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Motivation

Use Navier Stokes Flow Solver for Microdevices

• Simulate gas slip flows in complex (curved) geometries (e.g.
MEMS)

• Use computationally efficient approach
• Study ways for mixing enhancement in micro-devices
• Study analogy between electro-osmotic flow and gas flow

structures in micro-devices
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Rarefaction Effects Wall Slip

Wall Slip

• Collisions of gas molecules with solid walls
• Slip due to insufficient number of collisions
• Effect of accommodation –> accommodation coefficient σ
σv = particles contributing streamwise momentum

total number of impinging particles
σv = 1 - diffuse reflection of particles
σv < 1 - diffuse/specular reflection

Particles impinging on wall
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Rarefaction Effects Thermal Creep Flow

Thermal Creep Flow

• Also called thermal transpiration flow
• Momentum induced by temperature gradients, flow from cold to

hot regions
• Can be used as a pumping mechanism
• Example case: Thermal creep flow between two heated tanks

left tank: 300 K right tank: 400 K
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Rarefaction Effects Thermal Stress Flow

Thermal Stress Flow

• Effect due to spatial differences in temperature gradients
• Present e.g. around curved boundaries, even if boundary

temperatures are constant
• For walls with non-zero tangential temperature gradient induced

flow is opposite to thermal transpiration flow direction
• Has been performed experimentally around curved objects
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Classification

Knudsen Number

Knudsen number Kn
Classification of flows
Kn =

λ

D
D. . . Length scale
λ. . . Mean free path:

λ =
k · T√

2 · π · d2 · p
k . . . Boltzmann constant
d . . . Molecular diameter
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Classification

Knudsen Number

Kn : 10−3 10−1 10 1

no slip slip transition free molecular

Navier-Stokes other approaches
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Modelling and Boundary Conditions

Modelling

• Boundary conditions derived from kinetic theory of gases are
applied for continuum description

• Using Navier Stokes equations with modified boundary conditions
–> resulting in slip Navier Stokes equations

• Approach used with pressure-driven inflow or in periodic channels
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Modelling and Boundary Conditions

Temperature Jump Expression

Equation

Tfluid − Twall =
2− σT

σT

2γ
γ+1

λ

Pr
∂T
∂y

Pr =
µ · cp

kL
σT . . . Thermal accommodation coefficient
γ . . . Specific heat ratio
cp. . . Specific heat
kL. . . Thermal conductivity
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Modelling and Boundary Conditions

Modified slip velocity boundary condition

ufluid − uwall =
2− σv
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Case Studies Original case

Thermal stress flow - Setup of Original case

+

Tout

+

Tin

d

Rout

Rin

Symmetry
plane

Tout>Tin

Temperature field

• Nominally two-dimensional setup
• Laminar case; ideal gas: air
• Temperature at walls: Tin = 300 K , Tout = 350 K
• Rin = 2.5 · 10−4m, Rout = 5 · 10−4m, d = 1.3 · 10−4m
• Extended slip velocity condition and temperature jump applied at

walls
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Case Studies Original case

Thermal stress flow - Streamline plot

2.0 -

1.5 -

1.0 -

0.5 -

0.0 -

Velocity magnitude in 10−5 [m/s]

• Upper half of domain shown
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Case Studies Experimental setup

Thermal stress flow - Experiment

Experimental setup: Uniformlyheated plate (T1) in a uniformly heated box (T0)

• Heated plate placed inside a heated box
• Thermal stress flow around the plate corners
• Sone, Yoshimoto, Phys Fluids, 9, p. 3530, 1997
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Case Studies Modified cases

Thermal stress slip flow - Channel geometries I

• All setups resemble the basic setup geometry
• Setup combined with inlet/outlet section:

• Half-setup series combined to waveform channel:

Kn rout
I -
II 1
III 0
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Case Studies Modified cases

Table

Kn rout
I -
II 1
III 0
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Case Studies Modified cases

Thermal stress slip flow - Channel geometries II

One curved wall
• One curved wall

• Two curved walls, horizontal

• Two curved walls, vertical
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Case Studies Modified cases

Thermal stress slip flow - Configuration

• Two-dimensional geometry
• Ideal gas: air
• Boundary conditions:

• Wall temperature T = 300 K or 350 K, depending on setup
• Inlet pressure p = 10−7 . . . 10−3 Pa or . . .
• Periodic boundary conditions, depending on setup
• Temperature jump condition and modified slip velocity condition

applied at all walls

• Reference pressure p = 101325 Pa
• Kn calculated using average mean free path and curved wall

radius –> Kn defined by changes in curved wall radius (scaling)
• Re calculated using average inlet velocity and curved wall radius
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Case Studies Modified cases

Thermal stress flow - Temperature fields and
streamline plots

300 K

350 K

Knudsen
number: Kn = 3.8 10−4; periodic boundary conditions in x direction
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Case Studies Pressure-driven flows

Thermal stress slip flow - Streamline plots

∆ p = 10−4 Pa

∆ p = 10−5 Pa

∆ p = 10−6 Pa

∆ p = 0 Pa
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Case Studies Temperature field variations

Thermal stress flow - Temperature field variations I

• Alter temperature distribution –> different flow patterns

A

A

C

B

B

D

• Temperature distribution:
Dark - 350 K
Light - 300 K
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Case Studies Temperature field variations

Thermal stress flow - Temperature field variations II

A

B

D

C

E
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Case Studies Pressure-driven flow

Mass flow

• Resulting streamline patterns for horizontally aligned curved walls

A

C

B

D

• Arrows indicate orientation of vortex rotation
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Case Studies Pressure-driven flow

Mass flow
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• Cases B and C have higher massflow for lower pressures
• As pressure increases massflows values become similar
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Electro-Osmotic Analogy

Analogy Between Electro-Osmotic and Gas Flow
structures

• Both phenomena are dependent on walls and wall-near layers
• Analogy in resulting flow structures is expected, due to

temperature gradients <–> electric potential differences
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Electro-Osmotic Analogy

Knudsen Layer and Electrical Double Layer
• Knudsen layer in gas flow,

thickness of order of mean
free path λ

• Lockerby, D.A. et al., Phys. Fluids,
17, 100609, 2005

• Electrical double layer
• Surface charge acquired due

to contact of solid surfaces
with electrolyte solution

• Hunter, R. J., Foundations of Colloid
Sciences, Oxford University Press
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Electro-Osmotic Analogy

Electrical Double Layer

• Ions with counter-charge attach to the wall
• Mechanisms of generation of surface charge:

• Surface dissociation, e.g. for glass walls
• ion adsorption from solution
• defects in the lattice

• http://microfluidics.stanford.edu/bioanal.htm
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Electro-Osmotic Analogy

Test Cases I

• Mixing in electro-osmotic devices was studied experimentally
• Possible test cases for studies of analogy include
• Compare: Wang et al., Ind. Eng. Chem. Res. (2004), 43,

2902-2911
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Electro-Osmotic Analogy

Test Cases II

• Comparative calculations –> streamline plots
• Gas slip flow

• Electroosmotic flow
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Conclusions

Conclusions

• MEMS gas flow devices in the slip flow regime can be simulated
with this implementation and the Navier Stokes equations

• Computationally efficient approach compared to other approaches
• Thermal stress flows on curved geometries can be modelled
• Temperature variations lead to different flow patterns that respond

differently to pressure-driven inflow
• Vortex creation gives way to enhanced mixing (although

turbulence is absent)
• Possible analogy between electroosmotic flow and gas slip flow

give opportunity for more detailed studies of flow behaviour
• Perform experiments on electroosmosis in order to gain insight on

gas slip flows or vice versa?
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Conclusions

Thank you for your attention.
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