Simulations of peptide folding: structures, dynamics, pathways

Krzysztof Kuczera

Departments of Chemistry and Molecular Biosciences, University of Kansas, Lawrence, KS 66045

Torun-Warszawa, Maj 2010

2

Peptide dynamics: Significance

- Peptides = biologically active structureforming molecules
- Peptides = small size allows study of sequence – structure – function relations
- Peptides = flexible, dynamic systems motions on ps – µs time scale experiment/simulation overlap
- Peptides = building blocks of proteins
 →understanding of fundamental biological processes

Peptide Folding Simulations

GOALS:

- -Predict process: populations, rates, paths
- -Verify methods: algorithms and force fields
- -Complement experimental data
- -Understanding→design materials, drugs

EXPERIMENTAL data: typically -structure and population of folded state -folding and unfolding rates (T) - rarely: "nucleation rate"

Unique ROLE for simulations: microscopic -Information on pathways -Information on unfolded state(s) -Dynamics \perp to reaction coordinate

Folding Simulation Methods

Fast processes: ($\tau \approx 10-100 \text{ ns}$) Direct molecular dynamics (MD) gives complete description

Slow processes: Populations: Enhanced sampling methods -e.g. replica-exchange MD

Kinetics: Path sampling -e.g. milestoning

Limitations: Force field accuracy, system size

MOLECULAR DYNAMICS SIMULATIONS

- Model system of N atoms
- Introduce potential energy U(x,y,z)
- Calculate force acting on each atom
- Solve Newton's equations of motion

- Generate a trajectory for each atom $x_i(t)$

Newton's 2nd Law

$$m_i \frac{d^2 \vec{r}_i}{dt^2} = \vec{F}_i = \nabla_i U$$

- Analyze structure, motions and interactions

- Relate to experimental observations

$$x(t + \Delta t) = 2x(t) - x(t - \Delta t)$$
$$v(t) = \frac{x(t + \Delta t) - x(t - \Delta t)}{2\Delta t}$$

Verlet algorithm

Replica-exchange molecular dynamics

Propagate independent trajectories at temperatures $T_1 < T_2 < T_3 < ...$ Stop and compare energies Exchange between neighbors

Advantages:

- + accelerated sampling @ low T
- + Boltzmann distributions @ all T
- + Minimal process communication
- + Property sampling as f(T)

$$w(i \rightarrow j) = 1 \quad \Delta \leq 0$$
$$w(i \rightarrow j) = e^{-\Delta} \quad \Delta > 0$$
$$\Delta = (\beta_j - \beta_i)(E_i - E_j)$$
$$\beta_i = \frac{1}{kT_i}$$

WH5: Fastest Folding α -helix

Experimental at 300 K:

CD spectroscopy: $\% \alpha = 20-25 \%$

Fluorescence T-jump: Relaxation $\tau_1 = 5.3 \pm 1.9$ ns $\tau_2 = 0.85 \pm 0.3$ ns

Gouri S. Jas, Baylor University Angewandte Chem. (2009) **48**:5628 Sequence: 5 aa Ac-Trp-Ala-Ala-Ala-His⁺-NH₂

WH5: Global MD

MD: 1,000 ns NPT at 300 K, 1 bar with GROMACS program and several protein force fields, ≈1000 waters, 1 Cl⁻ 960 ns with CHARMM program and CHARMM ff

WH5 1,000 ns MD : 1 bar 300 K OPLS/AA TIP3P

WH5 1,000 ns MD: 1 bar 300 K OPLSAA TIP3P

WH5 1,000 ns MD 1 bar 300 K OPLSAA TIP3P

WH5 1,000 ns MD: 1 bar 300 K OPLSAA TIP3P

Sample OPLS/AA results

WH5: Local MD

WH5 1,000 ns MD: 1 bar 300 K OPLSAA TIP3P

WH5 1,000 ns MD: 1 bar 300 K OPLSAA TIP3P

WH5 1,000 ns MD: 1 bar 300 K OPLSAA TIP3P

Sample OPLS/AA results

WH5: helix populations and kinetics

Force Field	τ _{fold} NS	τ _{unf} NS	τ _r ns	τ _{nuc} NS	% α HB	%α PP
OPLS/AA	23.	4.1	3.6	0.6	13	11
CHARMM	20.	9.7	6.5	6.5 1.0		21
G43A1	87.	0.8	0.8	0.1	2	8
G53A6	500.	0.4	0.4	0.05	0.4	3
AMBER03	7.1	8.0	3.8	0.4	31	27
AMBER99P	0.4	9.3	0.4	0.1	64	49
AMBER99SB	44.	3.4	3.1	0.3	6	7
AMBERGS	3.5	233.	3.5	0.1	84	65

Experiment: $\%\alpha = 20-25\%$

Relaxations: 5.3 and 0.8 ns

Folding:

$$\tau_{\rm fold} pprox 30 \ {\rm ns}$$

 $_{\rm unf}$ pprox 6 ns

Amazing agreement: Most force field predictions are within a factor of 10 of experimental data!

Corresponding $\Delta E \approx 1$ kcal/mol at 300 K

Folding of WH5: pathways

AMBER03, AMBERGS: 1-2-3

V Company V Company A Company

WH5 COIL-HELIX OPLSAA/SPC

OPLS/AA(SPC): 2-1-3

AMBER99P: (1+3)-2

WH5 COIL-HELIX OPLSAA/TIP3P

OPLS/AA(TIP3P): 2-1-3 or (1+2)-3

G43A1, AMBER99SB: (1+2)-3

WH5 : CHARMM/TIP3P no CMAP

CHARMM: 1+2+3 or (1+2)-3

WH5 in OPLS/AA: conformations

WH5: Trp...His distance (CHARMM)

HE PATTERN

Correlations:

```
R(W...H) - RMSD: r = 0.55
R(W...H) - HB1, HB2, HB3 : r = 0.43, 0.59,
0.35
```

Close Trp...His contact is correlated with global RMSD from helix & HB2 formation

WH5: conformational energy (CHARMM)

WH5 hydrogen bond dynamics

Force Field	HB1			HB2			HB3		
	$ au_{\mathrm{f}}$	$ au_{u}$	$\tau_{ m r}$	$ au_{\mathrm{f}}$	$\tau_{\rm u}$	τ_{r}	$ au_{\mathrm{f}}$	τ_{u}	τ_{r}
AMBER03 ^a	261	355	150	784	911	421	147	50	37
AMBER99P ^a	39	366	35	102	1066	93	36	228	31
AMBER99SB ^a	815	110	97	3258	351	317	637	53	49
AMBERGS ^a	24	853	23	148	30354	147	43	392	39
G43A1 ^a	2278	126	119	1384	88	83	3246	45	44
G53A6 ^a	2440	44	43	5460	45	45	4274	23	23
OPLS/AA ^a	1066	218	152	2768	623	508	840	148	126
OPLS/AA ^b	723	187	149	2699	762	594	496	110	90
CHARMM ^b	478	236	158	3160	1596	1060	218	122	78

^aWith SPC water ^bWith TIP3P water

H-bond dynamics time constants in ps.

Relaxation of central hydrogen bond HB2 is in the 0.1-1.0 ns range for most studied FF.

REMD of WH5

WH5 REMD : PP MELTING CURVES

- At 300 K REMD=MD
- OPLS/AA, AMBER03, AMBER99P and CHARMM22 give excellent helicity predictions at 300 K
- Helix persistence
 exaggerated
- AMBER99SB anti-melting

REMD simulations: 32 replicas, 280-450 K, 30 Å cubic box with ca. 1000 waters, 100 ns NPT trajectory with GROMACS

WH5: CONCLUSIONS

- Most of the popular force fields applied here give reasonable predictions for WH5 helicity and kinetic rate constants
- Simulations suggest that the experimentally observed 5 ns process corresponds to helix folding, while the 1 ns process corresponds to helix nucleation – most probably formation of first two hydrogen bonds
- Force fields differ in details of the predicted folding pathway; a majority suggest a "zipper" model, with folding initiated at the N-terminus and progressing consecutively to C-terminus
- The formations of the three hydrogen bonds exhibit significant correlation
- Trp...His sidechain interactions play an important role in structure stabilization
- Force field accuracy is the limiting factor for current biomolecular computer simulations

Acknowledgments

Experiments: Gouri Jas, Baylor University.

Computer time and technical assistance:

Academic and Research Computing Services, Baylor University

Funding:

Baylor University internal funds Big XII Fellowship from University of Kansas

The story of Ala₅

Alanine-based peptide folding simulations

- Replica exchange simulations by Garcia et al. showed exaggerated helix stability in AMBER99
 →modified potential AMBER99GS
- MD simulation of α -helix folding kinetics by Pande also suggested the need for modified (φ,ψ) potential
 →modified potential AMBER99P
- Hummer proposed that most popular force fields overstabilize the α-helix structure in short Ala-based peptides [Best et al. *Biophys.J.* 95:L07 (2008)]
- Based on NMR measurements of J couplings in Ala_n [Graf et al., J.Am.Chem. Soc. 129:1179 (2007)]

New experimental data on ac-Ala₅-NH₂

- CD of Ac-Ala₅-NH₂ over 266-363 K \rightarrow melting transition with T_m = 271 K Δ H = 9.5 kcal/mol
- \rightarrow **13 ± 2** % helix @300 K
- FTIR measurement of amide I peak:
- \rightarrow **26 ± 5** % helix @293 K
- New experimental data support population of αhelix @ low temperature

[Hegefeld, DeLeon, Kuczera & Jas – submitted]

Green : β

Magenta: α

Cyan: turn

Folding of Ac-Ala₅-NH₂: REMD

- G43A1, G53A6 and AMBER99SB underestimate helicity
- OPLS/AA & AMBER03 closest to new data @ room T
- AMBER99P, AMBERGS, CHARMM22/CMAP over-stabilize helix
- REMD: melting **not modeled well** by most of the studied potentials
- Deviations from experiment ≈2-3 kcal/mol energy @300 K for all studied force fields

ALA5 REMD : PP MELTING CURVES

REMD simulations: 32 replicas, 280-450 K, 30 Å cubic box with ca. 1000 waters, 100 ns NPT trajectory with GROMACS, for all except CHARMM potential CHARMM REMD: 40 ns in 37 Å bcc cell.

Ac-Ala5-NH $_2$ MD

MD: 1,000 ns NPT MD at 1 atm, 300 K with GROMACS several popular force fields, ca. 1000 waters

400 ns NPT MD at 1 atm and 300 K with CHARMM/CMAP

Folding of Ac-Ala₅-NH₂: kinetics from MD

	τ _{fold} NS	τ _{unf} NS	τ _r ns	τ _{nuc} ns	%α HB	%α PP
OPLS/AA	7.2	0.6	0.6	0.1	5	9
CHARMM	6.1	5.5	2.9	0.2	37	40
G43A1	12.0	0.4	0.3	0.07	2	8
G53A6	170.	0.25	0.25	0.02	0.4	4
AMBER03	3.9	2.5	1.5	0.2	23	24
AMBER99P	0.2	16.2	0.3	0.04	39	42
AMBER99SB	4.4	0.5	0.5	0.1	2	4
AMBERGS	1.6	9.8	2.0	0.3	71	60

 Predicted kinetic and equilibrium parameters span 2-3 orders of magnitude; helicities agree with exp. data
 Helix content tends to be lower and kinetics faster

compared to WH5 - consistent with W/H effects.

MD: 1,000 ns NPT MD at 1 atm, 300 K with GROMACS

ALA5 MD : CA RMSD FROM HELIX

Time, ps

Sample OPLS/AA results

Folding of Ac-Ala₅-NH₂: structures

Folding of Ac-Ala₅-NH₂: pathways

Pathway results - analogous to WH5:

- FF dependent details
- most FF predict initiation at N-terminus

Conclusions

- Helix content for most popular models is in good agreement with **new experimental data**
- Calculated folding, unfolding and nucleation rates tend to be faster than those for WH5
- Most ff predict that helical hydrogen bond formation is **cooperative**
- Helix-coil transition paths vary with model; most studied models predict a **zipper-like mechanism**, with unfolding initiated at C-terminus and folding initiated at N-terminus.
- We have achieved full sampling of conformations and dynamics for modest size systems; results are now primarily **limited by force field accuracy**
- More and better experimental data are also needed to calibrate molecular models

Acknowledgments:

Experiments: Gouri Jas, Baylor University.

The computer time and technical assistance from the Academic and Research Computing Services at Baylor University are gratefully acknowledged.

Funding: Baylor University and Big XII Fellowship from University of Kansas

Future: WH21

Significantly more complex system

- 21 residues
- 19 hydrogen bonds
- 50 % helix and τ = 300 ns at 300 K

Partition configuration space x with hyperplanes H_s , s=1,...,M

Determine local kinetics: $\langle \tau_s^+ \rangle s \rightarrow s+1$ and $\langle \tau_s^- \rangle s \rightarrow s-1$

Recover global kinetics $R \rightarrow P$

Milestoning: from local to global kinetics

In each hyperplane s, s=1,...,M

-Generate N trajectories (e.g. N=100)

-Record forward and backward termination:

 N_{s}^{+} , $\langle\tau_{s}^{+}\rangle$ and N_{s}^{-} , $\langle\tau_{s}^{-}\rangle$

Global solution:

-Build kinetic matrix = asymmetric random walk

-Obtain stationary state solution with boundary conditions at s=1 and s=M

Result:

-Global forward and backward rate for whole process -P(s) – free energy profile or PMF

WH21 : Helix unfolding kinetics

130 milestones13,000 trajectories≈1µs total simulation time

Mean first passage time

455 ps

1.6 ns

8.9 ns

Elementary step

Unfolding

280 ns

7 μs

86 µs

Kuczera, Jas & Elber, J. Phys. Chem. A 113:7461-7473 (2009)

WH21 MD: 10 µs with OPLS/AA-SPC

MD production: 100 ns/day with GROMACS on 36 CPUs

Properties: $\%\alpha \approx 20\%$ relaxation $\tau \approx 100$ ns

- 3 folding/unfolding transitions sampled
- MD is slow but steady ...
- Milestoning requires input path ...

Force fields are not parameterized on µs-length simulations ...

Milestoning: P,Q and K

- Termination time distributions: $s \rightarrow s+1$: $K^{+}_{s}(\tau)$ and $s \rightarrow s-1$: $K^{-}_{s}(\tau)$
- $P_s(t)$ probability that system is between milestones s-1 and s+1 at t

 $extsf{Q}_{s}(t)$ – probability that system transitions to s at time t.

Probability balance:

$$\int_{0}^{\infty} K_{s}(\tau) d\tau = 1$$
$$K_{s} = K_{s}^{+} + K_{s}^{-}$$
$$K_{1}^{-} = K_{M}^{+} = 0$$

West, Elber & Shalloway, J.Chem.Phys. 126:145104 (2007)

$$P_{s}(t) = \int_{0}^{t} \left[1 - \int_{0}^{t-t'} K_{s}(\tau) d\tau \right] Q_{s}(t') dt'$$
$$Q_{s}(t) = \eta_{s} \delta(t - 0^{+}) + \int_{0}^{t} \left[K_{s+1}^{-}(t - t') Q_{s+1}(t') + K_{s-1}^{+}(t - t') Q_{s-1}(t') \right] dt'$$

Global Solution

$$\begin{split} & \swarrow & \left\{ \begin{array}{l} \langle K \rangle \hat{Q}^{eq} = \hat{0} \\ \hat{P}^{eq} = - \langle \tau K_D \rangle \hat{Q}^{eq} \\ \langle \langle \tau \rangle \rangle = \hat{\varepsilon}_i \cdot \left[I - \langle K_d \rangle \right]^{-1} \langle \tau K_d \rangle \left[I - \langle K_d \rangle \right]^{-1} \cdot \hat{\varepsilon}_f \end{split} \right] \end{split}$$

WH5 FiGURES

WH5 1,000 ns MD: 1 bar 300 K OPLSAA TIP3P

WH5 1,000 ns MD 1 bar 300 K OPLSAA TIP3P

WH5 1,000 ns MD: 1 bar 300 K OPLSAA TIP3P

WH5 1,000 ns MD: 1 bar 300 K OPLSAA TIP3P

Folding of Ac-Ala₅-NH₂: pathways

Transitions vary in - duration time - path details

Folding of Ac-Ala₅-NH₂: patterns

State	OPL	S/AA	G43A1 AMBER03		ER03	AMBER99P		AMBER99SB		AMBERGS		
	Frac	Соор	Frac	Соор	Frac	Соор	Frac	Соор	Frac	Соор	Frac	Соор
000	0.869	1.2	0.954	1.0	0.592	1.3	0.302	1.4	0.958	1.0	0.155	6.3
100	0.042	0.8	0.021	0.7	0.098	0.6	0.151	0.8	0.018	0.8	0.040	0.7
010	0.018	0.4	0.011	0.5	0.057	0.4	0.095	0.6	0.013	0.7	0.028	0.4
110	0.013	4.2	0.009	14.	0.096	1.5	0.160	1.1	0.003	7.5	0.132	0.7
001	0.032	0.7	0.003	0.6	0.029	1.4	0.082	0.9	0.005	0.6	0.015	0.3
101	0.004	1.3	0.000	0.7	0.014	0.4	0.030	0.4	0.000	1.3	0.024	0.2
011	0.010	4.2	0.001	9.5	0.037	1.2	0.065	0.9	0.002	13.	0.094	1.6
111	0.013	67.	0.001	342.	0.078	6.5	0.112	2.0	0.001	310.	0.512	1.5

- Most FF : 000 dominant, very little 111, positive h-bond cooperativity
- Populated intermediates: involve h-bonds #1 and #2
- Unusual: AMBERGS

WH5 figs