Dynamiczna kontrola separacji ładunków elektrostatycznych w układach miękkiej materii

Tomasz Szymborski, Natalia Ziębacz, Piotr Korczyk, Jan Tobiś, Olgierd Cybulski, Stefan Wieczorek, Andrzej Żywociński, Robert Hołyst i Piotr Garstecki

Department of Soft Condensed Matter Institute of Physical Chemistry Polish Academy of Sciences

- controlling soft matter with electric fields
- of charge in dynamic separation LC can we see the motion of ions with an croscope? optical electrocoalescence ionic contribution to polarization of droplets phase separation in a blend of LC and PS 1000 fold increase of the rate of phase separation h
- summary

electrostatic forces

electrostatic potential

- $\frac{1}{R}$
- any other behavior?
- control the electrostatic interactions with electric fields?

can we see the motion of ions with an optical microscope?

electrocoalescence

ionic contribution to polarization of droplets

- phase separation in a blend of LC and PS
 1000 fold increase of the rate of phase separation
- summary

NPOB

MBOBC

experiment

needle through

DC

needle below

AC, high frequency

electric field

electric field

sharp transition at *f_{CR}*

frequency

 $10^1 \, \text{Hz}$

10⁰ Hz

 10^2 Hz

dynamic separation of charge in LC MHPPHBC – ferroelectric LC

8CB – non-ferroelectric LC

- critical frequency (f_{CR}) is linear in voltage
- dA/dt is linear in voltage
- f_{CR} does not depend on the diameter of the island

 f_{CR} does not depend on the thickness of the island (repetitive experiments on new films yield very similar values of f_{CR})

1. We estimate the EC mobility *via*

$$\mu = \frac{q}{6\pi R\eta}$$

literature gives $\sim 10^{-10} \text{ m}^2 \text{ V}^{-1} \text{ s}^{-1}$ for electrophoretic mobility of ions in LCs.

q (e)	R (Å)	$\mu (m^2 V^{-1} s^{-1})$
1	1	3,29.10-10
2	5	1,32.10-10
3	10	0,98.10-10

Electrophoretic mobility for different ion diameter and charge

2. We estimate the distance d_{ions} traveled by the ions within $t = (2f_{CR})^{-1}$ d_{ions} compares well to the Debye screening length¹:

 d_{ions} ranged from $d_{ions} = 50 \text{ nm}$ for NPOB in SmA phase to $d_{ions} = 460 \text{ nm}$ for MHPPHBC in the SmC* phase.

These values are similar in magnitude to the reported value of the Debye screening length of 0,7 μ m¹ in CS1015 SmC* phase.

$$\mu(2f_{CR})^{-1}E_{||}$$
 ~ Debye Length

microscopic separation of charges

- high frequencies ions oscillate with amplitude < Debye length
- low frequencies ions osicillate with amplitudes > Debye length
 → "microscopic" separation of charges
- the boundary of the meniscus becomes charged and undergoes an electrohydrodynamic instability

→ macroscopic separation of charges

- low frequencies ions osicillate with amplitudes > Debye length
 → "microscopic" separation of charges
- the boundary of the meniscus becomes charged and undergoes an electrohydrodynamic instability

→ macroscopic separation of charges

• we can visualize (indirectly) the motion of ions

 instability only ensues when ions are separated over distances larger than the Debye length

 macroscopic separation of charges, slow relaxation → dynamically controlled

can we see the motion of ions with an optical microscope?

electrocoalescence

ionic contribution to polarization of droplets

phase separation in a blend of LC and PS

1000 fold increase of the rate of phase separation

• summary

U = 2.3 kV DC

U = 400 V

0

0

0

L. Fidalgo *et al*. Angew. Chem. Int. Ed. 2008, 47 R. Link *et al.* Angew. Chem. Int. Ed. 2006, 45

Hexadecane + Span80

Oil phase: hexadecane + 2% SPAN 80 Droplets: water + dye

1 kHz, 100 V

1 kHz, 500 V

Image analysis

number of droplets

total contour

electrocoalescence – influence of voltage

electrocoalescence – influence of voltage

electrocoalescence – influence of voltage

electrocoalescence – influence of frequency

can we see the motion of ions with an optical microscope?

electrocoalescence

ionic contribution to polarization of droplets

phase separation in a blend of LC and PS

1000 fold increase of the rate of phase separation

• summary

Polymer-polystyrene

$N = C - CH_3$

polymer-dispersed liquid crystals (PDLCs)

polymer-stabilized liquid crystals (PSLCs)

PDLCs were invented at Kent State University in 1983.

phase separation – influence of frequency

can we see the motion of ions with an optical microscope?

- phase separation in a blend of LC and PS
 1000 fold increase of the rate of phase separation
- electrocoalescence

ionic contribution to polarization of droplets

• summary

- dynamic control of the efficiency of screening
- separation of charges at the microscale
- possibility of macroscopic separation via other mechanisms
- uses/applications:
 - electrocoalescence
 - phase separations
 - electrokinetic transport ?
 - ordering of colloids ?

Laboratory of Complex Fluids and Microfluidics Institute of Physical Chemistry, Polish Academy of Sciences

Thank you!

