The Computer Sciences Laboratory for Mechanics and Engineering Sciences (LIMSI)

Poincaré section analysis of an experimental frequency intermittency in an open cavity flow

F. Lusseyran¹, L. Pastur¹, Th. Faure¹, Ch. Letellier²

• ¹ LIMSI-CNRS, BP 133, F-91403 Orsay, France

Université Paris Sud XI, Orsay, France

Université Pierre et Marie Curie, 75252 Paris Cedex 05, France,

• ² CORIA UMR 6614

Université de Rouen, Saint-Etienne du Rouvray cedex, France

Short flow description

Ш

The Computer Sciences Laboratory for Mechanics and Engineering Sciences (LIMSI)

U=1.27 m/s, R=2, \rightarrow Re=8500

[Exp. Fluids, vol. 42, n°2, pp. 169-184 (2007)]

Description qualitative de l'écoulement en cavité (Exp.)

ineering Sciences (LIMSI)

R=2., U=1.27 m/s Re=8500

R=1.5 , U=1.27 m/s Re=6350

R=1., U=1.27 m/s Re=4200

R=0.5 , U=1.27 m/s Re=2100 Gö

The Computer Sciences Laboratory for Mechanics and Engineering Sciences (LIMSI)

- Open cavity flow qualitative description
- Measurement setup
- Spectral characterization of the flow dynamics + phases averaging

Outline

- Non-linear Phase portrait characterization of the flow dynamics
 - − Dynamics reduction ← deterministic approach
 - Embedding method, Poincaré section, 1st return maps
 - Symbolic sequences analysis
 - Typical trajectories extraction
- Conclusion

PIV-LDV measurement setup

The Computer Sciences Laboratory for Mechanics and Engineering Sciences (LIMSI)

Time series of the axial component of the velocity

IPPT-PAN seminar

8-Oct-08

Spectral components

The Computer Sciences Laboratory for Mechanics and Engineering Sciences (LIMSI)

Complex demodulation

The Computer Sciences Laboratory for Mechanics and Engineering Sciences (LIMSI)

Band-pass filtering of the signal around the spectral component under interest
Hilbert Transform of each component :

$$\mathcal{H}\{s(t)\} = \frac{1}{\pi t} * s(t) \longrightarrow w(t) = s(t) + i \mathcal{H}\{s\}(t) \equiv A(t) \cdot e^{i\phi(t)}$$

•Choice of the separation threshold :

Lost of short events :

Construction moyennes de phases

The Computer Sciences Laboratory for Mechanics and Engineering Sciences (LIMSI)

- rééchantillonnage du signal LDV à une fréquence multiple des champs PIV
- filtrage autour de la fréquence d'un mode (filtre passe-bande largeur 1 Hz)
- construction de la matrice des retards B

décomposition aux valeurs singulières

 $B = U \cdot D \cdot V^{^{\scriptscriptstyle \mathsf{T}}}$

• matrice de la dynamique propre du système X

 $X = U \cdot D = B \cdot V$

Phases averaging

The Computer Sciences Laboratory for Mechanics and Engineering Sciences (LIMSI)

Mesures PIV $U_e = 2,09 \text{ m.s}^{-1}$

filtrage successif sur chacun des deux modes avant la moyenne par phase *filtrage sur le mode 1 :*

The Computer Sciences Laboratory for Mechanics and Engineering Sciences (LIMSI)

$$f_1 = 23.2Hz$$
 $f_2 = 31.0Hz$

The Computer Sciences Laboratory for Mechanics and Engineering Sciences (LIMSI)

POD pour sl

Phase portrait characterization

The Computer Sciences Laboratory for Mechanics and Engineering Sciences (LIMSI)

Non-linear Phase portrait characterization of the flow dynamics

- Dynamics reduction ← deterministic approach
- Embedding method, Poincaré section, 1st return maps
- Symbolic sequences analysis
- Typical trajectories extraction

ynamics reduction

The Computer Sciences Laboratory for Mechanics and Engineering Sciences (LIMSI)

Underlying dynamical system : $\dot{\vec{X}} = F(\vec{X})$

 \rightarrow Measure of correlation dimension (Procaccia1988) :

$$d_{c} = \lim_{N \to \infty} \lim_{r \to 0} \frac{\log_{2} C(r)}{\log_{2} r} \quad \text{with} \quad C(r) = \frac{1}{N_{ref}} \frac{1}{N} \sum_{i=1}^{N} \sum_{j=1}^{N} H(r - \|\vec{x}_{i} - \vec{x}_{j}\|)$$

on LDV series, after non-linear filtering (T. Schreiber PRE 47, 1993).

Phases portrait dimension : $d_c = 4.2$ at U = 2.09 m/s

Embedding space dimension :

$$5 \leq d_e \leq 10$$

Embedding method

The Computer Sciences Laboratory for Mechanics and Engineering Sciences (LIMSI)

1 - delays matrix :
$$S = \begin{pmatrix} s(t_1) & s(t_2) & \cdots & s(t_m) \\ s(t_2) & s(t_3) & \cdots & s(t_{m+1}) \\ \vdots & \vdots & \vdots & \vdots \\ s(t_{N-m+1}) & s(t_{N-m+2}) & \cdots & s(t_N) \end{pmatrix} \text{ with } \begin{cases} N = 840000 \\ m = 70 \end{cases}$$

2 - singular value decomposition (SVD): $S = U.\Sigma.V^t$ with $U = \{u_1, u_2, \dots, u_m\}$ U is an orthonormal basis.

Phases portrait projection on the two first principal components

D. S. Broomhead & G. P. King, Extracting qualitative dynamics from experimental data, Physica D, 20, 1986.

¹ return map

The Computer Sciences Laboratory for Mechanics and Engineering Sciences (LIMSI)

Poincaré section :

$$\Pi = \left\{ u_2 \in \mathbf{R}^2 \, \middle| \, u_1 = 0, \dot{u}_1 > 0 \right.$$

 $u_{2,n+1} = f(u_{2,n})$ $\{u_{2,n}\}_{n=1,\dots,K} \text{ with } K = 31000$

8-Oct-08

IPPT-PAN seminar

st angular return map and symbolic dynamics

The Computer Sciences Laboratory for Mechanics and Engineering Sciences (LIMSI)

First angular return map :

$$\theta_{n+1} = f(\theta_n)$$

Partition of first angular return map : \rightarrow encoding in a sequence $\Sigma = \{\sigma_n\}$

$$\sigma_{n} \begin{vmatrix} 2 & \text{if } \theta_{n} \in [-\pi/4; 3\pi/4] \\ 1 & \text{if } \theta_{n} \in [-\pi/2; -\pi/4[\bigcup[3\pi/4; 3\pi/2[$$

locked dynamics : ...1111... or ...2222...transitional dynamics : ...212112122...

orbit time distribution of each modes 1/2

The Computer Sciences Laboratory for Mechanics and Engineering Sciences (LIMSI)

Correspondences between modes and frequencies

Symbolic sequences analysis

The Computer Sciences Laboratory for Mechanics and Engineering Sciences (LIMSI)

Probability in consecutive events numbers

Probability in time duration

→symbols (2 or 1) repeated most often 3 or 4 times
→rare long sequences give a significant temporal contribution

8-Oct-08

IPPT-PAN seminar

Decimal encoding of sequences of n symbols

The Computer Sciences Laboratory for Mechanics and Engineering Sciences (LIMSI)

Decimal encoding of n symbols sequences :

 $2112222222112112221111122 \rightarrow 011000000110110001111100$

→ the symbolic sequence Σ_i with i='encoding'+1

Bin2dec of n=8 symbols \rightarrow 96

•Main sequences:

 $\Sigma_1 = 2222 \ 2222$ and $\Sigma_{256} = 1111 \ 1111$

 \rightarrow preponderance for sustaining modes 1 & 2

•Isolated sequences from the back ground when *P* > 0.017:

$\begin{split} \Sigma_{128} &= 2111 \ 1111 \\ \Sigma_{193} &= 1211 \ 1111 \\ \Sigma_{253} &= 1111 \ 1122 \\ \Sigma_{255} &= 1111 \ 1112 \end{split}$	$\Sigma_{129} = 1222 \ 2222$ $\Sigma_{64} = 2122 \ 2222 $ $\Sigma_{4} = 2222 \ 2211$ $\Sigma_{2} = 2222 \ 2221$	
$P_{128} = 0.022 P_{193} = 0.018 P_{253} = 0.018 P_{255} = 0.022$	$P_{129} = 0.023 P_{64} = 0.019 P_4 = 0.017 P_2 = 0.023 $	

Transitional symbolic sequence Ξ_i

The Computer Sciences Laboratory for Mechanics and Engineering Sciences (LIMSI)

New encoding of the transition: R for repetition T transition

$$\xi_i \begin{vmatrix} \mathbf{R} & \text{if } \sigma_i \sigma_{i+1} = 22 \text{ or } \sigma_i \sigma_{i+1} = 11 \\ \mathbf{T} & \text{if } \sigma_i \sigma_{i+1} = 12 \text{ or } \sigma_i \sigma_{i+1} = 21 \end{vmatrix}$$

Repetition sequences longer than 8 :

$$E_{129} = TRRR RRRR$$

$$E_{65} = RTRR RRRR$$

$$E_{33} = RRTR RRRR$$

$$E_{17} = RRRT RRRR$$

$$E_9 = RRRR TRRR$$

$$E_5 = RRRR RTRR$$

$$\Xi_3 = RRRR RRTR$$

$$\Xi_2 = RRRR RRRT$$

$$\Xi_{193} = \text{TTRR RRRR}$$

$$\Xi_{161} = \text{TRTR RRRR}$$

$$\Xi_{97} = \text{RTTR RRRR}$$

$$\Xi_{81} = \text{RTRT RRRR}$$

$$\Xi_{49} = \text{RRTT RRRR}$$

 \rightarrow Transitions are mainly short exploration and coming back to the same mode.

Plan projections of typical trajectories

The Computer Sciences Laboratory for Mechanics and Engineering Sciences (LIMSI)

Trajectories associated with mode 2 and 1:

amplitude of f_1 > amplitude of f_2 : \rightarrow dynamics structured around a fixed point of the focus type.

Trajectories associated with a transition from :

→ Confirm that the transition
 mainly occur in a single oscillation
 (between two successive intersection
 with the Poincaré section).

Summary & Conclusion

The Computer Sciences Laboratory for Mechanics and Engineering Sciences (LIMSI)

- Investigation from temporal series of the dynamics underlying an open flow over a cavity,
- nonlinear competition between two modes is investigated using tools of to the nonlinear dynamical systems theory,
- After embedding of time series, an angular return map allows to define a symbolic dynamic with two symbols (distinguish the two modes in competition),
 - \rightarrow The dynamics governing the mode switching is mainly deterministic,
 - \rightarrow The dynamics behaves as structured by a focus type fixed point,
 - → The switching process is either 'long' reminding on one mode or short exploration of the other.

•Which flows are relevant for such a time analysis?

•What about the physics of intermittency in no compressible open cavity flow ?

[Physics of Fluids (2008), accepted, to be published]

END