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• A Newtonian liquid (ρ, µ). Applied uniform gravity field g

• The liquid is confined by a solid and motionless cavity Σ

with attached Cartesian coordinates (O, x1, x2, x3)

• A solid arbitrary-shaped particle P with center of mass O′,

uniform density ρs and smooth surface S with n the unit outward normal

• The particle translates at U (velocity of O′) and rotates at W

Basic issues

Experienced surface traction f on S?

Resulting hydrodynamic force F and torque Γ (about O’) on P?



Assumptions and governing equations

• The particle and its rigid-body motion (U,W)

have length and velocity scales a and V.

• Assuming that Re = ρV a/µ ≪ 1 one neglects inertia effects and obtains

a quasi-steady flow (u, p+ρg.x) in the liquid domain Ω

Creeping steady flow

µ∇2u = ∇p and ∇.u = 0 in Ω,

u = 0 on Σ,

u = U + W ∧ x′ on S with x′ = O′M

Introducing the stress tensor σ such that

σij = −pδij + µ(ui,j + uj,i), one looks at

f = σ.n on S,

F =

∫

S

fdS, Γ =

∫

S

x′ ∧ fdS

Two basic Problems

• Problem 1: (U,W) prescribed. Evaluation of F and Γ?

• Problem 2: freely-suspended particle P with volume V . Obtain (U,W) by enforcing

F = (ρ − ρs)Vg, Γ = 0



Auxiliary Stokes flows

and key surface tractions

• (u
(i)
t , p

(i)
t ) and (u

(i)
r , p

(i)
r ) for i = 1, 2, 3. Stokes flows with

u
(i)
t = u(i)

r = 0on Σ,u
(i)
t = ei and u

(i)
t = ei ∧ x′ on S

• Resulting surface tractions f
(i)
t and f

(i)
r on S

Use for Problem 1

F = −µ{At.U + Bt.W}, Γ = −µ{Ar.U + Br.W}

−µAi,j
L =

∫

S

f
(i)
L .ejdS, −µBi,j

L =

∫

S

(x′ ∧ f
(i)
L ).ejdS

Use for Problem 2

The rigid-body migration (U,W) is obtained by solving

µ{At.U + Bt.W} = (ρs − ρ)Vg

µ{Ar.U + Br.W} = 0

• Well-posed linear system

• Unique solution (U,W)



Available literature?

• Restricted to a spherical particle!

• Case of a translating sphere located at the cavity center

- Cunningham (1910), Williams (1915)

by obtaining the stream function (exact solution)

• Case of a sphere not located at the cavity center

- Use of bipolar coordinates (well adapted to the fluid domain geometry)

- Jeffery (1915), Stimson & Jeffery (1926), O’Neill & Majumdar (1970a, 1970b)

- recently: accurate calculations by Jones (2008)

• Merits

- very accurate solution (if carefully implemented)

- able to deal with small sphere-cavity gaps!

- provides very nice benchmatk tests for other methods to be developed

• Drawbacks

- cumbersome approach (tricky analytical manipulations)

- provides the net force F and torque Γ but still uneasy to

calculate the surface tractions f
(i)
t and f

(i)
r on S

- not possible to cope with one non-spherical particle

or with several particles!



Quite different boundary approach

Green tensors
• y source point or pole in the entire domain D = Ω ∪ P

• x observation point. For j = 1, 2, 3 one introduces a Stokes flows (v(j), p(j)),

µ∇2v(j) = ∇p(j) − δ3d(x− y)ej, ∇.v(j) = 0 in D

• Resulting Green tensor G with Cartesian components

Gkj(x,y) = v(j)(x,y).ek

Remark, examples
• A Green tensor: not unique (no prescribed boundary conditions)

• Widely-employed free-space Green tensor G∞ such that

8πµG∞
kj(x,y) =

δkj

|x − y|
+

[(x − y).ej][(x − y).ek]

|x − y|3

• Specific Green tensor Gc for the given cavity Σ :

Gc
jk(x,y) = 0 for x on Σ



Relevant integral representations

and boundary-integral equations

• One looks at f = fkek on S for u = U + Ω ∧ x′ on S

• Due to this velocity boundary condition, one gets a single-layer integral representation

[u.ej](x) = −

∫

S∪Σ

fk(y)Gkj(y,x)dS(y) for x in Ω ∪ S; j = 1, 2, 3.

(Here x is the pole)

• Associated Fredholm boundary-integral equation of the first kind

[U + Ω ∧ x′].ej = −

∫

S∪Σ

fk(y)Gkj(y,x)dS(y) for x on S; j = 1, 2, 3.

(solution unique up to cn with c constant)

• Valid for any Green tensor G!

• Because Gc
jk(y,x) = 0 for y on Σ, one replaces S ∪ Σ with S in the above integrals!

• Additional general property: Gc
jk(x,y) = Gc

kj(y,x)

under the condition Gc
jk(x,y) = 0 on Σ



Green tensor Gc for the spherical cavity

Obtained (in a different form not suitable for numerics) by Oseen 1927!

• Pole y and obervation point x.

y′ =
R2y

|y|2
, t =

y

|y|
, a = x − (x.t)t, h =

|y|

R
(x − y′), h = |h|

Gc
jk(x,y) = G∞

jk(x,y) −
δjk

h
−

(x.ej)(x.ek)

h3
+

(t.ej)(t.ek)

h
[
|x|2

h2
− 1]

−[
2|y|t.x

h3
](t.ej)(t.ek) + |y|[

(t.ej)(x.ek) + (t.ek)(x.ej)

h3
]

−
[|x|2 − R2][|y|2 − R2]

2

{ δjk

R3h3
−

3

R2
[
(h.ej)(h.ek)

h5
]

−2
t.ek

R2
[
t.ej

h3
−

3(h.ej)(h.t)

h5
] +

3E

R4h
[δjk − (t.ek)(t.ej)]

+
3a.ek

R

[

−
E

R3h
{
|y|h.ej

Rh2
+

2a.ej

|a|2
} +

E.ej

R4h2[|x|+−(x.t))]
+ a.ej[

(2R2)+−|y||x|

R4h2|a|2
]
]}

E = {|x|+−
2R2x.t

R2 + Rh−
+|x||y|

}/{|x|+−x.t},E =−
+ |y|x + [|y||x|+−(1−+2)R2]t+

−2[
2R2|y|x + [R3h−

+R2|y||x|]t

R2 + Rh−
+|y||x|

]

with upperscripts or subscripts for x.t ≥ 0 or x.t < 0, respectively



Numerical strategy

• Isoparametric triangular curvilinear Boundary Elements on S

and, if needed, on the cavity Σ

• Discretize each boundary-integral equation. This requires to accurately deal

with the case of a source x on a boundary element (a refined treatment

is needed with the use of local polar coordinates)

• Solve each resulting linear systems AX = Y by Gaussian elimination

• The use of Gc permits one to solely mesh the particle’s surface (worth for a large cavity)

Benchmarks are needed!

• As seen before, Gc is available for a spherical cavity

• Comparisons with both analytical and numerical results

for a spherical particle (previously-mentioned literature)

• Sphere located or not located at the cavity center



Case of a spherical particle

Adopted notations

R
O

Σ

Ω
µ, ρ

n

O′

• P
S

n

x3

x2

x1

• A spherical cavity with center O and radius R

• A spherical particle with radius a and center O′

OO′ = de3 and 0 ≤ d < R − a

• R − (d + a) is the sphere-cavity gap

• Normalized sphere-cavity gap η = (R − d − a)/a



Numerical comparisons for a sphere

located at the cavity center

• Here O = O′ and d = 0. Sphere with radius a < R translating at the velocity ei.

F = −6πµac(a/R)ei, Γ = 0

• Analytical formula for the occurring dimensionless resistance coefficient c

c(β) =
1 − β5

1 − 9β
4

+ 5β3

2
− 9β5

4
+ β6

, β = a/R < 1.

• A N − node mesh on the sphere and, if needed, 1058 nodal points on the cavity Σ

Two computed values of the above coefficient c

• cs : using the Green G∞ and putting Stokeslets on both S and Σ

• cc : using the Green tensor Gc and Stokeslets on S

• Notation: ∆cl = |cl/c − 1|



A translating sphere

located at the cavity center

N R/a cs ∆cs cc ∆cc

74 1.1 3258.137 1.00613 2097.155 0.29128

242 1.1 2124.983 0.30842 1949.547 0.01030

1058 1.1 1777.331 0.09436 1676.260 0.00353

exact 1.1 1624.089 0 1624.089 0

74 2. 7.223525 0.00968 7.218993 0.01030

242 2. 7.289179 0.00068 7.284937 0.00126

1058 2. 7.297493 0.00046 7.293273 0.00012

exact 2. 7.294118 0 7.294118 0

74 5. 1.749799 0.00344 1.749640 0.00353

242 5 1.755232 0.00035 1.755073 0.00044

1058 5. 1.755937 0.00005 1.755777 0.00004

exact 5. 1.755845 0 1.755845 0

Computed quantities cs, ∆cs, cc and ∆cc

versus the number N of collocation points on S



Arbitrarily-located sphere

• Here OO′ = de3 with 0 ≤ d < R − a.

For symmetry reasons one confines the attention to four cases.

• (i) A sphere translating at the velocity e1 : F = −6πµac1e1 and Γ = 8πµa2se2

• (ii) A sphere translating at the velocity e3 : F = −6πµac3e3 and Γ = 0

• (iii) A sphere rotating at the velocity e1 : F = −8πµa2se2 and Γ = −8πµa3t1e1

• (iv) A sphere rotating at the velocity e3 : F = 0 and Γ = −8πµa3t3e3

Comparisons for the computed

coefficients c1, c3, t1, t3 and s

• Accurate computations obtained elsewhere by using the bipolar coordinates

(Jones 2008, here labelled Jones in each reported table)

• R = 4a and two values of the normalized gap η = (R − d − a)/a are selected:

η = 0.5 and η = 0.1 (small sphere-cavity gap).

• 4098 nodal points are put on the cavity Σ when using the Green tensor G∞



Comparisons for a sphere

not located at the cavity center

with η = (R − d − a)/a = 0.5

N Method c1 c3 t1 t3 s

74 G∞ 2.6330 4.6730 1.1640 1.0789 0.11870

74 Gc 2.6327 4.6714 1.1639 1.0789 0.11861

242 G∞ 2.6473 4.7107 1.1639 1.0755 0.11927

242 Gc 2.6471 4.7090 1.1639 1.0755 0.11920

1058 G∞ 2.6488 4.7144 1.1639 1.0755 0.11938

1058 Gc 2.6486 4.7127 1.1639 1.0755 0.11932

Jones Bipolar 2.6487 4.7131 1.1639 1.0755 0.11933



Comparisons for a sphere

not located at the cavity center

with η = (R − d − a)/a = 0.1

N Method c1 c3 t1 t3 s

74 G∞ 3.9016 15.552 1.6065 1.1960 0.20206

74 Gc 3.9009 15.413 1.6052 1.1960 0.20138

242 G∞ 3.9273 18.886 1.6145 1.1939 0.19108

242 Gc 3.9237 18.636 1.6134 1.1938 0.19001

1058 G∞ 3.9159 18.832 1.6171 1.1945 0.18494

1058 Gc 3.9121 18.711 1.6160 1.1945 0.18353

Jones Bipolar 3.9121 18.674 1.6163 1.1945 0.18344



Numerical results for a non-spherical particle

• Ellipsoid with semi-axis (a1, a2, a3) and surface admitting the equation

(x1/a1)
2 + (x2/a2)

2 + ([x3 − d]/a3)
2 = 1

• Ellipsoid-cavity normalized separation parameter λ with

0 < λ = d/a3 < (R − a3)/a3

• 8 friction coefficients ci, ti, s1 and s2 such that

A
(i)
T = 6πµa3ciei, B

(i)
R = 8πµa3

3tiei,

B
(1)
T = −8πµa2

3s1e2, B
(2)
T = 8πµa2

3s2e1, B
(3)
T = 0,

A
(1)
R = 8πµa2

3s2e2, A
(2)
R = −8πµa2

3s1e1, A
(3)
R = 0

Comparisons for two selected ellipsoids

• A sphere with radius a3 (clear symbols)

• The ellipsoid a1 = 5a3/3, a2 = 0.6a3

having the same volume as the sphere (filled symbols)



Friction coefficients
Normalized coefficients ci for the sphere (clear symbols) and the ellipsoid (filled symbols).
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(a) Coefficients c1 (circles) and c2 (squares). (b) Coefficients c3 (triangles)
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Settling normalized translational

and angular velocities

Setting U ′
s = (ρs − ρ)a2g/µ one gets

(i) If g = ge1 : U = U ′
su1e1, W = aU ′

sw2e2

(ii) If g = ge2 : U = U ′
su2e2, W = −aU ′

sw1e1

(iii) If g = ge3 : U = U ′
su3e3, W = 0
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Normalized velocities for the sphere (clear symbols) and the ellipsoid (filled symbols).

(a) Translational velocities u1 (circles), u2 (squares) and u3 (triangles).

(b) Angular velocities w1 (circles) and w2 (squares)



Concluding remarks

• A new approach based on a boundary-integral formulation

• Valid for arbitrarily-shaped particles!

• Easy implementation and nicely retrieves for a spherical particle

results obtained elsewhere using a quite different (bipolar coordinates) approach

• Two tested approaches resorting to the free-space Green tensor and

the Green tensor complying with the no-slip condition on the motionless spherical cavity

• The second one makes it possible to solely mesh the particle surface

and offers more accurate results

• Numerical results reveal that a particle behaviour is slightly sensitive to its shape

• In future: cope with the challenging case of a collection of particles!


