Partner: M. Zubko


Recent publications
1.Golasiński K., Pieczyska E., Maj M., Mackiewicz S., Staszczak M., Kowalewski Z.L., Urbański L., Zubko M., Takesue N., Anisotropy of Gum Metal analysed by ultrasonic measurement and digital image correlation, MATERIALS SCIENCE AND TECHNOLOGY, ISSN: 0267-0836, DOI: 10.1080/02670836.2019.1629539, pp.1-7, 2019
Abstract:

The mechanical anisotropy of a multifunctional titanium alloy, Gum Metal, is investigated in this paper. The structural characterisation showed a strong <110> texture for Gum Metal, that is a result of the cold-swaging process applied during its manufacture. Gum Metal was treated as a transversally isotropic solid because of this texture. A significant difference from Young’s moduli of the alloy was detected from the ultrasonic measurement of parallel and perpendicular directions to the alloy swaging direction. Samples of Gum Metal cubes were compressed in two different orientations. During the deformation process, two perpendicular walls of each sample were monitored by two visible range cameras for further two-dimensional digital image correlation analysis, this confirmed a strong plastic anisotropy in Gum Metal.

Keywords:

Gum Metal, compression, mechanical anisotropy, digital image correlation, ultrasonic measurement, texture, titanium alloy, full-field deformation measurement

Affiliations:
Golasiński K.-IPPT PAN
Pieczyska E.-IPPT PAN
Maj M.-IPPT PAN
Mackiewicz S.-IPPT PAN
Staszczak M.-IPPT PAN
Kowalewski Z.L.-IPPT PAN
Urbański L.-IPPT PAN
Zubko M.-other affiliation
Takesue N.-Fukuoka University (JP)

Conference abstracts
1.Golasiński K., Pieczyska E., Maj M., Mackiewicz S., Staszczak M., Zubko M., Takesue N., Elastic and plastic anisotropy of gum metal investigated by ultrasound measurements and digital image correlation, ISMMS, 10th International Symposium on Mechanics of Materials and Structures, 2019-06-02/06-06, Augustów (PL), pp.43-44, 2019
Keywords:

Mechanical Anisotropy, Ti alloy, Gum Metal, Ultrasound Measurement, Digital Image Correlation

Affiliations:
Golasiński K.-IPPT PAN
Pieczyska E.-IPPT PAN
Maj M.-IPPT PAN
Mackiewicz S.-IPPT PAN
Staszczak M.-IPPT PAN
Zubko M.-other affiliation
Takesue N.-Fukuoka University (JP)
2.Golasiński K., Pieczyska E.A., Mackiewicz S., Staszczak M., Zubko M., Takesue N., Analysis Gum Metal crystallographic texture and misorientation in correlation to its mechanical behavior, CAC, XXIV CONFERENCE ON APPLIED CRYSTALLOGRAPHY, 2018-09-02/09-06, Arłamów (PL), No.OY1-5, pp.37-38, 2018
Keywords:

Gum Metal, EBSD, ultrasonic measurement

Affiliations:
Golasiński K.-IPPT PAN
Pieczyska E.A.-IPPT PAN
Mackiewicz S.-IPPT PAN
Staszczak M.-IPPT PAN
Zubko M.-other affiliation
Takesue N.-Fukuoka University (JP)
3.Pieczyska E., Golasiński K., Maj M., Staszczak M., Mackiewicz S., Zubko M., Takesue N., Gum metal in compression – investigation of mechanical anisotropy caused by texture, ICEM 2018, 18TH INTERNATIONAL CONFERENCE ON EXPERIMENTAL MECHANICS, 2018-07-01/07-05, BRUKSELA (BE), No.454, pp.1-2, 2018
4.Pieczyska E., Golasiński K., Maj M., Mackiewicz S., Staszczak M., Zubko M., Takesue N., Mechanical anisotropy of Gum Metal analyzed by ultrasonic measurements and digital image correlation, SolMech 2018, 41st SOLID MECHANICS CONFERENCE, 2018-08-27/08-31, Warszawa (PL), pp.352-353, 2018
Abstract:

Experimental investigation of mechanical anisotropy in a multifunctional beta titanium alloy Gum Metal under compression is reported. Non-destructive and destructive techniques were used to analyze unique mechanical behavior of the alloy. Structural characterization showed a strong <110> texture of Gum Metal, which is a result of cold-swaging applied during its fabrication [1]. Due to this kind of texture Gum Metal can be treated as transversally isotropic solid. Ultrasonic measurements determined elastic constants with high accuracy. A significant difference between Young’s moduli of the alloy calculated for parallel and perpendicular directions to the alloy swaging direction was demonstrated. Compression of Gum Metal cube samples with two orientations was conducted on a testing machine. Two perpendicular walls of each sample were monitored by two visible range cameras during the deformation process for further 2-dimensional digital image correlation (DIC) analysis. Strong mechanical anisotropy of Gum Metal was confirmed by a detailed analysis of the stress vs. strain curves and strain distributions.

Affiliations:
Pieczyska E.-IPPT PAN
Golasiński K.-IPPT PAN
Maj M.-IPPT PAN
Mackiewicz S.-IPPT PAN
Staszczak M.-IPPT PAN
Zubko M.-other affiliation
Takesue N.-Fukuoka University (JP)