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ZusammenfassungDie vorliegende Arbeit untersuht den Zusammenhang zwishen Skalen in Sys-temen weiher Materie, der für Multiskalen-Simulationen eine wihtige Rollespielt. Zu diesem Zwek wurde eine Methode entwikelt, die die Approximationder Separierbarkeit von Variablen für die Molekulardynamik und ähnlihe An-wendungen bewertet. Der zweite und gröÿere Teil dieser Arbeit beshäftigt sihmit der konzeptionellen und tehnishen Erweiterung des �Adaptive ResolutionSheme� (AdResS), einer Methode zur gleihzeitigen Simulation von Systemenmit mehreren Au�ösungsebenen. Diese Methode wurde auf Systeme erweitert,in denen klassishe und quantenmehanishe E�ekte eine Rolle spielen.Die oben genannte erste Methode benötigt nur die analytishe Form derPotentiale, wie sie die meisten Molekulardynamik-Programme zur Verfügungstellen. Die Anwendung der Methode auf ein spezielles Problem gibt bei er-folgreihem Ausgang einen numerishen Hinweis auf die Gültigkeit der Vari-ablenseparation. Bei niht erfolgreihem Ausgang garantiert sie, dass keineSeparation der Variablen möglih ist. Die Methode wird exemplarish auf einzweiatomiges Molekül auf einer Ober�ähe und für die zweidimensionale Versiondes Rotational Isomer State (RIS) Modells einer Polymerkette angewandt.Der zweite Teil der Arbeit behandelt die Entwiklung eines Algorithmuszur adaptiven Simulation von Systemen, in denen Quantene�ekte berüksihtigtwerden. Die Quantennatur von Atomen wird dabei in der Pfadintegral-Methodedurh einen klassishen Polymerring repräsentiert. Die adaptive Pfadintegral-Methode wird zunähst für einatomige Flüssigkeiten und tetraedrishe Moleküleunter normalen thermodynamishen Bedingungen getestet. Shlieÿlih wird dieStabilität der Methode durh ihre Anwendung auf �üssigen para-Wassersto� beiniedrigen Temperaturen geprüft.



SummaryThis thesis investigates the onnetion between the length sales in soft mattersystems, whih is very important in the �eld of multisale modeling. For thispurpose a method was developed to evaluate the approximation of separationof variables in moleular dynamis and related �elds. A seond issue, and themain part of this thesis, onerns the oneptual and tehnial extension of the�Adaptive Resolution Sheme� (AdResS), a method that allows the simulationof a system with onurrent sales, to situations where quantum e�ets play arole.The �rst method mentioned above requires only the analytial form of thepotential as provided in most of the moleular dynamis programs. The outomeof the appliation to a partiular problem gives, in the ase of a positive assess-ment, a numerial indiation about the validity of the separation of variablesand in the negative ase the evaluation guarantees stritly that no separationwill be possible. This method is then applied to a diatomi moleule on a �atsurfae and the 2D version of the Rotational Isomer State (RIS) model of apolymer hain.The seond part of this thesis is about the development of an algorithmto perform an adaptive resolution simulation where quantum e�ets an be in-luded, by mapping the quantum nature of an atom onto a lassial polymer ringrepresentation within the path integral formalism. The path integral/adaptivemethod is tested in a model liquid of monoatomi and tetrahedral moleulesat standard (ambient) thermodynami ondition. Finally, the robustness of themethod is assessed by using it to study liquid para-hydrogen at low tempera-tures.
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IntrodutionDuring the last few deades omputer simulations have opened up the possi-bility to inrease our understanding of nature in several �elds of the siene.Suh versatility is due to the presene of a growing ommunity of sientists andthe large amount of omputational failities. Computer simulation has beomeextremely useful for sientists beause it allows the study of omplex systems.It an provide information that is sometime inaessible by experiments due tothe extreme onditions, impossible to reprodue in the laboratory. Furthermore,omputer simulations are used to test various theoretial approahes.However, there still remains a lass of problems where brute fore simulationsare prohibitive due to the omplexity of the system. Typially, the omplexityinvolves a large amount of degrees of freedom and the interplay between di�er-ent length and time sales. Many of these problems our in the �eld of softmatter. A ommon strategy to overome these problems is to reate simpli�edmodels on eah sale and then pass the information to next level of omplexityin a hierarhial way. Naturally, this give rise to the idea of oarse graining pro-edures to obtain relevant information from eah level of desription and thusseveral methods have been developed for this purpose. So far, the validity ofsuh proedures is based on the reproduibility of the properties of interest anda true ontrol of the approximation an not be done in general a priori. In thisontext is neessary to develop numerial tools to ontrol the underlying oarsegrained proedures.In the last few years several approahes have reahed a level of tehnialsophistiation to study multisale problems and among them the Adaptive Res-olution Sheme (AdResS) has maintained also a oneptual development as onean see in this thesis and referenes therein. The onept of adaptability helpsto ouple several levels of desription on the �y, allowing the �ux of informationfrom one desription to the other. However, the quantum-lassial oupling isonsidered to be a hard oneptual problem and the adaptability adds a majordi�ulty. The present work extends the adaptability for the quantum desrip-tion in the framework of the AdResS sheme.This thesis onsists of seven hapters:
• Chapter 1 introdues the basi onept of oarse graining in soft mattersystems and disusses some numerial tehniques, that are used later toobtain e�etive oarse grained potentials. We also disuss the possible1



limitations of this approah.
• Chapter 2 is dediated to our method alled the Approximation of Separa-tion of variables (ASV). This method was developed to quantify the errorintrodued by tehniques used to alulate the e�etive oarse grained(CG) potential under the approximation of separation of CG variables.
• Chapter 3 is entirely dediated to the lassial Adaptive Resolution Sheme(AdResS). We desribe the onept of the AdResS equation of motion andthe thermodynami equilibrium is de�ned in systems whih hange theirnumber of degrees of freedom on the �y. Then we use frational alulusto generalize the onept of the equipartition theorem and formally de�netemperature in suh onditions. For pratial purposes, we omment onthe results of AdResS for the tetrahedral moleules where eah moleuleis mapped onto one oarse-grained site. Finally, we dediate a setion toomment on further theoretial developments.
• Chapter 4 is about the path integral approah, whih is onsidered to bean alternative formalism of quantum mehanis. This hapter starts byshowing how to apply the path integral approah for a free partile andthen generalizes the results for a quantum many-body system. Then themoleular dynamis implementation of path integrals, known as PIMDand the alulation of average of observables within the PIMD formalismis desribed. Last setion disusses the limitations of suh implementationand possible solutions.
• Chapter 5 is fully dediated to our ontribution whih extends the oneptof AdResS for ertain problems where the quantum harater of partiles(e.g. deloalization) plays a entral role and the adaptability of lassialand quantum partiles takes plae. For the quantum desription we usethe path integral approah (see hapter 4). We desribe how to obtain ane�etive oarse grained potential from the path integral representation.Finally, we applied this onept to two model systems, the monoatomiliquid and moleular liquid, for several degrees of �quantumness�.
• Chapter 6 onsists of the �rst real appliation reported with our adap-tive/path integral method to the parahydrogen ase.
• Finally, the onlusion and perspetives are presented in Chapter 7.
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Chapter 1Systemati Coarse GrainingStatistial thermodynamis desribes the marosopi state of N partiles (e.g.
NA = 6.0221 × 1023mol−1), in terms of a small set of variables, the so-alled�thermodynami variables� (e.g. pressure, entropy, et), whih depend on themirosopi states (e.g. positions and veloities of partiles). One ould inter-pret these marosopi variables as an e�etive or a oarser desription of themirosopi states. At equilibrium, statistial thermodynamis provides uni-versally aepted reipes for suh oarse graining. Thermodynami potentialsontain all the relevant information about a thermodynami system in a om-pat format, and these potentials an be alulated via partition funtions interms of statistial weighting.Nowadays, due to the rapid enhanement of omputational resoures [1℄,one may think that the omputer simulation of soft ondensed matter representsmerely a tehnial task of running larger systems and longer times with standardsimulation shemes and that there is no a oneptual hallenge. Atomistisimulations based on moleular dynamis (MD) or monte arlo (MC) have shownto be suessful in order to explore the potential energy surfae (PES) [2℄ ofsystems at the moleular sale (i.e. few ps and nm), but there are still seriouslimitations for a detailed moleular desription of mesosopi sales. The widetime and length sales of suh systems ombined with the interplay betweendi�erent sales makes the theoretial desription harder and unfeasible to makemeaningful omparison with experiment.One an have an idea of this issue, forinstane, in the �eld of bio-moleular simulation, whih requires one to aessseveral sales with a large variety of omplexity. The topi of protein-generated(or mediated) membrane urvature whih is known as membrane �remodeling�for example: protein modules (e.g. Bin/amphiphysin/Rvs domain) an remodelliposomes having initial diameters of 20 nm into thin tubulated strutures withdiameters on the order of 20 to 50 nm over time-sales longer than miroseonds[3℄. Another ommon example is the folding of proteins of more than �ftyresidues using all-atom fore �elds. A omputer simulation overing a timesale of 5 × 10−8s for a heptapeptide in methanol sueeds in apturing thefolding proess [4, 5℄. For larger systems diret atomisti simulation has been3



less suessful [6,7℄. Traditionally, omputer simulations are restrited to shortlength sales or proesses whih relax in short time sales.In order to bridge the atomisti and the mesosopi sales, one has to developnovel approahes that an aess longer times and larger length sales. One suhapproah is to oarse-grain a system, so that a group of atoms is lustered intoa strutureless CG bead (i.e. a superatom), whih retains the essential physisof interest (see Figure 1.1). These CG beads interat through more e�ientpotentials where the �fast� variables responsible for the time limitation havebeen integrated out during its derivation. One expets to get softer potentialswhih allow the use of larger time steps. To sum up, the system is replaed byfewer partiles (CG beads) whih mimi the phenomena of interest as auratelyas possible and it is able to reah longer time sales.

Figure 1.1: A pitorial oarse grained representation of the a-gluose moleulewhere one monomer has been mapped onto one bead [8℄.The next setion is about generalities of the e�etive oarse-grained poten-tial.1.1 E�etive potential for oarse grainingAs mentioned before, it is essential to preserve equilibrium thermodynami prop-erties of the original system in oarse-graining methodologies. This guaranteesthe preditability of the oarse grained models in a ertain range of interest.Consider an expliit system of N partiles with oordinates {r} = r1 . . . rN . Letus assume for simpliity that one is able to distinguish the �important� oordi-nates r′ from the full set of variables. In general the partition funtion, ZN , for4



a system of N distinguishable partiles is given by
ZN =

∫
drdp e−H/kBT , (1.1)where H is the total Hamiltonian (i.e kineti and potential energy) and kB isBoltzmann`s onstant. From this expression, one an obtain the Helmholtz freeenergy A for a given volume and temperature T as follows,

A = −kBT lnZN . (1.2)From the Eq. 1.1 one noties that the partition funtion ontains two ontribu-tions
ZN = Ztrans × Zconf (1.3)where Ztrans and Zconf is the orresponding translational and on�gurationalontributions. While Ztras depends on the temperature and masses of the parti-les, its on�gurational part ontains the onservative potential of the ompletesystem, V (r), as follows,

Zconf =

∫
dre−V (r)/kBT . (1.4)In oarse graining one wishes to obtain an e�etive potential V eff(r') suh thatthe Boltzmann distribution in the redued spae of important variables remainsthe same as the equilibrium distribution of suh varibles in the atomisti model.As a onsequene the e�etive potential an be de�ned as

e−Ueff (r′)/kBT =
Z ′

conf

Zconf

∫
dr e−V (r)/kBT δ(r− r′). (1.5)From Eq. 1.5 it is lear that the e�etive oarse grained potential is not a onven-tional potential, but rather a many-body on�guration free energy, the so alledpotential of mean fore (PMF). Suh an approah is onsidered as a bottom-upreonstrution of the e�etive potential beause of the use of atomisti simula-tions (�ne-grained) to derive suh a potential in the CG sale. In pratie itis very ine�ient when one has to deal with multidimensional potentials (e.g.large moleules or membranes solvated in water). It is, however, onvenientfor low dimensional problems (e.g. a one dimensional reation oordinate thatdesribes the essential event).In almost all ases the bottom-up reonstrution of the e�etive potentialwill not get the preision required to aurately predit thermodynami quan-tities at the CG level. Alternatively one an take a top-down approah, whihbasially parameterizes the CG models from a marosopi experimental data.For instane, aording to important thermodynami information [9℄ or impor-tant marosopi struture of the referene system [10℄ in order to retain asmuh as possible the essential physis of interest. In the following setion wewill brie�y introdue the strutural oarse graining whih has been used in thisthesis. 5



1.2 Struture-based oarse-grainingThe basi idea of struture-based oarse-graining is to guarantee a onsistenybetween the struture of high resolution models (atomisti sale) and the lowresolution ones (oarse grained sale). Ideally, the struture agreement shouldhold down to the smallest length sale, whih is in the order of the CG unit.One has to be aware that in general all-atom on�gurations orrespond to asingle CG onformation [11℄. Although there is not a one-to-one orrespondenebetween the CG and full-atom on�gurations, it is very important that theensemble of onformations of the CG model orresponds to the atomisti ones.Inpratie, the strutural oarse-graining is done through the mapping of ertaindistribution funtions between the mapping points (enter of masses of CGbeads) in the referene system (full atomisti). Although there is no unique setof mapping points, their hoie relies on numerial onvergene of the struturalproperty [12℄ to be alulated.At this point, one should omment of the methodologies used to generatethe CG fored �eld. There are several ways to do this. A popular one is to �t apair potential, so that it reprodues the strutural quantity desired, suh as theradial distribution funtion, g(r). Ideally, the form of the potential should beindependent of the proedure used to alulate it, as proved by Henderson [13℄,where two �pair potentials� that reprodue the same radial distribution funtionare equal up to a onstant. A more sophistiated mathematial proof an befound in referene [14℄. Conventionally, one derives this e�etive potential ata given state-point. Thus, one should expet �transferability problems� whenthat potential is used at di�erent state points.Tehnially, there is a set of very e�ient methods used to obtain suh e�e-tive potentials. It is important to note that, in these methods small numerialerrors an lead to di�erent e�etive potentials, during the �tting of the maro-sopi property suh as radial distribution funtion. Among the most popularones are the iterative proedures, suh as the Iterative Boltzmann Inversion(IBI) or Reverse Monte Carlo (RMC). They try to reprodue strutural infor-mation (e.g. radial distribution funtions) whih an be taken from experimentsor all-atom simulations for a given thermodynami state. In 2009 a softwarenamed �VOTCA� [15℄ designed spei�ally for strutural oarse graining was re-leased and the urrent version ontains several well-known traditional methodsfor onstruting the e�etive potential. In this thesis work we used the IterativeBoltzmann Inversion for alulating the e�etive nonbonded interations, andthe next setion is dediated to it.1.3 Nonbonded interation potentialsThe main aim of deriving an e�etive nonbonded potential is to reprodue stru-tural properties. These are mainly ontained in the radial distribution funtionsof some soft matter systems (e.g. liquids or polymer melts). This information isommonly obtained from experiment or atomisti simulations. The basi idea6



is to obtain numerial (�tabulated�) potentials, whih at between the oarsegrained units. In a similar way the same oarse grained proedure an be madefor bonded interations (see ref. [16℄).1.3.1 The Iterative Boltzmann InversionThe implementation for non-bonded interations starts with an initial guess forthe nonbonded potential, usually the Boltzmann inverse of the target gtarget(r)is hosen as a �rst guess,
V CG

NB,0(r) = −kBT log gtarget(r) (1.6)where T is the temperature and kB is Boltzmann's onstant. Last expressionis known as the potential of mean fore. One then runs a CG simulation andobtains a new g(r) whih usually does not math the target struture due to themultibody interation. This is beause the potential of mean fore (Eq. 1.6) isa good estimate for the pair interation of highly dilute systems. To ahieve thedesired onvergene an additional orretion has to be introdued through thefollowing iterative sheme
V CG

NB,i+1 = V CG
NB,i + kBT log

gi(r)

gtarget(r)
(1.7)Basially, the initial guess for the potential an be iteratively re�ned until the de-sired struture is obtained. For small moleules and simple liquids suh as waterand benzene at normal onditions, this proess is powerful and straightforwardto implement. On the other hand, for multiomponent system (several types ofCG beads) e.g. liquid rystals or polymer melts, the proess of determining thenonbonded potential is more ompliated [17℄. The iterative proedure guaran-tees a nie agreement with the target distribution but not with the pressure.Next setion explains how to deal with this problem.1.3.2 Pressure orretionDuring the struture-based oarse-graining, it is also important to �t the pres-sure at the density of the target system in order to retain as muh as possiblethe state point of the all atom model. It is well-known that one an �t eitherthe pressure or the ompressibility, but not both simultaneously [18℄. Typially,a linear term is added to the nonbonded potential interatively in order to �t thepressure:

∆V (r) = A(1 − r

rcut
) (1.8)for r < rcut, where rcut is the uto� radius of the pair nonbonded potential and Ais an arbitrary onstant whih an be estimated from the virial expansion [16℄.Basially, the orretion of Eq. 1.8 yields a onstant fore that makes theinteration repulsive if A is positive, and more attrative in the opposite ase.7



One runs into trouble if A is not small enough, it an a�et the overall strutureand, thus it will have to be readjusted until a good balane between pressureand the radial distribution an be obtained. Suh a proess ould delay theonvergene of the target radial distribution funtion of interest.1.4 Limitation of struture-based oarse-grainingIt is worthwhile to emphasize that identifying the proper set of relevantvariables (CG ones) is the key to suess in any systemati oarse-grainingproedure. In other words, one has to �rst identify a suitable set of relevantvariables for a oarser target level and then express them in terms of the variablesof the �ner resolution. The latter is taken as the referene in the simulation.In many ases, this is given by the atomisti level with partile positions andmomenta as a variables.Note that the assumption of a pairwise potential is suitable in many aseswhere the three-body or higher order fores are not so relevant for the levelof desription. However, one an not expet the same representation of �allproperties of the system� between the oarser desription and the atomistione. The representability problems are widely spread in oarse-graineddesriptions of soft matter [9, 18℄.Another essential problem is the degree of transferability of the CG modelfrom one thermodynami ondition to another. In priniple, as stated before,CG potentials annot be fully transferable due to the redution of degrees offreedom (some information has been averaged out), whih simpli�es the om-plexity of the system.Finally, the dynamis of oarse grained models in many ases does notorrespond to the real dynamis. Generally, CG dynamis is faster than the un-derlying atomisti one. Thus the CG dynamis must be properly interpreted; inany ase the fat that one an run muh longer simulations implies a muh moree�ient statistial sampling for the alulation of stati equilibrium properties.

8



Chapter 2Approximation of Separationof VariablesA relevant problem in moleular-dynamis (MD) simulations is the determina-tion of the minimal set of degrees of freedom (DOFs) to be employed in thesimulation study by a systemati proedure. Partiularly, in the �eld of oarsegrained simulations, one would like to determine the set of relevant variableswhih are su�ient to properly haraterize the phenomena under investigation.Also in omplementary �elds suh as the study of rare events (e.g protein fold-ing or rystal nuleation) the hoie of the �olletive variables (CVs)�, typiallyused in transition path sampling [19℄ or metadynamis [20℄ is haraterized bythe same problem. The hoie of a small set of variables is generally guidedby hemial or physial intuition and does not always allow for a systemationtrol of the underlying approximations. In this ontext it would be optimalto provide some riteria to ontrol, in a systemati way, the hoie of the set ofDOFs (eg. reation oordinate or CVs).In this hapter we present the basis of a riterion to evaluate how separabletwo DOFs are and its extension to study the interdependeny of several DOFs.Our algorithm [21℄ mainly requires as input the basi information ontained inthe potential energy surfae (PES) [2℄. The basi idea behind the separabilityof some DOFs in the PES typially leads us to propose a redution in thedimensionality of the problem. In omplex systems, the PES ontains ruialinformation; in an extreme ase, if two DOFs are independent their evolutionours in two orthogonal spaes. This means that one ould neglet one of thesevariables without altering the dynami evolution of the system in the spae ofinterest.The present hapter begins by exposing the basi idea of how to evaluatethe separability of two DOFs through the method developed and alled theapproximation of separation of variables (ASV). A methodologial example ofhow to apply the ASV will illustrate the idea (the ase of the diatomi moleuleswith a �at surfae). And �nally we apply the ASV method to a more realisti9



system, namely the RIS model of polymer hain.2.1 The ASV: a �rst riterionFor pratial purposes let us start onsidering a two dimensional potential ofthe form V = V (x, y): the extension to more variables will be disussed lateron. The analytial form of V is given and only in the ase that the two variablesare fully separable one has that:
V (x, y) = V1(x) + V2(y) (2.1)Or equivalently one ould write V for any ouple of �xed points x0, y0 as:

V (x, y) = V1(x) + V2(y) = V (x, y0) + V (x0, y) − V (x0, y0). (2.2)In other �elds of siene the �xed point has many meanings, for example, inmathematis is de�ned as a point that is mapped to itself by the funtion, inphysis is ommomly used in the renormalization group theory languagee, inhemistry is used as the point under whih rotation of the moleule ours, toname a few. In this thesis the �xed points are de�ned as the set of points thatdeouple the potential for eah DOF (see Eq. 2.2).Up to now this is exat and represents the ideal ase of omplete separabilityof two DOFs. A reasonable riterion to indiate how good the approximation ofseparation of variables is, is to alulate its deviation from the ideal ase of Eq.2.2. This an be done with the de�nition of an estimator ∆ of the di�erenebetween the true potential where the variables are still oupled and the potentialwhere one introdues by hand the separability in the fashion of Eq. 2.2. Forinstane, given a potential V (x, y) where x and y are not deoupled one de�nes
∆ as,

∆x0,y0(x, y) = V (x, y) − [V (x, y0) + V (x0, y) − V (x0, y0)], (2.3)
∀x, y 6= x0, y0. Basially this is a point-by-point evaluation in order to omparethe potential V and its respetive version where the ASV was introdued.To know how meaningful the energeti disrepany between the oupledpotential and the ASV for a spei� problem is, one needs to de�ne a sale ofenergy. Sine we deal with energy sales of the order of thermal �utuations(∼ kBT in lassial simulation of soft matter systems). One ould de�ne thequality fator for the ASV as follows,

Q(x, y) =
|∆x0,y0 |

kBT
(2.4)where kB is Boltzmann's onstant and T is the temperature. The simple formof Eq. 2.4 de�nes the ��rst riterion� of our algorithm; this form is easy totreat numerially. From Eq. 2.4 one sees that if Q is muh larger than one,then the assumption of the approximation of separation of variables will lead10



to false dynamis and thus its exploration by MD an be questionable. Thehoie of the referene is system dependent, for instane, if one is studying theonformational spae of a moleule whih is haraterized by an energy barrier
ǫb that separates two important and well-de�ned states, in this ase ∆ an beompared with ǫb.So far, we have not ommented about the dependene of Q with respet tothe �xed points (x0, y0). The treatment of this problem will strengthen theriterion designed previously and this is the fous of the next setion.2.2 Dependene of Q on the �xed point: A om-plementary riterionA formal way to determine the dependene of Q on the �xed points (x0, y0) isto monitor the variation of Q upon the variation of x0 or y0. We de�ne:

δx0 =
∂Q(x0, y0, x, y)

∂x0
(2.5)

δy0 =
∂Q(x0, y0, x, y)

∂y0
. (2.6)These variations are alulated over a ertain range of �xed points (x0, y0) andon a ertain (x, y) domain. In general, if the ASV is reasonable, the dependeneof Q, given by Eq. 2.5 and 2.6, on the �xed point is indeed negligible byonstrution. In suh a ase, one would have for Eq. 2.5 that,

δx0 =
1

kBT
[
∂V (x0, y0)

∂x0
− ∂V (x0, y)

∂x0
] ≪ 1, (2.7)if x and y are not highly orrelated, and one immediately sees that

∂V (x0, y0)/∂x0 ≈ ∂V (x0)/∂x0 and similarly for ∂V (x0, y)/∂x0 ≈ ∂V (x0)/∂x0.This demonstrates that δx0 ≈ 0 for the ase of weak oupling between x and
y, the same holds for δy0 . When the ASV is questionable, the quality fator Qwill be dependent on the values of the �xed points. This seems to be a negativeaspet of the algorithm proposed; but eventually here we propose to use it asa �omplementary riterion� to identify the regions of (x, y) where the validityof the ASV is very ritial. The reipe is the following: �rst one studies δx0and δy0 as a funtion of x0 and y0 using x and y as parameters to vary, whihhelps us to identify the ritial regions. Seond, one hooses x0 and y0 outsidethe ritial region. Finally, one applies the ASV over all relevant xy spae toquantify the degree of separability (∆). One ould summarize these ideas asfollows,

• It de�nes regions where the hoie of the �xed points for Q is deliate andthose where it is not. 11



• It also de�nes a region of the (x, y) spae where the ASV is likely not tohold, ompared with other (x, y) regions.This part of the proedure is rather important. Instead of only minimizingthe dependene of �xed points on Q, it also takes are of the fat that ritialregion may be too small and a �xed point taken from suh a region may be toolose to some of the (x, y) points, so that when one evaluates Q one gets smallvalues beause of the lose values of V (x, y), V (x, y0), V (x0, y) and V (x0, y0).Basially, the analysis is prevented from being very loal.In summary, the simple reipe for the ASV riteria an be given as1. Choose an arbitrary �xed point.2. Calulate the quality fator Q.3. Study the dependene on the �xed points by alulating the orresponding
δ.4. Identify the ritial region.5. Choose a �xed point outside the ritial region (the optimal would bewhere δ = 0).6. Calulate Q one again using the �xed points of step 5 and analyze Q inthe ritial region.In the next setions, we show �rst a simple example of how to apply theASV. The seond example is more omplex and will help us to generalize ourideas for a multidimensional system.2.3 A guiding example: A rigid diatomi moleuleinterating with a surfaeThis is a simple example of how to apply the ASV riteria. The system onsistsof a diatomi moleule of equivalent atoms whih interat with a uniform rigidsurfae via a potential given by

U(za, zb) = ǫ{2

5
[(

σ

za
)10 + (

σ

zb
)10] − [(

σ

za
)4 + (

σ

zb
)4]} (2.8)The question we want to address is whether there is a region za, zb where themoleule an be treated as an e�etive �point-like� partile (see Figure 2.1) andwhose interation point is loated at the enter of mass.An equivalent way to desribe the same system is to transform the set ofvariables za, zb to another set of degrees of freedom. One variable is the distane

r from the surfae to the enter of mass, while the rotation around it by thevariable θ. Now, the previous question beomes: is it possible to separate r and
θ? 12
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(I) (II)Figure 2.1: Shemati representation of the system onsidered. Part (I) showspitorially the mapping from (za, zb) to (r, θ) and part (II) desribes the asewhen θ is ompletely independent from r.For this purpose, one has to transform the old set of variables to the newones:
za = r + d · sin(θ); zb = r − d · sin(θ) (2.9)and thus, substituting the last expression into Eq. 2.8 one writes the potentialin terms of the new variables r, θ as

U(r, θ) = ǫ

(
2

5

[(
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r + d · sin(θ)

)10

+

(
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r − d · sin(θ)

)10
])

−

−ǫ

([(
σ

r + d · sin(θ)

)4

+

(
σ

r − d · sin(θ)

)4
]) (2.10)where θ ∈ [0, π/2] due to the symmetry of the system and d is the �xeddistane from the enter of mass to eah single atom. The values used here forvarious parameters were taken from an atomisti model whih was employed tostudy the absorption of a moleule on a surfae [22℄. Firstly, by using Q(r, θ)one ould determine the minimum distane r from the surfae for whih theseparation is still reasonable, and thus for distanes larger than this one is ableto neglet the moleular rotation and represent the moleule (with respet tothe surfae) as one e�etive interation site loated at the enter of mass. Nowwe show the fator of quality for this problem and its study with respet to the�xed points.2.3.1 The fator of quality QOne should start to de�ne the threshold for the potential disrepany. Let us usefor this 2kBT in Eq. 2.4. Energy errors that exeed this number may alter thedynamis of the proess of absorption. With the help of Eq. 2.4 one omputesthe quality fator of the problem. The result of this alulation is shown in13
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Figure 2.2: The quality fator Q studied as a funtion of the angle θ varyingparametrially r from 3.0 nm to 1.0 nm. The �xed point used in this exampleis: θ0 = π
6 and r0 = 2.0 nm. Here σ = 0.5 nm; l = 0.5 nm, ǫ = 10kBT . Asthe distane of the enter of mass from the surfae dereases the dependeneon θ beomes stronger and for approximately r ≤ 1.2 nm the ASV starts to bequestionable sine the error indued an be larger than 2 kBT .Figure 2.2. As long as r takes values in the range of 1.0 − 1.2 nm the potentialwhere the separation is applied overestimates the true potential of the relevantquantity by around 2− 3kBT , as expeted, and this overestimation inreases as

θ inreases.From this part one sees the following for the separability: as the moleule islose, i.e. r ≤ 1.2 nm, the assumption of separation of r and θ not longer holds.For this example we use the values of the �xed points whih at least a�et thequality fator Q in the range of interest. This will be explained in detail in thenext setion.2.3.2 The omplementary riterionMethodologially, as we pointed out before, one an start to look at the smallvariation of Q as a funtion of the �xed points. For this spei� example, weshow the variation of Q with respet to r0 and θ0. The results are shown inFigure 2.3 and 2.4 respetively. For δr0 the ritial region orresponds to theregion where r < 1.4 nm (by onstrution r annot be less than 0.5 nm). For
δθ0 the ritial region varies from π/4 ≤ θ ≤ π/2. In fat, Figure 2.3 shows,for di�erent values of θ and θ0, a trend aording to whih for r0 ≤ 1.4 nm thedependene of Q on r0 beomes relevant. Similarly, one sees in Figure 2.4 thatthe ritial region is loated in π/4 ≤ θ ≤ π/2.14
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Figure 2.3: The variation of Q w.r.t. r0, (δr0), for some example values of θ0 and
θ. We plot also the extreme values taken by θ0 and θ (symmetri urves) allowedby the atomisti model and, in between, two more examples. The message ofthis plot is that there is a general trend aording to whih the dependene of
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r ≤ 1.2 nm the ASV starts to be questionable. Basially, these studies of δr0and δθ0 show how to re�ne the analysis of Q for the region of large disrepany.The studies of Q and δr0, δθ0 omplement eah other and shows how one andetermine the validity of the ASV.2.4 Extension to higher dimensions: ParametristudyThe riteria presented before an be in priniple extended to more dimensionsalthough the omputational demands would inevitably inrease. The most sim-ple way to proeed is by looking at two variables at a time with the rest frozen.Let us suppose the potential in a generi form U(x, y, z, . . .). Then, one mayfous on two variables per time and see how the separation an be arry out.For simpliity, we onsider U = U(x, y, z) as funtion of three variables x, y and15
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4 is the ritial one.
z. In this ase ∆ is written as

∆x0,y0(x, y, z̄) = U(x, y, z̄) − [U(x, y0, z̄) + U(x0, y, z̄) − U(x0, y0, z̄)] (2.11)if one is interested in how separable x and y are, under the assumption that zan be fatorized from the others. In Eq. 2.11, z̄ means all the possible valuesof z that ould deouple it from x and y. In the same way one ould analyze
∆y0,z0(x̄, y, z) if one were interested in how separable are y and z, under theimpliit hypothesis that x an be separated from the others or similarly for
∆x0,z0(x, ȳ, z), if the interest is in the separation of x and z.2.5 A seond example: 2D version of the RISmodel of a polymer hainThe Rotational Isomeri State (RIS) theory is onsiderd to be the standardmethod [23℄ to study the onformational properties of maromoleules. Here wede�ne the RIS model of our polymer hain, where all torsions are set to zero (i.e.2D ase). suh a ondition will be ful�lled for all the dihedral angles aroundthe bonds. In our model system we apply the ASV riteria for two di�erentmapping shemes (MSs) (see setion 2.5.2). Let us explain in the next setionthe problem of hoosing the mapping sheme for a polymer system.16



2.5.1 A general problem in oarse grained modeling ofbonded interationsIn the previous hapter we omment about the mapping sheme (MS) as theommon CG strategy to redue the large number DOFs in soft matter simula-tions. After one de�nes a MS (whih also de�nes impliitly the CG variablesof interest) one performs simulations to obtain the e�etive potential (bondedand nonbonded) among the set of CG variables. Here, let us fous on the aseof bonded potential for a polymer. For example one replaes eah hemialgroup in a polymer by spheres that beome the new e�etive partiles of suhsystem. The new CG variables are the following: bond lengths (r), bond angles(θ) and torsion (φ) assoiated with two, three or four hemial groups respe-tively. Next, one has to think about the e�etive potential for this minimal setof variables. Some methods are based on all-atom simulations of a single hainin vauum, the orresponding distribution of the CG variables is obtained inthese MD runs and under the approximation that they are deoupled.Then one an write,
P (r, θ, φ, T ) = P (r, T )P (θ, T )P (φ, T ) (2.12)and by Boltzmann inversion [16℄ at the given temperature T one has:

U (r, θ, φ) = U (r) + U (θ) + U (φ) (2.13)This new potential mainly reprodues some features of the full atomisti modelbut at muh lower omputational demands (less variables to integrate in MD).However, a priori one does not know how far the hypothesis of separabilityould hold for a given MS. This means, so far, that there is not a systematiapproah to ontrol the underlying ASV implied by the potential derived in Eq.2.13. Here we an apply straightforwardly the riteria developed previously.2.5.2 Mapping shemesIn order to make a omparison between our model system and a real polymerhain we use the parameters that haraterize the energy and length salesorresponding to the n-alkane hain (see Appendix A). The struture of analkane hain (AC) is illustrated in Figure 2.5. This simple polymer is omposedof several repeat units with eah one orresponding to either methyl groups(CH3) in both ends or ethyl groups (CH2) along the bakbone. We study twodi�erent MSs for our model system whih are depited in Figure 2.6. They areindiated as the 1:2 and 1:3 mapping shemes (MSs). By onvention the rightnumber denotes the number of arbons whih will be replae by a sphere (leftnumber), this means that the 1:3 MS is more oarser than 1:2 MS. Now wede�ne the variables as follows:
• the distane between lose beads R(1) and R(2)

• the angle Ω between the vetors ~R(1) and ~R(2).17



Figure 2.5: Chemial struture of the n-alkane hain in whih eah vertex of thebakbone represents a arbon.Even though in Figure 2.6 both MSs result in the same set of CG variables, theydepend on di�erent atomisti variables. The point we want to address is howseparable are these CG variables, that is how independent are R(1) and R(2),
R(1) and Ω, and R(2) and Ω.2.6 ResultsThere are some basi steps that one has to follow in order to evaluate the qualityof eah MSs. First, one has to express the atomisti potential as a funtion ofthe CG variables R(1), R(2) and Ω (see Appendix B). After that we follow thesteps of the ASV disussed at the begin of this hapter. We disuss here sometehnial details for this system whih an be useful for more omplex systems.First, we alulate Q in regions of the CG variables allowed by the atomistionformations. This means that the regions of Q where bond breaking or overlapof two atoms our, are not taken in aount during the analysis.The hoie of �xed points is not so trivial (δ = 0) as in the �rst example.This time δ is not likely to be zero given the omplexity of the moleule. Thus,we extend the previously used riteria as follows:a) If δ has a region where it varies slowly and then a region where its variationinreases rapidly, we de�ne the �rst region as non ritial and hoosethe �nal �xed point from there (possibly the point orresponding to theminimum value of δ, that is, the minimum dependene on the �xed point)or we hoose several �xed points and sample Q over all of them.b) If δ is onstant, but it is haraterized by a high value or it inreases rapidlyover the whole domain, then the whole domain is de�ned as ritial, whihmeans that the ASV does not hold. Sine we need a �xed point to quan-tify the error introdued by the ASV. This time one ould hoose several�xed points all over the whole domain of �xed points and for eah hoiealulate the Q separately. For the �nal Q one takes the average (plus the�utuations) of all the values obtained for eah study. What hanges from18



Figure 2.6: The �gure shows the typial CG struture of the polymeri hainstudied. Eah hemial group is represented by blue irles lose to a letter.Part (a) shows the MS where there are two arbon groups per bead (1:2), whilepart (b) shows three per bead (1:3). The �atomisti� variables θi ∀i = 1, 2, 3, 4and the CG variables R(1), R(2)and Ω are also shown.ase (a) is that one needs a large sample of �xed points. Typially in thisase one an expet that the approximation leads to very large errors.With these remarks in mind, we proeed to show the results for eah mappingsheme.2.6.1 The 1:2 MSAs we stated before one performs a systemati study of Q for eah parametriCG variable. Sine we have three CG variables one de�nes also three di�erent
Q for eah parametri value. For example Q1 indiates the ase for R̄(1) as aparametri, Q2 for R̄(2) and Q3 for Ω̄.To obtain Q1, see Figure 2.7(a), we �rst hoose an arbitrary set of �xedpoints (R

(2)
0 , Ω0) and then analyze Q and its dependene on the �xed pointsas shown in part (b). Next, similar to the proedure shown for the diatomimoleule, we an determine if there are ritial regions, whih in this ase aregiven by ∀R

(2)
0 ∈ [2.425, 2.525] and ∀Ω

(2)
0 ∈ [145◦, 180◦]. Aordingly, we havehosen the �xed points outside these ritial regions to be R

(2)
o = 2.4Å and

Ω0 = 140◦. With this optimized set of �xed points one estimates the errorin the potential that one makes under the hypothesis of separability of Ω and
R(2) whih turns out to be ∼ 9kBT ; this is larger than the expeted thermal�utuations. 19



Similarly, in Figure 2.8 and 2.9 we show the results for Q2 and Q3 respe-tively. We note that in the ase of Figure 2.8 the analysis of δ does not lead toidentify proper ritial regions. This time we use the extension (b) of the ASVgiven in the previous setion to quantify the quality fator (Q2) of the MS. Thegeneral message is that in eah plot for the 1:2 MS there are extended regionswhere the error varies between 6kBT and 9kBT , whih is muh larger than thereferene energy.
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Ω̄ = 166◦, R(2) = 2.40Å, and R
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Figure 2.9: The plot (a) shows the quality fator Q3 = Q(Ω̄) = ∆
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(Ω̄)/kBTfor the mapping 1:2 with Ω̄ = 162◦ as a parametri value and the �xed points equalto R
(1)
o = 2.6Å and R

(2)
o = 2.4Å. The proedure for analyzing (b) and () is the sameas desribed by the previous �gures.2.6.2 The 1:3 MSSimilarly as in the previous ase we perform a study of Q for eah CG variables.The results for eah Q and the analysis of δ with respet to the ritial pointsare shown from Figure 2.10 to 2.12. A ommon aspet for Q1 and Q2 is that oneannot �nd a ritial region within the domain of the �xed points, (R

(2)
0 , Ω0)23



and (R
(1)
0 , Ω0), respetively. Thus, one has to use the extension of our riteriagiven in setion 2.6.In omparison to the 1:2 MS the maximum value of Q is between 6kBTand 7kBT . This means that the ASV is a better approximation for the 1:3 MSthan for the 1:2 MS. This is true in polymer theory [24℄ beause the oarserthe system beomes the loser it is to a freely jointed hain and thus moreseparable. Impliitly the 1:3 MS beomes more e�ient than the 1:2 MS (seealso the analysis of the average values of Q reported in the next setion), thismeans that a CG model using the former MS will better resemble the underlyingatomisti model than the latter.
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3.503.453.403.353.303.253.20

60

40

20

0

-20

-40

-60

-80

-100
θ2 = 108◦ θ2 = 126◦

θ2 = 108◦

θ2 = 108◦
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R̄(1) = 2.65Å, Ω = 175◦, and Ω0 = 178◦
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2.752.702.652.602.55

120

100

80

60

40

20

0

θ2 = 126◦

θ2 = 108◦

θ2 = 108◦

R̄(2) = 3.35Å, Ω = 175◦, and Ω0 = 178◦
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(Q) with respet to the �xed points. Using the extensions of our riteria givenin the setion 2.6 we an still get a reasonable estimate of the quality fator. Weprovide as an example the ase of the RIS model for a polymer hain. Due toits omplexity we annot expet to always �nd ritial regions. The same mayour in more omplex systems. In the ase of the 1:2 MS, one notes that for Q2(with R̄(2) as a parametri value) in Figure 2.8 that the study of δ
R

(1)
0

(part (a))and δΩ0 (part (b)) do not provide a ritial region, this means that R(1) and Ωare not likely to be separable under the assumption that both CG variables areindependent from R(2) in the PES. This ase represents the negative assessmentof the ASV. With this in mind we proeed to quantify how muh the totalenergy deviates, when one assumes separability of these two CG variables. Inorder to do that one samples a few di�erent �xed points in both regions andfor eah pair (R
(1)
0 , Ω0) we quantify the orresponding value of Q2. Next onetakes the average over all of them. This proedure optimizes Q2 making it lessdependent on its �xed points.As we report in Table 2.1 for the 1:2 MS the mean value of Q2 is haraterizedby a large value ompared to Q1 and Q3 in the same table. For example, thevalue 16.0 ± 4.6 tells us that on average the error introdued is 16kBT with aorresponding maximum of 20.6kBT and a minimum of 11.4kBT . In the aseof the 1:3 MS reported in Table 2.2 it was also not possible to �nd any ritialregion. Thus, we employed a similar proedure as for Q2 in the 1:2 MS ase.Comparing both tables we observe that the errors introdued by the ASV inthe 1:3 MS are muh smaller than in the 1:2 MS.Finally, in Table 2.3 we show the average of Q over the parametri valuesof the CG variables. This evaluation of Q is an indiret indiation of the three-variable dependene. Aording to Table 2.3 the orrelations due to the thirdvariables do not alter our onlusions, that is the two variables orrelation aremore representative for this system than the three-variables orrelations.Table 2.1: Quality Fator for 1:2 MS (average in �xed points spae)

< Q
(
R̄(1) = 2.44Å) > < Q

(
R̄(2) = 2.47Å) > < Q

(
Ω̄ = 162◦

)
>

9.10 ± 0.40 16.00 ± 4.60 6.20 ± 1.60

Table 2.2: Quality Fator for 1:3 MS (average in �xed points spae)
< Q

(
R̄(1) = 2.7Å) > < Q

(
R̄(2) = 3.29Å) > < Q

(
Ω̄ = 170◦

)
>

3.50 ± 1.20 7.20 ± 2.70 2.10 ± 0.6028



Table 2.3: Quality Fator (average in parametri spae)MS < Q
(
R̄(1)

)
> < Q

(
R̄(2)

)
> < Q(Ω̄) >1:2 8.20 ± 1.50 15.0 ± 6.00 5.40 ± 2.501:3 4.90 ± 2.90 6.50 ± 3.70 3.00 ± 1.602.7 Preliminary onlusionsThe aim of this part of the thesis was to develop a formal proedure for analyzingthe approximation of separation of variables in ertain problems where it isrequired. First we introdued the mathematial basis of the proedure andsummarized in setion 2.2. The extension to higher dimensions (e.g. omplexsystems) was given in setion 2.4.This proedure was applied �rst to a simple system, namely the diatomimoleule on a �at surfae. Our physial intuition tells us that a lear separationof variables an be obtained among the distane r from the enter of mass to thesurfae and the orientation angle θ of moleule, as long as the moleule exploreson�gurations far away from the surfae. In fat, this is orroborated from theappliation of our proedure for this system. The advantage is that now we areable to know in all the on�gurational spae of the moleule the regions wherethe separation of variables is still questionable up to a known error in energy.Finally, the seond system represented a non-trivial ase due the larger num-ber of DOFs ompared to the previous system. For this ase, we generalizedthe riteria used in the previous example in order to estimate the error of theseparation of variables among the olletive variables (e.g. R(1), R(2) and Ω).Methodologially we tested our proedure on two di�erent mapping shemes,whih maintain the same set of CVs, but not the same dependene on the atom-isti variables. In summary, our method showed that the 1:3 MS, whih resultsin a oarser model, introdues a smaller error in the energy than the 1:2 MS.
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Chapter 3The Adaptive ResolutionShemeIn reent years there has been a ontinuing growth of interest in multisalemodeling due to the appliations in many �elds suh as hemistry, biology andmaterial siene. Most problems in suh areas are related to the interplay be-tween di�erent time and length sales; this means that relevant properties ofmany systems are typially determined by the interplay of these various tem-poral and spatial sales. Generally, it is useful to divide the multisale probleminto several sales making a simpler desription of the system possible.However, there are ertain ategories of problems where it is not possi-ble to perform suh separation within reasonable numerial auray. Typi-al examples of suh situation is found in the desription of edge disloationin metal [25℄, raks propagation in solid materials [26℄ or large moleules onmetal surfaes [27℄ where the loal hemistry a�ets the large sale propertiesand vie versa. As a onsequene, the system of interest has to be desribed ina detailed manner, whih turns out impossible to be handled omputationallydue to the large number of degrees of freedom.In order to overome this bottlenek, and to study suh systems was �rstinorporated several levels of desriptions based on a hierarhy of theories, forinstane, whether the problem requires, from a quantum until a mesosopi de-sription, whih will take aount of both the small and large sale phenomena.A systemati oarse graining (CG) proedure may help to build eah level ofdesription based on information aessible on previous sales. So far, there arediverse hybrid multisale tehniques aiming to bridge the gap between losersales, for instane, the atomisti and mesosopi sales [27�31℄ or the quantumand lassial sales [32,33℄. However, in all those methods the regions or parts ofthe system treated at di�erent level of resolution are �xed and thus the exhangeof partiles among these regions is not allowed. This approximation turns outto be not very relevant in hard ondensed matter, but it beomes ruial in softmatter systems. In the former bulk properties are determined by the strength31



of the intermoleular fores, whih restrit the motion of partiles, and in thelatter thermal �utuations (e.g. density �utuations) ontribute to the overallbehavior of the system.In this ontext, the adaptive resolution methods whih not only ouple di-verse sales (or resolutions) and also allow for partile �utuations representthe most natural way to overome suh problems. Reently, some methodsbased on this idea have aptured the attention of many researhers and sev-eral shemes have been developed for oupling the atomisti and oarse grainedlevel of desription in lassial MD. Typially, the oupling an be performedthrough the smooth interpolation of fores (AdResS) [34℄, potentials [35℄ andLagrangians [36℄ by using a swithing or interpolating funtion. Although theequation of motion in the AdResS method annot be derived within a Hamilto-nian formalism, it has been shown to preserve the thermodynami equilibriumof the whole system and the result is independent of the swithing funtion. Theseond method integrates in priniple the same set of equation as the AdResSmethod and it laims to onserve the total energy of the system. This has beenshown to be �awed, beause the total Hamiltonian annot be de�ned in bothhybrid shemes [37℄. Finally, the last method presents an energy onservingprotool whose dynamis depends explitly on the swithing funtion and itsderivative. Moreover, its implementation is too omplex for large appliations.In any ase, all of them must not hange the physis of the system, sine thehange of resolution does not a�et the physial nature of partiles. Thus, adap-tive shemes should preserve the thermodynami equilibrium during the simu-lation, this implies that thermal, mehanial and hemial equilibrium shouldnot be modi�ed by the sheme of interpolation used.As a part of this thesis work, we have studied the quantum/lassial adap-tivity in the framework of fore interpolation and this topi will be disussedin the following hapters. In the present hapter, we will give an overview ofthe Adaptive Resolution Sheme (AdResS); we start desribing the equation ofmotion of AdResS, then a desription of the thermodynami equilibrium of asystem follows, where the hange of degrees of freedom is allowed. Then weomment about the theoretial foundation of the AdResS sheme. Finally, themethod is applied to a liquid system of tetrahedral moleules as proof of validityof the sheme.3.1 The equation of motionThe �rst step is to derive the e�etive Coarse-Grained potential between theinterating sites, mapped at the enter of mass of eah moleule, by the iterativeBoltzmann inversion method, presented in hapter 1. This CG potential has tobe obtained at the same thermodynami state point, thus a pressure orretionmust be done to retain the same pressure. One this is done, one proeedsto ouple the fores derived from the atomisti (AT) and oarse-grained (CG)potentials by the following expression,
Fαβ = w(Rα)w(Rβ)FAT

αβ + (1 − w(Rα)w(Rβ))FCG
αβ (3.1)32



where α an β are the labels for two di�erent moleules. FAT
αβ is the orrespondingfore derived from the atomisti fore �eld where eah atom of moleule αinterats with eah atom of β, and FCG

αβ is the pairwise fore obtained fromthe CG potential between the enters of mass of the oarse grained moleules.One important element of this equation is given by the �weighting funtion�,
w(R), whose funtional form is shown in Figure 3.1, varying from 0 to 1. Thisfuntion depends on the position (R) of the enter of mass of the moleules αand β. A simple way to interpret this funtion is by swithing of �degrees offreedom�. From the Eq. 3.1, it is evident that w = 0 represents the ase ofpure oarse-grained fore �eld, while w = 1 keeps the system fully atomisti.The region of non-integer values of w is alled the �hybrid region� and there thepartiles maintain at the same time a double resolution or representation (eg.AT/CG).
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2Figure 3.1: Here is depited the funtional form of the weighting funtion w(x) ∈ [0, 1].The values 1 and 0 orrespond to the regions where the moleules are fully atomisti(AT) or fully oarse grained (CG) respetively. While values in between, 0 < w(x) < 1,orrespond to the hybrid region. In this �gure, the total box length is equal to L,atomisti and CG region have the same length and ∆ is the length of hybrid region.An important onsequene of the analytial form of Eq. 3.1 is that, by on-strution, it preserves Newton's third law (onservation of linear momentum),despite the fat that a Hamiltonian in the transition region annot be de�ned.This guarantees that the di�usion of partiles between regions is not a�etedby the hange of resolution.3.2 Thermodynami equilibriumThe Eq. 3.1 annot be obtained from a potential and thus there would not havean energy to onserve in suh irumstanes. This sheme resembles a non-Hamiltonian equation of motion, where new DOFs are ouple to the system, inorder to design new MD shemes for di�erent equilibrium ensembles [38℄. Sinewe want to study systems in equilibrium, a natural question arises immediately,how to ontrol the thermodynami equilibrium. Coneptually, in the adaptive33



sheme the number of degrees of freedom is not homogeneous in the spae andtherefore the free energy density is not uniform. This situation reates non-physial �ux of partiles in the diretion of less DOFs in order to lower the freeenergy of the whole system. In spite of that, one expets the same physialsenario everywhere by onstrution (i.e. same state point), this means thatall moleules must maintain the same underlying physial nature in all thespae and later one must learn how to deal with the artifat of the formalismused. An illustrative way to understand this proess is the following: when amoleule goes from an atomisti to a oarse grained region, it experienes atransition where it loses vibrational and rotational DOFs and when it arrives tothe CG region a natural proess of aommodating its exlude volume may takeplae. The inverse proess is more ompliate, a moleule in this ase aquiresrotational and vibration DOFs and tries to enter in a region where the othermoleules are loally in equilibrium. In suh irumstanes, a way bak to theoarse grained region is more preferable than remaining in the atomisti one.In thermodynami terms, as an artifat of the method, the di�erent regions areharaterized by a di�erent hemial potential. Sine, this is a onsequene ofthe formalism and it is not generated by the physis of the system, thus onehas to orret this thermodynami unbalane. Based on these arguments, onesees that Eq. 3.1 alone annot maintain the thermodynami equilibrium andfurther onsiderations onerning the variables of the problem, should be usedto guarantee the equilibrium. This is the aim of the next setions, by analyzingthe proess of hanging degrees of freedom from a thermodynami and statistialframework.3.3 Theoretial priniples of thermodynami equi-librium in AdResSWe present the theoretial basis for the thermodynami equilibrium of a sys-tem where the number of DOFs are, by onstrution, spae dependent and yetmoleular properties are maintained as lose as possible to the referene systemin all the spae.3.3.1 The geometrially indued phase transitionWe provide a parallel desription between the spae dependent hange of res-olution and the physial phase transition, in this ontext we will identify theformer as a �tiious geometrially indued phase transition. To desribe aphase transition, one uses the onept of the latent heat to assoiate the energyrequired by the system to aount for a transition. For example, typially thetransition from a liquid to a gas phase requires energy (latent heat) to ativatethose vibrational modes that make the moleules free from the tight bonding ofthe liquid state. In the adaptive sheme a similar proess ours to a moleuleswhih passes from a oarse grained to an atomisti resolution, in this ase suhmoleule needs latent heat to reativate the vibrational and rotational DOFs in34



order to reah the equilibrium with the atomisti surrounding. In the reverseproess, the moleule releases latent heat, when a transition from a gas to aliquid phase ours, during suh transition a moleule inreases the bond tothe other moleules at eah time, in the same way in the adaptive sheme, thepassage from the atomisti to the oarse grained desription happens, formallylosing DOFs and therefore the assoiate heat. All this is synthesized in thefollowing relation:
µAT = µCG + φ, (3.2)where µAT is the hemial potential alulated with the atomisti representa-tion, µCG that of the oarse grained one, and φ is the latent heat assoiated tothe proess. To satisfy Eq. 3.2 a simple solution is devised, basially one has toouple the system to a loal thermostat (see Appendix C), whose main funtionis to provide (or removes) the required latent heat. Suh thermostat ensuresthe equilibrium and the stability of the algorithm. Naturally, suh a ouplingraises serious questions on how to de�ne thermodynami quantities in a regionwhere the number of DOFs is spae-dependent and Hamiltonian is not de�ned.This question is answered in the next setion.3.3.2 Thermodynami quantities in AdResSIn this setion we desribe all the thermodynami quantities used typially inthe terminology of AdResS. These quantities are relevant for a ross hek of thethermodynami equilibrium during an AdResS simulation. As we stated beforethe thermodynami equilibrium is maintained in eah region provided that theaverage of temperature, pressure and hemial potential do not hange in theMD simulation.In order to de�ne the pressure in a system where atomisti and oarse-grainedpartiles oexist, one proeeds to use the onept of moleular pressure insteadof the atomisti one. The equivalene between these two expression has beenproved by Ciotti et al. (1986) [39℄ and disussed reently [40℄. The moleularpressure is given by,

p =
1

V
[NkBT +

1

3

∑

α

∑

β>α

Rαβ ·Fαβ ] (3.3)where N is the number of moleules, V is the volume of system, T is thetemperature and Rαβ and Fαβ orrespond to distane and total fore (see Eq.3.1) between the moleules α and β.The temperature is provided by the equipartition theorem [41℄.
T AT/CG = 2

< KAT/CG >

NAT/CG
, (3.4)where < KAT/CG > represent the average kineti energy of the atomisti/oarsegrained region and NAT/CG is the total average number of degrees of freedom35



(DOFs) in the respetive representation. This priniple is well-de�ned in eahregion (AT/CG), but the same an not be applied in the transition region where
N = N (x). Therefore, in the hybrid region one has to extend the priniple ofequipartition for a swithable DOF q to properly de�ne its kineti ontributionto the temperature. To aount for that, we observe the spae dependeny ofsuh DOF in eah region, being fully represented in the atomisti region andvanishing in the oarse grained region. This behavior should be taken intoaount, when alulating the average of statistial quantities. In a formalmathematial language, this is a ommon problem in frational alulus [42℄.Using this mathematial tool to desribe the hange of dimensionality of thephase spae of q (between one and zero), one has that

dVw =
Γ(w

2 )

2πw/2Γ(w)
dwq =

|q|w−1

Γ(w)
dq =

1

wΓ(w)
dqw (3.5)where Γ is well-known Γ-funtion [43℄. The kineti ontribution of a quadratiDOFs is given by

< Kq >w=

∫∞
0 e−βq2

qw+1dq∫∞
0 e−βq2qw−1dq

(3.6)and the solution of Eq. 3.6 was demonstrated to be [44℄:
< Kq >w=

w

2β
. (3.7)The last result generalizes the equipartition theorem for a non integer DOFswhose funtional form is quadrati. This states that the kineti energy is pro-portional to its dimensionality (w).So far, all the onepts presented in this setion help to ontrol thermody-nami quantities (Eq. 3.3) and establish a thermodynami onsisteny (Eq. 3.6)in our studies within the AdResS framework.3.4 Appliation to simple liquid of tetrahedralmoleulesThe generality of the results shown in this setion are independent of the sys-tem under study. More omplex systems as the solvation of an ideal bead-springmodel for a polymer in a tetrahedral liquid and liquid water were arried outin refs. [45, 46℄. The results for the tetrahedral moleules in AdResS were om-pared to the atomisti ones. All the result were obtained in a ubi symmetry,however in Figure 3.2 we depit the same model system for another symmetry(i.e. spherial). The following funtional form was proposed for the weighting36



Figure 3.2: Snapshot of tetrahedral moleules in a spherial symmetri in AdResS.Atomisti moleules are represented in the inner shell, subsequently follows the shellthat ontains hybrid moleules whih is surrounded by CG partiles.funtion w(x):
w(x) =





1; d < x ≤ a
2 − d

0; −a
2 + d ≤ x < −d

sin2[ π
4d (x + d)]; −d ≤ x ≤ d

cos2[ π
4d(x − a

2 + d)]; a
2 − d < x ≤ a

2
cos2[ π

4d(x + a
2 + d)]; −a

2 ≤ x < −a
2 + d,

(3.8)where a is the box length and d is the half-width of the hybrid region. In generalthis funtion has to be monotoni, ontinue, di�erentiable and with zero slopeat boundaries of the atomisti and oarse grained regions. These mathematialassumptions guarantee a smooth transition of one moleule from the CG regionto the atomisti and vie versa [47℄.One the atomisti fore �eld (see Appendix D) is well-de�ned we proeedto derive from it the e�etive oarse grained potential. In Figure 3.3 the CGpotential, between the enter of mass of the moleules U cm, obtained for a liquidof tetrahedral moleules at ρ∗ = 0.1 and T ∗ = 1.0 in the redued Lennard-Jonesunits (ǫ = 1 and σ = 1 as the unit of energy and length respetively).The �rst way to ompare the reliability of the AdResS method is by ompar-ison of the the global struture of the liquid in AdResS with the result of the fullatomisti simulation. This is done by omputing the enter of mass radial dis-tribution funtion (RDF). The result is shown on the left side of the Figure 3.4.One an see a satisfatory agreement between the AdResS method and the fullatomisti referene alulations. Similarly, the density pro�le of the moleules inAdResS (See right side of Figure 3.4) is presented . From this �gure one an seehow the density is maintained homogeneous in the atomisti and oarse grainedregions, however, in the hybrid region the density drops about 5% ompared toto the average value of ρ∗ = 0.175 of the referene all atom ase. However, thissmall perturbation neither a�ets the struture nor the thermodynamis of thesystem.As a �nal test we show the study of the di�usion of moleules lose to the37
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Chapter 4Path Integral formulationThe basi idea of the path integral formulation of quantum mehanis an betraed bak to P. A. M. Dira in his original book [49℄ of 1930 and later onhis paper [50℄ of 1933. Later, the ompleted method was developed by RihardFeynman [51℄ in 1948 as an alternative formulation of the non-relativisti quan-tum mehanis and sine then it is widely used in several �elds of siene, forexample, many-body theoretial quantum physis [52℄, super�udity [53℄, poly-mer siene [54, 55℄, �nanial markets [56℄, to name a few.The path integral formalism is onvenient not only for its mathematial ele-gane, but also for its treatable numerial form with a struture that is suitablefor an implementation in parallel omputing. Furthermore, path integrals havebeen sueeded in alulating several equilibrium properties like the free en-ergy and strutural quantities of quantum systems [57�59℄ in omparison withother quantum methods. Finally, path integral an be used in several thermo-dynami ensembles, for instane, the miroanonial (NVE) [60℄, the anonial(NVT) [61℄, isothermal-isobari (NPT) [62℄ and gran-anonial (µVT) [63℄. Thisversatility allows us to study systems under several experimental onditions.The path integral formulation translates the quantum desription of a manybody problem into the lassial representation due to the so-alled isomorphismof the quantum partition funtion.The next setion desribes in detail the aforementioned isomorphism, thenwe introdue the idea of how to ombine path integral formulation with mole-ular dynamis (PIMD) and the alulation of statistial properties. In the endwe omment about the limitation of the PIMD sheme and possible numerialsolutions.4.1 Derivation of the formalismOne quantum partileThe de�nition of the partition funtion for a system of a single quantum41



partile is
Z ≡ Z(N, V, T ) = Tr[e−βH] (4.1)where �Tr� denotes a trae and β = 1/kBT . T is the temperature and kB is theBoltzmann onstant. This trae an be evaluated in the position eigenstates,

|R〉, as follows
Z =

∫
dR 〈R|e−βH|R〉, (4.2)Given that the kineti and the potential energy operator do not ommute,

[T̂ , V̂ ] 6= 0, (4.3)one an use the Trotter theorem [64℄, whih states that for any two operator, Aand B, whih in general do not ommute
eλ(A+B) = lim

n→∞
[e

λ
2n

Be
λ
n

Ae
λ
2n

B]n, (4.4)where n is an integer and known as the Trotter number. Now substituting theTrotter theorem into Eq. 4.2 yields,
Z = lim

n→∞

∫
dR 〈R|Ωn|R〉 = lim

n→∞

∫
dR 〈R|Ω · Ω · · ·Ω|R〉 (4.5)For simpliity, we de�ne

Ω = e−βV̂ /(2n)e−βT̂/ne−βV̂ /(2n). (4.6)Introduing the identity operator
I =

∫
dR |R〉〈R|, (4.7)

n − 1 times in the Eq. 4.5 in the following way
Ωn = ΩI2ΩI3 · · ·ΩInΩ (4.8)and using the de�nition of the identity, the integration term in Eq. 4.5 results

〈R|Ωn|R〉 =

∫
dR2 . . . dRn〈R|Ω|R2〉〈R2|Ω|R3〉 ×

×〈R3| . . . |Rn〉〈Rn|Ω|R〉

=

∫
dR2 . . . dRn[

n∏

i=1

〈Ri|Ω|Ri+1〉|R1=Rn+1 (4.9)where the ondition R1 = Rn+1 is the result of the trae. One an evaluateeah matrix element of Ω,
〈Ri|Ω|Ri+1〉 = 〈Ri|e−βV̂ /(2n)e−βT̂/ne−βV̂ /(2n)|Ri+1〉. (4.10)42



One knows that the potential operators are spae dependent and they are atingon the oordinate eigenstates in the last equation. Thus, the following expressionis derived
〈Ri|Ω|Ri+1〉 = e−βV (Ri)/(2n)〈Ri|e−βT̂/n|Ri+1〉e−βV (Ri+1)/(2n). (4.11)Now, we use the identity operator in the representation of momentum eigen-states,

I =

∫
dp |p〉〈p|, (4.12)then the remaining matrix elements an be written as

〈Ri|e−βT̂/n|Ri+1〉 =

∫
dp 〈Ri|p〉〈p|e−βT̂/n|Ri+1〉. (4.13)In the last expression, T̂ = p2/2m ats on one of its eigenstates from the left,yielding:

〈Ri|e−βT̂/n|Ri+1〉 =

∫
dp 〈Ri|p〉〈p|Ri+1〉 e−βp2/(2mn). (4.14)The projetion of a momentum eigenstate on a position eigenstate is given by

〈R|p〉 =
1√
2πh̄

eipR/h̄. (4.15)Then we �nd that
〈Ri|e−βT̂/n|Ri+1〉 =

1

2πh̄

∫
dp eip(Ri−Ri+1)/h̄e−βp2/(2mn). (4.16)To solve the integral, we omplete the square in the exponential and then inte-grate as follows:

〈Ri|e−βT̂/n|Ri+1〉 =
1

2πh̄

∫
dp e−

β
2mn

[p−( mni
h̄β

(Ri−Ri+1))]
2 ×

×e
− mn

2βh̄2 (Ri−Ri+1)
2

. (4.17)The �rst exponential in the integral is a Gaussian-like and the seond is aonstant, thus one obtains,
〈Ri|e−βT̂/n|Ri+1〉 = (

mn

2πβh̄2 )1/2 e
− mn

2βh̄2 (Ri−Ri+1)
2 (4.18)Substituting our last result into the expression for the whole partition funtion

Z = lim
n→∞

(
mn

2πβh̄2 )n/2

∫
dR1 . . . dRn ×

exp

(
−β

n∑

i=1

[
1

2
mω2

p(Ri − Ri+1)
2 +

1

n
V (Ri)]

)

Rn+1=R1

, (4.19)43



and,
ωn =

√
n

βh̄
, (4.20)is the �frequeny� of the ring polymer.The outome indiates the isomorphism between a stati quantum mehan-ial problem and the lassial problem of a repliate lassial partile whih in-terats with a potential V (R)/n and two of its own images through a quadratipotential. We illustrate the idea of suh a isomorphism in Figure 4.1. This resultis well-known as the disrete path integral for the quantum partition funtion,whih is exat for a large value of Trotter number (i.e, n → ∞).

Figure 4.1: Path integral representation of 2 quantum partiles with n = 7 beadseah. In the path integral formalism the interation between the beads with the samelabel is given by the lassial potential Vαβ.Many quantum partileThe same result obtained for an isolated partile an be extended for asystem of N-partiles interating by the potential V ({RI}). This time eah par-tiles is represented by a ring polymer and so that the interation is deloalizedamong its onforming beads. In other words, beads with the same label �s� willinterat by the potential V ({R(s)
I }) and no ross interations are allowed as itis depited in Fig. 4.1. For example, the bead 1 of the moleule α will only44



interat with the bead 1 of the moleule β and so on. Suh generalization isnot trivial and an be found in traditional textbooks of path integral methodsas [65, 66℄. In summary, the quantum partition funtion of N partiles is givenby,
Z = lim

n→∞
Zn(β) = lim

n→∞
[

N∏

I=1

(
mIn

2πβh̄2 )n/2

∫
dR

(1)
I . . . dR

(n)
I ] ×

exp

(
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{
N∑
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1
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mIω

2
n(R

(s)
I − R

(s+1)
I )2 +

1

n
V ({R(s)

I })}
)(4.21)where R

(n+1)
I = R

(1)
I and ωn is given by Eq. 4.20. Finally, the above expressionan be sampled by Monte Carlo (MC) methods or by moleular dynamis (MD)adding some e�etive Gaussian distribution in the momentum spae, P

(s)
I . Thenext setion will show how to perform a MD implementation of the path integralformalism.4.2 The Path Integral Moleular Dynamis (PIMD)The path integral expression of Eq. 4.21 of the quantum N-partiles system anbe written in the following form

Zn(β) = [
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mIn
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I . . . dR
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(s)
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I })
})

=

N∏

I=1

N
∫

dR
(1)
I . . . dR

(n)
I e−βUeff (R

(1)
I

...R
(n)
I

) (4.22)where N = ( mIn
2πβh̄2 )n/2 is a onstant and

Ueff =

n∑

s=1

{
N∑

I=1

1

2
mIω

2
n(R

(s)
I − R

(s+1)
I )2 +

1

n
V ({R(s)

I })} (4.23)is onsidered as the e�etive potential.The Eq. 4.22 looks like the lassial on�guration partition funtion for asystem of N ring polymers with n partiles (or beads) eah. Thus, it is the so-alled isomorphism of the quantum partition funtion due to the path integralformalism.To perform a moleular dynamis implementation [67℄ one needs to use on-servative fores derived from the Eq. 4.23, whih also obey the equipartition45



theorem. From Eq. 4.22 one an see the onnetion with Moleular Dynamis(MD) by adding n-Gaussian integrals under the ondition that,
(

β

2πmI

)n/2 ∫
dP

(1)
I · · · dP

(n)
I exp(−β

n∑

s=1

N∑

I=1

P
(s)2
I

2m′
I

) = 1 (4.24)wherem′
I is an arbitrarymass parameter. The value of this parameter a�ets therate at whih the moleular dynamis trajetories move and thus, the e�ienyof the sampling. Inserting last equation into Eq. 4.22 gives,

Zn(β) =
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∫
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I )2 +

+
1

n
V ({R(s)

I })}), (4.25)where N ′ is a new normalization fator. The Gaussian variables are unoupledand an be integrated analytially to obtain the prefator N from Eq. 4.22.The derivation presented here only involves the partition funtion, thus onlystatistial properties of the quantum system an be alulated. This means, thatalthough one an derive a orresponding Hamiltonian for the whole partitionfuntion as
H =

n∑

s=1

{
N∑

I=1

P
(s)2
I

2m
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I

+
1

2
mIω
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n(R

(s)
I − R

(s+1)
I )2 +

1

n
V ({R(s)

I })}, (4.26)the dynamis of this system annot be diretly related to the quantum system,but rather only the statistial properties of the ensemble whih are the resultsof the sampling of this pseudo-dynamis. Formally, now we an use the termPIMD to denominate the Hamiltonian obtained above. The PIMD tehniqueuses the lassial dynamis of the ring-polymer Hamiltonian, i.e.,
Ṙ
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−dV ({R(s)
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dR
(s)
I

(4.27)to propagate the trajetories and thus sample the phase spae of the ring poly-mers.The �nal result of the path integral in a MD sheme is onsidered ideal forthe design of parallel implementation, turning suh representation in a powerfultool to alulate statistial properties of materials in the presene of quantume�ets. 46



4.3 Stati properties from PIMDThe path integral formulation of the quantum statistial mehanis providesan e�ient method to evaluate the quantum stati equilibrium properties of asystem of N partiles. Suppose we want to alulate the expetation value ofthe position-dependent operator Â. By de�nition, the expetation value of Âis:
〈Â〉 =

Tr[Âe−βH]

Tr[e−βH]
=

Tr[Âe−βH]

Z (4.28)This evaluation an be performed using the path integral approah desribedabove. The result is
〈Â〉 =

1
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I })}) (4.29)with R
(n+1)
I = R

(1)
I . The above integral is invariant under a yli relabeling ofall the path integration variables, R

(1)
I → R

(2)
I , R

(2)
I → R

(3)
I , and so forth. Suha relabeling an be arried out n times, the resulting expression added togetherand divided by n equals:

〈Â〉 =
1

Z lim
n→∞

N∏

I=1
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mIn

2πβh̄2 )n/2 ×

∫
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(n)
I

1
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s=1

A(R
(s)
I )e−βUeff (4.30)where Ueff is given in Eq. 4.23. Now a �nite expression for 〈Â〉 an be obtainedby substituting Z from Eq. 4.21. This yields,

〈Â〉n =
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I . . . dR

(n)
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1
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A(R
(s)
I )e−βUeff (4.31)from whih one obtains the true value of the expetation of Â in the limit of

n → ∞:
〈Â〉 = lim

n→∞
〈Â〉n (4.32)Eq. 4.31 an be evaluated using a Monte Carlo (MC) sheme, sine suh averageis omputed in the on�guration spae. A trik an be done in order to ompute47



the same average in a Moleular Dynamis (MD) sheme as we did in Eq. 4.25.Substituting the identity 4.24 into Eq. 4.31 we obtain that,
〈Â〉n =

N∏

I=1

N
∫

dR
(1)
I · · · dR

(n)
I

∫
dP

(1)
I · · · dP

(n)
I ×

1

n

n∑

s=1

A(R
(s)
I , P

(s)
I )e−βH, (4.33)where H is the Hamiltonian de�ned in Eq. 4.26. Sine the momenta are only atrik to ompute the averages of A in a di�erent sheme, no meaningful quantumdynamis an be extrated from the new set of trajetories. The next setionshows the limitations of the MD implementation and a posteriori solutions.4.4 Limitations of the PIMD and possible solu-tionsThe PIMD equations of motion derived in Eq. 4.27 explore the phase spaethat is onsistent with their energy (i.e. miroanonial ensemble). Thus, theyfail to sample a anonial distribution. These �xed-energy trajetories must bemodi�ed if they pretend to produe a �xed temperature distribution (anon-ial distribution). A natural solution for ahieving this involves the ouplingto a thermostat. Several approahes have been used so far to maintain thetemperature, a very popular one involves linking additional vibrational modesonto the physial degrees of freedom of the system [68,69℄. The �tiious ther-mostat modes are oupled to the momenta of the physial DOFs and regulatethe kineti �utuations to produe onstant temperature trajetories. It turnsout that DOFs whih are dominated by harmoni motion require the use ofnot one but a hain of thermostats [70℄. Suh systems plus the thermostat willrequire a massive solution of a set of equation of motion. Although the anon-ial distribution is rigorously reprodued with a thermostat hains of su�ientlength [71℄, the dynamis of the thermostated and the unthermostated systemis not lear. This last point is not of relevane but will be ruial in algorithmsbased on path integral formulation where quantum dynamis an be extratedfrom [72, 73℄. An alternative tehnique for generating a anonial distributionfrom miroanonial trajetories involves the use of thermostats whose physialpriniple involves a periodially resampling of their momenta from a Maxwell-Boltzmann distribution [74℄. Physially this thermostat mimis inelasti ol-lision with a thermal bath at �xed temperature. Another type of thermostatommonly used in the moleular dynamis ommunity are the stohasti ther-mostats due to their loal behavior and easy implementation. One an use aLangevin thermostat [75℄ to ompute stati properties, but it is well-known thatsuh a thermostat does not preserve the true dynamis of the system. Reentdevelopment of more so�stiated stohasti thermostats suh as the DissipativePartile Dynamis (DPD) has shown to preserve the hydrodynamis [76℄ or the48



possibility to ontrol transport oe�ients [77℄. Sine hydrodynamis is not im-portant in the sale of observation, therefore a simple langevin thermostat willbe su�ient to properly thermostat the ring polymers.A seond limitation of the diret implementation of the Eq. 4.27 is dueto the large number of beads required to approah the true value of quantumpartition funtion. As one inreases this number, the harmoni spring termsbeome sti�er and start to dominate the dynamis. Thus, the sampling of theentire spetrum of frequenies beomes poorly evaluated. It is known that mi-roanonial trajetories in suh system may not event follow a miroanonialdistribution and ergodiity problems may arise [78℄, i.e. on the time sale a-essible to a omputer simulation. This an be synthesized as follows:
lim

n→∞

1

n

n∑

i=1

A(R(i), ti) 6=
1

Ω(E)

∫
dP

∫
dR A(R)δ(E −H) (4.34)where ti = i∆t for some time interval ∆ along the miroanonial trajetorywith �xed energy E and Ω(E) as the miroanonial partition funtion at thatenergy.The last problem is due to the hoie of the mass parameter, m′

I , in thePIMD sheme. To illustrate this problem we an see in Figure 4.2 how the sizeof the ring polymer dereases for heavier partiles. Thus, one has to dereasethe integration time to sample high frequenies. However, the hoie of the massparameter will a�et the e�ieny of the moleular dynamis sampling sine itgoverns the rate at whih the trajetories moves through the phase spae. Alarge-mass trajetory will move relatively slow and will take a long time to sam-ple the whole phase spae. During the last deades some solutions to takle thispartiular problem of the moleular implementation of path integral have beendeveloped. For instane, one is the hange of variable (Staging transformation)or the use of the normal modes (NM algorithm) to evolve the equation of mo-tion of the ring polymer. Only the NM algorithm was implemented and used inthe last hapter for numerial auray. These two solution will be disussed indetail in the following setion.4.5 The Staging transformationIf n is large, the springs are n-times sti�er and the potential n-times weaker.Then the spring dominates the dynamis and the system does not explore therest of the phase spae required to ompute properly the stati properties.Therefore, for a large n the harmoni modes have to be deoupled so thatone ould move all the modes in the same time sale. This an be done bythe staging transformation [79℄, whih was developed in analogy to the stagingMonte Carlo method [80℄. Eah degree of freedom is transformed as
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(s)
I = R

(s)
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I , s = 2, . . . , n, (4.35)49



Figure 4.2: Path integral ollapse due to the e�et of heavier partiles (withMuon(Mu), Hydrogen(H) and Deuterium(D)).with
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(4.36)Suh transformation an be inverted as
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using this Hamiltonian, the path integral alulation is expeted to sample itsorresponding phase spae muh faster than the Hamiltonian (see Eq. 4.26) inthe primitive variables. The Hamiltonian in Eq. 4.40 suggests that an optimalhoie of the mass parameters is given by
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I on the same time salefailitating the sampling of all the modes during the MD run. Alternativelyto the staging transformation and with the same e�ieny was developed thenormal modes algorithm.4.6 The Normal Mode transformationNM transformation has been extensively used in the �eld of polymer sieneto study the Rouse dynamis of unentangled short hains [81℄. In our system,for n → ∞, the simulation of ring polymer will tend to su�er of onvergeneproblems as we desribed before. This is partly due to the time sale separationbetween the intermoleular and intramoleular potentials. While the formersales as 1/n, n being the number of beads, the latter follows n. However, inthe path integral approah, the internal modes of the ring polymer are mixeddue to the interation between beads of di�erent polymer rings and this is thephysial senario that one wants to preserve in the simulation. The numerialimplementation of the normal modes (see Appendix E) takes into aount themixing of the modes in a good approximation. This transformation has beenused in this thesis to express the harmoni spring potential Vharm({R(s)
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After rearranging the terms in the sum, it beomes
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is independent of the partiular value of I.It an be noted that for the Ith ring polymer, the oordinates of di�erentbeads are oupled by the o�-diagonal therm of the matrix A. Thus, the un-oupling of the oordinates an be done by diagonalizing A, i.e., this means,�nding the matries a and C suh thatA = C · a ·CT , (4.46)where a is a diagonal matrix and C is an orthogonal matrix suh thatCT ·C = I, (4.47)due to the symmetry of A. Theses matries an be found by exploiting theanalytial form of A and writing the Eq. 4.46 in the following form:

−ck−a,s + 2ck,s − ck+1,s = ck,sas, ∀k, s = 1, . . . , n. (4.48)The boundary ondition cn+1,s = c1,s and c0,s = cn,s an be satis�ed by thefollowing independent solutions
ck,s = N cos(2πks/n) (4.49)for s = 1, . . . , n/2 and
ck,s = N sin(2πks/n), (4.50)for s = n/2 + 1, . . . , n where N is a normalization onstant. Combining Eq.4.46 and Eq. 4.49 gives

0 = − cos(2π(k − 1)/n) + (2 − as) cos(2πks/n) − cos(2π(k + 1)s/n). (4.51)52



and using the identity:
cos(x ± y) = cos(x) cos(y) ± sin(x) sin(y), (4.52)the expression above an be arranged and yields

as4 sin2(sπ/n), ∀s = 1, . . . , n. (4.53)This implies that the eigenvalue an/2+s′ is degenerate with an/2−s′ for s′ =
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So that, one de�nes the nth normal mode with elements ck,n = 1√
n
independentof the value of k and therefore Eq. 4.56 yields
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nRc (4.61)Through this expression, the normal-modes transformation introdues the en-troid variable. In the Appendix E is desribed in detail the numerial imple-mentation of the normal mode transformation .4.7 Similarities between the path integral formal-ism and the statistis of ring polymers4.7.1 The free ring polymerLet us start the omparison between both approahes by studying the behaviourof a single ring polymer in the absene of an intermoleular potential betweenbeads of di�erent ring polymers (see Eq. 4.21). This ase has an analytialsolution and will illustrate the similarities. Due to the simpliity the distributionof beads is given by,
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Figure 4.3: Length sale of the free ring polymer in three dimensions. It is shownthe thermal average of the root mean square radius of gyration and root mean squarebond length of the ring polymer.For a gaussian hain the radius of gyration sales as r2
G ∼ n [81℄, however, for aring polymer, the path intgral approah predits a onstant value in the limit of

n → ∞ (see below). This is due to the non-trivial n-dependene of the springonstant in the path integral approah Eq. 4.21. In the ase of a free ringpolymer, the thermal average is given by
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and n-th normal modes frequeny is given by Ωn = 0 and is related to theentroid of the ring polymer by
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4.7.2 Rouse theory for ring polymersIn this setion we reprodue �rst some important results from the well-knownRouse theory for a �lassial� ring polymer and later we provide a omparisonwith the path integral approah. Suh a theory beame extremly useful for theearly understanding of the dynamis of short (non-entangled) polymer hains.Here we desribe a bead-spring model of a lassial ring polymer under theRouse theory. The potential between beads is given by
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2 (4.81)where k = 3kBT/b2 is the spring onstant. It is important to emphasize thedi�erenes between the potential energy for a ring polymer under the lassialand the path integral approahes. In the former, the spring onstant depends onthe temperature the e�etive bond length. In the latter, it is also proportionalto the temperature and additionally to the number of beads (Trotter number).In the Rouse model eah monomer is subjeted to a Brownian motion. Thus,one ould assume that eah bead will experiene a drag fore proportional tothe veloitiy and random kiks whih rapidly deorrelates in time.The position of a single bead is given by,
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+ Γi, for i = 1, . . . , n (4.82)here ξ is the frition oe�ent of a bead and Γi is the noise ating on the beadwith the following properties:
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′)〉 = 2kBTξδ(t− t′)δii′δαβ, (4.83)where α, β = 1, 2, 3 are artesian indexes. One ould see from Eq. 4.81 and4.82 that the equations of motion (EOM) will be oupled due to the form of thepotential. A simple idea to overome this di�ulty is to introdue normalizedoordinates whih deompose the motion into independent modes (i.e. �Rousemodes�). Following the treatment of the Rouse model for ring polymers [82℄,to solve Eq. 4.82 in the ontinuos limit (i.e n → ∞), we introdue the normaloordinates as follows:
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Now, applying the boundary ondition for the ase of a ring polymer, r0 = rnand ∂ri
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, we �nd that all odd modes vanish. This means that
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) for l = 0, 2, 4, . . . (4.86)where the summation is evaluated for even modes (i.e. l, even = 2, 4, 6, . . .).The Eq. 4.82 in the ontinuous limit an be written as:
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, for l = 2, 4, 6, . . . (4.89)and τl is known as the relaxation time of the Rouse modes. The derivation of Eq.4.88 and Eq. 4.89 is fully transferable to the ase of the ring polymer in the pathintegral (PI) approah and when the proper spring onstant, k = mn/(βh̄)2, isused we have that,
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, for l = 2, 4, 6, . . . . (4.90)Comparing the relaxation time predited by the Rouse theory between Eq. 4.89and Eq. 4.90, one ould see that modes of the polymer rings in the path integralapproah relax faster than lassial ring polymers.4.7.3 Appliation of the Rouse theory for the para-hydrogenliquidA test ase is studied under the Rouse theory for polymer rings. More detailsabout the fored �eld between para-hydrogen moleules and the appliation ofour novel approah will be presented later in the hapter 6. Here we reportbrie�y the analysis of the Rouse modes using path integral moleular dynami58
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Chapter 5An adaptive lassial-pathintegral sheme in MoleularSimulationIn Chapter III, we desribed the lassial adaptive resolution simulations wherethe simulation domain is subdivided in regions of di�erent moleular resolutionand partiles an easily di�use between these two resolutions. However, whilethe adaptive proess of hanging resolution on the �y an be desribed within areasonable simulation auray aording to the basi priniples of lassial dy-namis and thermodynamis, the same annot be said when quantum mehanisbeomes relevant. The proper oupling of quantum and lassial mehanis isknown to be a non trivial (and open) problem [83℄ and hene the adaptiveharater adds up as a further di�ulty [84℄. Pratial methods [85�87℄ thatouple the two regimes, in general, do not take into aount the �oneptual�disontinuity of going from a probabilisti (quantum) to a deterministi (lassi-al) approah (and vie versa), and usually base their validity on empirial andnumerial riterion. In this hapter, we present a new sheme [88℄ where theoupling between lassial and quantum regime an be ahieved in a smoothand onsistent way. This hapter is organized as follows: First a setion aboutthe importane of the quantum e�ets in the matter, then a setion is dedi-ated to the basi idea of quantum-lassial oupling and �nally a test of ourapproah PIMD/CG within AdResS framework in two model systems, namelythe monoatomi liquid and moleular liquid.5.1 Quantum desription in soft matterGenerally, the extent to whih the quantum nature of the systems matters is aruial aspet of modeling any soft matter system (e.g. proteins, liquid, poly-mers, et ). This is partly due to the variety of proesses whose quantum61



harater in�uene several other sales. It is undeniable that a full quantum de-sription of a system (by Density Funtional Theory (DFT) methods) is oftenomputationally too expensive. Therefore, typially the modeling of many softmatter systems starts to inorporate partial quantum e�ets into the so-alledlassial fore �elds (e.g. CHARMM [89℄, GROMOS [90℄ and several others).However, there are many interesting problems where suh approximation is notaurate and detailed quantum desription is needed in ertain regions of thespae, for example, the inherently quantum nature of a hemial reation inbiologial proesses [91℄ and the quantum nature of the nulei of light partilesas hydrogens in important moleules as water [92℄ at room temperature requirea proper quantum desription, to name a ouple.The quantum harater of partiles beomes partiularly relevant for theregime of low temperatures and light partiles. In suh onditions, the quan-tum nature of matter play important roles in modifying the struture and dy-namis of the entire system. Soft matter systems are typially around roomtemperature and their behavior is generally determined by the thermal �u-tuations, whih are of the order of a few kBT . However, as we illustrate inFigure 5.1, some biologial systems may need to inorporate quantum detailsto ompletely desribe the struture and dynamis. In this �gure we illustratea large moleule solvated in a model system of tetrahedral moleules, in part(a) of Figure 5.1 the full quantum mehanial desription of the system withpath integral desription is shown. This makes the moleule more �exible andnew onformations an be explored in presene of the solvent. For example, thered irle indiates a typial region where the atoms beome deloalized andthus they indue onformational hanges in the moleule. Let us assume thatsuh onformations are only observed in presene of the quantum harater ofthe partiles and therefore, a onventional simulation with the path integral ap-proah will be omputationally expensive, due to the system size. In Figure 5.1(b) we depit a solution whih ombines the advantage of a systemati stru-tural oarse graining (see hapter I) to redue the number of degrees of freedomin a region of no interest and the adaptive resolution sheme (see hapter III)to allow the hange of degrees of freedom on the �y. The preeding desriptionmaintains partile �utuations between all the regions. The basi idea of howone an implement suh approah is presented in the next setion.5.2 The basi idea of the quantum-lassial adap-tivityAs disussed in the hapter III, the AdResS method is numerially robust andits theoretial bakground has been well-established. In our ase, the AdResSmethod beomes an important tool for the adaptivity of the quantum-lassialsystem. More spei�ally, for the adaptive proess the path integral approah ofatoms has far-reahing onsequenes, beause it translates the quantum-lassialoupling into the oupling of two e�etive lassial regions haraterized by a62



Figure 5.1: A pitorial representation of a large moleule solvated in a liquid of tetra-hedral moleules. In part (a) the quantum mehanis desription of the whole systemgenerates onformational hanges that are not observed in lassial MD simulations.In (b) the PIMD/CG approah is depited, the spae is partitioned in a entral regiondesribed with quantum mehanis, moleules that are far of the entral region an bereplaed by CG spheres and in between a transition region with hybrid partiles.
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di�erent number of (as a matter of fat) �lassial� degrees of freedom; thus thewhole mahinery of lassial adaptive methods would apply straightforwardly.In this hapter, we show that this indeed is the ase. It must be notiedthat our PIMD/CG approah in AdResS (see next setion) aims to alulatestati equilibrium properties within a quantum mehanial desription and notfor the true quantum dynamis. Pratial adaptive methods where eletronsare onsidered are already available [85�87℄, however the nulei are in theseases lassial. In the next setion, we test our approah systematially in twosystems, namely the monoatomi liquid and moleular (tetrahedral) liquid. Asin the lassial AdResS a oarse graining proedure is used to obtain an e�etiveone site potential whih is oupled to the expliit fore �eld using the equationof motion of AdResS. Similarly here, one obtains an e�etive potential from thepath integral representation and then performs PIMD/CG simulation withinthe AdResS framework.5.3 PIMD/CG approah in AdResSThe purpose of our hybrid sheme is to use a path integral (PI) desription of themoleules in a ertain region of interest, instead of using PI representation (i.e.ring polymers) throughout the simulation domain. We use a redued numberof path integral moleules in equilibrium with an e�etive oarse grained (CG)region (lassial partiles), where the e�etive potential is derived from a fullpath integral simulation. The main advantage of the hybrid sheme is thatwe do not need to represent all the partiles by the path integral formalism,whih is omputationally expensive for large systems. Details of the proedureused to haraterize the CG partiles are given in the next setions. Let usnow onsider the total number of partiles, N , in the simulation box to be�xed, whih represents the total number of atoms or moleules. Our resultsin the next setions show that a fration of the total number of partiles anbe represented by ring polymers, whih remain in thermodynami equilibriumwith the lassial CG representation and at the same time preserve quantumproperties, for example the distributions of deloalized partiles in the quantumregion.5.3.1 E�etive potential derived from a path integral rep-resentationThe fore �eld needed for the path integral simulation has to be parametrizedwithout the quantum e�ets, whih are important at a given thermodynamiondition. Otherwise, the system under study will overount the quantum e�etsdue to the additional path integral approah. Suh a problem has been addressedreently for the ase of path integral simulation of a �exible water model [92℄. Inour study, we use a lassial fore �eld that does not inlude quantum e�ets.Then the e�etive oarse-grained model is derived from a full path integralrepresentation. To obtain an e�etive oarse grained potential from a path64



integral representation of atoms/moleules we have used the iterative Boltzmanninversion proedure available in the literature [16℄. The main idea is to alulatethe non-bonded potential V eff(R) between the enter of masses (R = RCM) ofthe partiles from their path integral representation at given temperature. Forexample the CG proedure for the monoatomi liquid onsists of replaing thepath integral representation of an atoms (i.e. ring polymers) by an e�etivepartile (CG bead), whih interats through the potential V eff(R). Thus, suhCG potential takes into aount (in average) the quantum orretions to thelassial CG potential as shown below,
V eff(R) = V cl(R) + ∆UQM(R), (5.1)where V cl is the lassial CG potential and ∆UQM is the orresponding orre-tion due to quantum e�ets. Therefore, as the temperature T or the mass of thepartile dereases the quantum orretions to the V eff beome more important.To guarantee that our hybrid sheme reprodues the same thermodynami statepoint one has to orret the shift in the pressure produed by the artifat of theiterative proedure (see setion 1.3.2).5.4 Results and DisussionIn this setion, we present the results of our PIMD/CG approah in AdResS forthe two model systems studied in a regime of low temperatures, whih orre-sponds to the extreme thermodynami ondition where the quantum desriptionprovided by path integral beomes relevant. In general, for soft matter applia-tions the temperature is usually high and thus our approah, if it works at lowtemperature, should then work even better. As we have seen before the quantumharater of the path integral representation (see hapter IV) is haraterizedby the number �n� of beads (Trotter number) at given temperature. In our sim-ulation, we have �xed the Trotter number and hange the thermal energy froma high temperature (lassial) to a lower temperature regime where quantume�ets beome important. A proedure to ahieve suh onditions is to dereasethe temperature T . However, in the path integral formalism one an also mod-ify the spring onstant (due to its temperature dependene, k = mn(kBT )2

h̄2 ) toresemble suh onditions. Thus, one an mimi temperature e�ets by tuningthe spring onstant. This plays the same role as the temperature and helpsus to explore a broad piture of deloalization. This proedure is used here totest our PIMD/CG approah in AdResS from a moderate to a strong quantumregime. Note that in real physial systems eah temperature de�nes one �xedvalue of k. In the �rst part of this setion we show the results for a simple modelof a repulsive monoatomi liquid and later we test the method in a rather moreompliated moleular system. 65



5.4.1 Case I: The monoatomi liquidTo begin with our analysis, we start to simulate a generi simple model of amonoatomi system within its quantum limit. The idea here is to test theswithing of degrees of freedom from the path integral representation in the�primitive oordinates� to an e�etive CG one site representation. The Figure5.2 illustrates the proess of hanging on the �y the representation of a singlequantum atom in its path integral representation to the e�etive lassial model.The proess that we address is the free passage of atoms from a path integralregion to a oarser one and vie versa.
Figure 5.2: The on-the-�y interhange among the path integral (PI) and oarse-grained (CG) representation. Here we depit the ase of a quantum partile in the highresolution (Right side) given by the PI representation whih due to the isomorphismof the quantum partition funtion beomes a polymer ring.To aount for several degrees of �quantumness� (i.e. deloalization) we per-form a systemati study dereasing the temperature assoiated with eah quan-tum regime as we dissused at the beginning of this setion. For the purposeof testing, we de�ne the referene temperature, T ∗ = 1 in the Lennard-Jonesunits (with ǫ = 1 and σ = 1 as the unit of energy and length respetively), tobe the temperature assoiated with lassial regime. We perform simulations atdi�erent temperatures T ∗/

√
10, T ∗/5, T ∗/

√
50 and T ∗/10. We show the e�etof dereasing the temperature in Table 5.1, where we ompare the radius ofgyration for the free ring polymer rg(free) and the one obtained in our simu-lations of full path integral for eah respetive temperature. The ontrationobserved in the rg is due to the presene of the intermoleular interations inthe simulation.The fore �eld used to desribe the lassial ondition is a repulsive Morsepotential parameterized as follows:

V (r∗) = γ∗{1 − exp(−α∗(r∗ − r∗0)}2 (5.2)where γ∗ = γ/ǫ = 0.105, α∗ = ασ = 2.4 and r∗0 = r0/σ = 2.31, and uto� at r∗0 .In this ase σ and ǫ represent the length and energy units.The next setion fous on the tehnial details about the alulation of thee�etive potential using the iterative Boltzmann inversion method.66



Table 5.1: Radius of gyration obtained from PIMD simulation and its theoretialvalue in the approah of free ring polymer, i.e. r2
g(free) = βh̄2

4m (1 − 1
n2 ).

Temperature r
g

r
g
(free)

T ∗/10 0.59 ± 0.01 0.70

T ∗/
√

50 0.42 ± 0.01 0.49
T ∗/5 0.29 ± 0.02 0.32

T ∗/
√

10 0.20 ± 0.01 0.22
T ∗ 0.05 ± 0.01 0.07Determination of the e�etive potentialWe alulate the e�etive non-bonded pair potential V eff(R) between the CMof the polymer rings using the Iterative Boltzmann Inversion (IBI) method [16℄and subsequent pressure orretion for a given degree of deloalization. As men-tioned earlier the �quantumness� beomes more evident at lower temperatures.For eah temperature a numerial set of e�etive potentials is obtained, whihreprodues the enter-of-mass radial distribution funtion (RDF) and total pres-sure for a given thermodynami state point. This proess was repeated for twonumber densities whih orrespond to the medium density liquid with ρ∗ = 0.1and the high density liquid with ρ∗ = 0.175.Figure 5.3 (a) shows the e�etive potentials for the very quantum ase equalto T ∗/10 and for T ∗/5 where the �quantumness� is negligible at density ρ∗ = 0.1.Part (b) shows the distribution from the beads to the enter-of-mass of eahring polymer in the path integral representation whih provides a signal of thedeloalization of partiles for lower temperatures. We infer from both pituresthat for this partiular system as the temperature beomes lower, the e�etiveoarse grained potential is more softer. Thus, atoms an oupy more spae inthe statistial sense (i.e quantum deloalization) due to quantum aspets of thematter present at given temperature.Statistial propertiesIn this part, we present the numerial results of our adaptive simulation ofPIMD/CG in AdResS for the monoatomi liquid. It is important to emphasizethat the atoms di�use freely in time traveling from the path integral region tothe oarser region and vie versa. Thus, one must hek the thermodynamionsisteny of our results based on the riteria introdued in the hapter of theAdResS (see Chapter III). As we desribed for the lassial system the pathintegral partiles interat with CG ones by the interpolation fore sheme [93℄.Our simulations are tested by omparing the omputed statistial properties ofthe PIMD/CG in AdResS with the orresponding properties in the full pathintegral (referene system). As we show below, the results are in good agree-ment up to approximately the same error known from the lassial adaptivesimulation. 67
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T ∗/5 the e�et of the deloalization impliitly determined by the temperatureeases as soon as the temperature approahes to the referene (lassial) value,
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It is important to note that the thermodynami equilibrium is maintained foreah region. This means the pressure P , temperature T and average density arekept in equilibrium. Same results are obtained for the density ρ∗ = 0.175, notreported here.
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5.4.2 Case II: The moleular liquidHere we use a tetrahedral model [93℄ for the moleular liquid whih an be usedto test the methodology introdued at the begin of this hapter. The quantumrepresentation for eah atom of the tetrahedral moleule is given by a ring poly-mer whose Trotter number or number of beads �n� is set to 30, whih is usuallyused in the path integral simulation of water moleules in the liquid phase [92℄.The orresponding oarse-grained model for the tetrahedral moleule is seenas an e�etive one-site lassial fore �eld. For this system the idea of hang-ing the moleular representation on the �y is �more hallenging� due to thevery extended redution of degrees of freedom in omparison to the monatomiase. The Figure 5.9 illustrates the proess of hanging representation on the�y starting on the right side with the path integral representation of tetrahe-dral moleule and ending in the opposite side as one oarse-grained sphere, inbetween the system beomes a hybrid partile. Note: the enter of mass (CM)of a path integral tetrahedral moleule is obtained as the average position ofall the beads per moleule (i.e RCM =
∑4

α=1

∑30
i=1

m
(α)
i

r
(α)
i

m
(α)
i

). We have studieda system of thousand moleules at temperature T1 = T∗

√
2
and T2 = T∗

√
10

where
T ∗ = 1 (in the redued Lennard-Jones units, ǫ = 1 and σ = 1) orresponds tothe lassial limit. For the purpose of testing we have hosen the temperaturesto be lower than that employed in the lassial simulation T ∗, suh onditionmimis the thermodynami onditions of a �more quantum� system.
Figure 5.9: The on-the-�y interhange among the path integral (PI) and oarse-grained (CG) representation. Here we depit the ase of a quantum moleule in thehigh resolution (right side) given by the PI representation whih due to the isomor-phism of the quantum partition funtion, eah atom beomes a ring polymer.Determination of the e�etive potentialHere we perform also the Iterative Boltzmann Inversion [16℄ method and pres-sure orretion to obtain the e�etive potential, V eff(R) for the CM betweentetrahedral moleules. We emphasize, that eah single atom in the tetrahe-dral moleule is represented by 30 beads due to the path integral approah.Thus, the e�etive potential takes into aount the spatial redution of degreesof freedom (DOF) from 360 to 3 per moleule. As in the monoatomi ase,73



we obtained a set of potentials orresponding to di�erent temperatures and fordensity ρ∗ = 0.1. We depit in Figure 5.10 (a) the CG potential obtained by IBIwith pressure orretion. One an see that as the temperature dereases, theCG potential beomes more repulsive (less softer), ontraditing our previousresults (monoatomi liquid). This e�et an be explained if we see the part (b)of this �gure, where the bond length distribution, P (d∗), between the atoms inthe tetrahedral moleules is plotted. Therefore, one an infer how the moleuleis deloalized as the temperature dereases in its path integral representation,generating the net e�et of moving away the enter of masses.
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path integral (PI) and oarse grained (CG), whih maintain almost the samevalue (not spurious �ux of partiles) and same pressure, P , is ensured for eahresolution, maintaining the mehanial equilibrium.
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Table 5.2: The monoatomi liquid: Number of expliit (PI representation), hybrid and CG partiles as a funtion of the di�erenttemperatures studied within AdResS method. The interfae layer width is given by d∗

hyb = 8. Column 5th, 6th and 7th show the pressurealulated in the path integral zone (Pex), CG zone (Pcg) and full hybrid system with w = 0.5.
Temperature nex ncg nhyb Pex Pcg Pw=1/2

T/10 310 ± 10 307 ± 14 382 ± 16 0.797 ± 0.013 0.797± 0.008 0.874± 0.013

T/
√

50 306 ± 17 304 ± 12 389 ± 21 0.638 ± 0.013 0.639± 0.008 0.668± 0.012
T/5 303 ± 13 297 ± 18 400 ± 20 0.481 ± 0.013 0.481± 0.015 0.485± 0.014

T/
√

10 295 ± 18 300 ± 14 405 ± 21 0.443 ± 0.015 0.444± 0.015 0.450± 0.014
T 301 ± 12 299 ± 11 406 ± 15 0.382 ± 0.012 0.382± 0.012 0.381± 0.013

Table 5.3: The moleular liquid: Number of expliit (PI representation), hybrid and CG partiles as a funtion of di�erent tempera-tures studied with AdResS. The interfae layer width is given by d∗

hyb = 6. Column 5th and 6th show the pressure of the path integral(Pex) and g systems (Pcg).

Temperature nex ncg nhyb Pex Pcg

T/
√

10 305 ± 15 304 ± 16 382 ± 14 0.582± 0.08 0.581 ± 0.021

T/
√

2 303 ± 14 302 ± 15 387 ± 16 0.431± 0.08 0.430 ± 0.021
T 300 ± 15 300 ± 15 400 ± 15 0.382± 0.08 0.381 ± 0.021
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Chapter 6The para-hydrogen liquid inAdResSIn the previous hapter, we developed the basi idea of a quantum-lassialadaptive oupling by mapping the quantum nature of an atom onto a lassi-al polymer ring representation. To test the appliability of the method wehave used a toy model of tetrahedral moleules with limited physial meaning,however it was appropriate to test our approah for a broad range of thermo-dynami situations. The tetrahedral moleule possesses enough strutural om-plexity, typial of small multiatomi moleules, and we have proven that a largeredution of the number of degrees of freedom in the adaptive proess ould bedesribed by the AdResS method. Typially, there are ritial situations (e.g.low temperatures or light partiles) where the quantum desription of the mat-ter is mandatory in order to desribe the relevant properties of the system. Insuh ases, a good starting point to inlude quantum e�ets, e.g. �deloalizationor tunneling� of partiles, is given by path integral methods. Here we study thepara-hydrogen moleules at low temperatures as the �rst real appliation of ourmethod beause of: (a) the extreme thermodynami ondition at low tempera-ture and pressure and (b) the strong quantum nature of the hydrogen moleuleunder these onditions. We do not aim to explore the low temperature physiswithin the AdResS framework, sine our interest is primarily foused on the softmatter sale at ambient ondition, where quantum e�ets are not very dominat.If our approah works tehnially and oneptually, one should expet even abetter agreement at ambient onditions.This hapter is organized as follows. First we introdue a brief desriptionof the physis of the hydrogen, then we present the path integral representationof one of its moleular states, the para-hydrogen at low temperature. Nextsetion presents the basis of the adaptive resolution sheme used to study thepara-hydrogen moleules. The last two setions show the tehnial details ofour simulation, the results and disussion.79



6.1 Basi physis of hydrogenDuring the early development of the quantum mehanis the signi�ane ofunderstanding a single hydrogen atom/moleule played an important role in thetheoretial and experimental foundation of this theory. For instane, the atomiand moleular form of hydrogen were used to study the quantum struture ofmatter by N. Bohr and A. Sommerfeld [94, 95℄ (e.g. atomi shell model), andlater it was also used for the development of the hemial binding by L. Paulingand several others [96, 97℄.The liquid and solid phases of moleular hydrogen and deuterium have beenstudied experimentally [98, 99℄ and theoretially [100, 101℄. These many bodysystems ontinue to attrat great deal of interest due to its fundamental nature.It is known that hydrogen moleules are the prinipal onstituents of distantplanets [102℄ and in the �eld of high-pressure physis the hydrogen exhibits the�uid metal-insulator transition [103,104℄. In soft matter systems, the hydrogenbeomes important as a onstituent of important moleules suh as water, DNAand proteins. The presene of hydrogen in suh systems play an important rolein the struture of the moleules by forming ovalent or hydrogen bonds.It is known that the spetrum of moleular hydrogen in the liquid phase ex-hibits the e�et of the internal nulear degrees of freedom whih lead to the har-aterization of two spin isomers of hydrogen diatomi moleules and di�erentlevels of exitations. One of the isomeri forms is the ortho-hydrogen where thetwo proton spins are aligned parallel and form a triplet with a total spin quan-tum number of J = 1; in the para-hydrogen form the proton spins are alignedantiparallel and form a singlet with a total spin quantum number of J = 0.At standard temperature and pressure (STP) of 0 ◦C and 1 atm respetively,the hydrogen gas onsists of about 25% para-hydrogen and 75% ortho-hydrogenwhih is a onsequene of the spin degeneray ratio. This senario hangessigni�antly if thermal equilibrium is established at low temperatures betweenthe two forms of hydrogen. At 20 K, for example, natural hydrogen onsistsof 99.8% of parahydrogen. In the following setion the quantum desription ofpara-hydrogen is introdued by the path integral method.6.2 The path integral desription of para-hydrogenAs we desribed previously the para-hydrogen represents an ideal system fortesting of new methods whih inlude quantum e�ets in moleular dynamissimulation. In general, liquid hydrogen does not exhibit the strong idential par-tile exhange e�ets typially observed in liquid helium, and thus the physisof the system is simpli�ed. Even at very low temperature (e.g. around the triplepoint, 13.8 K) the thermal de Broglie wavelength λ = h/(2πmkBT )1/2 = 3.3 Å isslightly larger than the mean distane between two hard spheres in the lassi-al representation of hydrogen moleules (σ = 3.0 Å). This implies that theexhange of idential para-hydrogen moleules will not have a pronouned ef-fet in the properties of the liquid phase [105℄ and therefore the para-hydrogen80



moleules follow Boltzmann statistis. Another harateristi of the liquidmoleular hydrogen at low temperatures is the inversion of the predominantpopulation, i.e.; ortho-hydrogen at room temperature to the para-hydrogen atlower temperatures. Sine the majority of the para-hydrogen moleules are inthe ground state (J = 0), the wave funtions that haraterize suh a moleularstate are spherially symmetri, and hene the interation between moleulesan be modeled by an e�etive isotropi pair potential [106℄ (see Figure 6.4).Due to the inherent quantum behavior of the para-hydrogen moleules atlow temperatures, several omputational tehniques based on the path integralformulation of quantum mehanis (see hapter IV) beame routine methodsto alulate stati [107�109℄ and dynami [110�112℄ properties of this quantumliquid. In Figure 6.1, we show the oneptual transition from the �e�etivespherial� lassial model to the orresponding quantum �ring polymer� modelby means of the path integral approah.In the next setion, we desribe the oupling of the path integral representa-tion with an e�etive lassial representation, where only the lassial spherialsymmetry is preserved and still, loally, quantum information an be extratedin the spirit of AdResS.
Figure 6.1: Quantum representation of the para-hydrogen by the path integral ap-proah. On the left side the lassial form for a diatomi hydrogen moleule is illus-trated and in the opposite side the quantum desription of the moleule by a ring-polymer as it is known from the path integral approah.6.3 Para-hydrogen in AdResSAs stated previously the para-hydrogen an be aurately desribed by the pathintegral approah and represents a valid oneptual and tehnial test for theadaptive simulation approah in its extension to (some) quantum problems.For this reason we have performed simulations of the liquid para-hydrogen us-ing AdResS. In Figure 6.2 we illustrate the partile transition from a lassial,one-site, oarse grained representation to a quantum representation by meansof the path integral approah. In between, we depit the hybrid resolution thatharaterizes the transition region. Our sheme allows the swithing of repre-sentations aording to the moleular position in the simulation box. This willbe explained further in the next setion.An important key feature of the adaptive simulation sheme is the interpo-81



Figure 6.2: Adaptive resolution sheme for para-hydrogen: the high resolution on theleft orresponds to the quantum path integral representation. The low resolution onright orresponds to the e�etive spherial lassial model obtained by oarse-grainingthe high resolution.lation funtion, w(x), whih weighs the fore ontributions oming from eahrepresentation (i.e. path integral, hybrid and oarse grained) and also makesa smooth transition from the lassial to quantum regime and vie versa. Thefuntional form of w(x) is the same as the one used in lassial adaptive sim-ulation. In �gure 6.3, we depit the weighting funtion and the para-hydrogenmoleules in our adaptive simulation as a funtion of their position. The lassialCG, path integral and hybrid desription of the moleules are restrited in thespae, but free di�usion of the moleules takes plae and thus single moleulesundergo an adaptive proess from the path integral to lassial representation.
Figure 6.3: AdResS set up for the para-hydrogen liquid. In this �gure the weightingfuntion is shown and it varies from 0 in the oarse grained region to 1 in the pathintegral region, in between takes ontinuous values and moleules beome hybrid inthe sense of lassial/quantum desription.6.4 Tehnial detailsTo perform an adaptive PIMD/CG simulation of liquid para-hydrogen we haveused the Silvera-Goldman pair potential [106℄,
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where
fc(r) =

{
e−(rc/r−1)2 , if r ≤ rc

1, otherwise, (6.2)here the interating diatomi moleules are treated as spheres. This is justi�edby the fat that moleules are in the rotational ground state (J-0) at the twotemperatures of interest, i.e.; 25 K and 14 K. The �rst term on the Eq. 6.1 orre-sponds to the short-range repulsive interation, while the seond term desribesthe long-range attrative interation. The last term, C9/r9, is an e�etive twobody approximation to the three-body dispersion interation. The fc(r) is usedto sreen the e�et of the attrative interation at short distane. The values ofthe parameter are listed in Table 6.1. V(r) is shown in Figure 6.4Table 6.1: Parameters used in the Silvera-Goldman pair potential (in atomiunits).
α 1.713 C6 12.14
β 1.5671 C8 215.2
γ 0.00993 C9 143.1
rc 8.32 C10 4813.9In our adaptive simulation of the para-hydrogen, we used the theoretialnumber density obtained from the earlier path integral Monte Carlo (PIMC)[107℄ (ρ = 0.0035(bohr)−3 at 14 K and ρ = 0.0028(bohr)−3 at 25 K), underthe ondition of almost zero pressure. Important quantities are expressed inatomi units (i.e. e, h̄, m = 1). This gives the unit of energy in Hartree (Eh =

4.3597× 10−18J) and the distane in Bohr radius (a0 = 0.529Å) The bead-beadinteration of neighboring ring-polymers is trunated at 15 bohr.From the earlier simulation with PIMC it is known that at the low tem-perature (T = 14 K) the degree of quantumness for para-hydrogen beomestronger and the Trotter number used in the path integral approah should beinreased to 48 beads. For the high temperature (T = 25 K) ase, 28 beadsare enough to guarantee the onvergene of the stati properties. For ompar-ison we perform adaptive simulations of two kinds of path integrals; (a) pathintegral formulation in the primitive (real) spae PIMD (see hapter IV), whihis omputationally less demanding, but shown to be not aurate enough forthe low temperature limit and (b) the path integral formulation in terms of thenormal modes (PIMD+NM), omputationally more demanding but more au-rate at the low temperature. In fat, at the low temperatures, the use of thelarge number of beads leads to the situation that the interation between theorresponding beads of di�erent ring polymers beomes less relevant beause itfollows 1
nViα,jβ (iα indiates the i-th bead of the moleules α, same for β, and

n is the number of beads). However, the bead-bead interation between bondedneighboring beads of the same ring polymer beomes dominant, beause it salesas n. This leads to the problems of ergodiity in a real spae approah, whih83



an be overome in the normal mode approah, by ensuring the proper samplingof all the frequeny of the system, solves the problem [113℄ (see appendix E).Eah simulation was equilibrated for 100 ps and then the stati propertieswere alulated by averaging over 1000 onseutive 10 ps path integral traje-tories with a time step of 0.5 fs.6.4.1 E�etive oarse grained potentialTo obtain an e�etive one-site oarse grained (CG) potential from the path in-tegral representation of para-hydrogen, we have used the standard proedureknown as the Iterative Boltzmann Inversion (IBI) [16℄. Suh proedure derivesan e�etive potential by using the full expliit (path integral) enter-of-massradial distribution funtion (RDF) as a target. Also for this system a pres-sure orretion has been employed to ensure as lose as possible to the targetpressure. In this aspet, the oarse-graining proedure at these thermodynamionditions beomes more di�ult sine the large pressure �utuations (of theorder of 10−7 Eh/bohr−3) and the inherent error of the iterative proedure leadto a large relative error on the pressure of the oarse-grained model. For eahsystem the IBI was applied over 30 iterations until the onvergeny of the tar-get radial distribution was reahed. Eah iteration onsists of 50 ps and 500 psof equilibration and prodution respetively. A smoothing proedure over thepotential was applied 5 times per iteration.Our results are shown in Figure 6.4 where we plot the e�etive CG poten-tial obtained for eah temperature studied and for omparison is depited thelassial Silvera and Goldman potential from Eq. 6.1. One an see the e�etivepotential beomes less attrative and the minima of the potential is shifted asthe temperature dereases from T=25 K to T=14 K.6.5 Results and DisussionIn this setion we present the results of our approah in AdResS for the twothermodynami state points studied. The path integral implementation in thereal spae will be denoted by PIMD while the normal modes implementation asPIMD+NM.6.5.1 For T=25 KThis thermodynami state represents a �less quantum� system with Trotter num-ber (number of beads) n=28 ompared to the other system at T=14 K shownlater. As one an see in the Figure 6.5 (a) for the bead-bead RDF for thefull (expliit) path integral simulation the PIMD and PIMD+NM implemen-tation perform quite well and no di�erenes with the referene data is foundompared to the referene data [107℄. In part (b) and () we report the par-tial bead-bead RDF obtained within AdResS, with PIMD and the PIMD+NM,alulated in the quantum region of the adaptive resolution system. This is84
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Figure 6.5: (a) Comparison of the bead-bead radial distribution funtions (RDF) in afull path integral simulation at T=25 K. The primitive path integral (PIMD) and thepath integral in the normal modes (PIMD+NM) are ompared to earlier work [107℄and full agreement is obtained. (b) The bead-bead partial RDF alulate only in thequantum region in AdResS for the PIMD ompared with the same quantity alulatedin the PIMD/AdResS approah. () Shows the same as in (b), but for PIMD+NMimplementation. 86
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Chapter 7ConlusionsIn this thesis, we have dealt with two ontributions in the �eld of methoddevelopment for multisale problems. Suh methods are ommonly used tooverome serious problems of time and length sales in soft matter systems.Our �rst ontribution dealt with the numerial ontrol of the oarse grainingproedures, typially used in the redution of degrees of freedom (DOFs) inomplex systems. And the seond ontribution was a oneptual extensionand tehnial development of the Adaptive Resolution Sheme (AdResS) forquantum systems. Let us explain in detail the summary of our �ndings andfuture perspetives:In the �rst part, we proposed a systemati proedure to estimate the validityof the approximation of separation of variables (ASV). The advantage of ourmethod is that only the analytial form of the potential is needed. This helpsus to de�ne regions where the ASV is reasonable a priori without the task ofperforming moleular dynamis simulation to alulate the orrelation amongDOFs. As a result, in the positive assessment our proedure indiates the errorintrodued by the assumption of ASV and in the negative evaluation guarateesthat no separation will be possible. Our proedure an be seen as a numerialtool to systematially ompare a set of oarse grained (CG) variables and hoosethe ones that will better mimi the dynamis of the atomisti system. For thispurpose, we have studied a simple model, namely the diatomi moleule on asurfae. For this system our proedure has shown the regions where the ASVbeomes questionable. A seond appliation of the proedure for two di�erenteCG mappping shemes of a simple polymer hain has shown its pratial usefor polymeri systems.Further studies an merge our proedure with several other methods, whihimpliitly make use of the ASV or require the a priori knowledge of the separa-bility. For instane, the hoie of olletive variables (CVs) or order parametersas in the metadynamis [20℄ or transition path sampling [19℄, used ommonly inthe study of rare events. All these methods assume one or several CVs, whih areindependent from other variables whose ontribution is not onsidered. In thisontext, our proedure may help to indentify a minimal set of CVs. Previously,91



we learnt about the problem of hoosing the proper set of variables for a oarsegrained desription. Then one starts typially the simulation in the CG levelof resolution. However, interesting multisale problems involve several levels ofdesription as we desribed in this thesis, and the need for oupling these levelsand perform one single simulation is now tehnially possible between severalsales (e.g. atomisti-mesosopi and mesosopi-ontinuum sales). Only thequantum-lassial oupling presents oneptual and tehnial problems in adap-tive simulations. In this ontext the Adaptive Resolution Sheme (AdResS) hasshown to be a robust and suessful sheme for the study of a system withonurrent resolutions.In the seond part of the thesis we extended its appliability to the quantumdesription based on the path integral approah of atoms/moleules. Conern-ing this part of the thesis, the oneptual/tehnial extension maintains thequantum harater of the partiles in the region of interest and away of it, ane�etive oarse grained lassial desription an be used to derease the ompu-tational demands of performing full path integral simulations in the full spae.We tested suessfully our approah in monoatomi and moleular toy models atstandart (ambient) thermodynami onditions. To end this work we performedan appliation with our adaptive/path integral method in a system where quan-tum e�ets play a entral role. The para-hydrogen moleules were studied attwo di�erent temperatures, namely 25 K and 14 K. We aimed to show the ro-bustness of the adaptive/path integral within AdResS framework, even for suhritial onditions. To aount properly for the quantum e�ets we implementedthe normal modes (NM), whih was neessary for the lower temperature. Ourmethod reprodues, in a rather satisfatory way, the strutural properties whenompared to the results of full expliit path integral simulation and to thoseavailable in literature. To summarize sine, at ambient onditions, the quantume�ets an be important, but not dominant, and the oarse-graining proedureis tehnially simpler, the adaptive/path integral method an be applied tostandard systems in soft matter and ondensed matter.The adaptive/path integral method allows us to study the stati propertiesof quantum systems in the region of interest while the rest of the system re-mains lassial. Thus, real quantum �dynamis� annot be obtained from ourapproah. In this respet, possible ways to overome this problem will involvethe use of more sophistiated tehniques, whih are still based on the path in-tegral formalism, suh as the Centroid Moleular Dynamis [73℄ or the RingPolymer Moleular Dynamis [72℄. Additionally, our adaptive/path integralmethod ould be merged in the near future with pratial adaptive methods foreletrons [85�87℄, where the adaptivity of nulei ould be taken into aount byour approah.
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Appendix A: The RIS modelfor a polymer hainThe RIS model used in this study resembles the one of n-alkane hain in a plane.Here the interation between sites (e.g. atomi or moleular) are desribed onlyby a bond-bending potential [114,115℄ of the form
Vbending(θi) =

1

2
K
(
θi − θ0

i

)2 (7.1)with K = 115.2 kcal/mol and θ0
i = 112◦for T = 450K. θi is the angle formedby three onseutive partiles, as shown in Figure 2.6. Some DOFs, suh as thetorsion angles are disregarded, as we fous on the separation of the variables

R(1), R(2) and Ω whih (for symmetry) are independent of the torsions in theRIS model. In both systems with 1:2 or 1:3, we have used a sti� bond lengthbetween arbon atoms equal to l1 = 1.54 . The di�erene between the twoases studied lies in the hoie of the enter for eah bead and the number ofpartiles per bead. For instane, in the �rst ase we take the enter of thedistane between two partiles as the enter of the bead and in the last one we�x the internal angle formed by three partiles and then use the baryenter ofthis triangle as the enter of the bead. In both ases the angle θ1 is kept �xedat its equilibrium value, that is θ1 = 108◦, while the other angles are allowed tovary in suh a way that θi = 115◦ ± 10◦, ∀i = 2, 3, 4 as suggested by atomistisimulations [114,115℄.
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Appendix B: CG variable asfuntion of the atomistivariablesOne the relevant CG variables are determined, one has to proeed to expressthe CG variables as a funtion of the expliit (atomisti) variables. After thatone an apply systematially the riterion of the ASV and alulate the fator ofquality (Q) for this partiular mapping sheme . Here, for tehnial onveniene,we proeed �rst by expressing the atomisti variables as a funtion of the newCG variables and then use the inverse funtion in order to get the CG variablesas a funtion of the expliit dependenies. Due to the high omplexity of thesystem we have �xed some atomisti variables and onsider them as possibleparametri variables. This is a useful proedure and a ommon way to treat aomplex system with a high number of DOFs where some variables are morerelevant than others. In order to obtain a set of equations, we analyze thegeometrial properties of the MS and searh for suitable relations between theexpliit and CG variables. The geometrial onditions that we have used toobtain a system of equations involve the square of the absolute value of ~R(1)and ~R(2), whih are expressed as the resultants of the sequene of ollinearvetors for eah ase . For the �rst MS, now we de�ne ~r1 =
−−→
O1B, ~r2 =

−−→
BC,

~r3 =
−−→
CO2, ~r4 =

−−→
DE and ~r5 =

−−→
EO3 (see Figure 2.6). So we have:

~R(1) = −(~r1 + ~r2 + ~r3)

~R(2) = ~r3 + ~r4 + ~r5then the square of the absolute value,
(R(1))2 = (r1)

2
+ (r2)

2
+ (r3)

2
)

+2 (−r1r2 cos (θ1) + r1r3 cos (θ2 − θ1) − r2r3 cos (θ2))

(R(2))2 = (r3)
2 + (r4)

2 + (r5)
2

+2 (−r3r4 cos (θ3) + r3r5 cos (θ4 − θ3) − r4r5 cos (θ4)) (7.2)And similarly for the seond MS having de�ned ~r1 =
−−→
O1B, ~r2 =

−−→
BC, ~r3 =

−−→
CD,95



~r4 =
−−→
DE, ~r5 =

−−→
EO2, ~r6 =

−−→
EF , ~r7 =

−−→
FG, ~r8 =

−−→
GH and ~r9 =

−−−→
HO3.

~R(1) = −(~r1 + ~r2 + ~r3 + ~r4 + ~r5)

~R(2) = −~r5 + ~r6 + ~r7 + ~r8 + ~r9one again the square of the absolute value,
(R(1))2 = (r1)

2 + (r2)
2 + (r3)

2 + (r4)
2 + (r5)

2 + 2(−r1r2 cos(
θ1

2
)

+r1r3cos(θ2 −
θ1

2
) − r1r4 cos(θ3 +

θ1

2
− θ2) + r1r5 cos(θ2 − θ3)

−r2r3 cos(θ2) + r2r4 cos(θ2 − θ3) − r2r5 cos(
θ1

2
+ θ2 − θ3)

−r3r4 cos(θ3) + r3r5 cos(θ3 −
θ1

2
) − r4r5 cos(

θ1

2
))

(R(2))2 = (r5)
2 + (r6)

2 + (r7)
2 + (r8)

2 + (r9)
2 + 2(−r5r6 cos(

θ1

2
)

+r5r7cos(θ4 −
θ1

2
) − r5r8 cos(θ5 +

θ1

2
− θ4) + r5r9 cos(θ4 − θ5)

−r6r7 cos(θ4) + r6r8 cos(θ5 − θ4) − r6r9 cos(
θ1

2
+ θ4 − θ5)

−r7r8 cos(θ5) + r7r9 cos(θ5 −
θ1

2
) − r8r9 cos(

θ1

2
)) (7.3)Despite the salar produt of ~R(1) · ~R(2) being a valid relation to obtain Ω, wenotie that it is not well handled by the onventional inverse proedure beauseit involves no simple argument dependenies. Hene we use a partiular relationfor eah MS as shown below.1. Case Figure 2.6(a) : For Ω we have: Ω = π − ̂DO2O3 + ̂O1O2C, then usethe salar produt of ~r3 ·~r4 = −r3r4cos (θ3) and sine ~r4 = ~R(2) −~r3 −~r5,we have that,

−r3r4cos (θ3) = ~r3 ·
(

~R(2) − ~r3 − ~r5

)

=
(
r3R

(2)cos
(
̂DO2O3

)
− r2

3 − r3r5cos(θ4 − θ5)
)thus inverting this relation we obtain ̂DO2O3. The remaining angle ̂O1O2Can be expressed as a funtion of the R(1) and is equal to:

̂O1O2C = arccos

[
(R(1))2 − 4(r1)

2(1 − 2cos(θ1)

2R(1)r1

]2. Case Figure 2.6(b) : Ω = 2π − D̂O2F − ̂O1O2D − ̂O3O2F and due to thesymmetry of the system the last two angles on the r.h.s of the equation96



are mathematially similar. We now show the geometrial proedure todetermine the expression for one of them, namely ̂O1O2D.
△O1DC : O1D

2 = O1C
2 + CD 2 − 2O1C CD cos

(
̂O1CD

)

△O1DO2 : O1D
2 = O1O2

2 + DO2
2 − 2O1O2 DO2 cos

(
̂O1O2D

)Where the symbol △ indiates the triangle under onsideration de�ned bythe letters of its verties (e.g. △O1DC is the triangle whose verties arethe points O1, D and C. Next we solve for ̂O1O2D and onsidering that
O1C = DO2 we have

̂O1O2D =
arccos

(
O1O2

2 − CD 2 + 2O1C CD cos
(
̂O1CD

))

2O1O2 O1C
,for analogy, for the other angle ̂O3O2F :

̂O3O2F =
arccos

(
O2O3

2 − FG 2 + 2GO3 FGcos
(
̂FGO3

))

2O2O3 GO3

.where ̂O1CD = θ2 + ̂O1CB and ̂O3O2F = θ5 + ̂HGO3. Due to thesymmetry we have that ̂O1CB = ̂HGO3, this angle an be alulatedusing the geometrial properties of the triangles and is equal to,
̂O1CB =

3

8
+

1

2

(
5

4
− cos (θ1)

) 1
2From our notation for CG variables we have,

O1O2 = R(1),

O2O3 = R(2)and,
CD = FG = l1.Despite the appearane of a ompliated mathematial proedure, tehniallythis relations are not di�ult to obtain and by using standard omputationaltools as Mathematia [116℄, one an obtain �numerial� expressions of the trans-formation whih an be diretly plugged into a omputer ode. The expliitexpressions are rather lengthy (but easy to use into the numerial proedure ofthe ASV) and would oupy too muh spae, thus they are not reported here.In any ase the formal proedure reported above is su�ient to reprodue all thealulations we are performing. We have tested the orretness of the expliitexpressions obtained by alulating several values of the potential using boththe expliit atomisti oordinates and the orresponding CG value of R(1), R(2)and Ω. Below the formal relations orresponding to the two MS are reported;97



for the 1:2 MS, we have the following dependenies with θ1 and l1 as parametrivalues:
θ1 = θ̄1

R(1) = R(1)(l̄1, θ̄1, θ2) −→ θ2 = θ2(l̄1, θ̄1, R
(1))

R(2) = R(2)(l̄1, θ̄1, θ2, θ3, θ4) −→ θ3 = θ3(l̄1, θ̄1, R
(1), R(2), Ω)

Ω = Ω(l̄1, θ̄1, θ2, θ3, θ4) −→ θ4 = θ4(l̄1, θ̄1, R
(1), R(2), Ω) (7.4)For the 1:3 MS, we �xed θ1,θ2 and l1 as a parametri values and obtain:

θ1 = θ̄1

θ2 = θ̄2

R(1) = R(1)
(
l̄1, θ̄1, θ̄2, θ3

)
−→ θ3 = θ3

(
l̄1, θ̄1, θ̄2, R

(1)
)

R(2) = R(2)
(
l̄1, θ̄1, θ4, θ5

)
−→ θ4 = θ4

(
l̄1, θ̄1, θ̄2, R

(1), R(2), Ω
)

Ω = Ω
(
l̄1, θ̄1, θ̄2, θ3, θ4, θ5

)
−→ θ5 = θ5

(
l̄1, θ̄1, θ̄2, R

(1), R(2), Ω
) (7.5)
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Appendix C: ThermostatIn omputer simulations a thermostat is needed to de�ne properly the NVTensemble, being it responsible for the ontrol of the temperature. In the aseof the adaptive resolution sheme the thermostat is used to ompensate theswithing of the interations, whih ours during the transition from an atom-isti to a oarse grained region or vieversa. Suh thermostat must ensure thatthe atoms of a moleules have the orret veloity distribution when enteringor leaving the swithing region. To ful�ll this task, we have used the oneptof the Langevin idea or stohasti dynamis to guarantee the sampling of theappropriate distributions [117℄. This is done by adding a random and dampingfore as shown below,
ṗi = ∇iU + FD

i + FR
i , (7.6)where the damping fore FD

i is a Stokes-like frition fore whih ats in theoposite diretion of the veloity,
FD

i = −ξi/mi pi (7.7)where ξi is the frition onstant. To ompensate for this frition one adds arandom fore FR
i whih ats in a random diretion and is ompletely loal,

FR
i = σiηi(t), (7.8)where σi is the noise amplitute and ηi is a noise with ertain properties:

• Homegeneity: < ηi(t) >= 0

• Independey of the time and spae: < ηi(t)ηj(t
′) >= δijδ(t − t′)The ratio between ξi and ηi an be obtained from the Fokker-Plank formalism[118℄. Let us write the orresponding Fokker-Plank operator for the stohastipart of the langevin equation (Eq. 7.6) as follows:

LSD =
∑

i

∂

∂pi
[ξi

∂H
∂pi

+ σ2
i

∂

∂pi
] (7.9)where this sum runs over all the partiles. By assuming that the equilibriumdistribution is a Boltzmann type, one has that:

LSDe−H/kBT = 0 (7.10)99



and from the above equation one obtains that:
σ2

i = kBTξi (7.11)this relation is known as the Flutuation-Dissipation theorem (FDT). The Langevinthermostat is one of the standard loal stohasti thermostats, whih generatesa anonial ensemble. This loal thermostat has shown to stabilize the systems,whih a global thermostat annot do. A drawbak of the Langevin thermostatis its lak of Galilei invariane and the strong dependee of the dynamis on thefrition strength.
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Appendix D: Fore�eld of thetetrahedral moleuleA tetrahedral moleules is haraterized by N=4 atoms of the same mass m0onneted by anharmoni bonds. All atoms in the system interat aording toa purely repulsive shifted 12-6 Lennard-Jones potential with a uto� at 21/6σof the form
Uatom

LJ (riαjβ) =

{
4ε
[(

σ
riαjβ

)12 −
(

σ
riαjβ

)6
+ 1

4

]
; riαjβ ≤ 21/6σ

0; riαjβ > 21/6σ
(7.12)

riαjβ de�nes the distane between the atom iα of the moleule α and the atom jβof the moleule β. We de�ne ε and σ as a the referene length and energy units.Neighboring atoms of a moleule are linked via an attrative �nite extensiblenonlinear elasti (FENE) potential
Uatom

FENE(riαjα) =

{
− 1

2kR2
0 ln
[
1 −

( riαjα

R0

)2]
; riαjα ≤ R0

∞; riαjα > R0

(7.13)being R0 = 1.5σ the divergene length and k = 30ε/σ2 the sti�ness. Theequilibrium bond length at kBT = ε is approximately 1.0σ.
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Appendix E: Implementationof the normal modes inAdResSWe use the Hamiltonian from Eq. 4.59 in the normal modes variables withoutthe external potential to derive the equation of motion (EOM) of a free ringpolymer. In the new system of oordinates the EOM take the form:
P

(s)
I =

dQ
(s)
I

dt
d

dt
P

(s)
I = −mIΩ

2
sQ

(s)
I , ∀s = 1, . . . , n, (7.14)where Ωs are the normal mode frequenies and they are de�ned in Eq. 4.58.These are the EOM of a n-deoupled harmoni osillators and the solution isknown to be at time t + ∆t

Q
(s)
I (t + ∆t) = Q

(s)
I (t) cos(Ωs∆t) +

P
(s)
I (t)

mIΩs
sin(Ωs∆t)

P
(s)
I (t + ∆t) = −Q

(s)
I (t)ΩsmI sin(Ωs∆t) + P

(s)
I (t) cos(Ωs∆t) (7.15)for all s = 1, . . . , n and where Q

(s)
I (t) and P

(s)
I (t) are the initial onditions attime t. In a matrix form,

[
P

(s)
I (t + ∆t)

Q
((s)
I (t + ∆t)

]
=




cos(Ωs∆t) −ΩsmI sin(Ωs∆t)
sin(Ωs∆t)

ΩsmI
cos(Ωs∆t)



[
P

(s)
I (t)

Q
(s)
I (t)

]For simpliity we show the omponent of the matries for the zero-frequeny(i.e. for the entroid), this is the ase of s = 0 and from the previous matrixform we get
[

P
(0)
I (t + ∆t)

Q
((0)
I (t + ∆t)

]
=

(
1 0

∆t/mI 1

)[
P

(0)
I (t)

Q
(0)
I (t)

]103



where we used the property of limx→0
sin(x)

x = 1. This form is ideal for thenumerial implementation of the algorithm. Now let us synthesize the hangesin the veloity Verlet algorithm to perform the normal modes (NM) in few step:STEPs of Veloity Verlet with NM in AdResS:1. Calulate fores using AdResS. Evaluate F
(s)
I (t) only from the externalpotential in the primitive spae.2. Update veloities, v(s)

I (t+ ∆t
2 ) = v

(s)
I (t)+ ∆t

2 F
(s)
I (t), in the primitive spae.3. Evolve positions and veloities at t+∆t withNM algorithm (See below).4. Calulate fores, F

(s)
I (t + ∆t

2 ) as in STEP 1 from positions of STEP 3.5. Update veloities, v
(s)
I (t + ∆t) = v

(s)
I (t + ∆t

2 ) + ∆t
2 F

(s)
I (t + ∆t), in theprimitive spae.The STEP 3 onerns the implementation of the normal modes and this ispresented belowNM algorithm:1. Apply the forward FFT to {r(s)

I (t)}, {p(s)
I (t)} −→ {Q(s)

I (t)}, {P (s)
I (t)} (o-ordinates and momenta in NM).2. Evolve {Q(s)

I (t)}, {P (s)
I (t)} aording EOM of free ring-polymer (Eq. 7.15)to t + ∆t.3. Apply the bakward FFT to {Q(s)

I (t + ∆t)}, {P (s)
I (t + ∆t)} −→ {r(s)

I (t +

∆t)}, {p(s)
I (t + ∆t)}.
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