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Balance (conservation)
laws of continuum mechanics

* mass

* [inear momentum
* angularmomentum
* energy

e second law of thermodynamics
/‘ §=$0 480 with $O-0/T, $9>0.

provides restrictions T ' . T _
on admissible forms reversible irreversible

of constitutive relations



Physics: entropy production may be negative on
short time and v. small space scales

up to 3 sec. in cholestericliquids...!
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e C.lJarzynski(2011). Equalities and inequalities: Irreversibility and the
second law of thermodynamics at the nanoscale, Annu. Rev. Condens.
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Maxwell: “the second law is of the nature of
strong probability ... not an absolute certainty”

—> need to revise thermodynamics
of continuum mechanics

* modify the Clausius-Duhem inequality
e stochasticcontinuum thermomechanics
- fluctuation theorem in place of 2"¢ law
- entropy = submartingale
- random fields
* applications in presence of 2" law violations:
- permeability
- acceleration wave
- micropolar fluid mechanics
- Lyapunov function in stochastic diffusion
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there exist fluctuations in shear stress for

a molecular system in Couette flow



fluctuation theorem in place of 2" law
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an estimate of the relative probability of observing processes that have
positive and negative total dissipation in non-equilibrium systems

”In either the large system or long time limit the Steady State Fluctuation
Theorem predicts that the Second Law will hold absolutely and that the
probability of Second Law violations will be zero.” [Evans & Searles, 2002] -




fluctuation theorem —

E{s" (t+At)[s® (1)} > s (t)

history
in place of

sU (t+At) > s (t)

(29 law axiom in conventional thermodynamics
and continuum theories)



... which random process
can model the entropy evolution ?

Markov process

Processes homogeneousin time

— wide-sense, or
— narrow-sense

Gaussian processes
Martingale ...

E{X (t+At)|past}= X (t)



fluctuation theorem =

E{s" (t+At)[s® (1)} > s (t)

history
in place of

sV (t+At)>s0 (1)

—> irreversible entropy is a submartingale

[O-S & Malyarenko, Proc. R. Soc. A, 2014]



Doob decomposition =

/ 7‘

martingale increasing process
E{M (t +dt) |past}:=M(t) (weakly monotonic f'n)

— four distinct interpretations
in continuum thermomechanics
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quasi-conservative/dissipative

conservative phenomena phenomena
SO SO
continuum G=0
mechanics
M=0,G=0 M=0
0 0
> | (b) 1

(a)




quasi-conservative/dissipative

conservative phenomena phenomena
SO SO
continuum G=0
mechanics
M=0.G=0 M=0
0 0
@) > | (b) ’
SO
statistical
physics M£0,G=0

(c)

A 4

Sy

time and/or
spatial scale

13




levels of thermodynamic models



levels of thermodynamic models

Drucker's Stability Postulate  a classification only
* many counterexamples (conceptual models and
experiments)



levels of thermodynamic models

Drucker's Stability Postulate  a classification only

* many counterexamples (conceptual models and
experiments)

Ziegler's Orthogonality Principle classifying principle for a wide range of solids,
soils, and fluids (starts from energy and entropy
production)

* some materials (models and experiments) fall

outside of it



levels of thermodynamic models
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offers general solution consistent with 2nd law
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... some materials (models and experiments) on
very small time and space scales fall outside of it



levels of thermodynamic models

Drucker's Stability Postulate

Ziegler's Orthogonality Principle

Edelen's Primitive Thermomechanics

Second Law of Thermodynamics

fluctuation theorems

a classification only
many counterexamples (conceptual models and
experiments)

classifying principle for a wide range of solids,
soils, and fluids (starts from energy and entropy
production)

some materials (models and experiments) fall
outside of it

accounts for dissipationless forces or fluxes
offers general solution consistent with 2nd law

almost universally accepted as true
... some materials (models and experiments) on
very small time and space scales fall outside of it

account for negative entropy production



Fluctuation Theorems

Quantify probabilities of violations of Second Law

Are verifiable in laboratory

Can be used to derive the linear transport coefficients of,

say, Navier-Stokes fluids (Green-Kubo relations)

Valid in nonlinear regime, far from equilibrium
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.. Stochastic thermomechanics

y(T.e;)=u(s.&)-sT oy dy — ’k—,O¢>0
free energy dissipation function
stochastic

Y-V=p ¢(V,0)>0 where §(V,0)=d,(d,o)+d,(q o)

velocities V={d;, T,.}
dissipative forces Y ={o;", —q, /T}
—> Stochastic thermomechanics
with internal variables (TIV)



Y=AF, ¢ o L
V V
¢ (V) ¢ (V)
(a) (b)
Thermodynamic Orthogonality Primitive Thermodynamics

via convex analysis with powerless vector
via Poincaré’s lemma

... Or via maximum entropy in statistical physics:

Dewar (2005) O-S & Zubelewicz
[J. Phys. A: Math. Theor. (2011)]



(a)

Thermodynamic Orthogonality Primitive Thermodynamics
stochastic w/ powerless vector stochastic
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Martingale fluctuations in 2d: random fields
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RFs with exponential or Gaussian correlation functions

C(x) =exp[-Ax“], A>0, O<a<?2
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Martingale fluctuations in 2d: random fields
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RFs with fractal + Hurst effects
Cauchy Dagum
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Can grasp fractals and Hurst effect

/I

roughness
long-term memory, extreme events

0 < H <0.5: time series with negative autocorrelation (a decrease
between values will likely be followed by an increase)

H = 0.5: true random walk, w/o preference for a decrease or increase
following any particular value

0.5 < H < 1: time series with positive autocorrelation (an increase
between values followed by another increase)

26



Can grasp fractals and Hurst effect

/

roughness
heavy-tail behavior of covariance function

A random process Z, is statistically self-similar if it obeys Z =c™"Z_
for some constant c, where H is known as the Hurst parameter

* Crudely: when stretched by some factor ¢ in x dimension, Z
looks the same if stretched by ¢ in the Z dimension

* Most time series Z; look “flat” if stretched like this

27



Acceleration waves in 1D media

in deterministic medium:

O‘E[[a]]:az_aﬂ_

Bernoulli equation

=—,ua+,8a

e \

dissipation

—> critical amplitude a;

— time to blow-

elastic nonlinearity
competition

H
P

1 H
t =—=In(1-
P ” M n ﬁao)
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Acceleration waves with a=|[a]]=a,—a
nanoscale wavefront thickness

Bernoulli equation

: , da ,
in random medium: Ez—,uowﬁa
dissipation elastic nonlinearity

stochastic competition!

—> critical amplitude &, 7 random

H
P

: 1
—>  time to blow-up t, =——In(l——-) random

M pa,
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Acceleration waves with E[ ] a, —
nanoscale wavefront thickness

Bernoulli equation

da

in random medium: E=—,u05+,5a2

da Gopgz o — Pr Eo

—> stochastic dynamical system 2 _
driven by random viscosity G|, dx 2G; 2G;

2

Gy = E{Gp} +S¢,

Start with Stratonovich interpretation of this
stochastic differential equation

Work in terms of z:=1/«

30



distance x

deterministic/homogeneous medium

distance x

random medium

* Since the dissipation may
become negative, the wave
that started at the initial
amplitude ag < a¢ can
actually blow-up instead of
exponentially die off.

* The blow-up event becomes
impossible as the wavefront
thickness gets larger.

* Taking other spatial correlations
of the random field viscosity than
white-noise does not
fundamentally change the results.
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In general, the motion on microscale Is turbulent

e Are non-zero microrotational disturbances w' possible for vanishing

?

N

classical flow disturbances V
y A
o
o
E ¢
9 Ed
v
©) 00O

(a) (b)

e According to the analysis of steady parallel flows (Liu, 1970),

assuming the conventional S

econd Law holds, No.

* In light of the Fluctuation Theorem, non-zero microrotational

disturbances may spontaneo

usly arise, ... but not on average. 32




(b)

(d)
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porous rock

(a)

stress tensor is
not symmetric in
a molecularfluid

(b) b

dV element of micropolarcontinuum
(with velocity v and microrotation ¢ (fractal) porous network within which

DOFs) having random field fluctuations the micropolarfluid flow takes place
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Balance equations of micropolar fluids

Dp
Dt

Dv. ¢
/OF,[ J|’j+/0 i

DlI.

IOE — /uJH +,09. +e|jkz-jk

Du (

= —PVisi

p—__ql’l—i_z-

Dt ekjlwk)—i_:ujlwl’ +,09. +e|jijk

classical continuum mechanics is recovered for: pji =0 wy =0gx =0



Balance equations of micropolar fluids

linear viscous fluid model (generalizes Navier-Stokes)
Ty = (_p +/1Vk’k)5ij "‘:U(Vj’i +Vi’j)+/ur (Vj’i _Vi’j)_zzuremijwm

Hij = CoWy i 5ij + G4 (Wj’i +Wi’j)+ca (Wj'i _Wi’j)

Dv.
Pﬁ:_p,i+(/1+,U_,Ur)vj’ji"‘(ﬂ‘*’ﬂr)vivkk +2. 14,853 Wi
DI

@——q —pVv,,; +o¢
P Dt i Y P int

pdint = A(vi,1)? + 2udiydly + dpe( L eV, —wi)© intrinsic
+Co(Wi, i )% + (Cd + Ca)Wi, kWi, k + (Cd — Ca)Wi, kWi, i, dissipation function
u>0, 31+2u=>0,

Hold onaverage: ¢, ¢, >0, cy+ca>0, 2c4+3co >0,

—(Cqg+Ca) <Cqg—Ca < (Cqg+Ca), ur=>0.



Thermodynamic orthogonality:
.. from a molecular fluid to a continuum

P (d, @) =G(d) + M (d, @)

G= 2,ud('2), ol =—pd.

1) 1’

G(d) 2,u,d

for Fourier-type heat conduction



Primitive thermodynamics:
... from a molecular fluid to a continuum

Y = Vvo(V,w) + U(V,w)
V-U=0, U(O,W)=O

VT .
Y = [G(d),—T,—qu], V=[d,q,q], U=[u,u,u,]

for Maxwell-Cattaneo heat conduction



Violations of second law in diffusion problems

e.g. in heat conduction [Searles DJ, Evans DJ (2001) Fluctuation theorem
for heat flow. Int. J. Thermophys. 22(1), 123-134]

RFs of internal energy and entropy:
U:DxTxQ->R, s:DxTxQ->R,

Second Law on average:

E{p|Fn} >0, ¢ =T = —Qk% = —(Q Q

¢ DxTx€Q - R,

Dissipation function:

$(0,®) = G(q) + M(q, ),
G(q) = 0,4;0; M (0, 0) = ;M;; (a))qj'

M, : DxQ—V*
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Violations of second law in diffusion problems
LI (u=Tgs)dv

on fnits domin = (-1)q.dv
gn =0 on 6D, :"D[((TT—O—l)qi),i +T, %Jdv
T=To on by = [,(2-1)gnds +T,] v
=T, [, 47+ dv
— E{% jp(u—Tos)dv} - E{To jD Qil.. dv} <0

—> Lyapunov function: V = E{Toj qiTTz’i dv} <0
D

: or 1 oT _ 1. .+ K w2
if SL holds: E:E(K” (% @)T,;), S = cxil =y KveT.



How can axioms of thermomechanics admit negative entropy production?

Fundamental role in physics is played by free energy and dissipation function.

That role is not played - as classically done in rational continuum mechanics — by
the quartet of stress g, heat flux g, free energy /, and entropy s.

... a very wide range of continuum constitutive behaviors may be derived from
thermomechanics with internal variables (TIV)

... fundamentally based on the free energy and dissipation functions.

Axiom of Determinism is to be replaced by Axiom of Causality: "The future state of
the system depends solely on the probabilities of events in the past"

or "the probability of subsequent events can be predicted from the probabilities of
finding initial phases and a knowledge of preceding changes in the applied field and
environment of the system."

Fluctuation Theorem (FT) is derived from the Axiom of Causality.
Second Law is obtained as a special case of FT.
Eventually, this justifies the Axiom of Determinism.

Axiom of Local Action is to be replaced by the scale dependence of adopted
continuum approximation. Reference to microstructure is needed.

Axiom of Equipresence is to be abandoned since the violation of Second Law may
occur in one physical process present in constitutive relations, not all.



Conclusions

Non-zero probability of negative entropy production rate on
very small time and space scales motivates a revision of
continuum mechanics.

Fluctuation theorem replaces 2"9law as a restriction on
dependent fields and material properties.

Entropy evolves as a submartingale.
Stochastic generalizations of thermomechanics.

Effect of violations when the phenomena occur on spatial
and/or time scales where the 2" law may spontaneously be
violated



Short Course on

Mechanics of Random and
Fractal Media

A s
ey Jg"‘/ 2526 June 2015 Poznaid, Poland

Instructor: Prof. Martin Ostoja-Starzewski
Department of Mechanical Science and Engineening,
Institute for Condensed Matter Theory and Beckman Institute
Umiversity of lllmoeis at Urbana-Champaign hitp://martinos mechanical illinois edu/

The short course onMechanics of Random and Fractal Media is organized by the Polish
Society on Computational Mechanics together with Poznan University of Technology and will
take place at the PUT in Poznan on 25-16 June 2015

Course Objective

This course gives exposition of an array of methods developed over the past few decades, and
necessary for reading the literature and doing research on mechanics of random and/or fractal
matenial mictostructures. This is the prand theme of contemporary mechanics of matenals,
meluding geomechanics and biomechanics. Besides (non)linear, (injelastic responses, various
coupled field phenomena or flow in porous media, can also be handled by techniques presented
here.

Course Outline (6x2 hours)

1. Infroduction to stochastic geometric models of microstuctores

2. Lattice models (periodicity vs. randomness, rigidity, dynamics, and optimality)

3. Mesoscale bounds for random elastic media; size of representative volume element (EVE)
4. Mesoscale bounds for random nonlinear (m)elastic media

5. Scalar/tensor random fields; fractal and Hurst effects

6. Connection to stochastic partial differential equations and stochastic finite elements (SFE)
7. Wavefronts in random media

8. Mechamics of fractal media via dimensional regulanization

9. Classical (Cauchy) versus generalized (Cosserat/micropolar or nonlocal) models

10. Elastic-plastic-bnttle transitions and avalanches in disordered media

11. Generalized thermoelasticity theories

12. Contimmm mechames vis-a-vis violahons of the second law of thermodynamics

Course Notes: to be distributed

Reference Texts (not required):

= M. Ostoja-Starzewski (2008), Microsiructural Randomness and Scaling in Mechanics of
Materials, CRC Press

# J Iemaczak and M. Ostoja-Starzewski (2010), Thermeoelasticity with Finite Wave Speeds.
Oxford Mathematical Monographs, Oxford University Press.

= M. Ostoja-Starzewsky, J. Li, H. Joumaa and PN. Demmie (2013), “From fractal media to
continuum mechanics,” Z4 A 93, 1-29
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