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Balance (conservation) 
laws of continuum mechanics

• mass

• linear momentum

• angular momentum

• energy

• second law of thermodynamics
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reversible irreversible
provides restrictions 
on admissible forms 
of constitutive relations



Physics: entropy production may be negative on 
short time and v. small space scales

• D.J. Evans, E.G.D. Cohen & G.P. Morriss (1993). Probability of second law 
violations in steady states, Phys. Rev. Lett. 71(15), 2401-2404

• D.J. Evans & D.J. Searles, D.J. (1994). Equilibrium  microstates which 
generate second law violating steady states, Phys. Rev. E 50(2), 1645-1648

• D.J. Evans & D.J. Searles, D.J. (2002). The fluctuation theorem, Adv. Phys. 
51(7), 1529-1585

• G.M. Wang, E.M. Sevick, E. Mittag, D.J. Searles & D.J. Evans (2002), 
Experimental demonstration of violations of the second law of 
thermodynamics for small systems and short time scales, Phys. Rev. Lett.
89, 050601

• C. Jarzynski (2011). Equalities and inequalities: Irreversibility and the 
second law of thermodynamics at the nanoscale, Annu. Rev. Condens. 
Matter Phys. 2, 329-51
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up to 3 sec. in cholesteric liquids…!



need to revise thermodynamics 
of continuum mechanics

Maxwell: “the second law is of the nature of 
strong probability … not an absolute certainty”
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• modify the Clausius-Duhem inequality
• stochastic continuum thermomechanics

- fluctuation theorem in place of 2nd law
- entropy = submartingale
- random fields

• applications in presence of 2nd law violations:
- permeability
- acceleration wave
- micropolar fluid mechanics
- Lyapunov function in stochastic diffusion


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Couette flow

in a deterministic system
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Couette flow

there exist fluctuations in shear stress for 
a molecular system in Couette flow
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fluctuation theorem in place of 2nd law

an estimate of the relative probability of observing processes that have 
positive and negative total dissipation in non-equilibrium systems
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Couette flow

”In either the large system or long time limit the Steady State Fluctuation 
Theorem predicts that the Second Law will hold absolutely and that the 
probability of Second Law violations will be zero.” [Evans & Searles, 2002]



(2nd law axiom in conventional thermodynamics 
and continuum theories)
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fluctuation theorem 

in place of
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history



… which random process 
can model the entropy evolution ?

• Markov process

• Processes homogeneous in time 

– wide-sense, or 

– narrow-sense

• Gaussian processes

• Martingale …

• …
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fluctuation theorem 

in place of

 irreversible entropy is a submartingale
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history

[O-S & Malyarenko, Proc. R. Soc. A, 2014]



Doob decomposition 



martingale increasing process

 i
t ts M G 

{ ( ) | past}: ( )E M t dt M t 

four distinct interpretations 
in continuum thermomechanics

(weakly monotonic f’n)
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time and/or 
spatial scale
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levels of thermodynamic models
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Drucker's Stability Postulate • a classification only
• many counterexamples (conceptual models and 

experiments)

levels of thermodynamic models
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Drucker's Stability Postulate • a classification only
• many counterexamples (conceptual models and 

experiments)

Ziegler's Orthogonality Principle • classifying principle for a wide range of solids, 
soils, and fluids (starts from energy and entropy 
production)

• some materials (models and experiments) fall 
outside of it

levels of thermodynamic models
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Drucker's Stability Postulate • a classification only
• many counterexamples (conceptual models and 

experiments)

Ziegler's Orthogonality Principle • classifying principle for a wide range of solids, 
soils, and fluids (starts from energy and entropy 
production)

• some materials (models and experiments) fall 
outside of it

Edelen's Primitive Thermomechanics • accounts for dissipationless forces or fluxes
• offers general solution consistent with 2nd law

levels of thermodynamic models
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Drucker's Stability Postulate • a classification only
• many counterexamples (conceptual models and 

experiments)

Ziegler's Orthogonality Principle • classifying principle for a wide range of solids, 
soils, and fluids (starts from energy and entropy 
production)

• some materials (models and experiments) fall 
outside of it

Edelen's Primitive Thermomechanics • accounts for dissipationless forces or fluxes
• offers general solution consistent with 2nd law

Second Law of Thermodynamics • almost universally accepted as true
• ... some materials (models and experiments) on 

very small time and space scales fall outside of it

levels of thermodynamic models
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Drucker's Stability Postulate • a classification only
• many counterexamples (conceptual models and 

experiments)

Ziegler's Orthogonality Principle • classifying principle for a wide range of solids, 
soils, and fluids (starts from energy and entropy 
production)

• some materials (models and experiments) fall 
outside of it

Edelen's Primitive Thermomechanics • accounts for dissipationless forces or fluxes
• offers general solution consistent with 2nd law

Second Law of Thermodynamics • almost universally accepted as true
• ... some materials (models and experiments) on 

very small time and space scales fall outside of it

fluctuation theorems • account for negative entropy production

levels of thermodynamic models
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Fluctuation Theorems

Quantify probabilities of violations of Second Law

Are verifiable in laboratory

Can be used to derive the linear transport coefficients of, 
say, Navier-Stokes fluids (Green-Kubo relations)

Valid in nonlinear regime, far from equilibrium

20



… Stochastic thermomechanics



free energy dissipation function

Stochastic thermomechanics
with internal variables (TIV)

stochastic
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 (V)

V

φ (V)

V

Y=∇V φ+U

U
∇V φ

(a) (b)

Y=l∇V 

Thermodynamic Orthogonality
via convex analysis

Primitive Thermodynamics 
with powerless vector
via Poincaré’s lemma

Dewar (2005)

… or via maximum entropy in statistical physics: 22

O-S & Zubelewicz
[J. Phys. A: Math. Theor. (2011)]



 (V)
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φ (V)
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Y=∇V φ+U

U
∇V φ

(a) (b)

Y=l∇V 

Thermodynamic Orthogonality
stochastic
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Primitive Thermodynamics 
w/ powerless vector stochastic



RFs with exponential or Gaussian correlation functions

( ) exp[ ], 0, 0 2C x Ax A     

Martingale fluctuations in 2d: random fields
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RFs with fractal + Hurst effects 
Cauchy Dagum
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Martingale fluctuations in 2d: random fields
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Can grasp fractals and Hurst effect

roughness

long-term memory, extreme events

0 < H < 0.5: time series with negative autocorrelation (a decrease 

between values will likely be followed by an increase)

H = 0.5: true random walk, w/o preference for a decrease or increase 

following any particular value

0.5 < H < 1: time series with positive autocorrelation (an increase 

between values followed by another increase)
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Can grasp fractals and Hurst effect

roughness

heavy-tail behavior of covariance function

A random process Zx is statistically self-similar if it obeys

for some constant c, where H is known as the Hurst parameter

• Crudely: when stretched by some factor c in x dimension, Z

looks the same if stretched by c-H in the Z dimension

• Most time series Zt look “flat” if stretched like this

H

x cxZ c Z
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Bernoulli equation

Acceleration waves in 1D media

dissipation elastic nonlinearity

competition

critical amplitude

time to blow-up





c
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in deterministic medium:
2d

dt
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Bernoulli equation

Acceleration waves with 

nanoscale wavefront thickness

dissipation elastic nonlinearity

stochastic competition!

critical amplitude random

2d

dt


   

time to blow-up random
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in random medium:
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Bernoulli equation

Acceleration waves with 

nanoscale wavefront thickness

2d

dt


   



  2 1a a a     

in random medium:

stochastic dynamical system 
driven by random viscosity
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Start with Stratonovich interpretation of this 
stochastic differential equation

Work in terms of z:=1/



• Since the dissipation may 
become negative, the wave 
that started at the initial 
amplitude  can 
actually blow-up instead of 
exponentially die off. 

• The blow-up event becomes 
impossible as the wavefront
thickness gets larger.

• Taking other spatial correlations 
of the random field viscosity than 
white-noise does not 
fundamentally change the results.

0  c

deterministic/homogeneous medium

random medium 31



• Are non-zero microrotational disturbances  possible for vanishing 
classical flow disturbances   ?

32

v  v  v, v  0,

w  w  w, w  0,

p  p  p, p  0.

  #   

• In light of the Fluctuation Theorem, non-zero microrotational
disturbances may spontaneously arise, … but not on average. 

w

v 

• According to the analysis of steady parallel flows (Liu, 1970), 
assuming the conventional Second Law holds, No. 

In general, the motion on microscale is turbulent



(a) (d)

(c)
(b) (c)

j

v
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(a) (d)

(c)
(b) (c)

j

v

stress tensor is 
not symmetric in 
a molecular fluid

dV element of micropolar continuum 
(with velocity v and microrotation ϕ 
DOFs) having random field fluctuations

(fractal) porous network within which 
the micropolar fluid flow takes place

porous rock

Multiscale Permeability

34



Balance equations of micropolar fluids
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,i i

D
v
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classical continuum mechanics is recovered for: ji  0 wk  gk  0



Balance equations of micropolar fluids
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Du
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Dt
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linear viscous fluid model (generalizes Navier-Stokes)

 int  v i, i 2  2dijdij  4r 1
2

emijv j, i  wi 
2

c0wi, i 2  cd  ca wi, k wi, k  cd  ca wi, k wk , i,
  #   
intrinsic 
dissipation function 

  0, 3  2  0,

cd  ca  0, cd  ca  0, 2cd  3c0  0,

cd  ca   cd  ca  cd  ca , r  0.

  #   Hold on average:



Thermodynamic orthogonality: 
… from a molecular fluid to a continuum

for Fourier-type heat conduction

int ( , ) ( ) ( , )G Mj   d d d

( ) ( )

(2)2 ,     ,     2q d

ij ij ij ijG d p d        
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for Maxwell-Cattaneo heat conduction

Primitive thermodynamics: 
… from a molecular fluid to a continuum

Y  VV,w  UV,w   #   

 0,     ,V U U 0 w 0 

   1 2 3[ , , ],     [ , , ],     , ,
d T

T
    qY V d q q U u u u


 
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Violations of second law in diffusion problems
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e.g. in heat conduction [Searles DJ, Evans DJ (2001) Fluctuation theorem 
for heat flow. Int. J. Thermophys. 22(1), 123-134]

RFs of internal energy and entropy:

u : D  T    R, s : D  T    R,   #   

E|Fn  0,   Ts i  qk
T, k

T
 q  T

T
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q,  Ġq  M q,,   #   

 ( ) ( , ) .i ij j i ij jG q q M q ql   q q M

2:ij   M D V

Second Law on average:

Dissipation function:



Violations of second law in diffusion problems
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in heat conduction 
on finite domain:

Lyapunov function:

if SL holds:

0

0   on   

   on   

i i q

T

q n

T T

 

 

D

D

 

 

  

 

0

0

2

0

2

2

0

,

0

,

0

,

0

1 ,

1 ,

1

i i

i i

i i

d
dt

T

i iT

T q T

i iT T

T q T

i iT T

q T

T

u T s dv

q dv

q T dv

q n dS T dv

T dv



 

     

   

 

D

D

D

D

D

E d
dt

D
u  T0sdv  E T0 

D

qiT, i

T2
dv  0   #   

V  E T0 
D

qiT, i

T2
dv  0   #   

  
1

, , ,ij j i

T
T

t c
 





x

T
t

 1
c ijT, ji

 ijij

 
c 2T.   #   









How can axioms of thermomechanics admit negative entropy production?

Fundamental role in physics is played by free energy and dissipation function. 

That role is not played - as classically done in rational continuum mechanics – by 
the quartet of stress σ, heat flux q, free energy ψ, and entropy s.

… a very wide range of continuum constitutive behaviors may be derived from 
thermomechanics with internal variables (TIV)

… fundamentally based on the free energy and dissipation functions. 

Axiom of Determinism is to be replaced by Axiom of Causality: "The future state of 
the system depends solely on the probabilities of events in the past" 

or "the probability of subsequent events can be predicted from the probabilities of 
finding initial phases and a knowledge of preceding changes in the applied field and 
environment of the system." 

Fluctuation Theorem (FT) is derived from the Axiom of Causality. 

Second Law is obtained as a special case of FT. 

Eventually, this justifies the Axiom of Determinism.    

Axiom of Local Action is to be replaced by the scale dependence of adopted 
continuum approximation. Reference to microstructure is needed.

Axiom of Equipresence is to be abandoned since the violation of Second Law may 
occur in one physical process present in constitutive relations, not all. 41



Conclusions

• Non-zero probability of negative entropy production rate on 
very small time and space scales motivates a revision of 
continuum mechanics. 

• Fluctuation theorem replaces 2nd law as a restriction on 
dependent fields and material properties.

• Entropy evolves as a submartingale.

• Stochastic generalizations of thermomechanics. 

• Effect of violations when the phenomena occur on spatial 
and/or time scales where the 2nd law may spontaneously be 
violated

42

…such as life
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X 100

X 1,000 

X 100,000

Macroscale

Cortical

Trabecular bone

 bone

Mesoscale

Microscale

Nanoscale

trabecular
network

single

collagen fibers

apatite crystals

trabecula

 Sub-microscale single
lamella

X 10,000 

Iwona Jasiuk
[MechSE, IGB, Beckman]

continuum fluid and solid mechanics

is enriched by multiscale models

especially, in fractal systems

and biomechanics


