SLOW VISCOUS MOTION OF A SOLID PARTICLE IN A SPHERICAL CAVITY

A. Sellier

LadHyX. Ecole Polytechnique. France. e-mail: sellier@ladhyx.polytechnique.fr

> Seminar at IPPT Warsaw, 16 November 2011

Outline

- 1) Addressed problem and assumptions
 - 2) Key issues and available literature
- 3) Boundary approach and suitable Green tensor
 - 4) Numerical implementation and comparisons
- 5) Numerical results for a non-spherical particle

6) Concluding remarks

Addressed problem

- A Newtonian liquid (ρ, μ) . Applied uniform gravity field **g**
- The liquid is confined by a solid and motionless cavity Σ with attached Cartesian coordinates (O, x_1, x_2, x_3)

• A solid arbitrary-shaped particle \mathcal{P} with center of mass O', uniform density ρ_s and smooth surface S with **n** the unit outward normal

• The particle translates at \mathbf{U} (velocity of O') and rotates at \mathbf{W}

Basic issues

Experienced surface traction \mathbf{f} on S? Resulting hydrodynamic force \mathbf{F} and torque Γ (about O') on \mathcal{P} ?

Assumptions and governing equations

- The particle and its rigid-body motion (**U**, **W**) have length and velocity scales *a* and *V*.
- Assuming that $\operatorname{Re} = \rho V a / \mu \ll 1$ one neglects inertia effects and obtains a quasi-steady flow $(\mathbf{u}, p + \rho \mathbf{g}. \mathbf{x})$ in the liquid domain Ω

Creeping steady flow $\mu \nabla^2 \mathbf{u} = \nabla p \text{ and } \nabla \cdot \mathbf{u} = 0 \text{ in } \Omega,$ $\mathbf{u} = \mathbf{0} \text{ on } \Sigma,$ $\mathbf{u} = \mathbf{U} + \mathbf{W} \wedge \mathbf{x}' \text{ on } S \text{ with } \mathbf{x}' = \mathbf{O}'\mathbf{M}$

Introducing the stress tensor $\boldsymbol{\sigma}$ such that $\sigma_{ij} = -p\delta_{ij} + \mu(u_{i,j} + u_{j,i})$, one looks at $\mathbf{f} = \boldsymbol{\sigma} \cdot \mathbf{n}$ on S,

$$\mathbf{F} = \int_{S} \mathbf{f} dS, \ \mathbf{\Gamma} = \int_{S} \mathbf{x}' \wedge \mathbf{f} dS$$

Two basic Problems
Problem 1: (U, W) prescribed. Evaluation of F and Γ?

• Problem 2: freely-suspended particle \mathcal{P} with volume \mathcal{V} . Obtain (\mathbf{U}, \mathbf{W}) by enforcing

$$\mathbf{F} = (\rho - \rho_s) \mathcal{V} \mathbf{g}, \quad \mathbf{\Gamma} = \mathbf{0}$$

Auxiliary Stokes flows and key surface tractions

•
$$(\mathbf{u}_t^{(i)}, p_t^{(i)})$$
 and $(\mathbf{u}_r^{(i)}, p_r^{(i)})$ for $i = 1, 2, 3$. Stokes flows with
 $\mathbf{u}_t^{(i)} = \mathbf{u}_r^{(i)} = \mathbf{0} \text{ on } \Sigma, \mathbf{u}_t^{(i)} = \mathbf{e}_i \text{ and } \mathbf{u}_t^{(i)} = \mathbf{e}_i \wedge \mathbf{x}' \text{ on } S$

• Resulting surface tractions $\mathbf{f}_t^{(i)}$ and $\mathbf{f}_r^{(i)}$ on S

Use for Problem 1

$$\mathbf{F} = -\mu \{ \mathbf{A}_t \cdot \mathbf{U} + \mathbf{B}_t \cdot \mathbf{W} \}, \quad \mathbf{\Gamma} = -\mu \{ \mathbf{A}_r \cdot \mathbf{U} + \mathbf{B}_r \cdot \mathbf{W} \}$$
$$-\mu A_L^{i,j} = \int_S \mathbf{f}_L^{(i)} \cdot \mathbf{e}_j dS, \quad -\mu B_L^{i,j} = \int_S (\mathbf{x}' \wedge \mathbf{f}_L^{(i)}) \cdot \mathbf{e}_j dS$$

Use for Problem 2 The rigid-body migration (\mathbf{U}, \mathbf{W}) is obtained by solving

$$\mu \{ \mathbf{A}_t \cdot \mathbf{U} + \mathbf{B}_t \cdot \mathbf{W} \} = (\rho_s - \rho) \mathcal{V} \mathbf{g}$$
$$\mu \{ \mathbf{A}_r \cdot \mathbf{U} + \mathbf{B}_r \cdot \mathbf{W} \} = \mathbf{0}$$

- Well-posed linear system
- Unique solution (\mathbf{U}, \mathbf{W})

Available literature?

• Restricted to a spherical particle!

• Case of a translating sphere located at the cavity center

- Cunningham (1910), Williams (1915)

by obtaining the stream function (exact solution)

• Case of a sphere not located at the cavity center

- Use of bipolar coordinates (well adapted to the fluid domain geometry)

- Jeffery (1915), Stimson & Jeffery (1926), O'Neill & Majumdar (1970a, 1970b)

- recently: accurate calculations by Jones (2008)

• Merits

very accurate solution (if carefully implemented)
able to deal with small sphere-cavity gaps!
provides very nice benchmatk tests for other methods to be developed

• Drawbacks

cumbersome approach (tricky analytical manipulations)
provides the net force F and torque Γ but still uneasy to calculate the surface tractions f⁽ⁱ⁾_t and f⁽ⁱ⁾_r on S
not possible to cope with one non-spherical particle or with several particles!

Quite different boundary approach

Green tensors

• **y** source point or pole in the entire domain $\mathcal{D} = \Omega \cup \mathcal{P}$

• **x** observation point. For j = 1, 2, 3 one introduces a Stokes flows $(\mathbf{v}^{(j)}, p^{(j)})$,

$$\mu \nabla^2 \mathbf{v}^{(j)} = \nabla p^{(j)} - \delta_{3d} (\mathbf{x} - \mathbf{y}) \mathbf{e}_j, \ \nabla \mathbf{v}^{(j)} = 0 \text{ in } \mathcal{D}$$

 \bullet Resulting Green tensor ${\bf G}$ with Cartesian components

 $G_{kj}(\mathbf{x},\mathbf{y}) = \mathbf{v}^{(j)}(\mathbf{x},\mathbf{y}).\mathbf{e}_k$

Remark, examples

- A Green tensor: not unique (no prescribed boundary conditions)
 - \bullet Widely-employed free-space Green tensor \mathbf{G}^∞ such that

$$8\pi\mu G_{kj}^{\infty}(\mathbf{x},\mathbf{y}) = \frac{\delta_{kj}}{|\mathbf{x}-\mathbf{y}|} + \frac{[(\mathbf{x}-\mathbf{y}).\mathbf{e}_j][(\mathbf{x}-\mathbf{y}).\mathbf{e}_k]}{|\mathbf{x}-\mathbf{y}|^3}$$

• Specific Green tensor \mathbf{G}^c for the given cavity Σ :

$$G_{jk}^c(\mathbf{x}, \mathbf{y}) = 0 \text{ for } \mathbf{x} \text{ on } \Sigma$$

Relevant integral representations and boundary-integral equations

• One looks at $\mathbf{f} = f_k \mathbf{e}_k$ on S for $\mathbf{u} = \mathbf{U} + \mathbf{\Omega} \wedge \mathbf{x}'$ on S

• Due to this velocity boundary condition, one gets a single-layer integral representation

$$[\mathbf{u}.\mathbf{e}_j](\mathbf{x}) = -\int_{S\cup\Sigma} f_k(\mathbf{y})G_{kj}(\mathbf{y},\mathbf{x})dS(\mathbf{y}) \text{ for } \mathbf{x} \text{ in } \Omega \cup S; j = 1,2,3$$

(Here \mathbf{x} is the pole)

• Associated Fredholm boundary-integral equation of the first kind

$$[\mathbf{U} + \mathbf{\Omega} \wedge \mathbf{x}'] \cdot \mathbf{e}_j = -\int_{S \cup \Sigma} f_k(\mathbf{y}) G_{kj}(\mathbf{y}, \mathbf{x}) dS(\mathbf{y}) \text{ for } \mathbf{x} \text{ on } S; j = 1, 2, 3.$$

(solution unique up to $c\mathbf{n}$ with c constant)

• Valid for any Green tensor **G**!

• Because $G_{jk}^c(\mathbf{y}, \mathbf{x}) = 0$ for \mathbf{y} on Σ , one replaces $S \cup \Sigma$ with S in the above integrals!

• Additional general property: $G_{jk}^{c}(\mathbf{x}, \mathbf{y}) = G_{kj}^{c}(\mathbf{y}, \mathbf{x})$ under the condition $G_{jk}^{c}(\mathbf{x}, \mathbf{y}) = 0$ on Σ

Green tensor G^c for the spherical cavity

Obtained (in a different form not suitable for numerics) by Oseen 1927!

• Pole **y** and observation point **x**.

$$\begin{split} \mathbf{y}' &= \frac{R^2 \mathbf{y}}{|\mathbf{y}|^2}, \, \mathbf{t} = \frac{\mathbf{y}}{|\mathbf{y}|}, \, \mathbf{a} = \mathbf{x} - (\mathbf{x}.\mathbf{t})\mathbf{t}, \, \mathbf{h} = \frac{|\mathbf{y}|}{R}(\mathbf{x} - \mathbf{y}'), \, h = |\mathbf{h}| \\ G_{jk}^e(\mathbf{x}, \mathbf{y}) &= G_{jk}^\infty(\mathbf{x}, \mathbf{y}) - \frac{\delta_{jk}}{h} - \frac{(\mathbf{x}.\mathbf{e}_j)(\mathbf{x}.\mathbf{e}_k)}{h^3} + \frac{(\mathbf{t}.\mathbf{e}_j)(\mathbf{t}.\mathbf{e}_k)}{h} [\frac{|\mathbf{x}|^2}{h^2} - 1] \\ &- [\frac{2|\mathbf{y}|\mathbf{t}.\mathbf{x}}{h^3}](\mathbf{t}.\mathbf{e}_j)(\mathbf{t}.\mathbf{e}_k) + |\mathbf{y}|[\frac{(\mathbf{t}.\mathbf{e}_j)(\mathbf{x}.\mathbf{e}_k) + (\mathbf{t}.\mathbf{e}_k)(\mathbf{x}.\mathbf{e}_j)}{h^3}] \\ &- \frac{[|\mathbf{x}|^2 - R^2][|\mathbf{y}|^2 - R^2]}{2} \{\frac{\delta_{jk}}{R^3h^3} - \frac{3}{R^2} [\frac{(\mathbf{h}.\mathbf{e}_j)(\mathbf{h}.\mathbf{e}_k)}{h^5}] \\ &- 2\frac{\mathbf{t}.\mathbf{e}_k}{R^2} [\frac{\mathbf{t}.\mathbf{e}_j}{h^3} - \frac{3(\mathbf{h}.\mathbf{e}_j)(\mathbf{h}.\mathbf{t})}{h^5}] + \frac{3E}{R^4h} [\delta_{jk} - (\mathbf{t}.\mathbf{e}_k)(\mathbf{t}.\mathbf{e}_j)] \\ &+ \frac{3\mathbf{a}.\mathbf{e}_k}{R} \left[-\frac{E}{R^3h} \{\frac{|\mathbf{y}|\mathbf{h}.\mathbf{e}_j}{Rh^2} + \frac{2\mathbf{a}.\mathbf{e}_j}{|\mathbf{a}|^2}\} + \frac{\mathbf{E}.\mathbf{e}_j}{R^4h^2[|\mathbf{x}|^+(\mathbf{x}.\mathbf{t}))]} + \mathbf{a}.\mathbf{e}_j [\frac{(2R^2)^{\pm}|\mathbf{y}||\mathbf{x}|}{R^4h^2|\mathbf{a}|^2}] \right] \right\} \\ E = \{|\mathbf{x}|^{\pm} \frac{2R^2\mathbf{x}.\mathbf{t}}{R^2 + Rh_+^2|\mathbf{x}||\mathbf{y}|}\} / \{|\mathbf{x}|^{\pm}.\mathbf{x}.\mathbf{t}\}, \mathbf{E} = \frac{-}{+} |\mathbf{y}|\mathbf{x} + [|\mathbf{y}||\mathbf{x}|^{\pm}(1^+_+2)R^2]\mathbf{t}^2 [\frac{2R^2|\mathbf{y}|\mathbf{x} + [R^3h_+R^2|\mathbf{y}||\mathbf{x}|]}{R^2 + Rh_+^2|\mathbf{y}||\mathbf{x}|}] \right\} \end{split}$$

with upperscripts or subscripts for $\mathbf{x} \cdot \mathbf{t} \ge 0$ or $\mathbf{x} \cdot \mathbf{t} < 0$, respectively

Numerical strategy

- Isoparametric triangular curvilinear Boundary Elements on S and, if needed, on the cavity Σ
- Discretize each boundary-integral equation. This requires to accurately deal with the case of a source **x** on a boundary element (a refined treatment is needed with the use of local polar coordinates)
 - Solve each resulting linear systems AX = Y by Gaussian elimination
- The use of \mathbf{G}^c permits one to solely mesh the particle's surface (worth for a large cavity)

Benchmarks are needed!

- As seen before, \mathbf{G}^c is available for a spherical cavity
- Comparisons with both analytical and numerical results for a spherical particle (previously-mentioned literature)
 - Sphere located or not located at the cavity center

Case of a spherical particle

Adopted notations

- A spherical cavity with center O and radius R
- A spherical particle with radius a and center O'

 $\mathbf{OO}' = d\mathbf{e}_3$ and $0 \le d < R - a$

- R (d + a) is the sphere-cavity gap
- Normalized sphere-cavity gap $\eta = (R-d-a)/a$

Numerical comparisons for a sphere located at the cavity center

• Here O = O' and d = 0. Sphere with radius a < R translating at the velocity \mathbf{e}_i .

$$\mathbf{F} = -6\pi\mu ac(a/R)\mathbf{e}_i, \qquad \mathbf{\Gamma} = \mathbf{0}$$

• Analytical formula for the occurring dimensionless resistance coefficient c

$$c(\beta) = \frac{1 - \beta^5}{1 - \frac{9\beta}{4} + \frac{5\beta^3}{2} - \frac{9\beta^5}{4} + \beta^6}, \qquad \beta = a/R < 1$$

• A N - node mesh on the sphere and, if needed, 1058 nodal points on the cavity Σ

Two computed values of the above coefficient c

• c_s : using the Green \mathbf{G}^{∞} and putting Stokeslets on both S and Σ

- c_c : using the Green tensor \mathbf{G}^c and Stokeslets on S
 - Notation: $\Delta c_l = |c_l/c 1|$

A translating sphere located at the cavity center

N	R/a	C_S	Δc_s	C_{C}	Δc_c	
74	1.1	3258.137	1.00613	2097.155	0.29128	
242	1.1	2124.983	0.30842	1949.547	0.01030	
1058	1.1	1777.331	0.09436	1676.260	0.00353	
exact	1.1	1624.089	0	1624.089	0	
74	2.	7.223525	0.00968	7.218993	0.01030	
242	2.	7.289179	0.00068	7.284937	0.00126	
1058	2.	7.297493	0.00046	7.293273	0.00012	
exact	2.	7.294118	0	7.294118	0	
74	5.	1.749799	0.00344	1.749640	0.00353	
242	5	1.755232	0.00035	1.755073	0.00044	
1058	5.	1.755937	0.00005	1.755777	0.00004	
exact	5.	1.755845	0	1.755845	0	

Computed quantities c_s , Δc_s , c_c and Δc_c versus the number N of collocation points on S

Arbitrarily-located sphere

• Here $\mathbf{OO}' = d\mathbf{e}_3$ with $0 \le d < R - a$.

For symmetry reasons one confines the attention to four cases.

- (i) A sphere translating at the velocity $\mathbf{e}_1 : \mathbf{F} = -6\pi\mu ac_1\mathbf{e}_1$ and $\mathbf{\Gamma} = 8\pi\mu a^2s\mathbf{e}_2$
 - (ii) A sphere translating at the velocity \mathbf{e}_3 : $\mathbf{F} = -6\pi\mu ac_3\mathbf{e}_3$ and $\mathbf{\Gamma} = \mathbf{0}$
- (iii) A sphere rotating at the velocity $\mathbf{e}_1 : \mathbf{F} = -8\pi\mu a^2 s \mathbf{e}_2$ and $\mathbf{\Gamma} = -8\pi\mu a^3 t_1 \mathbf{e}_1$
 - (iv) A sphere rotating at the velocity \mathbf{e}_3 : $\mathbf{F} = \mathbf{0}$ and $\mathbf{\Gamma} = -8\pi\mu a^3 t_3 \mathbf{e}_3$

Comparisons for the computed coefficients c_1, c_3, t_1, t_3 and s

- Accurate computations obtained elsewhere by using the bipolar coordinates (Jones 2008, here labelled Jones in each reported table)
- R = 4a and two values of the normalized gap $\eta = (R d a)/a$ are selected: $\eta = 0.5$ and $\eta = 0.1$ (small sphere-cavity gap).
- 4098 nodal points are put on the cavity Σ when using the Green tensor \mathbf{G}^{∞}

Comparisons for a sphere not located at the cavity center with $\eta = (R - d - a)/a = 0.5$

N	Method	c_1	C_3	t_1	t_3	S
74	G^∞	2.6330	4.6730	1.1640	1.0789	0.11870
74	\mathbf{G}^{c}	2.6327	4.6714	1.1639	1.0789	0.11861
242	G^∞	2.6473	4.7107	1.1639	1.0755	0.11927
242	\mathbf{G}^{c}	2.6471	4.7090	1.1639	1.0755	0.11920
1058	\mathbf{G}^∞	2.6488	4.7144	1.1639	1.0755	0.11938
1058	\mathbf{G}^{c}	2.6486	4.7127	1.1639	1.0755	0.11932
Jones	Bipolar	2.6487	4.7131	1.1639	1.0755	0.11933

Comparisons for a sphere not located at the cavity center with $\eta = (R - d - a)/a = 0.1$

N	Method	c_1	c_3	t_1	t_3	S
74	\mathbf{G}^∞	3.9016	15.552	1.6065	1.1960	0.20206
74	\mathbf{G}^{c}	3.9009	15.413	1.6052	1.1960	0.20138
242	\mathbf{G}^∞	3.9273	18.886	1.6145	1.1939	0.19108
242	\mathbf{G}^{c}	3.9237	18.636	1.6134	1.1938	0.19001
1058	\mathbf{G}^∞	3.9159	18.832	1.6171	1.1945	0.18494
1058	\mathbf{G}^{c}	3.9121	18.711	1.6160	1.1945	0.18353
Jones	Bipolar	3.9121	18.674	1.6163	1.1945	0.18344

Numerical results for a non-spherical particle

• Ellipsoid with semi-axis (a_1, a_2, a_3) and surface admitting the equation

$$(x_1/a_1)^2 + (x_2/a_2)^2 + ([x_3 - d]/a_3)^2 = 1$$

• Ellipsoid-cavity normalized separation parameter λ with

$$0 < \lambda = d/a_3 < (R - a_3)/a_3$$

• 8 friction coefficients c_i, t_i, s_1 and s_2 such that

$$\mathbf{A}_{T}^{(i)} = 6\pi\mu a_{3}c_{i}\mathbf{e}_{i}, \ \mathbf{B}_{R}^{(i)} = 8\pi\mu a_{3}^{3}t_{i}\mathbf{e}_{i}, \mathbf{B}_{T}^{(1)} = -8\pi\mu a_{3}^{2}s_{1}\mathbf{e}_{2}, \ \mathbf{B}_{T}^{(2)} = 8\pi\mu a_{3}^{2}s_{2}\mathbf{e}_{1}, \ \mathbf{B}_{T}^{(3)} = \mathbf{0}, \mathbf{A}_{R}^{(1)} = 8\pi\mu a_{3}^{2}s_{2}\mathbf{e}_{2}, \ \mathbf{A}_{R}^{(2)} = -8\pi\mu a_{3}^{2}s_{1}\mathbf{e}_{1}, \ \mathbf{A}_{R}^{(3)} = \mathbf{0}$$

Comparisons for two selected ellipsoids

- A sphere with radius a_3 (clear symbols)
- The ellipsoid $a_1 = 5a_3/3, a_2 = 0.6a_3$

having the same volume as the sphere (filled symbols)

Friction coefficients

Normalized coefficients c_i for the sphere (clear symbols) and the ellipsoid (filled symbols).

(a) Coefficients t_1 (circles), t_2 (squares) and t_3 (triangles). (b) Coefficients s_1 (circles) and s_2 (squares)

Settling normalized translational and angular velocities

Setting $U'_s = (\rho_s - \rho)a^2g/\mu$ one gets

(i) If
$$\mathbf{g} = g\mathbf{e}_1$$
: $\mathbf{U} = U'_s u_1 \mathbf{e}_1$, $\mathbf{W} = aU'_s w_2 \mathbf{e}_2$
(ii) If $\mathbf{g} = g\mathbf{e}_2$: $\mathbf{U} = U'_s u_2 \mathbf{e}_2$, $\mathbf{W} = -aU'_s w_1 \mathbf{e}_1$
(iii) If $\mathbf{g} = g\mathbf{e}_3$: $\mathbf{U} = U'_s u_3 \mathbf{e}_3$, $\mathbf{W} = \mathbf{0}$

Normalized velocities for the sphere (clear symbols) and the ellipsoid (filled symbols). (a) Translational velocities u_1 (circles), u_2 (squares) and u_3 (triangles). (b) Angular velocities w_1 (circles) and w_2 (squares)

Concluding remarks

• A new approach based on a boundary-integral formulation

• Valid for arbitrarily-shaped particles!

• Easy implementation and nicely retrieves for a spherical particle results obtained elsewhere using a quite different (bipolar coordinates) approach

• Two tested approaches resorting to the free-space Green tensor and the Green tensor complying with the no-slip condition on the motionless spherical cavity

- The second one makes it possible to solely mesh the particle surface and offers more accurate results
- Numerical results reveal that a particle behaviour is slightly sensitive to its shape
 - In future: cope with the challenging case of a collection of particles!