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Abstract

Systems biology is a new, emerging and rapidly developing, multidisciplinary
research field that aims to study biochemical and biological systems from
a holistic perspective, with the goal of providing a comprehensive, system-
level understanding of cellular behaviour. In this way, it addresses one of
the greatest challenges faced by contemporary biology, which is to compre-
hend the function of complex biological systems. Systems biology combines
various methods that originate from scientific disciplines such as molecu-
lar biology, chemistry, engineering sciences, mathematics, computer science
and systems theory. Systems biology, unlike “traditional” biology, focuses
on high-level concepts such as: network, component, robustness, efficiency,
control, regulation, hierarchical design, synchronization, concurrency, and
many others. The very terminology of systems biology is “foreign” to “tra-
ditional” biology, marks its drastic shift in the research paradigm and it
indicates close linkage of systems biology to computer science.

One of the basic tools utilized in systems biology is the mathematical
modelling of life processes tightly linked to experimental practice. The stud-
ies contained in this thesis revolve around a number of challenges commonly
encountered in the computational modelling in systems biology. The re-
search comprises of the development and application of a broad range of
methods originating in the fields of computer science and mathematics for
construction and analysis of computational models in systems biology. In
particular, the performed research is setup in the context of two biolog-
ical phenomena chosen as modelling case studies: 1) the eukaryotic heat
shock response and 2) the in vitro self-assembly of intermediate filaments,
one of the main constituents of the cytoskeleton. The range of presented
approaches spans from heuristic, through numerical and statistical to ana-
lytical methods applied in the effort to formally describe and analyse the
two biological processes. We notice however, that although applied to cer-
tain case studies, the presented methods are not limited to them and can
be utilized in the analysis of other biological mechanisms as well as com-
plex systems in general. The full range of developed and applied modelling
techniques as well as model analysis methodologies constitutes a rich mod-
elling framework. Moreover, the presentation of the developed methods,
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their application to the two case studies and the discussions concerning
their potentials and limitations point to the difficulties and challenges one
encounters in computational modelling of biological systems. The problems
of model identifiability, model comparison, model refinement, model inte-
gration and extension, choice of the proper modelling framework and level
of abstraction, or the choice of the proper scope of the model run through
this thesis.
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Sammanfattning
(abstract in Swedish)

Systembiologi är ett nytt, emergent och snabbt växande, tvärvetenskaplig
forskningsområde som fokuserar på systematiskt studium av biokemiska och
biologiska system ur ett heltäckande perspektiv, med syftet att uppnå allsi-
dig förståelse av cellulära beteenden på systemnivå. På detta sätt angriper
systembiologin en av de största utmaningarna som modern biologi står inför,
dvs. att förstå funktionen hos komplexa biologiska system. Systembiologin
sammanfogar olika metoder vilka har sitt ursprung i vetenskapliga disci-
pliner, såsom molekylärbiologi, kemi, ingenjörsvetenskap, matematik, data-
vetenskap och systemteori. Systembiologin, till skillnad från “traditionell”
biologi, fokuserar på högnivåbegrepp såsom: nätverk, komponent, robusthet,
effektivitet, kontroll, reglering, hierarkisk design, synkronisering, samverkan
och många andra. Själva terminologin i systembiologin är “främmande” för
“traditionell” biologi; den markerar en drastisk förändring i forskningspara-
digmet och tyder på en nära koppling mellan systembiologin och dataveten-
skap.

Ett av de basala verktygen som används i systembiologin är matema-
tisk modellering av livsprocesser i samband med experimentell forskning.
De undersökningar som ingår i denna avhandling kretsar kring ett antal
utmaningar som ofta förekommer i beräkningsmodellering inom systembio-
login. Den presenterade forskningen består av utveckling och tillämpning av
ett brett sortiment av metoder vilka har sitt ursprung i datavetenskap och
matematik för konstruktion och analys av datormodeller i systembiologin.
I synnerhet är den forskningen utförd i kontexten av två biologiska fenomen
utvalda som fallstudier: 1) eukaryotiskt värme-chock respons och 2) in vitro
självorganisering av intermediära filament, en av huvudbeståndsdelarna av
cytoskelettet. Sortimentet av presenterade tillvägagångssätt sträcker sig från
heuristiska metoder, via numeriska och statistiska metoder till analytiska
metoder, tillämpade i strävan att formellt beskriva de två biologiska proces-
serna. Vi konstaterar att de presenterade metoderna, fastän utnyttjade i de
enskilda fallstudierna, inte är begränsade till dessa utan kan tillämpas vid
analys av andra biologiska mekanismer samt komplexa system i allmänhet.

iii



Hela sortimentet av utvecklade och tillämpade modelleringstekniker samt
metodologier för modellanalys utgör ett rikt modelleringsramverk. Presen-
tationen av de utvecklade metoderna, deras tillämpning i de två fallstudierna
och diskussionerna om deras möjligheter och begränsningar, visar därtill på
svårigheter och utmaningar man stöter på i beräkningsmodellering av bi-
ologiska system. Identifierbarhet av modeller, jämförelse mellan modeller,
precisering, integration och utvidgning av modeller, urval av rätt modelle-
ringsramverk och abstraktionsnivå samt urval av ett lämpligt omfång för en
modell är problem som diskuteras genom hela denna avhandling.
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Chapter 1

Introduction

Systems biology is an emerging research field that aims to study biochemical
and biological systems from a holistic perspective, with the goal of provid-
ing a comprehensive, system-level understanding of cellular behaviour ([138,
137]). Biological processes have long been seen as static systems comprising
a vast number of loosely linked, highly detailed, molecular devices ([16]).
However, it has already been known for many years that biology is driven
by dynamic processes. One of the greatest challenges faced by contemporary
biology is to comprehend the function and malfunction of complex biological
systems. This is directly related to the problem of profound understanding
of what health and disease are. In order to meet this challenge such key
issues in systems biology as dynamic processes, interdependent regulatory
controls, and the operation of multiple interacting components should be
addressed ([16]). Systems biology is a highly multi-disciplinary research
area that combines science subjects such as biology, physiology, chemistry,
mathematics, computer science, physics, engineering in the effort to investi-
gate interrelationships and interactions of genes, proteins and metabolites.
The large interest in topics associated with systems biology by researchers
from such a vast range of fields of expertise results in various views on what
systems biology is. In consequence, there is no well-established consensus
definition of systems biology ([16, 103]). Notions that appear in virtually
all definitions are “networks”, “computation”, “modelling”, and “dynamic
properties” ([16]). In this thesis, we adopt the definition proposed in [16]:

“... the objective of systems biology is defined as the under-
standing of network behaviour, and in particular their dynamic
aspects, which requires the utilization of mathematical modelling
tightly linked to experiment.”

It involves identification, modelling and analysis of biochemical networks,
e.g. metabolic pathways, regulatory and signal transduction networks, in
close linkage to experiment with the focus on understanding the system’s
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structure and dynamics. This comprehensive approach enables the cap-
turing of complex properties of a system such as robustness, emergence or
adaptation, which are commonly observed in natural systems ([105, 63]).
These features are not attributes of certain elements of the system, but
rather emerge as a result of the interactions and relationships between the
building blocks. In other words, biological systems, e.g. cells, are complex
structures of interdependent components whose properties and relationships
are determined by their function in the whole ([136]). After [105], systems
biology essentially advocates a departure from the reductionist viewpoint,
while putting emphasis on the holistic approach towards the analysis of
a biological system.

Systems biology, unlike “traditional” biology focuses on high-level con-
cept such as: network, component, robustness, efficiency, control, regulation,
hierarchical design, signalling, synchronization, parallelism, competition, and
many others. The very terminology of systems biology is “foreign” to “tra-
ditional” biology and it marks its drastic shift in the research paradigm.

Computer science focuses on the study of the scientific foundations for
information, computation, and communication, and on the practical tech-
niques for implementing them in computer systems. This is a very broad area
of science spanning from the theory of computing, through programming, to
cutting-edge development of computing solutions for large distributed sys-
tems. The research in computer science typically abstracts from the physical
implementation of computing and it rather focuses on high-level concepts
such as: algorithmics, computability, network, component, robustness, effi-
ciency, control, regulation, hierarchical design, signalling, synchronization,
parallelism, competition, and many others.

It is not surprising to see the prominent role that computer science plays
in the field of systems biology. A main reason for this is that, as seen also
in our definitions above, the key concepts in systems biology have been
studied for a long time already in computer science (albeit from different
perspectives). A key contribution that computer science brings to systems
biology is the ability to manipulate, analyse, and reason about such system-
level concepts and structures. For example, mathematical modelling, formal
system specifications, control design, and others are by now mainstream
techniques in systems biology. Computer science also brings to systems
biology research numerical techniques such as modelling and simulation,
qualitative and quantitative predictions, sensitivity analysis, model fit and
validation, steady state analysis, flux balance analysis, etc.

The doctoral research presented in this thesis concerns a number of chal-
lenges of computational modelling in systems biology. It is focused on de-
velopment and utilization of different methodologies having their origins in
the fields of computer science and mathematics. The following list briefly
describes the considered problems.
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• We address issues related to model construction methodologies such as
parameter estimation, model validation, and we discuss the problem
of model identifiability.

• We present existing techniques and develop new ones for the problem
of model comparison. In particular, we concentrate on the case where
the comparison is performed between submodels of a model. In this
context we discuss methodologies for model decomposition.

• Further, we address the problem of model modifications. We present
various techniques and heuristics useful for applying simplifications or
extensions to an already fitted and validated mathematical model in
such a way that the desired properties of the model are retained. In
particular, we develop the following.

– A generic model for the process of self-assembly is proposed.

– The notion of self-assembly model resolution is formally intro-
duced.

– Both numerical as well as analytical methods for decreasing and
increasing the resolution of ordinary differential equations (ODE)
models of self-assembly are developed. To the best of our knowl-
edge, this is the first time that formal model refinement is con-
sidered in relation to computational ODE-based models.

The presented methodologies are applied in the modelling of two biological
processes chosen as modelling case studies:

1. the heat shock response mechanism in eukaryotic cells and

2. the in vitro self-assembly of intermediate filaments from tetrameric
vimentin.

However, we notice that the developed methodologies are general in nature
and can be applied for the modelling of other biological processes as well.

We discuss the above issues in the subsequent chapters. In Chapter 2,
we present some generalities concerning modelling in systems biology. The
choice of the covered generalities is made so as to provide preliminaries to
the theory and techniques used in our original research papers included in
this thesis. In Chapter 3, we describe the two case studies considered in this
thesis, i.e. the eukaryotic heat shock response and the in vitro self-assembly
of intermediate filaments. In Chapter 4, we present in a synthetic way
a number of issues being subject of the publications included in this thesis
and constituting the original contribution of the author. In Chapter 5, we
list the original research contribution of each particular publication. Finally,
we end with conclusions and perspectives for further research in Chapter 6.
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Chapter 2

Computational modelling in
systems biology: generalities

2.1 The iterative cycle of systems biology

The great complexity of biological systems enforces the need for represent-
ing them in formal models in order to investigate them and to make specific
predictions about their behaviour, that can be tested in subsequent exper-
iments. It is difficult, if not impossible, to completely understand such
systems based only on intuition and experimental observations. Mathemat-
ics is necessary to comprehend and reason about large systems involving
many components. Used in an appropriate way, mathematical models can
represent such systems in a biologically realistic manner, incorporate a wide
range of empirical observations, and provide basis for formulating novel hy-
potheses. One of the main characteristics of systems biology is the close
connection of experiment with theory. As schematically illustrated in Fig-
ure 2.1, starting from a model abstracting a biological system, the iterative
process of hypothesis generation, experimental design, experimental analy-
sis, and model refinement lies at the core of systems biology ([13, 105, 63, 4]).
Even more, this iterative cycle approach is considered as the paradigm of
systems biology research ([4]) and proposed as the only logical way for biol-
ogy to advance ([70]). Development and refinement of a mathematical model
of a biochemical process proceeds, in general, in accordance with the follow-
ing scenario. First, a biochemical model capturing the underlying reaction
network of the biological process is constructed. Second, the biochemical
model is transformed into an associated mathematical model. This usually
involves two steps: obtaining equations describing the dynamics of the sys-
tem and, next, identifying the model parameter values so that the model
fits some experimental data. Finally, the mathematical model is validated
against another set of experimental data or qualitative empirical knowledge.

5



Figure 2.1: The iterative cycle of systems biology: starting from a model
abstracting a biological system, the iterative process of hypothesis genera-
tion, experimental design, experimental analysis, and model refinement lies
at the core of systems biology.

The predictive power of the obtained model is then used to formulate new
hypothesis about the considered process. This drives further experimental
research, potentially involving novel experimental design. The obtained re-
sults are then utilized to refine the model to include more details and better
explain the observations.

As stated in [63], a system-level understanding of a biological system
can be obtained by insight into four key properties: 1) system structures,
2) system dynamics, 3) the control method, and 4) the design method. Sys-
tem structures include gene interactions network, biochemical pathways, and
mechanisms by which such interactions modulate the physical properties of
intracellular and multicellular structures, being the large-scale effects of in-
teractions. System dynamics relates to the investigation of the behaviour
of a system over time under various conditions. It involves tools such as
metabolic control analysis, sensitivity analysis, dynamical systems analysis
methods, e.g. phase portrait and bifurcation analysis, and identification of
mechanisms giving rise to specific behaviours. The control method investi-
gates the mechanisms that systematically control the state of the system.
It involves the identification and adjustment of points that influence the
state of the system. This method has potential applications in drug design.
Finally, the design method is utilized in the modification of existing biolog-
ical systems towards “improved” ones having some desired properties and
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construction of new such systems. It requires an approach based on design
principles and simulations instead of trail-and-error methods, see [63].

2.2 Biochemical reaction networks

As mentioned above, one of possible approaches towards model building is
based on distinguishing a certain set of reactions characterizing the consid-
ered biological process. We are going to discuss this step in more details in
this section. In parallel, we introduce some terminology and notation for
describing biological systems that is extensively used in this thesis.

An abstraction of the considered biological process is made by identifying
a biochemical reaction network, i.e. a finite set of reactions among a finite
set of biochemical species, underlying this process. To this aim a relatively
small set of biochemical reactions which are capturing the main features of
the process’ machinery is chosen. The chosen biochemical reactions may be
very abstract themselves, i.e. one reaction may in fact encapsulate many
real reactions which constitute a whole subprocess in a living organism. We
say that the biochemical reaction network constitutes a biochemical model
of the considered process. In the terminology of computer science this can
be expressed by stating that the biochemical reaction network is an abstrac-
tion of the real biological process. In computer science the term abstraction
is used to refer to the process of hiding the details and exposing only the
essential features of a particular concept or object, which is exactly what
one aims for when constructing a biochemical model. Moreover, computer
scientists utilize abstraction as a tool for managing complexity. Coping with
biological complexity and understanding it is the ultimate goal of building
biochemical models. For example, the simple biochemical model presented
in Section 3.1 and discussed in details in [96] is an abstraction of the eukary-
otic heat shock response mechanism: in real cells this defence mechanism
involves much more than just the 10 biomolecules and 17 biochemical reac-
tions described in the model of [96]. However, despite huge simplifications,
the abstraction is sufficient to capture the main regulatory features of the
response, as shown in [96, 24, 83].

For this thesis, we adopt and interchangeably use the following terminol-
ogy: biochemical reaction network, biochemical model, biochemical reaction
system, biochemical system. The terms cellular reaction system/network are
also commonly seen in the literature.

In a biological cell there are different classes of biochemical reaction
networks whose interplay enables the cell to perform its vital functions.
The major and commonly recognized classes are: metabolic networks, signal
transduction networks and gene regulatory networks, see e.g. [11, 20, 72, 133].
We briefly describe each of them.
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Metabolic networks. There are two opposing streams of chemical reac-
tions that take place in the cell: 1) catabolic reactions and 2) anabolic- or
biosynthetic reactions. Catabolic reactions break down complex compounds
into smaller molecules, thereby generating energy and providing the cell with
elementary building blocks. The acquired energy and the basic components
are exploited by anabolic reactions to construct complex molecules used in
cellular functioning. These two sets of reactions constitute the metabolism
of the cell ([3, 66]). In other words, metabolism is the sum of all the chemi-
cal reactions that take place in every cell of a living organism which provide
energy for the processes of life and synthesize new molecules. It is a highly
organized process that involves thousands of reactions which are catalysed
by enzymes ([66]). Metabolism of the cell is organized in terms of metabolic
pathways, i.e. sequences of biochemical reactions where the product of one
reaction is a substrate for the next one. Metabolic pathways constitute the
metabolic network underlying the metabolism of the cell.

Signal transduction pathways. In a multicellular organism its cells
have to be able to communicate with each other in order to combine into
networks that realize higher levels of organization, including, e.g., tissue and
organs, and to adjust their own behaviour for the benefit of the organism
as a whole ([137, 3]). For example, cells in multicellular organisms must
sense the presence of ambient hormones and other neighbouring cells when
making decisions such as whether to proliferate, move or die. The study of
the mechanisms by which this transfer of biological information comes about
is referred to as ’signal transduction’, ’cell signalling’ or simply ’signalling’,
see [31].

One can view signal transduction pathways as routes of cellular informa-
tion. Through them cells monitor their surroundings, as well as their own
state. They allow the cell to adjust to environmental changes or hormonal
stimuli. Signal transduction pathways orchestrate cellular metabolism, con-
trol growth, proliferation and development, establish stress tolerance, and
determine morphogenesis ([91]). Typically, the signalling paradigm involves
the following sequence of events. First, the ‘signal’ reaches the proximity of
the cell surface. There are then two possible modes by which the cell can
import the signal: either 1) the stimulus penetrates the cell membrane and
binds to a respective receptor in the cell interior, or 2) the signal is perceived
by a transmembrane receptor. In the latter case the signal does not cross
the membrane, but instead the state of the receptor is changed from sus-
ceptible to active and stimulates an internal signalling cascade, which often
involves a series of changes in protein phosphorylation states. The sequence
of state changes crosses the nuclear membrane and eventually a transcrip-
tion factor is either activated or deactivated. This leads to a change in the
transcription rates of certain genes and the resulting change in certain pro-
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tein concentrations causes the actual response of the cell to the signal. In
addition to this downstream program, signalling pathways are regulated by
a number of control mechanisms such as feedback and feed-forward modu-
lation ([66]). For a more comprehensive discussion of cell signaling we refer,
e.g., to [31, 41, 66, 91, 137].

Gene regulatory networks. A gene regulatory network consists of a set
of genes, proteins, small molecules, and their mutual regulatory interac-
tions. A central role in the control of cellular processes of an organism
is played by the genome. Proteins synthesized from genes may function
as transcription factors binding to regulatory sites of other genes, as en-
zymes catalysing metabolic reactions, or as components of signal transduc-
tion pathways. Gene expression is a complex process involving several stages
of regulation. Besides regulation on the level of DNA transcription, the gene
expression process may be controlled during RNA processing and transport,
RNA translation, or on the stage of posttranslational modifications of pro-
teins. The proteins that are in charge of performing these regulatory func-
tions are synthesized by other genes, which gives rise to genetic regulatory
systems structured by regulatory interactions networks describing the inter-
actions between DNA, RNA, proteins, and small molecules ([29]). Recent
development of high-throughput experimental techniques such as cDNA mi-
croarrays or oligonucleotide chips, which permit rapid and massively parallel
measurement of spatiotemporal expression levels of genes, has contributed
to the intensification of the studies on gene regulatory networks. Most of
these networks are large and complex. Understanding their dynamics by
intuitive approaches alone is very hard and thus, in addition to experimen-
tal techniques, formal methods and computer tools for the modelling and
simulation of gene regulation processes are indispensable. For a literature
review of existing approaches we refer to [29].

2.3 Modelling of biochemical reaction networks

Methods for representing and communicating biological networks in both
human- and machine-readable form have become increasingly important
([64]). Biochemical reaction networks can be represented in various ways
that can comprise a rich collection of diverse biological and biochemical
knowledge. For example, a graphical representation of biological networks
leads to Molecular Interaction Maps (MIM) ([67, 69]) or process diagrams
([64, 68]). In this thesis, biochemical networks are represented in the form
of lists of stoichiometric equations that embody the main processes that
constitute these systems. Although this representation is less sophisticated
than the mentioned graphical forms, it is still capable of capturing the rel-
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evant information about the considered network needed for further proper
modelling of the network’s dynamical behaviour.

The basic components of a biochemical reaction in the considered model
are: 1) the substances with their concentrations and 2) the reactions chang-
ing the concentrations of the substances. Formally, we consider a set of
substances S = {S1, . . . , SN}, also referred to as chemical species, and a set
of reactions R = {R1, . . . , RM} where N and M are positive integers. Each
reaction operates on a subset of substances from S. It models in an abstract
and compact way a transformation which takes place in the considered bio-
chemical system. It carries information about what substances in what pro-
portions react and what substances in what proportions are the outcomes of
the conversion. There are two types of chemical and biochemical reactions:
reversible and irreversible ones. In general, an irreversible reaction Rµ is
symbolically written in form of a stoichiometric equation as

Rµ : mµ,1 S1 + mµ,2 S2 + . . . + mµ,N SN →

m′
µ,1 S1 + m′

µ,2 S2 + . . . + m′
µ,N SN ,

(2.1)

where mµ,i and m′
µ,j are non-negative integers defining the stoichiometry

of the reaction, i.e. the relationship between the amounts of substances
that react together in the reaction, and the amounts of substances that
are formed ([81]). The reactant substances, i.e. occurring on the left-hand
side, are called substrates and the resultant substances, i.e. placed on the
right-hand side, are referred to as products. If a species Si is not reacting
in a reaction Rµ, then mµ,i is zero and if it is not produced, then m′

µ,i is
set zero. Notice that for any 1 ≤ i ≤ N we allow both mµ,i and m′

µ,i to be
non-zero, which means that Si is both consumed and produced in reaction
Rµ. We associate with each reaction Rµ two natural values Kµ and Lµ,
0 ≤ Kµ, Lµ ≤ N , defined in the following way:

Kµ = |{Si|1 ≤ i ≤ N ∧mµ,i 6= 0}| (2.2)

and
Lµ = |{Sj |1 ≤ j ≤ N ∧m′

µ,j 6= 0}|. (2.3)

They give the numbers of distinct substrates and products that are involved
in reaction Rµ, respectively.

The sum
∑N

i=1 mµ,i is the so-called molecularity of the irreversible re-
action Rµ, i.e. the number of reactant molecular entities that are involved
in the reaction. A reaction with a molecularity of one is called ‘unimolec-
ular’, one with a molecularity of two ‘bimolecular’ and of three ‘termolec-
ular’ ([81]). For example, A + B → C is a bimolecular reaction, whereas
A + 2B → C is a termolecular one. However, due to improbability of three
molecular entities colliding at exactly the same time in a suitable orientation
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for reaction, termolecular reactions are rarely encountered ([58, 131]). Such
reactions occur under unique conditions. We provide, after [58], one exam-
ple of a termolecular reaction. The reaction of two hydrogen atoms in the
gas phase to form a hydrogen molecule cannot take place as a bimolecular
reaction. This is due to the fact that the energy released by the formation of
the H–H covalent bond can only go into vibrational and rotational energy of
the new molecule, and this energy is sufficient to cause the almost immediate
reversal of the reaction to split the molecule again into two hydrogen atoms
([58]). If a third molecule is available to absorb the energy, the following
reaction can take place:

H• + H• + M→ H–H + M. (2.4)

Reactions with molecularity higher than three are virtually impossible.
A reversible reaction Rη is in general in the form of

Rη : mη,1 S1 + mη,2 S2 + . . . + mη,N SN ⇄

m′
η,1 S1 + m′

η,2 S2 + . . . + m′
η,N SN .

(2.5)

Any reversible reaction can be split into two irreversible ones. For example,
the above reversible reaction Rη can be written as a pair of irreversible
reactions Rη′ and Rη′′ as follows:

R′
η : mη,1 S1 + mη,2 S2 + . . . + mη,N SN →

m′
η,1 S1 + m′

η,2 S2 + . . . + m′
η,N SN ,

R′′
η : mη,1 S1 + mη,2 S2 + . . . + mη,N SN ←

m′
η,1 S1 + m′

η,2 S2 + . . . + m′
η,N SN .

(2.6)

Hence, any reaction network involving reversible reactions can be trans-
formed into a corresponding network based only on irreversible reactions.

There are two special cases of irreversible reactions where either Kµ = 1
and Lµ = 0 or Kµ = 0 and Lµ = 1. Usually, in these variants the respective
stoichiometric coefficient is set to 1. Thus, in the former case the reaction
is of the form

→ Sj (2.7)

and models a constant inflow of product Sj into the system. In the latter
case the reaction is

Si → (2.8)

and describes the outflow of the substrate Si from the system, commonly
referred to as degradation of Si.

The reactions of a biochemical process are usually interrelated in the
following manner: a product of one reaction is a substrate for another one
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or one reaction produces an enzyme which catalyses some other reaction of
the process. In this sense the reaction set R forms a network which models
the biochemical process under study, in other words forms its biochemical
model.

The biochemical model provides us with information on the structure
and stoichiometries of the system. However, in order to investigate the
dynamics, i.e. the behaviour of the system in time under certain conditions,
a mathematical model needs to be introduced.

2.4 Mass-action models for biochemical reaction
networks

From the biochemical model an associated mathematical model is often de-
rived by deterministic kinetic modelling of individual biochemical reactions.
Practical limitations, such as inability to measure interactions in all detail
or lack of knowledge on all the properties of the molecules involved, make
that the mathematical models of the reaction network cannot be derived
from the most basic laws of physical mechanics. Necessarily, the contem-
porary models aggregate information about mechanistic detail and in this
sense can be seen as macroscopic or phenomenological constructs compared
to the microscopic approach, where single molecules and their interactions
are considered ([66, 138, 137]). The dynamic behaviour of the system is
represented in the temporal evolution of its state expressed as the concen-
trations of all the species considered ([138]). Thus, the deterministic frame-
work based on ordinary differential equations (ODEs) is often chosen as the
model of observations made in experiments, i.e. the system of ODEs con-
stitutes a mathematical abstraction of the process under investigation, see,
e.g., [138]. The basic quantities are the concentration [S] of a substance S
and the rate ν of a reaction ([66]). The concentration is often expressed as
the number n of molecules (count of molecules) of substance S per volume
V or the number of moles of S per volume V . For the needs of this thesis,
we adopt the following notation: the number of molecules of substance S
is denoted by #S and the number of moles of S is referred to simply as S.
The number of moles and the number of molecules are related to each other
through the Avogadro number NA ≈ 6.02214179 · 1023 particles/mol, i.e.

#S = S ·NA. (2.9)

The unit of [S] commonly encountered in the literature is M = mol · L−1,
where L stands for a litre. Biochemical reaction kinetics rely on the as-
sumption that the reaction rate at a certain point in time and space can
be expressed as a unique function of the concentrations of all substances at
this point in time and space, see [66]. The kinetics is governed by the mass
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action law (originally introduced in [39] and [40] by Guldberg and Waage
in the 19th century), which can be briefly summarized as follows: the rate
ν of a reaction is proportional to the product of the reactant masses, with
each mass raised to the power equal to the corresponding stoichiometries
([66]). In the classical formulation the rate does not depend directly on
time, i.e. ν(t) = ν(S(t)), where S denotes the vector of concentrations of all
the substances in a reaction network. For example, for a simple reaction

S1 + S2 ⇄ 2 S3 (2.10)

the reaction rate reads

ν = ν+ − ν− = k+ S1 S2 − k− S2
3 , (2.11)

where ν is the resultant rate of the reversible reaction, ν+ is the rate of the
forward reaction, ν− the rate of the backward reaction, while k+ and k− are
the respective proportionality factors, the so-called kinetic- or rate constants
([66]). In the general case the mass action rate law for a reversible reaction
Rµ reads

ν = ν+ − ν− = k+

Kµ
∏

ι=1

[Ss(µ,ι)]
mµ,ι − k−

Lµ
∏

ι=1

[Sp(µ,ι)]
m′

µ,ι . (2.12)

If the concentration of substances is measured in M and the time in seconds
(s), then the rate is expressed in terms of M · s−1. It follows that the rate
constants for bimolecular reactions, i.e. of the form S1 + S2 → . . ., have the
unit M · s−1, while monomolecular reactions, i.e. S → . . ., have the unit
s−1. The mass action kinetics model is derived based on the Boltzmann’s
kinetic theory of gases and is justified under the assumption of constant
temperature and fast enough diffusion in the cell, which ensures that the
mixture of substances is “well-stirred”, i.e. homogenously distributed in
a fixed volume V .

The stoichiometric coefficients denote the quantitative proportion in
which substrate and product molecules are involved in a reaction ([66]). For
example, for the reversible reaction S1 + S2 ⇄ 2P , the stoichiometric coeffi-
cients of S1, S2 and P are −1, −1, and 2. For a reaction S1 + S2 ⇄ 2P + S2

the stoichiometric coefficients are −1, 0, and 2. Thus, if a species Si is both
a reactant and a product in a reaction Rµ, then the resulting stoichiometric
coefficient of Si in Rµ is, in terms of the notation introduced in Section 2.3,
m′

µ,i − mµ,i. In general, the stoichiometric numbers are positive for prod-
ucts and negative for reactants ([81]). For the irreversible reaction (2.1) the
stoichiometric coefficients read: m′

µ,1−mµ,1, m′
µ,2−mµ,2, ..., m′

µ,N −mµ,N .
In the case of a reversible reaction their values depend on the chosen di-
rection. If the direction of the general reversible reaction (2.5) is chosen to
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be ‘left-to-right’, then the stoichiometric coefficients of this reaction are the
same as in the irreversible case. The stoichiometric coefficient of substance
Si in reaction Rµ is denoted in this work as niµ. The stoichiometric coeffi-
cients of a reaction network are organized in a matrix of dimensions N ×M ,
a so-called stoichiometric matrix, denoted N, i.e.

N = {niµ}iµ, (2.13)

for i = 1, . . . , N and µ = 1, . . . , M .
The dynamics of a biochemical reaction network derived from the law of

mass action can be described by a system of first-order, ordinary differential
equations (ODEs), also referred to as the rate equations. For a reaction
network consisting of N substances and M reactions the dynamics, in par-
ticular the change of concentrations in time, is described by the following
system of equations:

d
dt

[Si] =
M
∑

µ=1

niµ νµ, (2.14)

for i = 1, . . . , N . In this formulation one assumes that the reactions are
the only reason for concentration changes and that no mass flow takes place
due to diffusion or to convection ([66]). This can be rewritten in the matrix
notation as follows

dS

dt
= Nν, (2.15)

where S is a vector of the concentrations of all the substances in the re-
action network, i.e. S = ([S1], . . . , [SN ])T, and ν = (ν1, . . . , νM )T is the
vector of the reaction rates. Hence, in this framework, the mathematical
model of a reaction system consists of the vectors S, ν, the stoichiometric
matrix N and a vector κ consisting of the reaction rate constants, which are
constituents of ν.

2.4.1 Steady state and steady state fluxes

One of the basic concepts of dynamical systems theory extensively utilized
in systems biology is the notion of a steady state. In steady state it holds
for a reaction network that

dS

dt
= Nν = 0. (2.16)

The rate vectors satisfying the above steady state condition can be obtained
by solving the linear system of algebraic equations denoted by the right
equality sign in (2.16). From the theory of linear algebra we know that
the equation has nontrivial solutions, i.e. different from the zero vector,
only if Rank(N) < M . This can be expressed in words that a nontrivial
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Figure 2.2: An example of a reaction network originally presented in [66].

solution exists provided some of the columns of the stoichiometric matrix N

are linearly dependent. If this is the case, the solutions to this equation form
a null space (also referred to as kernel). The vectors forming the basis of the
null space arranged into a matrix form the so-called kernel matrix denoted
by K. The dimension of the null space, hence the number of columns in K

is M −Rank(N). Every possible set of steady state fluxes can be expressed
as a linear combination of the columns ki of matrix K, i.e.

J =
M−Rank(N)

∑

i=1

αi · ki. (2.17)

The choice of the kernel basis vectors is not unique. However, for a network
containing irreversible reactions the set of vectors forming K is restricted by
the condition that the rows in K corresponding to the irreversible reactions
cannot contain negative (or positive, depending on the definition of flux
direction) entries. Note that a row in K formed only of zero entries indicates
an equilibrium reaction, i.e. a reaction that in any steady state must have
a zero net rate.

A set of rows in which all basis vectors, i.e. all columns of K, have the
same entries indicates an unbranched reaction path. In each steady state,
the net rate of all reactions constituting this path is equal ([66]). Let us
consider an example. The reaction network originally presented in [66] and
reproduced in Figure 2.2 comprises 6 reactions. The stoichiometric matrix
for this system reads

N =







1 −1 0 0 −1 0
0 1 −1 0 0 0
0 0 1 −1 0 1






(2.18)

and Rank(N) = 3. The kernel matrix is, e.g., spanned by the following
three basis vectors: k1 = (1 1 1 0 0 −1)T, k2 = (1 0 0 0 1 0)T, and
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k3 = (−1 −1 −1 −1 0 0)T, i.e.

K =



















1 1 −1
1 0 −1
1 0 −1
0 0 −1
0 1 0
−1 0 0



















. (2.19)

The second and the third row of the kernel matrix are the same, i.e. the
entries for the second and third reactions are always equal. This indicates
that in any steady state the fluxes through reactions 2 and 3 must be equal.

2.4.2 Mass conservation relations

Frequently, the concentrations of several substances involved in biochemical
reaction networks are included in so-called conservation sums. A charac-
teristic feature of such substances is that they are neither produced nor
degraded, however they can form complexes with other species or be part
of other species. For example, in the simple mass-action model for the eu-
karyotic heat shock response introduced in [96], there are three conservation
relations concerning the total amount of heat shock factors, the total amount
of proteins other than heat shock proteins and heat shock factors, and the
total amount of heat shock elements, see [96] and Section 3.1.1 in Chapter 3
for details.

In general terms, a mass conservation relation can be expressed as: a lin-
ear combination of concentrations of species is conserved in time, i.e.

gTS(t) = c, (2.20)

where g is a vector of some constant entries and c denotes a constant con-
servation quantity ([43]). This can be translated as: conservation relations
are linear dependencies between some rows of the stoichiometric matrix, i.e.

gTN = 0T. (2.21)

The equivalence with (2.20) can be derived by observing that

gTṠ = gTNν = 0, (2.22)

hence by integrating we obtain that gTS = const. ([66]). The number of
independent conservation vectors g, thus the number of conservation rela-
tions in the considered reaction network, is given by N − Rank(N). If the
stoichiometric matrix is full rank, it follows that the system embraces no
conservation relations.

16



A complete set of linearly independent vectors g of a reaction network
can be arranged into a so-called conservation matrix G ([43, 66]) fulfilling

GN = 0. (2.23)

In other words, GT is a kernel matrix of NT. It can be found, e.g., by
using the Gauss algorithm. Notice that a matrix G′ = PG with P being
any nonsingular matrix of appropriate dimension is a conservation matrix
as well. Hence, a conservation matrix is not uniquely defined.

Conservation relations can be used to simplify the system of differential
equations Ṡ = Nν describing the dynamics of a reaction network. Here
we explain, after [66], how this can systematically be done. First, the rows
in the stoichiometric matrix and the concentration vector are reordered in
such a way that the independent rows of N are at the top and the dependent
rows are placed at the bottom, i.e. matrix N is split into two parts: the
independent one denoted N0 and the dependent one referred to as N′. Also
a so-called link matrix L is introduced in such a way that the following
holds:

N =

(

N0

N′

)

= LN0 =

(

IRank(N)

L′

)

N0, (2.24)

where IRank(N) is the identity matrix of size Rank(N). Now, the system
of differential equations for the reaction network may be rewritten in the
following form:

dS

dt
=

(

Ṡindep

Ṡdep

)

=

(

IRank(N)

L′

)

N0ν (2.25)

and the change in time of the dependent concentrations satisfy

Ṡdep = L′ · Ṡindep. (2.26)

By integrating we obtain that

Sdep = L′ · Sindep + constant. (2.27)

In consequence the original system of ODEs can be replaced by a reduced
differential equation system and a set of algebraic equations, i.e.

{

Ṡindep = N0ν,

Sdep = L′ · Sindep + constant.
(2.28)
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2.4.3 Elementary flux modes

In the context of metabolic networks the notion of a pathway often appears,
however it is not easy to define what a pathway in a given metabolic network
is. An intuitive definition of a pathway is a sequence of reactions linked by
common metabolites ([66]). Examples of metabolic pathways are glycolysis,
citric acid cycle or oxidative phosphorylation, see, e.g., [3] for details. As
stated in [115], there exist currently two fundamentally different approaches
to the definition of metabolic pathways. One is a qualitative identification
based on historical groups of reactions in a database setting. The second re-
lies on precise quantitative and systemic definitions based on mathematical
studies such as linear algebra and convex analysis. In this work we con-
centrate on the latter case. An attempt to formalize the notion of pathway
has been proposed in [44, 99, 116, 117, 118, 119] in the form of elementary
flux modes. The intuitive meaning of an elementary flux mode is a set of
reactions whose combined quantitative contribution to the system is zero.
In other words, the net loss of substance caused by any reaction in that set is
compensated by a net gain in the same substance incurred by some other re-
actions in the set. From this perspective, the analysis of metabolic pathways
uses only the information on the stoichiometric structure and the reversibil-
ity or irreversibility of the reactions. First, a flux mode M is defined as
a class of flux vectors that represent direct routes through the metabolic
network from one external metabolite to another. Formally,

M = {ν ∈ R
M | ν = αν∗, α > 0}, (2.29)

where ν∗ is an M -dimensional vector (unequal to the null vector) fulfilling
two conditions. First, it satisfies the steady state equation, i.e. Nν∗ = 0.
Second, the signs of the entries indicate the corresponding flux directions
in agreement with the chosen directions of the irreversible reactions. A flux
mode comprising vector ν is called an elementary flux mode if ν cannot be
represented as a nonnegative linear combination of two vectors that fulfill
the two conditions, but contain more zero entries than ν ([66]).

An elegant mathematical solution to the problem of determining metabo-
lic pathways is obtained by applying the theory of convex analysis; for details
we refer to, e.g., [116]. For a discussion on the problem of finding elemen-
tary flux modes in metabolic networks seen from an algorithmic perspective
and covering the complexity issues see, e.g., [1]. For any given metabolic
network, the full set of elementary fluxes can be determined using dedicated
software such as METATOOL ([99]). The recognition of the elementary flux
modes allows the detection of the full set of non-decomposable steady-state
flows that the network can support, including cyclic flows. Any steady-state
flux pattern can be expressed as a non-negative linear combination of these
modes ([116, 117, 118]). The identified elementary flux modes should have

18



clear biological interpretation: a flux mode is a set of enzymes that operate
together at a steady state and a flux mode is elementary if the set of enzymes
is minimal, i.e. complete inhibition of any of the enzymes would result in
a termination of this flux ([116, 117, 118]). The lack of possibility to inter-
pret the modes in this way is a signal that the model under consideration
may not be correct.

2.4.4 Flux balance analysis

The steady state problem (2.16) for a metabolic network may have many
mathematical solutions. However, not all of them are biologically sound or
interesting. For example, the desired one may be the one that keeps cer-
tain metabolites in the correct proportion yet maximizes the growth rate of
an organism. Flux balance analysis (FBA) provides means for solving this
type of problems. It is a mathematical approach for analysing biochemical
networks, in particular the genome-scale metabolic network reconstructions.
FBA enables calculation of the flow of metabolites through a metabolic net-
work and, in consequence, makes predictions concerning the growth rate of
an organism or the rate of production of certain metabolites possible ([93]).
Similarly to the approach of elementary flux modes, FBA is independent
of the information concerning concentrations of metabolites or kinetic de-
tails of the considered system. It investigates the theoretical capabilities
and operative modes of metabolism by introducing further constraints in
the stoichiometric analysis ([66]). The first constraint is the steady state
requirement. Other constraints may be of thermodynamic nature, regard-
ing the irreversibility of reactions ([66]) or reactions can be given upper and
lower bounds, which determine the maximum and minimum permissible
fluxes of the reactions ([93]). These constraints are of the form

αi ≤ νi ≤ βi, (2.30)

where νi is the flux of i-th reaction, αi and βi determine, respectively, the
lower and upper bound of the flux. In this way, these constraints impose
restrictions on the magnitude of individual fluxes. For example, a thermo-
dynamic constraint forcing only the forward direction of a reaction can be
introduced as 0 ≤ νi < +∞. Some other constraints can also be included,
see, e.g. [104].

In FBA the constraints are introduced in two ways. First, as equa-
tions that balance reaction inputs and outputs: with the requirement of
steady state, the stoichiometric matrix imposes flux balance constraints on
the system. Second, as inequalities that restrict the allowable fluxes of the
reactions. The constraints confine the steady-state fluxes to a feasible set.
Next, a phenotype in the form of a biological objective that is of interest in
the problem being studied needs to be defined ([93]). This is often achieved
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by adding an artificial reaction to the system, i.e. an additional column of
coefficients to the stoichiometric matrix. The determination of a particular
metabolic flux distribution is then formulated as a linear programming prob-
lem, i.e. the aim is to maximize an objective function Z that quantitatively
defines how much each reaction contributes to the phenotype of interest in
the problem being studied ([93]). The objective function Z is subject to
stoichiometric and capacity constraints and is often of the form

Z =
M
∑

i=1

ciνi = cTν → max, (2.31)

where c is a vector of weights for the individual rates indicating how much
each reaction contributes to the phenotype ([66, 93]). Examples of such
objective functions are: maximization of biomass production or ATP pro-
duction in an organism, maximal growth rate, minimization of nutrient up-
take. Through optimization of an objective function, flux balance analysis
enables finding an optimal flux distribution placed somewhere at the edge
of the restricted solution space ([93]). There exist many computational lin-
ear programming algorithms and software packages that are able to coupe
with large systems of equations. For example, the COnstraint-Based Recon-
struction and Analysis (COBRA) Toolbox ([9]) for Matlab is a free software
(distributed under the GNU Library General Public License) that performs
such computations.

2.4.5 Local sensitivity analysis

Local sensitivity analysis is a method to estimate the changes brought into
the system through small perturbations in the parameters of the model. In
this way, one may estimate both the robustness of the model against small
changes in the model, as well as identify possibilities for bringing a certain
desired change in the system. For example, one question that is often asked
of a biochemical model is what changes should be done to the model so
that the new steady state satisfies certain properties. We briefly present the
theoretical foundations of this analysis, which is extensively applied to verify
the dependence of the model results presented in this thesis on the parameter
choice. For a review and a more thorough presentation of sensitivity analysis
we refer to, e.g., [132]. The robustness of a model with respect to parameter
changes spanning the whole admissible range of parameter values can be
assessed with the global sensitivity analysis. However, the global sensitivity
analysis is out of the scope of this thesis and for more details on its techniques
we refer to, e.g., [108].
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To start, we rewrite the system of ordinary differential equations (2.14)
describing the dynamics of a reaction network in a more general form:

d
dt

[Si] = fi([S1], . . . , [SN ], κ), for all 1 ≤ i ≤ N, (2.32)

where κ = (k1, . . . , kM )T is the rate constants vector (we can assume with-
out loss of generality that the biochemical model consists of M irreversible
reactions, see Section 2.3, thus there are M rate constants).

The partial derivatives of the solution of the system 2.32 with respect
to the parameters of the system are considered. These are called first-
order local concentration sensitivity coefficients. Let us denote S(t, κ) =
([S1](t, κ), [S2](t, κ), . . . , [SN ](t, κ))T the solution of the system (2.32) with
respect to the parameter vector κ. The concentration sensitivity coefficients
are the time functions ∂[Si]/∂kj(t), for all 1 ≤ i ≤ N , 1 ≤ j ≤ M . Dif-
ferentiating the system (2.32) with respect to kj yields the following set of
sensitivity equations:

d
dt

∂S

∂kj
= J

∂S

∂kj
+

∂f

∂kj
, for all 1 ≤ j ≤M, (2.33)

where ∂S/∂kj = (∂[S1]/∂kj , . . . , ∂[SN ]/∂kj)T is the vector of partial deriva-
tives, f = (f1, . . . , fN )T is differentiable with respect to kj for all 1 ≤ j ≤M ,
and J is the Jacobian of the system in (2.32), i.e.

J =













∂f1/∂[S1] ∂f1/∂[S2] · · · ∂f1/∂[SN ]
∂f2/∂[S1] ∂f2/∂[S2] · · · ∂f2/∂[SN ]

...
...

. . .
...

∂fN/∂[S1] ∂fN/∂[S2] · · · ∂fN/∂[SN ]













. (2.34)

The initial condition for the system (2.33) is that ∂S/∂kj(0) = 0, for all
1 ≤ j ≤M . In practice, the solution of the system (2.33) can be numerically
integrated, and in this way a numerical approximation of the time evolution
of the sensitivity coefficients can be obtained.

Very often however, the focus is on sensitivity analysis around steady
states. If the considered steady state is asymptotically stable, then one may
consider the limit limt→∞(∂S/∂kj)(t), called stationary sensitivity coeffi-
cients. They reflect the dependency of the steady state on the parameters
of the model. Mathematically, they are given by a set of algebraic equations
obtained from (2.33) by setting d/dt(∂S/∂kj) = 0. We then obtain the
following algebraic equations:

(

∂S

∂kj

)

= −J−1Fj , for all 1 ≤ j ≤M, (2.35)

where J is the value of the Jacobian at the steady state and Fj is the j-th
column of the matrix F = (∂fr/∂ks)r,s computed at the steady state.
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When used for comparing the relative effect of a parameter change in two
or more variables, the sensitivity coefficients must have the same physical
dimension or be dimensionless, see [132]. Most often, one simply considers
the matrix C of (dimensionless) normalized (also called scaled) sensitivity
coefficients:

Cij =
kj

[Si](t, κ)
·

∂[Si](t, κ)
∂kj

=
∂ln ([Si](t, κ))

∂ln (kj)
(2.36)

Numerical estimations of the normalized sensitivity coefficients for a steady
state may be obtained, e.g., with COPASI ([56]).

A similar sensitivity analysis may also be performed with respect to the
initial conditions, see [132]. If we denote by S(0) = S(0, κ), the initial values
of the vector S, for parameters κ, then the initial concentration sensitivity
coefficients are obtained by differentiating system (2.32) with respect to S(0):

d
dt

∂S

∂S(0)
= J

∂S

∂S(0)
, (2.37)

with the initial condition that ∂S/∂S(0)(0) is the identity matrix.
Similarly as for the parameter-based sensitivity coefficients, it is often

useful to consider the normalized, dimensionless coefficients

[Sj ](0, κ)
[Si](t, κ)

·
∂[Si](t, κ)
∂[Sj ](0, κ)

=
∂ln ([Si](t, κ))
∂ln ([Sj ](0, κ))

. (2.38)

Stationary sensitivity coefficients with respect to the rate constants as
well as the initial conditions can be numerically computed in software ap-
plications such as COPASI [56] or SBML-SAT [141], a tool for MATLAB R©.

2.5 Markov chain models for biochemical reaction

networks

Ignoring quantum mechanical effects, biological systems are often viewed as
deterministic, with their dynamics entirely specified, given sufficient infor-
mation on the state of the system (position, orientation and momentum of
every single molecule) and a complete understanding of the chemistry and
physics of the interactions between biomolecules ([135, 137]). Unfortunately,
we are still unable to model biological systems of realistic complexity and
size using such a molecular dynamic approach ([135, 137]). Therefore cur-
rent models admit far-reaching simplifications, which result in a higher level
view of the system being modelled.

The mathematical approaches used to model biological processes differ
in their underlying assumptions and the level of resolution they can pro-
vide. A broad classification of these methods separates the resulting mod-
els into two classes: deterministic (macroscopic or phenomenological) and
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stochastic (mesoscopic), where each of these two classes embodies various
subclasses with their different mathematical formalisms ([109]). In partic-
ular, the use of differential equations, a representative of the deterministic
class, for describing such processes makes certain assumptions that are not
always satisfied. The assumption that variables can attain continuous val-
ues and the fact that random fluctuations (stochasticity) are usually not
taken into account in the case of the ODE formulation are often brought up
for discussion, especially in cases where the populations of involved species
are small, see, e.g., [66, 109, 137, 139]. Such approach constitutes a simpli-
fication, since the underlying biological objects, molecules, are discrete in
nature. As far as molecule numbers are sufficiently large, this is a minor
problem. However, where the involved molecule numbers are on the order
of dozens or hundreds, the discreteness and the random fluctuations may
have a significant impact on the system’s dynamics, but the deterministic
approach to chemical kinetics may fail to expose these influences ([79, 123]).

An often applied solution to this problem is to consider the stochastic
framework in which the investigated system is viewed as a continuous-time
Markov chain ([126]). To this aim one considers the so-called grand proba-
bility function Pr(X; t) ≡ probability that at time t there are X1 molecules
of species S1, . . . , XN molecules of species SN in the considered volume V ,
where X ≡ (X1, X2, . . . , XN ) is a vector of molecular species populations.
This function provides information on the probability distribution of all pos-
sible states at all times. Next, the probabilities of various reactions to be
triggered in the next infinitesimal time interval (t, t + dt) are considered.
A crucial assumption of the stochastic formulation is that the system is well
stirred and at thermal equilibrium, see, e.g., [38]. As such, the molecules
are at all times randomly and uniformly distributed throughout the volume
V . The fundamental hypothesis of the stochastic formulation of chemical
kinetics states that the average probability that a particular combination of
reactants will react according to a given reaction Rµ in the next infinitesimal
time interval (t, t+dt) is cµ·dt, for a certain constant cµ, see, e.g., [36, 37, 38].
The constant depends on the reaction (the properties of the reactants) and
on the temperature of the system. This is in fact a reformulation of the
principle of mass action law, confront Section 2.4. Thus, the probability of
a reaction Rµ taking place in the next infinitesimal time interval (t, t+dt) is
NRµ

·cµ ·dt, where NRµ
is the number of all combinations of Rµ reactants in

the current state. Having an infinitesimally small time interval implies that
the probability that two or more reactions take place in that interval is at
least quadratic in dt, i.e., vanishingly small. Thus, it can be assumed that
at most one reaction takes place in that interval. In consequence, there are
at most M + 1 distinct configurations at time t that can lead to the state X

at time t+dt: either there is no state change in the considered time interval
or one of the M reactions takes place in the considered time interval. Let
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us denote by aµ(X)dt the probability of reaction Rµ occurring in the time
interval (t, t+dt), given the state X at time t. What is said above, can then
be formally written as

Pr(X; t + dt) =Pr(X; t)(1 −
M
∑

µ=1

aµ(X)dt)

+
M
∑

µ=1

Pr(X− νµ; t)aµ(X− νµ)dt, (2.39)

where νµ is a stoichiometric vector defining the result of reaction Rµ on state
vector X, i.e. reaction Rµ changes system state from X to X + νµ. Since

∂Pr(X; t)
∂t

= lim
dt→0

Pr(X; t + dt)− Pr(X; t)
dt

, (2.40)

it follows that

∂Pr(X; t)
∂t

= [
M
∑

µ=1

Pr(X− νµ; t)aµ(X− νµ)− Pr(X; t)aµ(X)], (2.41)

which is a partial differential equation referred to in the literature as the
Chemical Master Equation (CME). Although for a complex system de-
tailed mathematical analysis based on the “chemical master equation” is
intractable ([135]), it is possible to use a stochastic simulation approach
that explicitly calculates the change in the number of molecules of the par-
ticipating molecules. To this aim one can utilize the so-called Gillespie’s
algorithm ([36]) or its more efficient variant, the next reaction method de-
veloped by Gibson & Bruck ([35]). These algorithms are well-established
procedures for generating an exact realization of the temporal behaviour
of a continuous-time Markov chain being a stochastic model of the con-
sidered reaction system. For a detailed discussion on this topic we refer
to [36, 37, 35, 135].

To provide an example of a possible discrepancy between the dynam-
ics demonstrated by the stochastic and the deterministic formalisms, let us
consider the famous Lotka-Volterra system of coupled ordinary differential
equations describing an ecological predator-prey model. The solutions of this
system are known to be periodic (except for the stationary point) indepen-
dently of the initial size of predator and prey populations, see Figures 2.3a
and 2.3b. However, in the stochastic formulation there exist “catastrophic”
sequences of events which lead either to depletion of preys by predators and,
in consequence, to the extinction of predators as well (Figures 2.3c and 2.3d),
or the predators become extinct first and the prey population grows unlim-
ited (Figures 2.3e and 2.3f). When running the model long enough, the

24



probability of never executing these catastrophic sequences drops to zero.
This leads to radical qualitative differences in the trajectories obtained by
these two approaches: in the deterministic case the trajectory in the preda-
tor versus prey phase space is a closed curve (Figure 2.3b), while in the
stochastic case the trajectory either reflects that predators become extinct
and the prey population grows without limitations (Figure 2.3f) or it eventu-
ally reaches the trivial steady state of no prey and no predator individuals in
the system (Figure 2.3d). The expected time it takes for these scenarios to
happen depends on the initial number of species. Such discrepancies in the
trajectories are especially easily observed when the initial population sizes
are small. A number of other examples that illustrate situations where dis-
creteness and random fluctuations have a significant influence can be found
in [109]. These examples illustrate the following possible discrepancies in the
dynamics of the stochastic and the deterministic formulations: 1) an exam-
ple of a monostable system depicts how a realization of a stochastic system
may significantly vary from the time-course evolution of the deterministic
description; 2) an example of a genetic switch exhibiting bistability illus-
trates how a stochastic realization randomly switches between two equilib-
rium (steady-state) points of the system, while the deterministic trajectory
converges to only one of the equilibria; 3) an example of a genetic oscillator
shows that incorporating random fluctuations to a system characterized by
a unique deterministic equilibrium can lead to oscillations; finally, 4) a sit-
uation where fluctuations in the concentrations of key cellular regulators
are of special interest, but they do not induce any change in the dynamical
behaviour and are thus not displayed by the deterministic framework. The
last example is briefly presented at the end of this section. For more details
we refer to [109].

In [139], a careful analysis of the mathematical bases for the stochastic
and deterministic framework is performed and the close relationship between
them is investigated. Worth noticing is the fact that, as stated in [139], the
discrepancies between the simulations in the two frameworks cannot be used
as an argument against the use of the deterministic, continuous approach
towards modelling of biological systems where the number of molecules of
some species is small. In fact, both formalisms are correct and the choice
of the framework should be made based on the context and purpose of
modelling or whether a biological principle is reflected by the model, see [139]
for a thorough discussion on this matter. Just to illustrate this, we consider
after [109] the following biochemical reactions:

S1

k1

−⇀↽−
k2

S2
k3−→ S3. (2.42)

On one hand, when the initial values of S1, S2, and S3 are 100, 0, and 0,
respectively, and the parameter values of this system are set as in [109],
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(e) Stochastic time-course simula-
tion: both populations become
extinct
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(f) Stochastic phase plane trajec-
tory: both populations become
extinct

Figure 2.3: Comparison between the deterministic and stochastic modelling
of the Lotka-Volterra system. The number of specimen of the prey and
predator populations are 22 and 5, respectively. The deterministic trajectory
(b) differs significantly from the two stochastic realizations in (d) and (f).
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(a) Stochastic time-course simula-
tion
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(b) Deterministic time-course sim-
ulation

Figure 2.4: Comparison between the stochastic and deterministic modelling
of the system in (2.42). (a) A stochastic time-course simulation predicts
that the population of the species S2 is 0 most of the time, sometimes it is
1, occasionally it is 2. (b) A deterministic time-course simulation predicts
the level of S2 to be constantly very close to 0.

i.e. k1 = 10, k2 = 4 · 104, and k3 = 2, a stochastic simulation predicts
that the population of the species S2 is 0 most of the time, sometimes it
is 1, occasionally it is 2 or 3, and rarely anything more (see Figure 2.4a).
On the other hand, the associated deterministic mass-action model predicts
the level of S2 to be constantly very close to 0 (Figure 2.4b). However, if
the biochemical reaction system in (2.42) were to be interpreted as in [109],
where it is used to model a certain aspect of the heat shock response in the
bacterium Escherichia coli, then the reaction S2 → S3 would correspond
to an important event of gene expression. It would be then of interest to
track precisely when this event happens, hence motivating a look at the
statistics of the S2 molecule, rather than obtaining an averaged behaviour
of this quantity as in the case of a deterministic description of the system.
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Chapter 3

Case studies

3.1 The eukaryotic heat shock response

The heat shock response (HSR) is an ancient, highly evolutionary conserved
defence mechanism ([75]). It is a global regulatory network found in vir-
tually all living cells1. It allows the cell to quickly react to elevated tem-
peratures by the induction of some dedicated proteins called heat shock
proteins (hsp). Exposure to raised temperature leads to protein misfold-
ing. Misfolded proteins accumulate and tend to form aggregates with dis-
astrous effect for the cell. Stress conditions can be caused not only by
increased temperature but also by other forms of environmental, chemical
or physical stress, such as addition of ethanol, heavy metals, pollutants,
high osmolarity, starvation, etc. The heat shock proteins act as chaper-
ones – they stabilize proteins and refold the denatured ones. They maintain
the proper functioning of the cell by preventing the formation of cytotoxic
aggregates.

The heat shock response has been the subject of active research, see [101,
18, 134], for at least two reasons. On one hand, as it represents an excep-
tionally well-conserved regulatory mechanism, it is a good candidate for
deciphering the mechanistic and engineering principles underlying gene reg-
ulatory networks. On the other hand, heat shock proteins, regardless of the
regulatory aspects of the heat shock response, have fundamental importance
for many key biological processes such as protein biogenesis, dismantling of
damaged proteins, activation of immune responses, and signaling ([60, 100]).
Therefore, understanding the details of the heat shock response has broad
ramifications for the the biology of the cell. In particular, it would give

1Examples of species that lack the classical heat shock response are the Antarctic
ciliate Euplotes focardii ([129]), an Antarctic sea star Odontaster validus, an Antarctic
gammarid Paraceradocus gibber ([21]), and an Antarctic notothenioid fish Trematomus

bernacchii ([53]).
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better insight into the response to cellular insults and the onset of a num-
ber of diseases, including neurodegenerative disorders, cancer, aging, and
cardiovascular diseases, see [77, 78, 140, 8, 88].

Although a number of mathematical models describing the heat shock
response both in eukaryotes as well as in bacteria have been presented in the
literature, see [97, 94, 107, 32, 122, 76, 30, 59, 106, 128], still a comprehensive
mechanistic understanding of this process is lacking. In [96], a new simple
model was proposed, which captures in mechanistic details all key aspects of
the regulation: the heat-induced protein misfolding, the chaperone activity
of heat shock proteins, the transactivation of the genes encoding heat shock
proteins and the repression of their transcription once the stress is removed.
Unlike other previous models, it is based solely on well-documented bio-
chemical reactions and does not include modelling “blackboxes” such as ex-
perimentally unsupported components or biochemical reactions. A detailed
discussion on the differences between the model in [96] and the previous
attempts to model the eukaryotic heat shock response can be found therein.

3.1.1 Biochemical model

In the model of [96], the central role is played by the heat shock proteins
(hsp), which act as chaperones for the misfolded proteins (mfp): the heat
shock proteins sequester the misfolded proteins (hsp: mfp) and help the mis-
folded proteins to regain their native conformation (prot). The defence mech-
anism is controlled through the regulation of the transactivation of the hsp-
encoding genes. The transcription is initiated by heat shock factors (hsf),
some specific proteins which first form dimers (hsf2), then trimers (hsf3)
and in this configuration bind to the heat shock elements (hse), i.e. certain
DNA sequences in the promotor regions of the hsp-encoding genes. Once
the trimers bind to the promoter elements (hsf3: hse), the transcription and
translation of the hsp-encoding genes boosts and, in consequence, new heat
shock protein molecules get synthesized at a substantially augmented rate.

When the amount of the heat shock proteins reaches a sufficiently high
level that enables coping with the stress conditions, the production of new
chaperone molecules is switched off by the excess of the heat shock proteins.
To this aim hsp form complexes with the heat shock factors (hsp: hsf) in
three independently and concurrently running processes: 1) by binding to
the free hsf, 2) by breaking the dimers and trimers, and 3) by breaking
the hsf3: hse, in result of which the trimer gets unbound from the DNA, it
is decomposed into three free hsf molecules and one of these hsf molecules
forms a complex with hsp. This terminates the enhanced production of new
heat shock protein molecules and blocks the formation of new hsf trimers.

As soon as the temperature increases, proteins present in the cell start
misfolding. The misfolded proteins titrate hsp away from the hsp: hsf com-
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Reaction (Reaction number)

2 hsf ⇆ hsf2 (r1)

hsf + hsf2 ⇆ hsf3 (r2)

hsf3 + hse ⇆ hsf3: hse (r3)

hsf3: hse→ hsf3: hse + hsp (r4)

hsp + hsf ⇆ hsp: hsf (r5)

hsp + hsf2 → hsp: hsf + hsf (r6)

hsp + hsf3 → hsp: hsf +2 hsf (r7)

hsp + hsf3: hse→ hsp: hsf + hse +2 hsf (r8)

hsp→ (r9)

prot→ mfp (r10)

hsp + mfp ⇆ hsp: mfp (r11)

hsp: mfp→ hsp + prot (r12)

Table 3.1: The list of reactions in the molecular model for the eukaryotic
heat shock response in [96].

plexes. This enables the accumulation of free hsf molecules, which in turn
form trimers and promote the production of new chaperones. In conse-
quence, the response mechanism gets switched on. The full list of bio-
chemical reactions constituting the biochemical model of [96] is presented in
Table 3.1.

The model in Table 3.1 includes three mass conservation relations, see
[96], for the total amount of hsf, the total amount of proteins (other than
hsp and hsf) in the model, as well as for the total amount of hse:

• [hsf] + 2× [hsf2] + 3× [hsf3] + 3× [hsf3: hse] + [hsp: hsf] = C1,

• [prot] + [mfp] + [hsp: mfp] = C2,

• [hse] + [hsf3: hse] = C3,

for some mass constants C1, C2, and C3.
In [97], an extended model of the eukaryotic heat shock response is pre-

sented. With respect to the basic model of [96], the extended version in-
cludes the heat-induced misfolding and chaperone-assisted refolding of both
hsf and hsp. The justification for this extension is that since both hsf and
hsp are proteins, they are exposed to heat-induced misfolding. In this way,
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the extended version of the model contains one of the most attractive fea-
tures of living cells: the repair mechanism is subject to failure, but it has
capabilities to repair itself. The extended biochemical model is obtained
from the basic one by adding the following 6 new reactions to the list in
Table 3.1:

hsf → mhsf (r13)

hsp→ mhsp (r14)

hsp + mhsf ⇆ hsp: mhsf (r15)

hsp + mhsp ⇆ hsp: mhsp (r16)

hsp: mhsf → hsp + hsf (r17)

hsp: mhsp→ 2 hsp (r18)

and by substituting reaction (r4) with

hsf3: hse→ hsf3: hse + mhsp . (r4′)

For more details concerning the extended model, its associated mathematical
model and the numerical setup as well as its analysis and validation we refer
to [97]. The equivalence between the extended and basic model in terms
of numerical behaviour is shown in [95] and is a matter under discussion in
Chapter 4.

3.1.2 Mathematical model

By assuming the law of mass action for all reactions (r1)-(r12) in Table 3.1
the associated mathematical model consisting of a system of ordinary, non-
linear differential equations is obtained. The rate coefficient of protein mis-
folding in reaction (r10) is denoted as ϕ(T ) and given by the following
formula

ϕ(T ) = (1−
0.4

eT −37
) · 1.4T −37 · 1.45 · 10−5 s−1, (3.1)

where T is the numerical value of the temperature of the environment in
Celsius degrees. The formula is valid for 37 ≤ T ≤ 45. It is based on
experimental investigations of [74, 73] and was originally proposed in [94].
Expression (3.1) in its current form is obtained by adapting the original
formula of [94] to seconds (s), which is the time unit of the mathematical
model in [96].

The kinetic rate constants and the initial values of all reactants are
obtained by performing extensive parameter estimations. For this purpose
a suite of diverse algorithms available in COPASI, a software application for
simulation and analysis of biochemical networks and their dynamics ([56]),
is used. The numerical setup of the mathematical model is determined so
as to satisfy the following three conditions.
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1. The model should exhibit no response in the absence of heat shock, i.e.
at 37 ◦C. Hence, for a temperature of 37 ◦C, the system is at steady
state, i.e. the differentials of all model variables are zero.

2. For a temperature of 42 ◦C, the numerical prediction of the model for
[hsf3: hse](t) should be in agreement with experimental data of [65] on
DNA binding of hsf3.

3. For a temperature of 42 ◦C, the numerical prediction of the model for
[hsp](t) should be correlated with experimental data of [96] on a de-
novo fluorescent reporter-based experiment.

The full list of differential equations constituting the mathematical model
together with the numerical values of the rate constants and initial concen-
trations can be found in [96].

In [85] the basic HSR model of [96] is modelled with the stochastic frame-
work. The dynamics of the HSR is viewed as a continuous-time Markov
chain. A proof of the existence and uniqueness of the process’ stationary
distribution is presented. The outcomes of 1000 stochastic simulations are
compared with the results of the deterministic model. For details we refer
to Section 4.1.4 and [85].

3.2 In vitro self-assembly of intermediate filaments

One of the characteristics of eukaryotic cells is the existence of the cytoskele-
ton – an intricate network of protein filaments that extends throughout the
cytoplasm. It enables the cells to adopt a variety of shapes, interact me-
chanically with the environment, organize the many components in their
interior, carry out coordinated and directed movements. It also provides
the machinery for intracellular movements, e.g. transport of organelles in
the cytoplasm and the segregation of chromosomes at mitosis ([2, 3]). There
are three kinds of protein filaments that form the cytoskeleton: 1) actin fila-
ments, 2) intermediate filaments (IFs), and 3) microtubules. Each kind has
different mechanical properties and is assembled from an individual type of
proteins. Actin filaments and microtubules are formed from globular pro-
teins (actin and tubulin subunits, respectively), whereas fibrous proteins are
the building blocks of intermediate filaments ([3, 47]). Thousands of these
basic elements assemble into a construction of girders and ropes that spreads
throughout the cell.

One of the main functions of intermediate filaments is to provide cells
with mechanical strength. Intermediate filaments are especially prominent
in the cytoplasm of cells that are exposed to conditions of mechanical ten-
sion. For example, IFs are abundantly present along nerve cells axons where
they provide crucial internal reinforcement of these long cell extensions.
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They can also be observed in great number in muscle cells and epithelial
cells. IFs are characterized by great tensile strength. By stretching and
distributing the effect of locally applied forces, they protect cells and their
membranes against breaking due to mechanical shear. Compared with mi-
crotubules and actin filaments, IFs are more stable, tough and durable. For
example, they remain intact during exposure of cells to salt solutions and
nonionic detergents, while the rest of the cytoskeleton is mostly destroyed
([2]).

Intermediate filaments can be grouped into four classes: (1) keratin fil-
aments in epithelial cells; (2) vimentin filaments in connective-tissue cells,
muscle cells and supporting cells of the nervous system; (3) neurofilaments
in nerve cells; and (4) nuclear lamins, which strengthen the nuclear mem-
brane of all eukaryotic cells, see [2]. Major degenerative diseases of skin,
muscle, and neurons are caused by disruptions of the IF cytoskeleton or its
connections to other cell structures.

Unlike the other protein filaments which are assembled from globular
proteins, see [55, 124, 34], IFs subunits are α-helical rods that assemble
into rope-like filaments ([48]). Their assembly proceeds through a series
of intermediate structures, which associate by lateral and end-to-end inter-
actions. However, unlike in the case of microtubules and actin filaments
where rich literature is available, the assembly principles of IFs, either in
vitro or in vivo, are still poorly understood. In [62] and [25] the quantitative
kinetic strategies for the in vitro assembly of IFs from human tetrameric vi-
mentin proteins are analysed. In general, the in vitro assembly of vimentin
IF proteins can be described as a process consisting of three major phases:
(i) formation of the unit-length filaments (ULFs); (ii) longitudinal anneal-
ing of ULFs and growing filaments; (iii) radial compaction of immature (16
nm diameter) filaments into mature (11 nm diameter) IFs ([50, 51]). In the
first phase of their assembly, vimentin proteins rapidly associate parallelly
into dimers and then form anti-parallel, half-staggered tetramers, see [49].
Subsequently, tetramers rapidly associate laterally to yield short filaments
called unit-length filaments of the same length as the tetramers, see [48].
The first phase of assembly is illustrated in Figure 3.1. In the second phase
of the assembly, the ULFs and the emerging longer filaments elongate lon-
gitudinally with tetramers, with ULFs, and with other filaments ([48]). The
third phase is not considered in the biochemical models introduced in [62],
analysed in [62, 25] and briefly presented in the following.

3.2.1 Biochemical models

The simple model of [62] treats ULFs as ordinary filaments and describes
the assembly process through a sequence of biochemical events as follows.

(i) two tetramers (denoted T) associate laterally into an octamer (denoted
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Figure 3.1: The first phase of the assembly of human vimentin proteins. In-
termediate filament subunits are α-helical rods, that associate parallelly into
coiled-coil dimers, which in turn form anti-parallel, half-staggered tetramers.
Tetramers rapidly associate laterally to yield the shortest filaments called
unit-length filaments (ULFs) of the same length as the tetramers. (a) α-
helical rods, (b) dimerization of α-helical rods, (c) coiled-coil dimer, (d)
another representation of a coiled-coil dimer, (e) tetramer, (f) ULF. Reprint
of the illustration originally presented in [25].

O):
2 T→ O; (3.2)

(ii) two octamers associate laterally to yield a hexadecamer (denoted H):

2 O→ H; (3.3)

(iii) two hexadecamers associate laterally to form a (unit length) filament
(denoted F):

2 H→ F; (3.4)

(iv) a tetramer associates longitudinally to a filament to yield an elongated
filament:

F + T→ F; (3.5)

(v) two filaments associate longitudinally to yield an elongated filament:

F + F→ F . (3.6)
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The extended model of [62] adds a distinction between minimal-length
filaments (ULFs, denoted U) and longer filaments (consisting of at least
two ULFs), treating them as distinct species in the model. In terms of
biochemical events, the extended model consists of the following reactions:

(i’) two tetramers (denoted T) associate laterally into an octamer (denoted
O):

2 T→ O; (3.7)

(ii’) two octamers associate laterally to yield a hexadecamer (denoted H):

2 O→ H; (3.8)

(iii’) two hexadecamers associate laterally to form a unit length filament
(denoted U):

2 H→ U; (3.9)

(iv’) two unit length filaments associate longitudinally to form an elongated
filament (denoted F):

2 U→ F; (3.10)

(v’) a filament is elongated longitudinally with a tetramer:

F + T→ F; (3.11)

(vi’) a filament is elongated longitudinally with a unit length filament:

F + U→ F; (3.12)

(vii’) two filaments associate longitudinally to yield an elongated filament:

F + F→ F . (3.13)

Models for IFs self-assembly providing distinction between filaments of
particular lengths up to n, where n is an arbitrary integer determining the
so-called model resolution, are introduced in [25]. The problem of increasing
and decreasing the resolution of self-assembly models in general is further
investigated in [84].
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3.2.2 Mathematical models

As for the heat shock response model, also in this case a mathematical for-
mulation based on the mass-action law is considered both for the simple and
the extended model of IFs self-assembly. The full lists of differential equa-
tions for both models can be found in [25]. The models are fit by performing
extensive parameter estimation in COPASI ([56]) with respect to one set of
experimental data of [62] and validated against another set. The fit and val-
idation are performed in two cases: with and without taking into account
a qualitative property of the IF assembly, reported in [62], that very quickly
(within approximately 10 seconds) after the initiation of the assembly, ULF
is the most predominant species in the system. Moreover, in the case of
the extended model several different knockdown mutant model variants are
considered, where various combinations of assembly mechanisms (the so-
called strategies) are analysed separately. The performed study provides
several conclusions regarding the kinetics of the in vitro assembly of human
vimentin, see [62, 25] for details.

Relating the models for IF assembly to the quantitative experimental
data on the dynamics of the filament length is non-trivial because the con-
sidered models do not represent explicitly the information about the length
of the emerging filaments. Indeed, the models collect all filaments into a sin-
gle variable (F), regardless of their length. However, as is shown in [62] and
later improved in [25], the dynamics of the mean filament length (MFL)
can be deduced based on the variables of the models. For the details and
derivations we refer to [25].

As observed in [25], an interesting aspect of the mathematical models is
that the mass conservation relation on the total number of tetramers in the
models is evident in the molecular models (since there is no synthesis and
no degradation in the models), whereas it cannot be deduced as a property
of the corresponding mathematical models. This is a consequence of how,
for example, the longitudinal association of two filaments is modelled: the
information about the lengths of the two input filaments is not explicitly
reproduced in a property of the two filaments. However, one can calculate
the number of tetramers integrated in the assembled filaments and then use
this quantity to reason about the time-dependant dynamics of the mean
filament length.

Finally, we notice that the presented models are valid for the early dy-
namics of the vimentin filament assembly, where the kinetics of the system
is fast, with tetramers and ULFs being quickly replaced by emerging fila-
ments of various lengths. During this phase, the presence of a large amount
of tetramers and, a little later, of short filaments in the solution make far
more likely assembly/elongation events rather than disassembly events. For
this reason our models prove to be able to explain the experimental data
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during the early phase of the assembly, even though they do not include
any disassembly or filament breaking mechanisms. The applicability of the
models is, however, tied to the early part of the assembly. Over longer time
intervals the lack of a disassembly mechanism in the models makes them
limited in their predictive power. For example, a model with no disassem-
bly or filament breaking mechanism would predict that the system will reach
(albeit in a huge interval of time) a steady state where all initial tetramers
are integrated into one single filament (of huge length).
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Chapter 4

Computational modelling
challenges

This chapter gathers and presents in a synthetic way a number of issues
being subject of the publications included in this thesis and constituting the
original contribution of the author. From a general perspective, the con-
tribution consists in perceiving biological systems, mechanisms, processes,
etc., as complex arrangements whose properties emerge from much simpler
elements interrelated through logical, cause-effect types of relations. As
described in Chapter 1, such perception and description of various prob-
lems is characteristic for the field of computer science. Hence, seeing bio-
logical problems and designs from this perspective makes a natural choice
the use of methods, tools and formalisms originally developed in scientific
disciplines of computer science and mathematics for the analysis and de-
scription of constructs and processes encountered in biology. In this way,
the mentioned fields of science serve an auxiliary role for biology. How-
ever, also computer science and mathematics extensively benefit from this
interdisciplinary cooperation. As mentioned previously, the complexity of
designs and arrangements encountered in biological systems, in particular
living cells, exceeds virtually any other structure or organization of inan-
imate matter one could think of. Application of methods and formalisms
developed in the fields of computer science and mathematics creates new
problems and imposes challenges. On one hand, these issues enforce tun-
ing and advancement of methods and tools of computer science. On the
other hand, they display the limitations of these techniques and, in conse-
quence, stimulate the work out of new approaches towards the analysis of
complex systems. At the same time this cooperation enables us to better
understand what computer science in fact is: what can be explained based
on its perspectives of viewing problems and what are the limitations of its
approaches. In this sense, although this research is clearly driven by biolog-
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ical questions, assumptions, and data, it is highly beneficial for computer
science.

In the research constituting the foundations of this thesis a broad range
of approaches has been developed and applied to systematically investigate
two biological phenomena: the eukaryotic heat shock response and the in
vitro self-assembly of intermediate filaments, both briefly described in Chap-
ter 3. This range spans from heuristic, through numerical and statistical to
analytical methods applied in the effort to formally describe and analyse
the two cellular processes. In particular, we present a number of various
methodologies and heuristics relevant to the process of generally understood
model analysis. The considered techniques pertain to issues such as model
construction, the decomposition of a model into certain components and
identification of the contribution of each of them to the overall behaviour of
the system, simplification or extension of a model, as well as the problem of
comparison between various submodels, which is part of an important and
difficult question of how models should be compared. A review of existing
methodologies with reference to appropriate literature is provided and the
original contribution of the author in this subject is indicated. Although the
methodologies presented here are mostly discussed and applied in the con-
text of biological systems, we notice that they are, or can be with relatively
small amount of effort made useful in different, i.e. other than biological,
setups as well. The full range of developed and applied modelling techniques
as well as model analysis methodologies described in this chapter constitutes
a rich modelling framework.

4.1 Model construction techniques

In developing the mathematical model of the eukaryotic heat shock response
we concentrated on constructing a simple model capturing in mechanistic
details all key aspects of the regulation: the heat-induced protein misfold-
ing, the chaperone activity of heat shock proteins, the transactivation of
the genes encoding heat shock proteins and the repression of their tran-
scription once the stress is removed. In consequence, the resulting model
is based solely on well-documented molecular reactions (based on standard
molecular biology only) and does not include modelling “blackboxes” such
as experimentally unsupported components or biochemical reactions. In this
way, the intricate process is viewed from a computer science perspective as
a logical arrangement of relatively simple building blocks, i.e. biochemical
species, interrelated through cause-effect interactions described in the form
of biochemical reactions. We notice however that, although the reactions
are simple rules describing the relations between species, they may encapsu-
late complicated processes from the point of view of molecular biology and
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biochemistry. For example, the basic heat shock response model presented
in [96] contains a reaction representing the transcription and translation
of hsp-encoding genes in the form hsf3 : hse → hsf3 : hse + hsp, see Sec-
tion 3.1.1 and reaction (r4) in Table 3.1. In consequence, we do not model
explicitly the transcription machinery binding to the promoter region of
the hsp-encoding gene, the mRNA molecules being produced, edited, trans-
ported, etc., but only consider that a transcriptionally active hsp-encoding
gene will eventually yield the synthesis of new hsp molecules. In this sense,
this reaction captures in a simple and compact way the important, from
the perspective of the analysis of the heat shock response mechanism, rela-
tionship between the transcription machinery bound to the DNA and the
enhanced production of heat shock proteins. At the same time it hides the
intricate details of the gene transcription and translation process. These
considerations are part of a broader context of how to define the scope and
choose the abstraction level of a model. It is crucial to carefully consider
the purpose of model building: whether it is to obtain a very detailed and
accurate replica of the system under study or rather the aim is to construct
an abstract model which is relatively simple to analyse yet able to capture
the essential characteristic of the system. Depending on which purpose the
model is to serve, a suitable choice of the abstraction level can be made and
proper modelling frameworks can be applied. We come back to this issue in
Section 4.1.4, where we address the problem of proper choice between the
deterministic, continuous modelling framework versus the stochastic, dis-
crete one. We also discuss this matter in Section 4.3 in the context of model
modifications techniques, as well as Chapter 6.

The full list of biochemical reactions presented in Table 3.1 in Sec-
tion 3.1.1 constitutes a biochemical model for the eukaryotic heat shock
response. The associated mathematical model is obtained based on the
mass-action kinetics, see Section 3.1.2. The reason why a simple mass-action
formalization rather than more sophisticated approaches such as Michaelis-
Menten or Hill equations is chosen is so that we can follow the explicit effect
of each individual reaction to the overall response, i.e. to serve our goal of
constructing a model from simple and well-specified building-blocks.

Although constructed from plain elements, the behaviour of the resulting
mathematical model is far from being simple and is characterized by emer-
gent properties. In response to external stimulus in the form of increased
temperature (above 37 ◦C, which is considered the physiological conditions
temperature), the model correctly predicts that the level of hsf trimers is
transiently increased, see [54, 96]. It is also able to confirm that the hsf

dimers are only a transient state between monomers and trimers and that
their level remains low at all times, independent of the temperature. Next, in
the case of a heat shock applied in two stages with a recovery period between
them, with the second shock applied after the level of hsp has reached a max-
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imum, the predicted response of the model to the second heat shock is much
milder. This is in complete agreement with the expectation that due to the
first heat shock, the level of hsp is already raised, and so the cell may react
to the second shock with a lower hsf3 : hse peak. Further, when a heat shock
at 43 ◦C is considered, our model is able to show prolonged transactivation
and an experiment where the heat shock at 42 ◦C is removed at the peak of
the response shows a faster attenuation phase, see [96] for a more detailed
discussion of these results. All these make the model especially interesting
and outstanding: the presented properties of the model are emergent, i.e the
model is neither biased nor tweaked towards any of these behaviours by any
artificial, undocumented mechanisms. Just to provide an example, in the
case of the model in [94], mRNA is not produced as a result of DNA tran-
scription and it is not used directly in a model for protein synthesis, which
in our case is the crucial feedback regulatory motif. Instead, mRNA is used
in a hypothetical reaction of binding to misfolded proteins. Such a reaction
leaves only part of mRNA molecules as “healthy” and their proportion is
then used to model the slowing reaction rate of hsp binding to nascent pro-
tein chains. First, many of these steps lack experimental support. Second,
the same effect can be obtained, as suggested by our model, based on the ob-
servation that hsp molecules are competed on, according to the mass-action
principle, both by misfolded proteins and by nascent proteins chains. For
a detailed comparison of the eukaryotic HSR model originally introduced
in [96] with other models described in the literature we refer to [96].

4.1.1 Parameter estimation

The mass-action model of the heat shock response is expressed in terms of
ten, ordinary, first-order, non-linear differential equations ([96]). However,
based on the three mass-conservation relations concerning the total amount
of hsf, proteins other than hsp and hsf, and heat shock elements, only seven
equations turned to be independent ([96] and Section 3.1.1). There are 17
independent parameters in the model and 10 initial conditions that must be
specified or estimated to fit experimental data, but in fact the three conser-
vation relations leave only seven initial conditions to specify. In addition,
the condition that with the same initial values and the same numerical pa-
rameters the model is at steady state if the temperature is 37 ◦C is imposed.
This is a natural condition since the model is supposed to reflect the reaction
to temperatures raised above 37 ◦C. This yields 7 independent algebraic re-
lations on the set of parameters and initial values. Thus, we have altogether
17 independent values that we need to estimate. Mathematically, the prob-
lem we need to solve is one of global optimization, as formulated below. For
each 17-tuple κ of positive numerical values for all kinetic constants, and for
each 10-tuple α of positive initial values for all variables in the model, the
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function describing the level of DNA binding in time is uniquely defined for
a fixed temperature T. We denote the value of this function at time point
τ , with parameters κ and α by xT (κ, α, τ). Note that this property holds
for all the other variables in the model and it is valid in general for any
mathematical model based on ordinary differential equations (one calls such
models deterministic). We denote the set of experimental data by

En = {(ti, ri) | ti, ri > 0, 1 ≤ i ≤ N},

where N ≥ 1 is the number of observations, ti is the time point of each
observation and ri is the value of the reading.

With this setup, we formulate our optimization problem as follows: find
κ ∈ R

17
+ and α ∈ R

10
+ such that:

(i) f(κ, α) = 1
N

∑N
i=1(x42(κ, α, ti)− ri)2 is minimal and

(ii) α is a steady state of the model for T = 37 and parameter values given
by κ.

The function f(κ, α) is a cost function (least mean squares in the case
of the HSR model), indicating numerically how the function xT (κ, α, t),
t ≥ 0, compares with the experimental data. As mentioned above, not all
27 variables (the components of κ and α) are independent: on one hand, we
have the three algebraic relations defining the mass conservation relations
and, on the other hand, we have seven more independent algebraic relations
given by the steady state equations. Consequently, we have 17 independent
variables in our optimization problem.

Given the high degree of the system, finding the analytical form of the
minimum points of f(κ, α) is very challenging. This is typical when the
system of equations is non-linear. Adding to the difficulty of the problem is
the fact that the seven independent steady state equations cannot be solved
analytically, given their high overall degree.

Since an analytical solution to the model fitting problem is often in-
tractable, the practical approach to such problems is to give a numerical
simulation of a solution. Several methods exist for this, see [14, 102]. The
trade-off with all these methods is that typically they offer an estimate of
a local optimum, with no guarantee of it being a global optimum.

Obtaining a numerical estimation of a local optimum for (i) is not diffi-
cult. However, such a solution may not satisfy (ii). To solve this problem,
for a given local optimum (κ0, α0) ∈ R

17
+ × R

10
+ one may numerically esti-

mate a steady state α1 ∈ R
10
+ for T = 37. The pair (κ0, α1) then satisfies

(ii). Unfortunately, (κ0, α1) may not be close to a local optimum of the cost
function in (i).

Another approach is to replace the algebraic relations implicitly given
by (ii) with an optimization problem similar to that in (i). Formally, we
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replace all algebraic relations Ri = 0, 1 ≤ i ≤ 7, given by (ii) with the
condition that

g(κ, α) =
1

M

M
∑

j=1

R2
i (κ, α, δj)

is minimal, where 0 < δ1 < · · · < δM are some arbitrary (but fixed) time
points. Our problem thus becomes one of optimization with cost function
(f, g), with respect to the order relation (a, b) ≤ (c, d) if and only if a ≤ c
and b ≤ d. In the case of our basic ([96]), as well as the extended ([97]) HSR
model the solution to the above problem is obtained based on COPASI
[56].

In [96] yet another method for this challenging problem of finding pa-
rameters that simultaneously implement the stress-induced response of the
model (i) and satisfy the steady state condition (ii) is proposed. This method
is of the local optimization type and is based on the following two observa-
tions. First, the steady state of the model is a function of the parameters
and of other variables, such as total mass of various species. Second, the
model is continuous in all of the parameters. The main reason why parame-
ter estimation is the most time-consuming part of the work presented in [96]
is due to the problem that once a good fit with respect to experimental data
is found, the utilized approach is to replace the initial values with the steady
state of the obtained model at 37 ◦C and hope that the model fit at 42 ◦C
is not destroyed. The new idea proposed in the discussion of [96] is that for
models for which the mentioned two observations are true, a systematic pa-
rameter scan in the space determined by the considered ranges of parameter
values can be applied to identify a region in the multidimensional parame-
ter space where a local minimum of the score function is found. Iterating
this procedure yields a realization of a local minimum of the score function,
while the initial state of the model is a steady state for a temperature of
37 ◦C. In cases where the direct implementation of this idea is intractable,
i.e. for models with more than a few parameters due to the combinatorial
explosion of the number of simulations that need to be run, a fast and prac-
tical solution is to apply the Latin Hypercube Sampling method (LHS), first
introduced in [80]. We describe the sampling scheme briefly in the follow-
ing, in the case when the parameter values are uniformly distributed in their
range interval. One first chooses the desired size Z of the sampling set. The
range interval of each parameter is then partitioned into Z non-overlapping
intervals of equal length. For each parameter, we randomly select Z numeri-
cal values, one from each interval of the partition. We collect the Z sampled
values for the i-th parameter of the model on the i-th column of a Z × p
matrix, where p is the number of parameters. One then randomly shuffles
the values on each column. The result of the procedure is read from the rows
of the matrix: each of the Z rows of the matrix contains numerical values
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for each of the p parameters. For a detailed description and applications of
this sampling scheme we refer to [80, 45, 46, 92, 96, 83].

4.1.2 Model validation

Model validation is a crucial step in the model development methodology.
It enables gaining trust in the predictive power of the model and, in con-
sequence, makes credible potential hypothesis formulated on the basis of
model predictions. Such hypotheses are supposed to be subject to exper-
imental verification and hence stimulate new experimental designs. This
in turn advances our understanding of the process under consideration and
subsequently leads to further model tuning and development. Hence, model
validation finds its important place in the iterative circle of systems biology,
see Section 2.1.

In the case studies of the eukaryotic heat shock response and in vivo
self-assembly of intermediate filaments a number of model validation in-
stances are presented, see [96, 97, 25]. These validations are based both on
quantitative data as well as qualitative knowledge. One of the more chal-
lenging issues is the validation of the basic HSR model described in [96]
with respect to newly obtained experimental data. Specifically, the aim is
to validate the numerical prediction on the level of hsp of the model over
time. Our approach is to use a suitable quantitative reporter system based
on yellow fluorescent proteins (yfp). Our experimental setup is designed so
that the kinetics of the reporter geneŠs transactivation mimic the results
obtained in experimental studies on endogenous hsf target genes. In this
way, the dynamics of yfp partially reports on the dynamics of hsp. No as-
sumptions are made on the stability of yfp genes. Rather, this issue is dealt
with in the mathematical validation process. Our assumption is that the
fluorescence intensity is roughly linear with respect to the level of the yel-
low fluorescent proteins (yfp). The idea of the validation is to extend the
already fit basic model so as to include also yfp. Given that the transacti-
vation of the yfp genes is controlled by their own heat shock elements hse′,
transcription/translation and degradation kinetics, we obtained that

d[yfp]/dt = k′
4[hsf3: hse′]− k′

9[yfp], (4.1)

for some positive constants k′
4, k′

9 standing for the kinetic rate constants of
the yfp synthesis and of the yfp degradation, respectively. In the extended
model we re-use all the kinetic rate constants of the basic model. We then
look for numerical values for parameters k′

4 and k′
9 and for initial values of

all variables of the model so that the numerical prediction for yfp fit well
with the experimental data. The numerical values of parameters k′

4 and k′
9

are not deduced from the basic model to underline that we make no assump-
tions on the stability of yfp, or on their gene transcription rates. For more
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details, in particular the description of the experimental setup, methods and
validation results, we refer to [96]. Importantly, what can be learnt from this
approach is the methodology of how to validate against experimental data
mathematical models having no variable directly related to the available
data. Moreover, it illustrates how to address certain subtle issues related
to the use of a reporter system. In particular, how to include the reporter
system to an existing model in such a way that the validation procedure is
not biased (completely independent rate constants are introduced) and how
to deal with the lack of knowledge on the reporters stability or unknown
numerical value of their gene transcription rate.

In this context it is worth mentioning that also in the case study of the
self-assembly of intermediate filaments the problem of validating the mathe-
matical models with respect to experimental data is not a trivial task. This
is due to the fact that the considered models do not represent explicitly
the information about the length of the emerging filaments. Thus, relat-
ing them to the quantitative data on the dynamics of the filament length
is not straightforward and requires some effort to deduce the dynamics of
the mean filament length (MFL) based on the variables of the models, as
is shown in [25]. Although the idea of relating the mathematical models
to the experimental data through the mean filament length was originally
presented in [62], the provided mathematical expressions for the MFL intro-
duced an approximation error which is proportional to the length of each
filament. The approach in [25] is not influenced by this approximation error
and leads to a correct interpretation of the experimental data. For a detailed
discussion on this issue we refer to [25].

A methodology for increasing the resolution of the filament self-assembly
model is introduced in [25] and further investigated in [84]. We postpone
the discussion of this approach to Section 4.3.2, but mention here that
this methodology, as is shown in [25], enables the introduction of a high-
resolution model for vimentin filament self-assembly, able to capture the de-
tailed dynamics of filaments of arbitrary length. This provides much more
predictive power for the model in comparison to previous models, i.e. those
in [62, 25], where only the mean length of all filaments in the solution can
be analysed. Hence, the resulting model can be directly validated against
the raw experimental data of [62], i.e. capturing the lengths of individual
filaments, without the need for computing the mean filament length. In this
way, this methodology provides means for model validation. For example,
if the experimental data contain information on the time-course evolution
of the number of objects of certain sizes, than a simpler model under con-
sideration can with use of our methodology be straightforwardly refined to
a model of higher resolution, containing variables which numerical evolution
in time can be directly related to the experimental data. In this way, the
simpler model can be validated and used for further purposes.
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4.1.3 Model identifiability problem

Where reaction rate constant values of a mathematical model are obtained
by performing parameter estimation with respect to experimental data,
there arises the substantial question of the uniqueness of the set of pa-
rameters that fulfill the imposed conditions. This is a substantial and com-
monly encountered problem in systems biology modelling. It is referred to
as the model identifiability problem. In fact, this issue can be discussed in
a broader, more general context: it is related not only to the problem of nu-
merical model fitting but also appears in the problems of model comparison,
model simplification, recognition of the contribution of identified modules of
a model to its system-level behaviour, and any other problems involving nu-
merical techniques, e.g. sensitivity analysis performed in a specific numerical
setup of a mathematical model. Examples of such problems can be found
in [96, 95, 83, 24] and we briefly list and summarize them in the following.

In [96], the question of potential alternative fits for the basic HSR model
is considered. To this aim a thorough method based on systematic parameter
scan in the space determined by the considered ranges of parameter values,
e.g. defined through some biological knowledge, is proposed. Based on the
Latin Hypercube Sampling method ([80]), the following strategy to look
for alternative model fits that are both in agreement with the experimental
data of [65] and satisfy the steady-state condition for the initial values is
implemented. First, by applying the LHS method, sets of parameter values
are sampled. For each set, the steady state of the model under physiological
conditions (for a temperature value of 37 ◦C) is numerically estimated. The
initial state of the model as the calculated steady state is then set and the
model is simulated in the stress conditions (42 ◦C). Finally, those parameter
samples that lead to low DNA binding level at the peak of the response are
classified as non-responsive and excluded from further analysis. For each of
the remaining models, for each variable and each parameter a scatter plot is
made where characteristic quantitative property values such as the steady
state values of the variable under physiological conditions or the model fit
scoring function values under stress are plotted against the values of the
parameter. The obtained results are compared with the chosen properties
values of the basic model and conclusions concerning the identifiability of the
model are drawn, see [96] for details. It should be stressed that the discussed
methodology does not provide a proof of the uniqueness of parameter values
satisfying the imposed conditions. On the contrary, it is likely that a model
of this size is in fact not uniquely identifiable. However, the methodology
in the case of the basic HSR model shows that finding parameter values
satisfying our model constraints is far from being easy.

Also in a series of papers, i.e. [23, 83, 24], focusing on the control-based
approach towards model decomposition, analysis and comparison, the issue
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of model identifiability, or more generally the dependence of the obtained
results on the numerical setups, is recognized and addressed.

In [23] a control driven approach to studying the HSR regulatory network
of [96] is taken, the network is decomposed by identifying its main functional
modules and three main feedback loops are distinguished. The main ques-
tion addressed is why such level of complexity is needed for implementing
something that, in principle, could also be achieved with an open-loop de-
sign. To provide an answer to this question, the numerical behaviour of
various knockdown mutants, where one or more feedback loops are miss-
ing, is compared. However, as the authors of [23] admit, the results of the
analysis remain heavily dependent on the numerical setup of the models,
i.e. numerical values of the mass constants and of the kinetic rate constants
chosen in [96] for the original (reference) model (for details on how the nu-
merical values of the knockdown mutants were chosen we refer to [23] and
to the presentation of local submodels comparison in Section 4.4). To em-
phasize this problem, the authors of [23] say that their analysis is local and
state that repeating the analysis in a different numerical setup could result
in very different conclusions regarding the role of each of the considered
feedbacks. The authors point to the fact that the control in the regulatory
network can easily be shifted elsewhere by drastically slowing down some
reactions and speeding up others or by changing the mass constants, which
is illustrated with an example, see [23] for details. The main conclusions
are as follows. First, the local numerical analysis has to be taken in close
relationship with the experimental data and available biological knowledge
and validated as such. Second, repeating the analysis in different numerical
contexts can be very useful for gaining trust in the outcomes of the analy-
sis, however projecting conclusions from one numerical context to another
imposes a challenge in itself.

The same issue is encountered in the context of a novel method for
identifying the numerical contribution of a component to the system-level
behaviour of a larger model that is proposed in [24]. In this case a Boolean
logic-based approach for extracting conclusions about the role of each mod-
ule from the systematic comparison of the numerical behaviour of all knock-
down mutants is considered. In this approach a Boolean variable is as-
sociated to each module, expressing when the module is included in the
architecture (value ‘true’) and when it is not (value ‘false’). For each knock-
down mutant a Boolean formula is then written (using the conjunction and
negation of the introduced Boolean variables) characterizing the mutant’s
control architecture, i.e., which of the modules are present in the considered
model. The associated Boolean formulas encompass time-independent prop-
erties of the models. Moreover, they are parameter independent, i.e. they
are not influenced by the parameters used to describe the compared models.
Further, the satisfiability of system-level properties of the full model, such as
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efficiency, or economical use of resources, is expressed in terms of a Boolean
formula indicating in a compact way which model architectures, i.e., which
combinations of modules, give rise to the desired property. However, at this
stage the parameter independence is lost since, in order to perform numer-
ical simulations of the models, numerical setups for each of the knockdown
mutants are needed. This makes the analysis again sensitive to the choice
of the numerical values. Again, repeating the analysis for several numerical
setups could be a potential, although definitely not completely satisfactory,
solution to this challenging problem.

An attempt to handle the problem identified in [23] and [24] of depen-
dence of the submodel comparison results on numerical setup is made in [83].
Therein another original approach for quantitative submodel comparison is
proposed, where statistical sampling of the reference model and knockdown
mutant behaviours is performed. This method allows to consider more than
one numerical context for each submodel. In this way, the conclusions of the
analysis are not restricted to some particular values of the kinetic rate con-
stants. Thus, the obtained simulation results provide a basis for comparison
between the different potential architectural designs underlying the anal-
ysed system. A more detailed presentation and discussion of this method
is provided in Section 4.4, where the methodology for submodel comparison
is considered. The full presentation of this approach and an example of
application in the case study of the basic HSR model of [96] can be found
in [83]. Here we just briefly outline this method. First, submodels of the
original model are constructed: the considered model is decomposed into
modules and a number of knockdown mutants lacking one or more of the
modules is considered. Second, the associated mathematical models are ob-
tained. Next, the statistical sampling of the reference model and mutant
behaviours is performed by scanning the parameter value space. Further,
the initial values of the variables of the reference model and the submodels
are determined independently of each other by a systemic property, such as
the system being in a steady state in a given setup. Subsequently, numerical
simulations are run in order to evaluate the functional effectiveness of the
reference model and its knockdown mutants. Finally, the obtained results
are summarized and the alternative submodels are compared with the use
of some statistical measures. In this way, in this model comparison ap-
proach the behaviour of each potential architecture is characterized by some
statistical measures summarizing the outcomes of many different numerical
setups, as opposed to being considered just in one numerical configuration.
Hence, the dependence of the analysis’ results on the choice of numerical
setup is reduced to a large extent.

Finally, in [95] the problem of dependance on numerical setup appears in
the context of model analysis leading to model simplifications. As noticed
in [95], all the simplifications that are made on the extended model ([97, 95])
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are based on numerical arguments and, in principle, they are dependant on
the numerical setup of the model. Thus, in order to address this problem
the robustness of the model reductions against changes in the numerical
setup is examined. To this aim a set of tests is designed and performed.
In each test either the initial values of some variables, or the values of
some kinetic rate constants are changed. For each new numerical setup the
initial values of all variables are set to their steady state values at 37 ◦C
to underline that the heat shock response is missing under physiological
conditions. Finally, comparison of the numerical behaviour of the extended
model with that of its simplified version, for temperatures between 37 ◦C
and 45 ◦C is performed. For the details and outcomes of each particular test
we refer to [95]. However, as stated in [95], to evaluate the robustness of
the model simplifications in a more comprehensive way, one should compare
the two models, i.e. the extended and simplified ones, in several numerical
setups, spanning the domain of expected values for the model parameters.

4.1.4 Deterministic versus stochastic modelling framework

As described in Section 2.5, the proper choice of a modelling framework de-
pends on the context and purpose of modelling. Different modelling frame-
works provide different levels of abstraction and resolution. Especially in
the case of biological systems such as gene expression networks, where the
copies of a particular gene are of an order of dozens and transcription factor
molecules of a number of few hundreds, the discrete, stochastic framework
may provide a more detailed insight into the dynamics of the considered
system than just an average tendency captured by the continuous, deter-
ministic description of the system. In [85], a stochastic model corresponding
to the basic deterministic mass-action model of [96] for the eukaryotic heat
shock response is constructed and the outcomes of these two models are
confronted. In particular, the performed analysis shows that in the case of
the eukaryotic HSR, the behaviour of the basic model is a very good macro-
scopic approximation of the mesoscopic dynamics: the stochastic framework
does not provide any additional, relevant information with respect to what
is already known from the deterministic description. The presented results
indicate that the stochastic and deterministic models provide a qualitatively
consistent picture of the dynamics of the heat shock response mechanism.
This is relevant from the point of view that, in general, performing stochas-
tic simulations is much more expensive in terms of computational resources
and time than performing numerical integration of ODEs. The availability
of dedicated simulation software equipped with tools for analysis of stead-
states, sensitivities, robustness, etc., as well as the expertise in the theory
of differential equations makes the deterministic framework more preferable,
although the stochastic formulation could seem in many cases more justi-
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fied. The analysis of [85] deepens our belief that in the case of the basic
model of the eukaryotic HSR the choice of the deterministic formulation
does not carry with it any substantial loss in our perception of the heat
shock response mechanism.

At the same time, the conducted analysis of a substantial number of per-
formed stochastic simulations, i.e. 1000 independent trajectories, let us gain
some more insight into the dynamics of the heat shock response mechanism.
In general, the question about the stationarity and stability, i.e. the num-
ber of steady-states and whether they are stable or unstable, is important in
the examination of the dynamics of biological systems. In [85], by proving
the existence and uniqueness of the stationary distribution of the Markov
chain underlying the stochastic model, by summarizing the outcomes of the
stochastic simulations with some statistics, and by performing clustering and
grouping of the stochastic trajectories, the range of behaviour the stochastic
model is likely to exhibit is investigated. It is demonstrated that both in the
deterministic and stochastic models the conclusions concerning the stability
of the system are coherent, i.e. in both case the interpretation of the results
indicates that the system is rather monostable. For the formal presentation
of the Markov chain underlying the stochastic model of the eukaryotic heat
shock response, the proof of the existence and uniqueness of its stationary
distribution, the methodology for the analysis and comparison of the dy-
namics of both the stochastic as well as the deterministic framework, we
refer to [85].

4.2 Methods for model decomposition

Much experimental and theoretical effort is invested nowadays in analysing
large biochemical systems, e.g. metabolic pathways, regulatory networks,
signal transduction networks, aiming to obtain a holistic perspective provid-
ing a comprehensive, system-level understanding of cellular behaviour. This
often results in the creation and analysis of very large and complex mod-
els, often encompassing hundreds of reactions and reactants, see, e.g., [17].
Therefore, obtaining a global picture of the system’s architecture, in par-
ticular understanding the interactions between various components, or even
just distinguishing a high-level functional decomposition of the network,
constitutes a significant challenge. Recognizing that similar problems have
been encountered, for instance, in engineering sciences ([22]), one strat-
egy towards a system-level understanding of such architectures is to adapt
specific methods originating from these disciplines, in particular from con-
trol theory, see [42, 63, 71, 120, 121, 125, 136]. Such approach provides
a systematic way of identifying the main regulatory components, including
feedforward and feedback mechanisms. In consequence, contributes to the
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understanding of the reactivity, robustness and efficiency of the considered
system design.

4.2.1 Knockdown mutants

To disentangle the individual contribution of the various components of the
system design to the overall behaviour, knockdown mutants are often use-
ful to consider. A simple model decomposition consists of isolating a single
process or mechanism in the considered system. In this way the model is
split into two parts: one comprising the process of interest (e.g. a feed-
back mechanism) and the second containing all the remaining elements of
the system. Although such decomposition might seem unsophisticated, this
approach is often very useful in discovering the role of a single mechanism
in a larger system. It is widely exploited in reverse engineering, a process
aiming at revealing the technological principles of a device, object or system.
In Section 4.4 we briefly describe the method of mathematically controlled
comparison ([113]), where this simple decomposition approach is at the basis
of the method.

This method of decomposition is used in particular in [25], in the case of
the extended model of intermediate filaments assembly, where three modes of
filament elongation are distinguished: (i) with a tetramer, (ii) with an ULF,
or (iii) with another filament. In order to determine the role of each of these
modes in the self-assembly of IFs, all possible knockdown mutant models are
considered: all eight possible combinations of these three elongation mech-
anisms are investigated by performing parameter estimation and numerical
model validation for each of them. The obtained results allow us to draw
some conclusions about the importance of each of these mechanisms in the
process of in vitro filament self-assembly. For details we refer to [25].

Knockdown mutants are also considered in [24], to disentangle the nu-
merical contribution of modules to the system-level behaviour of the basic
model for the eukaryotic heat shock response. Therein modules are system-
atically included and excluded from the model architecture in all possible
ways and the resulting change in the model behaviour is investigated. We
discuss this approach more in the context of the problem of submodel com-
parison in Section 4.4.

4.2.2 Elementary flux modes

Another well-established decomposition method for biochemical models ap-
pears in the context of the analysis of metabolic pathways and is concerned
with the notion of elementary flux modes, discussed in Section 2.4.3. As
stated therein, the recognition of the elementary flux modes allows the detec-
tion of the full set of non-decomposable steady-state flows that the network
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Figure 4.1: A hypothetical metabolic network from [66]. Species S0, S3 and
S4 are so-called external metabolites.

can support, including cyclic flows. Any steady-state flux pattern can be ex-
pressed as a non-negative linear combination of these modes ([116, 117, 118]).
For example, for the network depicted in Figure 4.1, originally presented
in [66], the elementary flux modes connect the external metabolites S0 and
S3, S0 and S4, finally S3 and S4. They read
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and can schematically be represented as shown in Figure 4.2.

4.2.3 Control-based decomposition

A control-driven approach to model decomposition enables the recognition
of the main functional modules of a system and their individual contribution
to the emergent, complex behaviours of the system as a whole. In turn, this
can provide great insight about various properties of a given biochemical
system, e.g., robustness, efficiency, reactivity, adaptation, regulation, syn-
chronization, etc. In particular, by applying this approach, one usually aims
to identify the main regulatory components of a given biochemical system:
the process to be regulated, referred to as the plant, the sensors which mon-
itor the current state of the process and send the collected information to
a decision-making module, i.e. the controller, and the actuator that mod-
ifies the state of the process in accordance with the controller’s decisions,
thus influences the activity of the plant. One of the fundamental concepts
in control theory is the feedback mechanism, which provides means to cope
with uncertainties: the information about the current state of the process is
sent back to the controller, which reacts accordingly to facilitate a dynamic
compensation for any deviance from the intended behaviour of the system.
In the case of a complex system, this decomposition can be performed in
different ways depending on what is considered to be the main role of that
system, i.e. there may be a few reasonable choices for the plant, and the
remaining components are recognized with respect to the choice of the plant.
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Figure 4.2: Schematic representation of the elementary flux modes of the
hypothetical metabolic network in Figure 4.1. The flux modes from left to
right read: (1 1 1 0)T, (1 0 0 1)T, (−1 0 0 − 1)T, and (0 1 1 − 1)T.

We illustrate these concepts and their interactions on the example of
the functioning principles of an air conditioner. Here, the plant is a room
which temperature is to be maintained near a desired preset value. The
controller module is a thermostat which receives an input from the sensor
– a temperature sensing bulb and then determines whether there is any
disturbance in the room temperature. The actuator is the whole machinery
consisting of coils, coolant, blower, fan, and compressor that blows the cool
air into the room. It is regulated by the controller depending on the input
sent by the sensor. If the temperature is too high with respect to the preset
value, the controller keeps the actuator on to pump the cool air into the
room. If the temperature is below the desired value, the controller switches
off the cooling system.

How this control-driven approach can be exploited to investigate and un-
derstand regulatory networks can be seen in [15, 32, 63, 120, 121, 23, 24, 83].
Here we briefly describe the approach taken in [32]. The authors make
a thorough study of the heat shock response mechanism in Escherichia coli
based on modular decomposition. A model for the system is built and func-
tional modules, i.e. the plant, sensors, controller, and actuator are iden-
tified. The decomposition reveals the underlying design of the heat shock
response mechanism and its level of complexity, which, as the authors show,
is not justified if only the functionality of an operational heat shock sys-
tem is required. Further, this observation leads to the introduction and
analysis of hypothetical design variants (mutants) of the original heat shock
response model. In the original model one feedforward (temperature sens-
ing) and two feedback elements (σ32 factor sequestration feedback loop and
σ32 degradation feedback loop) can be isolated. The variants are obtained
through the elimination of either the σ32 degradation feedback loop or both
feedbacks. Moreover, the case without the feedforward element is also con-
sidered, see [32] for details. One by one, the variants in order of increasing
complexity are considered starting from the simplest architecture contain-
ing just the feedforward element (the open-loop design). Based on numerical
simulations, the authors demonstrate how the addition of subsequent lay-
ers of regulation, thereby increase in the complexity of the model, improves
the performance of the response in terms of systemic properties such as ro-
bustness, noise reduction, speed of response and economical use of cellular
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resources. Moreover, this systematic approach enables the identification of
the contribution of each of the regulatory layers to the overall behaviour
of the system. In consequence the authors succeed to perform an in-depth
comparison between different model variants.

We apply the control-based decomposition approach in [24] and [83] to
modularize the basic HSR model of [96] and to systematically evaluate the
role of each of the distinguished modules in the overall behaviour of the HSR
mechanism. This is done by considering the knockdown mutant variants of
the basic model where one or more modules are missing and by comparing
the mutants between each other. We discuss this more in Section 4.4.

4.3 Techniques for model modifications

In fields such as bioinformatics, genomics, proteomics or molecular biology,
the focus is on providing comprehensive and detailed information on cellu-
lar components. The extensive knowledge accumulated within these research
fields is often summarized in the form of static diagrams of genes and pro-
teins interconnections. With respect to these scientific disciplines, systems
biology aims to realize a paradigm shift towards understanding cell function
as a well organized interplay of dynamic processes. Systems biology aims
at explaining the structural and functional organization of complex biologi-
cal systems as networks of dynamic interactions ([63, 137]). For analysis of
dynamic processes of a cellular system, a model needs to be created ([63]).
Constructing a model is in general a complex, multi-phase task, which, as
mentioned in Section 2.1, involves an iterative cycle of hypothesis gener-
ation, experimental design, experimental analysis, and model refinement.
However, for a starting point, one must first define the scope and abstrac-
tion level of the model. Accordingly then recognize the relevant processes
and components to be incorporated into the model from a tangle of diverse
mechanisms and elements that often a real biological system consists of.
When designing a new biochemical model for some biological process or
network, the choice one has to make on the early stage of the modelling
process is whether to strive for a rich model, capturing many details, or on
the contrary, to focus on a more abstract model, capturing only a few, main
actors of interest. The choice is not obvious and depends heavily on the
goals of the modelling project. On one hand, a rich model has the potential
of being more realistic, but at the same time it leads to a more complex
mathematical model that may be difficult to fit to experimental data, to
analyse, and ultimately may be less apt to provide answers to biological
queries. On the other hand, a less finely grained molecular model leads
to a smaller mathematical model (in terms of the number of variables and
equations) that may be easier to work with, but it pays a price in ignor-
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ing a number of details. Hence, techniques which would allow, at a later
stage of model analysis, seamless modifications of a model in both direc-
tions, i.e. either extension or reduction, while preserving certain features
of the original model are of utmost importance. For example, when having
a model, there may arise a necessity for introducing some modifications into
it. However, making the modifications in a straightforward way often leads
to the loss of desired properties, e.g. such as the fit to experimental data,
of the original model. Some of these properties may have been obtained
at a significant cost of computational time, resources, etc. Hence the need
for methodologies which would allow to modify models in a clever way such
that the desired properties of the original model could be retained without
the need for repeating expensive procedures.

In the following subsections some methodologies as well as heuristic ap-
proaches towards the problem of model modifications are discussed. The
presented material, which constitutes an original contribution of the author
in this matter, is presented in the context of the two case studies considered
throughout this thesis: the heat shock response in eukaryotic cells and the
in vitro self-assembly of intermediate filaments.

4.3.1 Computational heuristics for simplifying a biological
model

As mentioned above, computational biomodelers adopt either of the follow-
ing approaches: build rich, as complete as possible models in an effort to
obtain very realistic models, or on the contrary, build as simple as possible
models focusing only on the core aspects of the process, in an effort to ob-
tain a model that is easier to analyse, fit, and validate. A main difficulty
in choosing between a rich and a simplified molecular model is that the po-
tential cost of starting off with a rich model only becomes transparent at
a latter stage, in the process of analysing the corresponding mathematical
model. Moreover, in the case of choosing a simplified model, the selection
of the aspects to be ignored in the model is left up to the subjective choice
of the modeler.

In [95], on the example of the extended computational model for the
eukaryotic heat shock response discussed in [97] as well as [96], a heuristic
approach towards model simplification is presented. The method, starting
with a (potentially large, rich) model that has already been fit and vali-
dated against experimental data, allows to simplify the model in such a way
that its numerical behaviour remains largely unchanged. In consequence,
the simplified model is the result of a systematic, numerical analysis of the
larger model that preserves the original validation of the extended model.
On the other hand, in this context, the extended model can be viewed as
being capable of remaining faithful to the biological data and of soundly
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identifying those aspects of the biological reality that have insignificant con-
tribution to the overall behaviour. This simplification method is proposed as
an intermediate approach between building simple and rich models. Since
the models are considered in a certain numerical setup, this approach is
susceptible to the problem of model identifiability, discussed in Section 4.1.
This issue is discerned in [95] and a discussion on this matter is presented
therein.

The simplification of the model is conducted based on a series of nu-
merical observations of the extended computational model of the eukaryotic
heat shock response originally proposed in [97]. The extension of this model
with respect to the so-called basic model discussed in [96] concerns addition
of a number of biochemical reactions which model the misfolding of the heat
shock factors and heat shock proteins, i.e. the main actors of the response,
see Section 3.1.1 for more details. In this way, the repairing mechanism is
subject to failure itself. We notice here that this, by no means, is neither
a trivial nor minor modification of the model. On the contrary, it introduces
a profound difference on the level of designs of these two models. However,
as presented in [95], based on the numerical investigations of the dynam-
ics of these models, the extended one can be reduced to the basic model
without altering its numerical behaviour, in particular without loosing its
experimental fit and validation. Hence, the basic version can be seen as
equivalent, from the point of view of the dynamics, with the extended ver-
sion and can serve, to the extent of numerical behaviour, as a justified and
precise substitute of the latter one. The advantage of being in possession
of the simplified version cannot be overestimated, e.g., when combining the
model into some larger modelling project. We return to this issue at the end
of this section.

We briefly list here the main numerical observations which provide this
justification, for the details we refer to [95]. The first observation is that the
variables mhsf and hsp: mhsf of the extended model both assume negligible
numerical values throughout numerical simulations in the whole range of
possible environmental conditions, i.e. for temperatures ranging from 37 ◦C
to 45 ◦C. Even when their initial values are increased to higher values,
their numerical convergence towards their steady state values is very fast.
Moreover, if the increase in the initial values of mhsf and hsp: mhsf is so that
the total amount of hsf and of hsp remain unchanged, then the experimental
fit and validation of the model remain largely unchanged. The reason for
this behaviour lies in the negligible flux rates of the reactions having mhsf

and hsp: mhsf as a product. On the other hand, the reactions having mhsf

and hsp: mhsf as reactants reach much higher flux rates because of larger
kinetic constants and high levels of hsp. This provides justification for the
elimination of both mhsf and hsp: mhsf from the model, along with the
reactions where they take part in, see [95].
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Although the situation is somewhat similar for hsf, hsf2 and hsf3 in the
sense that they all assume small values throughout numerical simulations,
there is a crucial difference which points to their significance for the model:
increasing the initial level of hsf3, even in such a way that the total level
of hsf is unchanged, drastically changes the fit to the experimental data.
Hence, these variables cannot be removed from the model.

Second, the observation that the flux of the hsf misfolding reaction is
negligible is the main rationale behind eliminating mhsf and hsp: mhsf from
the model. Also the flux of the hsp misfolding reaction, leading to the
formation of mhsp is negligible. The case of mhsp is however different because
it is also the end product of reaction (r4′) in Section 3.1.1, i.e.

hsf3: hse→ hsf3: hse + mhsp . (i)

Moreover, mhsp plays a central role in the model, being the source of all
induced hsp. The numerical values assumed by mhsp throughout simulations
for the whole admissible range of temperatures (37 ◦C-45 ◦C) are small, but
not negligible. They are however negligible relative to the total level of hsp.
Moreover, the numerical convergence of mhsp towards its steady state value
is very fast, even in the case when the initial level of mhsp is increased several
folds. This points to the observation that mhsp plays the role of a transient
state towards hsp, having a very high turnover rate. As such, it could be
eliminated from the model if only mhsp were replaced in reaction (i) with
hsp. The resulting simplified molecular model has only 10 variables and 12
reactions, compared to 14 variables and 18 reactions in the initial model,
confront [97] with [96]. The numerical simulations of the simplified model
for temperatures between 37 ◦C and 45 ◦C are indistinguishable from those
of the initial model.

From the biological perspective, the simplified model differs from the
initial model in ignoring the misfolded form of hsf and hsp, as well as in
ignoring the fact that newly synthesized proteins often need chaperones to
gain their native conformation. Excluding the misfolding of hsf and hsp is
justified by the numerical levels of misfolded hsf and hsp which are negligible
with respect to the level of mfp and thus, their competition for the chap-
eron resources of the cell is insignificant. Excluding the role of chaperones
in assisting the formation of the native conformation of newly synthesized
proteins is reasonable because of the high speed of the reaction, relative
to the speed of the other reactions in the model. As such, the complex of
chaperone and newly synthesized protein is a very fast transient stage in the
model and can be ignored.

To summarize, the following aspects contribute to the model simplifica-
tion succeeding in a given numerical setup. First, variables that have a fast
numerical convergence to their steady state values are eliminated (the so-
called time-separation principle). An important factor here is the flux rate
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of the reactions producing certain variables of the model: if the total flux
contributing to the production of a given variable remains very small, then
that variable will converge rapidly to its steady state value and it can be
eliminated from the model. Second, the condition that the initial values of
all variables are a steady state of the model at 37 ◦C. As stated as a the-
orem and proved in [95], the model has an interesting property that the
steady state values of most of its variables are independent of the tempera-
ture. In this way, even at higher temperature, several of the variables of the
model start from their steady state values and witness only minor numerical
disturbances before returning to the same values.

The basic model is simplified even more in [96]. Based on numerical pre-
dictions of the model and on its sensitivity analysis a number of reactions
with marginal contribution to the heat shock response are identified. The
computed values of scaled steady state sensitivity coefficients of all variables
of the model with respect to some of the reactions rate constants suggested
that the respective reactions may have negligible effect on the overall quanti-
tative (numerical) behaviour of the model. After eliminating these reactions
from the basic model, the reduced model performs equally well as the basic
model in all validation tests considered in [96]. In this way, mathematical
modelling predicts that hsf dimers and trimers are very stable and do not
break spontaneously at a significant rate and that unprompted unbinding of
an hsf trimer (without the involvement of hsp) from hse is also taking place
at a negligible rate. At the same time, the results of sensitivity analysis
help to recognize the most significant reactions regulating the levels of the
heat shock proteins and those of the misfolded proteins, for details see [96].
Thus, this heuristic analysis plays a double role: it enables further model
reduction, but also deepens our understanding of where the significant con-
trol resides in the network. These outcomes indicate the usefulness and still
not fully exploited potential of the application of mathematical modelling
in biology.

Another example of model simplifications based on sensitivity analy-
sis and heuristic observations can be found in [25], where the quantitative
kinetic strategies for the in vitro assembly of intermediate filaments from
human vimentin proteins are considered. The extended model distinguishes
among three modes of filaments elongation: (i) with a tetramer, (ii) with
an ULF, or (iii) with another filament, see Section 3.2.1. In the case of this
model, a qualitative property of the IFs assembly concerning the very quick
tetramers-to-ULF turnover (which was reported in [62]) leads to elimination
of the first mode, i.e. the elongation with a tetramer. As argued in [25],
in the case of fast tetramers-to-ULF turnover the populations of tetramers,
octamers, and hexadecamers are all quickly depleted, leaving only the fila-
ments as the dominant species. Consequently, the longitudinal assembly of
tetramers to filaments has a negligible contribution to the overall dynamics
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of the model due to the fact that in the beginning the process is strangled
by the negligible population of filaments, whereas later on the population
of tetramers is depleted. This is in agreement also with the results of the
performed sensitivity analysis and, in consequence, confirmes the observa-
tion of [62] that this particular elongation plays an insignificant role in the
process of filament self-assembly.

Having simple biomodels is very important for being able to analyse
their mathematical properties and for their integration into larger models.
The presented heuristic method to simplify an already fit model in such
a way that the numerical fit to the experimental data is not lost can be
utilized to reduce an existing model before extending it with some additional
mechanisms not considered in the first approximation. We provide two
examples of such situation. First, the model reduction in the case of filament
self-assembly with fast tetramers-to-ULF turnover discussed above turns out
to be essential for introducing a new, significantly larger model being able to
capture the length distribution of filaments in time, i.e. a refined model for
the self-assembly that allows capturing the evolution of filaments of length
up to n, for any given positive integer n. Based on the kinetic observations
that the longitudinal elongation of filaments with tetramers has negligible
kinetic influence on the dynamics of the model and that eliminating it leads
to a numerically equivalent model, we can ignore a substantial number of
variables that otherwise would have to be included in the new model. To
show the extent of simplification that is reached in this way, we provide this
example: in the case of n = 10, without the discussed observations, the
refined model would consist of 396 variables instead of 14 as in the version
presented in [25]. In other words, the simplifications make it possible to
keep the size of the refined model manageable.

Second, in the case of the heat shock response, adding the phosphoryla-
tion of hsf in all of its homo- and hetero-polymers, along with its influence
on gene transcription leads to a combinatorial explosion in the number of
variables of the model. Hence, decreasing the number of variables reduces
the difficulty of the problem. However, as discussed in [96], even in the case
of the simplified, i.e. basic model, adding phosphorylation of hsf and its role
on the hsf activity is very challenging. The difficulty is in distinguishing all
phosphorylation states of all known phosphorylation sites of hsf (currently
at least 14 of them, see [134, 54]). In [25], an extended model is built where
only one phosphorylation site for each hsf molecule is considered and an hsf

trimer is only able to promote gene transcription if it has at least two of
its three sites phosphorylated. The extended model consists of 61 reactions
and 26 reactants. It includes all possible phosphorylation states of hsf, hsf2,
hsf3 and hsp: hsf, as well as protein kinases and phosphatases which are sub-
ject to misfolding/refolding. The model is successfully fit to the data on
DNA binding of [65] in such a way that the rate constants of the reactions
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of the basic model remain unchanged. However, when considering also the
phosphorylation data of [65], the combined fit is very poor. The conclusion
is that the rate constants of the basic model should be re-estimated in this
case, but this would lead to a very challenging computational task.

The difficulties that are faced both when considering model refinement
in [25] as well as when discussing the addition of phoshorylation to the heat
shock response model in [96] pointed to an intrinsic problem of modelling
with differential equations: they are describing explicitly all variables in the
model, even when many of them are essentially just duplicates of each other.
A novel mathematical modelling methodology able to describe models in
terms of various independent components and the communication between
them (such as done in concurrency in Computer Science), may be more
suitable in such setups. A potential choice here could be the rule-based
modelling approach. For more details on this formalism, see [52, 28, 26, 27].

4.3.2 Model refinement

The generic model for self-assembly, defined notions and introduced meth-
ods in [84] came as a spin-off from the research on constructing models
being able to capture the evolution of filaments of certain length up to some
arbitrarily chosen value, which is presented in [25]. In [84], formal model
refinement is considered in the context of mathematical models based on
ordinary differential equations for the processes of self-assembly. Model re-
finement is an important aspect of the model-building process. As stated in
Section 2.1, starting from a model abstracting a biological system, the it-
erative process of hypothesis generation, experimental design, experimental
analysis, and model refinement lies at the core of systems biology. Model
refinement can be described as a procedure which, starting from an ab-
stract model of a system, performs a number of refinement steps in result of
which a more detailed model is obtained. At the same time, in order to be
correct, the refinement mechanism has to be capable of preserving already
proven systemic quantitative properties of the original model, e.g. model fit,
stochastic semantics, etc. One could take all the intended changes into con-
sideration while simply repeating the whole model development procedure
from scratch. But such solution would again involve the time-consuming,
computationally-intensive model fitting procedure. Another approach, not
much investigated in the literature, is to refine the model in such a way that
the previously obtained fit is preserved. This basically implies deriving the
parameter values of the refined model from the ones of the original model.

In [84], a generic formal model for the process of self-assembly is pre-
sented, the notion of model resolution is introduced and the model refine-
ment procedures for a family of ordinary differential equation models de-
scribing this process are developed. The refinement procedures concern
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increasing and decreasing the model resolution while preserving the fit to
experimental data. To the best of our knowledge, this is the first time
formal refinement is considered in the context of ODE-based mathemati-
cal models and the results of [25] and [84] constitute a significant, novel
contribution in this area. For increasing the model resolution an exact, con-
structive method based on analytical investigations is developed. Decreasing
the model resolution is more challenging. This is because obtaining some of
the essential symbolic solutions for the derivation of a method which would
be fully based on analytical deliberations and that would relate the numeri-
cal values of the parameters in the reduced model to the ones in the original
model in a straightforward and simple way, yet providing exact equivalence
between the two models turns out to be difficult. Hence, the method pro-
posed in [84] for decreasing the model resolution is based both on symbolical
computations as well as requires numerical investigations and simulations of
the models. For detailed description and formal derivation of these methods
we refer to [84]. An example of application of this methodology to the case
study of self-assembly of intermediate filaments can be found both in [25]
and [84].

The respective methods for model refinement presented in [84] provide
means for model modifications, i.e. model extensions or model simplifica-
tions. Moreover, it is worth repeating here what is said in Section 4.1.2,
that the method for increasing model resolution provides potential means
for model validation.

4.4 Methods for submodel comparison

Various experimental investigations of a given biochemical system often lead
to generation of a large variety of alternative molecular designs, thus raising
questions about comparing their functionality, efficiency, and robustness.
Comparing alternative models for a given biochemical system is, in general,
a very difficult problem. This is due to the fact that the models may fo-
cus on different aspects of the same system and may consist of very different
species and reactions. Moreover, the numerical setups of the associated com-
putational models play a crucial role in the quantitative comparison. Hence,
model comparison involves a deep analysis of both the underlying network of
reactions, the biological assumptions as well as the numerical setup. To de-
cide what are the benefits of one design over another, or to understand what
are the selection requirements involved in an evolutionary design, one needs
some unbiased methods to objectively compare the alternative designs.

The problem becomes somewhat simpler when the alternative designs are
actually submodels of a larger model: the underlying networks are similar,
although not identical, and the biological constrains are given by the larger
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model. In the following, we concentrate on this particular case: we review
several known approaches for quantitative comparison of submodels as well
as we present new methods that are developed as part of the research work
underlying this thesis.

4.4.1 Mathematically controlled model comparison

One such method is the mathematically controlled comparison ([113]), which
provides a structured approach for comparing alternative regulatory designs
with respect to some chosen measures of functional effectiveness. Under
this approach, mathematical models for both the reference design and the
alternatives are first developed in the framework of canonical nonlinear mod-
elling referred to as S-systems, see [110, 111, 112]. This canonical nonlin-
ear representation, developed within the power-law formalism, is a system
of non-linear ordinary differential equations with a well-defined structure.
Moreover, this framework allows the alternative models to differ from the
reference design in only one process, e.g., the existence or not of some feed-
back mechanisms, which is actually the focus of the comparison. In each of
the alternative models one then sets the numerical values of the parameters
to be identical with those from the reference model for all processes other
than the process of interest. This leads to a so-called internal equivalence
between the reference model and the alternatives. Next, various systemic
properties are selected and used to impose some constraints for all the other
parameters in the alternative designs. In general in this approach, one im-
poses that some steady state values or logarithmic gains are equal in the
reference model and its alternatives. This provides a way to express the
parameters of the process of interest in the alternative models as functions
of the parameters of the reference model. Thus, one obtains a so-called ex-
ternal equivalence between the reference model and the alternative designs,
meaning that to an external observer the considered models are equivalent
with respect to the selected systemic properties. Finally, one chooses vari-
ous measures of functional effectiveness depending on the particularities of
the biological context of these models and uses them to compare the alter-
native designs with the reference model. By doing this, one usually aims
to determine analytically the qualitative differences between the compared
models. This method was successfully used to compare alternative regula-
tory designs in, e.g., metabolic pathways, [57], [114], in gene circuits, [43], in
immune networks, [10]. Moreover, by introducing specific numerical values
for the parameters of the models, one is also able to quantify these differences
but, at the same time, the generality of the results is lost. Thus, in [6], the
method of mathematically controlled comparison was extended to include
some statistical methods, [5], [7], that allow the use of numerical values for
the parameters while still preserving the generality of the conclusions.
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4.4.2 An extension of the mathematically controlled com-
parison

The first step of the extension in [6] is to generate a representative ensemble
of sets of parameter values. Since usually for biological systems the exact
statistical distribution of the parameters values is not known, the most ap-
propriate approach is to sample uniformly a given range of values. There
exist different methods for scanning a given interval of values, ranging from
(more or less sophisticated) random samplings to some systematic deter-
ministic scanning methods, see, e.g., [108]. Using this ensemble of sets of
parameters, we can then construct a large class of numerical models both for
the reference and for the alternative designs. In accordance with [7], there
are two different methods to construct such a class of systems for which we
can then investigate some statistical properties. A structural class consists
of systems having the same network topology, i.e., generated by the sampling
of the parameter space. A behavioural class consists of systems that exhibit
a particular systemic behaviour, e.g., exhibiting a steady state behaviour
under given conditions, or low concentrations of intermediary products, or
small values for the parameter sensitivity, see, e.g., [7]. The members of
such a class are obtained in two steps: first generate a set of parameters by
sampling the parameter space, then test the sample for the desired systemic
behaviour and keep only those systems that fulfil the conditions, see [7] for
more details.

After constructing this large class of numerical models both for the ref-
erence and the alternative architectures, one can start comparing the values
of a given systemic property P between the reference model and its alter-
native designs. One way to do this is by using density plots of the ratio
R = Preference/Palternative versus the values Preference, where the subscript
indicates in which model the property P was measured ([5]). Such density
plots can be used for instance to compute rank correlations between the
considered property P (measured in the reference model) and the values of
the ratio R ([5]). However, this is not easy to do if the density plots are
very scattered. One can then construct secondary density plots by using the
moving median technique ([5]). This technique can be outlined as follows.
Basically, the density plot can be interpreted as a list of N pairs of values
(Preference, R), which can be arranged in a ordered list L with respect to the
first component, Preference. We then pick a window size W , usually much
smaller than the sample size N and we compute the median < R > of the
ratio values and the median < P > of the values Preference, for the first
W pairs in the list L. We then advance the window by one, we collect the
ratios and the values Preference from the second until the W + 1st pair and
compute the corresponding median values < R > and < P >. This process
is continued until the last pair of the list L is used for the first time. In
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the secondary density plot, we pair the computed values < R > with the
corresponding < P > values. This moving median technique is very useful
since for a finite ordered sample of size N , the moving median tends to the
median of the samples as the value W approaches N ([5]). These secondary
density plots can be used to compare the efficiency of two classes of models
from the point of view of a given systemic property.

For more details on the extension of the mathematically controlled com-
parison we refer to [6].

4.4.3 Local submodels comparison

When the alternative designs are actually submodels of the reference archi-
tecture, there is also another approach, see [23], for performing the compar-
ison. This is the case when, for instance, one is interested in a functional
analysis of various modules of a large system. The underlying reaction
networks in the alternative designs are then very similar (although not iden-
tical), and both the biological constraints and the kinetics of the reactions
are given by those of the reference model. The only remaining question
regards the initial distribution of the variables in the alternative models.
In the mathematically controlled comparison they are usually taken from
the reference model. However, for some biochemical systems this choice
might lead to biased comparisons. For instance, in the case of regulatory
networks, models should be in a steady state in the absence of the trigger of
the response and indeed the initial values of the reference model are usually
chosen in such a way to fulfil this condition. However, this will not imply in
general that also a submodel will be in its steady state if it uses the same
initial values as the reference model. Thus, the dynamic behaviour of the
submodel will be the result of two intertwined tendencies: migrating from
a possible unstable state and the response to a trigger. If the focus of the
comparison is exactly the efficiency of the response of various submodels to
a trigger, then the approach proposed in [23] is more appropriate, yielding
biologically unbiased results. In this approach, the initial distribution of the
reactants is chosen in such a way that the initial setup of each submodel
constitutes a steady state of that design in the absence of a trigger.

4.4.4 A discrete approach for comparing continuous sub-
models

The application of the control-theoretical analysis described in Section 4.2
enables the identification of the main functional modules, their intercon-
nections and control strategies of a biochemical network. In particular,
this approach can be very useful for identifying the main regulatory com-
ponents of a biochemical network, including its feed-forward and feedback
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mechanisms. In order to identify and quantify the exact role of each of
these regulatory mechanisms, one then usually uses knockdown mutants,
see [32] and Section 4.2, lacking one or more of these components. In partic-
ular, the knockdown mutant models are submodels of the reference architec-
ture. The approach proposed in [24], associates to each knockdown mutant
a Boolean formula describing its control architecture in the following way.
First, a Boolean variable is associated to each of the regulating mechanisms.
Using the negation and conjunction of Boolean variables, one can then write
a Boolean formula for each of the knockdown mutants describing which of
the regulating mechanisms are present in their architecture. In particular,
these Boolean formulas describe a property of the alternative designs which
is independent of time, i.e., their regulatory network. Moreover, one can go
one step further and write a Boolean formula describing all those mutant
architectures that show a given behavioural property, e.g., a high level of
a given reactant or a given correlation between two reactants. This for-
mula is actually the conjunction of all Boolean formulas characterizing the
architectures of the mutants exhibiting the required property. The numeri-
cal comparison of the mutants is then performed by analysing the Boolean
formulas associated to various behavioural properties.

In [24], this method is applied to a computational, in-silico model of
the eukaryotic heat shock response and for that, the numerical properties of
this model and of all its knockdown mutants are analysed. However, as con-
cluded in [24], the applicability of this approach is more general: the same
method could be applied to describe how properties of a wet-lab biomodel
emerge from the combination of its modules. To this aim, one would simply
replace the numerical simulation of the computational models with the ex-
perimental measurement of the behaviour of the wet-lab biomodel and that
of its knockdown mutant variants.

4.4.5 A new statistical method for quantitative submodel
comparison

The new statistical method for quantitative submodel comparison originally
introduced in [83] can be outlined as follows. First, starting with biochemical
model of some biological mechanism, referred to as the reference model (or
reference architecture) of this system, we construct a submodel (or alterna-
tive architecture) by eliminating certain reactions from the list of biochemi-
cal reactions of the reference model. At this stage, we can for example apply
control-based decomposition techniques, see Section 4.2, to identify a num-
ber of modules, and then study them separately by considering a number of
knockdown mutants lacking one or more of the modules. Second, the asso-
ciated mathematical models are formulated, both for the reference and the
alternative architecture. Notice that this procedure assures that all the pa-
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rameters of the alternative architecture match a subset of parameters of the
reference model. Next, we perform the statistical sampling of the reference
model and mutant behaviour. To accomplish this, we scan the parameter
value space of the reference model (for this, the Latin Hypercube Sampling
method ([80]) can be used, see [83]). This provides us with a set of param-
eter value vectors. Each coordinate of these vectors is associated with one
of the parameters in the reference model, and determines the value of the
corresponding parameter. We consider each of the vectors one by one. We
set the parameters of the reference model and the submodel in accordance
with the considered vector. Since, as mentioned above, the alternative ar-
chitecture contains only a subset of the reference model parameters, only
the values of certain coordinates are used when setting the parameters of
the submodel. Further, the initial values of the variables of the reference
model and the submodel are determined independently of each other by
a systemic property, such as the system being in a steady state in a given
setup. For example, in the general case of stress response, we expect in
accordance with biological observations that a feasible mathematical model
is in a steady state under the unstressed, physiological conditions. Assuring
that both mathematical submodels satisfy such systemic properties makes
them suitable to be considered as viable alternative formal descriptions of
the biological mechanism being analysed. As a result, we obtain the nu-
merical instantiations of the reference model and the submodel and we run
numerical simulations for both of them in order to evaluate their functional
effectiveness. Finally, having done this for all sampled vectors, we summa-
rize the obtained results for the variants and compare the models by use of
some statistical measures (in the case study presented in [83], the moving
median technique, briefly described before while presenting the extension
of the mathematically controlled comparison, is applied). As already men-
tioned in 4.1.3, where the model identifiability problem is considered, in this
method the dependence of the analysis’ results on numerical setup of the
models is highly reduced. Moreover, as noticed in [24], although this new ap-
proach for model comparison is designed and presented for the deterministic
framework, it can be also adapted for the stochastic framework.

4.5 Exploitation of a computational model – an ex-
ample

There are many ways in which a computational model can be exploited.
We list a few of them. First, the mere fact that a model is capable of re-
capitulating the phenomenon under study makes mathematical modelling
very appealing: the ability to construct such a model indicates that one has
recognized all the relevant components and interaction. On the other hand,
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a negative result in this matter may suggest that the qualitative mecha-
nisms underlying the process of interest are not yet understood or recog-
nized. Next, having a model provides us with possibilities to identify the
critical parts of the system and these which play a less significant role. Fi-
nally, a computational model can be utilized to make predictions about the
behaviour of the system in various conditions without the need for tedious,
expensive or infeasible in practice lab experiments. These predictions in
turn can form basis for proposing new hypotheses concerning the process
under study or provide essential expertise for the design of new methods
or tools for various practical applications. In this section we describe one
example of the latter case, where the basic heat shock response model is
used to verify the possibilities of exploiting hyperthermia, a procedure of
raising the temperature above 37 ◦C, in clinical treatment.

Theoretically, a properly tuned tempo-spatial temperature distribution
in a tissue would lead to a desired heat shock response in the tissue forming
cells and, in consequence, enhanced expression of heat shock proteins which
are important from the therapeutic point of view. One of the most relevant
problems which arise in this context is related to the question whether in
the considered type of tissue a controlled and effective application of hyper-
thermia is practically feasible. The application has to be strictly controlled
since it is important to assure that the temperature itself is kept within
the therapeutic range, i.e. up to 43 ◦C. Furthermore, the tissue area and
exposure time to heating must be precisely defined in order to activate the
finely tuned heat shock response, on which the effectiveness of the treat-
ment depends. As explained in [86], utilization of ultrasonic technique for
inducing hyperthermia in tissue seems a promising approach. Technical im-
provements of the focused ultrasound ensure the non-invasive and strictly
controlled heating of the target tissue volumes. However, the control over
the spatial temperature distribution in a tissue is of essential importance
for the appropriate induction of gene expression on the cellular level. It is
hoped that a proper ultrasonic regime can be tuned by adjusting the ul-
trasound beamŠs parameters (such as intensity, frequency, pulse duration,
duty-cycle) or the exposure time. The aim is to establish safe protocols
for inducing heat shock response by ultrasound irradiation, which could be
applied in clinical treatment.

In [86], a simple soft tissue heating model based on the Pennes’ bioheat
equation (see, e.g., [12, 19]) is introduced. It is utilized to establish an ul-
trasound heating scheme that meets the requirement of not exceeding the
temperature of 43 ◦C at the transducerŠs focal point. Next, the resulting
temperature time-course profile is combined with the heat-induced protein
denaturation formula of the basic HSR mathematical model: the tempera-
ture profile is incorporated into the HSR model through the rate for protein
misfolding, i.e. Equation (3.1). Finally, the obtained numerical simulation
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results concerning the response at the focal point in the tissue form the ba-
sis for a discussion on the potential application of ultrasound induced soft
tissue heating for therapeutic purposes.
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Chapter 5

Original research
contributions

In this chapter we list the original contribution of each paper contained in
this thesis.

1. Ion Petre, Andrzej Mizera, Claire L. Hyder, Annika Meinander, An-
drey Mikhailov, Richard I. Morimoto, Lea Sistonen, John E. Eriksson,
and Ralph-Johan Back. A simple mass-action model for the eukary-
otic heat shock response and its mathematical validation. Natural
Computing, 10(1):595-612, 2011.

• A simple model of the heat shock response is proposed. The
model captures in mechanistic details all key aspects of the regula-
tion: the heat-induced protein misfolding, the chaperone activity
of heat shock proteins, the transactivation of the genes encoding
heat shock proteins and the repression of their transcription once
the stress is removed.

• In contrast with previous attempts to model the eukaryotic heat
shock response, our model is based solely on well-documented
molecular reactions (based on standard molecular biology only)
and does not include modelling “blackboxes” such as experimen-
tally unsupported components and biochemical reactions.

• An associated mathematical mass-action model is presented.

• Extensive parameter estimation is performed to fit the model to
the experimental data of [65] on DNA binding under stress condi-
tions (constant heat shock of 42 ◦C). Moreover, the requirement
of the model to be at steady state in the absence of stress is
imposed.

71



• The model is validated with respect to new quantitative experi-
mental data on the fluorescence level of reporter genes, i.e. yellow
fluorescence protein genes (yfp). We propose an approach that
enables performing the validation of the model although the orig-
inal model does not contain any variable directly related to yfp.
Moreover, when a heat shock applied in two stages, with a re-
covery period between them, with the second shock applied after
the level of hsp has reached a maximum is considered, the model
correctly predicts that the response to the second heat shock is
much milder. The model is scalable: in the case where a constant
heat shock at 43 ◦C is considered, our model shows a prolonged
transactivation and in an experiment where the heat shock at
42 ◦C is removed at the peak of the response, the model shows
a faster attenuation phase.

• Based on numerical predictions of the model and on its sensitiv-
ity analysis, we minimize the model by identifying the reactions
with marginal contribution to the heat shock response: we use the
model, in particular its sensitivity coefficients, to identify a num-
ber of reactions that have a negligible effect on the model and
could be eliminated from the model without affecting its quanti-
tative (numerical) behaviour.

• We identify the most significant reactions regulating the levels
of the heat shock proteins and those of the misfolded proteins.
This analysis deepens our understanding of where the significant
control resides in the network.

• We address the model identifiability problem, i.e. the question of
the uniqueness of the set of parameters that fulfill the imposed
conditions.

• We propose a local optimization method for model fitting based
on parameter scanning.

• We show how mathematical modelling of biological processes may
allow reasoning about uncertain or incomplete subparts of the
HSR process.

• We notice that the numerical techniques that were used in this
paper for identifying the essential components of the regulatory
network may also be applicable in other mathematical modelling
projects.

2. Ion Petre, Andrzej Mizera, Claire L. Hyder, Andrey Mikhailov, John
E. Eriksson, Lea Sistonen, and Ralph-Johan Back. A new mathemati-
cal model for the heat shock response. In Anne Condon, David Harel,
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Joost N. Kok, Arto Salomaa, and Erik Winfree, editors, Algorithmic
Bioprocesses, Natural Computing Series, pages 411–425. Springer,
Dordrecht Heidelberg London New York, 2009.

• An extended model of the eukaryotic heat shock response, where
the repairing mechanism is subject to failure itself is proposed.

• An associated continuous mathematical model based on the law
of mass-action is fitted to the data of [65] with the condition
of being in steady state under physiological conditions (constant
temperature of 37 ◦C).

3. Ion Petre, Andrzej Mizera, and Ralph-Johan Back. Computational
heuristics for simplifying a biological model. In Klaus Ambos-Spies,
Benedikt Löwe, and Wolfgang Merkle, editors, Mathematical The-
ory and Computational Practice: 5th Conference on Computability
in Europe, CiE 2009, Proceedings, volume 5635 of Lecture Notes in
Computer Science, pages 399–408, Berlin Heidelberg New York, 2009.
Springer.

• We present heuristic methods to simplify an already fit model
in such a way that the numerical fit to the experimental data
is not lost. We focus in particular on eliminating some of the
variables of the model and the reactions they take part in, while
also modifying some of the remaining reactions.

• We illustrate the methods by simplify the extended model of the
heat shock response to the basic one without loosing the fit and
validation. In this way the basic version can be seen as equivalent,
from the point of view of the dynamics, with the extended version
and can serve, to the extent of numerical behaviour, as a justified
and precise substitute of the latter one.

• We discuss the limitations of the proposed methodology.

4. Andrzej Mizera and Barbara Gambin. Stochastic modelling of the eu-
karyotic heat shock response. Journal of Theoretical Biology, 265(3):
455–466, 2010.

• In this paper a stochastic model of the heat shock response cor-
responding to the deterministic one is constructed and the out
comes of these two models are confronted. The aim with this
comparison is two show that, in the case of the heat shock re-
sponse, the approximation of a discrete system with a continuous
model is a reasonable approach.
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• A proof of the existence and uniqueness of the stationary distri-
bution of the Markov chain underlying the stochastic model is
given.

• We perform 1000 stochastic simulations and we analyse them.
By summarizing the outcomes of the stochastic simulations with
some statistics and by performing clustering and grouping of the
stochastic trajectories, we investigate the range of behaviour the
stochastic model is likely to exhibit.

• We demonstrate that the obtained results agree well with the
dynamics displayed by the continuous model, which strengthens
the trust in the deterministic description.

• Moreover, we show that both in the deterministic and stochastic
models the conclusions concerning the stability of the system are
coherent, i.e. in both cases the interpretation of the results leads
to the conclusion that the system is monostable.

5. Elena Czeizler, Andrzej Mizera, and Ion Petre. A Boolean approach
for disentangling the numerical contribution of modules to the system-
level behavior of a biomodel. TUCS Technical Report number 997,
January 2011.

• To disentangle the contribution of modules to the system-level
behaviour of a given biomodel, one often considers knockdown
mutant models investigating the change in the model behaviour
when modules are systematically included and excluded from the
model architecture in all possible ways. We propose in this paper
a Boolean logic-based approach for extracting conclusions about
the role of each module from the systematic comparison of the
numerical behaviour of all knockdown mutants. We associate
a Boolean variable to each module, expressing when the module
is included in the architecture and when it is not. We express the
satisfiability of system-level properties of the full model, such as
efficiency, or economical use of resources, in terms of a Boolean
formula expressing in a compact way which model architectures,
i.e., which combinations of modules, give rise to the desired prop-
erty.

• In our comparison of the numerical knockdown mutant models
we aim to focus on the differences stemming from the intrinsic
dissimilarities in their architectures and eliminate as much as
possible differences coming from unfavourable numerical setups
chosen for the various models.

74



• We demonstrate this methodology on the basic model for the
heat shock response in eukaryotes. We consider all models to be
viable alternatives for the biological system and, as such, we take
for each of them the most favourable numerical setup.

• We describe the contribution of each of the model’s three feedback
loops towards achieving an economical and effective heat shock
response.

• We point to the generality of our methodology: 1) our approach
is independent of the ODE formulation and it would work equally
well with other formulations; 2) we argue that it can be applied
not only to a computational, in-silico model as in the case of the
paper, but also in wet-lab research.

6. Andrzej Mizera, Elena Czeizler, and Ion Petre. Methods for biochem-
ical model decomposition and quantitative submodel comparison. Is-
rael Journal of Chemistry, 51(1):151–164, 2011.

• We address the problem of objective quantitative comparison of
several alternative submodels for the same biological process Ű- a
special case of the general problem of alternative model compar-
ison.

• In the first part of our study we review several known methods
for model decomposition and for quantitative comparison of sub-
models. We describe the knockdown mutants, elementary flux
modes, control-based decomposition, mathematically controlled
comparison and its extension, local submodels comparison and
a discrete approach for comparing continuous submodels.

• In the second part of the paper we present a new statistical
method for comparing submodels that complements the meth-
ods presented in the review.

• Similarly as in the case of our Boolean approach, each alternative
model is assumed to start from its own steady state under basal
conditions. This is the main difference between our approaches
and the other reviewed methods, where the comparison is made
in the numerical context of the reference model.

• We address the problem of sensitivity of the comparison results
to numerical setup. In our approach for quantitative comparison
of alternative submodels we adopt some statistical, parameter-
independent methods (sampling of the whole parameter space,
moving median technique). In this way, our method enables
a global, parameter-independent analysis of the numerical role
of each module.
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• We demonstrate our approach on a case study focusing on the
heat shock response in eukaryotes.

7. Eugen Czeizler, Andrzej Mizera, Elena Czeizler, Ralph-Johan Back,
John E. Eriksson, and Ion Petre. Quantitative analysis of the self-as-
sembly strategies of intermediate filaments from tetrameric vimentin.
TUCS Technical Report number 963, December 2009.

• We focus on a systematic quantitative investigation of two molec-
ular models for filament assembly, recently proposed in [62]),
through mathematical modelling, model fitting, and model vali-
dation. We focus on the quantitative kinetic strategies for the in
vitro assembly of IFs from human vimentin proteins.

• We perform a quantitative analysis of the predictive capabilities
of these models. We construct two mass action-based mathemat-
ical models corresponding to the two molecular models. For each
of them we consider several different knockdown mutant model
variants where various combinations of assembly mechanisms are
analysed separately.

• We consider a qualitative property of the IF assembly, reported
in [62] that very quickly (within approximately 10 seconds) af-
ter the initiation of the assembly, ULF is the most predominant
species in the system. However, this observation only applies
for the ab initio in vitro assembly of intermediate filaments. In
vivo there exists also a mechanism of tetramer synthesis that con-
tributes an influx of tetramers to the model. For this reason we
consider two different strategies for the fitting of our models: one
where tetramers are quickly depleted in the model, and one where
no such condition is imposed.

• We perform parameter estimation and validation of our models
with respect to separate data sets of [62].

• We demonstrate how to enhance the existing filament assembly
models with the dynamics of the filament length distribution.
The size of this detailed model is considerably higher than that
of the basic model, both in terms of molecular species, as well
as in terms of molecular reactions. Based on kinetic observa-
tions on the basic model, we show however how the size of the
high-resolution model can be drastically reduced. In this way,
we introduce a high-resolution model for vimentin filament self-
assembly, able to capture the detailed dynamics of filaments of
arbitrary length yet of manageable size. Our approach towards
high-resolution models for protein self-assembly is independent of

76



the particulars of vimentin filaments and can be applied to other
instances of protein-protein interactions and protein assemblies.

8. Andrzej Mizera, Eugen Czeizler, and Ion Petre. Self-assembly models
of variable resolution. TUCS Technical Report number 1014, June
2011.

• We concentrate on quantitative model refinement in the case of
self-assembly ODE-based models.

• We develop a generic formal model for the self-assembly process
and introduce a notion of model resolution capturing the maxi-
mum size up to which objects can be distinguished individually
in the model. All bigger objects are treated homogenously in the
model.

• We show how this self-assembly model can be systematically re-
fined in such a way that its resolution can be increased and de-
creased while preserving the original model fit to experimental
data, without the need for tedious, computationally expensive
process of parameter refitting.

• We demonstrate how the introduced methodology can be applied
to a previously published model: we consider the case-study of
in vitro self-assembly of intermediate filaments.

9. Andrzej Mizera and Barbara Gambin. Modelling of ultrasound ther-
apeutic heating and numerical study of the dynamics of the induced
heat shock response. Communications in Nonlinear Science and Nu-
merical Simulation, 16(5):2342–2349, 2011.

• The basic heat shock response model is used to verify the pos-
sibilities of exploiting hyperthermia, a procedure of raising the
temperature above 37 ◦C, in clinical treatment.

• A simple soft tissue heating model based on the Pennes’ bioheat
equation is introduced. Ultrasonic irradiation technique for in-
ducing hyperthermia in tissue is considered. The model is utilized
to establish an ultrasound heating scheme that meets the require-
ment of not exceeding the critical temperature of 43 ◦C at the
transducerŠs focal point. The resulting temperature time-course
profile is combined with the heat-induced protein denaturation
formula of the basic HSR mathematical model.

• The obtained results of numerical simulations concerning the re-
sponse at the focal point in the tissue are discussed in the context
of potential application of ultrasound induced soft tissue heating
for therapeutic purposes.
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Chapter 6

Conclusions and perspectives

The doctoral research constituting the foundations of this thesis revolves
around a number of challenges commonly encountered in the computational
modelling in systems biology. The research comprises of the development
and application of a broad range of methods originating in the fields of
computer science and mathematics for construction and analysis of compu-
tational models in systems biology. In particular, the performed research is
setup in the context of two biological phenomena chosen as modelling case
studies: 1) the eukaryotic heat shock response and 2) in vitro self-assembly
of intermediate filaments from tetrameric vimentin. The range of presented
approaches spans from heuristic, through numerical and statistical to ana-
lytical methods applied in the effort to formally describe and analyse the
two biological processes. Although applied to certain case studies, these
methods are not limited to them and can be utilized in the analysis of other
biological mechanisms as well as complex systems in general. The full range
of developed and applied modelling techniques, as well as model analysis
methodologies, constitutes a rich modelling framework.

In this thesis, we address issues related to model construction methodolo-
gies such as parameter estimation and model validation with respect to sep-
arate sets of experimental data, both quantitative as well as qualitative. We
discuss the problem of model identifiability in various contexts (e.g. unique-
ness of parameters satisfying imposed conditions, choice of the numerical
setup for model comparison, generality of the drawn conclusions with re-
spect to numerical setup of the model). We review existing techniques and
develop new ones for performing comparison between submodels of a larger
model. We address the problem of model modifications: we develop various
techniques and show a number of heuristics useful for applying simplifica-
tions or extensions to an already fitted and validated mathematical model
in such a way that the desired properties of the original model are retained.
In particular, in the context of self-assembly, we provide both numerical
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as well as analytical methods for decreasing and increasing the resolution
of models based on the ODE formulation. These methods can be viewed
as examples of adaptations of formal model refinement techniques from the
field of computer science to systems biology. Although such attempts have
been made previously in the case of the rule-based modelling ([26, 89]), to
the best of our knowledge this is the first time that formal model refinement
is considered in relation to computational models based on ODEs. The tech-
niques are developed in the case of a generic self-assembly model, however
we notice that the formulation of the refinement problem presented in [84]
is valid for ODE-based models in general and the discussed approaches of
obtaining the refinement method can be used for other ODE-based models
as well.

In addition to introducing new methodologies, the performed research
provides some insight into the general question concerning the role of mathe-
matical modelling in biology. On the example of the model for the eukaryotic
heat shock response we show how mathematical modelling of biological pro-
cesses may allow reasoning about uncertain or incomplete subparts of the
process such as reversibility or irreversibility of certain reactions. Moreover,
constructing and analysing mathematical models provides means for iden-
tifying the essential components of the HSR regulatory network. Similarly,
in the case of in vitro self-assembly of intermediate filaments mathematical
modelling and the analysis of various potential scenarios of self-assembly
allows us to draw conclusions and formulate some hypothesis regarding the
still poorly understood process of intermediate filaments formation. In this
way, our research helps recognizing the potential of mathematical modelling
in biology. We notice two things here. First, with respect to clarifying the
intricacies of the two considered biological processes, the performed research
is by no means completed and the predictions of our mathematical models
require, as the next step, further experimental validation. For example, as
stated in [25], an in vitro experiment where tetramers are added either con-
tinuously or at well-chosen time points could offer more insight into the role
of tetramer longitudinal aggregation for the process of filament elongation.
Second, in the context of the two case studies, the presented work finds its
well-defined place in the iterative circle of systems biology.

In this thesis, we face the problem of choosing between the deterministic
or stochastic framework. As mentioned in Section 2.5, this issue is often
brought up for discussion and, as argued therein, the choice between ob-
taining an averaged characterization of the dynamics or more detailed view
where stochastic effects are taken into account depends on the scope and
purpose of modelling. Here we draw this discussion further and consider the
problem of the choice of the proper modelling framework in a broader con-
text than in the case of selecting between the averaged or more detailed view
of the system dynamics. There exists a number of other modelling frame-
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works such as process algebras, with π-calculus being one of its represen-
tatives ([82]), Boolean networks ([61]), generalized logical networks ([130]),
Petri Nets ([98]), stochastic Petri Nets ([127, 90, 87]), rule-based formalisms
([52, 28, 26, 27]), etc. One could view these frameworks as providing a higher
level, system-view of a modelled biochemical reaction network than the for-
mulation based on ordinary differential equations. In the latter case, the
equations describe the changes in time of the state of the system (often ex-
pressed in terms of concentrations), i.e. they provide information on the
evolution of populations of molecules in time. They hide the ‘cause-effect’
relations and interactions. Often the equations are obtained from a biochem-
ical model consisting of a set of biochemical reactions, which contains the
information on the network structure and interactions between considered
types of molecules. However, this is not the only possible scenario and one
could imagine a situation where the system of ODEs is not accompanied by
any explicit knowledge about the underlying reaction network. The ODEs
specify a transfer function, which relates different numerical quantities to
each other ([33]). In other words, the equations describe the changes in the
model variables’ values when the considered system moves from one state to
another. They do not highlight why and how that system transition occurs
([103]). In this sense they provide a view of the system on a “molecular”
level, i.e. they describe the evolution of the molecular populations. On
the other hand, in the case of frameworks such as Petri Nets, Boolean net-
works or rule-based formalisms, the information on the network structure,
pathways or interactions between elements of the system is inherent in the
framework. The paradigm in this type of formalisms is the thinking in terms
of ‘cause-effect’ rather than rates of change as in the case of ODEs ([33]).
We can view this formalisms as providing a higher level, system-view of the
process under study.

When deciding on a particular framework, it is important to realize that
expressing something on a lower level does not eliminate the possibilities to
capture and analyse global, emergent, or structural properties of the mod-
elled system. This is to some extent reflected in the fact that, as in the
case of the deterministic and stochastic frameworks, there often exist ways
to make transitions between different formalisms. Moreover, it is important
to remember that each framework has its advantages and limitations. For
example, the ODEs are well-suited where modelling involves dealing with
large populations. However, they may become a bottleneck where further
model refinement is required due to the combinatorial explosion in the num-
ber of variables of the considered models (see, e.g., the cases discussed in
this thesis: extending the HSR model with the process of phosphorylation or
increasing the resolution of the IFs self-assembly model by straightforward
refinement) and in consequence the manageability of the model may become
impractical. In the case of rule-based formalism, the situation is the oppo-
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site: the refinement procedure does not present any essential problem, but
executing a model containing big number of molecules is rather inefficient.
Finally, the decision may be influenced by other conditions. For example,
the choice of ODEs for modelling biochemical networks is often based on
the fact that this formalism is very well-established in many disciplines of
science, the underlying theory is very profound and rich, there exist a lot
of expertise with respect to how to analyse analytically as well as numeri-
cally systems of differential equations, and how to efficiently simulate them.
On the other hand, the frameworks originating from the field of computer
science, although very promising and suitable, are still young, under inten-
sive development and known to a relatively small community. Since in the
case of systems biology the communication between researchers having their
background in very diverse disciplines is highly important and, as argued in
Section 2.4, ODEs are suitable as the model of observations made in exper-
iments, they are commonly used to model biochemical reaction networks.
This may however change with further development of other formalisms as
well as increasing expertise in them.

We conclude the discussion on this interesting problem by giving the
analogy with the problem of choosing the proper programming language.
Again, different programming languages are characterized by different pro-
gramming paradigms. There exist for example imperative languages (e.g.
Fortran, Basic, C), object-oriented languages (e.g. Smalltalk, Java) func-
tional languages (e.g. Haskell, Lisp) logic languages (e.g. Prolog), etc.
Moreover, programming languages are characterized by the level of abstrac-
tion and efficiency (usually determined by the compiler) they provide. How-
ever, anything that is programmed in one of them can be expressed in the
assembler language or machine code consisting of very simple, low-level pro-
cessor instructions. There are many reasons for choosing a particular lan-
guage depending on the purposes, expertise, or preferences of the program-
mer and often it is a subjective choice. Although sometimes the choice may
seem awkward or unnatural, there is no wrong decision as far as the preset
goals can be achieved. The same remains true with respect to the choice of
the proper modelling framework. For more discussion on this exciting issue
we refer to [33] and [103].

In the course of the research work we left unanswered a few open tech-
nical problems. We list three of them here. First, in [95], on the basis of
some numerical observations the extended HSR model is reduced to the ba-
sic one. In order to analyse the robustness of our model reductions with
respect to different numerical setups, a number of tests are performed. In
each test, a perturbation with respect to the original numerical setup either
in the initial values of some variables, or in the numerical values of some of
the rate constants is introduced. For each new numerical setup the initial
values of all variables are set to their steady state values at 37 ◦C. Finally,
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the numerical behaviour of the model with that of its simplified version is
compared, for temperatures between 37 ◦C and 45 ◦C. In one of the tests, in
which the total amount of hsp is increased, we observed that the steady state
values of the model at 37 ◦C were identical with those of the initial model.
This observation raised the following intriguing question: is the steady state
of the extended HSR model independent of the initial total level of hsp? In
fact, the same question is valid also for the basic HSR model. We state this
as a conjecture.

Conjecture. Let C1, C2, C3 ∈ R+ be positive real constants in the mass
conservation relations of the basic mass-action HSR model presented in [96],
i.e.

[hsf] + 2× [hsf2] + 3× [hsf3] + 3× [hsf3: hse] + [hsp: hsf] = C1,

[prot] + [mfp] + [hsp: mfp] = C2,

[hse] + [hsf3: hse] = C3.

For any fixed set of parameter values the steady state of the basic HSR model
is then independent of the choice of the set of initial concentrations satisfying
the conservation relations with mass constants C1, C2, and C3.

Second, we derive in [84] quantitative refinement methods for the generic
self-assembly mathematical model expressed in terms of ODEs. These meth-
ods determine how to set the rate constants of the new model with respect
to the numerical setup of the original one in such way that the numerical
fit of the original model is preserved without the need of performing pa-
rameter estimation. These methods are derived from a refinement condition
which is formulated in terms of equalities between certain variables or sums
of variables of the two models. These equalities have to be satisfied at any
time point (for more details we refer to [84]). One could think of similar
methods in the case of the stochastic formulation. However, the time evo-
lution of a stochastic system is characterized by probability distributions,
i.e. the grand probability functions, instead of deterministic concentration
functions of time as in the case of ODEs. Thus, one would have to start
derivations of the methods with expressing the refinement condition in terms
of equalities between respective probability distributions. Subsequent steps
would most probably require manipulations on the probability distributions
and their derivatives with respect to time, i.e. the corresponding chemical
master equations. The mathematical considerations in this case seem more
involved than in the case of ODE-based models.

Finally, as proposed in [84], one could think of deriving a refinement
method for a generic self-assembly model of resolution n presented in [84] to
the model of infinite resolution. Although we believe that our methodology
in [84] would also work in this case, formal theoretical considerations of
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this issue are much more intricate than in the finite case. Already at the
stage of writing the differential equations of the model one needs to make
sure that the appearing infinite function series are (uniformly) convergent.
For example, let us consider as in [84] a generic self-assembly model of

resolution 0, i.e. F +F
k
−→ F , and let us consider its refinement to the infinite

resolution. This amounts to considering an infinite set of reactions, i.e.

Fi +Fj
ki,j
−−→ Fi+j for all i, j ≥ 1, where Fi and Fj describe the concentration

in time of elements of size exactly i and j, respectively (for the formal
definition of the notion of self-assembly model resolution we refer to [84]).
In the case of the infinite resolution model one already faces a problem
of function series convergence while writing the differential equations for
the model variables Fis. For each fixed i, the expression for the derivative
dFi/dt contains a finite number of terms kl,jFiFj where l + j = i with
1 ≤ l ≤ j < i, and an infinite number of terms −ki,jFiFj where j ≥ 1. The
trouble is whether the infinite series

∑∞
j=1 ki,jFiFj is convergent for all t ≥ 0

or whether the terms can be reordered in such a way that the requirement of
convergence is satisfied. More details on this can be found in the discussion
section of [84].

As stated above, the wide range of modelling techniques as well as model
analysis methodologies discussed in this thesis provides a rich modelling
framework. Moreover, the presentation of the developed methods, their ap-
plication to the two case studies and the discussions concerning their poten-
tials and limitations point to the difficulties and challenges one encounters
in computational modelling of biological systems. The problems of model
identifiability, model comparison, model refinement, model integration and
extension, choice of the proper modelling framework and level of abstraction,
or the choice of the proper scope of the model run through this thesis. The
aim with the presented research work underlying this thesis is to contribute
more understanding of these important issues and, hopefully, to make a step
forward on the long way towards gaining methodologies that would provide
means to cope with the current computational challenges of the emerging
field of systems biology.
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Abstract The heat shock response is a primordial defense mechanism against cell stress

and protein misfolding. It proceeds with the minimum number of mechanisms that any

regulatory network must include, a stress-induced activation and a feedback regulation,

and can thus be regarded as the archetype for a cellular regulatory process. We propose

here a simple mechanistic model for the eukaryotic heat shock response, including its

mathematical validation. Based on numerical predictions of the model and on its sensitivity

analysis, we minimize the model by identifying the reactions with marginal contribution to

the heat shock response. As the heat shock response is a very basic and conserved regu-

latory network, our analysis of the network provides a useful foundation for modeling

strategies of more complex cellular processes.

Keywords Heat shock response � Heat shock protein � Heat shock factor �
Heat shock element � Mathematical model � Validation � Regulatory network

1 Introduction

The heat shock response is an ancient, evolutionary conserved regulatory mechanism that

allows the cell to quickly react to elevated temperatures and other forms of physiological

and environmental stress. The heat shock response has been subject of active research (see
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Powers and Workman 2007; Chen et al. 2007; Voellmy and Boellmann 2007) for at least

two reasons. On one hand, as it represents an exceptionally well-conserved signaling

mechanism, it is a good candidate for deciphering the mechanistic principles of gene

regulatory networks. On the other hand, heat shock proteins have essential roles in all

aspects of protein biogenesis, regardless of the regulatory aspects of the heat shock

response, and have fundamental importance for many key biological processes. Therefore,

understanding the details of the heat shock response has broad ramifications for the biology

of the cell and response to cellular insults and for the onset and treatment of a number of

diseases, including neurodegenerative disorders, cancer, aging, and cardiovascular diseases

(see Balch et al. 2008; Morimoto 2008).

Despite intense research and a number of models that have been presented to cover the

heat shock response, a comprehensive mechanistic understanding of this process is lacking.

Here, we propose a simple model capturing in mechanistic details all key aspects of the

regulation: the heat-induced protein misfolding, the chaperone activity of heat shock

proteins, the transactivation of the genes encoding heat shock proteins and the repression of

their transcription once the stress is removed. In contrast with previous attempts to model

the eukaryotic heat shock response, our model is based solely on well-documented

molecular reactions and does not include modeling ‘‘blackboxes’’ such as experimentally

unsupported components and biochemical reactions.

We also present a mathematical model associated with the model and its experimental

validation. For specific parameter estimation and model validation, we use already pub-

lished data (Kline and Morimoto 1997), as well as new experimental data. The model

predictions correlate well with experimental data on the heat-induced transactivation of the

genes encoding heat shock proteins at various temperatures, its return to the original level

once the stress is removed, and a lower response to a second consecutive heat shock. We

use the model to identify a number of reactions that could be eliminated from the model

without affecting its quantitative behavior. We also identify the most significant reactions

regulating the levels of the heat shock proteins and those of the misfolded proteins. This

analysis deepens our understanding of where the significant control resides in the network.

2 Results

2.1 Molecular model

The heat shock protein (hsp) plays the central role as a chaperone to prevent misfolding, to

capture intermediates, and to facilitate protein folding. Even though there are multiple

classes of hsps, with various molecular masses and different regulatory mechanisms, we

treated them all uniformly in our model, with hsp 70 as the base denominator. The hsp-

encoding genes are transactivated through the binding of heat shock factors (hsf) to the

heat shock element (hse) found on the DNA upstream of the gene. Even though several

types of heat shock factors exist (HSFs1-4) (see Holmberg et al. 2002), we focused on

HSF1 in our model. The binding of a heat shock factor trimer (hsf3) to a heat shock

element was denoted as hsf3 : hse. Heat shock proteins may bind to heat shock factors; we

denoted such a bond as hsp:hsf. The drivers of the whole heat shock response are the heat-

induced misfolded proteins, denoted mfp. Binding of a heat shock protein to a misfolded

protein was denoted as hsp:mfp. We made no distinction among the many types of protein

substrates that exist in the cell. From the point of view of the heat shock response, we were

only interested in whether they are correctly folded (collected globally under the name

I. Petre et al.
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prot), or misfolded (collected globally under the name mfp). What drives the heat shock

response is the race to keep the level of misfolded proteins under control, in such a way

that they are not able to accumulate, form aggregates, and eventually lead to cell death.

Our molecular model for the heat shock response consists of three parts: the dynamic

transactivation of the hsp-encoding genes, their backregulation, and the chaperone activity

of the hsp. In the absence of the heat stress, the heat shock factors are present as

monomers, mainly bounded to heat shock proteins. There is insignificant variation in their

concentration with stress. Upon heat stress, however, the heat shock factors form trimers,

which are the active components, able to bind to heat shock elements (see Voellmy 1994;

Morimoto et al. 1994). Once hsf3 is bound to the heat shock element, we assumed that the

hsp-encoding gene is transcriptionally active. We did not model explicitly the transcription

machinery binding to the promoter region of the hsp-encoding gene, the mRNA molecules

being produced, edited, transported, etc., but only represented that a transcriptionally active

hsp-encoding gene will eventually yield the synthesis of new hsp molecules, see reaction

(4) in Table 1. Heat shock proteins have an affinity for heat shock factors and so, if present

in sufficient amounts, are able to shut down their own synthesis: a heat shock protein hsp
contributes to unbinding a trimer hsf3 from the heat shock element, see reaction (8) in

Table 1 and (Abravaya et al. 1992; Shi et al. 1998).

The heat-induced misfolding of proteins was represented in our model as a reaction

switching an unfolded or native protein (prot) to misfolded (mfp). The reaction rate

depends exponentially on the temperature of the environment (see Peper et al. 1997;

Lepock et al. 1993). A heat shock protein may chaperone a misfolded protein and facilitate

its refolding. The list of all reactions in our molecular model is given in Table 1.

There are three conservation relations in our model. One concerns the total amount of

hsf:

½hsf� þ 2� ½hsf2� þ 3� ½hsf3� þ 3� ½hsf3 : hse� þ ½hsp : hsf� ¼ constant: ðC1Þ
The second concerns the total amount of proteins, other than hsp and hsf:

½prot� þ ½mfp� þ ½hsp : mfp� ¼ constant: ðC2Þ
The third concerns the total amount of heat shock elements:

Table 1 The list of reactions in
the molecular model for the heat
shock response

Reaction (Reaction
number)

2hsf$ hsf2 (1)

hsfþ hsf2 $ hsf3 (2)

hsf3 þ hse$ hsf3 : hse (3)

hsf3 : hse! hsf3 : hseþ hsp (4)

hspþ hsf$ hsp : hsf (5)

hspþ hsf2 ! hsp : hsfþ hsf (6)

hspþ hsf3 ! hsp : hsfþ 2hsf (7)

hspþ hsf3 : hse! hsp : hsfþ hseþ 2hsf (8)

hsp! (9)

prot! mfp (10)

hspþmfp$ hsp : mfp (11)

hsp : mfp! hspþ prot (12)

A simple mass-action model
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½hse� þ ½hsf3 : hse� ¼ constant: ðC3Þ
The only variable of the model not covered by the conservation relations is hsp, which

is the regulatory target of the heat shock response.

2.2 Mathematical model and parameter estimation

In developing the mathematical model, we assumed for all reactions the principle of mass-
action, that can be briefly summarized as follows: the flux of each reaction is proportional

to the amount of input to the reaction (see Guldberg and Waage 1864, 1879). The reason

why we preferred a simple mass-action formalization rather than more sophisticated

approaches such as Michaelis-Menten or Hill equations was so that we could follow the

explicit effect of each individual reaction to the overall response. We expressed our model

in terms of differential equations, with one function associated to each component in the

model. The resulting mathematical model consists of 10 differential equations and is

shown in Table 2. Of these 10 equations, based on the conservation relations (C1–C3), only

seven equations are independent.

In Table 2, we denoted by ki the reaction rate constant of the irreversible reaction (i) in

Table 1, by kþi , the reaction rate constant corresponding to the ‘left-to-right’ direction of

the reversible reaction (i) in the same table, while k�i denotes the rate constant corre-

sponding to its ‘right-to-left’ direction, for all 1 B i B 12. We denoted by T the temper-

ature of the environment.

The extent of heat-induced protein denaturation in CHL V79 cells has been investigated

in Lepock et al. (1993). Based on that study, the fractional protein denaturation per hour

was deduced in Peper et al. (1997). Since our model uses the second as time unit, we

Table 2 The differential equations of the associated mathematical model

Equation (Equation
number)

d½hsf�=dt ¼� 2kþ1 ½hsf�2 þ 2k�1 ½hsf2� � kþ2 ½hsf�½hsf2� þ k�2 ½hsf3�
� kþ5 ½hsf�½hsp� þ k�5 ½hsp : hsf� þ k6½hsf2�½hsp�
þ 2k7½hsf3�½hsp� þ 2k8ðhsf3 : hseÞhsp

(13)

d½hsf2�=dt ¼ kþ1 ½hsf�2 � k�1 ½hsf2� � kþ2 ½hsf�½hsf2� þ k�2 ½hsf3�
� k6½hsf2�½hsp�

(14)

d½hsf3�=dt ¼ kþ2 ½hsf�½hsf2� � k�2 ½hsf3� � kþ3 ½hsf3�½hse� þ k�3 ½hsf3 : hse� (15)

�k7½hsf3�½hsp� (16)

d½hse�=dt ¼ �kþ3 ½hsf3�½hse� þ k�3 ½hsf3 : hse� þ k8½hsf3 : hse�½hsp� (17)

d½hsf3 : hse�=dt ¼ kþ3 ½hsf3�½hse� � k�3 ½hsf3 : hse� � k8½hsf3 : hse�½hsp� (18)

d½hsp�=dt ¼k4½hsf3 : hse� � kþ5 ½hsf�½hsp� þ k�5 ½hsp : hsf� � k6½hsf2�½hsp�
� k7½hsf3�½hsp� � k8½hsf3 : hse�½hsp� � kþ11½hsp�½mfp�
þ ðk�11 þ k12Þ½hsp : mfp� � k9½hsp�

(19)

d½hsp : hsf�=dt ¼kþ5 ½hsf�½hsp� � k�5 ½hsp : hsf� þ k6½hsf2�½hsp�
þ k7½hsf3�½hsp� þ k8½hsf3 : hse�½hsp�

(20)

d½mfp�=dt ¼ /T ½prot� � kþ11½hsp�½mfp� þ k�11½hsp : mfp� (21)

d½hsp : mfp�=dt ¼ kþ11½hsp�½mfp� � ðk�11 þ k12Þ½hsp : mfp� (22)

d½prot�=dt ¼ �/T ½prot� þ k12½hsp : mfp� (23)
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adapted the fractional protein denaturation per second /T from Peper et al. (1997) to obtain

the temperature-dependant formula

/T ¼ 1� 0:4

eT�37

� �
� 1:4T�37 � 1:45� 10�5 s�1;

where T is the temperature of the environment in Celsius degrees. According to Lepock

et al. (1993), this formula is valid for temperatures between 37 and 45�C.

There are 17 independent parameters in our model and 10 initial conditions that must be

specified or estimated. We had on the other hand the three conservation relations (C1–C3)

that leave only seven initial conditions to specify. In estimating our parameters we used

experimental data of Kline and Morimoto (1997) on the rate of hsf3 : hse during a heat

shock of HeLa cells at 42�C. In addition, we also imposed the condition that with the same

initial values and the same numerical parameters, the model is at steady state if the

temperature is 37�C (by definition, the heat shock response is triggered for temperatures

upwards of 37�C). This yields 7 independent algebraic relations on the set of parameters

and initial values. Thus, we have altogether 17 independent values that we need to

estimate.

By performing parameter estimation in COPASI (Hoops et al. 2006), we obtained the

values shown in Table 3 that satisfy the conditions above. The model fit with respect to the

data in Kline and Morimoto (1997) is shown in Fig. 1a.

2.3 Model validation

In the final model, we obtained that protein misfolding occurs at 37�C at very low rate, that

hsp are long-lived molecules, and that the protein folding is a fast reaction, which is in

accordance with Jones et al. (1993), Ballew et al. (1996) (We are disregarding in the model

folding intermediates.). Moreover, the model correctly predicted (see Holmberg et al.

2002), that under heat shock, the level of hsf trimers is transiently increased. The model

was also able to confirm that the hsf dimers are only a transient state between monomers

and trimers and that their level remains low at all times, independent of the temperature.

In another validation test, we considered a heat shock applied in two stages, with a

recovery period between them, with the second shock applied after the level of hsp has

reached a maximum. We observed, similarly as in Peper et al. (1997), that the predicted

response of the model to the second heat shock is much milder, see Fig. 2a. This is

consistent with the expectation that due to the first heat shock, the level of hsp is already

raised, and so the cell may react to the second shock, with a lower ½hsf3 : hse� peak.

We also considered a heat shock at 43�C and compared our prediction to that of Rieger

et al. (2005). Similarly as shown by the experimental data in Abravaya et al. (1991), our

model was able to show prolonged transactivation, see Fig. 2b, unlike the model in Rieger

et al. (2005). An experiment where the heat shock at 42�C is removed at the peak of the

response showed a faster attenuation phase, similarly as reported in Rieger et al. (2005), see

Fig. 2b. Several sensitivity analysis experiments, where some parameters are set to lower or

higher values agreed with the predictions made in similar experiments by Rieger et al. (2005).

For further verification of our model and its prediction abilities, we performed a set of

experiments. Specifically, we aimed to validate the numerical prediction on the level of hsp
over time. Our approach was to use a suitable quantitative reporter system based on yellow

fluorescent proteins (yfp). Our setup was designed so that the kinetics of the reporter gene’s

transactivation mimics the results obtained in experimental studies on endogenous hsf target
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genes. In this way, the dynamics of yfp partially reports on the dynamics of hsp. We did not

make any assumptions on the stability of the yfp proteins. Rather, this issue was dealt with in

the mathematical validation process. To this aim, we employed K562 cells, expressing a

712 bp fragment of the hsp70 promoter fused to a yellow fluorescent protein (yfp) reporter

gene. The cells were subjected to a continuous heat shock at 42�C and samples were taken at

indicated time points (for details, see ‘‘Materials and methods’’ section). hsp70 promoter

activity as a result of expression of yfp was analyzed by flow cytometry to give a measure of

the heat shock response in individual cells.

In three independent biological repeats, we measured the fluorescence intensity of

10000 cells for each time point (15 of them up to 36 h). Our assumption was that the

fluorescence intensity is roughly linear with respect to the level of the yellow fluorescent

proteins (yfp) in our sample. Given that the transactivation of the yfp genes is controlled by

Table 3 The numerical values
of the parameters and the initial
valus of the variables of the heat
shock response model

Param. Value Units

The numerical values of the parameters

kþ1 3.49 ml
#�s

k�1 0.19 s-1

kþ2 1.07 ml
#�s

k�2 10-9 s-1

kþ3 0.17 ml
#�s

k�3 1.21 9 10-6 s-1

k4 8.3 9 10-3 s-1

kþ5 9.74 ml
#�s

k�5 3.56 s-1

k6 2.33 ml
#�s

k7 4.31 9 10-5 ml
#�s

k8 2.73 9 10-7 ml
#�s

k9 3.2 9 10-5 s-1

k11
? 3.32 9 10-3 ml

#�s

k�11 4.44 s-1

k12 13.94 s-1

Variable Initial conc.

The initial values of all variables

½hsf� 0.67

½hsf2� 8.7 9 10-4

½hsf3� 1.2 9 10-4

½hse� 29.73

½hsf3 : hse� 2.96

½hsp� 766.88

½hsp : hsf� 1403.13

½mfp� 517.352

½hsp : mfp� 71.65

½prot� 1.15 9 108
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their own heat shock elements hse’, transcription/translation and degradation kinetics k04
and k09, resp., we obtained that

d½yfp�=dt ¼ k04½hsf3 : hse0� � k09½yfp�;

for some positive constants k04; k
0
9 standing for the kinetic rate constants of the yfp synthesis

and of the yfp degradation, respectively. The numerical values of parameters were not

deduced from the basic model to underline that we made no assumptions on the stability of

yfp, or on their gene transcription rates. The idea of the validation was to extend the

already fit basic model so as to include also yfp. In the extended model we re-used all the

kinetic rate constants of the basic model. We then looked for numerical values for

parameters k04 and k09 and for initial values of all variables of the model so that the

Fig. 1 Comparison of the numerical predictions of the model with two sets of experimental data. a The
model fit with respect to the experimental data in Kline and Morimoto (1997). The thick line is the model
prediction regarding ½hsf3 : hse�, that is compared with the experimental data showed with crossed points.
Both plots are relative to their maximum value. b Model validation based on fluorescence intensity of cells
transfected by hse-controlled genes coding for yellow fluorescent proteins. The crossed dots are the mean
values of the experimental data, while the continuous line is the numerical integration of the benchmark
variable

o

o

o

o

o

o

A B

Fig. 2 Numerical predictions of the model. a The model correctly predicts that DNA binding peaks at a
much lower level in a second consecutive heat shock. The experiment with a single heat shock is shown with
a dashed line. b The model correctly predicts longer transactivation with higher heat shock: the behaviors at
41, 42, and 43�C are shown. We also plot on the same graph the correct prediction that the DNA binding
attenuates more rapidly in an experiment where the heat shock at 42�C is removed at the peak of the
response
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numerical prediction for yfp fit well with the experimental data. The result of the validation

is shown in Fig. 1b, where the crossed points represent the mean values of the experi-

mental data at each time point and the continuous line is the numerical integration of yfp.

2.4 Model analysis

We estimated the scaled steady state sensitivity coefficients (see Turanyi 1990), of all

variables of the model with respect to reaction rate constants and with respects to initial

concentrations. For a variable X of the model and a parameter p, the scaled steady state

sensitivity coefficient of X with respect to p is limt!1 o lnðXÞ=o lnðpÞðtÞ. These coeffi-

cients measure the relative change in steady state when some parameter is changed with an

infinitesimally small amount. They help identify the most important steps in the heat shock

response network. A first observation was that the sensitivity coefficients of all variables of

the model with respect to reaction rate constants k�1 ; k
�
2 ; k

�
3 , and k7 are negligible. This

suggested that the respective reactions may have negligible effect on the overall behavior

of the model. To test this prediction, we removed reaction (7) and the right-to-left

directions of reactions (1), (2) and (3). The reactions of the reduced model are in Table 4

and their kinetic constants are unchanged with respect to the basic model. It turned out that

the reduced model performs equally well as the basic model in all validation tests

described above. Our model thus predicted that hsf dimers and trimers are very stable and

do not break spontaneously at a significant rate. The spontaneous unbinding of an hsf
trimer from hse (without the involvement of hsp) was also insignificant. Interestingly,

while reaction (7) (hsp breaking hsf trimers) did not have a significant role and could be

eliminated from the model, reaction (6) (hsp breaking hsf dimers) did have a significant

influence on several variables of the model, including hsp and mfp.

We focused on the sensitivity coefficients of hsp and mfp, the main drivers of the

response. They showed a direct correlation between variations in the steady state levels of

hsp and mfp, not surprising given the chaperoning role of hsp. Their largest sensitivity

coefficients are in Table 5 and can be interpreted as follows. The coefficients with respect

to kþ5 and k�5 being the largest identified reaction (5) in Table 1 as the most important

feedback loop in our model. In one direction of reaction (5), hsf is sequestrated, leading

eventually to a suppression of the transcription, in concert with reaction (8), and conse-

quently, to a reduction in hsp and an increase in mfp. In the other direction of reaction (5),

Table 4 The list of reactions in
the reduced molecular model

Reactions (1) (right-to-left), (2)
(right-to-left), (3) (right-to-left),
and (7) were eliminated from the
basic model in Table 1 without
affecting its numerical behavior

Reaction

2hsf! hsf2

hsfþ hsf2 ! hsf3

hsf3 þ hse! hsf3 : hse

hsf3 : hse! hsf3 : hseþ hsp

hspþ hsf$ hsp : hsf

hspþ hsf2 ! hsp : hsfþ hsf

hspþ hsf3 : hse! hsp : hsfþ hseþ 2hsf

hsp!
prot! mfp

hspþmfp$ hsp : mfp

hsp : mfp! hspþ prot
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hsp and hsf levels are increased, both leading to increasing hsp and decreasing mfp. The

next largest coefficients are with respect to kþ1 ; k
þ
2 and k4: reactions (1), (2), and (4) all

contribute to increasing the level of transcription and by consequence, the level of hsp as

follows: hsf dimers or trimers form at a higher rate, or hsf3 binds to hse at a higher rate.

Reactions (6), (8) and (9) (see the sensitivity coefficients with respect to k6, k8, k9) have a

countering effect on the level of transcription or directly on that of hsp:hsf: dimers are

dissipated at a higher rate and are less able to form trimers, hsf3 unbinds from hse at a

higher rate, or hsp degrades at a higher rate. The only reactions that influenced the level of

mfp but not that of hsp are (11) and (12), see the sensitivity coefficients with respect to

kþ11; k
�
11, and k12 in Table 5. These reactions control the chaperoning and the refolding of

mfp, while not consuming hsp.

The most significant sensitivity coefficient of hsp and of mfp with respect to initial

concentrations was that depending on hsp:hsf(0), where hsp:hsf(0) denotes the initial

level of hsp:hsf, with similar notations for the other variables of the model. On the other

hand, the sensitivity coefficients of both hsp and of mfp on the other forms of hsf
(monomer, dimer, trimer) were negligible. This is a direct consequence of the fact that

almost all initial amount of hsf is sequestered by hsp, while the initial levels of dimers and

trimers are very low (in line with experimental observations of Holmberg et al. (2002)). As

such the dependency on hsp:hsf(0) should rather be interpreted as a dependency on the

total initial amount of hsf. This interpretation was supported by the following numerical

experiment. We set hsp:hsf(0) to 0 and increase correspondingly hsp(0) and hsf(0) (or,

alternatively, hsf2ð0Þ, or hsf3ð0Þ) in such a way that the initial total amount of hsp and of

hsf is unchanged. Then hsp and mfp got significant sensitivity coefficients with respect to

hsfð0Þðhsf2ð0Þ, or hsf3ð0Þ, respectively) and negligible with respect to hsp : hsfð0Þ.
Distributing the initial amount of hsf among its various forms had, however, a crucial

effect on the speed and on the peak of the response.

The scaled steady state sensitivity coefficients of both hsp and mfp with respect to

hseð0Þ were negligible. This result is explained by the fact that we considered the sen-

sitivities around the steady state. For example, with fewer hseð0Þ, the response will

eventually be able to approach the same steady state, albeit the transcription stays at the

100% level for a longer time (because a lower [hse] becomes a bottleneck of the

Table 5 The largest scaled
steady state sensitivity coeffi-
cients of hsp and mfp

The coefficients are identical at
37 and 42�C

Description p Sensitivity
o lnðhspÞ
o lnðpÞ jt!1

Sensitivity
o lnðmfpÞ
o lnðpÞ jt!1

Sequestration of hsf by hsp kþ5 -0.50 0.50

Dissipation of hsp:hsf k�5 0.50 -0.50

Formation of hsf dimers kþ1 0.17 -0.17

Formation of hsf trimers kþ2 0.17 -0.17

Transcription, translation k4 0.17 -0.17

Affinity of hsp for hsf2 k6 -0.17 0.17

Affinity of hsp for hsf3 : hse k8 -0.17 0.17

Degradation of hsp k9 -0.17 0.17

Affinity of hsp for mfp kþ11 0.00 -1.00

Dissipation of hsp:mfp k�11 0.00 0.24

Refolding k12 0.00 -0.24

Initial level of hsp:hsf hsp:hsf(0) 0.50 -0.50
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response). Interestingly, with a higher hse(0), the time evolution of the response remained

unchanged, indicating that as long as hse(0) was higher than a certain threshold, its

numerical value was irrelevant for the model prediction. This was indeed confirmed by

numerical simulations.

The sensitivities of both hsp and mfp (and in fact those of all variables) with respect to

hsp(0) were also negligible. The reason for this is that the system was able to self-regulate

a lower/higher hsp(0) and eventually approach the same steady state. On the other hand, a

lower/higher hsp(0) did have an impact on the time evolution of the response.

2.5 Alternative numerical model fits

The reaction rate constant values of our mathematical model were obtained by performing

parameter estimation with respect to the experimental data of Kline and Morimoto (1997).

We address in this section the question of the uniqueness of the set of parameters that fulfill

the imposed conditions, a problem that is also known as the model identifiability. By

repeating from scratch the whole parameter estimation procedure, we obtained several

different sets of parameter values that result both in a good fit of the model to the

experimental data, as well as in initial values that are steady-states of the model at 37�C.

It turned out, however, that all these parameter sets failed the model validation tests

discussed above with respect to the qualitative observations concerning the behavior of

cells under stress. This does not prove that our heat shock response model is uniquely

identifiable. However, it does suggest that fitting the model to the experimental data in

Kline and Morimoto (1997) and to the steady-state condition for the initial values is a

difficult numerical problem.

A thorough method of searching for alternative numerical model fits is to perform a

systematic parameter scan in the space determined by the considered ranges of parameter

values. This means that for each parameter, one partitions its value range into a large

number of subintervals (say, tens of thousands of them) and samples values for the

parameter from all of them. One then tests the quality of the model fit for all possible

combinations of parameter samples to yield a thorough sampling of the model behavior

throughout the multi-dimensional parameter space. Unfortunately, the direct implemen-

tation of this idea is intractable for models with more than a few parameters due to the

combinatorial explosion of the number of simulations that need to be run. A fast, practical

solution to this problem is to apply the Latin Hypercube Sampling method (LHS), first

introduced in McKay et al. (1979). This method provides samples which are uniformly

distributed over each parameter while the number of samples is independent of the number

of parameters (see also Helton and Davis 2002, 2003; Oberguggenberger et al. 2009) for

applications of this method. We describe the sampling scheme briefly in the following, in

the simpler case when the parameter values are uniformly distributed in their range

interval. One first chooses the desired size N of the sampling set. The range interval of each

parameter is then partitioned into N non-overlapping intervals of equal length. For each

parameter, we randomly select N numerical values, one from from each interval of the

partition. We collect the N sampled values for the i-th parameter of the model on the i-th
column of a N 9 p matrix, where p is the number of parameters. One then randomly

shuffles the values on each column. The result of the procedure is read from the rows of the

matrix: each of the N rows of the matrix contains numerical values for each of the

p parameters. For a detailed description of this sampling scheme we refer to McKay et al.

(1979).
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Based on the LHS method we have implemented the following strategy to look for

alternative models fits that are in agreement with the experimental data of Kline and

Morimoto (1997), and satisfy the steady-state condition for the initial values. First, by

applying the LHS method, we sampled N = 100.000 sets of parameter values. For each set,

we estimated numerically the steady state of the model for a temperature value of 37�C.

We then set the initial state of the model as the calculated steady state. We simulated the

model for 14400 s at a temperature of 42�C. Finally, we classified as non-responsive those

parameter samples that led to low DNA binding level at the peak of the response, and

excluded them from further analysis. We obtained that only 31.506 out of the 100.000

samples were responsive, already a result pointing to difficulties in finding satisfactory

alternative numerical fits. We analyzed each of these models as follows. For each model,

we made a scatter plot for each variable and each parameter where we plotted the steady

state values of each variable at 37�C, against the values of the parameter. We discuss here

only a few of the plots. All plots are available as supplementary materials at

http://combio.abo./hsr/plots.zip.

We compared the obtained results with the steady state values of our basic model

(called also reference model in the following) at 37�C. As can be seen in Fig. 3a, only very

few of the sampled models were capable of reaching low levels of DNA binding at the

steady state. This showed that most of the alternative fits predicted high levels of gene
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Fig. 3 Scatter plots of the steady state values at 37�C of the sampled models (blue crosses) and the basic
model (red horizontal line). The red vertical line indicates the parameter value of the basic model. The plots
of hsf (b) and hsf2 (d) are zoomed in, hence not all points are present, i.e., the values of the remaining
steady states were higher than the maximum value on the y-axes
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transcription in the absence of the heat shock, a contradiction of the available biological

evidence (see Holmberg et al. 2002). In the case of hsf, none of the sampled models

reached such a low level as the reference model, see Fig. 3b. Moreover, the reference

model is one of the very few models in which most of the hsf molecules are sequestered by

hsp, see Fig. 3c. This indicates that at the temperature of 37�C the response mechanism is

turned off, which is in excellent agreement with biological observations (see Holmberg

et al. 2002). These outcomes are also supported by the results obtained for hsf dimers

presented in Fig. 3d, where the basic model reaches the lowest values. This is also in

agreement with the observation that hsf dimers are unnoticeable in biological experiments.

We also compared the predictions of all the sampled models at 42�C with respect to the

experimental data of Kline and Morimoto (1997). The same score function which was used

in the case of parameter estimation, i.e., the sum of of squares of the residues, was

computed for all considered models. The results are depicted in the form of a scatter plot

and its zoomed in version in Fig. 4a and b, respectively. Our reference model obtained the

lowest score of around 12, while the 13 best fits of the sampled models were in the range

between 300 and 1000. All the other models had much worse scores, of more than 1000.

While it is likely that a model of this size is not uniquely identifiable, our parameter

scan showed that finding parameter values satisfying our model constraints is far from

being easy. This is evident both from the plots of the model deviation from the experi-

mental data under stress (as measured by the score function, Fig. 4a, b) as well as from the

plots of the model behavior in the absence of stress (Fig. 3a–d). Even more, about two

thirds of the parameter samples led to none-responsive models, i.e., models that yield an

insufficient response under stress.

3 Discussion

We presented a simple molecular model for the heat shock response, based on standard

molecular biology only. The mathematical model was validated based both on existing

data from the literature, as well as on our novel experimental evidence. The numerical

simulations of the model correlate well with predictions reported elsewhere in the

literature.
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Fig. 4 Scatter plot (a) and its zoomed in version (b) of the score measuring the fit of the sampled models
(blue crosses) and the basic model (red horizontal line) with respect to the experimental data. The red
vertical line indicates the parameter value of the basic model
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Using sensitivity coefficients we predict that a number of reactions have a negligible

effect on the model and could be removed without affecting its numerical behavior. We

also identify the reactions with the most significant effect on hsp and on mfp. This is a

useful, still not fully exploited potential of mathematical modeling in biology. We have

started from a molecular model that incorporated a number of reactions that could in

principle take place even though no direct experimental evidence in their support exists:

the dissipation of dimers and of trimers, or the spontaneous unbinding of hsf3 from hse.

The mathematical analysis of the model points out to the fact that these reactions have a

negligible effect on the overall behavior of the model and it suggests that they could be

eliminated from the model. These results help simplify the molecular model which in turn

is important for further, more complex analysis of the associated mathematical model and

for their integration into larger models. They can also be regarded as predictions that could

be used in further validation experiments. It is important to recognize, however, that these

results are dependent on the numerical values of the reaction rate constants and those of the

initial concentrations. Different numerical values for these parameters may lead to dif-

ferent results. This is a general problem of any mathematical modeling project (see Chen

et al. 2009) for a discussion on the computational difficulties of this task. Clearly, having

the model validated in a number of experimental setups helps increase the confidence in

the numerical values we report.

3.1 Related models

Several mathematical models for the heat shock response, both for prokaryotes and for

eukaryotes have been proposed in Peper et al. (1997), Rieger et al. (2005), El Samad et al.

(2005), Srivastava et al. (2001), Lipan et al. (2007), Remondini et al. (2006). We compare

in here our model with the ones in Peper et al. (1997) and Rieger et al. (2005) that seem

most related to ours.

The model in Peper et al. (1997) considers, as we do, hsf and its dimerization and

trimerization, heat-induced misfolding, but it also considers other components: mRNA

molecules and nascent proteins chains, including their interactions with HSP. The model

was tested against experimental data obtained from Reuber H35 rat hepatoma cells on the

synthesis of the hsp70 family members. One of the shortcomings of the model in Peper

et al. (1997) is that it does not consider the details of the hsp-regulated transcription.

Instead the control is realized in the model through hsp-blocking of mRNA and through

hsp:hsf bindings. Another concern has to do with the treatment of mRNA: it is not

produced as a result of DNA transcription and it is not used directly in a model for protein

synthesis, the crucial feedback regulatory motif in our model. Instead, mRNA is used in a

hypothetical reaction of binding to misfolded proteins. Such a reaction leaves only part of

mRNA molecules as ‘‘healthy’’ and their proportion is then used to model the slowing

reaction rate of hsp binding to nascent protein chains (Many of these steps lack experi-

mental support.). The same effect can, however, be obtained, as suggested in our model,

based on the observation that hsp molecules are competed on, according to the mass-action

principle, both by misfolded proteins (present on a massive scale under stress), and by

nascent proteins chains.

The model in Rieger et al. (2005) examines the eukaryotic heat shock response based on

hsp, hsf and hse, as we have, but also includes hsp mRNA molecules, a stimulus signal,

and a stress kinase. The hsp synthesis is controlled through hsp-regulated DNA tran-

scription, through hsp:hsf binding, but also through the fact that the stability of hsp
mRNA molecules is increased due to stress. Moreover, the model considers the activation
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of hsf molecules when bounded to hse, mediated by the stress kinase. In turn, the stress

kinase is activated by the stimulus signal. On the other hand, dimerization and trimer-

ization of hsf molecules is not considered, and neither is the degradation of hsp.

The model is tested against experimental data from HeLa cells (Kline and Morimoto

1997). The main difference with respect to our model is the fact that the heat shock is

modeled in an abstract way through the stimulus signal and the stress kinase, rather than

mechanistically through mfp as the initiating signal, as we do.

A recent paper (Lipan et al. 2007), takes a completely different modeling approach.

Starting from available experimental data on the response of Chinese hamster ovary cells

to heat shock, rather than a set of reactions, they develop a stochastic theoretical model

accounting for the observed mean response. Interestingly, they rediscover in this way the

hsf-regulated transactivation of hsp-encoding genes.

In another recent paper (Remondini et al. 2006), the molecular model (summarized

from Morimoto 1998) includes several of the reactions in our model. Importantly, they do

not consider the heat-induced protein misfolding. Also, in the associated mathematical

model, only a part of the molecular model is analyzed.

A molecular model that is similar to the one we consider in this paper has been recently

presented in Szymańska and Zylicz (2009). Some of the molecular details of the model in

Szymańska and Zylicz (2009) are, however, different and in fact, their model includes

reactions (such as the concomitant binding of three different molecules) whose kinetics are

highly unfavorable. The major differences, however, are in the numerical evaluations of

the model. While the authors of Szymańska and Zylicz (2009) have an ad-hoc choice of

parameter values, the bulk of our work is in extensive parameter estimation and numerical

validation of the model, based both on literature data, as well as on novel experiments.

3.2 Extensions

The current model can be extended to include several other aspects of the heat shock

response. For example, one may include in the model the heat-induced misfolding and

chaperon-assisted refolding of both hsp and hsf. Indeed, since both hsp and hsf are

proteins, they are exposed to heat-induced misfolding. This extension includes in the

model a most attractive feature of living cells: the repair mechanism is subject to failure,

but it has capabilities to repair itself. In terms of the molecular model, the model extension

consists of adding 6 reactions:

Misfolding: hsp! mhsp

hsf! mhsf

Sequestration: hspþmhsp$ hsp: mhsp

hspþmhsf$ hsp: mhsf

Refolding: hsp: mhsp! 2hsp

hsp: mhsf! hspþ hsf

One way to include this model extension in the mathematical model is to assign each

reaction a new kinetic parameter and measure or estimate their numerical values in such a

way that the fit and the model validation with respect to experimental data remain

excellent. Another way, that we adopted, is to assume a principle of uniform biochemistry:

every two similar reactions in the model should be driven by the same kinetic constants.

We observe that each of the reactions in the model extension above has a correspondent in
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the basic model: the misfolding reactions are similar to reaction (10), the sequestration

reactions are similar to (11) and the refolding reactions are similar to (12). Therefore, we

can use for the model extension similar kinetics as in the basic model: /T as reaction rate

coefficient for the misfolding reactions, kþ11; k
�
11 for the sequestration reactions, and k12 for

the refolding reactions (with the same numerical values as for the basic model).

Remarkably, the fit and the validation of the extended model remains essentially

unchanged. For details we refer to Petre et al. (2009).

Including the phosphorylation of hsf and its role on the hsf activity is attractive, but it

appears to be very challenging. The difficulty is in distinguishing all phosphorylation states

of all known phosphorylation sites (currently at least 14 of them, see Voellmy and

Boellmann 2007; Holmberg et al. 2002) of hsf. This leads to an exponential increase in the

number of variables in our model. To start with, we have considered only one phos-

phorylation site for each hsf. We also asked in the extended model that an hsf trimer is

only able to promote gene transcription if it has at least two of its three sites phosphor-

ylated. The extended model includes all possible phosphorylation states of hsf, hsf2; hsf3,

hsp:hsf, as well as protein kinases and phosphatases (which may be misfolded/refolded).

The new model consists of 61 reactions and 26 reactants (I.Petre et al, unpublished data).

We succeeded fitting the model to the data on DNA binding from Kline and Morimoto

(1997) in such a way that the rate constants of the reactions of the basic model remain

unchanged. When considering also the phosphorylation data of Kline and Morimoto

(1997), the combined fit was very poor. This may indicate that the rate constants of the

basic model should be re-estimated in this case, leading to a very challenging computa-

tional task. This difficulty points also to an intrinsic problem of modeling with differential

equations: they are describing explicitly all variables in the model, even when many of

them are essentially just duplicates of each other. A novel mathematical modeling meth-

odology able to describe models in terms of various independent components and the

communication between them (such as done in concurrency in Computer Science), may be

more suitable in such setups.

3.3 Parameter scanning as a local optimization method

A major difficulty we have encountered when performing parameter estimation was to

fit the time-dependent behavior of the model with respect to experimental data, while

making sure that the initial values are an approximation of a steady state of the model.

Indeed, the steady state of the model is a function of the parameters (and of other

variables, such as total mass of various species). Once a good fit with respect to

experimental data was found, our approach was to replace the initial values with the

steady state of the obtained model at 37�C and hope that the model fit at 42�C is not

destroyed. This is the main reason why parameter estimation was the most time-

consuming part of the work.

The parameter scanning method that we have used when analyzing our model could in

fact be used as a local optimization method that takes into consideration simultaneously the

steady state condition and the stress-induced response of the model. The idea is that for a

model that is continuous in all of the parameters (as ours is), the procedure identifies a

region in the multi-dimensional parameter space where a local minimum of the score

function is found. Iterating this procedure yields a realization of a local minimum of the

score function, while the initial state of the model is a steady state for a temperature of

37�C.
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3.4 Applicability

Mathematical modeling of biological processes may allow reasoning about uncertain or

incomplete subparts of the process. For example, when constructing our molecular model,

see Table 1, all reactions were considered reversible, unless they were definitely known to

be unidirectional. E.g., we decided to include also reaction hsf3 ! hsfþ hsf2, although

arguments based on the stability of trimers and the transient nature of dimers could be used

against it. The corresponding mathematical model and its fitting help handle such

incomplete information. It turns out that our model fit gives a very low rate constant for

that reaction, suggesting that the reaction could be omitted altogether from the model.

Arguments based on sensitivity analysis help identify more reactions that can be eliminated

from the model without affecting its time evolution.

The heat shock response was amongst the primordial gene networks given the fluctu-

ating environment and the necessity to establish proteostasis networks. The minimal

mathematical model we proposed in this paper, based on stress-induced activation and

feedback regulation only, may be useful also for the understanding of other forms of stress

signalling or gene expression. The numerical techniques that we have used in this paper for

identifying the essential components of the regulatory network may also be applicable in

other mathematical modeling projects.

4 Materials and methods

4.1 Construct information

To make the hsp70promoter700-yfp construct, the CMV promoter was removed from

pEYFP-N1 (Clontech) by inserting an XhoI site before the start of the CMV promoter by

site directed mutagenesis using the primer 50-TCTGTGGATAAGATCTCGAGCG

CCATGCAT-30 and its complement. The CMV promoter was deleted by digesting with

XhoI, which cleave the new plasmid both in front of the CMV sequence and after this

sequence in the MCS. The cleaved fragments were separated by electrophoresis, and the

4.1 kb fragment lacking the CMV promoter sequence was isolated and ligated to form

pEYFPDCMV. To add the hsp70 promoter in front of yfp, the 712 bp fragment of the

hsp70 promoter was digested from pGL-712-hsp70 (a kind gift from A. Stanhill and D.

Engelberg, Jerusalem, Israel) using XhoI and HindIII, and subcloned into the pEY-

FPDCMV plasmid.

4.2 Cell culture and heat shock experiments

K562 cells were maintained in RPMI-1640 medium supplemented with 10% fetal calf

serum, 2 mM L-glutamine, penicillin and streptomycin at 37�C in a 5% CO2 humidified

atmosphere. 5.0 9 106 K562 cells were transfected with hsp70promoter700-yfp plasmid

by electroporation (250 V per 975 lF; GenePulser II electroporator, BioRad laboratories).

hsp70promoter700-yfp stable cell pools were selected with geneticin. For heat shock

treatments, 0.5 9 106 ml-1 hsp70promoter700-yfp stably expressing K562 cells were

transferred to RPMI-1640 medium with supplements pre-warmed to 42�C. Heat shock was

induced at 42�C in a 5% CO2 humidified atmosphere for the following time points prior to

sampling: 36, 33, 30, 27, 24, 21, 18, 12, 10, 8, 6, 4, 2, 1, and 0 h (control). Cells were

allowed to recover post-heat shock for 2 h at 37�C. Fluorescence intensity of yfp was
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measured by flow cytometry with FACScan (Becton Dickinson). Samples from heat-

shocked cells were lysed and separated by SDS-PAGE and analyzed by western bloting.
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Summary. We present in this paper a new molecular model for the gene regulatory
network responsible for the eukaryotic heat shock response. Our model includes the
temperature-induced protein misfolding, the chaperone activity of the heat shock
proteins and the backregulation of their gene transcription. We then build a math-
ematical model for it, based on ordinary differential equations. Finally, we discuss
the parameter fit and the implications of the sensitivity analysis for our model.

Key words: Heat shock response, heat shock protein, heat shock factor, mathe-
matical model, differential equations, model fit, sensitivity analysis

1 Introduction

One of the most impressive algorithmic-like bioprocesses in living cells, crucial
for the very survival of cells is the heat shock response: the reaction of the
cell to elevated temperatures. One of the effects of raised temperature in the
environment is that proteins get misfolded, with a rate that is exponentially
dependent on the temperature. In turn, as an effect of their hydrophobic core
being exposed, misfolded proteins tend to form bigger and bigger aggregates,
with disastrous consequences for the cell, see [1]. To survive, the cell needs
to increase quickly the level of chaperons (proteins that are assisting in the
folding or refolding of other proteins). Once the heat shock is removed, the
cell eventually re-establishes the original level of chaperons, see [10, 18, 22].

The heat shock response has been subject of intense research in the last few
years, for at least three reasons. First, it is a well-conserved mechanism across
all eukaryotes, while bacteria exhibit only a slightly different response, see [5,
12, 23]. As such, it is a good candidate for studying the engineering principle of
gene regulatory networks, see [4, 5, 12, 25]. Second, it is a tempting mechanism
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to model mathematically, since it involves only very few reactants, at least
in a simplified presentation, see [18, 19, 22]. Third, the heat shock proteins
(the main chaperons involved in the eukaryotic heat shock response) play
a central role in a large number of regulatory and of inflammatory processes,
as well as in signaling, see [9, 20]. Moreover, they contribute to the resilience
of cancer cells, which makes them attractive as targets for cancer treatment,
see [3, 15, 16, 27].

We focus in this paper on a new molecular model for the heat shock re-
sponse, proposed in [19]. We consider here a slight extension of the model in
[19] where, among others, the chaperons are also subject to misfolding. After
introducing the molecular model in Section 2, we build a mathematical model
in Section 3, including the fitting of the model with respect to experimental
data. We discuss in Section 4 the results of the sensitivity analysis of the
model, including its biological implications.

2 A new molecular model for the eukaryotic heat shock

response

The heat shock proteins (hsp) play the key role in the heat shock response.
They act as chaperons, helping misfolded proteins (mfp) to refold. The re-
sponse is controlled in our model through the regulation of the transactiva-
tion of the hsp-encoding genes. The transcription of the gene is promoted by
some proteins called heat shock factors (hsf) that trimerize and then bind
to a specific DNA sequence called heat shock element (hse), upstream of the
hsp-encoding gene. Once the hsf trimer is bound to the heat shock element,
the gene is transactivated and the synthesis of hsp is thus switched on (for the
sake of simplicity, the role of RNA is ignored in our model). Once the level
of hsp is high enough, the cell has an ingenious mechanism to switch off the
hsp synthesis. For this, hsp bind to free hsf, as well as break the hsf trimers
(including those bound to hse, promoting the gene activation), thus effectively
halting the hsp synthesis.

Under elevated temperatures, some of the proteins (prot) in the cell get
misfolded. The heat shock response is then quickly switched on simply because
the heat shock proteins become more and more active in the refolding process,
thus leaving the heat shock factors free and able to promote the synthesis of
more heat shock proteins. Note that several types of heat shock proteins exist
in an eukaryotic cell. We treat them all uniformly in our model, with hsp90
as common denominator. The same comment applies also to the heat shock
factors.

Our molecular model for the eukaryotic heat shock response consists of
the following molecular reactions:

1. 2 hsf ⇆ hsf2
2. hsf + hsf2 ⇆ hsf3
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3. hsf3 + hse ⇆ hsf3: hse

4. hsf3: hse → hsf3: hse+ mhsp

5. hsp + hsf ⇆ hsp: hsf

6. hsp + hsf2 → hsp: hsf + hsf

7. hsp + hsf3 → hsp: hsf +2 hsf

8. hsp + hsf3: hse → hsp: hsf +2 hsf + hse

9. hsp → ∅
10. prot → mfp

11. hsp + mfp ⇆ hsp: mfp

12. hsp: mfp → hsp + prot

13. hsf → mhsf

14. hsp → mhsp

15. hsp + mhsf ⇆ hsp: mhsf

16. hsp: mhsf → hsp+ hsf

17. hsp + mhsp ⇆ hsp: mhsp

18. hsp: mhsp → 2 hsp

It is important to note that the main addition we consider here with re-
spect to the model in [19] is to include the misfolding of hsp and hsf. This
is, in principle, no minor extension since in the current model the repairing
mechanism is subject to failure, but it is capable to fix itself.

Several criteria were followed when introducing this molecular model:

(i) as few reactions and reactants as possible;
(ii) include the temperature-induced protein misfolding;
(iii) include hsf in all its three forms: monomers, dimers, and trimers;
(iv) include the hsp-backregulation of the transactivation of the hsp-encoding

gene;
(v) include the chaperon activity of hsp;
(vi) include only well-documented, textbook-like reactions and reactants.

For the sake of keeping the model as simple as possible, we are ignoring
a number of details. E.g., note that there is no notion of locality in our model:
we make no distinction between the place where gene transcription takes place
(inside nucleus) and the place where protein synthesis takes place (outside
nucleus). Note also that protein synthesis and gene transcription are greatly
simplified in reaction 4: we only indicate that once the gene is transactivated,
protein synthesis is also switched on. On the other hand, reaction 4 is faithful
to the biological reality, see [1] in indicating that newly synthesized proteins
often need chaperons to form their native fold.

As far as protein degradation is concerned, we only consider it in the model
for hsp. If we considered it also for hsf and prot, then we should also consider
the compensating mechanism of protein synthesis, including its control. For
the sake of simplicity and also based on experimental evidence that the total
amount of hsf and of prot is somewhat constant, we ignore the details of
synthesis and degradation for hsf and prot.
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3 The mathematical model

We build in this section a mathematical model associated to the molecular
model 1–18. Our mathematical model is in terms of coupled ordinary differ-
ential equations and its formulation is based on the principle of mass-action.

3.1 The principle of mass-action

The mass-action law is widely used in formulating mathematical models in
physics, chemistry, and engineering. Introduced in [6, 7], it can be briefly
summarized as follows: the rate of each reaction is proportional to the con-
centration of reactants. In turn, the rate of each reaction gives the rate of
consuming the reactants and the rate of producing the products. E.g., for a
reaction

R1 : A + B → C,

the rate according to the principle of mass action is f1(t) = kA(t)B(t), where
k ≥ 0 is a constant and A(t), B(t) are functions of time giving the level of
the reactants A and B, respectively. Consequently, the rate of consuming A
and B, and the rate of producing C is expressed by the following differential
equations:

dA

dt
=

dB

dt
= −k A(t)B(t),

dC

dt
= k A(t)B(t).

For a reversible reaction
R2 : A + B ⇆ C,

the rate is f2(t) = k1 A(t)B(t) − k2 C(t), for some constants k1, k2 ≥ 0. The
differential equations are written in a similar way:

dA

dt
=

dB

dt
= −f2(t),

dC

dt
= f2(t). (*)

For a set of coupled reactions, the differential equations capture the combined
rate of consuming and producing each reactant as an effect of all reactions
taking place simultaneously. E.g., for reactions

R3 : A + B ⇆ C, R4 : B + C ⇆ A, R5 : A + C ⇆ B,

the associated system of differential equations is

dA/dt = −f3(t) + f4(t) − f5(t),

dB/dt = −f3(t) − f4(t) + f5(t),

dC/dt = f3(t) − f4(t) − f5(t),

where fi(t) is the rate of reaction Ri, for all 3 ≤ i ≤ 5, formulated according
to the principle of mass action.
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We recall that for a system of differential equations

dX1

dt
= f1(X1, . . . , Xn),

. . .
dXn

dt
= fn(X1, . . . , Xn),

we say that (x1, x2, . . . , xn) is a steady states (also called equilibrium points)
if it is a solution of the algebraic system of equations fi(X1, . . . , Xn) = 0, for
all 1 ≤ i ≤ n, see [24, 28]. Steady states are particularly interesting because
they characterize situations where although reactions may have non-zero rates,
their combined effect is zero. In other words, the concentration of all reactants
and of all products are constant.

We refer to [11, 17, 29] for more details on the principle of mass action
and its formulation based on ordinary differential equations.

3.2 Our mathematical model

Let R+ be the set of all positive real numbers and R
n
+ the set of all n-tuples of

positive real numbers, for n ≥ 2. We denote each reactant and bond between
them in the molecular model 1–18 according to the convention in Table 1. We
also denote by κ ∈ R

17
+ the vector with all reaction rate constants as its com-

ponents, see Table 2: κ = (k+
1 , k−

1 , k+
2 , k−

2 , k+
3 , k−

3 , k4, k
+
5 , k−

5 , k6, k7, k8, k9, k
+
11,

k−

11, k12, k
+
13, k

−

13, k14, k
+
15, k

−

15, k16).

Table 1. The list of variables in the mathematical model, their initial values, and
their values in one of the steady states of the system, for T = 42. Note that the
initial values give one of the steady states of the system for T = 37.

Metabolite Variable Initial value A steady state (T=42)

hsf X1 0.669 0.669
hsf2 X2 8.73 · 10−4 8.73 · 10−4

hsf3 X3 1.23 · 10−4 1.23 · 10−4

hsf3: hse X4 2.956 2.956
mhsf X5 3.01 · 10−6 2.69 · 10−5

hse X6 29.733 29.733
hsp X7 766.875 766.875
mhsp X8 3.45 · 10−3 4.35 · 10−2

hsp:hsf X9 1403.13 1403.13
hsp:mhsf X10 4.17 · 10−7 3.72 · 10−6

hsp:mhsp X11 4.78 · 10−4 6.03 · 10−3

hsp:mfp X12 71.647 640.471
prot X13 1.14 · 108 1.14 · 108

mfp X14 517.352 4624.72
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Table 2. The numerical values for the fitted model.

Kinetic constant Reaction Numerical value

k
+

1 (1), forward 3.49091
k
−

1 (1), backward 0.189539
k

+

2 (2), forward 1.06518
k
−

2 (2), backward 1 · 10−9

k
+

3 (3), forward 0.169044
k
−

3 (3), backward 1.21209 · 10−6

k4 (4) 0.00830045
k

+

5 (5), forward 9.73665
k
−

5 (5), backward 3.56223
k6 (6) 2.33366
k7 (7) 4.30924 · 10−5

k8 (8) 2.72689 · 10−7

k9 (9) 3.2 · 10−5

k
+

11 (11), forward 0.00331898
k
−

11 (11), backward 4.43952
k12 (12) 13.9392
k

+

13 (15), forward 0.00331898
k
−

13 (15), backward 4.43952
k14 (16) 13.9392
k

+

15 (17), forward 0.00331898
k
−

15 (17), backward 4.43952
k16 (18) 13.9392

The mass action-based formulation of the associated mathematical model
in terms of differential equations is straightforward, leading to the following
system of equations:

dX1/dt = f1(X1, X2, . . . , X14, κ) (1)

dX2/dt = f2(X1, X2, . . . , X14, κ) (2)

dX3/dt = f3(X1, X2, . . . , X14, κ) (3)

dX4/dt = f4(X1, X2, . . . , X14, κ) (4)

dX5/dt = f5(X1, X2, . . . , X14, κ) (5)

dX6/dt = f6(X1, X2, . . . , X14, κ) (6)

dX7/dt = f7(X1, X2, . . . , X14, κ) (7)

dX8/dt = f8(X1, X2, . . . , X14, κ) (8)

dX9/dt = f9(X1, X2, . . . , X14, κ) (9)

dX10/dt = f10(X1, X2, . . . , X14, κ) (10)

dX11/dt = f11(X1, X2, . . . , X14, κ) (11)

dX12/dt = f12(X1, X2, . . . , X14, κ) (12)
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dX13/dt = f13(X1, X2, . . . , X14, κ) (13)

dX14/dt = f14(X1, X2, . . . , X14, κ) (14)

where

f1 = −k+
2 X1 X2 + k−

2 X3 − k+
5 X1 X7 + k−

5 X9 + 2 k8 X4 X7 + k6 X2 X7

−ϕ(T )X1 + k14 X10 + 2 k7 X3 X7 − 2 k+
1 X2

1 + 2 k−

1 X2

f2 = −k+
2 X1 X2 + k+

2 X3 − k6 X2 X7 + k+
1 X2

1 − k−

1 X2

f3 = −k+
3 X3 X6 + k+

2 X1 X2 − k−

2 X3 + k−

3 X4 − k7 X3 X7

f4 = k+
3 X3 X6 − k−

3 X4 − k8 X4 X7

f5 = ϕ(T )X1 − k+
13 X5 X7 + k−

13 X10

f6 = −k+
3 X3 X6 + k−

3 X4 + k8 X4 X7

f7 = −k+
5 X1 X7 + k−

5 X9 − k+
11 X7 X14 + k−

11 X12 − k8 X4 X7 − k6 X2 X7

−k+
13 X5 X7 + (k−

13 + k14)X10 − (ϕ(T ) + k9)X7 − k+
15 X7 X8

−k7 X3 X7 + (k−

15 + 2 k16)X11 + k12 X12

f8 = k4 X4 + ϕ(T )X7 − k+
15 X7 X8 + k−

15 X11

f9 = k+
5 X1 X7 − k−

5 X9 + k8 X4 X7 + k6 X2 X7 + k7 X3 X7

f10 = k+
13 X5 X7 − (k−

13 + k14)X10

f11 = k+
15 X7 X8 − (k−

15 + k16)X11

f12 = k+
11 X7 X14 − (k−

11 + k12)X12

f13 = k12 X12 − ϕ(T )X13

f14 = −k+
11 X7 X14 + k−

11 X12 + ϕ(T )X13

The rate of protein misfolding ϕ(T ) with respect to temperature T has
been investigated experimentally in [13, 14], and a mathematical expression
for it has been proposed in [18]. We have adapted the formula in [18] to obtain
the following misfolding rate per second:

ϕ(T ) = (1 −
0.4

eT−37
) · 0.8401033733 · 10−6 · 1.4T−37 s−1,

where T is the temperature of the environment in Celsius degrees, with the
formula being valid for 37 ≤ T ≤ 45.

The following result gives three mass-conservation relations for our model.

Theorem 1. There exists K1, K2, K3 ≥ 0 such that:

(i) X1(t) + 2 X2(t) + 3 X3(t) + 3 X4(t) + X5(t) + X9(t) = K1,
(ii) X4(t) + X6(t) = K2,
(iii) X13(t) + X14(t) + X12(t) = K3,

for all t ≥ 0.
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Proof. We only prove here part (ii), as the others may be proved analogously.
For this, note that from equations (4) and (6), it follows that

d(X4 + X6)

dt
= (f4 + f6)(X1, . . . , X14, κ, t) = 0,

i.e., (X4 + X6)(t) is a constant function.

The steady states of the model (1)-(14) satisfy the following algebraic
relations, where xi is the numerical value of Xi in the steady state, for all
1 ≤ i ≤ 14.

0 = −k+
2 x1 x2 + k−

2 x3 − k+
5 x1 x7 + k−

5 x9 + 2 k8 x4 x7 + k6 x2 x7

−ϕ(T )x1 + k14 x10 + 2 k7 x3 x7 − 2 k+
1 x2

1 + 2 k−

1 x2 (15)

0 = −k+
2 x1 x2 + k+

2 x3 − k6 x2 x7 + k+
1 x2

1 − k−

1 x2 (16)

0 = −k+
3 x3 x6 + k+

2 x1 x2 − k−

2 x3 + k−

3 x4 − k7 x3 x7 (17)

0 = k+
3 x3 x6 − k−

3 x4 − k8 x4 x7 (18)

0 = ϕ(T )x1 − k+
13 x5 x7 + k−

13 x10 (19)

0 = −k+
3 x3 x6 + k−

3 x4 + k8 x4 x7 (20)

0 = −k+
5 x1 x7 + k−

5 x9 − k+
11 x7 x14 + k−

11 x12 − k8 x4 x7 − k6 x2 x7

−k+
13 x5 x7 + (k−

13 + k14)x10 − (ϕ(T ) + k9)x7 − k+
15 x7 x8 − k7 x3 x7

+(k−

15 + 2 k16)x11 + k12 x12 (21)

0 = k4 x4 + ϕ(T )x7 − k+
15 x7 x8 + k−

15 x11 (22)

0 = k+
5 x1 x7 − k−

5 x9 + k8 x4 x7 + k6 x2 x7 + k7 x3 x7 (23)

0 = k+
13 x5 x7 − (k−

13 + k14)x10 (24)

0 = k+
15 x7 x8 − (k−

15 + k16)x11 (25)

0 = k+
11 x7 x14 − (k−

11 + k12)x12 (26)

0 = k12 x12 − ϕ(T )x13 (27)

0 = −k+
11 x7 x14 + k−

11 x12 + ϕ(T )x13 (28)

It follows from Theorem 1 that only eleven of the relations above are inde-
pendent. E.g., relations (15)-(17), (19), (21)-(27) are independent. The system
consisting of the corresponding differential equations is called the reduced sys-
tem of (1)-(14).

3.3 Fitting the model to experimental data

The experimental data available for the parameter fit is from [10] and reflects
the level of DNA binding, i.e., variable X4 in our model, for various time
points up to 4 hours, with continuous heat shock at 42 ◦C. Additionally, we
require that the initial value of the variables of the model is a steady state for
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temperature set to 37. This is a natural condition since the model is supposed
to reflect the reaction to temperatures raised above 37 ◦C.

Mathematically, the problem we need to solve is one of global optimiza-
tion, as formulated below. For each 17-tuple κ of positive numerical values
for all kinetic constants, and for each 14-tuple α of positive initial values for
all variables in the model, the function X4(t) is uniquely defined for a fixed
temperature T. We denote the value of this function at time point τ , with pa-
rameters κ and α by xT

4 (κ, α, τ). Note that this property holds for all the other
variables in the model and it is valid in general for any mathematical model
based on ordinary differential equations (one calls such models deterministic).
We denote the set of experimental data in [10] by

En = {(ti, ri) | ti, ri > 0, 1 ≤ i ≤ N},

where N ≥ 1 is the number of observations, ti is the time point of each
observation and ri is the value of the reading.

With this setup, we can now formulate our optimization problem as fol-
lows: find κ ∈ R

17
+ and α ∈ R

14
+ such that:

(i) f(κ, α) = 1
N

∑N

i=1(x
42
4 (κ, α, ti) − ri)

2 is minimal and
(ii) α is a steady state of the model for T = 37 and parameter values given

by κ.

The function f(κ, α) is a cost function (in this case least mean squares),
indicating numerically how the function xT

4 (κ, α, t), t ≥ 0, compares with the
experimental data.

Note that in our optimization problem, not all 31 variables (the compo-
nents of κ and α) are independent. On one hand, we have the three algebraic
relations given by Theorem 1. On the other hand, we have eleven more inde-
pendent algebraic relations given by the steady state equations (15)-(17), (19),
(21)-(27). Consequently, we have 17 independent variables in our optimization
problem.

Given the high degree of the system (1)-(14), finding the analytical form
of the minimum points of f(κ, α) is very challenging. This is a typical problem
whenever the system of equations is non-linear. Adding to the difficulty of the
problem is the fact that the eleven independent steady state equations cannot
be solved analytically, given their high overall degree.

Since an analytical solution to the model fitting problem is often in-
tractable, the practical approach to such problems is to give a numerical
simulation of a solution. Several methods exist for this, see [2, 21]. The trade-
off with all these methods is that typically they offer an estimate of a local
optimum, with no guarantee of it being a global optimum.

Obtaining a numerical estimation of a local optimum for (i) is not difficult.
However, such a solution may not satisfy (ii). To solve this problem, for a given
local optimum (κ0, α0) ∈ R

17
+ × R

14
+ one may numerically estimate a steady

state α1 ∈ R
14
+ for T = 37. Then the pair (κ0, α1) satisfies (ii). Unfortunately,

(κ0, α1) may not be close to a local optimum of the cost function in (i).
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Another approach is to replace the algebraic relations implicitly given
by (ii) with an optimization problem similar to that in (i). Formally, we replace
all algebraic relations Ri = 0, 1 ≤ i ≤ 11, given by (ii) with the condition
that

g(κ, α) =
1

M

M
∑

j=1

R2
i (κ, α, δj)

is minimal, where 0 < δ1 < · · · < δM are some arbitrary (but fixed) time
points. Our problem thus becomes one of optimization with cost function
(f, g), with respect to the order relation (a, b) ≤ (c, d) if and only if a ≤ c
and b ≤ d. The numerical values in Table 2 give one solution to this problem
obtained based on Copasi [8]. The plot in Figure 1 shows the time evolution of
function X4(t) up to t = 4 hours, with the experimental data of [10] indicated
with crosses.

Fig. 1. The continuous line shows a numerical estimation of function X4(t), standing
for DNA binding, for the initial data in Table 1 and the parameter values in Table 2.
With crossed points we indicated the experimental data of [10].

The solution in Table 2 has been compared with a number of other avail-
able experimental data (such as behavior at 41 ◦C and at 43 ◦C), as well as
against qualitative, non-numerical data. The results were satisfactory and bet-
ter than those of previous models reported in the literature, such as [18, 22].
For details on the model validation analysis we refer to [19].
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Note that the steady state of the system of differential equations (1)-
(14), for the initial values in Table 1 and the parameter values in Table 2
is asymptotically stable. To prove it, it is enough to consider its associated
Jacobian:

J(t) =











∂f1/∂X1 ∂f1/∂X2 . . . ∂f1/∂X14

∂f2/∂X1 ∂f2/∂X2 . . . ∂f2/∂X14

...
...

...
∂f14/∂X1 ∂f14/∂X2 . . . ∂f14/∂X14











As it is well-known, see [28, 24], a steady state is asymptotically stable if
and only if all eigenvalues of the Jacobian at the steady state have negative
real parts. A numerical estimation done with Copasi [8] shows that the steady
state for T = 42, see Table 1, is indeed asymptotically stable.

4 Sensitivity analysis

Sensitivity analysis is a method to estimate the changes brought into the
system through small changes in the parameters of the model. In this way one
may estimate both the robustness of the model against small changes in the
model, as well as identify possibilities for bringing a certain desired changed
in the system. E.g., one question that is often asked of a biochemical model
is what changes should be done to the model so that the new steady state
satisfies certain properties. In our case we are interested in changing some of
the parameters of the model so that the level of mfp in the new steady state
of the system is smaller than in the standard model, thus presumably making
it easier for the cell to cope with the heat shock. We also analyze a scenario
in which we are interested in increasing the level of mfp in the new steady
state, thus increasing the chances of the cell not being able to cope with the
heat shock. Such a scenario is especially meaningful in relation with cancer
cells that exhibit the properties of an excited cell, with increased levels of hsp,
see [3, 15, 16, 27]. In this section we follow in part a presentation of sensitivity
analysis due to [26].

We consider the partial derivatives of the solution of the system with
respect to the parameters of the system. These are called first-order local con-
centration sensitivity coefficients. Second- or higher-order sensitivity analysis
considering the simultaneous change of two or more parameters is also pos-
sible. If we denote X(t, κ) = (X1(t, κ), X2(t, κ), . . . , X14(t, κ)) the solution of
the system (1)-(14) with respect to the parameter vector κ, then the con-
centration sensitivity coefficients are the time functions ∂Xi/∂κj(t), for all
1 ≤ i ≤ 14, 1 ≤ j ≤ 17. Differentiating the system (1)-(14) with respect to κj

yields the following set of sensitivity equations:

d

dt

∂X

κj

= J(t)
∂X

∂κj

+
∂f(t)

∂κj

, for all 1 ≤ j ≤ 17, (29)
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where ∂X/∂κj = (∂X1/∂κj, . . . , ∂X14/∂κj) is the component-wise vector of
partial derivatives, f = (f1, . . . , f14) is the model function in (1)-(14), and
J(t) is the corresponding Jacobian. The initial condition for the system (29)
is that ∂X/∂κj(0) = 0, for all 1 ≤ j ≤ 17.

The solution of the system (29) can be numerically integrated, thus ob-
taining a numerical approximation of the time evolution of the sensitivity
coefficients. Very often however, the focus is on sensitivity analysis around
steady states. If the considered steady state is asymptotically stable, then one
may consider the limit limt→∞(∂X/∂κj)(t), called stationary sensitivity co-
efficients. They reflect the dependency of the steady state on the parameters
of the model. Mathematically, they are given by a set of algebraic equations
obtained from (29) by setting d/dt(∂X/κj) = 0. We then obtain the following
algebraic equations:

(

∂X
∂κj

)

= −J−1Fj , for all 1 ≤ j ≤ 17, (30)

where J is the value of the Jacobian at the steady state and Fj is the j-th
column of the matrix F = (∂fr/∂κs)r,s computed at the steady state.

When used for comparing the relative effect of a parameter change in two
or more variables, the sensitivity coefficients must have the same physical
dimension or be dimensionless, see [26]. Most often, one simply considers
the matrix S′ of (dimensionless) normalized (also called scaled) sensitivity
coefficients:

S′

ij =
κj

Xi(t, κ)
·
∂Xi(t, κ)

∂κj

=
∂lnXi(t, κ)

∂lnκj

Numerical estimations of the normalized sensitivity coefficients for a steady
state may be obtained, e.g. with Copasi. For X14 (standing for the level of
mfp in the model), the most significant (with the largest module) sensitivity
coefficients are the following:

◦ ∂ln(X14)/∂ln(T ) = 14.24, ◦ ∂ln(X14)/∂ln(k6) = 0.16,
◦ ∂ln(X14)/∂ln(k+

1 ) = −0.16, ◦ ∂ln(X14)/∂ln(k9) = 0.15,
◦ ∂ln(X14)/∂ln(k+

2 ) = −0.16, ◦ ∂ln(X14)/∂ln(k+
11) = −0.99,

◦ ∂ln(X14)/∂ln(k+
5 ) = 0.49, ◦ ∂ln(X14)/∂ln(k−

11) = 0.24,
◦ ∂ln(X14)/∂ln(k−

5 ) = −0.49, ◦ ∂ln(X14)/∂ln(k12) = −0.24.

These coefficients being most significant is consistent with the biological
intuition that the level of mfp in the model is most dependant on the temper-
ature (parameter T ), on the rate of mfp being sequestered by hsp (parameters
k+
11 and k−

11) and the rate of protein refolding (parameter k12). However, the
sensitivity coefficients also reveal less intuitive, but significant dependencies
such as the one on the reaction rate of hsf being sequestered by hsp (param-
eters k+

5 and k−

5 ), on the rate of dissipation of hsf dimers (parameter k6), or
on the rate of dimer- and trimer-formation (parameters k+

1 and k+
2 ).

Note that the sensitivity coefficients reflect the changes in the steady state
for small changes in the parameter. E.g., increasing the temperature from
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42 with 0.1% yields an increase in the level of mfp with 1.43%, roughly as
predicted by ∂ln(X14)/∂ln(T ) = 14.24. An increase of the temperature from
42 with 10% yields however an increase in the level of mfp of 311.93%.

A similar sensitivity analysis may also be performed with respect to the
initial conditions, see [26]. If we denote by X(0) = X(0, κ), the initial values
of the vector X , for parameters κ, then the initial concentration sensitivity
coefficients are obtained by differentiating system (1)-(14) with respect to
X(0):

d

dt

∂X

∂X(0)
= J(t)

∂X

∂X(0)
(t), (31)

with the initial condition that ∂X/∂X(0)(0) is the identity matrix. It follows
then that the initial concentration sensitivity matrix is given by the following
matrix exponential:

∂X

∂X(0)
(t) = eJ(t) =

∞
∑

k=0

J(t)k

k!
.

Similarly as for the parameter-based sensitivity coefficients, it is often
useful to consider the normalized, dimensionless coefficients

∂Xi

∂X(0)
j

(t) ·
X(0)

j(t)

Xi(t)
=

∂ln(Xi)

∂ ln(X(0)
j)

.

A numerical estimation of the initial concentration sensitivity coefficient
of mfp around the steady state given in Table 2 for T = 42, shows that all

are negligible except for the following two coefficients: ∂ln(X14)/∂ln(X
(0)
9 ) =

−0.497748 and ∂ln(X14)/∂ln(X
(0)
13 ) = 0.99. While the biological significance

of the dependency of mfp on the initial level of prot is obvious, its dependency
on the initial level of hsp: hsf is perhaps not. Moreover, it turns out that several
other variables have a significant dependency on the initial level of hsp: hsf:

◦ ∂ln(X1)/∂ln(X9(0)) = 0.49, ◦ ∂ln(X6)/∂ln(X9(0)) = −0.04,
◦ ∂ln(X2)/∂ln(X9(0)) = 0.49, ◦ ∂ln(X7)/∂ln(X9(0)) = 0.49,
◦ ∂ln(X3)/∂ln(X9(0)) = 1.04, ◦ ∂ln(X9)/∂ln(X9(0)) = 0.99,
◦ ∂ln(X4)/∂ln(X9(0)) = 0.49, ◦ ∂ln(X14)/∂ln(X9(0)) = −0.49,
◦ ∂ln(X10)/∂ln(X9(0)) = 0.49, ◦ ∂ln(X11)/∂ln(X9(0)) = 0.49,

E.g., increasing X
(0)
9 by 1% increases the steady state values of X7 by

0.49% and decreases the level of X14 by 0.49%. Increasing X
(0)
9 by 10% in-

creases the steady state values of X7 by 4.85% and decreases the level of X14

by 4.63%.
The biological interpretation of this significant dependency of the model

on the initial level of hsp: hsf is based on two arguments. On one hand, the
most significant part (about two thirds) of the initial available molecules of
hsp in our model are present in bonds with hsf. On the other hand, the vast
majority of hsf molecules are initially bound to hsp. Thus, changes in the
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initial level of hsp: hsf have an immediate influence on the two main drivers
of the heat shock response: hsp and hsf. Interestingly, the dependency of the
model on the initial levels of either hsp or hsf is negligible.
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Abstract. Computational biomodelers adopt either of the following ap-
proaches: build rich, as complete as possible models in an effort to obtain
very realistic models, or on the contrary, build as simple as possible mod-
els focusing only on the core aspects of the process, in an effort to obtain
a model that is easier to analyze, fit, and validate. When the latter strat-
egy is adopted, the aspects that are left outside the models are very often
up to the subjective options of the modeler. We discuss in this paper a
heuristic method to simplify an already fit model in such a way that the
numerical fit to the experimental data is not lost. We focus in particular
on eliminating some of the variables of the model and the reactions they
take part in, while also modifying some of the remaining reactions. We
illustrate the method on a computational model for the eukaryotic heat
shock response. We also discuss the limitations of this method.

Keywords: Model reduction, heat shock response, mathematical model.

1 Introduction

When designing a new molecular model for some biological process or network,
the choice one has to make early on in the modeling process is whether to strive
for a rich model, capturing many details, or on the contrary, to focus on a more
abstract model, capturing only a few, main actors of interest. The choice is not
obvious and depends heavily on the goals of the modeling project. On one hand,
a rich model has the potential of being more realistic but it leads to a more
complex mathematical model that may be difficult to fit to experimental data,
to analyze, and ultimately may be less apt to answer to biological queries. On
the other hand, a less finely grained molecular model leads to a smaller mathe-
matical model (in terms of the number of variables and equations) that may be
easier to work with, but it pays a price in ignoring a number of details. A main
difficulty in choosing between a rich and a simplified molecular model is that the
potential cost of starting off with a rich model only becomes transparent at a
latter stage, in the process of analyzing the corresponding mathematical model.
Moreover, in the case of choosing a simplified model, the selection of the aspects
to be ignored in the model is left up to the subjective choice of the modeler. We

K. Ambos-Spies, B. Löwe, and W. Merkle (Eds.): CiE 2009, LNCS 5635, pp. 399–408, 2009.
c© Springer-Verlag Berlin Heidelberg 2009
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discuss in this paper an intermediate approach where we start with a (potentially
large, rich) model that has already been fit and validated against experimental
data and we aim to simplify it in such a way that its numerical behavior remains
largely unchanged. In this way, the simplified model is the result of a system-
atic, numerical analysis of the larger model that preserves its validation. We
illustrate the approach on a computational model for the eukaryotic heat shock
response and discuss the biological relevance of the simplifications we operate
on the model. We also discuss the strong dependency of this approach on the
numerical setup of the model; we show that our approach in the case of the heat
shock response model is robust to some changes in the numerical values of the
parameters, but it is sensitive to others.

2 The Heat Shock Response Model

The heat shock response is a well-conserved defence mechanism across all eukary-
otic cells that enables them to survive under conditions of elevated temperatures.
When exposed to heat shock, proteins inside cells tend to misfold. In turn, as an
effect of their hydrophobic core being exposed, misfolded proteins form bigger
and bigger aggregates with disastrous consequences for the cell, see [1]. In order
to survive, the cell has to immediately react by increasing the level of chaperons
(proteins that assist other proteins in the process of folding or refolding). Once
the heat shock is removed, the defence mechanism is turned off and the cell
eventually re-establishes the original level of chaperons, see [7,11,17].

The heat shock response has been intensively investigated in recent years for
at least three main reasons. First, as a well-conserved mechanism in all eukary-
otes, it is considered a promising candidate for investigating the engineering
principles of gene regulatory networks, see [3,4,8,18]. Second, heat shock pro-
teins (hsp) act as main components in a large number of cellular processes such
as signaling, regulation and inflammation, see [6,16]. Moreover, their contribu-
tion to the resilience of cancer cells makes them an attractive target for cancer
treatment, see [2,9,10,19].

We consider in this paper the molecular model proposed in [14] for the eu-
karyotic heat shock response. This model consists of only the minimum num-
ber of components that any regulatory network must contain: an activation
mechanism and a feedback mechanism. Moreover, the model consists of only
well-documented reactions, without using any hypothetical, unknown cellular
mechanism. The control over the cellular defence mechanism against protein
misfolding is implemented through the regulation of the transactivation of the
hsp-encoding gene. The transcription of the gene is activated by heat shock fac-
tors (hsf) which trimerize (the trimerization includes a transient dimerization
phase) and in this form bind to the heat shock element (hse), which is the pro-
moter of the hsp-encoding gene. Once the hsf trimer is bound to the specific
DNA sequence, the gene is transactivated and the transcription and translation
take place. As a result, new hsp molecules are eventually synthesized. When
the level of hsp is high enough, the synthesis is switched off by the following
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Table 1. The reactions of the heat shock response model of [14]

(i) 2 hsf � hsf2 (x) prot → mfp
(ii) hsf + hsf2 � hsf3 (xi) hsp +mfp � hsp:mfp
(iii) hsf3 + hse � hsf3: hse (xii) hsp:mfp → hsp+ prot
(iv) hsf3: hse → hsf3: hse + mhsp (xiii) hsf → mhsf
(v) hsp + hsf � hsp: hsf (xiv) hsp → mhsp
(vi) hsp + hsf2 → hsp: hsf + hsf (xv) hsp +mhsf � hsp:mhsf
(vii) hsp + hsf3 → hsp: hsf +2 hsf (xvi) hsp:mhsf → hsp+ hsf
(viii) hsp + hsf3: hse → hsp: hsf +2 hsf + hse (xvii) hsp +mhsp � hsp:mhsp
(ix) hsp → ∅ (xviii) hsp:mhsp → 2 hsp

mechanism: hsp bind to free hsf as well as break the hsf trimers (both free and
those bound to DNA). This turns off DNA transcription and blocks the forming
of new hsf trimers. The whole defense mechanism is turned on again when, as
a result of raised temperature, the proteins (prot) in the cell begin misfolding
again. To counteract, the heat shock proteins become involved in refolding them
and they free the hsf, which in turn trimerize and activate the synthesis of hsp,
etc. What drives the heat shock response is the race to keep under control the
level of misfolded proteins, in such a way that they are not able to accumulate,
form aggregates, and eventually lead to cell death. The model consists of the
molecular reactions in Table 1.

When designing this molecular model, several criteria were followed, see [14],
including that only well-documented reactions should be included and that the
model should explicitly consider the temperature-induced protein misfolding as
the trigger of the response. The model was also designed in such a way that
is consistent with itself and with the kinetic principles of biochemistry. E.g.,
although hsf dimers are not experimentally detectable, they should be included
in the model to account as a transient step in the formation of hsf trimers. Also,
since hsp and hsf are themselves proteins, they should be subject to temperature-
induced misfolding just like the regular proteins prot. Moreover, the refolding of
mhsf and mhsp is controlled by the same kinetic constants as the refolding of
mfp. The proper folding of newly synthesized hsp is assisted by chaperons as
in the case of most proteins, see [1]. The degradation of hsf, prot, and mfp was
on the other hand not included in the model so that intricate compensating
mechanisms of protein synthesis could be ignored, see [14].

The mathematical model associated with the molecular model in Table 1 is
in terms of ordinary differential equations and it is obtained by assuming for
all reactions the law of mass-action. The reasons for this choice is so that the
explicit contribution of each reaction to the overall behavior could be followed.
Let us denote the reactants occurring in the model according to the convention in
Table 2(a). We use κ ∈ R

25
+ to denote the vector with all reaction rate constants

as its components, see Table 2(b): κ = (k+
1 , k−

1 , k+
2 , k−

2 , k+
3 , k−

3 , k4, k
+
5 , k−

5 , k6,
k7, k8, k9, φ(T ), k+

11, k
−
11, k12, φ(T ), φ(T ), k+

11, k
−
11, k12, k

+
11, k

−
11, k12).
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The corresponding mathematical model consists of the following differential
equations:

dX1/dt = −k+

2 X1 X2 + k−
2 X3 − k+

5 X1 X7 + k−
5 X9 + 2 k8 X4 X7 + k6 X2 X7

−ϕ(T )X1 + k14 X10 + 2 k7 X3 X7 − 2 k+

1 X2
1 + 2 k−

1 X2 (1)

dX2/dt = −k+

2 X1 X2 + k+

2 X3 − k6 X2 X7 + k+

1 X2
1 − k−

1 X2 (2)

dX3/dt = −k+

3 X3 X6 + k+

2 X1 X2 − k−
2 X3 + k−

3 X4 − k7 X3 X7 (3)

dX4/dt = k+

3 X3 X6 − k−
3 X4 − k8 X4 X7 (4)

dX5/dt = ϕ(T )X1 − k+

13 X5 X7 + k−
13 X10 (5)

dX6/dt = −k+

3 X3 X6 + k−
3 X4 + k8 X4 X7 (6)

dX7/dt = −k+

5 X1 X7 + k−
5 X9 − k+

11 X7 X14 + k−
11 X12 − k8 X4 X7 − k6 X2 X7

−k+

13 X5 X7 + (k−
13 + k14)X10 − (ϕ(T ) + k9) X7 − k+

15 X7 X8

−k7 X3 X7 + (k−
15 + 2 k16)X11 + k12 X12 (7)

dX8/dt = k4 X4 + ϕ(T )X7 − k+

15 X7 X8 + k−
15 X11 (8)

dX9/dt = k+

5 X1 X7 − k−
5 X9 + k8 X4 X7 + k6 X2 X7 + k7 X3 X7 (9)

dX10/dt = k+

13 X5 X7 − (k−
13 + k14) X10 (10)

dX11/dt = k+

15 X7 X8 − (k−
15 + k16) X11 (11)

dX12/dt = k+

11 X7 X14 − (k−
11 + k12) X12 (12)

dX13/dt = k12 X12 − ϕ(T )X13 (13)

dX14/dt = −k+

11 X7 X14 + k−
11 X12 + ϕ(T )X13 (14)

The rate coefficient of protein misfolding ϕ(T ) with respect to temperature T
has been investigated experimentally in [12,13], and a mathematical expression
describing the relation has been proposed in [11]. After adapting this formula in
[11] to the time unit of our mathematical model (second), we obtain the following
misfolding rate coefficient:

ϕ(T ) = (1 − 0.4
eT−37

) · 1.4T−37 · 1.45 · 10−5 s−1, (15)

where T is the numerical value of the temperature of the environment in Celsius
degrees. The formula is valid for 37 ≤ T ≤ 45.

For the numerical fit of the model, data of [7] on DNA binding at 42◦C was
used to relate it to hsf3: hse. Moreover, the initial values of the model were sought
so that they give a steady state of the model at 37◦C. This latter restriction was
imposed since the heat shock response is absent at 37◦C. Once suitable numerical
values for the parameters were found, the model was subjected to a number of
other validation tests. For a detailed discussion on the fit and the validation of
the model we refer to [14] and [15]. The final numerical setup of the model is
shown in Tables 2(a) and 2(b).

3 Simplifying the Model

We discuss in this section a series of numerical observations leading to several
simplifications we can operate on our model, without changing its numerical
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Table 2. (a) The list of variables in the mathematical model, their initial concentration
values and their concentration values in one of the steady states of the system, for
T = 42. Note that the initial state of the model is a steady state for T = 37. All
concentrations are in #

cell
, where # denotes the number of molecules. The values should

be interpreted as an average of a population of cells. [14,15]; (b) The numerical values
of parameters for the fitted model [14,15].

Metabolite Variable Initial conc.

hsf X1 0.67
hsf2 X2 8.73 · 10−4

hsf3 X3 1.22 · 10−4

hsf3: hse X4 3
hse X5 30
hsp X6 766.92
hsp:hsf X7 1403.26
hsp:mfp X8 71.65
prot X9 1.14915 · 108

mfp X10 517.32
mhsf X11 3.01 · 10−6

mhsp X12 0.02
hsp:mhsf X13 4.17 · 10−7

hsp:mhsp X14 2.24 · 10−3

Constant Reaction Nr. value Unit

k+

1 (i), forward 3.49 cell

#·s
k−
1 (i), backward 0.19 s−1

k+

2 (ii), forward 1.07 cell

#·s
k−
2 (ii), backward 10−9 s−1

k+

3 (iii), forward 0.17 cell

#·s
k−
3 (iii), backward 1.21 · 10−6 s−1

k4 (iv) 8.3 · 10−3 s−1

k+

5 (v), forward 9.74 cell

#·s
k−
5 (v), backward 3.56 s−1

k6 (vi) 2.33 cell

#·s
k7 (vii) 4.31 · 10−5 cell

#·s
k8 (viii) 2.73 · 10−7 cell

#·s
k9 (ix) 3.2 · 10−5 s−1

k+

11 (xi), forward 3.32 · 10−3 cell

#·s
k−
11 (xi), backward 4.44 s−1

k12 (xii) 13.94 s−1

(a) (b)

behavior, in particular without losing its experimental fit and validation. We
then discuss the extent to which these simplifications are dependent on the
numerical values of our parameters.

The first observation is that the variables mhsf and hsp: mhsf both assume
negligible numerical values throughout numerical simulations for temperatures
from 37◦C to 45◦C. Even when their initial values are increased to higher values,
e.g. to 100 each, their numerical convergence towards their steady state values is
very fast. Moreover, if the increase in the initial values of mhsf and hsp: mhsf is so
that the total amount of hsf and of hsp remain unchanged, then the experimental
fit and validation of the model remain largely unchanged. The reason for this
behavior is that the reactions having mhsf as a product, i.e. reactions (xiii)
and the reverse reaction (xv) have a negligible flux rate, primarily due to the
small kinetic rate constant of the protein misfolding law, see (15). Consequently,
the reaction producing hsp: mhsf, i.e. reaction (xv), also has negligible flux rate.
On the other hand, the reactions having mhsf and hsp: mhsf as reactants reach
much higher flux rates because of larger kinetic constants and high levels of
hsp, a co-reactant in reaction (xv). We decide then to eliminate both mhsf and
hsp: mhsf from the model, along with the reactions where they take part in, i.e.,
reactions (xiii), (xv), and (xvi).
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Note now that the situation is somewhat similar for hsf, hsf2 and hsf3: they
all assume small (albeit not negligible) values throughout numerical simulations.
There is however a crucial difference which points to their significance for the
model: when increasing the initial level of hsf3, even in such a way that the total
level of hsf is unchanged, the fit to the DNA binding experimental data of [7] is
drastically changed.

The observation that the flux of the hsf misfolding reaction is negligible was
the main rationale behind eliminating mhsf and hsp: mhsf from the model. This
leads to the observation that the flux of the hsp misfolding reaction, leading to
the formation of mhsp is also negligible. The case of mhsp is however different
because it is also the end product of reaction (iv). Moreover, mhsp plays a central
role in our model, being the source of all induced hsp through reactions (iv), (xvii)
and (xviii). The numerical values assumed by mhsp throughout simulations for
temperatures between 37◦C and 45◦C are small, but not negligible. They are
however negligible relative to the total level of hsp. Moreover, the numerical
convergence of mhsp towards its steady state value is very fast, even in the
case when the initial level of mhsp is increased several folds. This points to the
observation that mhsp plays the role of a transient state towards hsp, having a
very high turnover rate. As such, it could be eliminated from the model if only
mhsp were replaced in reaction (iv) with hsp. Consequently, we eliminate mhsp
from the model, along with reactions (xiv), (xvii) and (xviii). At the same time,
we replace reaction (iv) with

(iv′) hsf3: hse → hsf3: hse+ hsp

The simplified molecular model has only 10 variables and 12 reactions, compared
to 14 variables and 18 reactions in the initial model. The numerical simulations
of the simplified model for temperatures between 37◦C and 45◦C are indistin-
guishable from those of the initial model.

Regarding the biological relevance, the simplified model differs from the ini-
tial model in ignoring the misfolded form of hsf and hsp, as well as ignoring
that newly synthesized proteins often need chaperons to form their native fold.
Excluding the misfolding of hsf and hsp is reasonable because the numerical
levels of misfolded hsf and hsp are negligible with respect to the level of mfp
and thus, their competition for the chaperon resources of the cell is insignificant.
Excluding the role of chaperons in assisting the formation of the native fold of
newly synthesized proteins is justified by the high speed of the reaction, relative
to the speed of the other reactions in our model. As such, the complex chaperon
- newly synthesized protein is a very fast transient stage in the model and can
be ignored.

It should be noted that the simplifications we have made on the model are
based on numerical arguments and so, in principle, they are dependant on the
numerical values of the parameters of the model. To test the robustness of the
model reductions against changes in the numerical setup of the model, we per-
form several tests. In each test, we either change the initial values of some vari-
ables, or we change the values of some kinetic rate constants. For each new
numerical setup we set the initial values of all variables to their steady state
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values at 37◦C, similarly as done in [15] (to underline that the heat shock re-
sponse is missing at 37◦C). Finally, we compare the numerical behavior of the
model with that of its simplified version obtained as above, for temperatures
between 37◦C and 45◦C.

We first consider a numerical setup where the total level of hsf is increased by
1000 to a value of around 2400. In a second test, we increase both the total level
of hsf by 1000 and the total level of hse by 100. In both tests, the numerical be-
haviors of the models and those of their simplified versions are undistinguishable.
In a third test, we increase the total level of hsp by 1000. When estimating the
steady state values of the model at 37◦C, we note that they are identical with
those of the initial model, summarized in Table 2(a). This raises an intriguing
problem of independent interest: is the steady state of the model independent of
the initial total level of hsp?

A test where the complex chaperon–misfolded protein is made more unstable
by increasing the kinetic rate constant k−

11 to 25 yields a numerically equivalent
simplified model. In a final test, we decrease the value of the kinetic rate constant
k12 of the refolding reaction (xii) from almost 14 to 1. In this way, we induce
a great increase in the values of misfolded proteins of all types to test whether
eliminating mhsf and mhsp is still possible in this context. It turns out that
eliminating mhsf and hsp: mhsf is possible and yields a numerically equivalent
simplified model. On the other hand, eliminating mhsp and hsp: mhsp changes
the behavior of the model pronouncedly. E.g., mfp peaks at a lower value showing
that the simplified model, where hsp is not subject to misfolding, is more efficient
in fighting off the accumulation of mfp. A main reason why the elimination of
misfolded hsp fails is because, unlike in the previous tests, the change in the
refolding rate is not accounted for when setting the initial values of the variables
to the steady state values at 37◦C, since the refolding reaction has a negligible
flux at that temperature. At 42◦C however, protein refolding, in particular that
of mhsp, becomes very important and removing it from the model makes a big
difference.

4 Discussion

Having simple biomodels is very important for being able to analyze their math-
ematical properties and for their integration into larger models. In the case of the
heat shock response, adding the phosphorylation of hsf in all of its homo- and
hetero-polymers, along with its influence on gene transcription leads to a combi-
natorial explosion in the number of variables of the model. As such, decreasing
the number of variables, in particular the elimination of mhsf and hsp: mhsf
reduces the difficulty of the problem.

Several aspects contribute to the model simplification succeeding in a given
numerical setup. The most important is that we eliminate variables that have a
fast numerical convergence to their steady state values. This procedure is often
referred to as a time-separation principle. A factor here is the flux rate of the
reactions producing certain variables of the model. If the total flux contributing
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to producing a given variable remains very small, then that variable will converge
fast to its steady state value and it can be eliminated from the model. There are
at least two reasons why a flux rate can be small: a small kinetic constant, or
much higher kinetic constant in reactions using some of the same reactants. In
the context of the heat shock response model, one more factor plays an important
role: the condition that the initial values of all variables are a steady state of
the model at 37◦C. It turns out that the model has an interesting property,
formulated as a theorem in the appendix: the steady state values of most of
its variables are independent of the temperature. In this way, even at higher
temperature, several of the variables of the model start from their steady state
values and witness only minor numerical disturbances before returning to the
same values.

The model simplification discussed in this paper is dependant on the numerical
setup of the model: on the initial values of the variables and on the numerical
values of the kinetic constants. Even if the initial and the simplified models
appear to be numerically equivalent in one particular setup, they may be very
different in other setups. To evaluate the robustness of the model simplifications,
one should compare the two models in several numerical setups, spanning the
domain of expected values for the model parameters. Some of the simplifications
may turn out to be robust against numerical variations, as it is the case with
eliminating hsf and mhsf in the heat shock model, while others may be valid
only in special numerical setups.

The main difficulty in designing a simple biomodel is that the decision to
exclude variables and reactions from the model is most often done at the early
stage of considering the molecular basis of the model. At that stage however it is
crucial to ensure that all aspects of potential interest are included in the model.
Appreciating the potentially insignificant contribution of some of the aspects
is very difficult at that stage, without having first a well-validated numerical
setup for the model. The approach we have discussed in this paper takes an
intermediate view: one may start with a rich model that is first numerically fit
and validated against experimental data and then it is subjected to a numerical
analysis to identify the components that can be eliminated without changing
the numerical behavior of the model. In this way, the result is a model that
remains faithful to the biological data and soundly identifies those aspects of the
biological reality that have insignificant contribution to the overall behavior.
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Appendix

The next theorem formulates an interesting property of the heat shock response
model. We formulate the property for the simplified model of the heat shock
response.

Theorem 1. Let c1 = (c1
1, c

1
2, c

1
3, . . . , c

1
10) be a steady state of the system at

temperature T1 and c2 = (c2
1, c

2
2, c

2
3, . . . , c

2
10) a steady state at temperature T2,

where c1
i and c2

i for i = 1, . . . , 10 are steady state concentrations of metabolite
Xi at temperatures T1 and T2 respectively. Then c = (c1

1, . . . , c
1
7, c

2
8, c

2
9, c

2
10) is

a steady state of the system at temperature T2.

Proof. Let c1 and c2 be steady states at temperatures T1 and T2, respectively.
Further, let us split the system of differential equations (1)-(10) into two sub-
systems: one containing equations (1)-(7) and the other consisting of equations
(8)-(10). Equation (6) is the only one in the first subsystem with right-hand
side containing functions defined by the second subsystem, i.e. X8(t), X9(t) and
X10(t), and can be by (9) rewritten in the following form:

dX6/dt = k4 X4 − k+
5 X1 X6 + k−

5 X7 − k8 X4 X6 − k6 X2 X6

−k7 X3 X6 − k9 X6 − dX8/dt. (16)

When considering the steady states, the left-hand sides of (1)-(10) are set to 0
and in consequence equation (16) can be written as

0 = k4 X4 − k+
5 X1 X6 + k−

5 X7 − k8 X4 X6 − k6 X2 X6 − k7 X3 X6 − k9 X6.

This algebraic relation does not contain any of functions X8(t), X9(t) or X10(t)
and hence the steady state algebraic relations of subsystem (1)-(7) become inde-
pendent of them. As a consequence, the relations do not contain temperature as
a parameter and are the same both for T1 and T2. Since the same equations have
the same solutions, it follows that c = (c1

1, . . . , c
1
7, c

2
8, c

2
9, c

2
10) is a steady state of

the whole system at temperature T2.

The biological significance of Theorem 1 deserves some comments. Even though
the cell approaches similar steady state levels regardless of the temperature
values, the time it takes to arrive in a certain neighborhood of the steady state
is longer for higher temperature values. Even if one starts in the steady state,
the effort required of the cell is higher for higher temperatures: the fluxes of
all reactions are higher for higher temperatures. The intuitive reason for this is
that the misfolding rate is vastly accelerated for higher temperatures, eventually
accelerating all other reactions.
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b Department of Information Technologies, Åbo Akademi University & Turku Centre for Computer Science, Joukahaisenkatu 3-5A, FIN-20520 Turku, Finland

a r t i c l e i n f o

Article history:

Received 9 July 2009

Received in revised form

27 April 2010

Accepted 27 April 2010
Available online 6 May 2010

Keywords:

Stochastic model

Computer simulations

Markov chain

Gillespie algorithm

Stationary distribution

a b s t r a c t

The heat shock response (HSR) is a highly evolutionarily conserved defence mechanism allowing the

cell to promptly react to elevated temperature conditions and other forms of stress. It has been subject

to intense research for at least two main reasons. First, it is considered a promising candidate for

deciphering the engineering principles underlying regulatory networks. Second, heat shock proteins

(main actors of the HSR) play crucial role in many fundamental cellular processes. Therefore, profound

understanding of the heat shock response would have far-reaching ramifications for the cell biology.

Recently, a new deterministic model of the eukaryotic heat shock response has been proposed in the

literature. It is very attractive since it consists of only the minimum number of components required by

any functional regulatory network, while yet being capable of biological validation. However, it admits

small molecule populations of some of the considered metabolites. In this paper a stochastic model

corresponding to the deterministic one is constructed and the outcomes of these two models are

confronted. The aim with this comparison is to show that, in the case of the heat shock response, the

approximation of a discrete system with a continuous model is a reasonable approach. This is not

always the truth, especially when the numbers of molecules of the considered species are small. By

making the effort of performing and analysing 1000 stochastic simulations, we investigate the range of

behaviour the stochastic model is likely to exhibit. We demonstrate that the obtained results agree well

with the dynamics displayed by the continuous model, which strengthens the trust in the deterministic

description. A proof of the existence and uniqueness of the stationary distribution of the Markov chain

underlying the stochastic model is given. Moreover, the obtained view of the stochastic dynamics and

the performed comparison to the outcome of the continuous formulation provide more insight into the

dynamics of the heat shock response mechanism.

& 2010 Elsevier Ltd. All rights reserved.

1. Introduction

The heat shock response is the most highly evolutionarily
conserved defence mechanism (Lindquist and Craig, 1988). It
exists in all eukaryotic cells, protects them from the damaging
influence of elevated temperature and allows them to promptly
react to other forms of environmental stress. The heat shock
response has been subject to intense research recently, see
Chen et al. (2007), Powers and Workman (2007) and Voellmy
and Boellmann (2007), for at least two reasons. On one hand, as a
well-conserved mechanism, it is considered a promising candi-
date for deciphering the engineering principles underlying
regulatory networks. On the other hand, heat shock proteins play
crucial roles in many fundamental cellular processes such as

protein biogenesis, dismantling of damaged proteins, activation of
immune responses and signalling, see Kampinga (1993) and
Pockley (2003). Therefore, profound understanding of the heat
shock response would have far-reaching ramifications for the cell
biology and could potentially allow for treatment of a number of
diseases, such as neurodegenerative and cardiovascular disorders,
cancer, ageing, see Balch et al. (2008), Liu et al. (2002), Lukacs
et al. (2000), Morimoto (2008) and Workman and de Billy (2007).

Although a number of mathematical models describing the
heat shock response both in eukaryotes and in bacteria have been
presented in the literature, see Donati et al. (1990), Jones et al.
(1993), Parsell and Lindquist (1993), Peper et al. (1997), Petre
et al. (2009b), Remondini et al. (2006), Rieger et al. (2005) and
Szymańska and Żylicz (2009), still a comprehensive mechanistic
understanding of this process is lacking. In Petre et al. (2009b) a
new model of the eukaryotic heat shock response together with
an associated continuous mathematical model based on ordinary
differential equations have been discussed. The novelty of the
model in Petre et al. (2009b) is due to the fact that, unlike other
previous models, it is based solely on well-documented reactions
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and does not incorporate modelling ‘‘blackboxes’’ such as
hypothetical, experimentally unsupported cellular mechanisms
whose only purpose is to enforce appropriate behaviour. The
simplified version of the model (see Petre et al., 2009a, for details)
includes the temperature-induced protein misfolding, all three
forms of heat shock factors: monomers, dimers and trimers, the
backregulation of the transactivation of the heat shock protein
encoding gene and the chaperone activity of heat shock proteins.
At the same time, it contains as few reactions and reactants as
possible. It is worth noticing that the model consists of only the
minimum number of components required by any functional
regulatory network: an activation mechanism and a feedback
mechanism. Nonetheless, the associated continuous model pre-
dictions correlate well with experimental observations on the
heat-induced transactivation of the hsp-encoding genes at
different temperatures from the range 37 to 43 1C (in particular,
the prolonged transcription at 43 1C is confirmed) and the return
to the original level of hsp production once the stress is removed
(publication in preparation). Moreover, the model perfectly
illustrates the experimentally observed process of ‘‘self-learning’’
of the HSR system: the response to a second consecutive heat
shock is significantly lower. This is due to a transient increase
in the free hsp level caused by the preliminary heat shock. In
other words, the increase is a form of temporary memory of
the fact that the cell was recently exposed to heat shock condi-
tions.

However, the undertaken modelling approach that utilises
ordinary differential equations is just one of many other
modelling paradigms (e.g. stochastic formulation, process calculi,
Petri nets, etc.), which could be exploited in the context of the
heat shock response. In this paper we follow one of the other
formalisms: we develop a stochastic model associated with the
simplified version of the model from Petre et al. (2009b) which
has been described in Petre et al. (2009a). According to current
scientific knowledge, ignoring quantum mechanical effects,
biological systems can be viewed as deterministic of their very
nature, with their dynamics entirely specified, given sufficient
information on the state of the system (position, orientation and
momentum of every single molecule) and a complete under-
standing of the chemistry and physics of the interactions between
biomolecules. Unfortunately, we are still unable to model
biological systems of realistic complexity and size using such a
molecular dynamic approach (Wilkinson, 2006). Therefore the
current models admit far-reaching simplifications, which result in
a higher level view of the system being modelled. However, these
abstractions change the character of the dynamics, which
becomes intrinsically stochastic and requires consideration of
statistical physics to describe the stochastic process governing it.
Especially at low concentrations of the involved reactants,
random fluctuations may have a significant impact on the
reaction dynamics, but the deterministic approach to chemical
kinetics fails to capture such phenomena, see McAdams and Arkin
(1999) and Srivastava et al. (2002). For example, let us consider
the famous Lotka–Volterra system of coupled ordinary differential
equations describing an ecological predator–prey model. The
solutions of this system are known to be periodic (except for the
stationary point) independently of the initial size of predator and
prey populations. However, in the stochastic formulation there
exists a ‘‘catastrophic’’ sequence of events which leads to
depletion of preys by predators and, in consequence, to the
extinction of predators as well. When running the model long
enough, the probability of not executing this catastrophic
sequence drops to zero. This leads to radical qualitative
differences in the trajectories obtained by these two approaches:
in the deterministic case the trajectory in the predator versus
prey phase space is an ellipse, while in the stochastic case the

trajectory eventually reaches the trivial steady state of no
predators and no prey individuals in the system. The expected
time it takes to reach this state depends on the initial number of
species. Such discrepancy in the trajectories is especially easily
observed when the initial population sizes are small.

Another significant impact of random fluctuations can be
observed in the model of T cell receptor signalling presented in
Lipniacki et al. (2008), where it is shown that, because of
bistability of the system and the fact that the T cell activation is
due to a small number of foreign peptides, the responses are
highly stochastic. This results in stochastic trajectories not
following the deterministic trajectory, which converges to a
steady state. Instead, the stochastic realisations may occasionally
jump between the basins of attraction of two possible states. In
particular, as was shown in Lipniacki et al. (2008), stochastic noise
can cause a transition from the higher stable state to the lower
one and most of the stochastic trajectories are trapped in the
basin of attraction of the latter steady state in contrast to the
deterministic case. As a result, the qualitative behaviour revealed
by the stochastic approach differs significantly from the beha-
viour obtained from the deterministic description. For details we
refer the reader to Lipniacki et al. (2008).

Although for a complex system detailed mathematical analysis
based on the ‘‘chemical master equation’’ is intractable (Wilk-
inson, 2006), it is possible to gain insight into the system’s
dynamics by performing a series of stochastic simulations of the
time-evolution of such system by so-called Gillespie (1976)
algorithm. The algorithm is a well-established procedure for
generating a stochastic realisation of the system’s temporal
behaviour. However, due to reasons such as computational
efficiency, availability of dedicated simulation software with
analysis tools (steady-state, sensitivity analysis, etc.), and ex-
pertise in the theory of differential equations, the deterministic
modelling approach is commonly used in examination of
biological systems, although the stochastic formulation in many
cases would be more justified.

Bearing in mind the above mentioned merits of the new
simplified heat shock response model described in Petre et al.
(2009a), the aim of this paper is to show that in this particular
case approximating a discrete system with a continuous model is
a valid approach. A stochastic model complementary to the
deterministic one is developed. An effort to perform 1000
stochastic simulations is made in order to investigate whether
the qualitative results of the stochastic model agree with the
deterministic outcome. Having the problem of small number of
molecules of some of the reactants in mind (initial number
concentrations of hsf, hsf2, hsf3, hsf3:hse, hse, hsp:mfp, see Petre
et al., 2009a, for details), as explained above, one could expect the
time-course trajectories obtained with the stochastic model to be
substantially different from the trajectories computed in the
deterministic formalism. However, we show that the influence of
the random fluctuations does not invalidate the continuous
approach and the obtained results support the use of the
deterministic formulation in this case. In particular, we investi-
gate the number of steady states of the deterministic model and
compare the obtained results with the dynamics demonstrated by
the stochastic model. We show that the underlying stochastic
process of our model has a unique stationary distribution and that
the performed stochastic simulation results reveal no evidence of
multistationarity, which is consistent with the deterministic
description. Additionally, this analysis let us gain some more
insight into the dynamics of the heat shock response mechanism.
The question about the stationarity and stability, i.e. the number
of steady-states and whether they are stable or unstable, is
important in the examination of the dynamics of biological
systems. For example, bistability in biological systems is, in

A. Mizera, B. Gambin / Journal of Theoretical Biology 265 (2010) 455–466456



ARTICLE IN PRESS

general, accompanied by hysteresis, which in turn promotes
robustness (Karmakar and Bose, 2007; Lipniacki et al., 2008).

The paper is organised as follows. In Section 2 we briefly
describe the simplified deterministic model (named deterministic

model for compactness in the continuation) of the heat shock
response in eukaryotic cells which was proposed in Petre et al.
(2009a). Next, in Section 3, we discuss the Markov jump process
which constitutes the corresponding stochastic model and show
that it has a unique stationary distribution. Further, in Section 4,
the stochastic simulation results are discussed and a comparison
between the deterministic and stochastic model is presented.
Finally, we end with conclusions in Section 5.

2. Deterministic model

The model of the eukaryotic heat shock response consists of
four main modules: the heat-induced protein misfolding, the
dynamic transactivation of the genes encoding heat shock
proteins, their backregulation and the chaperone activity of the
heat shock proteins.

At elevated temperatures proteins tend to misfold and create
aggregates, which has disastrous effects on the cell. In order to
survive, the cell has to promptly increase the level of heat shock

proteins (hsp), which is the main task of the heat shock response
mechanism. Heat shock proteins act as chaperones: they interact
with the misfolded proteins (mfp) and assist them in refolding to
their native conformation (prot). The control over the defence
mechanism against the temperature-induced harmful phenom-
ena is implemented through the regulation of the transactivation
of the hsp-encoding gene. Activation of the transcription proceeds
along the following scheme: heat shock factors (hsf) trimerize
(through a transient dimerisation) and in this form bind to the
heat shock element (hse), i.e. the promoter of the hsp-encoding
gene. Once the hsf-trimer (hsf3) is bound to the specific DNA
sequence (hsf3:hse), the gene is transactivated and new hsp
molecules are eventually synthesised. Finally, when the level of
hsps is high enough to cope with the thermal stress, the
production is switched off: hsps bind both to free hsfs and hsfs
that occur in compound forms (hsf2, hsf3, hsf3:hse), which, in
consequence, get disassembled. As a result, DNA transcription of
hsp-encoding gene is turned off and the formation of new hsf
trimers is blocked. The full list of molecular reactions constituting
the model is presented in Table 1. By assuming the law of mass-
action for all reactions (R1)–(R17), the associated mathematical
model based on ordinary differential equations is obtained. The
rate coefficient of protein misfolding with respect to the
temperature ðjðTÞÞ in reaction (R14) is given by the following
formula:

jðTÞ ¼ 1�
0:4

eT�37

� �
� 1:4T�37

� 1:45� 10�5 s�1, ð1Þ

where T is the numerical value of the temperature of the
environment in Celsius degrees. The formula is valid for
37rTr45. It is based on experimental investigations in Lepock
et al. (1993, 1988) and was originally proposed in Peper et al.
(1997). Expression (1) in its current form was obtained by
adapting the original formula to the time unit of the discussed
mathematical model (see Petre et al., 2009a). In our survey the
temperature is set to 42 1C, i.e. the cells are exposed to heat shock
conditions.

As shown in Petre et al. (2009a), there are three mass-
conservation relations in the model: the total number of heat
shock factor molecules, heat shock elements and protein mole-

cules (either misfolded or in native conformation) is conserved in
time. This can be written formally as

C1 ¼ hseðtÞþ3hsf3 : hseðtÞ, ð2Þ

C2 ¼ hsfðtÞþ2hsf2ðtÞþ3hsf3ðtÞþ3hsf3 : hseðtÞþhsp : hsf , ð3Þ

C3 ¼ protðtÞþmfpðtÞþhsp : mfpðtÞ ð4Þ

for all tZ0, where C1, C2, C3Z0 are some constants determined by
initial conditions, i.e. right-hand side expressions at t ¼ 0 in the
above Eqs. (2)–(4).

The described model of eukaryotic heat shock response is
based solely on well-documented reactions and does not include
any ‘‘artificial’’ elements such as experimentally unsupported
components or biochemical reactions. For a detailed discussion of
the model, we refer the reader to Petre et al. (2009a).

3. Stochastic model

Stochastic modelling of biochemical networks is today well-
established. The time-evolution of a reaction system can be
regarded as a stochastic process (cf. Wilkinson, 2006). In
particular, the dynamics of a biochemical network can be viewed
as a continuous-time Markov process. A continuous-time sto-
chastic process fXðtÞ,tZ0g with discrete state space S is said to be
a continuous-time Markov chain (CTMC for short) if

PfXðtnÞ ¼ injXðt0Þ ¼ i0, . . . ,Xðtn�1Þ ¼ in�1g ¼ PfXðtnÞ ¼ injXðtn�1Þ ¼ in�1g

for all 0rt0o � � �otn�1otn and i0, . . . ,in�1,inAS. The Markov
property expresses that the conditional distribution of a future
state given the present and past states depends only on the
present state and is independent of the past.

We consider a time-homogeneous Markov chain for which the
transition probability PfXðtþuÞ ¼ jjXðuÞ ¼ ig is independent of u.

Table 1
The simplified model for the eukaryotic heat shock response.

2hsf-hsf2 ðR1Þ

hsf2-2hsf ðR2Þ

hsfþhsf2-hsf3 ðR3Þ

hsf3-hsfþhsf2 ðR4Þ

hsf3þhse-hsf3 : hse ðR5Þ

hsf3 : hse-hsf3þhse ðR6Þ

hsf3 : hse-hsf3 : hseþhsp ðR7Þ

hspþhsf-hsp : hsf ðR8Þ

hsp : hsf-hspþhsf ðR9Þ

hspþhsf2-hsp : hsfþhsf ðR10Þ

hspþhsf3-hsp : hsfþ2hsf ðR11Þ

hspþhsf3 : hse-hsp : hsfþhseþ2hsf ðR12Þ

hsp- ðR13Þ

prot-mfp ðR14Þ

hspþmfp-hsp : mfp ðR15Þ

hsp : mfp-hspþmfp ðR16Þ

hsp : mfp-hspþprot ðR17Þ
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Let Q ¼ ðqijÞi,jAS be the infinitesimal transition rate matrix of the
continuous-time Markov chain {X(t)} such that the following
assumption is satisfied.

Assumption 1. ni ¼
P

ja i qij are positive and bounded in iAS.

As stated in Tijms (2003), if Assumption 1 is fulfilled, it can be
shown that the infinitesimal transition rates determine a unique
continuous-time Markov chain which is precisely a Markov jump
process constructed in the following way:

(a) if the system jumps to state i, it then stays in state i for an
exponentially distributed time with mean 1=ni independently
of how the system reached state i and how long it took to get
there (this explains the name sojourn-time rates used for fnig);

(b) if the system leaves state i, it jumps to state j ðja iÞ with
probability pij independently of the duration of the stay in state i.

Further, let {Xn, n¼0,1,y} be the embedded Markov chain, i.e. Xn is
defined as the state of {X(t)} just after the n-th transition with the
convention that X0 ¼ X(0). The one-step transition probabilities of
the discrete-time Markov chain {Xn} are given by

pij ¼
qij=ni, ja i,

0, j¼ i

(

for all i,jAS (e.g. see Tijms, 2003).
The corresponding stochastic formulation of the HSR molecular

model presented in Section 2 is a system of 10 chemically active
species Si (i¼1,y,10), ðS1 � hse, S2 � hsf , S3 � hsf2, S4 � hsf3, S5 �

hsf3 : hse, S6 � hsp, S7 � hsp : hsf , S8 � hsp : mfp, S9 �mfp, S10 �

protÞ that participate in 17 chemical reactions (R1)–(R17) in some
volume V. More specifically, in our case the abstract volume V is
simply a eukaryotic cell. The system’s state space S �N10 is
defined as

S ¼ fðs1, . . . ,s10Þ
T : 8iA f1,...,10gsiAN, s1þs5 ¼ C1,

s2þ2s3þ3s4þ3s5þs7 ¼ C2, s8þs9þs10 ¼ C3, s6þs7þs8rKg,

ð5Þ

where C1Z1, C2Z3 and C3Z1 are constants describing the fixed
in time total number of hse, hsf and protein (either misfolded or in
native conformation) molecules present in the system, respec-
tively. The last inequality, i.e. s6þs7þs8rK , requires some
comment. In the absence of it the model would make allowance
for any unbounded number of free hsp molecules to co-exist.
However, this is certainly contrary to the fact that any living cell
has a limited volume and, in consequence, can only contain a finite
number of hsp molecules. Thus, in order to make the model more
realistic, a big enough (in the sense that it allows for the
appropriate number of free hsp molecules to be present in the
system) constant K is introduced and an upper bound on the value
of the S6 variable is imposed by the last inequality. The direct
consequence of adding it is that the state space S becomes finite.

The system is in state s ¼ (s1, y, s10)T at time t if and only if
the number of molecules of species Si at time t is si for all i ¼

1,y,10. The conditions posed on the constants C1, C2 and C3

ensure that the HSR mechanism is operational, i.e. that at least
one hse molecule is present in the system, that the system is able
to produce at least one hsf3 molecule that can bind to the DNA
and, in consequence, initiate the transcription and translation of
hsp. Finally, that at least one generic protein prone to misfolding
exists in the system.

Each reaction Rm is characterised by a stochastic rate constant
cm ðm¼ 1, . . . ,17Þ, see Table 3. The values were obtained from the
deterministic model (Petre et al., 2009a). In the case of reaction
(R1), the deterministic rate constant value was multiplied by 2 in

order to obtain the value for the corresponding stochastic rate
constant.

Let vm be the m-th column of the stoichiometry matrix of the
HSR system presented in Table 2. Reaction Rm causes the system
to make a transition from some state iAS to state j¼ iþvm. The
fundamental hypothesis of the stochastic formulation of chemical
kinetics (Gillespie, 1976) is that the reaction parameter cm can be
defined as follows:

cm dt� average probability; to first order in dt, that a

particular combination of Rm reactant molecules

will react accordingly in the next time interval dt:

As shown by Gillespie (1976), cm is dependent on the radii of the
molecules involved in the reaction and their average relative
velocities, where the average relative velocity is a function of the
temperature of the system and the individual molecular masses.
Further, it is shown that the probability of reaction Rm occurring in
V in the time interval (t,t+dt), given that the system is in state i at
time t, has the form hi

mcm dt. hi
m denotes the number of possible

combinations of reactant molecules involved in reaction Rm when
the system is in state i. However, since the total number of hsp
molecules that might co-exist in a cell is limited, no further hsp
production (reaction (R7)) should take place when the system is in
any of the states in which the limit is reached. Let us denote all
these states by SK , i.e.

SK ¼ fsjs6þs7þs8 ¼ Kg: ð6Þ

Thus, the probability of reaction (R7) occurring in V in the time
interval (t,t+dt) when the system is in iASK should be 0. Hence

hi
7 ¼

No: of combinations of

reactant molecules of R7, iAS\SK ,

0, iASK :

8>>>><
>>>>:

ð7Þ

Due to the fact that the reaction hazards depend only on the
current state of the system, the time-evolution of the state of the
reaction system can be regarded as a CTMC. Since the state space
S is finite, Assumption 1 is fulfilled and hence the chain is a
Markov jump process constructed as described above. The
infinitesimal transition rates of the Markov jump process are

qij ¼ hi
mcm, ð8Þ

where j¼ iþvm.
Now, let us consider the reaction probability density function

Piðt,mÞdt of the HSR system, which forms the basis for the
Gillespie’s simulation algorithm. It is defined by

Piðt,mÞdt� probability at time t (when the system is in state
iAS) that the next reaction in V will occur in the differential
time interval ðtþt,tþtþdtÞ, and will be an Rm reaction.

Table 2
The stoichiometry matrix of the heat shock response model.

0 0 0 0 �1 1 0 0 0 0 0 1 0 0 0 0 0

�2 2 �1 1 0 0 0 �1 1 1 2 2 0 0 0 0 0

1 �1 �1 1 0 0 0 0 0 �1 0 0 0 0 0 0 0

0 0 1 �1 �1 1 0 0 0 0 �1 0 0 0 0 0 0

0 0 0 0 1 �1 0 0 0 0 0 �1 0 0 0 0 0

0 0 0 0 0 0 1 �1 1 �1 �1 �1 �1 0 �1 1 1

0 0 0 0 0 0 0 1 �1 1 1 1 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 �1 �1

0 0 0 0 0 0 0 0 0 0 0 0 0 1 �1 1 0

0 0 0 0 0 0 0 0 0 0 0 0 0 �1 0 0 1

2
6666666666666666664

3
7777777777777777775

The columns correspond to reactions (R1)–(R17) and the rows to metabolites in the

order: hse, hsf, hsf2, hsf3, hsf3: hse, hsp, hsp:hsf, hsp:mfp, mfp, prot.
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As shown in Gillespie (1976), the density function can be
expressed as

Piðt,mÞdt¼ hi
mcm � exp �

X17

n ¼ 1

hi
ncnt

" #
dt: ð9Þ

The superscript iAS indicates that in fact we deal with a whole
family of such functions. Which of them is considered at time t

depends on the state of the system at time t. In the continuation,
in order to lighten the language, ‘‘probability at time t’’ will be a
shorthand for ‘‘probability at time t when the system is in state i’’.
Let Pi

1ðtÞdt denote the probability at time t that the next reaction
will occur between times tþt and tþtþdt, irrespective of
which reaction it might be. By the definition of Piðt,mÞ we have
that

Pi
1ðtÞ ¼

X17

m ¼ 1

Piðt,mÞ ¼
X17

k ¼ 1

hi
kck

 !
� exp �

X17

k ¼ 1

hi
kck

 !
� t

" #
: ð10Þ

Hence, the sojourn-time rates ni of the Markov jump process are
given by

ni ¼
X17

k ¼ 1

hi
kck: ð11Þ

The probability of the transition from state i to state j¼ iþvm of
the Markov jump process (and, in consequence, of the embedded
Markov chain {Xn}) is the probability at time t that the next
reaction in V will be an Rm reaction. Using Eq. (9), it can be
expressed as

pij ¼

Z 1
0

Piðt,mÞdt¼
hi
mcmP17

k ¼ 1 hi
kck

ð12Þ

if ja i and pii ¼ 0 for all iAS.

Lemma 1. The embedded Markov chain {Xn} is irreducible.

Before presenting the proof let us divide the species into two
groups. The first one, called elementary species group (denoted by
Gelementary), contains hsf, hse, hsp, mfp and prot species. The other
one, denoted by Gcompound and named compound species group, is
made of all the remaining species.

Proof of Lemma 1. Let i, j be any two states from the state space
S. By i*j we denote that the state j is reachable from the state i,
i.e. that there exists a sequence of reactions (R1)–(R17) which leads
the system from the state i to the state j.

In order to prove that {Xn} is irreducible it is enough to show

that i*j, since i and j are two arbitrarily chosen states. Let hsp(k),

mfp(k) and prot(k) be the total number of hsp, mfp and prot

molecules present in the system when in the state k, respectively.

Further, let

z¼ ðC1,C2,0,0,0,hspðiÞ,0,0,mfpðiÞ,protðiÞÞT :

z is obtained from i by disassembling all compound species from

Gcompound. Thus, in the state z the number of molecules of any

species from Gcompound is 0 and the number of molecules of any

sAGelementary is equal to the total number of s molecules in the

system in the state i. Clearly zAS and i*z, since for any

sAGcompound there exists a sequence of reactions (R1)–(R17) which

disassembles s into elements from Gelementary.

Let

z0 ¼ ðC1,C2,0,0,0,hspðjÞ,0,0,mfpðiÞ,protðiÞÞT

and

z
00

¼ ðC1,C2,0,0,0,hspðjÞ,0,0,mfpðjÞ,protðjÞÞT :

z0AS and we continue to show that z*z0. There are three cases:

hsp(i) ¼ hsp(j), hspðjÞohspðiÞ or hspðjÞ4hspðiÞ. In the first case

z¼ z0 and trivially z*z0. If hspðjÞohspðiÞ, z0 can be reached from z

by applying reaction (R13) hsp(i)�hsp(j) times. If finally

hspðjÞ4hspðiÞ, first hsf3:hse is produced (this is doable since

C1Z1 and C2Z3). Next, by applying reaction (R7) hsp(j)�hsp(i)

times the required number of additional hsp molecules is

produced. Finally, hsf3:hse is disassembled by applying a

sequence of reactions /(R6), (R3), (R2)S. Hence z*z0.

We continue to show that z0*z
00

. There are two cases. Either

mfpðiÞ4mfpðjÞ or protðiÞZprotðjÞ since mfp(k) + prot(k) ¼ C3 for

any state kAS. In the first case, if hsp(j) ¼ 0, first one hsp

molecule is produced by applying reaction sequence /(R1), (R3),

(R5), (R7), (R6), (R4), (R2)S, which leads to state (C1,C2,0,0,0,1,0,0,

mfp(i),prot(i)T). Then, by applying reaction sequence /(R15),

(R17)S mfp(i) � mfp(j) times the system reaches state:

ðC1,C2,0,0,0,1,0,0,mfpðjÞ,protðjÞÞT

since, as mentioned before, mfp(k) + prot(k) ¼ C3 for any state

kAS. Finally, the only hsp molecule is degraded by applying

reaction (R13) and the system arrives in state z
00

. If hsp(j) is greater

than 0, state z
00

can be reached by less steps since neither

production nor degradation of the one additional hsp molecule is

required.

In the second case, when protðiÞZprotðjÞ, state z
00

can be reached

by applying misfolding reaction (R14) prot(i) � prot(j) times.

Hence z0*z
00

.

At last z
00

*j. State j is reached by producing the appropriate

numbers of molecules of all compound species. Since in state z
00

the required number of molecules of all elementary species is

already present, by applying appropriate reactions all compound

species molecules can be produced. The mass-conservation law

ensures that the numbers of elementary species molecules will be

decreased appropriately and that the system will reach state j.

Hence {Xn} is irreducible. &

The irreducibility of the embedded chain {Xn} implies the
irreducibility of the continuous-time Markov chain {X(t)}. Since
the state space S is finite, it follows that the CTMC {X(t)} is
positive recurrent. In consequence, it has an invariant measure Z
which is unique up to multiplicative factors and can be found as
the solution of the equation ZT Q ¼ 0. Moreover,

P
iASZio1 since

S is finite and there exists a unique stationary distribution p of
{X(t)} given by

p¼ ZiP
kAS Zk

� �
iAS

: ð13Þ

For the theoretical details we refer the reader to, e.g., Norris
(1998) and Resnick (1992).

4. Results and discussion

The deterministic approach, based on the law of mass action,
yields a system of ordinary differential equations for molecular
concentrations. In consequence, the biochemical system is
modelled as being continuous. But such description does not
capture effects that occur due to either the discreteness of
molecular quantities or the stochastic nature of chemical reac-
tions (McAdams and Arkin, 1999; Pahle, 2009; Sandmann, 2008;
Wilkinson, 2006). As discussed in Section 1, random fluctuations
may have a significant impact on the reaction dynamics,
especially as the numbers of molecules of some reactants become
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smaller (McAdams and Arkin, 1999; Srivastava et al., 2002). This is
the case of the deterministic heat shock response model being
discussed: except for prot, hsp, hsp:hsf and mfp, all the other
species have very small initial number of molecules (Table 3) and,
as can be seen from the continuous simulation results, stay at the
low level throughout the time of simulation. This might be the
main objection to the continuous approach applied in Petre et al.
(2009a, b). Since the stochastic modelling seems more reasonable
in this case, we made the effort to run 1000 stochastic simula-
tions in order to check whether the dynamics of the conti-
nuous description agrees qualitatively with the behaviour
demonstrated by the discrete system. The results of 1000 inde-
pendent stochastic simulation runs (blue and green points) for
five species: hsf3:hse, hsp, mfp, hsp:hsf and hsp:mfp, overlaid
with the deterministic outcome (yellow line) are shown in Fig. 1.
The mean together with the mean7standard deviation are shown
in Fig. 2. The ratios of the sample standard deviation to the sample
mean were computed for the five considered species and are
depicted in Fig. 3. According to Gillespie (1976), since the ratios
are small (less than 0.12 in the case of mfp and hsp, see Fig. 3c and
b) and very small (less than 0.035 for hsp:mfp and less than 0.007
for hsp:hsf, see Fig. 3e and d, respectively), the results of
independent runs of the system are expected not to vary much
and the presented outcomes of 1000 stochastic simulations
together with the estimated mean should provide a statistically
adequate picture of the evolution of the chemical system in time.
One might argue that the ratio for hsf3:hse is, however, quite big:
it peaks at about 1.1 and stabilises below 0.6 (see Fig. 3a). In this
particular case the mean converges to approximately 3 molecules
of hsf3:hse and the standard deviation is around 1.6, which all in
all gives a narrow range of possible values of molecule number
and hence this result can be accepted.

We first investigated the number of steady-states of the
deterministic model. Since our attempts to analytically solve
the algebraic system of steady state equations obtained from the
differential ones did not bring any results, we performed some
numerical investigations. We randomly chose 10 000 sets of initial
particle numbers for the continuous model from a wide range of
values, but in such a way that the total amounts of hse, hsf and
proteins in the resulting system would always be the same as in
the case of the original deterministic model presented in Petre

et al. (2009a). For each of these sets we run numerical time-course
simulations and waited for the considered system to stabilise. In
all these cases the systems converged to exactly the same state as
the original model, i.e. no other steady states were found by this
method. Additionally, bifurcation analysis performed with the
AUTO software (XPPAUT was used as the front-end, Doedel et al.,
1997; Ermentrout, 2002) with respect to parameter values did not
reveal multistationarity (data not shown). These results suggest
that the heat shock response mechanism is rather monostable.

Next, we were interested in investigating the range of
behaviour the stochastic model was likely to exhibit. As shown
in Section 3, there exists only one stationary limit distribution p
given by Eq. (13), which governs the transitions of the Markov
jump process when the number of iterations goes to infinity. In
particular, we analysed the unimodality of the hsp level by
computing some appropriate statistics from the performed 1000
stochastic realisations.

First, we computed the median m(t) of the 1000 stochastic
realisations on the time interval T¼{130 000 s, y,150 000 s}. It is
depicted in Fig. 4 as the middle black line. The upper and lower
black lines are m(t) 71

4 � s, respectively, where s is the range of
dynamics the model exhibits in the 1000 realisations on the
considered time interval, i.e.

s¼ max
tAT ,iA I

friðtÞg� min
tAT,iA I

friðtÞg,

where I¼{1,y,1000} and ri is the i-th realisation. The mean
(brown line) basically coincides with the median on the whole
time interval.

Next, in order to check whether the realisations ri, i ¼

1,y,1000, can be divided into subgroups such that the means of
the subgroups would differ significantly from each other, we
applied the following procedure. We defined two subsets:

SU ¼ ri : 8tAT riðtÞ4mðtÞ�
s

4
4(tAT riðtÞ4mðtÞþ

s

4

n o

and

SL ¼ ri : 8tAT riðtÞomðtÞþ
s

4
4(tAT riðtÞomðtÞ�

s

4

n o
:

In our case, there are 253 realisations in SU and 189 in SL. The
means computed from the realisations of each of these subsets are
depicted by red lines in Fig. 4. The means are close to the global
mean on the whole considered time interval and since the
numbers of elements in the SU and SL subsets are rather small, i.e.
approximately 1

4 and 1
5 of all the 1000 considered realisations, this

result does not indicate any significant split.
Further, a clustering algorithm was applied in order to

determine whether some subsets of realisations could be isolated
and the computed means would point to potential multimodality.
To this aim, we utilised the Agnes algorithm (implementation
of an agglomerative hierarchical clustering method, Kaufman
and Rousseeuw, 1990) with the manhattan metric, i.e. the
distance between two realisations ri and rj is defined as
dðri,rjÞ ¼

P
tAT jriðtÞ�rjðtÞj, thus the realisations are treated as

points in a jTj-dimensional space. By applying this metric the
characteristics of the realisations on the whole considered time
interval are taken into account, hence they are compared in a
‘‘global’’ sense. The obtained dendrogram is presented in Fig. 5.
The agglomerative coefficient (AC), which measures the clustering
structure of the dataset, is 0.82. This indicates that the clustering
algorithm did find some rather clear structuring.1 We isolated two

Table 3
The numerical values of the parameters and the initial numbers of molecules in

the stochastic model.

Param. Reaction Value Unit Metabolite Init. no.

k1
+ (R1) 6.98 V/(# s) hsf 0

k1
� (R2) 0.19 s�1 hsf2 0

k2
+ (R3) 1.07 V/(# s) hsf3 0

k2
� (R4) 10�9 s�1 hse 29

k3
+ (R5) 0.17 V/(# s) hsf3:hse 2

k3
� (R6) 1.21�10�6 s�1 hsp 766

k4 (R7) 8.3�10�3 s�1 hsp:hsf 1403

k5
+ (R8) 9.74 V/(# s) mfp 517

k5
� (R9) 3.56 s�1 hsp:mfp 71

k6 (R10) 2.33 V/(# s) prot 1.15�108

k7 (R11) 4.31�10�5 V/(# s)

k8 (R12) 2.73�10�7 V/(# s)

k9 (R13) 3.2�10�5 s�1

k10 (R14) jð42Þ ¼ 7:77� 10�5 s�1

k11
+ (R15) 3.32�10�3 V/(# s)

k11
� (R16) 4.44 s�1

k12 (R17) 13.94 s�1

The numerical quantities are obtained by adopting the corresponding values in

Petre et al. (2009a): the initial numbers of molecules are truncated to natural

numbers, the value of the rate constant k1
+ is twice the value of the corresponding

deterministic rate constant. # denotes the number of molecules, V is the cell

volume and s is the second.

1 AC is a dimensionless quantity, varying between 0 and 1 � AC close to 1

shows that a very clear structure has been found, while value 0 implies that the

data consist of only one big cluster, see e.g. Kaufman and Rousseeuw (1990) for

details.
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Fig. 1. Results of 1000 independent discrete stochastic simulation runs. The trajectories of individual realisations are plotted with blue and green points (each run with

separate shade). The red points show the average taken over all runs and the yellow line is the outcome of the continuous deterministic simulation: (a) hsf3:hse, (b) hsp,

(c) mfp, (d) hsp:hsf, (e) hsp:mfp. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)
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Fig. 2. The mean taken over the outcome of 1000 independent stochastic simulations of the system (red points) and the mean7standard deviation (upper/lower brown

points): (a) hsf3:hse, (b) hsp, (c) mfp, (d) hsp:hsf, (e) hsp:mfp. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of

this article.)
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groups of realisations that stand out on the obtained dendrogram.
They are marked in Fig. 5 by two rectangles which enclose the
dendrogram branches constituting these groups. The two
resulting subclusters are at almost the same height in the
clustering tree. The means of the stochastic realisations
belonging to these two groups at time point t¼150 000 s are
757 (left subcluster) and 794 (right subcluster). Although the

agglomerative coefficient indicates some clustering structure of
the realisations, the mean values are very close to each other
and agree well with the steady state value of the deterministic
model (767).

Finally, as suggested in Wilkinson (2006), we investigated the
empirical probability mass function by drawing histograms of the
realisations at some time point in the considered time interval T.
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Fig. 3. The ratios of the standard deviation to the sample mean at each considered time point: (a) hsf3:hse, (b) hsp, (c) mfp, (d) hsp:hsf, (e) hsp:mfp.
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Fig. 6 shows the histograms overlaid with the normal distribution
curve with mean and standard deviation computed from all 1000
realisations at time point t¼150 000 s. In the case of Fig. 6a, where
the bin width is set to 20, the obtained results indicate that the
distribution is unimodal. Changing the bin size to 10 (Fig. 6b) does
not change the picture significantly.

Although due to the small particle numbers of some of the
reagents the stochastic modelling is more reasonable, the
presented results do not reveal any qualitative discrepancy in
the dynamics of the two considered models of the heat shock
response. The range of behaviour the stochastic model is likely to
exhibit, which can be observed based on the performed 1000
simulations, confirms the dynamics of the continuous model. The
performed analysis of the stochastic realisations does not reveal
any clear signs of multistationarity of the HSR mechanism.
Although unimodality of a stationary probability density function
does not necessarily imply the uniqueness of the stable steady
state of the deterministic approximation (as well as bimodality
does not determine the existence of bistability, etc.), usually this
is the case and to this extent the stochastic results agree with the
deterministic outcomes indicating that there exists only one
stable steady state. This shows that the approximation of a
discrete system with a continuous model is valid and strengthens
the trust in the deterministic description. Additionally, the
presented stochastic formulation, together with the performed
analysis of its behaviour and comparison to the continuous
description, let us gain more insight into the dynamics of the HSR
mechanism, especially in respect of the number of steady states,
which, as discussed previously, is important from a biological
point of view.

5. Conclusions and further research

In this paper we presented a stochastic model associated with
a previously described (Petre et al., 2009a) model of the heat
shock response in eukaryotic cells. The stochastic model was

viewed as a Markov jump process and the existence and
uniqueness of the stationary distribution was shown. Further,
the model was compared to the deterministic description of heat
shock response (Petre et al., 2009a). The aim with the comparison
was to show that in this particular case the approximation of a
discrete system with a continuous model is reasonable. This is not
true in general, especially when the numbers of metabolites in the
considered biochemical system are small. The presented results
indicate that the stochastic and deterministic models provide a
qualitatively consistent picture of the dynamics of the heat shock
response mechanism. Additionally, the development of the
stochastic model and the effort of performing 1000 stochastic
simulations enabled gaining some more information about the
dynamics of the heat shock response. The outcomes of the analysis
of the stochastic realisations lead towards the conclusion that the
heat shock response mechanism is a rather monostable system.
Moreover, this is in agreement with the results of the analysis
performed on the deterministic model. All in all, the presented
results strengthen the trust in the deterministic description of the
HSR mechanism in eukaryotic cells proposed in Petre et al. (2009a).

Although it was shown in Section 3 that the Markov jump
process has a unique stationary distribution, there is no certainty

Fig. 4. The median of the 1000 realisations on the time interval T¼{130 000

s,y,150 000 s} (middle black line). The upper and lower black lines are the median

7 1
4 of the range of dynamics the model exhibits in the 1000 realisations on the

considered time interval. The mean of all the realisations, of the subset SU and SL

plotted with brown, upper red and lower red lines, respectively. (For interpreta-

tion of the references to colour in this figure legend, the reader is referred to the

web version of this article.)

0 500000 1000000 1500000 2000000 2500000
Distance

Fig. 5. The clustering tree (dendrogram) obtained with the Agnes clustering

algorithm with the average method and the manhattan metric applied to the 1000

stochastic realisations considered on the time interval 130 000–150 000 s. The

leaves of the clustering tree are the original realisations. Two branches come

together at the distance between the two clusters being merged. The agglom-

erative coefficient equals 0.82. The rectangles distinguish two subclusters

discussed in Section 4.
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that it was reached already in the considered time interval
T¼{130 000 s, y, 150 000 s}. It was chosen based on the results of
many stochastic simulations, which suggest that the process
stabilises relatively long before the time point t¼130 000 s.
Nevertheless, some assessment of the convergence to the
stationary distribution in this case would be desired. One of
possible approaches is to measure the rate of convergence by the
mixing time (Sinclair, 1992). For ergodic Markov chains the rate is
governed by the second largest eigenvalue in absolute value l2, in
particular the spectral gap 1�l2 is both a necessary and sufficient
condition for rapid mixing, see Sinclair (1992) for details. The
problem of determining l2 of the presented Markov chain
underlying the stochastic model of heat shock response is subject
of further research.

The rate constant values for the presented stochastic model
were obtained from the corresponding values of the deterministic
model presented in Petre et al. (2009b), which in turn were fitted
to available experimental data. As suggested in Wilkinson (2006),
another way of deducing the rate constant values for the
stochastic model could utilise methods that are based on Bayesian
inference and take advantage of Markov chain Monte Carlo
(MCMC) algorithms such as the Metropolis–Hastings algorithm or
the Gibbs Sampler. However, such methods demand high-quality,
calibrated, high-resolution time-course measurements for a
reasonably large subset of model metabolites (Wilkinson, 2006).
Unfortunately, experimental data of such quality are still
seldom if ever available and make a challenge for experimental
biology.
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Abstract

To disentangle the numerical contribution of modules to the system-level behavior
of a given biomodel, one often considers knockdown mutant models, investigat-
ing the change in the model behavior when modules are systematically included
and excluded from the model architecture in all possible ways. We propose in this
paper a Boolean logic-based approach for extracting conclusions about the role
of each module from the systematic comparison of the numerical behavior of all
knockdown mutants. We associate a Boolean variable to each module, expressing
when the module is included in the architecture (value ‘true’) and when it is not
(value ‘false’). We can then express the satisfiability of system-level properties
of the full model, such as efficiency, or economical use of resources, in terms of
a Boolean formula expressing in a compact way which model architectures, i.e.,
which combinations of modules, give rise to the desired property. We apply this
methodology on a recently proposed model for the heat shock response in eukary-
otes. We describe the contribution of each of its three feedback loops towards
achieving an economical and effective heat shock response.

Keywords: mathematical model — modularization — Boolean logic — heat
shock response
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1 Introduction
Modularization of biomodels. There is a sustained experimental and computa-
tional effort nowadays towards building large, system-level models for biochemi-
cal processes, including regulatory networks, signaling pathways, metabolic path-
ways, etc. Models can encompass thousands of reactants and reactions, see [1].
On this scale, understanding the details of the network, especially its regulatory
mechanisms, becomes a considerable challenge. Similar problems have also been
encountered in engineering (and elsewhere), see [2]. Thus, one strategy for eluci-
dating the structure of a biological system, is to adapt to systems biology methods
coming from engineering sciences, in particular from control theory, [3], [4], [5],
[6]. Applying a control-theoretical analysis to a biological system can provide a
systematic way to identify the main regulatory components of a biological sys-
tem, including its feedforward and feedback mechanisms, see [7]. This, in turn,
contributes to the understanding of the reactivity, robustness and efficiency of the
biological system. To disentangle the individual contribution of the various com-
ponents to the network, knockdown mutants are often useful to consider, see [7].
The mutants are numerically compared to each other and to the reference model
in an effort to extract the individual contribution of each mechanism to the overall
behavior of the system.

Our approach for comparing knockdown mutant models. We propose in this
paper a novel approach for identifying the numerical contribution of a compo-
nent to the system-level behavior of a larger model. The core technique we use
throughout the paper is to associate a Boolean variable to each of the components
of the model. For each knockdown mutant we write a Boolean formula describ-
ing the presence or the absence of each component (using the conjunction and
the negation of Boolean variables). The obtained Boolean formulas encompass
properties of the architecture of the knockdown mutant models. Going one step
further, we can also write a Boolean formula characterizing all mutant architec-
tures that exhibit a given property: we select all knockdown mutants that exhibit
that property and construct the disjunction of their Boolean formulas. The formula
thus obtained describes which components must be present/absent and in which
configurations in order for the system to exhibit the desired property. Iterating
this technique for several well chosen systemic properties may help to identify (at
least qualitatively) the roles of each model component.

Our approach is essentially different from the Boolean network framework of-
ten used for qualitative modeling and analysis of biological systems, see, e.g., [8],
[9], [10], [11], [12], [13]. The Boolean network model was first introduced by
Kauffman, see [14] and [10], as a way to investigate the qualitative properties of a
continuous biochemical regulatory network which depend on the logical structure
of that particular network and not on the parameters used to describe it. In this
framework, one usually associates to each species a Boolean variable, which as-
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sumes the value 1 if that particular species is active, i.e., its activity is biologically
detectable, or 0 otherwise. Moreover, using Boolean functions one can update
the values of the variables at any time point, depending on the values from the
previous time step. Depending on how time is handled in the model, there are
two main paradigms for such Boolean simulations: synchronous, where at each
time step all the variables are updated simultaneously, and asynchronous, where
at each time step we update only one variable.

Case study: The eukaryotic heat shock response. The heat shock response
(HSR) is an evolutionary-conserved global regulatory network found in virtually
all living cells. It allows the cell to quickly react to elevated temperatures by the
induction of some proteins called heat shock proteins (hsp). Exposure to raised
temperature leads to protein misfolding, which then accumulate and form aggre-
gates with disastrous effect for the cell. Stress conditions can be caused not only
by increased temperature but also by other forms of environmental, chemical or
physical stress, such as addition of ethanol, heavy metals, pollutants, high osmo-
larity, starvation, etc. The heat shock proteins act as chaperones – they stabilize
proteins and help to refold the denatured ones. They maintain the proper func-
tioning of the cell by preventing the formation of cytotoxic aggregates.

The heat shock response has been subject to intense scrutiny, see e.g., [15],
[16], [17], for at least two main reasons. First, as a primordial, very well-conserved
mechanism it is considered a promising candidate for providing insight into the
design principles of regulatory networks in general, see e.g., [18], [7]. Second,
the heat shock proteins, which are the main actors of the HSR, play crucial role
also in many other fundamental cellular processes, see e.g., [19], [20]. We use as
a case study in this paper a model for the heat shock response introduced in [21].
We take a control-based approach to identify three feedback mechanisms in this
model. We then apply our Boolean approach for knockdown mutant comparison
to identify the contribution of each of the three feedbacks to having a response
where the level of misfolded proteins remains low, with a relatively low cost in
terms of transactivating the heat shock protein genes.

2 Models
The eukaryotic heat shock response: a molecular model. The central role
in the heat shock response is played by the heat shock proteins (hsp), which act
as chaperones for the misfolded proteins (mfp) by forming hsp: mfp complexes
and helping them to refold. In the model presented in [21], the regulation of the
heat shock response is done by controlling the transactivation of the hsp-encoding
genes. The transcription of these genes is initiated by some specific proteins called
heat shock factors (hsf) that first dimerize (hsf2), then trimerize (hsf3) to finally
bind to the promoters of the hsp-encoding genes, called heat shock elements (hse).
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After the trimers bind to the promoter sites (hsf3: hse) the transcription and trans-
lation of the hsp-encoding genes starts, ultimately producing new hsp molecules.

Once the level of hsp molecules is high enough, the transcription process is
turned off through a self-regulating mechanism. The hsp molecules sequestrate
the heat shock factors (hsp: hsf), thus preventing them to trimerize and bind to
the heat shock elements. The sequestration of the heat shock factors by the heat
shock proteins can be done in three different ways: by binding to free hsf, by
breaking dimers and trimers, and by unbinding hsf3 from the DNA promoter sites
with simultaneous breaking of the trimer. Once the temperature increases, some
of the proteins (prot) start to misfold, driving hsp away from hsf. Thus, the heat
shock response is quickly switched on since the heat shock factors are again free
and able to promote the synthesis of more heat shock proteins. The reaction rules
of the molecular model introduced in [21] are presented in Table 1.

Clearly, the model in Table 1 is very generic in nature. For instance, the protein
synthesis and degradation (i.e., reactions 4 and 9) are greatly simplified. Also,
although there exist several types of slightly different heat shock proteins, see [22],
here they are all treated uniformly, with hsp 70 as base denominator. This is also
the case for the heat shock factors and the heat shock elements. Furthermore,
in this model all proteins are treated generically, through the prism of whether
they are properly folded (prot), or misfolded (mfp). Nevertheless, the model is
well suited for the purpose of demonstrating our method for knockdown mutant
analysis: the formal results of the analysis can be easily related to an intuitive
understanding of the model.

The model in Table 1 includes three mass conservation relations, see [21], for
the total amount of hsf, the total amount of proteins (other than hsp and hsf) in the
model, as well as for the total amount of hse:

• [hsf] + 2 × [hsf2] + 3 × [hsf3] + 3 × [hsf3: hse] + [hsp: hsf] = C1,

• [prot] + [mfp] + [hsp: mfp] = C2,

• [hse] + [hsf3: hse] = C3,

for some mass constants C1, C2, C3.

The mathematical model. We associate with the molecular model in Table 1
a mathematical model in terms of differential equations, where for each reaction
we assume the principle of mass action, see, e.g., [23]. We associate with each
reactant a continuous, time-dependant variable that gives its concentration level.
For each variable, its differential equation gives the cumulated consumption and
production rates of the reactant corresponding to it in the molecular model. Thus,
the dynamic behavior of the molecular model is described through the set of all
resulting differential equations. For the full set of differential equations we refer
to [21] and [24]. For details on the parameter estimation and the experimental
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validation of the model, we refer to [21]. The resulting model exhibits four major
numerical achievements, see [21]:

(A) It uses economically the cellular resources: In the absence of heat shock, the
transcription of the hsp-encoding gene is almost non-existent. This gene is
transactivated only for a short period of time after the temperature increases.

(B) It is fast to respond to a heat shock: Upon temperature upshift, the hsp-
encoding gene is quickly activated.

(C) The response is effective: The level of mfp is kept low when the heat shock
is mild.

(D) The response is scalable: The cell exhibits a higher response when exposed
to higher temperature.

A control-based modularization of the heat shock response model. A control-
driven analysis of the heat shock response model of [21] was introduced in [25] to
decompose the heat shock response model. The model was divided into the fol-
lowing submodules: the plant, i.e., the process to be regulated, the controller, i.e.,
the decision-making module, and the actuator, i.e., the module which modifies
the current state of the system, thus influencing the activity of the plant. A sensor
which measures the current state of the system and sends this information to the
controller and three feedback mechanisms regulating this process were also iden-
tified. This decomposition of the heat shock model is presented in Table 2, where
the reaction numbers refer to the reactions in Table 1.

For a more intuitive understanding of this modularization, we also include a
graphical illustration in Figure 1. The three identified feedback loops and their
points of interaction with the mainstream process are depicted in Figure 2.

Knockdown mutant models. In order to disentangle the role of the feedback
mechanisms within the full model, we consider eight knockdown mutants ob-
tained by eliminating from the basic model all combinations of the feedbacks
FB1, FB2, and FB3. We will denote each of these mutants as MX , where
X ⊆ {1, 2, 3} represents the set of indexes of the feedbacks included in the model
MX :

• M0 includes no feedback, i.e., it consists of reactions [r1]-[r4], [r9]-[r12]
and the backward direction of reaction [r5]. In the control-theory terminol-
ogy, this model is called the open-loop design.

• M1 includes feedback FB1, i.e., it consists of reactions [r1]-[r5], [r9]-[r12].

• M2 includes feedback FB2, i.e., it consists of reactions [r1]-[r4], [r6]-[r7],
[r9]-[r12], and the backward direction of reaction [r5].
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• M3 includes feedback FB3, i.e., it consists of reactions [r1]-[r4], [r8]-[r12],
and the backward direction of reaction [r5].

• M1,2 includes feedbacks FB1, FB2, i.e., it consists of reactions [r1]-[r7],
[r9]-[r12].

• M1,3 includes feedbacks FB1, FB3, i.e., it consists of reactions [r1]-[r5],
[r8]-[r12].

• M2,3 includes feedbacks FB2, FB3, i.e., it consists of reactions [r1]-[r4],
[r6]-[r12], and the backward direction of reaction [r5].

• M1,2,3 is the full, reference model, consisting of reactions [r1]-[r12].

To identify the individual contributions of the three feedback mechanisms, we
compare the dynamics of these eight models at 42◦C. We choose this temperature
since at 42◦C the experimental data shows a heat shock response both in terms of
increased level of misfolded proteins and in terms of transcription activity of the
hsp-encoding genes, see [21].

Numerical setup of the knockdown mutant models. In our comparison of the
numerical knockdown mutant models we aim to focus on the differences stem-
ming from the intrinsic dissimilarities in their architectures and eliminate as much
as possible differences coming from unfavorable numerical setups chosen for the
various models. For example, we consider all knockdown mutants as viable al-
ternatives for the heat shock response model. We impose the following three
constraints:

(1) The kinetic rate constants for the reactions of each of the eight knockdown
mutants should be chosen in such a way that the numerical prediction for
the time evolution of the level of hsf3: hse should fit in with the experimental
data given in [26] on DNA binding of hsf3.

(2) The initial distribution of the reactants of each mutant should be chosen in
such a way that they form a steady state at 37◦C for that particular model.

(3) For all knockdown mutants, the values of the mass constants C1, C2, C3 are
chosen to be identical to those of the reference model M1,2,3.

Note that our constraint (1) is fundamentally different from the one used
in [25], where the mutants were regarded as submodels of the reference model. As
such, in [25], all mutants assumed the same kinetic rate constants as the reference
model. Instead, we perform here parameter estimation to determine the kinetic
rates for each of the alternative models. Our aim is to find for each alternative ar-
chitecture a favorable numerical setup that provides numerical predictions which
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verify the existent experimental data. This way, each mutant establishes itself as
a possible alternative model for the heat shock response.

Condition (2) was used in the same way both in [21] when choosing the initial
setup of the reference model and in [25] for the knockdown mutants. However,
it is essentially different from the condition used in [7], where the authors take
an approach based on mathematically controlled comparison, see [27]. As such,
in [7] the authors set all submodels to start from the same initial setup as the ref-
erence model. Instead, our approach is based on a more biologically meaningful
constraint, i.e., all models should exhibit a steady state behavior in the absence of
a heat shock. In particular, this means that each mutant will present a different
initial distribution of the reactants, depending on the kinetics of the underlying
reaction network and the mass constants.

3 Results

When comparing the performance of the eight alternative models we focused on
two aspects: the total amount of hsp and the total amount of mfp both at 37◦C and
at 42◦C. We were interested mainly in these two aspects since a very high level
of mfp indicates a non-effective response while a very high level of hsp indicates
a non-economical response. We first chose empirically four numerical thresholds,
denoted by l37

mfp
, l42

mfp
, l37

hsp
, and l42

hsp
, which differentiated between ‘low’ and ‘high’

levels for the total amount of mfp and hsp at 37◦C and at 42◦C, respectively.
We associated to each of the three feedback mechanisms a Boolean vari-

able, denoted by F1, F2 and F3, respectively. Then, for each knockdown mutant
we wrote a Boolean formula expressing which of the feedback mechanisms are
present in the model, see Table 3 where we denoted by ∧ the conjunction operator
and by Fi the negation of the variable Fi. For example, to knockdown mutant
M1,2 we associated the Boolean formula F1 ∧ F2 ∧ F3 to express that feedbacks
FB1, FB2 are included in the model, while feedback FB3 is not.

Note that this approach is different from the Boolean modeling framework
used in the literature, see e.g., [8], [9], [10], [12], for qualitative modeling and
simulation of biological systems. When working with Boolean networks, one
usually associates to each species a Boolean variable, which is either 0 if that
particular species is inactive, i.e., its activity is biologically undetectable, or 1
otherwise. At the same time, knowing the values of the Boolean variables associ-
ated to all species at some time point t, Boolean functions are used to compute the
values for the next time point. In our approach a Boolean formula describes the
control architecture of the model, i.e., which of the three feedbacks are present in
that particular model.

Going one step further in our approach, we considered all knockdown mutant
models having ‘low’ total amount of hsp at 37◦C and at 42◦C, respectively. By
writing the disjunction, denoted by ∨, of the formulas corresponding to these mu-
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tants we obtained a Boolean formula describing the contribution of each feedback
to achieving the property: which feedbacks must be present in the model in order
for it to exhibit the desired property. We applied the same technique to describe
the architectures which exhibit low levels for the total amount of mfp at 37◦C or
at 42◦C.

The open-loop design. We started our analysis with the mutant M0, which does
not include any of the three feedback mechanisms. Using the notations from Ta-
ble 4, the system of differential equations corresponding to M0 is in Table 5. The
steady state equations (obtained by equating all differential equations to 0) are in
Table 6. These equations showed that if the mutant M0 starts from its steady state
at 37◦C, then at any temperature the differentials for X1, . . . , X5, and X7 are zero.
That is, those functions remain constant at their steady state values independent of
temperature. In particular, the DNA binding level, i.e., hsf3: hse, remains constant
even when we increase the temperature. So, for no numerical setup, this mutant
can provide numerical predictions in agreement with the data from [26] if it starts
from its steady state at 37◦C. Thus, we discarded this knockdown mutant from
our considerations.

Numerical analysis of the remaining knockdown mutant models. For each
of the mutants M1, M2, M3, M1,2, M1,3, and M2,3 we performed parameter esti-
mation to identify a numerical setup, i.e., a set of values for the kinetic rate con-
stants, that provides numerical predictions in accordance with the experimental
data of [26]. The results are shown in Table 7 A. We then numerically estimated
the steady state of each model at 37◦C; the results are given in Table 7 B. Finally,
we numerically integrated the mathematical model corresponding to each knock-
down mutant starting from its own steady state values in Table 7 B. We integrated
the ODEs up to 14400 seconds (in model time), for a temperature value of 42◦C.
We collected in Table 8 the maximal values for the total amount of hsp and mfp
in each of these models, both at 37◦C and at 42◦C. For the numerical integration
we used the software COPASI [28].

We chose empirically four numerical thresholds separating the ‘low’ and ‘high’
values for the total amount of: (i) hsp proteins at 37◦C; (ii) mfp proteins at 37◦C;
(iii) hsp proteins at 42◦C; and (iv) mfp proteins at 42◦C. The thresholds we
selected were the following: l37

hsp
= 8000, l37

mfp
= 3000, l42

hsp
= 8 × 104, and

l42
mfp

= 2.5 × 106, respectively, all in terms of number of molecules. We plotted
the behavior of each knockdown mutant models with respect to these thresholds
in Figures 3 and 4.

We considered the following four properties:

• Property P1: Low level for the total amount of hsp at 37◦C. This property
is exhibited only by the mutants M1, M3, M1,2, M1,3, and M1,2,3. Using
the Boolean formulas in Table 3 expressing each mutant in terms of their
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feedback structure, we constructed a Boolean formula for property P1. This
is easily obtained as a disjunctive formula (logical OR) among the Boolean
formulas for M1, M3, M1,2, M1,3, and M1,2,3:

(F1 ∧ F2 ∧ F3) ∨ (F1 ∧ F2 ∧ F3) ∨ (F1 ∧ F2 ∧ F3)∨
∨ (F1 ∧ F2 ∧ F3) ∨ (F1 ∧ F2 ∧ F3),

which could be rewritten in a compact form as:

F1 ∨ (F1 ∧ F2 ∧ F3). (1)

Thus, property P1 can be satisfied if and only if either feedback F1 is present
(regardless of whether F2 and F3 are included or not) or feedback F3 is
present while feedbacks F1 and F2 are absent.

• Property P2: Low level for the maximal value of the total amount of hsp at
42◦C. This property is exhibited again only by the mutants M1, M3, M1,2,
M1,3, and M1,2,3. So, we obtained for property P2 the Boolean formula

F1 ∨ (F1 ∧ F2 ∧ F3). (2)

• Property P3: Low level for the total amount of mfp at 37◦C. This property
is exhibited only by the mutants M1, M3, and M1,2,3. So, in this case we
obtained the Boolean formula

(F1 ∧ F2 ∧ F3) ∨ (F1 ∧ F2 ∧ F3) ∨ (F1 ∧ F2 ∧ F3). (3)

• Property P4: Low level for the maximal value of the total amount of mfp at
42◦C. This property is exhibited by the mutants M1, M2, M1,2, and M1,2,3.
In this case, we obtained the Boolean formula

(F1 ∧ F3) ∨ (F1 ∧ F2 ∧ F3) ∨ (F1 ∧ F2 ∧ F3). (4)

To investigate which knockdown mutants can be both effective and economic,
we looked at the models that exhibit low levels for both hsp and mfp. For a tem-
perature of 37◦C, we considered the models that verify simultaneously properties
P1 and P3. The Boolean formula describing these architectures was easily ob-
tained as a conjunctive formula (logical AND) among the formulas for properties
P1 and P3, which could then be rewritten in a compact form as

(F1 ∧ F2 ∧ F3) ∨ (F1 ∧ F2 ∧ F3) ∨ (F1 ∧ F2 ∧ F3).

Since this was identical with (3), we concluded that at 37◦C, once a mutant
achieved a low level for the total amount of mfp, it would also exhibit a low level
for the total amount of hsp. For the similar analysis at 42◦C we were interested
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in the models that verify simultaneously properties P2 and P4. In this case, the
Boolean formula describing these architectures is

F1 ∧ (F2 ∨ (F2 ∧ F3)).

This shows that to obtain low values for both hsp and mfp at 42◦C the first feed-
back is essential. Moreover, only two types of mutant architectures predicted this
outcome: if both F1 and F2 were present in the model (regardless of whether F3

is included or not), or if F1 was included while F2 and F3 are not. Furthermore, it
showed that the second feedback, in addition to the first one, has a role in decreas-
ing the levels of both hsp and mfp at 42◦C. The second type of architecture, i.e.,
when F1 was present in the model while F2 and F3 were absent, showed that the
first feedback alone is sufficient to ensure a low enough level of both hsp and mfp
at 42◦C. However, when we compared the values predicted by M1 and M1,2,3,
see Figure 4, we noticed that the cumulative effect of the second and the third
feedbacks added to the first one is to further reduce the level of total mfp.

We noticed that Boolean formulas corresponding to properties P1 and P2 were
identical. This means that once a knockdown mutant is able to keep a low level of
hsp at 37◦C, it will also be able to respond to heat shock with a relatively low level
of hsp. Moreover, this was the case only for two types of mutant architectures:
either when the feedback F1 was present (regardless of whether F2 and F3 were
included or not) or when feedback F3 was present while feedbacks F1 and F2 were
absent. This showed that the first and the third feedback have roles in lowering the
level of hsp both at 37◦C and at 42◦C. The first type of mutant architecture, having
the feedback F1 present, was insensitive to the second and the third feedbacks:
whether they were included in the model or not did not change the behavior of
the model with respect to P2 and P4. The second type of mutant architecture that
satisfies the Boolean formula (1) showed that in the absence of the first feedback,
the third one is necessary to obtain low levels of hsp both at 37◦C and at 42◦C.
Moreover, if we required also properties P3 and P4 to be satisfied, i.e., if we asked
for low levels of mfp both at 37◦C and at 42◦C, then we saw that the first feedback
had to be present in the model. Otherwise, i.e., if F1 = 0, the two Boolean
formulas (3) and (4) become F2 ∧ F3 and F2 ∧ F3, respectively, which obviously
cannot be simultaneously satisfied. This confirmed again our conclusion that the
first feedback is essential for the model to satisfy all four properties P1, P2, P3,
and P4, i.e., for the model to exhibit low levels for both hsp and mfp, both at 37◦C
and at 42◦C.

4 Discussion
Carrying out a numerical comparison between two alternative computational mod-
els for a biological system is, in general, a difficult problem. It involves a detailed
analysis of various aspects of the models: the underlying networks, the biological
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constrains, the initial distribution of the reactants and the kinetics of the models.
The problem becomes somewhat simpler if the considered alternative models are
submodels of a larger model: the underlying networks are similar, although not
identical, and the biological constrains are the same.

Previous approaches for model comparison. The technique of mathematically
controlled comparison, [27], provides a structured approach for comparing several
alternative designs with respect to some chosen measures of functional effective-
ness. However, this framework imposes one important constraint on the alter-
native designs: they are allowed to differ from the reference design in only one
component. Moreover, the mathematical models both for the reference design and
for the alternative architectures are developed in the framework of canonical non-
linear modeling referred to as S-systems, [29], [30], and [31]. Then, using various
systemic properties, one imposes some constraints on all parameters of the alter-
native designs, setting their values depending on the parameters of the reference
model. Finally, one chooses some numerical measures of functional effective-
ness and uses them to compare the alternative designs with the reference model.
This way, one can determine analytically the qualitative differences between the
compared models. If one is also interested in quantifying these differences, then
numerical values can be introduced for the parameters of the models. However,
by doing this the generality of the results is lost. An extension of the method of
mathematically controlled comparison was proposed in [32] to include some sta-
tistical methods, see [33] and [34], which allow the use of numerical values for
the parameters while still preserving the generality of the conclusions.

Another approach for model comparison was proposed in [25]. Since the al-
ternative designs are submodels of the reference model, the underlying reaction
networks of these models are very similar (although not identical), and both the
biological constraints and the kinetics of the reactions are taken from the refer-
ence model. The only remaining question is how to chose the initial distribution
of the variables in the alternative designs. In the mathematically controlled com-
parison they are usually taken from the reference model, see [7] for a case study
using this method. However, this might lead to biased comparisons for some bio-
chemical systems. For instance, for regulatory networks, models should be in a
steady state in the absence of the trigger of the response. In particular, the ini-
tial values of the reference model are usually chosen in such a way to fulfil this
condition. However, this does not imply in general that also a submodel will be
in its steady state if it starts from the same initial values as the reference model.
As a consequence, the dynamic behavior of the submodel will exhibit two inter-
twined tendencies: the migration from a possible unstable state and the response
to a particular stimulus. Thus, if the purpose of the comparison is to determine
the efficiency of the response of various submodels to a particular trigger, then the
approach proposed in [25] is more appropriate, leading to biologically unbiased
results. In this approach, the initial values of the reactants are chosen in such a
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way that they constitute a steady state of that design in the absence of a trigger.
However, also in this approach, the comparison is done locally, for a particular set
of parameters. In [35], this method was combined with some statistical methods
of [33] and [34], leading to general comparison results independent of the values
of the parameters.

Our approach for knockdown mutant model comparison: advantages and
limitations. In this paper, we proposed a novel approach to the knockdown mu-
tant model comparison problem. First, we associated a Boolean variable to each
of the three feedback mechanisms identified in [25] for the reference model of
the eukaryotic heat shock response. Then, for each knockdown mutant we wrote
a Boolean formula (using the conjunction and negation of the three introduced
Boolean variables) characterizing its control architecture, i.e., which of the three
feedback mechanisms are present in the model. As such, each of these formulas
encompass time-independent properties of the models. This makes our approach
very different from the Boolean network framework for modeling biological sys-
tems, see [8], [11], [12], [13], where one usually associates a Boolean variable to
each species present in the system. Boolean formulas are then used to simulate the
time evolution of the species. However, in our approach the associated Boolean
formulas are parameter independent, i.e., they are not influenced by the param-
eters used to describe the compared models. Going one step further, we could
introduce a Boolean formula characterizing all those mutant architectures that ex-
hibit a given behavioral property, e.g., low levels of hsp or mfp. This can be easily
obtained as a disjunctive formula (logical OR) of the Boolean formulas describing
the architectures of the mutants exhibiting the required property. However, in or-
der to perform numerical simulations of the models we needed numerical setups
for each of the knockdown mutants, i.e., specific values both for the initial distri-
bution of the reactants and for the kinetic rate constants of the models. For the
initial values of the variables, we chose the approach proposed in [25], i.e., we set
them separately for each knockdown mutant in such a way that they form a steady
state for that particular model. Regarding the kinetic rate constants in each of the
knockdown mutants, one approach is to take them from the reference model, see
[25]. The idea in this case is to make the whole comparison in the numerical setup
of the reference model. Alternatively, we proposed here to separately estimate the
kinetic constants of each alternative model with respect to available experimental
data. In other words, we considered all models to be viable alternatives for the bi-
ological system and, as such, we took for each of them a most favorable numerical
setup.

Since the numerical setup giving a good model fit is in general not unique, it
means that our analysis is sensitive with respect to the choice of the values for the
kinetic constants. This is often the case when model fitting is involved, see [1].
Repeating the analysis for several numerical setups (all of them as good in terms
of fitting the model to the experimental data) would enrich the conclusions, by po-
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tentially showing that the same model architecture can exhibit different properties
depending on the numerical setup. The conclusions of the analysis also depend
on the numerical values chosen for the thresholds l37

hsp
, l37

mfp
, l42

hsp
, and l42

mfp
.

It is crucial for our approach that all knockdown mutant models are considered
in the analysis, i.e., all possible combinations ON/OFF of the model components
are included in the comparison. In this way, we obtain a complete characterization
of the properties being analyzed in terms of all model architectures that can ex-
hibit those properties. For a large number of components, this approach becomes
quickly computationally challenging: for n components to be analyzed, there are
2n knockdown mutant models to be compared. Including in the comparison only
a part of those mutants is also possible but then the output of the method is partial:
one only discovers some, potentially not all, model architectures exhibiting the
property of interest.

When we compared the numerical behavior of the knockdown mutants, we
chose a mathematical model formulation in terms of ordinary differential equa-
tions. However, our approach is independent of this formulation and it would work
equally well with other formulations, such as continuous-time Markov chains and
their numerical simulations based on Gillespie’s algorithm, see [36, 37].

Our approach can be easily extended to a more refined analysis, where the
range of the properties to be analyzed is divided into more domains than just ‘low’
and ‘high’. The range could in fact be divided into an arbitrarily high number of
intermediate domains, depending on the details of the case study. A Boolean
formula could be associated to characterize each of those domains in a manner
similar to that demonstrated in this paper.
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Figure 1: The control structure of the heat shock response network.

Figure 2: The control structure of the heat shock response network.
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Figure 3: The total amount of hsp and mfp for each of the seven models at 37◦C.
Values on the axes are in terms of number of molecules and should be interpreted
as an average of a population of cells.

Figure 4: The maximal value for the total amount of hsp and mfp for each of the
seven models at 42◦C. Values on the axes are in terms of number of molecules
and should be interpreted as an average of a population of cells.
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Table 1: The molecular model for the eukaryotic heat shock response proposed in
[21].

Reaction Reaction name
2 hsf � hsf2 (hsf dimerization) [r1]
hsf + hsf2 � hsf3 (hsf trimerization) [r2]
hsf3 + hse � hsf3: hse (DNA binding) [r3]
hsf3: hse → hsf3: hse + hsp (hsp synthesis) [r4]
hsp + hsf � hsp: hsf (hsf sequestration) [r5]
hsp + hsf2 → hsp: hsf + hsf (hsf2 breaking) [r6]
hsp + hsf3 → hsp: hsf +2 hsf (hsf3 breaking) [r7]
hsp + hsf3: hse → hsp: hsf +2 hsf + hse (hsp-forced hsf3 unbinding) [r8]
hsp → ∅ (hsp degradation) [r9]
prot → mfp (protein misfolding) [r10]
hsp + mfp � hsp: mfp (protein chaperoning) [r11]
hsp: mfp → hsp + prot (protein refolding) [r12]

Table 2: The control-based decomposition of the model in Table 1. We denote
the ‘left-to-right’ direction of reaction [r5] by [r5]+ and by [r5]− its ‘right-to-left’
direction.

Main Task Reactions
Plant Protein misfolding and refolding [r10], [r11], [r12]
Actuator Regulate the level of hsp [r4], [r9]
Sensor Measure the level of hsp
Controller Modulate the level of DNA binding [r1], [r2], [r3], [r5]−

Feedback FB1 Sequestration of hsf [r5]+

Feedback FB2 Dimer and trimer breaking [r6], [r7]
Feedback FB3 hsp-forced DNA unbinding [r8]
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Table 3: Boolean formulas encoding the presence or absence of the three feedback
mechanisms in each of the eight models.

Mutant Boolean formula

M0 F1 ∧ F2 ∧ F3

M1 F1 ∧ F2 ∧ F3

M2 F1 ∧ F2 ∧ F3

M3 F1 ∧ F2 ∧ F3

M1,2 F1 ∧ F2 ∧ F3

M1,3 F1 ∧ F2 ∧ F3

M2,3 F1 ∧ F2 ∧ F3

M1,2,3 F1 ∧ F2 ∧ F3

Table 4: The molecular model for knockdown mutant M0, the open-loop design.

Equations Variable Molecule or complex
2 hsf � hsf2 X1 hsf
hsf + hsf2 � hsf3 X2 hsf2
hsf3 + hse � hsf3: hse X3 hsf3
hsf3: hse → hsf3: hse + hsp X4 hsf3: hse
hsp: hsf → hsp + hsf X5 hse
hsp → ∅ X6 hsp
prot → mfp X7 hsp: hsf
hsp + mfp � hsp: mfp X8 hsp: mfp
hsp: mfp → hsp + prot X9 prot

X10 mfp
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Table 5: The ODE model corresponding to knockdown mutant model M0, the
open-loop design. For the expression of the temperature-dependant parameter ϕT

we refer to [21] and [24].
dX1/dt = −k+

2 X1 X2 + k−
2 X3 + k−

5 X7 − 2 k+
1 X2

1 + 2 k−
1 X2

dX2/dt = −k+
2 X1 X2 + k−

2 X3 + k+
1 X2

1 − k−
1 X2

dX3/dt = −k+
3 X3 X5 + k+

2 X1 X2 − k−
2 X3 + k−

3 X4

dX4/dt = k+
3 X3 X5 − k−

3 X4

dX5/dt = −k+
3 X3 X5 + k−

3 X4

dX6/dt = k4 X4 + k−
5 X7 − k+

11 X6 X10 + (k−
11 + k12) X8 − k9 X6

dX7/dt = −k−
5 X7

dX8/dt = k+
11 X6 X10 − (k−

11 + k12) X8

dX9/dt = k12 X8 − φT X9

dX10/dt = −k+
11 X6 X10 + k−

11 X8 + φT X9.

Table 6: The steady state equations of knockdown mutant model M0, the open-
loop design.

k−
1 X2 = k+

1 X2
1

k−
2 X3 = k+

2 X1 X2

k−
3 X4 = k+

3 X3 X5

k9 X6 = k4 X4

0 = −k−
5 X7

(k−
11 + k12) X8 = k+

11 X6 X10

φ(T ) X9 = k12 X8
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Table 7: The numerical values of the parameters and the initial values of the
variables of the knockdown mutants. A. The numerical values of the parameters
in each of the six knockdown mutants. ki denotes the kinetic rate constant of the
irreversible reaction (i). k+

i denotes the ‘left-to-right’ direction of reaction (i),
while k−

i denotes its ‘right-to-left’ direction. Notice that there is no parameter k10

in the table. It is assumed to be the temperature-dependant parameter ϕT whose
value is determined from the expression presented and discussed in [21] and [24].
B. The initial values of all variables in each of the six knockdown mutants.

A
M1 M2 M3 M1,2 M1,3 M2,3

k+
1 0.02 10.00 4.36 � 10

−7
7.24 0.04 10.00

k−
1 0.01 9.90 1.36 � 10

−7
1.84 � 10

−5
0.26 0.01

k+
2 9.90 6.02 0.23 0.34 0.00 0.01

k−
2 0.01 0.01 1.22 � 10

−6
1.05 � 10

−5
0.03 8.04 � 10

−5

k+
3 0.08 3.04 0.01 0.70 0.13 10.00

k−
3 0.66 0.00 0.17 0.15 0.00 0.00

k4 0.01 10.00 0.19 0.00 0.51 1.59

k−
5 0.00 10.00 9.98 1.23 3.41 10.00

k+
5 0.15 - - 10.00 1.00 � 10

−9 -
k6 - 0.60 - 1.00 � 10

−9 - 0.13

k7 - 0.24 - 10.00 - 2.08 � 10
−7

k8 - - 0.51 - 0.23 3.20

k9 3.20 � 10
−5

3.20 � 10
−5

3.20 � 10
−5

3.20 � 10
−5

3.20 � 10
−5

3.20 � 10
−5

k+
11 9.75 10.00 0.38 0.00 0.00 0.57

k−
11 6.52 1.00 � 10

−9
10.00 1.30 � 10

−8
0.32 5.01

k12 32.08 0.01 0.70 16.47 0.17 0.05

B
M1 M2 M3 M1,2 M1,3 M2,3

[hsf] 0.03 36.95 1399.68 1.27 67.96 33.45
[hsf2] 0.00 0.02 0.00 27.33 667.19 130.23

[hsf3] 0.11 1.52 � 10
−5

4.28 0.01 2.39 0.09
[hse] 32.28 28.97 32.67 31.41 32.64 32.68
[hsf3: hse] 0.41 3.72 0.02 1.28 0.05 0.01

[hsp] 99.31 1.16262 � 10
6

100.05 130.39 839.82 662.90
[hsp: hsf] 1411.09 1364.52 0.09 1352.88 3.00 1118.47

[mfp] 1.24 8.58 � 10
−5

405.56 47164.90 3915.46 244.61
[hsp: mfp] 31.14 144533 1426.09 60.62 6024.21 18259.40

[prot] 1.14916 � 10
8

1.14771 � 10
8

1.14914 � 10
8

1.14868 � 10
8

1.14906 � 10
8

1.14897 � 10
8
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Table 8: a) The numerical values for the total amount of hsp and mfp at 37◦C,
b) The maximal numerical values for the total amount of hsp and mfp at 42◦C.
All values are in terms of number of molecules and should be interpreted as an
average of a population of cells.

Total hsp Total mfp Max Total hsp Max Total mfp
M1 1541 32,3 M1 2458 623997
M2 1, 3 × 106 144533 M2 2, 41 × 106 1, 28 × 106

M3 1526 1832 M3 19782,5 8, 8 × 106

M1,2 1544 47225 M1,2 1978,6 2, 41 × 106

M1,3 6867 9939,6 M1,3 73931,4 1, 3 × 107

M2,3 20040,8 18504 M2,3 233778 1, 27 × 107

M1,2,3 2241 589 M1,2,3 3157 16116

(a) (b)
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Methods for Biochemical Model Decomposition and
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1. Introduction

Much experimental and theoretical effort is invested
nowadays in analyzing large biochemical systems, e.g.,
metabolic pathways, regulatory networks, signal transduc-
tion networks, aiming to obtain a holistic perspective that
can provide a comprehensive, system-level understanding
of cellular behavior. This often results in the creation and
analysis of very large and complex models, often encom-
passing hundreds of reactions and reactants (see, for ex-
ample, ref. [1]). Therefore, obtaining a global picture of
the system�s architecture, in particular understanding the
interactions between various components, or even just
distinguishing a high-level functional decomposition of
the network, constitutes a significant challenge. An im-
portant insight here is that the architecture of some bio-
logical systems, for example, some regulatory networks, is
a consequence of functional requirements of the entire
system. Even though evolution is driven by random
events, some designs, such as having an extra feedback
loop helping the system to correlate better the response
of the system with its trigger, may offer a selective ad-
vantage and in time, may get to dominate the popula-

tion.[2] Thus, when comparing the performance of differ-
ent alternative designs in terms of sub-components being
on or off, one aims to formulate general principles for
how functional requirements correlate biologically with
various designs.

Similar problems have been encountered, for instance,
in engineering sciences,[3] and a variety of strategies and
approaches for solving such problems have been already
developed in this framework. Thus, when aiming to
obtain a system-level understanding of such large bio-
chemical networks, one possible approach is to adapt to
systems biology some of the methods originating from en-
gineering sciences, especially from control theory.[4–10]

Abstract : Comparing alternative models for a given bio-
chemical system is in general a very difficult problem: the
models may focus on different aspects of the same system
and may consist of very different species and reactions. The
numerical setups of the models also play a crucial role in
the quantitative comparison. When the alternative designs
are submodels of a reference model, for example, knock-
down mutants of a model, the problem of comparing them
becomes simpler: they all have very similar, although not
identical, underlying reaction networks, and the biological
constraints are given by those in the reference model. In the
first part of our study, we review several known methods for
model decomposition and for quantitative comparison of
submodels. We describe knockdown mutants, elementary
flux modes, control-based decomposition, mathematically
controlled comparison and its extension, local submodel
comparison and a discrete approach for comparing continu-

ous submodels. In the second part of the paper we present
a new statistical method for comparing submodels, which
complements the methods presented in the review. The
main difference between our approach and the known meth-
ods is related to the important question of how to chose
the numerical setup in which to perform the comparison. In
the case of the reviewed methods, the comparison is made
in the numerical context of the reference model, i.e., in each
of the alternative models both the kinetics of the reactions
and the initial values of all variables are chosen to be identi-
cal to those from the reference model. We propose in this
paper a different approach, better suited for response net-
works, where each alternative model is assumed to start
from its own steady state under basal conditions. We dem-
onstrate our approach with a case study focusing on the
heat shock response in eukaryotes.
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Such methods have been used, as we also do in this
paper, to identify various functional modules of a model,
including feedback and feedforward mechanisms. To
identify the quantitative contribution of each of the mod-
ules to the global behavior of the model, the general ap-
proach is to consider knockdown mutants of the initial
model, missing one or several of the modules. The main
problem then becomes an objective quantitative compari-
son of several alternative submodels for the same biologi-
cal process. We focus on this problem in our paper, that
is, we concentrate on the comparison of submodels of a

given reference model. This issue is a special case of the
general problem of alternative model comparison. In the
general case it is a very difficult issue and is not in the
scope of this study.

The first part of our paper contains a review of existing
techniques for model decomposition, and for quantitative
comparison of submodels. We describe knockdown mu-
tants, elementary flux modes, control-based decomposi-
tion, mathematically controlled comparison and its exten-
sion, local submodels comparison and a discrete approach
for comparing continuous submodels. In the second part
of the paper we introduce a new approach to quantitative
submodel comparison. A main difference in our approach
compared to previous methods is that we allow the alter-
native models to start from different initial states, rather
than assuming the initial state of the reference model. We
argue that this is a better approach, at least in the case of
response networks, where the system is assumed to be in
a steady state under basal conditions and to exhibit a re-
sponse only as an effect of an external trigger. In order to
treat each model as a genuine alternative for the biologi-
cal process under study, we allow it to start from its own
steady state under basal conditions. Finally, we illustrate
our approach with a case study focusing on the heat
shock response in eukaryotes.

The numerical behavior of any model is clearly sensi-
tive to the numerical setup, i.e., the numerical values of
the kinetic constants and of the initial values of the
model variables. In our approach for quantitative compar-
ison of alternative submodels we adopt some statistical,
parameter-independent methods introduced in
refs. [11, 12]. These methods aim to sample the numerical
behavior of the model through a sampling of the parame-
ter space. We adopt in this paper the Latin hypercube
sampling method of ref. [13], which gives uniformly dis-
tributed samples over each parameter, of size independ-
ent of the number of parameters. We briefly survey this
method and apply it to the heat shock response in eukar-
yotes.

The heat shock response is an evolutionary conserved
mechanism protecting the cell against protein misfolding.
In the case study for our new approach to quantitative
submodel comparison we consider a model recently intro-
duced in ref. [14]. The model was analyzed in ref. [15]
using control-driven methods where it was decomposed
into several modules, including three feedback loops. We
focus in our case study on identifying the numerical con-
tribution of each of these feedback loops to the global be-
havior of the model. A local, point-wise comparison of
the three feedbacks was already done in ref. [15], in the
kinetic setup of the reference model. In this paper we do
a global, parameter-independent analysis of the numerical
role of each feedback, through a sampling of the whole
parameter space.
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2. Methods for Model Decomposition

2.1 Knockdown Mutants

A simple model decomposition consists of isolating a
single process or mechanism in the considered system. In
this way the model is split into two parts, the first one
comprising the process of interest and the second contain-
ing all the remaining elements of the system. Although
such decomposition might seem unsophisticated, this ap-
proach is often very useful in discovering the role of a
single mechanism in a larger system. It is widely exploited
in reverse engineering, a process aiming at revealing the
technological principles of a device, object, or system. In
Section 3 we briefly describe the method of mathemati-
cally controlled comparison,[2] where this simple decom-
position approach is at the basis of the method.

2.2. Elementary Flux Modes

Another well-established decomposition method for bio-
chemical models appears in the context of the analysis of
metabolic pathways. It is not easy to define a pathway in
a given metabolic network. An intuitive definition of a
pathway is a sequence of reactions linked by common
metabolites.[16] Examples of metabolic pathways are gly-
colysis or amino acid synthesis. Discovering new path-
ways in a large model driven only by biological intuition
is even more difficult. An attempt to formalize the notion
of pathway has been proposed in refs. [17–22] in the form
of elementary flux modes. The intuitive meaning of an el-
ementary flux mode is a set of reactions whose combined
quantitative contribution to the system is zero. In other
words, the net loss of substance caused by any reaction in
that set is compensated by a net gain in the same sub-
stance incurred by some other reactions in the set. A
formal definition of elementary flux modes is beyond the
scope of this paper; instead we refer the reader to
refs. [16, 17,19–22] for details. For any given metabolic
network, the full set of elementary fluxes can be deter-
mined using methods of linear algebra or dedicated soft-
ware such as METATOOL.[18] Recognition of the elemen-
tary flux modes allows the detection of the full set of non-
decomposable steady-state flows that the network can
support, including cyclic flows. Any steady-state flux pat-
tern can be expressed as a non-negative linear combina-
tion of these modes.[19–21] The identified elementary flux
modes should have a clear biological interpretation: a
flux mode is a set of enzymes that operate together at a
steady state and a flux mode is elementary if the set of
enzymes is minimal, that is, complete inhibition of any of
the enzymes would result in a termination of this
flux.[19, 20,21] The lack of possibility to interpret the modes
in this way is a signal that the model under consideration
may not be correct.

2.3. Control-Based Decomposition

A control-driven approach to model decomposition ena-
bles the recognition of the main functional modules of a
system and their individual contribution to the emergent,
complex behaviors of the system as a whole. In turn, this
can provide great insight about various properties of a
given biochemical system, e.g., robustness, efficiency, re-
activity, adaptation, regulation, synchronization, etc. In
particular, by applying this approach, one usually aims to
identify the main regulatory components of a given bio-
chemical system: the process to be regulated, referred to
as the plant ; the sensors which monitor the current state
of the process and send the collected information to a de-
cision-making module, that is, the controller ; and the ac-
tuator that modifies the state of the process in accordance
with the controller�s decisions, thus influencing the activi-
ty of the plant. One of the fundamental concepts in con-
trol theory is the feedback mechanism, which provides the
means to cope with the uncertainties: the information
about the current state of the process is sent back to the
controller, which reacts accordingly to facilitate a dynam-
ic compensation for any deviance from the intended be-
havior of the system. In the case of a complex system this
decomposition can be performed in different ways de-
pending on what is considered to be the main role of the
system in question; that is, there may be a few reasonable
choices for the plant, and the remaining components are
recognized with respect to the choice of the plant.

An easy example illustrating these concepts and their
interactions is given by the functioning principles of a
motion-activated spotlight. Here, the controller module is
an electronic unit which receives an input from the
motion sensor and then determines whether there are any
changes in the environment. The actuator is a relay
switch that operates the lighting system. This actuator is
activated by the controller depending on the input sent
by the sensor. Then, the switch is kept on by the control-
ler as long as movement is detected by the sensor.

How this control-driven approach can be exploited to
investigate and understand regulatory networks can be
seen in refs. [3, 5,7,8,23]. Here we briefly describe the ap-
proach taken in ref. [23]. The authors make a thorough
study of the heat shock response mechanism in Escheri-
chia coli based on modular decomposition. A model for
the system is built and functional modules — the plant,
sensors, controller, and actuator — are identified. The de-
composition reveals the underlying design of the heat
shock response mechanism and its level of complexity,
which, as the authors show, is not justified if only the
functionality of an operational heat shock system is re-
quired. Further, this observation leads to the introduction
and analysis of hypothetical design variants (mutants) of
the original heat shock response model. In the original
model one feedforward (temperature sensing) and two
feedback elements (s32 factor sequestration feedback
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loop and s32 degradation feedback loop) can be isolated.
The variants are obtained through the elimination of
either the s32 degradation feedback loop or both feed-
backs. Moreover, the case without the feedforward ele-
ment is also considered, see ref. [23] for details. One by
one the variants are considered in order of increasing
complexity, starting from the simplest architecture con-
taining just the feedforward element (the open-loop
design). Based on numerical simulations, the authors
demonstrate how the addition of subsequent layers of
regulation, thereby increasing the complexity of the
model, improves the performance of the response in
terms of systemic properties such as robustness, noise re-
duction, speed of response, and economical use of cellular
resources. Moreover, this systematic approach enables
the identification of the contribution of each of the regu-
latory layers to the overall behavior of the system. In con-
sequence the authors succeed in performing an in-depth
comparison between different model variants.

3. Known Methods for Submodel Comparison

Comparing alternative models for a given biochemical
system is, in general, a very difficult problem, involving a
deep analysis of both the underlying network of reactions,
the biological assumptions as well as the numerical setup.
To decide the benefits of one design over another, or to
understand the selection requirements involved in an evo-
lutionary design, one needs some unbiased methods to
objectively compare the alternative designs.

3.1. Mathematically Controlled Model Comparison

One such method is the mathematically controlled com-
parison,[2] which provides a structured approach for com-
paring alternative regulatory designs with respect to some
chosen measures of functional effectiveness. Under this
approach, mathematical models for both the reference
design and the alternatives are first developed in the
framework of canonical nonlinear modeling, referred to
as S-systems.[24–26] This canonical nonlinear representation,
developed within the power-law formalism, is a system of
non-linear ordinary differential equations with a well-de-
fined structure. Moreover, this framework allows the al-
ternative models to differ from the reference design in
only one process, e.g., the existence or absence of some
feedback mechanisms, which is actually the focus of the
comparison. Then, in each of the alternative models one
sets the numerical values of the parameters to be identi-
cal with those from the reference model for all processes
other than the process of interest. This leads to a so-
called internal equivalence between the reference model
and the alternatives. Next, various systemic properties are
selected and used to impose some constraints for all the
other parameters in the alternative designs. In general in

this approach, one imposes that some steady state values
or logarithmic gains are equal in the reference model and
its alternatives. This provides a way to express the param-
eters of the process of interest in the alternative models
as functions of the parameters of the reference model.
Thus, one obtains a so-called external equivalence be-
tween the reference model and the alternative designs,
meaning that to an external observer the considered
models are equivalent with respect to the selected system-
ic properties. Finally, one chooses various measures of
functional effectiveness depending on the particularities
of the biological context of these models, and uses them
to compare the alternative designs with the reference
model. By doing this, one usually aims to determine ana-
lytically the qualitative differences between the compared
models. This method was successfully used to compare al-
ternative regulatory designs in, e.g., metabolic path-
ways,[27,28] gene circuits,[29] and immune networks.[30] More-
over, by introducing specific numerical values for the pa-
rameters of the models, one is also able to quantify these
differences but, at the same time, the generality of the re-
sults is lost. Thus, in ref. [12], the method of mathemati-
cally controlled comparison was extended to include
some statistical methods[11,31] that allow the use of numer-
ical values for the parameters, while still preserving the
generality of the conclusions.

3.2. An Extension of the Mathematically Controlled Comparison

The first step of this extension is to generate a represen-
tative ensemble of sets of parameter values. Since usually
for biological systems the exact statistical distribution of
the parameters values is not known, the most appropriate
approach is to uniformly sample a given range of values.
There exist different methods for scanning a given inter-
val of values, ranging from (more or less sophisticated)
random samplings to some systematic deterministic scan-
ning methods; see, for example, ref. [32]. Using this en-
semble of sets of parameters, we can then construct a
large class of numerical models both for the reference
and for the alternative designs. There are two different
methods to construct such a class of systems for which we
can then investigate some statistical properties. A struc-
tural class consists of systems having the same network
topology, i.e., generated by the sampling of the parameter
space. A behavioral class consists of systems that exhibit
a particular systemic behavior, e.g., exhibiting a steady
state behavior under given conditions, or low concentra-
tions of intermediary products, or small values for the pa-
rameter sensitivity; see, for example, ref. [31]. The mem-
bers of such a class are obtained in two steps: first gener-
ate a set of parameters by sampling the parameter space,
then test the sample for the desired systemic behavior
and keep only those systems that fulfill the conditions.

After constructing this large class of numerical models
both for the reference and the alternative architectures,
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one can start comparing the values of a given systemic
property P between the reference model and its alterna-
tive designs. One way to do this is by using density plots
of the ratio R = Preference / Palternative versus the values
Preference, where the subscript indicates in which model the
property P was measured. Such density plots can be used,
for instance, to compute rank correlations between the
considered property P (measured in the reference model)
and the values of the ratio R. However, this is not easy to
do if the density plots are very scattered. Then, one can
construct secondary density plots by using the moving
median technique as follows. Basically, the density plot
can be interpreted as a list of N pairs of values
(Preference, R), which can be arranged in a ordered list L
with respect to the first component, Preference. Then, we
pick a window size W, usually much smaller than the
sample size N, and we compute the median <R> of the
ratio values and the median <P> of the values Preference,
for the first W pairs in the list L. Then, we advance the
window by one, we collect the ratios and the values
Preference from the second until the W+1st pair, and com-
pute the corresponding median values <R> and <P> .
This process is continued until the last pair in list L is
used for the first time. In the secondary density plot, we
pair the computed values <R> with the corresponding
<P> values. This moving median technique is very
useful since, for a finite ordered sample of size N, the
moving median tends to the median of the samples as the
value W approaches N. These secondary density plots can
be used to compare the efficiency of two classes of
models from the point of view of a given systemic proper-
ty.

3.3 Local Submodel Comparison

When the alternative designs are actually submodels of
the reference architecture, there is also another approach
for performing the comparison; see ref. [15]. This is the
case when, for instance, one is interested in a functional
analysis of various modules of a large system. Then, the
underlying reaction networks in the alternative designs
are very similar (although not identical), and both the
biological constraints and the kinetics of the reactions are
given by those of the reference model. The only remain-
ing question regards the initial distribution of the varia-
bles in the alternative models. In a mathematically con-
trolled comparison they are usually taken from the refer-
ence model. However, for some biochemical systems this
choice might lead to biased comparisons. For instance, in
the case of regulatory networks, models should be in a
steady state in the absence of the trigger of the response
and, indeed, the initial values of the reference model are
usually chosen in such a way as to fulfill this condition.
However, this will not imply in general that also a submo-
del is in its steady state if it uses the same initial values as
the reference model. Thus, the dynamic behavior of the

submodel will be the result of two intertwined tendencies:
migrating from a possible unstable state, and the response
to a trigger. If the focus of the comparison is specifically
the efficiency of the response of various submodels to a
trigger, then the approached proposed in ref. [15] is more
appropriate, yielding biologically unbiased results. In this
approach, the initial distribution of the reactants is
chosen in such a way that the initial setup of each submo-
del constitutes a steady state of that design in the absence
of a trigger.

3.4. A Discrete Approach for Comparing Continuous Submodels

The application of the control–theoretical analysis de-
scribed in Section 2 enables the identification of the main
functional modules, their interconnections, and the con-
trol strategies of a biochemical network. In particular,
this approach can be very useful for identifying the main
regulatory components of a biochemical network, includ-
ing its feed-forward and feedback mechanisms. Then, in
order to identify and quantify the exact role of each of
these regulatory mechanisms, one usually uses knock-
down mutants[23] lacking one or more of these compo-
nents. In particular, the knockdown mutant models are
submodels of the reference architecture. The approached
proposed in ref. [33] associates to each knockdown
mutant a Boolean formula describing its control architec-
ture in the following way. First, a Boolean variable is as-
sociated to each of the regulating mechanisms. Then,
using the negation and conjunction of Boolean variables,
one can write a Boolean formula for each of the knock-
down mutants describing which of the regulating mecha-
nisms are present in their architecture. In particular,
these Boolean formulas describe a property of the alter-
native designs which is independent of time, i.e., their
regulatory network. Moreover, one can go one step fur-
ther and write a Boolean formula describing all those
mutant architectures that show a given behavioral proper-
ty, e.g., a high level of a given reactant or a given correla-
tion between two reactants. This formula is actually the
conjunction of all Boolean formulas characterizing the ar-
chitectures of the mutants exhibiting the required proper-
ty. The numerical comparison of the mutants is then per-
formed by analyzing the Boolean formulas associated
with various behavioral properties.

4. A New Approach for Quantitative Submodel
Comparison

Here we propose a new approach for quantitative com-
parison of biological models. Before presenting the
method itself, we clarify the adopted terminology which
is used in the description of our new approach. Usually
biological models are expressed in terms of biochemical
reactions. We will refer to a list of such reactions describ-
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ing a biological mechanism as its biochemical model.
From the biochemical model, an associated mathematical
model is derived by choosing one of the two commonly
used frameworks: either a deterministic or a stochastic
formulation. In the first case, the biochemical reaction ki-
netics rely on the assumption that the reaction rate at a
certain point in time and space can be expressed as a
unique function of the concentrations of all substances at
this point in time and space.[16] It is governed by the mass
action law, which can be briefly summarized as follows:
the rate of each reaction is proportional to the product of
the reactant masses, with each mass raised to the power
equal to the corresponding stoichiometric coefficient.[16]

With this assumption, the mathematical formulation of a
biochemical model results in a system of ordinary differ-
ential rate equations constituting the associated determin-
istic mathematical model. In the second case, single mole-
cules and their interactions are considered, and the
changes in molecular populations are described in terms
of stochastic processes. In the stochastic framework the
associated mathematical model is a continuous-time
Markov chain, defined by a chemical master equation de-
scribing the time evolution of the probability of the bio-
chemical system to be in a certain state. Our new ap-
proach for model comparison is designed and presented
for the deterministic framework; however, it can be easily
adapted for the stochastic formulation.

As mentioned above, the assumption of the mass
action kinetics leads to a system of ordinary differential
equations (ODE) constituting the mathematical model.
The ODE system contains a certain number of parame-
ters representing the kinetic rate constants of the bio-
chemical reactions. By assigning numerical values to the
parameters and setting the initial conditions for the equa-
tions, we obtain an instantiation of the mathematical
model.

Our model comparison method can be outlined as fol-
lows. First, starting with a biochemical model of some
biological mechanism, referred to as the reference model
(or reference architecture) of this system, we construct a
submodel (or alternative architecture) by eliminating cer-
tain reactions from the list of biochemical reactions of the
reference model. At this stage, we can for example apply
control-based decomposition techniques to identify a
number of modules, and then study them separately by
considering a number of knockdown mutants lacking one
or more of the modules. Second, the associated mathe-
matical models are formulated, both for the reference
and the alternative architecture. Notice that this proce-
dure assures that all the parameters of the alternative ar-
chitecture match a subset of parameters of the reference
model. Next, we perform the statistical sampling of the
reference model and mutant behavior. To accomplish this,
we scan the parameter value space of the reference
model. This provides us with a set of parameter value
vectors. Each coordinate of these vectors is associated

with one of the parameters in the reference model, and
determines the value of the corresponding parameter. We
consider each of the vectors one by one. We set the pa-
rameters of the reference model and the submodel in ac-
cordance with the considered vector. Since, as mentioned
above, the alternative architecture contains only a subset
of the reference model parameters, only the values of cer-
tain coordinates are used when setting the parameters of
the submodel. Further, the initial values of the variables
of the reference model and the submodel are determined
independently of each other by a systemic property, such
as the system being in a steady state in a given setup. For
example, in the general case of stress response, we expect
in accordance with biological observations that a feasible
mathematical model is in a steady state under the un-
stressed, physiological conditions. We call steady state a
numerical configuration of the model (given by numerical
values for all variables and parameters of the model)
such that starting from that configuration, the model
shows no change in the level of any of the variables. In
other words, the net loss per unit of time in every variable
is exactly compensated by the net gain per unit of time in
that variable. The steady states of a model are defined by
the values of its parameters and by the initial values of its
variables. Assuring that both mathematical submodels
satisfy such systemic properties makes them suitable to
be considered as viable alternative formal descriptions of
the biological mechanism being analyzed. As a result, we
obtain the instantiations of the reference model and the
submodel and we run numerical simulations for both of
them in order to evaluate their functional effectiveness.
Finally, having done this for all sampled vectors, we sum-
marize the obtained results for the variants and compare
the models by use of some statistical measures. Moreover,
the methodology allows us to consider more than one
submodel, and thus the obtained results provide a basis
for comparison between the different potential architec-
tural designs underlying the analyzed biological mecha-
nism.

For the parameter scanning, in the above procedure we
use the Latin hypercube sampling method (LHS) origi-
nally introduced in ref. [34]. It provides samples which
are uniformly distributed over each parameter while the
number of samples is independent of the number of pa-
rameters. The sampling scheme can be briefly described
as follows: First, the desired size N of the sampling set is
chosen. Next, the range interval of each parameter is par-
titioned into N non-overlapping intervals of equal length.
For each parameter, N numerical values are randomly se-
lected, one from each interval of the partition according
to a uniform distribution on that interval. Finally, the N
sampled values for the i-th parameter of the model are
collected on the i-th column of a N � p matrix, where p is
the number of model parameters and the values in each
column are shuffled randomly. As a result, each of the N
rows of the matrix contains numerical values for each of
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the p parameters. For a detailed description of this sam-
pling scheme we refer the reader to ref. [13, 34]; see also
ref. [14] for an example of the application of this sampling
method in the context of model identifiability problem.

In the next sections we show how the described
method, where the sampling is performed with the LHS
approach, can be utilized in the case of a recently intro-
duced mathematical model for the eukaryotic heat shock
response. In particular, we present how this method
makes it possible to discriminate between different var-
iants of the model and to determine the roles of certain
control mechanisms of the response system.

5. Case Study

5.1 A Biochemical Model for the Heat Shock Response

The heat shock response (HSR) is a highly evolutionarily
conserved defense mechanism among organisms.[35] It
serves to prevent and repair protein damage induced by
elevated temperature and other forms of environmental,
chemical, or physical stress. Such conditions induce the
misfolding of proteins, which in turn accumulate and
form aggregates with disastrous effect for the cell. In
order to survive, the cell has to abruptly increase the ex-
pression of heat shock proteins. These proteins operate as
intra-cellular chaperones, that is, play a crucial role in
folding of proteins and re-establishment of proper protein
conformation. They prevent the destructive protein ag-
gregation. We discern two main reasons that account for
the strong interest in the heat shock response mechanism
observed in recent years.[36–38] First, as a well-conserved
mechanism among organisms, it is considered a promising
candidate for disentangling the engineering principles
fundamental for any regulatory network.[23, 39–41] Second,
besides their functions in the HSR, heat shock proteins
have fundamental importance to many key biological pro-
cesses such as protein biogenesis, dismantling of damaged
proteins, activation of immune responses, and signal-
ing.[42,43] In consequence, a thorough insight into the HSR
mechanism would have significant implications for the ad-
vancement in understanding the cell biology.

In order to coherently investigate the HSR a number
of mathematical models has been proposed in the litera-
ture.[23,44–47] In this study we consider a recently intro-
duced model of the eukaryotic heat shock response.[14,48]

In this model the central role is played by the heat shock
proteins (hsp), which act as chaperones for the misfolded
proteins (mfp): the heat shock proteins sequester the mis-
folded proteins (hsp : mfp) and help the misfolded pro-
teins to regain their native conformation (prot). The de-
fense mechanism is controlled through the regulation of
the transactivation of the hsp-encoding genes. The tran-
scription is initiated by heat shock factors (hsf), some spe-
cific proteins which first form dimers (hsf2), then trimers
(hsf3), and in this configuration bind to the heat shock el-

ements (hse), that is, certain DNA sequences in the pro-
motor regions of the hsp-encoding genes. Once the trim-
ers bind to the promoter elements (hsf3 : hse), the tran-
scription and translation of the hsp-encoding genes boosts
and, in consequence, new heat shock protein molecules
get synthesized at a substantially augmented rate.

When the amount of the heat shock proteins reaches a
high enough level to enable coping with the stress condi-
tions, the production of new chaperone molecules is
switched off by the excess of the heat shock proteins. To
this aim hsp form complexes with the heat shock factors
(hsp :hsf) in three independently and concurrent process-
es: 1) by binding to the free hsf, 2) by breaking the
dimers and trimers, and 3) by breaking the hsf3 : hse, as a
result of which the trimer gets unbound from the DNA, it
is decomposed into three free hsf molecules and one of
these hsf molecules forms a complex with hsp. This termi-
nates the enhanced production of new heat shock protein
molecules and blocks the formation of new hsf trimers.
As soon as the temperature increases, proteins present in
the cell start misfolding. The misfolded proteins titrate
hsp away from the hsp : hsf complexes. This enables the
accumulation of free hsf molecules, which in turn form
trimers and promote the production of new chaperones.
In consequence the response mechanism gets switched
on. The full list of biochemical reactions constituting the
biochemical model from ref. [14] is presented in Table 1.
The model is based only on well-documented reactions,
without introducing any hypothetical mechanisms or ex-
perimentally unsupported biochemical reactions. For a
full presentation and discussion of this model we refer
the reader to ref. [14].

Based on the assumption of mass-action law for all the
Reactions (1)–(12), an associated mathematical model of
the eukaryotic heat shock response is obtained. The re-
sulting mathematical model is expressed in terms of ten
first-order, ordinary differential equations. The full ODE
system is shown in Table 2, where by ki we denote the re-
action rate constant of the irreversible reaction (i) in
Table 1, by ki

+ the rate constant associated with the “left-

Table 1. The list of reactions of the biochemical model for the heat
shock response originally introduced in ref. [14].

Reaction (Reaction number)

2 hsf$ hsf2 (1)
hsf + hsf2 $ hsf3 (2)
hsf3 + hse$ hsf3 : hse (3)
hsf3 : hse ! hsf3 :hse + hsp (4)
hsp + hsf $ hsp :hsf (5)
hsp + hsf2 ! hsp : hsf + hsf (6)
hsp + hsf3 ! hsp : hsf + 2 hsf (7)
hsp + hsf3 :hse ! hsp :hsf + hse + 2 hsf (8)
hsp ! (9)
prot ! mfp (10)
hsp + mfp $ hsp :mfp (11)
hsp :mfp ! hsp + prot (12)
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to-right” direction of the reversible reaction (i), while ki
–

denotes the rate constant corresponding to its “right-to-
left” direction. By T we denote the numerical value of the
temperature of the environment in degrees Celsius. The
rate coefficient of protein misfolding with respect to the
temperature (f(T)) in Reaction (10) is given by the fol-
lowing formula:

f Tð Þ ¼ 1� 0:4
eT�37

� �
� 1:4T�37 � 1:45 � 10�5s�1

which is valid for T in the range from 37 to 45. The for-
mula was obtained based on experimental investigations
described in refs. [49, 50], originally proposed in ref. [45],
and adapted for use in the mathematical model of HSR
in ref. [14]. The mathematical model comprises 16 inde-
pendent kinetic parameters and 10 initial conditions. In
the case of our method, we do not fix the parameter
values as was done in ref. [14]: we neither fit nor validate
the model with respect to experimental data. Instead, we
sample the HSR model behavior by randomly choosing
different sets of parameter values. This results in not one,
but a collection of instances of the HSR model. Notice
that in the process of obtaining these instances, no experi-
mental data are considered. Thus, the instances are not
required to confirm any experimental results. We discuss
in details how the parameter values for the HSR model
are obtained in Subsection 5.4.

5.2 Control-Based Decomposition

In ref. [15], a control-driven modular decomposition of
the heat shock response model was performed. As a
result, the model has been divided into four main func-
tional submodules usually distinguished in control engi-

neering: the plant, the sensor, the controller, and the ac-
tuator. In the case of the HSR model the plant is the mis-
folding and refolding of proteins, the actuator consists of
the synthesis and degradation of the chaperones, the
sensor measures the level of hsp in the system, and the
controller regulates the level of DNA binding. Moreover,
within the controller we distinguish three feedback mech-
anisms. The feedback loops are responsible for sequester-
ing the heat shock factors in different forms by the chap-
erones. In this way, the feedback loops decrease the level
of DNA binding. The three identified feedback mecha-
nisms are the following:

Table 2. The system of differential equations of the mathematical model associated with the biochemical model in Table 1.

Equation (Equation number)

d[hsf ] / dt = �2kþ1 hsf½ �2þ2k�1 hsf 2½ � � kþ2 hsf½ � hsf 2½ � þ k�2 hsf 3½ �
�kþ5 hsf½ � hsp½ � þ k�5 hsp : hsf½ � þ k6 hsf 2½ � hsp½ �
þ2k7 hsf 3½ � hsp½ � þ 2k8 hsf 3: hse½ � hsp½ �

(13)

d[hsf2] /dt = kþ1 hsf½ �2�k�1 hsf 2½ � � kþ2 hsf½ � hsf 2½ � þ k�2 hsf 3½ �
�k6 hsf 2½ � hsp½ �

(14)

d[hsf3] /dt = kþ2 hsf½ � hsf 2½ � � k�2 hsf 3½ � � kþ3 hsf 3½ � hse½ � þ k�3 hsf 3 : hse½ �
�k7 hsf 3½ � hsp½ �

(15)

d[hse] / dt = �kþ3 hsf 3½ � hse½ � þ k�3 hsf 3 : hse½ � þ k8 hsf 3 : hse½ � hsp½ � (16)
d[hsf3 : hse] / dt = kþ3 hsf 3½ � hse½ � � k�3 hsf 3 : hse½ � � k8 hsf 3 : hse½ � hsp½ � (17)
d[hsp] / dt = k4 hsf 3 : hse½ � � kþ5 hsf½ � hsp½ � þ k�5 hsp : hsf½ � � k6 hsf 2½ � hsp½ �

�k7 hsf 3½ � hsp½ � � k8 hsf 3 : hse½ � hsp½ � � kþ11 hsp½ � mfp½ �
þ k�11 þ k12

� �
hsp : mfp½ � � k9 hsp½ �

(18)

d[hsp :hsf ] / dt = kþ5 hsf½ � hsp½ � � k�5 hsp : hsf½ � þ k6 hsf 2½ � hsp½ �
þk7 hsf 3½ � hsp½ � þ k8 hsf 3 : hse½ � hsp½ �

(19)

d[mfp] / dt = �T prot½ � � kþ11 hsp½ � mfp½ � þ k�11 hsp : mfp½ � (20)
d[hsp :mfp] / dt = kþ11 hsp½ � mfp½ � � k�11 þ k12

� �
hsp : mfp½ � (21)

d[prot] / dt = ��T prot½ � þ k12 hsp : mfp½ � (22)

Figure 1. The control-based decomposition of the heat shock re-
sponse network. The reaction numbers refer to the reactions in
Table 1. We denote the “left-to-right” direction of reaction (5) by
(5)+ and by (5)– its “right-to-left” direction.
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· FB1: Sequestration of free hsf, that is, Reaction (5)+

(the “left-to-right” direction of Reaction (5));
· FB2: Breaking of hsf dimers and trimers, that is, Reac-

tions (6) and (7);
· FB3: Unbinding of hsf3 from hse and breaking the

trimers, that is, Reaction (8).

The control-driven functional decomposition of the eu-
karyotic heat shock response model is shown in Figure 1,
where the reaction numbers refer to the reactions in
Table 1. In Figure 2 a graphical illustration of the control
structure, that is, the three feedback loops and their
points of interactions with the mainstream process, is pre-
sented.

5.3 The Knockdown Mutants

In refs. [15] and [33], the reference architecture and
seven knockdown mutants (alternative architectures)
were considered. The mutants were obtained by eliminat-
ing from the reference architecture all possible combina-
tions of the three feedback loops FB1, FB2, and FB3.
The mutants were denoted as MX, where X �{1, 2,3} is
the set of numbers of the feedback mechanisms present
in MX :

· M0 is determined by Reactions (1)–(4), (9)–(12) and, in
the terminology of control theory, is characterized by
the open-loop design ;

· M1 is determined by Reactions (1)–(5), (9)–(12);
· M2 is determined by Reactions (1)–(4), (6)–(7), (9)–

(12), and the “right-to-left” direction of reaction (5);
· M3 is determined by Reactions (1)–(4), (8)–(12), and

the “right-to-left” direction of reaction (5);
· M1,2 is determined by Reactions (1)–(7), (9)–(12);
· M1,3 is determined by Reactions (1)–(5), (8)–(12);
· M2,3 is determined by Reactions (1)–(4), (6)–(12), and

the “right-to-left” direction of reaction (5);
· M1,2,3 is the reference architecture consisting of all Re-

actions (1)–(12).

5.4 Statistical Sampling of the Mutant Behavior

We apply our model comparison method described in
Section 3 to the presented model of eukaryotic heat
shock response in order to investigate the functional role
of the feedback mechanisms. It is easy to see that M0 is
non-responsive: starting from a steady state at physiologi-
cal conditions, that is, 37 8C, M0 shows no increase in
DNA binding for any arbitrarily high temperature; see
ref. [33]. We remove M0 from further considerations. In
our study we analyze the six knockdown mutants M1, M2,
M3, M1,2, M1,3 and M2,3 as the variants of the reference ar-
chitecture M1,2,3. Our comparison method is applied in
the following way. First, a sample of 10,000 vectors of pa-
rameter values for the reference architecture is obtained
by the Latin hypercube sampling described above. In our
case, the sampled vectors are of length 15, the number of
unknown reference architecture parameters. The value of
the 16th remaining parameter, that is, the degradation
rate constant, is assumed to be known and is obtained
based on the fact that heat shock proteins are generally
long-lived proteins.[51] Here we choose their half-life to be
6 h. Then, the procedure described next is repeated sepa-
rately for each of the six mutants. To begin with, each
sampled vector of parameter values is used to set up the
parameters in the mathematical models of the considered
mutant and the reference architecture (M1,2,3). It follows
from the construct of the mutant that the corresponding
mathematical model contains only a subset of the param-
eters of the reference model, so this step can be per-
formed. Next, the steady state concentrations at 37 8C
both for the mutant and the reference model are numeri-
cally computed and set as their respective initial states. In
this way we obtain two instances of the mathematical
models, that is, one for the mutant and the second for the
reference model. Further, the temperature is increased to
42 8C and the quantities

V1 ¼ max
t2 0s;1800s½ �

ðtotal mfpðtÞÞ

V2 ¼ max
t2 0s;1800s½ �

ðhsf3 : hseðtÞ � hsf3 : hseð0ÞÞ

Figure 2. The control structure of the heat shock response network. The three identified feedback loops and their points of interaction
with the mainstream process are depicted.
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V3 ¼
1
T

Z T

0
ðtotal hspðtÞÞdt

V4 ¼
1
T

Z T

0
ðtotal mfpðtÞÞdt

are computed both for the mutant and the reference in-
stance. The initial 30 min of the response are considered
for the computation of V1 and V2. In the case of V3 and
V4 the time range of 4 h (T = 14400 s) is taken into ac-
count. These quantities are used to evaluate the function-
al effectiveness of the mutant. Having these quantities
computed for all the 10,000 sampled parameter values,
the scatter plot of the R1 = V1

m/V1
r against V1

r values is
made, where the superscripts m and r indicate the in-
stance for which V1 was computed, that is, the instance of
the mutant or the reference model, respectively. Finally,
the moving median technique is applied to the scatter
plot, with the window size set to 500. These result in a
trend curve summarizing the data of the scatter plot and
revealing the overall dependency between the considered
quantities. Analogical plots are computed for R2 = V2

m/
V2

r. Moreover, scatter plots of V3 versus V4 are made
both for the mutant and the reference architecture, and
the moving median technique is applied to each of these
plots.

The mutants represent six different potential architec-
tures of the heat shock response mechanism and the sam-
pling procedure, as explained above, provides us with
10,000 different instantiations of each of the mutants and
the reference architecture.

5.5 Results

In our analysis of the obtained results we assume that the
heat shock response at raised temperatures is accompa-
nied, and hence characterized, by the following three phe-
nomena:

1.Increase in DNA-binding with respect to the steady-
state level at 37 8C,

2.Increase in the level of mfp, and
3.Increase in the level of hsp as the response to the

higher level of mfp in the cell.

We base our analysis of the architecture properties of the
six mutants with respect to the reference architecture on
the following plots: R1 vs V1

r, R2 vs V2
r, V3 vs V4 made

for each of the mutants. We refer to the V3 vs V4 plot as
the cost plot (or simply the cost) of the corresponding ar-
chitecture. This is motivated by the fact that the efficiency
of the heat shock response mechanism could be measured
by the amount of chaperones needed to cope with the in-
tensified misfolding of proteins. Hypothetically, a cell
which produces smaller amounts of hsp than some other
cell to cope with the heat shock would be considered the

one which manages stress conditions at a lower cost in
terms of its resources than the latter one. Notice, howev-
er, that in our case we are not assessing the ability of par-
ticular models to cope with heat shock. That is, the sam-
pled models are neither validated against experimental
data nor classified by any other means as to whether they
enable the cell to survive or not under the stress condi-
tions. Hence the cost plots reflect just the general tenden-
cy of the models instantiating a particular architecture to
keep certain average in time amounts of hsp in response
to different average levels of mfp present in the system.
The reference trend line indicates a clear linear depend-
ency between the average levels of hsp and mfp ; see
Figure 3. The trend lines of all mutants, despite some
more or less pronounced fluctuations in the region of
small V4 values, can be seen as increasing (Figure 4),
which is in agreement with our characterization of the
heat shock response.

Considering the three mutants with only one feedback
— M1, M2, and M3 — we observe that the mfp level peak
value in the first 30 min. of heat shock is smaller than in
the reference architecture: the ratio R1 in Figure 5 a, b,
and c is always smaller than 1. This is especially pro-
nounced in mutant instances obtained with samples char-
acterized by high mfp peak values in the case of the refer-
ence architecture. However, for all these mutants the cost
is definitely higher than in the reference architecture;
compare Figure 4 a, b, and c with Figure 3. Notice also
that the M2 mutant is more economic in terms of cost
than the two other mutants with only one feedback.

In the mutants M1,2, M1,3 and M2,3 the mfp level also
peaks at a lower value than in the reference case, al-

Figure 3. The plot shows the result of applying the moving
median technique to the scatter plots of the cost, that is, V3

versus V4, obtained for the reference architecture. For each sam-
pled vector of parameters, the values of V3 and V4 were comput-
ed and plotted against each other. Then, the moving median tech-
nique was applied to discern the overall trend in the data depicted
in the obtained scatter plot. The window size of the moving
median was set to 500 and the sample size of the vectors of pa-
rameter values was 10,000.
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though this time the M1,3 and M2,3 mutants have the cost
comparable with the one of the reference architecture.
Both M1,3 and M2,3 reveal the same linear relationship be-
tween the average amounts of hsp and mfp as is observa-
ble in the reference case; however, in both cases the
trend line is slightly shifted upwards with respect to the
reference. This indicates that the mutants have a tenden-
cy to keep a bit higher amount of hsp than the reference
with a certain amount of misfolded proteins (Figure 4 e, f
and Figure 3). The same is true also for the M1,2 mutant.
Although it admits an order of magnitude larger range of
observable average amounts of misfolded proteins (Fig-
ure 4d), the cost plot restricted to V4 moving median
values �4000 is basically identical with the cost plots of
the two other mutants, see Figure 6.

Figure 5. The plots show the result of applying the moving
median technique to the scatter plots of R1 vs V1

r obtained individ-
ually for each of the six considered mutants. For each mutant and
each sampled vector of parameters, the value of R1 was computed
and plotted against the value of V1 obtained for the reference ar-
chitecture with the same parameter vector. Then, the moving
median technique was applied to discern the overall trend in the
data depicted in the obtained scatter plots. The window size of
the moving median was set to 500 and the sample size of the vec-
tors of parameter values was 10,000.

Figure 6. The zoomed in version of Figure 4 d where V4 moving
median is not greater than 4000.

Figure 4. The plots show the result of applying the moving
median technique to the scatter plots of the cost, that is, V3

versus V4, obtained individually for each of the six considered mu-
tants. For each mutant and each sampled vector of parameters,
the values of V3 and V4 were computed and plotted against each
other. Then, the moving median technique was applied to discern
the overall trend in the data depicted in the obtained scatter plots.
The window size of the moving median was set to 500 and the
sample size of the vectors of parameter values was 10,000.
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Another thing which we observe for the three mutants
missing one feedback is that the samples characterized by
significant increase in DNA-binding in the reference ar-
chitecture, that is, by 15 and more, span a wide range of
possible behaviors in the mutants: from almost no DNA-
binding increase to an increase comparable with the one
observed for the reference architecture. This feature is
clearly visible in Figure 7e and f for the mutants M1,3 and
M2,3, respectively. In the case of the M1,2 mutant we need
to zoom in Figure 7 d. To this aim we observe in the scat-
ter plot R2 vs V2

r for the M1,2 mutant that all points with
R2> 1000 are concentrated in the range [0,0.0307] of V2

r

values (not shown). We exclude all samples with V2
r in

this range, irrespective of the R2 value they admit in the
mutant. All in all, 2247 samples are filtered out and we
apply the moving median technique to the remaining
ones. The resulting plot is shown in Figure 8. It clearly il-
lustrates that the discussed feature is also a characteristic
of the M1,2 mutant. This is not true for the three mutants
with only one feedback. In these cases we do not observe
any substantial increase in the DNA-binding with respect
to the steady-state levels at 37 8C for samples which gen-
erate such increase in the reference case (Figure 7 a, b,
and c).

On the basis of the presented results, we notice that all
the mutants lacking two feedbacks exhibit no heat shock
response in the sense of the above definition: as observed
previously, there is no increase in the DNA-binding. This
is in agreement with the results presented in ref. [15],
where the models with only one feedback kept the DNA-
binding at the maximum possible level both at 37 8C and
42 8C throughout the simulation time of 50,000 s. The
HSR can be observed, however, in the mutants M1,3 and
M1,2. In the case of the M2,3 mutant the HSR is still ob-
served, but only for a fraction of the 10,000 sampled
models, that is, only those parameter values for which the
reference architecture displays the maximal possible in-
crease in the peak of DNA-binding with respect to the
steady-state level at 37 8C. This is in complete agreement
with previous observations that FB1 is the most powerful
feedback.[15] Since FB2 and FB3 include sequestration as
one of their features, they compensate partially for the
lack of FB1. However, only FB2 or only FB3 is not
enough to enforce the system�s behavior to have the HSR
characteristics. Despite its power, FB1 alone is also not
enough and one of the other feedbacks is also needed in
order to implement a response mechanism with the fea-
tures describing the heat shock response.

Figure 7. The plots show the result of applying the moving
median technique to the scatter plots of R2 vs V2

r obtained individ-
ually for each of the six considered mutants. For each mutant and
each sampled vector of parameters, the value of R2 was computed
and plotted against the value of V2 obtained for the reference ar-
chitecture with the same parameter vector. Then, the moving
median technique was applied to discern the overall trend in the
data depicted in the obtained scatter plots. The window size of
the moving median was set to 500 and the sample size of the vec-
tors of parameter values was 10,000.

Figure 8. A version of Figure 7 d where samples with V2
r �

0.0307 were not considered. It shows that the samples character-
ized by significant increase in DNA-binding in the reference archi-
tecture (by 15 and more) span a wide range of possible behaviors
in the M1,2 mutant: from almost no DNA-binding increase (the
moving median of R2 = 0.2) to an increase comparable with the
one observed for the reference architecture (the moving median of
R2 � 1).
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6. Discussion

Very often, various experimental investigations of a given
biochemical system generate a large variety of alternative
molecular designs, thus raising questions about comparing
their functionality, efficiency, and robustness. Comparing
alternative models for a given biochemical system is, in
general, a very difficult problem which involves a deep
analysis of various aspects of the models: the underlying
networks, the biological constraints, and the numerical
setup. The problem becomes somewhat simpler when the
alternative designs are actually submodels of a larger
model: the underlying networks are similar, although not
identical, and the biological constrains are given by the
larger model. It only remains to decide how to chose the
numerical setup for each of the alternative submodels,
i.e. , the initial conditions and the kinetics.

In the first part of our study we review several known
methods for model decomposition and for quantitative
comparison of submodels. We describe knockdown mu-
tants, elementary flux modes, control-based decomposi-
tion, mathematically controlled comparison and its exten-
sion, local submodels comparison and a discrete approach
for comparing continuous submodels. In the second part
of the paper we present a new statistical method for com-
paring submodels that complements the methods present-
ed in the review. When choosing the initial setup for the
alternative submodels, i.e., the initial values of all varia-
bles, one approach is to take them from the reference
model. This approach is based on the technique of mathe-
matically controlled comparison;[2] see also refs. [23] and
[52] for some case studies using this method. However, in
the case of biological systems this approach may lead to
biased conclusions. For instance, regulatory networks ex-
hibit a steady-state behavior in the absence of stimulus.
In general for the reference model, the initial values of
the variables are chosen such that it exhibits a steady
state behavior in the absence of a trigger. However, the
submodels of the reference model may not exhibit the
same property when starting from the same initial values.
Thus, the dynamic behaviors of the considered submodels
will exhibit the intertwined influences of two tendencies:
the migration from a (possibly) unstable state and the re-
sponse to the stimulus. In this context, an analysis of the
efficiency of the response and the robustness of the alter-
native models may lead to erroneous conclusions. As an
alternative, we propose in this paper to chose the initial
values in such a way that each alternative design starts
from its own steady state. Our main motivation for this is
that we considered all submodels to be viable alternatives
for the biological system and, as such, they should exhibit
(some of) its main properties. Regarding the values of the
kinetic parameters in each of the alternative submodes,
there are several approaches in the literature. In the
mathematically controlled comparison approach, the
values of the kinetic parameters in each of the alternative

designs are uniquely determined from the parameters of
the reference model; see, for example, refs. [2] and [23].
Another approach is to chose in each alternative submo-
del independent values for the kinetic parameters, e.g.,
through parameter estimation and validation against ex-
perimental data; see, for example, refs. [15]. However, re-
stricting to some particular values for the kinetic rate
constants will also confine the conclusions of our analysis
to that particular system. Instead, we take the approach
proposed in refs. [11] and [12] and we sample a large set
of parameter values from a given range of values. Then
we use some statistical techniques to analyze various
properties of a general class of systems which includes
the considered system. In particular, for each sampled pa-
rameter vector, various functional effectiveness measures
are computed both in the reference and in the alternative
models. Then by analyzing both the density of ratios plots
and the moving median plots one can identify and quanti-
fy the differences in the dynamic behaviors of the consid-
ered models. See e.g., for example, refs. [31] and [53] for
some case studies where these methods were applied.
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Abstract

In vitro assembly of intermediate filaments from tetrameric vimentin consists of
a very rapid phase of tetramers laterally associating into unit-length filaments
and a slow phase of filament elongation. We focus in this paperon a system-
atic quantitative investigation of two molecular models for filament assembly, re-
cently proposed in (Kirmse et alJ. Biol. Chem. 282, 52 (2007), 18563–18572),
through mathematical modeling, model fitting, and model validation. We analyze
the quantitative contribution of each filament elongation strategy: with tetramers,
with unit-length filaments, with longer filaments, or combinations thereof. In
each case, we discuss the numerical fitting of the model with respect to one set
of data, and its separate validation with respect to a second, different set of data.
We introduce a high-resolution model for vimentin filament self-assembly, able
to capture the detailed dynamics of filaments of arbitrary length. This provides
much more predictive power for the model, in comparison to previous models
where only the mean length of all filaments in the solution could be analyzed. We
show how kinetic observations on low-resolution models canbe extrapolated to
the high-resolution model and used for lowering its complexity.

Keywords: Mathematical modeling — Protein self-assembly — Quantitative
self-assembly strategies — Model resolution — Sensitivityanalysis — Filament
length distribution.
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1 Introduction

The cytoskeleton of eukaryotic cells is an intricate network of protein filaments
that extends throughout the cytoplasm. There are three types of protein filaments:
intermediate filaments(IFs), microtubules, andactin filaments, [24]. Together
with other proteins that attach to them, they form a system ofgirders, ropes, and
motors that gives the cell its mechanical strength, controls its shape, and drives and
guides its movements, see [17]. Compared with microtubulesand actin filaments,
IFs are more stable, tough and durable; in particular, IFs are the most insoluble
part of the cell, see [8]. IFs have an important structural function in reinforcing the
cells, organize cells into tissues, and most importantly, distribute the tensile forces
across the cells in a tissue, see [17]. Major degenerative diseases of skin, muscle,
and neurons are caused by disruptions of the IF cytoskeletonor its connections to
other cell structures. Currently, around80 diseases have been associated with the
IF gene family, including various skin fragility disorders, as well aslaminopathies,
a family of afflictions caused by point mutations in the laminA genes, [4, 5, 26].
A thorough understanding of the assembling principles of IFs can provide new
insights on comprehending these abnormal conditions, as well as a better basis
for diagnostic and possible treatment.

Contrary to the other protein filaments which are assembled from globular pro-
teins, see [11, 25, 22], IFs subunits areα-helical rods that assemble into rope-like
filaments [8]. Their assembly proceeds through a series of intermediate struc-
tures, which associate by lateral and end-to-end interactions. However, unlike in
the case of microtubules and actin filaments where rich literature is available, the
assembly principles of IFs are still poorly understood. We focus in this paper on
the quantitative kinetic strategies for thein vitro assembly of IFs from human vi-
mentin proteins (several other IF proteins exist, see [10]). On a first level of their
assembly, vimentin proteins rapidly associate parallellyinto dimers and then form
anti-parallel, half-staggered tetramers, see [9] and Figure 1 (a)-(e). Tetramers
then rapidly associate laterally to yield short filaments called unit-length filaments
(ULFs) of the same length as the tetramers, see [8] and Figure1 (f). On a second
level of the assembly, the ULFs and the emerging longer filaments elongate lon-
gitudinally with tetramers, with ULFs, and with other filaments, [8] and Figure 2.
On a third level, filaments undergo a radial compaction from an ULF diameter of
about15 nm to a filament diameter of about11 nm, see [8] for details.

We investigate in this paper two molecular models (the so-called simpleand
extendedmodels) introduced in [15] for thein vitro assembly of intermediate fi-
laments from tetrameric vimentin. We perform a quantitative analysis of the pre-
dictive capabilities of these models. We construct two massaction-based mathe-
matical models corresponding to the two molecular models. For each of them we
consider several different knockdown mutant model variants where various com-
binations of assembly mechanisms are analyzed separately.We use COPASI [12]
as a computational environment for the experimental data fitting (based on data
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(a)

(b)

(c)

(d)

(e)

Figure 1: The first stage in the assembly of human vimentin proteins. Interme-
diate filament subunits areα-helical rods, that associate parallelly into coiled-
coil dimers, which in turn form anti-parallel, half-staggered tetramers. Tetramers
rapidly associate laterally to yield the shortest filamentscalledunit-length fila-
ments(ULFs) of the same length as the tetramers. (a)α-helical rods, (b) coiled-
coil dimer, (c) another representation of a coiled-coil dimer, (d) tetramer, (e) ULF.

of [15] and [14]), the model validation, and the sensitivityanalysis. Our approach
for the numerical analysis of the models differs markedly from that of [15], see
Section 4 for a discussion.

Our study provides several conclusions regarding the kinetics of thein vitro
assembly of human vimentin. On one hand, we show that the filament elongation
process requires the end-to-end annealing of filaments as one of its features, which
is in agreement with the results of [15]. Indeed, in all of ourmodels where this re-
action was missing, either the model did not fit the experimental data or the model
was rejected in the validation round. Moreover, in almost all cases where the re-
action modeling the end-to-end annealing of filaments is present, its rate constant
is estimated to roughly the same value, although the other kinetic constants differ
from model to model. On the other hand, the quantitative contribution of the fila-
ment elongation with tetramers depends on the turnover rateof tetramers into unit
length filaments. If tetramers are quickly depleted from thesystem, e.g., through
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(a)

(b)

Figure 2: The two molecular models of thein vitro assembly of vimentin IF te-
tramers. (a) In thesimple modelfilaments undergo elongation either by (a.1)
longitudinal association of tetramers or (a.2) by end-to-end annealing of another
filament. (b) Theextended modeladds a distinction between minimal-length fila-
ments (ULFs) and longer filaments (consisting of at least 2 ULFs). In this case,
there is one extra possibility for filament elongation: (b.1) by tetramer, (b.2) by
the longitudinal association of a ULF, and (b.3) by another filament.

a high tetramer-to-ULF turnover rate as documented inin vitro experiments of
[15], then only one of eight possible assembly strategies correlates well with the
available experimental data, in agreement with conclusions of [15]. If free tetra-
mers are however available throughout the assembly, then weshow that several
different assembly strategies correlate similarly well with the experimental data.

One of the modeling challenges identified in [15] was to increase the resolu-
tion of the model: instead of collecting all filaments into a single variable, regard-
less of their length, one should describe separately the dynamics of filaments of
various lengths, at least up to a certain fixed, but arbitrarily high length, that we
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call the resolution of the model. Indeed, the quantitative experimental data of [15]
captures the levels of filaments of various lengths, but the data is only used in [15]
to calculate the mean length of all filaments in the solution.We provide in this pa-
per a generic solution to this problem, demonstrating how toenhance the existing
filament assembly models with the dynamics of the filament length distribution.
Our enhanced model can have arbitrarily high resolution, being able to capture the
dynamics of filaments of arbitrarily high length. The size ofthis detailed model
is considerably higher than that of the basic model, both in terms of molecular
species, as well as in terms of molecular reactions. Based onkinetic observa-
tions on the basic model, we show however how the size of the high-resolution
model can be drastically reduced. Our approach towards high-resolution models
for protein self-assembly is independent of the particulars of vimentin filaments
and can be applied to other instances of protein-protein interactions and protein
assemblies.

2 Models and methodology

2.1 Two molecular models for the assembly of vimentin IFs

The in vitro assembly of vimentin IF proteins consists of three major phases,
see [10]: (i) formation of the unit-length filaments (ULF) structures; (ii) longi-
tudinal annealing of ULFs and growing filaments; (iii) radial compaction of im-
mature filaments into mature IFs. We consider here two molecular models for this
process, originally introduced in [15]. Both of them focus on the first two phases
of the assembly, ignoring the third.

Thesimple modelof [15] treats ULFs as ordinary filaments and describes the
assembly process through a sequence of molecular events as follows, see also
Figure 2 (a):

(i) two tetramers (denotedT) associate laterally into an octamer (denotedO):

2T → O; (1)

(ii) two octamers associate laterally to yield a hexadecamer (denotedH):

2O → H (2)

(iii) two hexadecamers associate laterally to form a (unit length) filament (de-
notedF):

2H → F (3)

(iv) a tetramer associates longitudinally to a filament to yield an elongated fila-
ment:

F+T → F; (4)
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(v) two filaments associate longitudinally to yield an elongated filament:

F+F → F . (5)

The extended modelof [15] adds a distinction between minimal-length fila-
ments (ULFs, denotedU) and longer filaments (consisting of at least two ULFs),
treating them as distinct species in the model, see Figure 2 (b). In terms of molec-
ular events, the extended model consists of the following reactions:

(i’) two tetramers (denotedT) associate laterally into an octamer (denotedO):

2T → O; (6)

(ii’) two octamers associate laterally to yield a hexadecamer (denotedH):

2O → H (7)

(iii’) two hexadecamers associate laterally to form a unit length filament (denoted
U):

2H → U (8)

(iv’) two unit length filaments associate longitudinally toform an elongated fila-
ment (denotedF):

2U → F (9)

(v’) a filament is elongated longitudinally with a tetramer:

F+T → F (10)

(vi’) a filament is elongated longitudinally with a unit length filament:

F+U → F (11)

(vii’) two filaments associate longitudinally to yield an elongated filament:

F+F → F (12)

2.2 Mathematical models

We consider a mathematical formulation of the simple and theextended models
for IF assembly based on the mass-action law, where each molecular species is
represented by a continuous non-negative real function denoting its concentration
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in time. The system of differential equations corresponding to the simple model
is the following:

d[T]/dt = −2ks
1[T]

2 − ks
t [T][F] (13)

d[O]/dt = ks
1[T]

2 − 2ks
2[O]2 (14)

d[H]/dt = ks
2[O]2 − 2ks

3[H]
2 (15)

d[F]/dt = ks
3[H]

2 − ks
f [F]

2 (16)

whereks
1, k

s
2, k

s
3, k

s
t , k

s
f are the kinetic rate constants of reactions (1)-(5), respec-

tively.
The mathematical model corresponding to the extended modelconsists of the

following system of differential equations:

d[T]/dt = −2ke
1[T]

2 − ke
t [T][F] (17)

d[O]/dt = ke
1[T]

2 − 2ke
2[O]2 (18)

d[H]/dt = ke
2[O]2 − 2ke

3[H]
2 (19)

d[U]/dt = ke
3[H]

2 − 2ke
4[U]

2 − ke
u[U][F] (20)

d[F]/dt = ke
4[U]

2 − ke
f [F]

2 (21)

whereke
1, k

e
2, k

e
3, k

e
4, k

e
t , k

e
u, k

e
f are the kinetic rate constants of reactions (6)–(12),

respectively.
An interesting aspect here is that the mass conservation relation on the total

number of tetramers in the model is evident in the molecular models (since there
is no synthesis and no degradation in the model), whereas it cannot be deduced
as a property of either of the two corresponding mathematical models. This is
a consequence of how, for example, the longitudinal association of two filaments
is modeled: the information about the lengths of the two input filaments is not
explicitly reproduced in a property of the two filaments. Onecan however cal-
culate the number of tetramers integrated in the assembled filaments, as we do in
Section 2.3, and then use this quantity to reason about the time-dependant dynam-
ics of the mean filament length (MFL). We relate MFL to the experimental data
of [15] and discuss the numerical fit of the models in Section 3.

2.3 Calculating the mean filament length

Relating the models proposed in the previous section for IF assembly to the quan-
titative data on the dynamics of the filament length is non-trivial because the two
models do not represent explicitly the information about the length of the emerg-
ing filaments. Indeed, both models collect all filaments intoa single variable (F ),
regardless of their length. We show however in this section that the dynamics of
the mean filament length can in fact be deduced based on the variables of the two
models.
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Figure 3: (a) The unit-length filament is approximately63 nm long ([2]). (b)
However, each ULF associated longitudinally at the end of anexisting filament (or
ULF) elongates it by approximately 42 nm ([2]). This is due tothe interdigitation
by which two ULFs anneal longitudinally.

During the process of ULFs aggregation atomic force microscopy (AFM)
shows that each ULF associated longitudinally at the end of an existing filament
adds to the length of that filament less than the stand-alone length of a ULF,
see [2]. In the model for vimentin assembly of [2] this is due to interdigitation
of the ULF and the filament to each other, see Figure 3. The stand-alone unit-
length filament is approximately63 nm long ([2]), while each additional ULF
elongates a filament by approximately 42 nm ([2]).

We denote byLm(t) the time-dependent expression for the mean filament
length (MFL) at timet. We also denote by#TF (t) the total number of all tetra-
mers integrated in the assembled filaments at timet. Since we consider two cate-
gories of filaments,U andF, we obtain that

Lm(t) =
lF (t) + lU(t)

#F (t) + #U(t)
, (22)

wherelF (t) andlU(t) denote the total length of all filaments and the total-length
of all ULFs at timet, while #F (t) and#U(t) denote the total number of all
filaments and that of all ULFs, respectively. Since in each filament the first ULF
accounts forlULF ≃ 63 nm of the total length of that filament and all the additional
ULFs elongate the filament byladdULF ≃ 42 nm, we have that

lF (t) = (#UF (t)−#F (t)) · laddULF +#F (t) · lULF

= #UF (t) · laddULF +#F (t) · (lULF − laddULF ),

where#UF (t) denotes the the total number of all ULFs in all filaments, in time.
Since ULFs consist on average of eight tetramers, we have that

#UF (t) =
#TF (t)

8
,

where#TF (t) is the number of tetramers already assembled into filaments.
We denote byc0 the initial molar concentration of all tetramers in the system

(occurring in any of the molecular species of the model: tetramers, octamers,
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hexadecamers, ULFs, or filaments). Then, in the case of the extended model we
obtain

#TF (t) = (c0 − [T ](t)− 2 [O](t)− 4 [H ](t)

− 8 [U ](t)) ·NA · V,

whereNA is the Avogadro constant andV is the volume of the system. Thus, (22)
becomes

Lm(t) =
c0−[T ](t)−2 [O](t)−4 [H](t)−8 [U ](t)

8
· laddULF

([F ](t) + [U ](t))

+
[F ](t) · (lULF − laddULF ) + lULF · [U ](t)

([F ](t) + [U ](t))
.

In the case of the simple model, we obtain that

#TF (t) = (c0 − [T ](t)− 2 [O](t)− 4 [H ](t)) ·NA · V.

Thus, (22) becomes

Lm(t) =
c0−[T ](t)−2 [O](t)−4 [H](t)

8
· laddULF

[F ](t)

+ (lULF − laddULF ).

Since the volumeV of the considered system does not change, the molar concen-
trations are expressed simply in terms of micromoles (without reciprocal of the
volume unit) in the continuation.

2.3.1 Experimental data and model fitting

For the parameter estimations and model validations we usedthe experimental
data from [14] on thein vitro assembly process of recombinant vimentin at37 ◦C.
The data consists of two sets, each containing the length distributions of growing
filaments at distinct time points up to20 min. The data sets were obtained by
adsorption of the filaments onto carbon-coated copper gridsand measurements of
the filament lengths from images recorded with electron microscopy (EM) in two
cases: when the initial amount of tetramers was0.45 µM and0.9 µM. For each set
the time-dependent mean filament length (MFL) was calculated. The MFL values
together with the0.95 confidence intervals are presented in Table 1. For detailed
description of experimental procedures and discussion on the independence of the
measured MFLs from the support medium we refer to [15].

For fitting our mathematical models, we used the MFL data obtained for an
initial tetramer concentration of0.45 µM. For model validation, we then compared
the numerical prediction for the mean filament length with the experimental data
in Table 1 for an initial tetramer concentration of0.9 µM.

8



Table 1: Measurements on the mean filament length of vimentinprotein IFs, based
on EM data of [14] (data in [nm]); a preliminary version of thedata (containing
a few minor errors) is in [15].

Time [s]
Initial molar concentration of all tetramers (c0)

0.45µM 0.9µM
10 65.1±1.4 62.8±2.1
20 68.2±2.0
30 76.5±2.1 84.1±2.0
60 112.9±4.0 131.4±5.2

180 172.6±8.4
300 233.0±10.0 289.1±15.8
600 320.7±18.5 418.6±24.7
900 544.1±34.8

1200 474.9±37.2 821.3±41.5

We set the initial molar concentrations of all molecular species other than
tetramers to0, based on the setup of the experimental assays. Thus, there remained
to be estimated five independent parameters (rate constantsks

1, k
s
2, k

s
3, k

s
t andks

f )
for the simple model and seven of them (rate constantske

1, k
e
2, k

e
3, k

e
4, k

s
t , k

e
u andke

f )
for the extended model. Parameter estimations were performed in COPASI [12].

We also considered a qualitative property of the IF assembly, reported in [15]:
very quickly (within approximately10 seconds) after the initiation of the assem-
bly, ULF is the most predominant species in the system, whiletetramers are de-
pleted. This observation only applied for theab initio in vitro assembly of inter-
mediate filaments. The dynamics could however be very different if more free
tetramers were available for longer throughout the assembly (e.g., through an ad-
ditional tetramer synthesis mechanism). To test it, we considered two different
strategies for fitting our models: one where the tetramer-to-ULF turnover is fast,
and another where it is slow. While the latter setup does not mimic the presence
of a tetramer synthesis mechanism (introducing one would make it difficult to
compare the models), it does allow us to analyze the system inthe case where
tetramers are available for a longer period for the assembly. We demonstrate in
the next section that the two situations are indeed very different, in terms of which
filament elongation mechanisms (with tetramers, with ULFs,or with other fila-
ments) can explain the available experimental data.

The problem of estimating the parameters of computational models in systems
biology is difficult, see e.g., [3, 20, 21]. This problem can be formulated as a min-
imization of a cost function which quantifies the differences between the values
predicted by the model and the experimental measurements. There are numerous
methods, both local and global, which can be used to tackle this problem, each
with its own advantages and disadvantages. For instance, while local methods
work faster to find a solution, they tend to converge to local optima. On the other
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hand, global optimization methods are typically slower, but they tend to converge
to a global optimum. The global optimization methods can be further divided into
deterministic [6, 13] and stochastic approaches [1, 7]. Although the determinis-
tic methods guaranty the convergence to a global optimum, they cannot ensure the
termination of this process within a finite time interval [21]. On the other hand, the
inherent randomness of the stochastic approaches makes it very hard to guaranty
that these methods actually converge to the global optimum [21]. However, many
stochastic methods are capable of locating the vicinity of global solutions with
relative efficiency, i.e. they provide a very good approximation of the solution in
acceptable computation time [21]. This makes the stochastic global optimization
methods to be usually preferred for parameter estimation problems. We chose
COPASI, [12], as a computational environment for parameterfitting since it in-
cludes a number of various optimization algorithms, searching for either local or
global optimum values, see e.g., [19, 23]. This software is awidely used tool in the
computational systems biology modeling community, havinga documented good
performance, see e.g. [3, 20, 21]. In particular, for determining the best numerical
fits of our models, a suite of various global, stochastic parameter estimation pro-
cedures was used, comprising of methods such as Simulated Annealing, Genetic
Algorithm, Evolution Strategy using Stochastic Ranking, and Particle Swarm. All
these methods use specific strategies for sampling the parameter space looking for
combinations of parameter numerical values that give better and better fits of the
model predictions to the experimental data.

The fit of a model was performed by searching for a set of parameter values
that minimizes the sum of squared deviationsSSf of the values predicted by the
model from the0.45 µM experimental data. The validation of a fitted model was
performed by numerically simulating the model and by computing the sum of
squared deviationsSSv of the values predicted by the model from the0.9 µM ex-
perimental data. Moreover, the quality of the fit/validation for each model was es-
timated by a dimensionless number expressing the deviationof the model from the
experimental data, normalized by the mean of the predicted values. This method
for estimating the quality of model fit/validation was originally proposed in [16]
and it allows for comparison of different models and different data sets. The for-
mula for the quality of the fit (fq) is:

fq =

√

SSf/Nf

mean of predicted values
· 100%, (23)

whereNf is the number of0.45 µM experimental data points (in our caseNf = 8).
Similarly, the formula for the quality of the validation (vq) is:

vq =

√

SSv/Nv

mean of predicted values
· 100%, (24)

whereNv is the number of0.9 µM experimental data points (in our caseNv = 7).
It was argued in [16] that a low (say, lower than15%) value offq (vq) was con-
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(a) (b)

Figure 4: Time-dependent MFL growth corresponding to the simple model with-
out the quick filament formation requirement. (a) The model fit with respect to
the EM0.45 µM experimental data set. (b) Model validation based on the EM0.9
µM experimental data set. The continuous line is the model prediction regarding
Lm(t), that is compared with the experimental data showed with crossed points.
The short vertical lines represent the0.95 confidence intervals for the experimen-
tal data.

Table 2: Kinetic rate constant values inµM−1s−1 for the simple model.
ks
1 ks

2 ks
3 ks

t ks
f

3.39 · 10−3 30 30 0.83 0.11

sidered as an indicator of a successful fit (validation). We discuss the numerical
values offq andvq for all our models in Section 3.

3 Results

3.1 Data fitting the simple model

The kinetic rate constants in Table 2 yield an excellent fit (fq = 2.52%) of the
simple model for the experimental data from the assay with 0.45 µM tetramers
and a good validation (vq = 12.07%) of the model when compared with the data
from the assay with 0.9µM initial concentration of tetramers, see Figure 4.

This model however could not confirm the quick turnover of tetramers into
filaments. When this condition was taken into considerationby searching for
relatively high numerical values ofks

1, k
s
2, andks

3 (higher than 1µM−1s−1), the fit
of the model to the experimental data was unsuccessful (fq = 26.00%), despite
numerous rounds of parameter estimation. The following mathematical argument
is also indicating that this model cannot be given a reasonable fit. Based on the
observation that tetramers are quickly depleted (within10 seconds) by turning
them into ULFs, the model can be split into two processes separated in time: first,
the formation of filaments from tetramers, i.e.2T → O, 2O → H, 2H → F,
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and second, the elongation of filaments, i.e.F+F → F. The steady state value
of F in the first process is an initial value ofF in the second one. The second
process is described by the differential equationdF /dt = −k F2, which has an
analytical solution of the formF(t) = F0 /(1 + k t F0), whereF0 is the initial
value ofF. The initial concentration of tetramers in the first processis c0, hence it
follows thatF0 = c0/8 since all tetramers are turned into ULFs. In consequence,
the mean filament length can be expressed as

Lm(t) = lULF +
k c0 t

8
.

Thus,Lm(t) is a linear function. By plotting the experimental data in Table 1 for
time points after30 seconds, together with their0.95 confidence intervals one can
see that there exists nok such that the model would be fitted and validated against
the data.

3.2 Data fitting the extended model

In the case of the extended model we distinguished among three modes for fila-
ment elongation: (i) with a tetramer, (ii) with a ULF, or (iii) with another filament,
see Figure 2 (b). We investigated all eight possible combinations of these three
mechanisms and performed parameter estimation and numerical model validation
for each of them, see Figure 5. Excluding any of the three modes from the inves-
tigation was done by simply setting to0 the corresponding rate constants, i.e.ke

t ,
ke
u, andke

f , respectively.

3.2.1 The extended model with fast ULF formation.

In the case of fast tetramers-to-ULF turnover, both the simple model and the ex-
tended model can be reduced. Indeed, in this case, the populations of tetramers,
octamers, and hexadecamers are all quickly depleted (in a matter of seconds),
leaving only the filaments as the dominant species. Consequently, the longitudi-
nal assembly of tetramers to filaments has a negligible contribution to the overall
dynamics of the model: in the first few seconds the reaction isstrangled by the
negligible population of filaments, whereas later on the population of tetramers is
depleted. This is in agreement with [15], where it was observed that this particular
elongation has insignificant role. In this case we setke

t = 0 and we searched for
numerical values for the kinetic rate constantske

1, k
e
2, andke

3 that are greater than
3 µM−1s−1, to ensure a fast tetramer-to-ULF turnover. It turned out that scenario
VIII, where ke

u = ke
f = 0, could be immediately excluded. Indeed, in this sce-

nario no filament containing more than two ULFs could be assembled and so, all
filaments would be at most100 nm long, contradicting the experimental data in
Table 1.

Scenarios VI and VII, where the filament elongation takes place only by ULF
extension (ke

f = 0), or only by filament extension (ke
u = 0), respectively, could

12



Scenario I Scenario II

Scenario III Scenario IV

Scenario V Scenario VI

Scenario VII Scenario VIII

Figure 5: The eight possible scenarios for filament elongation. The tetra-
mers/ULFs/filaments are illustrated with the same type of block as in Figure 2.

Table 3: Kinetic rate constant values inµM−1s−1 (under fast ULF formation re-
quirement).

ke
1 ke

2 ke
3 ke

4 ke
u ke

f

3 30 30 0.25 0.95 0.11

not be fitted: for Scenario VI we obtainedfq = 22.77% and for Scenario VII
fq = 14.99%, vq = 16.07%. We concluded that these two strategies do not
represent viable pathways for vimentin IFs assembly.

In the case of scenario V we were able to obtain numerical values for the pa-
rameters, see Table 3, such that the predicted mean filament length was in good
agrement with the experimental data (fq = 3.66%, vq = 11.45%), virtually iden-
tical to that of the simple model, showed in Figure 4. We concluded that this
pathway, where the filament elongation is enabled both with ULFs and with other
filaments, is the only viable strategy for vimentin IFs assembly. This is in agree-
ment with observations of [15].

Numerically fitting this scenario, we noticed that the values of the two nu-
merical parameterke

2 andke
3 can be modified arbitrarily within the[3, 30] interval
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Table 4: Fit and validation quality measure values for scenarios I–VII (without
the fast ULF formation requirement).

I II III IV V VI VII

fq 1.71% 6.50% 1.98% 6.79% 2.04% 6.54% 13.01%

vq 12.70% 29.03% 12.36% 25.83% 12.65% 29.11% 19.19%

Table 5: Kinetic rate constant values inµM−1s−1 of scenarios I–VII (without the
fast ULF formation requirement).

I II III IV V VI VII

ke
1

0.0705 30 4.83 · 10−3 4.58 · 10−3 1.24 30 30

ke
2

30 30 30 10−09 17.78 30 30

ke3 11.34 4.63 · 10−3 21.25 6.06 · 10−5 2.65 · 10−2 4.67 · 10−3 30

ke
4

0.32 10.69 30 30 11.16 10.69 2.56

ket 15.48 30 0.61 0.84 0 0 0

keu 0.59 30 0 0 11.57 30 0

kef 0.10 0 0.10 0 0.10 0 0.15

without any significant change in the mean filament length prediction. This in-
dicates that the extended model under the fast ULF formationexhibits almost no
sensitivity of mean filament length with respect to these twoparameters in the
mentioned interval and, in consequence, our computationalmodel turns to have
less degrees of freedom in terms of the numerical fit.

3.2.2 The extended model with slow ULF formation.

In this case, we searched for arbitrary positive numerical values for the kinetic
rate constantske

1, k
e
2, andke

3. The result of fitting and validating the extended
model are very different in this case. We find that three out ofthe eight pathways
analyzed in this paper for vimentin IFs assembly can explainthe experimental
data, see Figures 6 and 7.

Scenario VIII could not be fitted based on similar considerations as in the case
of the fast ULF formation, see Figure 7 VIII(a) and VIII(b). In the case of the other
seven pathways, the model fit with respect to the EM0.45 µM data and the model
validation with respect to the EM0.9 µM data yielded good results, summarized
in Table 5, see Figures 6 and 7V-VII. We noted that in the case of scenarios II, IV,
and VI the experimental MFL measurement at1200 seconds for the EM0.9 µM
data was an outlier. In all these three scenarios, we haveke

f = 0, which indicates
that the process of end-to-end filament annealing plays a crucial role in the later
stages of the IFs elongation process, i.e., after the first600 seconds. In the case
of scenario VII, the model left several experimental data points as outliers, see
Figure 7VII(a) and (b).

We concluded that scenarios I, III, and V are similarly good in explaining the
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I(a) I(b)

II(a) II(b)

III(a) III(b)

IV(a) IV(b)

Figure 6: I(a)–IV(a) The model fit of the scenarios I to IV withrespect to the EM
0.45 µM experimental data set. I(b)–IV(b) Model validation of thescenarios I to
IV with respect to the EM0.9 µM experimental data set. The continuous line is
the model prediction regardingLm(t), that is compared with the experimental data
showed with crossed points. The short vertical lines represent the0.95 confidence
intervals for the experimental data.
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V(a) V(b)

VI(a) VI(b)

VII(a) VII(b)

VIII(a) VIII(b)

Figure 7: V(a)–VIII(a) The model fit of the scenarios V to VIIIwith respect to
the EM 0.45 µM experimental data set. V(b)–VIII(b) Model validation of the
scenarios V to VIII with respect to the EM0.9 µM experimental data set. The
continuous line is the model prediction regardingLm(t), that is compared with the
experimental data showed with crossed points. The short vertical lines represent
the0.95 confidence intervals for the experimental data.
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experimental data in this case. These models correspond to the following three
pathways for filament elongation:

– Scenario I: by a tetramer, a ULF or another filament longitudinal elongation;

– Scenario III: by a tetramer or a filament longitudinal elongation;

– Scenario V: by a ULF or a filament longitudinal elongation.

3.3 Sensitivity analysis of the mean filament length

The effect of small variations in the model’s parameters over the evolution of the
entire model is estimated by the sensitivity analysis. Thismathematical method
consists in determining the time evolution of the partial derivatives of the solution
of the system with respect to the parameters of the system. Weinvestigated the
sensitivity of the mean filament length, i.e., theLm(t) function, with respect to the
parameters of the model. We compared the results of the sensitivity analysis in
the case of Scenarios I-VII of the extended model in order to gain further insight
into the possible pathways for IF vimentin assembly.

The concentration sensitivity coefficients are the time functions∂Xi/∂κj for
all 1 ≤ i ≤ 5 and1 ≤ j ≤ 7, whereX = (X1, . . . , X5) is the vector of the model
variables ([T], [O], [H], [U], and [F], respectively) andκ = (κ1, . . . , κ7) is the
vector of the model parameters (ke

1, k
e
2, k

e
3, k

e
4, k

e
t , k

e
u, andke

f , respectively). The
sensitivity of the mean filament length with respect to the parameters is obtained
as follows:

∂Lm(t)

∂κj

=
∂Lm

∂X

∂X

∂κj

=
∂Lm

∂X1

∂X1

∂κj

+ · · ·+
∂Lm

∂X5

∂X5

∂κj

,

for all 1 ≤ j ≤ 7.
Since we want to compare the MFL sensitivities of several models, we trans-

form these coefficients into dimensionless measurements bynormalizing them:

κj

Lm(t)

∂Lm(t)

∂κj

=
∂ lnLm(t)

∂ ln κj

, for all 1 ≤ j ≤ 7.

We can interpret these coefficients as follows: in Scenario I, an increase of1% of
the parameterke

f would generate at timet = 1200 s an increase of0.5165% of the
MFL, roughly as predicted by the value of∂ ln(Lm)/∂ ln(kf) at timet = 1200,
see Figure 8 b).

In the case of the extended model with fast ULF formation, only scenario
V could be experimentally validated. The results of the sensitivity analysis in
this case are presented in Figure 8 a). The most significant coefficients are with
respect to theke

4, k
e
u, andke

f parameters, with the latter one being the most signifi-
cant. This is consistent with the biological intuition thatthe mean filament length
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Figure 8: The non-negligible sensitivity coefficients of the MFL measurement for
the mathematical models corresponding to the scenario withfast ULF formation
requirement and the scenarios I to VII.
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is most dependent on the rate of filament formation (parameter ke
4) and elonga-

tion (parameterske
u andke

f ). Less intuitive is the fact that there is a negligible
dependency of the MFL measurement on the rate constantske

1, k
e
2, andke

3, which
determine the fast ULF formation. The rationale for this result is that these ki-
netic constants play a role only in the first seconds of the assembly. Once the vast
majority of tetramers are assembled into ULFs, their further contribution to the
model dynamics is insignificant.

The numerical time simulation of the non-negligible normalized MFL sensi-
tivity coefficients for scenarios I-VII without fast ULF formation requirement are
presented in Figure 8 b)–h). It turned out that the mean filament length is most
sensitive toke

u and especially toke
f , when these constants are non-zero. This obser-

vation helps explain whyke
f is estimated to very similar values in most scenarios

where its role is considered. Note also that while the sensitivity coefficient with
respect toke

f increases mainly after about 200 seconds, the sensitivity coefficients
for the parameterske

t andke
u have a steep increase in the first 100–200 seconds

(except in scenario VII where filament elongation takes place only by longitudi-
nal filament aggregation). The biological intuition here isthat on one hand, until
approximately 200 seconds the assembled filaments are relatively short and much
fewer than the ULF’s, while on the other hand the number of ULFs and of free
tetramers becomes very low after about 200 seconds.

3.4 The length distribution of filaments in time

The models discussed so far in this paper, as well as those in [15] collect all fi-
laments other than ULFs into one single variable denotedF , regardless of their
length. This approach is indeed enough for capturing the time-dependent dynam-
ics of the mean filament length, that could then be related to experimental data and
used for parameter estimation and model validation. As pointed out also in [15],
this modeling approach is however unsuitable for capturingthe time-dependent
distribution of the filament lengths. Indeed, the length of the assembling filaments
is not directly captured in the models, which makes it impossible to reason about
the time-dependant concentration of filaments of some givenlength. We describe
in this section a refined model for the self-assembly of vimentin filaments that al-
lows capturing the evolution of filaments of length up ton, for any given positive
integern.

For all i with 1 ≤ i ≤ n, we denote byFi the population of all filaments
of length exactlyi, where the length is in terms of the number of ULFs that the
filament consists of. Thus, the ULFs are denoted byF1 in the new model, the
filaments formed by the longitudinal extension of a ULF with another ULF have
length 2 and are denoted byF2, etc. The population of all filaments of length
higher thann is denoted byF≥n+1. The longitudinal extension of a filamentFi

(of lengthi ≤ n) with a filamentFj (of lengthj ≤ n) yields a filament of length
Fi+j if i+j ≤ n and a filamentF≥n+1 if i+j ≥ n+1. The extension of a filament
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F≥n+1 with any other filament yields a filamentF≥n+1.
When describing the extended model for filament self-assembly based on the

populationsFi, 1 ≤ i ≤ n, andF≥n+1, a considerable challenge is posed by the
elongation of a filament with tetramers. Indeed, such a longitudinal elongation
leads to a filament that ends with an incomplete ULF. Only after the lateral asso-
ciation of seven other tetramers would this be a complete filament of length one
higher. This difficulty can be addressed by introducing a notation of the typeF j,k

i

with 1 ≤ i ≤ n and0 ≤ j, k ≤ 7 to denote filaments consisting ofi complete
ULFs, an incomplete ULF withj tetramers at their left end, and an incomplete
ULF with k tetramers at their right end, see Figure 9. One would also denote
by F j,k

≥n+1 the filaments consisting of more thann complete ULFs, an incomplete
ULF with j tetramers at their left end, and an incomplete ULF withk tetramers at
their right end. This approach leads however to a steep increase in the number of
model variables. For example, forn = 10, the model would have396 variables
just to denote the different types of filaments.

To keep the size of the model manageable we can however take advantage of
the kinetic observations we made on the extended model for filament assembly
in Section 3.2: in the case of fast ULF formation we have demonstrated that the
longitudinal elongation of filaments with tetramers has negligible kinetic influ-
ence on the dynamics of the model and that eliminating it leads to a numerically
equivalent model. Consequently, we can ignore all possiblefilaments having in-
complete ULFs at either end, since essentially all tetramers in the system assemble
into ULFs within a very short period of time. In this case our model consists of
the following reactions:

(T ) T + T → O;
(O) O +O → H ;
(H) H +H → F1;
(Ai,j) Fi + Fj → Fi+j ,

for all 1 ≤ i ≤ j ≤ n such that
i+ j ≤ n;

(Bi,j) Fi + Fj → F≥n+1,
for all 1 ≤ i ≤ j ≤ n such that
i+ j ≥ n + 1;

(Ci) F≥n+1 + Fi → F≥n+1,
for all 1 ≤ i ≤ n;

(D) F≥n+1 + F≥n+1 → F≥n+1.

We call this amodel of resolutionn, see Figure 10 for an illustration. For example,
in the case ofn = 10, the model consists of14 variables and69 reactions.

The initial values of all variables except forT are set to0, while that ofT is
assumed the same as in the extended model in Section 3.2. The kinetic rate con-
stants of the new model are set in such a way that the overall number of filaments
is the same as in the extended model. The kinetics of reactions (T), (O), and (H)
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Figure 9: A filament consisting of 5 complete ULFs, an incomplete ULF with 2
tetramers at the left end, and an incomplete ULF with 3 tetramers at the right end.
We denote it in our model withF 2,3

5 .

are the same as in the corresponding reactions of the extended model. Ifai,j is the
kinetic rate constant of reaction (Ai,j), bi,j that of reaction (Bi,j), ci that of reaction
(Ci), andd that of reaction (D), then we set their values as follows:

• a1,1 = ke
4, a1,j = ke

u, for all 1 < j ≤ n;

• b1,j = c1 = ke
u, for all 1 ≤ j ≤ n;

• ai,i = bi,i = ke
f , for all 1 < i ≤ n, andai,j = bi,j = ci = 2ke

f , for all
1 < i < j ≤ n;

• d = ke
f .

Based on the corresponding ODE models, a straightforward calculation shows
that with these kinetic constants, the extended model of Section 3.2 and the model
of resolutionn are equivalent in the following sense:

• [F1](t) = [U ](t) and

• ([F2] + . . .+ [Fn] + [F≥n])(t) = [F ](t),

for all time pointst ≥ 0.
As an example, we have implemented in COPASI the model in the case of

n = 10. In Figure 11 we plotted this model’s prediction for the distribution in
time of all filaments of length at least two. The resulting dynamics is in line with
the biological expectation. For example, the number of filaments of length two,
F2, witnesses a sharp increase right after the start of the experiment, as tetramers
are turned into (short) filaments.F2 then decreases quickly as filaments start com-
bining to each other to yield longer filaments.

4 Discussion

Related work. A recent review of the biochemistry of the intermediate fila-
ments, including kinetic aspects of their self-assembly isin [8]. The simple and
extended models for the self-assembly of vimentin proteinswere originally inves-
tigated in [15]. The approach used in the fitting and the validation of the models
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Figure 10: The scheme of a model of resolution3 for the self-assembly of IF. We
partition the population of filaments into filaments of length one (F1), of length
two (F2), and of length at least three (F≥3). The longitudinal annealing of two
filaments of length one yields a filament of length two (F1 + F1 → F2), that of
a filament of length one and another of length two yields a filament of length at
least three (F1 + F2 → F≥3), the annealing of two filaments of length two yields
a filament of length at least three (F2 + F2 → F≥3), and that of two filaments
of length at least three results in a filament belonging to thesameF≥3 group
(F≥3 + F≥3 → F≥3).
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Figure 11: Model prediction for the distribution in time of all the filaments con-
taining from two to ten ULFs.
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was somewhat ad-hoc in [15], as discussed below. We made in our paper a sys-
tematic investigation of the kinetics of the two models for intermediate filament
self-assembly, based on well-established techniques of model fit and model vali-
dation. Some of our results confirm those of [15], while others bring a new insight
into the nature of filament assembly. We discuss in the following the main points
of divergence between our approach and that of [15].

A main difference concerns the mathematical modeling of thesimple and the
extended models. The models in [15] assume that the lateral association of two
tetramers, of two octamers, and of two hexadecamers have thesame kinetic rate
constants. This strong model assumption is however unsubstantiated by experi-
mental evidence and leads to limiting the range of possible model behaviors. We
assign different kinetic constants for each different reaction to allow maximum
flexibility in the predictive power of the models.

Our mathematical expression for the mean filament length differs from the one
presented in [15]. In there, the authors use a so-calledlinear density variabledl,
set at43.5 nm, representing the length of a ULF inside a filament, regardless of
whether the ULF is the first of the filament, or a subsequent one. This distinction
is however crucial for estimating the mean filament length. Indeed, ignoring this
distinction introduces an approximation error which is proportional to the length
of each filament. For example, according to the formula from [15], the length of
a filament consisting of only two ULFs is2× 43.5 nm= 87 nm, while according
to the current knowledge regarding filaments measurements,see [2], its length is
63 nm+ 42 nm = 105 nm. Consequently, [15] introduces a so-called correction
factor that only partially addresses the problem. Our approach for computing the
MFL value is not influenced by this approximation error and leads to a correct
interpretation of the experimental data.

For the experimental data fit of the models, [15] performs a so-called pre-
assessment of the eight variants of the extended model. Based on somefixed
parameter values, the eight variants are classified into four classes of dynamics.
Three of the classes are then quickly dismissed from the analysis and only one
representative of the remaining class is chosen for furtherassessment. This ap-
proach is however assuming that the classification of the dynamics of the eight
model variants is independent of the parameter values, which is most likely not
true for mathematical models with5 or more parameters, such as those in [15]. In
our case the approach was different. During parameter estimation we fitted all the
variants of the extended model with respect to the EM0.45 µM experimental data
set. We then took advantage of the available data from the EM0.9 µM experiment
and performed model validation by comparing the predictions of the models with
the experimental data. On the contrary, the second set of data was used in [15]
in a second round of model fit, yielding different numerical values for the model
parameters.

For the sake of having models of small size, in the first part ofthe paper we do
not distinguish between filaments of different sizes and we use for the filament-
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filament extensions a “generic” kinetic constant. However,in the second part of
the paper we explicitly address the problem of extending themolecular model to
distinguish between filaments of different sizes, recognizing that different con-
stants may/should be used depending on the size of the filaments. We approach
the problem from a numerical point of view, aiming to build the extended model
in such a way that the numerical fit of the original model is preserved. On the
other hand, in [18] a physical approach to estimate how the size of the complexes
influences the binding rates is taken. However, this approach is based on the hy-
potheses that: i) reactants are shaped like balls and, especially, ii) the diameter of
the balls representing larger complexes is the same as the diameter of the balls rep-
resenting small complexes. Unfortunately, these assumptions make the approach
of [18] unsuitable for filament-filament interactions. The approach might be de-
veloped further to suit our models by modifying the reactants-as-balls assumption
and/or the assumption regarding the size of the larger complexes. This would re-
quire the recalculation of the collision probabilities in the stochastic approach to
chemical kinetics. This however is a project in itself, distinct from the aim and
scope of this paper.

Conclusions and further work. Our mathematical models show that if tetra-
mers are very quickly (in just a few seconds) assembled into ULFs, then the elon-
gation of filaments with ULFs and with other filaments both play a crucial role
in the formation of long intermediate filaments. The elongation with tetramers on
the other hand, has negligible quantitative contribution to the filament assembly.
One reason for this is that in the case of fast ULF formation, the population of
tetramers is very quickly depleted. However, this leaves open the question of the
filament assembly dynamics in the case when tetramers would be continuously
added to the system, i.e. by an additional synthesis mechanism. To address this
problem, we investigated our mathematical models in the case when the turnover
of tetramers into ULFs is slower. It turned out that in case the tetramers persist
in the system for a longer time, the dynamics of the filament assembly is much
richer and several different mechanisms can equally well explain the available ex-
perimental data. In fact, even the simple model discussed in[15] and in our paper
could be fitted to the experimental data. Anin vitro experiment where tetramers
were added either continuously or at well-chosen time points could offer more in-
sight into the role of tetramer longitudinal aggregation for the process of filament
elongation. Choosing the time points when the additional amount of tetramers
should be added to the solution could be done based on the analysis of our mathe-
matical models. For example, one could choose the time points where the number
of filaments in the solution is close to its maximum, so that the possible interplay
between tetramers and filaments has maximum flux.

It is visible already from the experimental data that the system does not reach
a steady state within 20 minutes, our time interval of choice. Similarly as in the
study in [15], we have focused on the early dynamics of the vimentin filament
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assembly, where the kinetics of the system is fast, with tetramers and ULFs being
quickly replaced by emerging filaments of various lengths. During this phase, the
presence of a large amount of tetramers and, a little later, of short filaments in the
solution make far more likely assembly/elongation events rather than disassembly
events. For this reason our models turn out to be able to explain the experimental
data during the early phase of the assembly, even though theydo not include any
disassembly or filament breaking mechanisms. The applicability of the models is
however tied to the early part of the assembly. Over longer time intervals (e.g.,
long enough so that the experimental data may potentially show a steady state),
the lack of a disassembly mechanism in the models makes them limited in their
predictive power. For example, a model with no disassembly or filament breaking
mechanism would predict that the system will reach (albeit in a huge interval
of time) a steady state where all initial tetramers are integrated into one single
filament (of huge length).

The methodology introduced in this paper for increasing theresolution of the
filament assembly model helps provide a deep insight into thedynamics of fila-
ment self-assembly. Details on the assembly of filaments of various lengths will
help in designing finer grained experimental assays that would focus on filaments
of different lengths at different time points. In terms of model complexity, in-
creasing the resolution of the model implies a considerableincrease in the size of
the model, linear in the number of variables and quadratic inthe number of reac-
tions. We showed however that the kinetic rate constants canbe set from a model
of low resolution to one of higher resolution in such a way that the model predic-
tions on the dynamics of the total amount of filaments, regardless of their length,
are preserved. In particular, this implies that given generic data on, for example,
the mean filament length, the model fit and the model validation problems can
be solved on the (smaller) model of low resolution and then extrapolated to the
models of higher resolution.
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Abstract

Model refinement is an important aspect of the model-building process. It can
be described as a procedure which, starting from an abstractmodel of a system,
performs a number of refinement steps in result of which a moredetailed model
is obtained. At the same time, in order to be correct, the refinement mechanism
has to be capable of preserving already proven systemic quantitative properties of
the original model, e.g. model fit, stochastic semantics, etc. In this study we con-
centrate on the refinement in the case of self-assembly models. Self-assembly is
a process in which a disordered ensemble of basic componentsforms an organized
structure as a result of specific, local interactions among these components, with-
out external guidance. We develop a generic formal model forthis process and
introduce a notion of model resolution capturing the maximum size up to which
objects can be distinguished individually in the model. Allbigger objects are
treated homogenously in the model. We show how this self-assembly model can
be systematically refined in such a way that its resolution can be increased and de-
creased while preserving the original model fit to experimental data, without the
need for tedious, computationally expensive process of parameter refitting. We
demonstrate how the introduced methodology can be applied to a previously pub-
lished model: we consider the case-study ofin vitro self-assembly of intermediate
filaments.

Keywords: Model refinement — Model resolution — Self-assembly — Model fit
— Intermediate filaments
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1 Introduction

The great complexity of biological systems enforces the need for representing
them in formal models in order to investigate them and make specific predictions
about their behaviour that can be tested in subsequent experiments. Starting from
a model abstracting a biological system, the iterative process of hypothesis gen-
eration, experimental design, experimental analysis, andmodel refinement lies at
the core of systems biology ([4, 16, 22]). Even more, this approach is proposed as
the only logical way for biology to advance ([19]). Development and refinement
of a mathematical model of a biochemical process proceeds, in general, in accor-
dance with the following scenario. First, an abstraction ofthe process is made
by identifying a relatively small set of biochemical reactions which are capturing
the main features of the process’ machinery. The chosen biochemical reactions
may be very abstract themselves, i.e. one reaction may in fact encapsulate many
real reactions which constitute a whole subprocess in a living organism. Second,
the molecular model formed of the chosen reactions is transformed into an asso-
ciated mathematical model. This usually involves two steps: obtaining equations
describing the dynamics of the system by assuming some proper kinetic law, e.g.
mass-action law, Michaelis-Menten kinetics, etc., and then identifying the model
parameter values so that the model fits some experimental data.

During the process of model development some simplifications and abstrac-
tions are introduced. With time, there may be a necessity forthem to be refined
and modelled in a more detailed, accurate way. However, somecarefulness is
required on this stage. For example, one could take all the intended changes
into consideration while simply repeating the whole model development pro-
cedure. But this solution involves repeating from scratch the time-consuming,
computationally-intensive model fitting, see [5]. Anotherapproach, not much in-
vestigated in the literature, is to refine the model in such a way that the previously
obtained fit is preserved. This basically implies deriving the parameter values of
the refined model from the ones of the original model.

In this study we concentrate on the step of model refinement inthe iterative
cycle of systems biology, which is an important aspect of themodel-building pro-
cess. In particular, we develop a refinement procedure for a family of ordinary
differential equation (ODE) models describing the processof self-assembly. Self-
assembly is a process in result of which some pronounced structures emerge out
of an ensemble of scattered basic elements. Important is thefact that the arrange-
ments take place based just on local interactions between the building blocks,
without any external guidance. In our work we develop a generic formal model
for self-assembly. It consists of an ensemble of all possible objects that can po-
tentially appear in the course of the self-assembly, a composition operation and
a mapping from objects of the ensemble to positive integers.The number is inter-
preted as the size of the considered object. The generic model allows us to further
introduce the notion of model resolution. We continue by discussing the refine-
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ment of such models, i.e. we formally show how the resolutionof a self-assembly
model can be increased and decreased while preserving the original model fit to
experimental data. We demonstrate how our methodology of self-assembly model
refinement can be applied to an existing model. To this aim we utilize the previ-
ously published model of thein vitro assembly of intermediate filaments from
tetrameric vimentin, see [6, 15].

Our methodology of self-assembly model refinement is a particular instance
of formal model refinement. This topic has been extensively studied in Computer
Science, see, e.g., [3, 23, 24], especially in connection toformal software spec-
ifications. The method we propose is an instance ofdata refinement, where one
replaces a variable with a set of other variables in a way thatintroduces more
details into the model, while keeping the model constraintsunchanged.

The paper is organized as follows. First, a general, formal characterization
of the self-assembly process is presented. Then, the notionof model resolution
is introduced and the model refinement procedure consistingin increasing and
decreasing the model resolution while preserving the fit to experimental data is
described. Finally, the technique is applied in a case studywhere the self-assembly
of intermediate filaments is considered.

2 A generic model for self-assembly

Self-assembly is a term coined to name processes in which a disordered ensemble
of basic components forms an organized structure as a resultof specific, local
interactions among these components, without external guidance. In a general
case, the process of self-assembly can be formalized as follows. We consider
an ensembleE of all possible objects that can potentially appear in the course
of the self-assembly process, including the initial ones. Each objectO from the
ensemble has a scalar valuesize(O) associated with it and determined through
a mappingsize : E → N+. Moreover, the objects fromE can combine with each
other to form another object fromE in such a way that the sum of the sizes of the
objects equals the size of the resulting object. More formally, if we denote the
composition operation with+ , then

O1 +O2 = Or ⇒ size(O1) + size(O2) = size(Or), (1)

whereOr is the object assembled from component objectsO1 andO2. The en-
sembleE together with the binary operation+ forms a structure(E ,+), which in
abstract algebra is named asemigroup. Furthermore, this structure is homomor-
phic with the(N+,+) semigroup by thesize map.

Our generic model for self-assembly is on a high level of abstraction, focusing
on thesize of the emerging structures, while ignoring all details of the topology
of such structures.Sizehere can mean any semigroup homomorphism between
(E ,+) and (N+,+), as noted above. Intuitively, thesize map would count the
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number of elementary blocks forming the self-assembled structure under consid-
eration. This approach is applicable to any type of self-assembly processes: uni-
dimensional (such as the elongation of intermediate filaments, the case-study in-
vestigated in this paper), branched two-dimensional structures, three-dimensional
assemblies, etc. However, extending the dynamics of thesize distribution of the
self-assembled structures with some of their topological details would require
a very different type of modelling, which goes beyond the scope of our approach.

Through the mapsize, for a fixedn ∈ N+ we define a family of object classes
S(n) = {S

(n)
1 , . . . ,S

(n)
n ,S

(n)
≥n+1}: S(n)

i contains all the objects fromE with sizei

for i = 1, . . . , n andS(n)
≥n+1 consists of all objects with size greater thann. Each

object fromE belongs to exactly one of these classes. Notice that form > n we
haveS(n)

k = S
(m)
k for all k ∈ {1, . . . , n}.

The composition of objects inE is described by a system of rules. For the
general characterization of self-assembly we will assume that the rules are at the
level of abstraction ofS(n), i.e. that the system of rules is of the form

S
(n)
i + S

(n)
j → S

(n)
i+j , for all 1 ≤ i ≤ j ≤ n, i+ j ≤ n;

S
(n)
i + S

(n)
j → S

(n)
≥n+1, for all 1 ≤ i ≤ j ≤ n, i+ j ≥ n+ 1;

S
(n)
i + S

(n)
≥n+1 → S

(n)
≥n+1, for all 1 ≤ i ≤ n;

S
(n)
≥n+1 + S

(n)
≥n+1 → S

(n)
≥n+1.

(2)

In the case of biochemical systems these rules are usually referred to as (biochem-
ical) reactions and we will use this terminology in the following. The semantics
of the reactions in the above form can be described as: an object from classS(n)

i

combines with an object from classS(n)
j to form an object of classS(n)

i+j if i+j ≤ n

or S(n)
≥n+1 if i + j ≥ n + 1. Notice that any reaction of this form automatically

satisfies the self-assembly condition (1).
In mathematical modelling it is common to associate a variable (understood as

a function)F : R+ → R+ with each of the sets inS(n). We denote withF (n)
i the

variable corresponding to the setS
(n)
i for i ∈ {1, . . . , n,≥ n + 1}. The value of

the variableF (n)
i is interpreted as the concentration of objects from the associated

setS(n)
i , present in the system undergoing self-assembly at a particular point in

time. Further, we assume that the kinetics of the reactions is based on thelaw
of mass action([17]). This law is a mathematical model of reaction dynamics:
it states that the reaction rate is proportional to the probability of collision of the
reactants, while the probability itself is proportional tothe product of concentra-
tions of reactants raised to the number in which they enter the reaction ([17]). We
useki,j, 1 ≤ i ≤ j ≤ n + 1 to denote the respective proportionality factor, the
so-calledrate constant, of the reaction with the left-hand side containingS

(n)
i (or

S
(n)
≥n+1 if i = n+1) as one andS(n)

j (or S(n)
≥n+1 if j = n+1) as the other term. For
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example,

S
(n)
2 + S

(n)
3

k2,3
−−→ S

(n)
5

and

S
(n)
2 + S

(n)
≥n+1

k2,n+1

−−−→ S
(n)
≥n+1.

The change of concentrations in time of the objects undergoing self-assembly can
be described using ordinary differential equations (ODEs). By the law of mass
action, the system of ODEs associated with the self-assembly system determined
by the reactions in (2) is























































dF
(n)
i

dt
=−

n
∑

j=1

ki,j F
(n)
i F

(n)
j [i 6= j]− 2 ki,i F

(n)
i

2
− ki,n+1 F

(n)
i F

(n)
≥n+1

+

⌈
i−1

2
⌉

∑

j=1

kj,i−j F
(n)
j F

(n)
i−j for all 1 ≤ i ≤ n,

dF
(n)
≥n+1

dt
=

∑

1≤i≤j≤n,
i+j≥n+1

ki,j F
(n)
i F

(n)
j − kn+1,n+1 F

(n)
≥n+1

2
,

(3)

where[. . .] are used as the Iverson brackets ([14, 18]), i.e.[i 6= j] is 1 if i 6= j and
0 otherwise. The negative term in the equation fordF

(n)
≥n+1/dt originates from the

last rule in (2), where two objects from the setS
(n)
≥n+1 combine to form a bigger

object belonging to the same class. In consequence, inS
(n)
≥n+1 two objects are

consumed and one is produced, thus the net result is that one object disappears
from S

(n)
≥n+1.

3 A notion of model resolution

When considering the dynamics of the self-assembly process, one of the main
concerns is the distribution of the number of components of different sizes in
time. To this aim we introduce the notion ofmodel resolutionin the context of
self-assembly. We say thata self-assembly model is of resolutionn if it consists
of the set of reactions describing the interactions betweenthe classes of objects
S

(n)
1 , . . . ,S

(n)
n ,S

(n)
≥n+1, i.e. the set of rules of the form in (2). The associated math-

ematical model (ODE-based or not), comprising variablesF
(n)
1 , . . . , F

(n)
n , F

(n)
≥n+1

is also referred to as ann-resolution model. Thus, the system in (3) is a self-
assembly ODE model of resolutionn. Intuitively, a self-assembly mathematical
model is of resolutionn if it allows for capturing the dynamics of the number (or
concentration) of components that are exactly of sizei, where0 ≤ i ≤ n.
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In light of this definition the superscript(n) obtains a new meaning: it indi-
cates the resolution of the considered model, i.e.F

(n)
j determines the concentra-

tion of objects of sizej in time in the model of resolutionn andS(n)
j refers to the

class of objects of sizej which appears in the set of reactions of then-resolution
self-assembly model. This will be useful when considering the relationships be-
tween models of various resolutions in the subsequent subsections.

When setting the resolution of our generic self-assembly model we effectively
partition the set of possible emerging structures into two,depending on their size:

(i) the set ofvisible assemblieswhose size is at most the resolution level, and

(ii) the set ofinvisible assemblieswhose size is larger than the resolution level.

The self-assembly process can be modelled in all of its combinatorial details on
the set of visible assemblies, including the assembly of allpossible pairs of visible
assemblies and even their disassembly (disassembly is however not covered in our
case-study). For the invisible assemblies (size larger than the resolution level) we
only specify a number of generic reactions covering their elongation. The idea
here is that the details of the dynamics of such assemblies are beyond the scope
(or beyond the experimental measuring capabilities) of ourcurrent model.

Choosing the resolution of a self-assembly model should be done in a careful
way, so that it includes in its visible assemblies that part of the species space that
is important for the model. Changing the resolution of a model may be needed
during the modelling process, depending on the application. For example, a model
of relatively low resolution may be enough in the early stageof the process, when
no (or very few) assemblies of large size exist. Later on however, as the size of
the existing self-assembled structures grows, the modeller may need to increase
the resolution level to be able to track the details of the interactions involving
larger structures. We discuss in the next section a method toincrease the model
resolution in such a way that the model’s numerical fit to experimental data is
preserved. Note also that the resolution may be fixeda priori to a level that is
higher than the number of available molecules, thus making the whole species
space visible, with the price that the manipulation of the model (such as the model
fit and validation) may become computationally expensive.

3.1 Increasing the model resolution while preserving the model
fit

In this section we concentrate on the refinement in the case ofthe self-assembly
models. The aim is to increase the range of component sizes for which the dis-
tribution in time is captured by the model, i.e. increase themodel resolution,
while preserving the data fit of the original model. In the context of the associated
mathematical models, we say that a model of resolutionn + 1 is a quantitative
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refinementof a model of resolutionn if and only if the following quantitative
refinement conditions are satisfied:

F
(n+1)
i (t) = F

(n)
i (t), 1 ≤ i ≤ n (4)

and
F

(n+1)
n+1 (t) + F

(n+1)
≥n+2 (t) = F

(n)
≥n+1(t), (5)

for all t ≥ 0.
In the case of the self-assembly ODE models of the form in (3),the quanti-

tative refinement from resolutionn to n + 1 involves appropriate setting of the
rate constants and the initial values of the model of resolution n + 1 given the
rate constants and the initial values of the model of resolution n. We show in the
following how this should be performed.

We start our considerations with the statement of a lemma concerning the
existence and uniqueness of solutions of the self-assemblyODE system of any
fixed resolution.

Lemma 1. The system of ODEs for a self-assembly model of resolutionn, where
n ∈ N, admits exactly one solution for any fixed initial condition.

Proof. Let us rewrite (3) in the form

F
′ = F(F),

whereF(t) = [F
(n)
1 (t), . . . , F

(n)
n (t), F

(n)
≥n+1(t)]

T andF : Rn+1 → R
n+1 defines

a vector field onRn+1. A solution of this system is a functionF : J → R
n+1

defined on some intervalJ ⊂ R such that, for allt ∈ J , F′(t) = F(F(t)).
Now, it is enough to observe that the right-hand sides of the equations in (3)
are continuously differentiable with respect to the coordinates ofF. Thus, the
mappingF is Lipschitz continuous on a bounded domain ([8]) and by the Picard-
Lindelöf theorem ([8]) it follows that for any initial conditions the considered
system has a unique solutionF(t).

Equipped with Lemma 1, we continue to show how the refinement of a self-
assembly model can be effectively achieved. This is the content of the following
theorem, whereli,j, 1 ≤ i ≤ j ≤ n + 2 denote the rate constants of the(n + 1)-
resolution model andkp,q, 1 ≤ p ≤ q ≤ n + 1 are the rate constants of the
n-resolution model. A discussion about the biological basisfor the numerical
choices made in Theorem 1 is included after its proof.

Theorem 1. Setting the kinetic rate constants of the(n + 1)-resolution model in
the following way































li,j := ki,j 1 ≤ i ≤ j ≤ n,
li,n+1:= ki,n+1 1 ≤ i ≤ n,
li,n+2:= ki,n+1 1 ≤ i ≤ n,
ln+1,n+2 := 2 kn+1,n+1,
ln+1,n+1 := kn+1,n+1,
ln+2,n+2 := kn+1,n+1,

(6)

6



and its initial values so that they satisfy

F
(n+1)
i (0) = F

(n)
i (0), 1 ≤ i ≤ n, (7)

F
(n+1)
n+1 (0) + F

(n+1)
≥n+2 (0) = F

(n)
≥n+1(0) (8)

ensures that the self-assembly ODE model of resolutionn + 1 is a quantitative
refinement of the self-assembly ODE model of resolutionn.

Proof. Let us write the system of ODEs for the model of resolutionn + 1:































































































































dF
(n+1)
i

dt
=−

n
∑

j=1

li,j F
(n+1)
i F

(n+1)
j [i 6= j]− 2 li,i F

(n+1)
i

2

− li,n+1 F
(n+1)
i F

(n+1)
n+1 − li,n+2 F

(n+1)
i F

(n+1)
≥n+2

+

⌈
i−1

2
⌉

∑

j=1

lj,i−j F
(n+1)
j F

(n+1)
i−j for all 1 ≤ i ≤ n,

dF
(n+1)
n+1

dt
=−

n
∑

j=1

lj,n+1 F
(n+1)
j F

(n+1)
n+1 − 2 ln+1,n+1 F

(n+1)
n+1

2

− ln+1,n+2 F
(n+1)
n+1 F

(n+1)
≥n+2 +

⌈n
2
⌉

∑

j=1

lj,n+1−j F
(n+1)
j F

(n+1)
n+1−j

dF
(n+1)
≥n+2

dt
=

∑

1≤i≤j≤n,
i+j≥n+2

li,j F
(n+1)
i F

(n+1)
j +

n
∑

j=1

lj,n+1F
(n+1)
j F

(n+1)
n+1

+ ln+1,n+1F
(n+1)
n+1

2
− ln+2,n+2F

(n+1)
≥n+2

2
.

(9)

Let us further denote byG(n+1) the sum ofF (n+1)
n+1 andF (n+1)

≥n+2 , i.e.

G(n+1)(t) = F
(n+1)
n+1 (t) + F

(n+1)
≥n+2 (t).

With use of the expressions fordF (n+1)
n+1 /dt anddF (n+1)

≥n+2 /dt in (9), we can com-
pute the derivative ofG(n+1)

dG(n+1)

dt
=

dF
(n+1)
n+1

dt
+

dF
(n+1)
≥n+2

dt
=

=

⌈n
2
⌉

∑

i=1

li,n+1−i F
(n+1)
i F

(n+1)
n+1−i +

∑

1≤i≤j≤n,
i+j≥n+2

li,j F
(n+1)
i F

(n+1)
j (10)

− ln+1,n+1 F
(n+1)
n+1

2
− ln+1,n+2 F

(n+1)
n+1 F

(n+1)
≥n+2 − ln+2,n+2F

(n+1)
≥n+2

2
.
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By substituting the rate constants in the above expression for dG(n+1)/dt in ac-
cordance with (6) we obtain that

dG(n+1)

dt
=

∑

1≤i≤j≤n,
i+j≥n+1

ki,j F
(n+1)
i F

(n+1)
j − kn+1,n+1 (F

(n+1)
n+1 + F

(n+1)
≥n+2 )

2 =

=
∑

1≤i≤j≤n,
i+j≥n+1

ki,j F
(n+1)
i F

(n+1)
j − kn+1,n+1G

(n+1)2. (11)

Now, by substituting the rate constants also in the equations fordF (n+1)
i /dt in (9)

for all 1 ≤ i ≤ n and combing with (11) we have that































































dF
(n+1)
i

dt
=−

n
∑

j=1

ki,j F
(n+1)
i F

(n+1)
j [i 6= j]− 2 ki,i F

(n+1)
i

2

− ki,n+1 F
(n+1)
i G(n+1) +

⌈
i−1

2
⌉

∑

j=1

kj,i−j F
(n+1)
j F

(n+1)
i−j

for all 1 ≤ i ≤ n,

dG(n+1)

dt
=

∑

1≤i≤j≤n,
i+j≥n+1

ki,j F
(n+1)
i F

(n+1)
j − kn+1,n+1G

(n+1)2.

(12)

The above system is identical with (3) modulo the renaming ofvariables, i.e.
F

(n+1)
i is in place ofF (n)

i for all 1 ≤ i ≤ n andG(n+1) is in place ofF (n)
≥n+1.

Hence, if the initial values are set up as stated in the theorem, then (3) and (12)
constitute the same initial value problem. By the existenceand uniqueness stated
in Lemma 1, there exists exactly one solution to this problemand thus we have that
F

(n)
i (t) = F

(n+1)
i (t) for all 1 ≤ i ≤ n andG(n+1)(t) = F

(n+1)
n+1 (t) + F

(n+1)
≥n+2 (t) =

F
(n+1)
≥n+1 (t).

Notice that what is important for the refinement is that the initial values of the
(n + 1)-resolution model satisfy (8), however how the initial value of F (n)

≥n+1 is

split intoF
(n+1)
n+1 (0) andF (n+1)

≥n+2 (0) is irrelevant, i.e. any partition of this value in
accordance with (8) leads to a quantitative refinement of themodel of resolution
n into a model of resolutionn + 1.

The choice of the kinetic rate constants in Theorem 1 for the refined model is
consistent with the following basic principle:

by distinguishing several subtypes of a reactant, we
do not change the kinetics of the reactions they partic-
ipate in.
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In other words, whenever we distinguish several subspeciesA1, A2, . . ., Am of
a speciesA, we consider in the refined model that each subspeciesAi partici-
pates in the same reactions in whichA was participating in the original model and
moreover, their kinetics is unchanged. (Extra biological knowledge about kinetic
differences amongA1, . . .,Am may be included in the model in a subsequent step;
we only focus here on setting up the more detailed model as a quantitative refine-
ment of the original model.) Our reasoning about the model refinement is discrete,
in terms of a finite number of subspecies of a given species. Consequently, our
reasoning about the reaction kinetics and its changes is also discrete, in terms of
collision-based reactions.

When seen as the result of a collision between the reactants,the kinetics
of a reaction depends on a biochemical constant (whose valuedepends on the
specifics of the reactants and of the environment) and on the number of possible
combinations of reactant molecules, see [9, 10] for a detailed presentation of this
approach. The number of such combinations in the case of a collision A + B
(say, type 1) is[A] · [B], but in the case of a collisionA + A (say, type 2), it is
[A] · ([A]−1)/2, where[A], [B] denote the number of molecules of speciesA and
B, respectively. This is the fundamental reason whyln+1,n+2 is set in Theorem 1
to a value that is twice as large as the kinetic rate constant of its corresponding
reaction in the original model. Indeed, reaction

S
(n)
≥n+1 + S

(n)
≥n+1

kn+1,n+1

−−−−−→ S
(n)
≥n+1 (13)

is replaced in the refined model with reactions

S
(n+1)
n+1 + S

(n+1)
n+1

ln+1,n+1

−−−−−→ S
(n+1)
≥n+2 , (14)

S
(n+1)
n+1 + S

(n+1)
≥n+2

ln+1,n+2

−−−−−→ S
(n+1)
≥n+2 , (15)

S
(n+1)
≥n+2 + S

(n+1)
≥n+2

ln+2,n+2

−−−−−→ S
(n+1)
≥n+2 . (16)

When reasoning about the kinetic rate constants of the refined reactions, we pre-
serve the same biochemical constants as in the case of the original reaction (no
changes in the biochemical details of the subspecies as compared to the original
species, as formulated in our basic principle). The number of combinations of re-
actants in the various reactions is however different: whereas reactions (13), (14),
and (16) are of type 2 (as defined above), reaction (15) is of type 1. If we chose
a discrete mathematical model formulation in terms of stochastic processes, then
the kinetic rate constants of reactions (14)-(16) would be set to be equal to that
of reaction (13). Translating such a model into a continuous, ODE-based model
involves a change in the kinetic rate constants, where that of reaction (15) is set
to twice that of reactions (13), (14), and (16) to account forthe different way of
reasoning about collisions in discrete and in continuous terms. Indeed, an ODE-
based model considers the kinetic of a reaction of type 2 to beproportional to[A]2,
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unlike in the case of a discrete model, where it is proportional to [A] · ([A]− 1)/2.
We refer to [9] for a detailed discussion on the relationshipbetween the stochastic
and the deterministic version of a biomodel. We also note that similar choices for
the kinetic rate constants were made in [7] when dealing withthe refinement of
rule-based models. Finally, we remark that the calculations in the proof of Theo-
rem 1 show that our choice of kinetic rate constants, justified by the biochemical
arguments above, lead to a numerically-correct quantitative model refinement.

Now, let us consider a more general case, namely the refinement of a model of
resolutionn to a model of resolutionn+m. In this case the refinement conditions
that need to be satisfied for allt ≥ 0 are the following:

F
(n+m)
i (t) = F

(n)
i (t), 1 ≤ i ≤ n

and
m
∑

j=1

F
(n+m)
n+j (t) + F

(n+m)
≥n+m+1(t) = F

(n)
≥n+1(t).

We start our considerations by a simple lemma.

Lemma 2. The property of a self-assembly ODE model to be the quantitative
refinement of another model of lower resolution is transitive, i.e. if the model
M(n+m) of resolutionn+m is the refined version of the modelM(n) of resolution
n and M(n+m+k) of resolutionn + m + k is the refined version of the model
M(n+m), thenM(n+m+k) is a quantitative refinement ofM(n), wheren,m, k are
positive integers.

Proof. By the refinement conditions we have that for allt ≥ 0
{

F
(n)
i (t) = F

(n+m)
i (t), 1 ≤ i ≤ n,

∑m

i=1 F
(n+m)
n+i (t) + F

(n+m)
≥n+m+1(t) = F

(n)(t)
≥n+1

and
{

∀1≤i≤n+m F
(n+m)
i (t) = F

(n+m+k)
i (t),

∑k

i=1 F
(n+m+k)
n+m+i (t) + F

(n+m+k)
≥n+m+k+1(t) = F

(n+m)(t)
≥n+m+1.

This implies that
F

(n)
i (t) = F

(n+m+k)
i (t), 1 ≤ i ≤ n

and

F
(n)
≥n+1(t) =

m
∑

i=1

F
(n+m)
n+i (t) +

k
∑

i=1

F
(n+m+k)
n+m+i (t) + F

(n+m+k)
≥n+m+k+1(t) =

=
m
∑

i=1

F
(n+m+k)
n+i (t) +

k
∑

i=1

F
(n+m+k)
n+m+i (t) + F

(n+m+k)
≥n+m+k+1(t) =

=
m+k
∑

i=1

F
(n+m+k)
n+i (t) + F

(n+m+k)
≥n+m+k+1(t).
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Thus it follows that the model of resolutionn+m+ k constitutes a refinement of
the model of resolutionn.

In the next theorem we show how the quantitative refinement ofthe model
of resolutionn to the one of resolutionn + m can be effectively achieved. We
denote byli,j, 1 ≤ i ≤ j ≤ n+m+1 the rate constants of the(n+m)-resolution
self-assembly modelM(n+m) and bykp,q, 1 ≤ p ≤ q ≤ n + 1 the ones of the
n-resolution self-assembly modelM(n).

Theorem 2. Setting the kinetic rate constants of the(n + m)-resolution self-
assembly ODE modelM(n+m) in accordance with the rate constants of then-
resolution self-assembly ODE modelM(n) in the following way















li,j := ki,j 1 ≤ i ≤ j ≤ n + 1,
li,n+j := ki,n+1 1 ≤ i ≤ n, 2 ≤ j ≤ m+ 1,
ln+i,n+i := kn+1,n+1 2 ≤ i ≤ m+ 1,
ln+i,n+j := 2 kn+1,n+1 1 ≤ i < j ≤ m+ 1,

(17)

and its initial values so that they satisfy

F
(n+m)
i (0) = F

(n)
i (0), 1 ≤ i ≤ n, (18)

m
∑

i=1

F
(n+m)
n+i (0) + F

(n+m)
≥n+m+1(0) = F

(n)
≥n+1(0) (19)

ensures thatM(n+m) is a quantitative refinement ofM(n).

Proof. The proof is by induction onm. The basis of the induction which is the
step from resolutionn to n + 1 (m = 1) is given by Theorem 1. The statement
of Theorem 2 clearly holds in this case and we proceed to the inductive step. We
assume that the statement is true form = z for somez ≥ 2 and we consider the
case wherem = z + 1. Theorem 1 assures that setting







































l
(n+z+1)
i,j := l

(n+z)
i,j 1 ≤ i ≤ j ≤ n + z,

l
(n+z+1)
i,n+z+1 := l

(n+z)
i,n+z+1 1 ≤ i ≤ n+ z,

l
(n+z+1)
i,n+z+2 := l

(n+z)
i,n+z+1 1 ≤ i ≤ n+ z,

l
(n+z+1)
n+z+1,n+z+1 := l

(n+z)
n+z+1,n+z+1,

l
(n+z+1)
n+z+1,n+z+2 := 2 l

(n+z)
n+z+1,n+z+1,

l
(n+z+1)
n+z+2,n+z+2 := l

(n+z)
n+z+1,n+z+1

(20)

and the initial values ofF (n+z+1)
n+z+1 andF (n+z+1)

≥n+z+2 in such a way that

F
(n+z+1)
n+z+1 (0) + F

(n+z+1)
≥n+z+2 (0) = F

(n+z)
≥n+z+1(0) (21)

is satisfied results in a refinement from the self-assembly modelM(n+z) of reso-
lution n+ z to the modelM(n+z+1) of resolutionn+ z + 1 (the subscripts of the
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kinetic rate constants in (20) indicate the reactions and the superscripts the models
in terms of their resolution). By the induction hypothesis setting















































l
(n+z)
i,j := ki,j 1 ≤ i ≤ j ≤ n + 1,

l
(n+z)
i,n+j := ki,n+1 1 ≤ i ≤ n, 2 ≤ j ≤ z,

l
(n+z)
n+i,n+i := kn+1,n+1 2 ≤ i ≤ z,

l
(n+z)
n+i,n+j := 2 kn+1,n+1 1 ≤ i ≤ j ≤ z,

l
(n+z)
i,n+z+1 := ki,n+1 1 ≤ i ≤ n,

l
(n+z)
n+i,n+z+1 := 2 kn+1,n+1 1 ≤ i ≤ z,

l
(n+z)
n+z+1,n+z+1 := kn+1,n+1

(22)

and the initial values ofF (n+z)
n+i andF (n+z)

≥n+z+1, where1 ≤ i ≤ z in such a way that

z
∑

i=1

F
(n+z)
n+i (0) + F

(n+z)
≥n+z+1(0) = F

(n)
≥n+1(0) (23)

is satisfied gives a refinement ofM(n) to M(n+z). Combining (20) with (22)
results in

l
(n+z+1)
i,j := ki,j 1 ≤ i ≤ j ≤ n+ 1, (24)

l
(n+z+1)
i,n+j := ki,n+1 1 ≤ i ≤ n, 2 ≤ j ≤ z, (25)

l
(n+z+1)
n+i,n+i := kn+1,n+1 2 ≤ i ≤ z, (26)

l
(n+z+1)
n+i,n+j := 2 kn+1,n+1 1 ≤ i < j ≤ z, (27)

l
(n+z+1)
i,n+z+1 := ki,n+1 1 ≤ i ≤ n, (28)

l
(n+z+1)
n+i,n+z+1 := 2 kn+1,n+1 1 ≤ i ≤ z, (29)

l
(n+z+1)
i,n+z+2 := ki,n+1 1 ≤ i ≤ n, (30)

l
(n+z+1)
n+i,n+z+2 := 2 kn+1,n+1 1 ≤ i ≤ z, (31)

l
(n+z+1)
n+z+1,n+z+1 := kn+1,n+1, (32)

l
(n+z+1)
n+z+1,n+z+2 := 2 kn+1,n+1, (33)

l
(n+z+1)
n+z+2,n+z+2 := kn+1,n+1. (34)

Putting together (25), (28) and (30) givesl(n+z+1)
i,n+j := ki,n+1 for 1 ≤ i ≤ n and

2 ≤ j ≤ z + 2; combining (26), (32) and (34) results inl(n+z+1)
n+i,n+i := kn+1,n+1

for 2 ≤ i ≤ z + 2; finally, (27), (29), (31) and (33) can be simply written as
l
(n+z+1)
n+i,n+j := 2 kn+1,n+1 for 1 ≤ i ≤ j ≤ z + 2. Together with (24) this coincides

with (17). Moreover, (23) together with (21) gives (19). By Lemma 2, since
M(n+z) refinesM(n) andM(n+z+1) refinesM(n+z), we have thatM(n+z+1) is
a refinement ofM(n). This proves the induction hypothesis.
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3.2 Decreasing the model resolution while preserving the mo-
del fit

Let us now consider the reverse problem. Given a self-assembly model of certain
resolution, sayn + 1, we want to obtain a self-assembly model of resolutionn
such that the model of resolutionn+1 constitutes its quantitative refinement. We
refer to this problem as the problem of decreasing model resolution. As in the
case of increasing model resolution, the ODE systems of these two models are
(3) and (9). However, now the known rate constants are the ones of the model
of resolutionn + 1, i.e. li,j for all 1 ≤ i ≤ j ≤ n + 2, and the task is to set
appropriately the values of the rate constantski,j, 1 ≤ i ≤ j ≤ n+1 of the model
of resolutionn.

In this presentation we restrict our considerations to the particular case where
ki,j := li,j for all 1 ≤ i ≤ j ≤ n. This is in accordance with the biological motiva-
tion of the model: species that were modelled explicitly in the original model and
continue to be so in the new model should not see their kinetics changed. From
a mathematical point of view, one could also consider a general approach where
the constantski,j, 1 ≤ i ≤ j ≤ n are part of the unknowns. In this case, a similar
approach would be applicable, leading however to more complicated equations.

We investigate how to set the remaining constants, i.e.ki,n+1, 1 ≤ i ≤ n + 1,
so that the quantitative refinement conditions are satisfied. Since we want for the
two models to satisfy (4) and (5), based on (3) and the fact that ki,j := li,j for all
1 ≤ i ≤ j ≤ n the derivatives ofF (n+1)

i , 1 ≤ i ≤ n and(F (n+1)
n+1 + F

(n+1)
≥n+2 ) can be

expressed as















































































dF
(n+1)
i

dt
=−

n
∑

j=1

li,j F
(n+1)
i F

(n+1)
j [i 6= j]− 2 li,i F

(n+1)
i

2

− ki,n+1 F
(n+1)
i (F

(n+1)
n+1 + F

(n+1)
≥n+2 ) +

⌈
i−1

2
⌉

∑

j=1

lj,i−j F
(n+1)
j F

(n+1)
i−j

for all 1 ≤ i ≤ n,

d(F
(n+1)
n+1 + F

(n+1)
≥n+2 )

dt
=

∑

1≤i≤j≤n,
i+j≥n+1

li,j F
(n+1)
i F

(n+1)
j

− kn+1,n+1 (F
(n+1)
n+1 + F

(n+1)
≥n+2 )

2.

Now, we equalize the right-hand sides in the above system with the respective
right-hand sides in the model of resolutionn + 1, i.e. (9), where the expressions
for the derivatives ofF (n+1)

n+1 andF (n+1)
≥n+2 are added up to obtain an expression for

d(F
(n+1)
n+1 +F

(n+1)
≥n+2 )/dt. After simplifying we obtain that the rate constantski,n+1,
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1 ≤ i ≤ n+ 1 have to satisfy

li,n+1 F
(n+1)
i F

(n+1)
n+1 + li,n+2 F

(n+1)
i F

(n+1)
≥n+2

=

ki,n+1 F
(n+1)
i (F

(n+1)
n+1 + F

(n+1)
≥n+2 )

(35)

and
ln+1,n+1 F

(n+1)
n+1

2
+ ln+1,n+2 F

(n+1)
n+1 F

(n+1)
n+2 + ln+2,n+2 F

(n+1)
≥n+2

2

=

kn+1,n+1 (F
(n+1)
n+1 + F

(n+1)
≥n+2 )

2

(36)

independently of time, i.e. at any time pointt, wheret ≥ 0. We do not reduce
(35) by dividing its sides byF (n+1)

i since the variable for a particulari may be
identically zero. In such case the rate constantki,n+1 can admit an arbitrary value.
At the same time we notice that if for all1 ≤ i ≤ n the variablesF (n+1)

i are not
identically zero, then such reduction can be done without loss of generality and in
this case allki,n+1 admit the same value.

The variablesF (n+1)
i s are in fact functions of time which constitute a solution

to the system of nonlinear, first-order differential equations in (9). Having the
explicit solutions, one could easily check whether there existki,n+1, 1 ≤ i ≤ n+1
such that (35) and (36) are satisfied at any time pointt ≥ 0. However, to the
best of our knowledge, obtaining an analytical solution to (9) in a general case,
i.e. for arbitraryn, is infeasible. Thus, we consider numerical integration ofthe
system and propose the following procedure for checking whether the reduction
of resolution in the discussed case can be performed and, if yes, how the rate
constants should be set. First, we numerically integrate the ODE system for the
model of resolutionn+1 in (9) to identify alli, 1 ≤ i ≤ n, for which the product
F

(n+1)
i (F

(n+1)
n+1 +F

(n+1)
≥n+2 ) is identically zero. In all these cases any arbitrary value

of the rate constantki,n+1 satisfies (35). For the remainingis we pick a time point
at which the product is non-zero and simply solve (35) forki,n+1 at the chosen
time point. Similarly, we solve (36) for the value ofkn+1,n+1 at a time point at
whichF

(n+1)
n+1 + F

(n+1)
≥n+2 is non-zero. Second, in order to be correct, the values of

the rate constants have to satisfy the refinement conditionswithout exception at
any arbitrary time point. The correctness can be checked numerically by setting
the initial values of then-resolution model as follows

{

F
(n)
i (0) := F

(n+1)
i (0), 1 ≤ i ≤ n,

F
(n)
≥n+1(0) := F

(n+1)
n+1 (0) + F

(n+1)
≥n+2 (0)

and investigating whether the dynamics of the two considered models satisfy (4)
and (5). The numerical check provides the ultimate answer whether the resolution
decrease is realizable or not in the discussed case. Notice that if the values of
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the rate constants of the model of resolutionn + 1, sayM(n+1), are such that
ln+1,n+1 = ln+2,n+2, ln+1,n+2 = 2 ln+1,n+1 andli,n+1 = li,n+2, for all 1 ≤ i ≤ n,
then the decrease of resolution can be simply achieved by changing the sides of the
assignments in (6). In particular, ifM(n+1) were the result of applying Theorem 1
to a model of resolutionn M(n), then this way of decreasing the resolution of
M(n+1) recoversM(n).

4 A case study: the self-assembly of intermediate fil-
aments

One of the characteristics of eukaryotic cells is the existence of the cytoskeleton
– an intricate network of protein filaments that extends throughout the cytoplasm.
It enables the cells to adopt a variety of shapes, interact mechanically with the en-
vironment, organize the many components in their interior,carry out coordinated
and directed movements. It also provides the machinery for intracellular move-
ments, e.g. transport of organelles in the cytoplasm and thesegregation of chro-
mosomes at mitosis ([1, 2]). There are three kinds of proteinfilaments that form
the cytoskeleton: actin filaments, intermediate filaments (IFs) and microtubules.
Each kind has different mechanical properties and is assembled from an individ-
ual type of proteins. Actin filaments and microtubules are formed fromglobular
proteins (actinandtubulinsubunits, respectively), whereasfibrous proteinsare the
building blocks of intermediate filaments ([2, 11]). Thousands of these basic el-
ements assemble into a construction of girders and ropes that spreads throughout
the cell.

One of the main functions of intermediate filaments is to provide cells with
mechanical strength and they are especially prominent in the cytoplasm of cells
that are exposed to such conditions. For example, IFs are abundantly present along
nerve cells axons where they provide crucial internal reinforcement of these long
cell extensions. They can also be observed in great number inmuscle cells and
epithelial cells. IFs are characterized by great tensile strength. By stretching and
distributing the effect of locally applied forces, they protect cells and their mem-
branes against breaking due to mechanical shear. Compared with microtubules
and actin filaments, IFs are more stable, tough and durable, e.g. remain intact
during exposure of cells to salt solutions and nonionic detergents, while the rest
of the cytoskeleton is mostly destroyed ([1]).

Intermediate filaments can be grouped into four classes: (1)keratin filaments
in epithelial cells; (2)vimentin filamentsin connective-tissue cells, muscle cells
and supporting cells of the nervous system; (3)neurofilamentsin nerve cells; and
(4) nuclear lamins, which strengthen the nuclear membrane of all eukaryotic cells,
see [1]. In [15] a quantitative kinetic model for thein vitro self-assembly of in-
termediate filaments from tetrameric vimentin was considered. The authors intro-
duced two molecular models (the so-calledsimpleandextendedmodels) of this
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process. In general, thein vitro assembly of vimentin IF proteins can be described
as a process consisting of three major phases: (i) formationof the unit-length fil-
aments (ULFs); (ii) longitudinal annealing of ULFs and growing filaments; (iii)
radial compaction of immature (16 nm diameter) filaments into mature (11 nm
diameter) IFs ([12, 13]). However, in both models of [15] thelast, third phase was
excluded from consideration.

In the case of the simple model from [15], ULFs are treated as ordinary fila-
ments. Moreover, as discussed in [6, 15], the extension of filaments with tetramers
plays an insignificant numerical role. This correlates withan experimental obser-
vation thatin vitro, starting from an initial pool of tetramers, tetramers quickly
turn into ULFs. Thus, the filament elongation by tetramers isinhibited in the
beginning by the lack of filaments and later by the lack of freetetramers. In con-
sequence, the assembly process is described through the following sequence of
molecular events:

2 T1
k1−→ T2 2 T2

k2−→ T4 2 T4
k3−→ T≥8

2 T≥8

kf
−→ T≥8

(37)

whereT1 is interpreted as a tetramer,T2 as an octamer,T4 as a hexadecamer and,
finally, T≥8 is an emerging filament, having at least one ULF.

In [6] and [15] the model is fit to experimental data of [15]. The raw data con-
sists of four sets, each containing the length distributions of growing filaments at
distinct time points up to20 min. The data sets are obtained for two initial concen-
trations of tetramers, i.e.0.45µM and0.9µM, in two cases: first, with adsorption
onto carbon-coated copper grids and second, with adsorption onto mica support.
The filament length distributions are determined from electron microscopy (EM)
images and atomic force microscopy (AFM) images in the first and second case,
respectively. For each set the time-dependent mean filamentlength (MFL) is cal-
culated and only the processed data are reported in [15]. Themodels in [6, 15]
are capable of reproducing the experimental data on time-dependent dynamics of
the mean filament length, however are unsuitable for capturing the time-dependent
distribution of the filament lengths. In consequence, the information carried by the
available experimental data is not utilized to the full extent. The high resolution of
the data is not incorporated into the models, the predictivepower of the models is
significantly limited since no predictions about the lengthdistributions in time are
possible, and the models cannot be fully validated against the available biological
knowledge. This highlights the necessity for high-resolution models as a tool for
better understanding of the still little-known process of filament self-assembly. In
order to meet this requirement, we apply our methodology of quantitative model
refinement to (37). By increasing the resolution with two in two steps we get the
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following models: first

2 T1
k1−→ T2 2 T2

k2−→ T4

2 T4
k3−→ T8 2 T8

kf
−→ T≥9 (38)

T8 + T≥9

2 kf
−−→ T≥9 2 T≥9

kf
−→ T≥9

and next

2 T1
k1−→ T2 2 T2

k2−→ T4 2 T4
k3−→ T8

2 T8

kf
−→ T≥10 T8 + T9

2 kf
−−→ T≥10 T8 + T≥10

2 kf
−−→ T≥10

2 T9

kf
−→ T≥10 T9 + T≥10

2 kf
−−→ T≥10 2 T≥10

kf
−→ T≥10.

Note thatT9 is not a product of any reaction and it will not become one in any
further refinement of the model. Since in our experimental set-up we haveT9(0) =
0, it follows thatT9(t) = 0 for all t ≥ 0, i.e. reactionsT8 + T9 → T≥10, 2 T9 →
T≥10 andT9 + T≥10 → T≥10 can be eliminated. Thus, the model of resolution8
coincides with the model of resolution9. With the same reasoning, all models of
resolution between8 and15 are identical. The model of resolution16 is however
different:

2 T1
k1−→ T2 2 T2

k2−→ T4 2 T4
k3−→ T8

2 T8

kf
−→ T16 T8 + T16

2 kf
−−→ T≥17 2 T16

kf
−→ T≥17

T16 + T≥17

2 kf
−−→ T≥17 2 T≥17

kf
−→ T≥17.

Thus, in a model of resolutionn, for some arbitraryn ≥ 8, the variables of
the model areT1, T2, T4, T8, T16, T24, ..., T8k, T≥n+1, wherek = ⌊n/8⌋. The
biological interpretation of the variableT8i, 1 ≤ i ≤ k, is the species of filament
consisting ofi complete ULFs. Using the terminology of [6] and [15], these are
the filaments of lengthi. Thus, our model of resolutionn is in fact the model
of resolution⌊n/8⌋ in terms of the number of complete ULFs included in the
filament. This can be seen by rewriting the model (38) as follows (with some of
the rate constants renamed):

2 T1
k1−→ T2 2 T2

k2−→ T4

2 T4
k3−→ F1 2F1

k4−→ F≥2 (39)

F1 + F≥2
ku−→ F≥2 2F≥2

kf
−→ F≥2,

whereF1 stands for filament of length1 (denoted asT8 in (38)), andF≥2 stands
for the longer filaments (denoted asT≥9 in (38)). The refinement of this model to
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Rate constant k1 k2 k3 k4 ku kf
Value 3 30 30 0.25 0.95 0.11

Table 1: Kinetic rate constant values of the extended IF self-assembly model with
fast ULF formation (39). The unit is 1

µM ·s
.

a higher resolution level, sayn ≥ 2, can be done as follows:

2 T1
k1−→ T2

2 T2
k2−→ T4

2 T4
k3−→ F1

F1 + F1
k4−→ F2

F1 + Fi
ku−→ Fi+1 i ∈ {2, . . . , n,≥ n+ 1}

Fi + Fi

kf
−→ F2i 2 ≤ i ≤ n

Fi + Fj

2 kf
−−→ Fi+j 2 ≤ i < j ≤ n

Fi + F≥n+1

2 kf
−−→ F≥n+1 2 ≤ i ≤ n

F≥n+1 + F≥n+1

kf
−→ F≥n+1,

(40)

where we adopt the convention that allFs with indices greater thann are iden-
tified with F≥n+1. Model (39) has been experimentally validated in [6]. Using
the kinetic constants in Table 1, the numerical behaviour ofthe model correlates
very well with experimental data in [15] on thein vitro assembly process of re-
combinant vimentin at37 ◦C. Next, we refine the model in (39) by settingn = 10
in (40). In result we obtained a model of resolution10 for the process ofin vitro
intermediate filament self-assembly that preserves the experimental data fit of the
original model. In Figure 1 the dynamics of the overall concentration of filaments
predicted by (39) and the model of resolution10 are presented. Notice that the
results are identical, which is in complete agreement with the theoretical delibera-
tions, and there is no need for tedious parameter estimationduring the construction
of the high-resolution model.

5 Discussion

In this work we concentrated on model refinement, an important aspect of the
model-building process. In general, the concept of model refinement can be de-
scribed as a procedure which, starting with an abstract model of a system, carries
out a number of refinement steps which lead to the construction of a more detailed

18



0 200 400 600 800 1000 1200
0.00

0.01

0.02

0.03

0.04

0.05

Time [s]

C
o

n
c
e
n

tr
a
ti

o
n

 [
m

M
]

(a)

0 200 400 600 800 1000 1200
0.00

0.01

0.02

0.03

0.04

0.05

Time [s]

C
o

n
c
e
n

tr
a
ti

o
n

 [
m

M
]

0 500 1000
0.000

0.002

0.004

0.006

F³11

F2

F3

F5

F6

F8

F9

F10

F4

F7

Time [s]

C
o

n
c
e
n

tr
a
ti

o
n

 [
m

M
]

(b)

Figure 1: Comparison between the dynamics of the extended model of IFs self-
assembly with fast ULF formation originally introduced in [6] and the refined
version of resolution10. (a) The original extended model with fast ULF forma-
tion introduced in [6]. The curve shows the concentration ofthe intermediate
filaments of any length in time. (b) The refined version with resolution10. The
colour curves of the subplot show the dynamics of IFs of lengths from the set
{1, . . . , 10} and the overall concentration of filaments of length greaterthan10.
The black curve in the main plot is obtained by summing the concentrations in
time of filaments of length1 to 10 and those of length greater than10. Notice that
the two models predict identical overall concentration of IFs in time.
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model. At the same time, in order to be correct, the refinementmechanism should
be capable of preserving already proven system properties of the original model,
e.g. model fit, stochastic semantics, etc. In particular, inour study we focused
on the issue of refining an ODE model describing the process ofself-assembly.
We introduced the notion of model resolution and showed how the resolution can
be both increased and decreased while satisfying the condition of preserving the
model fit. Moreover, we showed how the technique can be applied to an existing
model: we considered the case-study of self-assembly of intermediate filaments.

Restricted sets of reactions There are two ways of restricting the set of reac-
tions of a generic self-assembly model: either by considering just the intended
subset of all possible reactions or by setting to zero the kinetic rate constants for
those reactions that are not taking place. It is worth noticing that in both cases
the refinement procedure will lead to the correct, expected model: in the first case
none of the unwanted reactions will be introduced to the new model and in the
second case all the new reactions related through the refinement to the original
reactions with the rate constant set to zero will remain inactive, i.e. their rate
constants will be zero as well.

Models of infinite resolution In this study we discussed the refinement of a self-
assembly model of resolutionn to the model of resolutionn + m, wheren and
m are some fixed positive integers. One could however think of arefinement
to the model of infinite resolution. Although we believe thatour methodology
would work also in this case, formal theoretical considerations of this issue are
much more intricate. Already at the stage of writing the differential equations
of the model one needs to make sure that the appearing infinitefunction series
are convergent. For example, let us consider a model of resolution 0, i.e F +

F
k
−→ F , and refine it to a model of infinite resolution by assuming in accordance

with our methodology thatki,j := 2k for 1 ≤ i < j ≤ ∞ andki,i := k for
1 ≤ i ≤ ∞. The solution to the ODE model associated with the0-resolution
model, i.e.dF/dt = −kF 2(t), can be obtained analytically:F (t) = F (0)/(1 +
k t F (0)). In the case of the infinite resolution model one already faces a problem
of function series convergence while writing the differential equations forFis. For
each fixedi, the expression for the derivativedFi/dt contains a finite number of
termskl,jFiFj wherel+j = i with 1 ≤ l ≤ j < i, and an infinite number of terms
−ki,jFiFj wherej ≥ 1. The trouble is whether the infinite series

∑∞

j=1 ki,jFiFj is
convergent for allt ≥ 0 or whether the terms can be reordered in such a way that
the requirement of convergence is satisfied. The difficulty is increased by the fact
that the explicit formulas forFis are unknown. Further, in order for the refinement
to be correct, the infinite function series

∑∞

i=1 Fi(t) has to be convergent toF (t),
i.e.

∑∞

i=1 Fi(t) = F (t). If
∑∞

i=1 dFi(t)/dt were uniformly convergent, one could
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write

dF/dt =
∞
∑

i=1

dFi(t)/dt. (41)

In order to check whether the refinement condition is satisfied, it would be enough
to verify (41) and make sure that

∑∞

i=1 Fi(0) = F (0). To this aim, by the refine-
ment condition, the left-hand side in (41) could be written as

dF/dt = −k(
∞
∑

n=1

n
∑

i=1

Fn−iFi),

where the Cauchy product of(
∑∞

i=1 Fi(t))
2 is considered. Now, satisfiability

of (41) could be checked by proper reordering of the terms on the both sides
of (41). However, prior to this, one would need to make sure that all the conver-
gence conditions required by such reorderings are fulfilled. We just signal this
issue here without providing a solution to this interestingproblem and leave it for
further investigation.

Related work The discussed methods for decreasing and increasing the resolu-
tion of self-assembly ODE models can be viewed as examples ofadaptations of
formal model refinement techniques from the field of computerscience to systems
biology. To the best of our knowledge, formal model refinement has not been ex-
plored much in the context of systems biology and this is the first time that it is
considered in relation to computational ODE-based models.Some attempts have
been made previously in the case of the rule-based formalism, see [7, 21], where
the authors consider a process called therule refinement. It is a method to refine
rule sets in such a way that the stochastic semantics, dictated by the number of
different ways in which a given rule can be applied to a system, is preserved. It is
shown how to refine rules and how to choose the refined rates so that the global
dynamics of the original and refined systems are the same. Formore details we
refer to [7, 21].

In Section 3.1, we discussed the numerical choices for the rate constants of
the refined self-assembly model and we presented the biological basis for them.
However, in general, when considering refinement of reactions describing assem-
bly of larger and lager complexes, one could think of deriving the rate constants
based on physical deliberations, i.e. try to estimate how the size of the complexes
influences the binding rates. Such an attempt was originallymade in [20], where
the collision probabilities in the stochastic approach to chemical kinetics were re-
calculated with taking into account the change in the massesof complexes under
formation. However, the solution presented in [20] is not completely satisfactory
due to the following two assumptions it is based on: i) reactants are shaped like
balls, and, especially, ii) the diameter of the balls representing larger complexes
is the same as the diameter of the balls representing small complexes. Neverthe-
less, this approach seems to have the potential to be developed further to correctly
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address the problem of relationship between rate constantsof reactions involving
reactants of same type but different sizes. We leave this interesting problem for
further investigation.
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a b s t r a c t

In this presentation we consider hyperthermia, a procedure of raising the temperature
above 43 �C, as a treatment modality. To this purpose, a numerical model of in vivo soft tis-
sue ultrasound heating is proposed by extending a previously presented in vitro model.
Based on the numerical simulations, a heating scheme satisfying some constraints related
to potential clinical applications is established, and the resulting temperature time-course
profile is composed with the temperature-dependent protein denaturation formula of a
recently published mathematical model for the eukaryotic heat shock response. The
obtained simulation results of the combined models are discussed in view of potential
application of ultrasound soft tissue heating in clinical treatment.

� 2010 Published by Elsevier B.V.

1. Introduction

The heat shock response (HSR) is a highly evolutionarily conserved defence mechanism allowing the cell to promptly re-
act to elevated temperature and other forms of environmental, chemical or physical stress. Exposure to shock conditions
leads to misfolding of proteins, which in turn accumulate and form aggregates with disastrous effect for the cell. However,
damage to cells can initiate one of two opposite responses: either apoptosis, the process of programmed cell death which
prevents inflammation in multicellular organisms, or heat shock response which enables recovery and survival of the cell.
Thus, these two pathways and the interplay between them have the decisive influence on the biological consequences of
the stress. At least two main reasons why the heat shock response has been subject to intense research recently (see
[3,19,22]) should be mentioned. First, as a well-conserved mechanism, it is considered a promising candidate for deciphering
the engineering principles being fundamental for any regulatory network. Second, regardless of their regulatory functions in
HSR, heat shock proteins have fundamental importance to many key biological processes. Therefore, profound understand-
ing of the HSR mechanism is hoped to have far-reaching consequences for the cell biology and to contribute to the develop-
ment of new treatment methods for a number of diseases, e.g. neurodegenerative and cardiovascular disorders, cancer,
ageing, see [1,12,13,15,25].

The key part of the heat shock response is an abrupt upregulation of the heat shock proteins which prevent the accumu-
lation and aggregation of misfolded proteins. Two groups of heat shock proteins can be distinguished. Some heat shock pro-
teins are constitutively and ubiquitously expressed in all eukaryotic cells. These proteins are called heat-shock cognates and
are involved in house-keeping roles, e.g. assist nascent proteins in the establishment of proper conformation, transport
(shuttle) other proteins between different compartments inside the cell and participate in signal transduction. The second
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group contains those which expression is induced by stress. They act as chaperones, i.e. help proteins to maintain their struc-
tural integrity or assist the damaged proteins in re-establishment of the functional structure. Moreover, some of them can
either act as negative regulators of the apoptotic cascade [2] or aid the apoptotic machinery through their chaperone func-
tions, see [20] for the review of this issue. These two functions fulfilled by the heat shock proteins, i.e. protein chaperoning
and modulation of survival and death-signaling pathways, make them an attractive therapeutic target, for example in the
case of neurodegenerative diseases [8,15] or cancer [12,13,25]. Furthermore, the heat-induced expression of heat shock pro-
tein genes is itself a mechanism of particular interest as it enables the design of heat-responsive gene therapy vectors, cf.
[23].

In this study we consider hyperthermia, procedure of raising the temperature above 37 �C, as a treatment modality both
on the tissue and cellular levels. Theoretically, a properly tuned tempo-spatial temperature distribution in a tissue would
lead to a desired heat shock response in the tissue forming cells and, in consequence, enhanced expression of heat shock
proteins which are important from the therapeutic point of view. One of the most relevant problems which arise in this con-
text is related to the question whether in the considered type of tissue a controlled and effective application of hyperthermia
is practically feasible. The application has to be strictly controlled since it is important to assure that the temperature itself is
kept within the therapeutic range, i.e. up to 43 �C. Furthermore, the tissue area and exposure time to heating must be pre-
cisely defined in order to activate the finely tuned heat shock response, on which the effectiveness of the treatment depends.
The utilization of ultrasonic technique for hyperthermia seems a very promising approach capable of meeting such require-
ments, cf. [7,9,21]. Ultrasound irradiation does not stimulate ion activity within the cells, which is an undesired side effect of
other irradiation techniques, and is non-invasive, i.e. does not require surgical intervention. Technical improvements of the
focused ultrasound ensure the non-invasive and strictly controlled heating of the target tissue volumes. As mentioned be-
fore, the control over the spatial temperature distribution in a tissue is of essential importance for the appropriate induction
of gene expression on the cellular level. By adjusting the ultrasound beam’s intensity, frequency, pulse duration, duty-cycle
and exposure time, the proper ultrasonic regime can be tuned. It is now crucial that the research is extended towards the
establishment of safe protocols for inducing heat shock response by ultrasound irradiation, which could be applied in clinical
treatment.

In [4], a very simple Finite Element Method (FEM) model of soft tissue ultrasound heating was introduced. Based on it, a
heating scheme satisfying the requirement that the temperature induced by the ultrasound transducer in the focal area does
not exceed 43 �C was proposed in [14]. Further, the influence of the tissue heating scheme on the heat shock response mea-
sured by the levels of induced free heat shock proteins and misfolded proteins in the cells was discussed. The construction of
the soft tissue heating model in [4] was based on an in vitro experiment performed in order to investigate the possibilities of
inducing temperature fields in soft tissues by the use of focused ultrasound. Hence, the heating process only with respect to
the material properties was considered and neither perfusion nor metabolic heat generation were incorporated into the
numerical model. For a more detailed discussion on the experimental setup and the soft tissue heating model we refer
the reader to [4,14].

In this presentation, we extend the numerical tissue heating model from [4] by additionally taking into account both per-
fusion and metabolic heat generation (Section 2). The extended model is utilized to establish an ultrasound heating scheme
that meets the requirement of not exceeding the temperature of 43 �C at the transducer’s focal point. Next, in Section 3, the
resulting temperature time-course profile is combined with the heat-induced protein denaturation formula of the basic HSR
mathematical model presented in [18]. Further, based on the numerical simulations of the combined models, the dynamics
of the response is compared with the outcomes of the model in [14] and the obtained results are discussed in view of po-
tential application of ultrasound induced soft tissue heating for therapeutic purposes. Finally, in Section 4, we end with some
conclusions and suggestions for further work.

2. Numerical model of the soft tissue ultrasound heating

A very simple numerical model of tissue ultrasound heating was presented in [4,14] and used to compute tempo-spatial
temperature fields generated in soft tissues by ultrasound treatment. The model was constructed in accordance with an
in vitro experiment discussed in [4]. The schematic illustration of this experiment is given in Fig. 1. In this presentation
we extend the model by considering not only the heating process with respect to material properties, but also by taking into
account perfusion and metabolic heat generation in a soft tissue. These modifications make the extended model to reflect the
in vivo conditions rather than in vitro, which was the case of the original model described in [4,14].

As stated in [4], the general bioheat transfer equation in an inhomogeneous thermally anisotropic medium, occupying
domain V in the 3D real space, may be written as:

qðxÞCðxÞ @Tðx; tÞ
@t

¼ r � KðxÞ � rTðx; tÞ þ Q pðx; tÞ þ Q intðx; tÞ þ Qextðx; tÞ for x 2 V ; ð1Þ

where T, t, r, q, C, K, Qp, Qint, Qext denote temperature, time variable, gradient vector, density, specific heat, thermal conduc-
tivity of a medium (second order tensor in our case), heat sources due to perfusion, internal heat generation and external
heating (e.g. by irradiation processes), respectively (see [16]). The bioheat equations are present in the literature in many
different forms, see, e.g. [24].
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We state the initial boundary-value problem of the Pennes’ bioheat equation (Eq. (1)) as follows. The medium under con-
sideration consists of two kinds of material occupying domain V = Vw [ Vt, where Vw and Vt are the volumes occupied by
water and tissue, respectively (Fig. 2(a)). The coefficients in Eq. (1) depend on x in the following way:

qðxÞ ¼
qw for x 2 Vw

qt for x 2 Vt

�
; CðxÞ ¼

Cw for x 2 Vw

Ct for x 2 Vt

�
;

K ¼
Kw for x 2 Vw

Kt for x 2 Vt

�
; KðxÞ ¼ KI; for x 2 V ;

ð2Þ

where I denotes the unit second order tensor. The temperature on the boundary @V of the domain V is assumed to be con-
stant, namely

Tðx; tÞ ¼ 37 �C; x 2 @V : ð3Þ

Perfusion and metabolic heat generation have a significant influence on the heating process of a soft tissue in vivo. Taking
into account these two elements is the main difference between the model presented in [4,14], which reflects the in vitro
conditions, and the one discussed in this presentation. We assume in our numerical computations that the perfusion is given
by

Qpðx; tÞ ¼ wbCbðT0 � TÞ; ð4Þ

Fig. 1. Schematic illustration of the experiment presented in [4]. Seven thermocouples were used to measure the temperature induced by ultrasound
irradiation in various field points along the acoustic axis. The positions are shown in relation to the transducer. In this presentation the temperature in the
neighbourhood of the transducer’s focal point is considered for establishing the therapeutic heating scheme presented in Fig. 3.

Fig. 2. (a) Two domains occupied by water and tissue considered in numerical computations. (b) The heat sources geometry assumed in numerical
calculations (adopted from [4]). The total power of the heat sources is 0.16 W. The power is assumed to be uniformly distributed over the volume occupied
by the heat sources (�106 W/m3).
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where wb is the blood perfusion rate per unit volume of a tissue and Cb is the specific heat capacity of blood (cf. [26,27]). Qint,
the metabolic heat generation per unit volume is assumed to be constant, i.e.

Q intðx; tÞ ¼ qm: ð5Þ

Finally, the external heat Qext is modelled by heat sources of the total power 0.16 W. The heat sources are assumed to be
produced by the focused acoustic beam and their arrangement inside the tissue, depicted in Fig. 2(b), is adopted from [4],
where it was optimized to fit the experimental results. The total power is assumed to be uniformly distributed over the vol-
ume occupied by the heat sources, which results in the power density of �106 W/m3. The numerical values of the constants
appearing in the model are presented in Table 1.

Eqs. (1)–(5) together with the heat sources geometrical distribution provide a well defined boundary-value problem. The
solution to this problem was obtained numerically by utilizing standard Finite Element Method approach. The simulations
were performed with use of the Abaqus 6.9 software (DS Simulia Corp.) and the temperature time-course profiles in the
neighbourhood of the ultrasound transducer physical focus point (the place of maximal temperature) were considered.
Based on these results, a heating scheme satisfying the previously discussed requirement was obtained. First, the heat
sources were turned on at the initial temperature of 37 �C (t = 0 s). The heating was turned off when the temperature at
the considered point reached 43 �C (t = 130 s) and the tissue was left to cool to 38 �C. Subsequently, the cooling process
was interrupted by turning on the heating again (t = 201 s). The last two phases, i.e. cooling and heating, where repeated
periodically in order to obtain a temperature time-course profile for 4 h. The initial heating phase followed by one periodic
phase is depicted in Fig. 3.

It is worth noticing that, although the experiment in [4] was performed in vitro, its schematic illustration (Fig. 1) remains
valid in the in vivo case. For example, if the tissue that undergoes the treatment is part of an organ in the abdomen, the sur-
rounding water in Fig. 1 can represent the peritoneal fluid, which covers the organ.

3. The dynamics of the ultrasound induced heat shock response

In order to investigate how the obtained temperature time-course profile influences the heat shock response on the cel-
lular level, the basic mathematical model of the heat shock response in eukaryotic cells, recently presented in [18], was
exploited. The biochemical model consists of three main modules: the dynamic transactivation of the HSP-encoding genes,
their backregulation and the chaperone activity of the heat shock proteins. At elevated temperatures proteins tend to misfold
and create aggregates. This has disastrous effects on the cell. Hence, in order to survive, the cell under stress has to promptly
increase the level of heat shock proteins (HSP) which act as chaperones by interacting with the misfolded proteins (MFP) and
helping them to regain the native conformation (PROT). The control over this defence mechanism is exercised through the
regulation of the transactivation of the HSP-encoding gene. In order to transactivate transcription, heat shock factors (HSF)
trimerize (by transitory forming dimers (HSF2)) and in this form (HSF3) bind to the heat shock element (HSE), i.e. the pro-
motor element of the HSP-encoding gene. Once bound (HSF3:HSE), the gene is transactivated and new heat shock proteins
are synthesized. When the amount of chaperones is big enough to cope with the stress, the mechanism is turned off by free
HSPs which bind to free HSFs and HSFs that are in complex forms (HSF2, HSF3, HSF3:HSE) by previously breaking the com-
plexes. In consequence, the production of new HSPs is switched off and no new HSF3s can be formed. The full list of biochem-
ical reactions is given in Table 2. The biochemical model takes into account only well-documented reactions and does not
include any ‘‘artificial” elements such as experimentally unsupported components or reactions.

An associated mathematical model is obtained by assuming the law of mass-action [5,6] for the all considered biochemical
reactions. The resulting model is in terms of ordinary, first order differential equations, which form the nonlinear dynamical
system presented in Table 3. The heat-induced protein denaturation is modelled by adapting the temperature-dependent
formula for fractional protein denaturation originally introduced in [17]. It is incorporated into the mathematical model
in the form of the rate coefficient of protein misfolding (reaction (R14)), which is given by the following expression:

uðTÞ ¼ 1� 0:4
eT�37

� �
� 1:4T�37 � 1:45 � 10�5 s�1; ð6Þ

Table 1
Numerical values for the constants appearing in the tissue model discussed in Section 2.

Material Water Soft tissue

Density [kg/m3] qw = 1000 qt = 1060
Specific heat [J/(kg K)] Cw = 4200 Ct = 3800
Conductivity [W/(m K)] Kw = 0.6 Kt = 0.5

Parameter Value

Blood perfusion [kg/(m3 s)] wb = 0.9
Blood specific heat [J/(kg K)] Cb = 3800
Metabolic heat generation [W/m3] qm = 1085
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where T is the numerical value of the temperature of the environment in Celsius degrees. It is valid for 37 6 T 6 45 and is
based on experimental investigations presented in [11,10]. For a detailed description of the model we refer the reader to [18].

Instead of setting the temperature to a constant value as in [18], we composed the time-dependent temperature profile
obtained from the numerical tissue model from Section 2 with the protein denaturation formula (Eq. (6)). In this way, the
basic model from [18] was adapted for simulation of the cellular defence against ultrasound induced heating. The simulation
results in the form of the number concentration variations in time of the heat shock proteins and misfolded proteins are de-
picted in Figs. 4 and 5, respectively.

The obtained results for the new in vivo model coincide with the outcomes of the model presented in [14]. The ultrasound
induced free HSP level (Fig. 4) is significantly higher than the HSP level under the physiological conditions (37 �C, black
dashed line in Fig. 4), which is desired from the therapeutic point of view. Moreover, in the new model the average free
HSP level, computed alternatingly as the mean of two consecutive top and bottom or bottom and top peak values (red
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Fig. 3. The initial heating phase (0–130 s) followed by cooling and heating phase (130–295 s). The last phase has been repeated periodically in order to
obtain a heating scheme of 4 h.

Table 2
The simplified model for the eukaryotic heat shock response originally discussed in [18].

2HSF! HSF2 ðR1Þ
HSF2 ! 2HSF ðR2Þ
HSFþHSF2 ! HSF3 ðR3Þ
HSF3 ! HSFþHSF2 ðR4Þ
HSF3 þHSE! HSF3 : HSE ðR5Þ
HSF3 : HSE! HSF3 þHSE ðR6Þ
HSF3 : HSE! HSF3 : HSEþHSP ðR7Þ
HSPþHSF! HSP : HSF ðR8Þ
HSP : HSF! HSPþHSF ðR9Þ
HSPþHSF2 ! HSP : HSFþHSF ðR10Þ
HSPþHSF3 ! HSP : HSFþ 2HSF ðR11Þ
HSPþHSF3 : HSE! HSP : HSFþHSEþ 2HSF ðR12Þ
HSP! ðR13Þ
PROT!MFP ðR14Þ
HSPþMFP! HSP : MFP ðR15Þ
HSP : MFP! HSPþMFP ðR16Þ
HSP : MFP! HSPþ PROT ðR17Þ
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dashed line), is higher than the corresponding average of the outcomes of the model in [14], where neither perfusion nor
metabolic heat generation was considered (blue dashed line). This shows that in vivo ultrasound induced heating may be
even more efficient than indicated by in vitro experimental results.

However, in therapeutic applications, it is very important to control the level of misfolded proteins and keep it low during
the treatment. Otherwise, the heating could cause the cells’ death rather than stimulate them to self-repair. Hence, in order
to assess a heating protocol in view of therapeutic applicability, it is crucial to examine the induced MFP level. The obtained
results (Fig. 5) show that under the discussed heating scheme the level of misfolded proteins evenly oscillates around the
reference level obtained under constant 42 �C heating (black dashed line), i.e. except for the initial phase of less than
20 min, the reference line coincides with the average calculated as the mean of two consecutive top and bottom (or vice ver-
sa) MFP time-course peaks (red dashed line). As in [14], the response to constant 42 �C is chosen as the reference on, since the
cells are usually capable of surviving in such conditions. Again, although the difference is not as clear as in the case of the HSP
level time-course, the obtained results for the new in vivo model are slightly better than in the case of the in vitro model in
[14]. After about 20 min of treatment, the average for the in vitro model (blue dashed line) is above the average of the model
with perfusion and metabolic heat generation taken into account. However, as in [14], alarming is the protein misfolding at
the beginning of the treatment. The only improvement which can be observed here with respect to the previous model is
that the peak value of the whole response in the case of the in vivo model is lower (4.5 � 104 instead of 4.7 � 104 misfolded
protein molecules).

Table 3
The simplified mathematical model of the heat shock response originally presented in [18]. The model is obtained from the biochemical model shown in Table 2
by assuming the law of mass-action. It is formulated in terms of a system of 10 ordinary, first order, nonlinear differential equations. The numerical values of
the rate constants, the relationship between the model variables and the metabolites, and initial values of the variables are presented is Table 4.

dX1=dt ¼ �2kþ1 X2
1 þ 2k�1 X2 � kþ2 X1X2 þ k�2 X3 � kþ5 X1X6 þ k�5 X7 þ k6X2X6 þ 2k7X3X6 þ 2k8X5X6 ð7Þ

dX2=dt ¼ kþ1 X2
1 � k�1 X2 � kþ2 X1X2 þ k�2 X3 � k6X2X6 ð8Þ

dX3=dt ¼ kþ2 X1X2 � k�2 X3 � kþ3 X3X4 þ k�3 X5 � k7X3X6 ð9Þ
dX4=dt ¼ �kþ3 X3X4 þ k�3 X5 þ k8X5X6 ð10Þ
dX5=dt ¼ kþ3 X3X4 � k�3 X5 � k8X5X6 ð11Þ
dX6=dt ¼ k4X5 � kþ5 X1X6 þ k�5 X7 � k6X2X6 � k7X3X6 � k8X5X6 � kþ11X6X8 þ ðk�11 þ k12ÞX9 � k9X6 ð12Þ
dX7=dt ¼ kþ5 X1X6 � k�5 X7 þ k6X2X6 þ k7X3X6 þ k8X5X6 ð13Þ
dX8=dt ¼ uðTÞX10 � kþ11X6X8 þ k�11X9 ð14Þ
dX9=dt ¼ kþ11X6X8 � ðk�11 þ k12ÞX9 ð15Þ
dX10=dt ¼ �uðTÞX10 þ k12X9 ð16Þ

Table 4
The numerical values of the rate constants and the initial values of the variables in the simplified mathematical HSR model presented in [18]. The tissue model
from Section 2 was combined with the HSR model by composing the protein denaturation coefficient u(T) with the time-dependent temperature profile
obtained from the tissue model (Fig. 3). # denotes the number of molecules, V is the cell volume and s is second.
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4. Conclusions and further research

In this presentation hyperthermia was considered as a treatment method. A soft tissue heating model based on the
Pennes’ bioheat equation presented in [4,14] was extended by considering two additional elements: perfusion and metabolic
heat generation. Further, it was combined with a new mathematical model of the heat shock response in eukaryotic cells
recently presented in [18]. The HSR model is formulated in terms of a system of 10 ordinary, first order, nonlinear differential
equations. Based on the performed simulations, an ultrasound heating scheme has been proposed.

The obtained heating regime on the tissue level is capable of inducing a rather reasonable, in view of therapeutic
application, heat shock response on the cellular level. The assessment of the heating scheme is based on the time-course
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Fig. 4. Number of molecules in time of the free heat shock proteins induced by the ultrasound irradiation. The simulation results were obtained by
exploiting the basic mathematical model from [18]. The black dashed line indicates the HSP level at physiological conditions (37 �C). The red dashed line is
the average obtained by computing the mean values of two consecutive HSP time-course peak values (top and bottom or bottom and top, alternatively).
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behaviour of the induced levels of free heat shock proteins and misfolded proteins. However, alarming with respect to
the MFP level are the first 20 min of the response. An improvement could potentially be achieved by exploiting the ‘‘self-
learning” property of the heat shock response mechanism in the following way. Since numerical simulations of the model
in [18] indicate that the response to a consecutive heat shock is significantly weaker, the presented heating procedure could
be preceded by some properly adjusted temperature increase. In consequence, the initial MFP level peaks would be reduced.
However, such pre-treatment should be finely tuned in order to minimize the negative influence it would have on the induc-
tion of free heat shock proteins level increase, which is essential for the effectiveness of the therapy.

Finally, the presented simulation results reveal that the basic mathematical model from [18] might not be robust. This
may be concluded based on the fact that the model drastically reacts to temperature changes of a relatively high frequency.
The dynamics displayed by the HSR model might be unrealistic with respect to the energy resources it would require. More-
over, robustness is a common and rather crucial feature of all biological systems, which is a contrast with the model, that is
supposed to reflect a biological mechanism. This issue asks for a more thorough investigation, potentially accompanied by
some experimental verifications which would cast some more light on the problem of robustness of the heat shock response
machinery.
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