Short-time dynamics of concentrated suspensions of permeable particles

Gustavo Abade

Department of Mechanical Engineering University of Brasília, Brazil

B. Cichocki M. L. Ekiel-Jezewska G. Nägele E. Wanjryb

IPPT-PAN 16.06.2010

Publications

Authors: G. Abade, B. Cichocki, M. L. Ekiel-Jezewska, G. Nägele, E. Wanjryb

Part I

- Short-time dynamics of permeable particles in concentrated suspensions. *J. Chem. Phys.* **132**, 014503 (2010)
- Dynamics of permeble particles in concentrated suspensions, *Phys. Rev. E* 81, 20404(R) (2010)

Part II

• High-frequency viscosity and generalized Stokes-Einstein relations in dense suspensions of porous particles (submitted to the Journal of Physics: Condensed Matter)

Physical system

Suspension: hard PERMEABLE spheres + fluid

Hydrodynamic interactions (HIs) (coupling between the dynamics of the fluid and the particles)

Stationary Stokes hydrodynamics (instantaneous HIs)

time scale _____ $t \gg a^2 \frac{\rho}{\eta}$ viscous relaxation motion

Fluid flow

$$\begin{split} \eta \nabla^2 \mathbf{v} - \nabla p &= 0, \qquad \nabla \cdot \mathbf{v} = 0 \\ \mathbf{+} \\ \mathbf{boundary \ conditions} \end{split}$$

Motivation Suspensions of core-shell particles

Little is known about transport properties of these systems

weaker hydrodynamic interactions

Transport processes

Outline

- Hydrodynamic interactions
- Diffusion coefficients
- Effective viscosity
- Generalized Stokes-Einstein relations

Hydrodynamic interactions

(e.g. translational problem)

Main difficulties while evaluating $oldsymbol{\mu}(\mathbf{X})$

– long–range $\mu_{ij} \sim rac{1}{r_{ij}}$

- many-body character

$$\boldsymbol{\mu}_{ij}(1\ldots N) \neq \boldsymbol{\mu}_{ij}(ij)$$

- Iubrication effects

Dynamics of the fluid + particles

Induced force picture

Single sphere

Multipole description

Expansion in basis functions

solutions of the Stokes eqs.

$$\mathbf{v}^+_{lm\sigma}(\mathbf{r}) \sim r^{l+\sigma-1}$$
$$\mathbf{v}^-_{lm\sigma}(\mathbf{r}) \sim \frac{1}{r^{l+\sigma}}$$

 $\mu = \zeta^{-1}$

Mobility matrix

Applications I. Brownian diffusion at short-times

Hydrodynamic function

generalized sedimentation coefficient

Suspension of permeable spheres

Two parameters characterizing the model

Hydrodynamic function

(generalized sedimentation coefficient)

 $q_m a$ location of the principal peak of S(q)

Short-time transport coefficients

Self-diffusion coefficient

 $D_s = D_0 H(q \to \infty)$

Collective motions

Sedimentation coefficient

$$K = \frac{U}{U_0} = \lim_{q \to 0} H(q)$$

 $\label{eq:constraint} \begin{array}{l} \mbox{Gradient diffusion} \\ \mbox{J} = -D_c \nabla \phi \qquad D_c = \frac{D_0}{S(0)} K \\ \mbox{particle flux} \end{array}$

Diffusion at q_m

"cage" diffusion obtained from $H(q_m)$

Self-diffusion coefficient

Sedimentation and collective diffusion coefficients

Hydrodynamic function

(generalized sedimentation coefficient)

 $q_m a$ location of the principal peak of S(q)

Reduced hydrodynamic function

We can estimate H(q) in terms of the reduced functions for hard spheres with stick boundary conditions and the coefficients $H(0) = K(x, \phi), \ H(\infty) = D_s(x, \phi)/D_0(x), \ H(q_m; x, \phi)$

Summary

- Short-time dynamic properties of uniformly permeable spheres have been calculated as a function of permeability and concentration.
- The hydrodynamic function can be shifted and scaled to that of impermeable hard spheres.
- The short-time generalized Stokes-Einstein relations are valid to moderate accuracy only for $D(q_m)$.