by symmetry)

Adjust location of hydrodynamic boundary via l10-18.

M10: three lk; lk = -1 for k > 9.

BGK: one lk; all lk equal (for k > 3).

2.671.730.4310

2.692.091.045

2.702.451.902

2.722.672.581

2.712.772.690.7

2.712.832.750.6

2.722.902.730.55

2.732.942.770.53

MRTM10BGKt

• MRT: t-independent radius (a0 = 2.7).
• Decreased computational time, since 
large viscosity now accessible
• Insignificant differences in speed 1250 
ticks/site (P4)



 

Fluctuations

Fluctuations in stress (Landau):

l7 corrects for discrete time FDT

Improved agreement with FDT by including fluctuations in 
m10-18 (Adhikari et al., 2004).

( ) 2 2 2
7 72f

yzm Ts hl= =

2

2

10 18

~ 0.6 0.8;   stress fluctuations only

1;   including fluctuations in 

x

x

j

T

j
m

T

r

r -

-

=



 

Point forces couple polymer and fluid
(Ahlers and Duenweg ~2000)

For a bead-rod or bead-spring chain + fluctuating LBE fluid:
2) Calculate velocity field at each bead by interpolation
3) Calculate force on bead based on velocity relative to fluid
4) Redistribute force to LBE nodes
5) Add fluctuating force to beads to balance frictional losses

Single particle correlation matrix
Long-range correlations in random force come from fluid 

dynamics of fluctuating LBE model.
Studied dynamical scaling laws in long chains (N ~ 103)

but for relatively short times.



 

Hydrodynamic Interactions 
between point particles F

r/∆x

∆x

U

On lattice Off lattice



 

Self-diffusion of an isolated chain

CPU TIME ~

Computational effort can 
be greatly reduced for 
longer chains.
Fixed
Independent of N. 
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Weak Confinement Strong Confinement

Self-diffusion of an confined polymer

[1]

[2]
[1]Brochard F, deGennes P G, 
J. Chem. Phys., 67,52
[2]Jendrejack et al.,
J. Chem. Phys., 119,1165
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Confined polymers in flow

N = 15
H ~ 8Rg

y/b
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Particle methods fall into two categories

Forces:  MD Conservative

DPD Conservative, Dissipative, Fluctuating

SPH Conservative, pressure (from EOS)

Computationally intensive neighbor search ~ 1000 FLOP

Collisions: DSMC Boltzmann

LG Discrete

RCLG Rotational

Local collision process is faster but only applicable to gases. 
 Spatial resolution limited by cell size



 

Particle methods are not competitive with 
CFD or LBE for hydrodynamic problems

Statistics: umax< 0.3 cs to maintain incompressibility

10% accuracy requires ~ 1000 particles

Maximum resolution ~ 10 particles

Computational effort 104-105 larger than CFD

Time averaging means reducing umax

Time scales:

Cannot enforce proper time scale separation 
unless             (of the order of 1000 in colloids)

SPH and DSMC used for large-scale, high-speed flows 
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Even DPD does not work well for HI

Dissipative forces can increase

But needs very large friction,   
            and density,

Depletion forces perturb 
thermodynamics and short-
range structure

No hydrodynamics at small 
scales

(Whittle & Dickinson JCIS 2001)

5 2 3 1~ 1.6 10 cSc n arg- -´ % %
~ 100g%

~ 10n



 

Some advantages of LBE

External boundaries: arbitrary shape, no added cost

Simplicity of random forces; potentially very fast

Simplicity (<5000 lines) and speed (1012 grid points/day)

Superior accuracy for relative motion between solid and fluid 

Permeability of random arrays 
of spheres (N = 16)

LBE: solid circles (a = 2Dx)

Multipole: solid line (M=200)

Brinkman: dotted line



 

Closing thoughts

Discrete kinetic theory (LGA/LBE) developed from intuitive, 
physically based, models: HPP-FHP-HS

Led to numerically important constraints being built in

Exact conservation laws

Isotropic momentum diffusion (weighted diagonals)

Dispersion free

Models developed from physically motivated guesses: e.g. 
Moving boundary condition from Monte Carlo

Past 10 years LBE has become increasingly mathematical

Improved accuracy via unphysical equilibrium distribution

Improved numerics: adaptive grids, elliptic solvers, etc.

But I believe there are still opportunities for physical insight.


