Slip flow structures in confined geometries

Steffen Jebauer sjebauer@ippt.gov.pl

28.05.2008

Steffen Jebauer (IPPT PAN, Warsaw)

Slip flow structures

May 2008 1

Use Navier Stokes Flow Solver for Microdevices

- Simulate gas slip flows in complex (curved) geometries (e.g. MEMS)
- Use computationally efficient approach
- · Study ways for mixing enhancement in micro-devices
- Study analogy between electro-osmotic flow and gas flow structures in micro-devices

- 1 Rarefaction Effects
- 2 Flow classification
- **3** Modelling and Boundary Conditions
- 4 Slip Flow Structures
- 6 Electro-Osmotic Analogy
- 6 Conclusions

< 6 b

Wall Slip

- Collisions of gas molecules with solid walls
- Slip due to insufficient number of collisions
- Effect of accommodation \rightarrow accommodation coefficient σ

 - $\sigma_{v} = \frac{\text{particles contributing streamwise momentum}}{\text{total number of impinging particles}}$ $\sigma_{v} = 1 \text{ diffuse reflection of particles}$
 - $\sigma_V < 1$ diffuse/specular reflection

Thermal Creep Flow

- Also called thermal transpiration flow
- Momentum induced by temperature gradients, flow from cold to hot regions
- Can be used as a pumping mechanism
- Example case: Thermal creep flow between two heated tanks

left tank: 300 K

right tank: 400 K

Thermal Stress Flow

- Effect due to spatial differences in temperature gradients
- Present e.g. around curved boundaries, even if boundary temperatures are constant
- For walls with non-zero tangential temperature gradient induced flow is opposite to thermal transpiration flow direction
- · Has been performed experimentally around curved objects

Knudsen Number

Knudsen number Kn

- Classification of flows $Kn = \frac{\lambda}{D}$
- D...Length scale λ ...Mean free path: $\lambda = \frac{k \cdot T}{\sqrt{2} \cdot \pi \cdot d^2 \cdot p}$
- *k*...Boltzmann constant *d*...Molecular diameter

Classification

Knudsen Number

- Boundary conditions derived from kinetic theory of gases are applied for continuum description
- Using Navier Stokes equations with modified boundary conditions
 -> resulting in slip Navier Stokes equations
- Approach used with pressure-driven inflow or in periodic channels

Modelling and Boundary Conditions

Temperature Jump Expression

Equation

$$T_{fluid} - T_{wall} = \frac{2 - \sigma_T}{\sigma_T} \frac{2\gamma}{\gamma + 1} \frac{\lambda}{Pr} \frac{\partial T}{\partial y}$$

$$Pr = \frac{\mu \cdot c_p}{k_L}$$

$$\sigma_T \dots \text{Thermal accommodation coefficient}$$

$$\gamma \dots \text{Specific heat ratio}$$

$$c_p \dots \text{Specific heat}$$

$$k_L \dots \text{Thermal conductivity}$$

Steffen Jebauer (IPPT PAN, Warsaw)

Modelling and Boundary Conditions

Modified slip velocity boundary condition

$$u_{\text{fluid}} - u_{\text{wall}} = \frac{2 - \sigma_{v}}{\sigma_{v}} \lambda \left[\frac{\partial u}{\partial y} + \frac{\partial u}{\partial x} + \frac{\mu}{\rho} \left(\frac{1}{\rho} \frac{\partial^{2} \rho}{\partial x \partial y} - \frac{1}{T} \frac{\partial^{2} T}{\partial x \partial y} \right) \right] + \frac{3}{4} \frac{\mu}{\rho T} \frac{\partial T}{\partial x}$$

Steffen Jebauer (IPPT PAN, Warsaw)

Slip flow structures

May 2008 11

< 6 b

Case Studies Thermal stress flow - Setup of Original case

Original case

- Nominally two-dimensional setup
- Laminar case; ideal gas: air
- Temperature at walls: $T_{in} = 300 K$, $T_{out} = 350 K$
- $R_{in} = 2.5 \cdot 10^{-4} m$, $R_{out} = 5 \cdot 10^{-4} m$, $d = 1.3 \cdot 10^{-4} m$
- Extended slip velocity condition and temperature jump applied at walls

Thermal stress flow - Streamline plot

Case Studies

Original case

• Upper half of domain shown

Steffen Jebauer (IPPT PAN, Warsaw)

Slip flow structures

May 2008 13

Case Studies

Experimental setup

Thermal stress flow - Experiment

- Heated plate placed inside a heated box
- Thermal stress flow around the plate corners
- Sone, Yoshimoto, Phys Fluids, 9, p. 3530, 1997

Steffen Jebauer (IPPT PAN, Warsaw)

Slip flow structures

Case Studies Modified cases Thermal stress slip flow - Channel geometries I

- All setups resemble the basic setup geometry
- Setup combined with inlet/outlet section:

Steffen Jebauer (IPPT PAN, Warsaw)

ヘロト 人間 とくほとくほう

Case Studies Modified cases Thermal stress slip flow - Channel geometries II

Two curved walls, horizontal

One curved wall

• Two curved walls, vertical

Thermal stress slip flow - Configuration

Case Studies

- Two-dimensional geometry
- Ideal gas: air
- Boundary conditions:
 - Wall temperature T = 300 K or 350 K, depending on setup
 - Inlet pressure $p = 10^{-7} \dots 10^{-3}$ Pa or ...
 - Periodic boundary conditions, depending on setup
 - Temperature jump condition and modified slip velocity condition
 applied at all walls

Modified cases

- Reference pressure p = 101325 Pa
- Kn calculated using average mean free path and curved wall radius -> Kn defined by changes in curved wall radius (scaling)
- Re calculated using average inlet velocity and curved wall radius

< ロ > < 同 > < 回 > < 回 >

Case Studies Thermal stress flow - Temperature fields and streamline plots

Modified cases

Steffen Jebauer (IPPT PAN, Warsaw)

Slip flow structures

May 2008 19

Case Studies Pressure-driven flows Thermal stress slip flow - Streamline plots

Case Studies Temperature field variations Thermal stress flow - Temperature field variations I

Alter temperature distribution -> different flow patterns

 Temperature distribution: Dark - 350 K Light - 300 K

< ∃ ►

Case Studies

Temperature field variations

Thermal stress flow - Temperature field variations II

Steffen Jebauer (IPPT PAN, Warsaw)

Slip flow structures

May 2008 22

· Resulting streamline patterns for horizontally aligned curved walls

Arrows indicate orientation of vortex rotation

Steffen Jebauer (IPPT PAN, Warsaw)

Mass flow

Slip flow structures

May 2008 23

- B

Case Studies

Pressure-driven flow

Mass flow

- Cases B and C have higher massflow for lower pressures
- As pressure increases massflows values become similar

Steffen Jebauer (IPPT PAN, Warsaw)

Slip flow structures

Electro-Osmotic Analogy

Analogy Between Electro-Osmotic and Gas Flow structures

- Both phenomena are dependent on walls and wall-near layers
- Analogy in resulting flow structures is expected, due to temperature gradients <-> electric potential differences

Electro-Osmotic Analogy

Knudsen Layer and Electrical Double Layer

• Knudsen layer in gas flow, thickness of order of mean free path λ

 Lockerby, D.A. et al., Phys. Fluids, 17, 100609, 2005

- Electrical double layer
- Surface charge acquired due to contact of solid surfaces with electrolyte solution

 Hunter, R. J., Foundations of Colloid Sciences, Oxford University Press

Steffen Jebauer (IPPT PAN, Warsaw)

Slip flow structures

Electrical Double Layer

- · lons with counter-charge attach to the wall
- Mechanisms of generation of surface charge:

Electro-Osmotic Analogy

- · Surface dissociation, e.g. for glass walls
- ion adsorption from solution
- defects in the lattice

No net charge far from wall

http://microfluidics.stanford.edu/bioanal.htm

Test Cases I

- Mixing in electro-osmotic devices was studied experimentally
- · Possible test cases for studies of analogy include
- Compare: Wang et al., Ind. Eng. Chem. Res. (2004), 43, 2902-2911

Electro-Osmotic Analogy

Test Cases II

- Comparative calculations -> streamline plots
- · Gas slip flow

• Electroosmotic flow

< 同 > < ∃ >

Conclusions

Conclusions

- MEMS gas flow devices in the slip flow regime can be simulated with this implementation and the *Navier Stokes* equations
- Computationally efficient approach compared to other approaches
- Thermal stress flows on curved geometries can be modelled
- Temperature variations lead to different flow patterns that respond differently to pressure-driven inflow
- Vortex creation gives way to enhanced mixing (although turbulence is absent)
- Possible analogy between electroosmotic flow and gas slip flow give opportunity for more detailed studies of flow behaviour
- Perform experiments on electroosmosis in order to gain insight on gas slip flows or vice versa?

Conclusions

Steffen Jebauer (IPPT PAN, Warsaw)

Slip flow structures

May 2008 31

æ

▲口▶ ▲圖▶ ▲理≯ ▲理≯