Simulations of Particle-Fluid Suspensions with the Lattice-Boltzmann Equation

# Tony Ladd University of Florida

With thanks to MPIP-Mainz and AvH Foundation

#### Derive a variety of micromechanical models of complex fluids from same basic ingredients



#### Liquid crystals









Solutions of polymers and biopolymers

Porous Media

- 1. Solid particles-Newtonian Mechanics
- 2. Continuum fluid-Navier-Stokes equations
- Stick boundary conditions couple particles and fluid.Valid for particles > 30nm (Add: charge, chemical bonds, inertia)

Computational framework for HI in a wide range of **materials**, **flows**, and **scales**.

# **Outline:** Applications of DNS to suspensions and particle fluid systems

- Lattice-models for fluid dynamics
- Lattice-Boltzmann method
- 3 examples
  - Settling of particle clusters at small Re
  - Reactive flows in porous media (Stokes flow)
  - Polymer solutions (with Brownian motion)
- Closing thoughts

### Lattice-gas models for suspensions

- Lattice-gas models were introduced to simplify kinetic theory (Square lattice-HPP)
- FHP ('86) showed that a hexagonal lattice gas could solve Navier-Stokes equations in 2D.
- LCF ('88) used the FHP model to calculate viscosity and self-diffusion in a 2D colloidal suspension
- Projected 4D FCHC model for 3D simulations (Henon '87)
- Moving boundary condition (FL '89)
- Hydrodynamic interactions (LF '90)
- But: LG models are too noisy;  $Sc \sim 1$ : Not Galilean invariant
- LBE (HS-with linearized collision operator)

# LBE model introduces a discrete velocity distribution: local collisions and propagation



# Hydrodynamic fields are moments of the discrete velocity distribution n<sub>i</sub>(r,t)

$$\rho(\mathbf{r},t) = \sum_{i=0}^{18} n_i(\mathbf{r},t)$$
 Mass

$$\rho(\mathbf{r},t)\mathbf{u}(\mathbf{r},t) = \sum_{i=0}^{18} n_i(\mathbf{r},t)\mathbf{c}_i \qquad \text{Momentum}$$

10

$$p(\mathbf{r},t) + \rho(\mathbf{r},t)\mathbf{u}(\mathbf{r},t)\mathbf{u}(\mathbf{r},t) = \sum_{i=0}^{18} n_i^{EQ}(\mathbf{r},t)\mathbf{c}_i\mathbf{c}_i \qquad \text{Euler}$$
Stress

10

$$\sigma(\mathbf{r},t) = -\sum_{i=0}^{18} \left[ n_i(\mathbf{r},t) - n_i^{EQ}(\mathbf{r},t) \right] \mathbf{c}_i \mathbf{c}_i \qquad \text{Viscous} \\ \text{Stress}$$

3D model has 19 velocities  $\mathbf{c}_i$ : 000, 100 & 110 directions

### Macrodynamic behavior from Chapman-Enskog analysis

$$\sum_{i} n_{i} (\mathbf{r} + \mathbf{c}_{i} \Delta t, t + \Delta t) \mathbf{c}_{i}^{n} = \sum_{i} n_{i} (\mathbf{r}, t) \mathbf{c}_{i}^{n} - \sum_{i} \frac{[n_{i} (\mathbf{r}, t) - n_{i}^{EQ} (\mathbf{r}, t)]}{\tau} \mathbf{c}_{i}^{n}$$

Define macroscopic length and time scales:

$$n_i = n_i^{eq} + \varepsilon n_i^1; \quad \mathbf{r}_1 = \varepsilon \mathbf{r}; \quad t_1 = \varepsilon t; \quad t_2 = \varepsilon^2 t$$

Equilibrium distribution is *chosen* to give correct Euler stresses (Same low-order moments as Maxwell-Boltzmann distribution)

$$n_i^{EQ}(\rho, \mathbf{u}) = a^{c_i} \left[ \rho + \frac{\rho \mathbf{u} \cdot \mathbf{c}_i}{c_s^2} + \frac{\rho \mathbf{u} \mathbf{u} : \left( \mathbf{c}_i \mathbf{c}_i - c_s^2 \mathbf{1} \right)}{2c_s^2} \right]$$

### **Expand space and time derivatives** to 2nd order and collect terms

To first order: 
$$\partial_{t_1} \rho + \nabla_1 (\rho \mathbf{u}) = 0$$
  $n = 0$ 

$$\partial_{t_1}(\rho \mathbf{u}) + \nabla_1(\rho c_s^2 + \rho \mathbf{u} \mathbf{u}) = 0$$
  $n = 1$ 

$$\partial_{t_1} \left( \rho c_s^2 + \rho \mathbf{u} \mathbf{u} \right) + \nabla_1 \left( \rho c_s^2 \mathbf{u} \mathbf{I} \right) = \frac{\sigma_1}{\tau} \qquad n = 2$$
$$\boldsymbol{\sigma}_1^c = \rho c_s^2 \tau \left[ \left( \nabla_1 \mathbf{u} \right) + \left( \nabla_1 \mathbf{u} \right)^T \right]$$

To 2nd order:

 $\partial_{t_2} \rho = 0 \quad \text{Incompressible on } t_2 \text{ scale}$  $\partial_{t_2} (\rho \mathbf{u}) + (\Delta t/2) \nabla_1 (\rho c_s^2 (\nabla_1 \mathbf{u}) + \rho c_s^2 (\nabla_1 \mathbf{u})^T) = \nabla_1 \cdot \sigma_1$ "Lattice viscosity"-eliminates grid diffusion

### Lattice-Boltzmann approximates Navier-Stokes on "large" scales

Combining results from different time scales:

$$\partial_{t} \rho + \nabla \cdot (\rho \mathbf{u}) = 0$$
  

$$\rho \partial_{t} \mathbf{u} + \rho \mathbf{u} \cdot \nabla \mathbf{u} = -\nabla p + \eta \left[ \nabla^{2} \mathbf{u} + \nabla \nabla \cdot \mathbf{u} \right]$$
  

$$p = \rho c_{s}^{2}; \quad c_{s}^{2} = \frac{1}{3} \frac{\Delta x^{2}}{\Delta t^{2}}; \quad \eta = (2\tau - 1) \rho c_{s}^{2} \Delta t$$

Navier-Stokes fluid dynamics in low velocity limit M < 0.3Leading order errors are  $M^2$  and  $\Delta x^2$ .

# Moving boundary condition by additional mass transfer-continuously varying velocity



Mass transfer prevents artificial pressure gradients Boundary conditions conserve global fluid mass Momentum transferred into particle forces and torques

### Lubrication forces important in dense suspensions; dominant in shear flows



Impractical to resolve flow in gap by any multiparticle method: grid based, multipole, or boundary element. Add lubrication forces pair by pair Single patch point ~  $0.5\Delta x$ Similar results for other components of F & T2 additional patch points (independent of a)

# Settling of a cluster of particles shows strong inertial effects even for Re ~ 1.

Cluster of 100-1000 particles 
$$\operatorname{Re}_{c} = \frac{2\rho U_{c}R_{c}}{\mu}$$

a)  $\operatorname{Re}_{c} < 1$ : Cluster maintains shape Gradually sheds particles



b)  $\operatorname{Re}_{c} > 1$ : Forms ring structure No shedding of particles Breaks into smaller rings (Nicolai)



### Computational details

1812 particles: diameter 5.4  $\Delta x$ :  $R_c \sim 15a$  :  $\varphi \sim 0.55$ :  $\text{Re}_c \sim 5$ Periodic unit cell: 1024 x 400 x 400 ~160 million grid points; 100,000 steps 16 P4 Xeons connected by Gigabit ethernet: 32 cpu's 32 MSUPS aggregate performance: Run time ~150 hours

New cluster: 192 dual-core P4's with Gigabit ethernet
Observed good scaling up to 96 processors (~300 MSUPS)
But still only limited inter-switch bandwidth (20Gbits/sec)
Good scaling requires high performance switch
Extreme Networks x450a-48t (\$6500)

# Dissolution in a rough fracture. Modeling experiments by Detwiler et al., (GRL 2003)



- Initial mean aperture  $\langle h_0 \rangle = 0.126 \text{ mm}$
- dissolved until  $\langle h \rangle = 2 \langle h_0 \rangle$  at Pe = 54 and Pe = 216
- high resolution data on fracture topography

#### Velocity field calculated from implicit LBE

3D Stokes equations

$$\begin{cases} \nabla \cdot \mathbf{v} = 0\\ \eta \nabla^2 \mathbf{v} = \nabla p \end{cases}$$

- Sub-grid scale boundary conditions
- Steady-state solution determined directly, using conjugate gradients (Verberg, Ladd, 2000)



more than 2 orders of magnitude faster than standard LBE

#### Random walk improvements

Classical random walk: ~  $10^3$  particles per cell needed for accurate calculation of  $J(c_0)$ 

Variable mass random walk:

- Tracking one particle at a time
- Works for linear kinetics only

$$J = k(c_s - c_0)$$





$$\frac{m'}{m} \neq 1$$

# *Aperture growth at Pe = 54*

experiment 
$$\langle h \rangle = 2 \langle h_0 \rangle$$
 simulation





 $7\langle h_0 \rangle$ 

- Channels form, grow, and compete for the flow
- Only a few channels survive at the end
- Strongly non-linear process

# Key problem in simulating polymer solutions is the very long time scales.

Characteristic polymer relaxation time

$$\tau_{Z} \sim (R_{G} / b)^{3} \tau_{M} = N^{1.8} \tau_{M}; \quad \tau_{M} = b^{2} / D_{M}$$

For 100 unit chain, 10<sup>2</sup> steps per monomer diffusion time

#### ~10<sup>6</sup> steps per Zimm time

Need a short cycle time (< 10<sup>-3</sup>s) to permit useful simulations of long-chains.

- Brownian dynamics restricted to chains < 100 monomers since cycle time is proportional to  $N^3$
- Use point particles to obtain a polymer simulation method Inertial equivalent of Brownian dynamics.

Brownian motion can be added to LBE via fluctuations in fluid stress (controlled)

Add Gaussian white noise at each node

$$n_i(\mathbf{r} + \mathbf{c}_i \Delta t, t + \Delta t) = n_i(\mathbf{r}, t) - [n_i(\mathbf{r}, t) - n_i^{EQ}(\mathbf{r}, t)] / \tau + n_i^f$$

So that the fluctuation dissipation relation is satisfied

$$\left\langle \left( \sigma_{xy}^{f} \right)^{2} \right\rangle = 2\mu k_{B}T; \quad \sigma_{xy}^{f} = \sum_{i=0}^{i=18} n_{i}^{f} c_{i,x} c_{i,y}$$

Velocity correlation function of a suspended particle agrees quantitatively with dissipative decay of velocity and with Boussinesq equation



# Collision operators for MRT, M10, BGK

$$m_{k} = \sum_{j=0}^{N_{b}} e_{k,j} n_{j}$$
$$m_{k}' = m_{k}^{eq} + (1 + \lambda_{k}) m_{k}^{neq} + m_{k}^{e} + m_{k}^{f}$$

$$m_0^{eq} = \rho; \quad m_{1-3}^{eq} = \rho \mathbf{u}; \quad m_{4-9}^{eq} = \rho c_s^2 + \rho \mathbf{u} \mathbf{u}$$
$$m_0^e = 0; \quad m_{1-3}^e = \mathbf{f}; \quad m_{4-9}^e = \mathbf{u} \mathbf{f} + \mathbf{f} \mathbf{u}$$
$$m_0^f = 0; \quad m_{1-3}^f = 0; \quad m_{4-9}^f \sim \sqrt{2\eta T}$$
$$m_{10-18}^{eq} = m_{10-18}^e = 0; \quad m_{10-18}^f \sim \sqrt{2\eta T}$$

$$n_i(\mathbf{r} + \mathbf{c}_i \Delta t, t + \Delta t) = w_i \sum_{k=0}^{N_b} m'_k(\mathbf{r}, t) \frac{e_{k,i}}{\mathbf{e}_k \cdot \mathbf{e}_k}$$

$$e_{0} = 1$$
  

$$e_{1} = c_{x}$$
  

$$e_{2} = c_{y}$$
  

$$e_{3} = c_{z}$$
  

$$e_{4} = c^{2} - 1$$
  

$$e_{5} = 2c_{x}^{2} - c_{y}^{2} - c_{z}^{2}$$
  

$$e_{6} = c_{y}^{2} - c_{z}^{2}$$
  

$$e_{7} = c_{y}c_{z}$$
  

$$e_{8} = c_{z}c_{x}$$
  

$$e_{9} = c_{x}c_{y}$$

$$e_{10} = (3c^{2} - 5)c_{x}$$

$$e_{11} = (3c^{2} - 5)c_{y}$$

$$e_{12} = (3c^{2} - 5)c_{z}$$

$$e_{13} = (c_{y}^{2} - c_{z}^{2})c_{x}$$

$$e_{14} = (c_{z}^{2} - c_{x}^{2})c_{y}$$

$$e_{15} = (c_{x}^{2} - c_{y}^{2})c_{z}$$

$$e_{16} = 3c^{4} - 6c^{2} + 1$$

$$e_{17} = (2c^{2} - 3)(2c_{x}^{2} - c_{y}^{2}) - c_{z}^{2})$$

$$e_{18} = (2c^{2} - 3)(c_{y}^{2} - c_{z}^{2})$$

#### Collision operators and hydrodynamic size

 $\lambda_k = 0$  for k = 0, 1, 2, 3: conservation laws

MRT: six independent, non-zero  $\lambda_k$  (by symmetry)

Adjust location of hydrodynamic boundary via  $\lambda_{10-18}$ .

M10: three  $\lambda_k$ ;  $\lambda_k = -1$  for k > 9.

BGK: one  $\lambda_k$ ; all  $\lambda_k$  equal (for k > 3).

- MRT:  $\tau$ -independent radius ( $a_0 = 2.7$ ).
- Decreased computational time, since large viscosity now accessible
- Insignificant differences in speed 1250 ticks/site (P4)

| τ    | BGK  | M10  | MRT  |
|------|------|------|------|
| 0.53 | 2.77 | 2.94 | 2.73 |
| 0.55 | 2.73 | 2.90 | 2.72 |
| 0.6  | 2.75 | 2.83 | 2.71 |
| 0.7  | 2.69 | 2.77 | 2.71 |
| 1    | 2.58 | 2.67 | 2.72 |
| 2    | 1.90 | 2.45 | 2.70 |
| 5    | 1.04 | 2.09 | 2.69 |
| 10   | 0.43 | 1.73 | 2.67 |

#### **Fluctuations**

Fluctuations in stress (Landau):  $\left\langle \left( m_7^f \right)^2 \right\rangle = \left\langle \sigma_{yz}^2 \right\rangle = 2T\eta\lambda_7^2$  $\lambda_7$  corrects for discrete time FDT

Improved agreement with FDT by including fluctuations in  $m_{10-18}$  (Adhikari et al., 2004).

$$\frac{\left\langle j_{x}^{2}\right\rangle}{\rho T} \sim 0.6 - 0.8; \text{ stress fluctuations only}$$
$$\frac{\left\langle j_{x}^{2}\right\rangle}{\rho T} = 1; \text{ including fluctuations in } m_{10-18}$$

# *Point forces couple polymer and fluid* (*Ahlers and Duenweg* ~2000)

For a bead-rod or bead-spring chain + fluctuating LBE fluid:

- 2) Calculate velocity field at each bead by interpolation
- 3) Calculate force on bead based on velocity relative to fluid
- 4) Redistribute force to LBE nodes
- 5) Add fluctuating force to beads to balance frictional losses

Single particle correlation matrix

Long-range correlations in random force come from fluid dynamics of fluctuating LBE model.

Studied dynamical scaling laws in long chains  $(N \sim 10^3)$ but for relatively short times.



On lattice

Off lattice

#### Self-diffusion of an isolated chain





$$\begin{bmatrix} V \sim N^{1.8}b^3 \\ t_Z \sim N^{1.8}b^3\eta / T \end{bmatrix}$$

CPU TIME ~  $N^{3.6}b^6 / T$ 

Computational effort can be greatly reduced for longer chains. Fixed  $R_g \sim 5\Delta x$ Independent of *N*.

#### Self-diffusion of an confined polymer



#### Confined polymers in flow





y/b

#### Particle methods fall into two categories

Forces: MD Conservative

DPD Conservative, Dissipative, Fluctuating

SPH Conservative, pressure (from EOS)

Computationally intensive neighbor search  $\sim 1000$  FLOP

Collisions:DSMC BoltzmannLGDiscrete

RCLG Rotational

Local collision process is faster but only applicable to gases. Spatial resolution limited by cell size

# Particle methods are not competitive with CFD or LBE for hydrodynamic problems

Statistics: $u_{max} < 0.3 c_s$  to maintain incompressibility10% accuracy requires ~ 1000 particlesMaximum resolution ~ 10 particlesComputational effort  $10^4$ - $10^5$  larger than CFDTime averaging means reducing  $u_{max}$ 

Time scales: 
$$Sc = \frac{\tau_D}{\tau_H} = \frac{\eta/\rho}{D} \sim \frac{\eta/\rho}{k_B T/\eta a} \sim \frac{a}{\sigma} \left( \eta \sim \frac{\sqrt{mk_B T}}{\sigma^2} \right)$$

Cannot enforce proper time scale separation unless  $a \gg \sigma$  (of the order of 1000 in colloids) SPH and DSMC used for large-scale, high-speed flows

#### Even DPD does not work well for HI

Dissipative forces can increase  $Sc \sim 1.6 \times 10^{-5} \tilde{\gamma}^2 \tilde{n}^3 a r_c^{-1}$ But needs very large friction,  $\tilde{\gamma} \sim 100$ and density),

Depletion forces perturb thermodynamics and shortrange structure

No hydrodynamics at small scales (Whittle & Dickinson JCIS 20



# Some advantages of LBE

External boundaries: arbitrary shape, no added cost Simplicity of random forces; potentially very fast Simplicity (<5000 lines) and speed (10<sup>12</sup> grid points/day) Superior accuracy for relative motion between solid and fluid



### **Closing thoughts**

Discrete kinetic theory (LGA/LBE) developed from intuitive, physically based, models: HPP-FHP-HS

Led to numerically important constraints being built in

Exact conservation laws

Isotropic momentum diffusion (weighted diagonals)

Dispersion free

Models developed from physically motivated guesses: e.g. Moving boundary condition from Monte Carlo

Past 10 years LBE has become increasingly mathematical Improved accuracy via unphysical equilibrium distribution Improved numerics: adaptive grids, elliptic solvers, etc.But I believe there are still opportunities for physical insight.