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ABSTRACT

The study presents results of a research on a semi-active control method of damping of

vibration of a beam structure, treated with smart materials. Two materials were consid-

ered as damping elements: magnetorheological elastomer controlled with magnetic �eld

and granular structures, subjected to controlled underpressure. Mathematical models of

the systems are represented by the equations of three layered sandwich beam with core

of controllable shear modulus and a phenomenological model of the granular material.

For such models the optimal control problem was posed, considering the concept of inter-

mediate switching of the systems' parameters instead of the damping turned constantly

on. The resulting control was veri�ed experimentally in free vibrations of a sandwich

cantilever beam. The laboratory research proved that the appropriate, periodic switching

of the properties of the considered materials enables to reduce the vibration more e�ec-

tively than if the material is treated passively. The surplus reaches 20%�30% or more.

The range of applicability and limitations of the proposed solution has been given, as well

as the bene�ts from the application. The proposed semi-active control can be directly

applied to engineering vibrating structural elements.

STRESZCZENIE

W pracy przedstawiono wyniki bada« póªaktywnego tªumienia drga« ukªadu belko-

wego za pomoc¡ sterowanych materiaªów inteligentnych. Rozpatrzono dwa rodzaje mate-

riaªów wykorzystanych do budowy elementów tªumi¡cych: elastomer magnetoreologiczny

sterowany polem magnetycznym oraz specjaln¡ struktur¦ granulowan¡ sterowan¡ za po-

moc¡ podci±nienia. Matematyczny opis ukªadów reprezentowany jest przez model belki

trójwarstwowej z odksztaªcalnym rdzeniem o sterowanym module ±cinania oraz model

fenomenologiczny struktury granulowanej. Sformuªowano zagadnienie optymalnego ste-

rowania ukªadem, korzystaj¡c z koncepcji okresowego przeª¡czania parametrów ukªadu

zamiast tªumienia zaª¡czonego w sposób ci¡gªy. Teoretycznie wyznaczon¡ strategi¦ ste-

rowania zaadaptowano w rzeczywistym ukªadzie laboratoryjnym. Badania eksperymen-

talne potwierdziªy, »e okresowe zaª¡czanie w odpowiednich chwilach sygnaªu sterowania

elastomerem magnetoreologicznym lub struktur¡ granulowan¡, pozwala na skuteczniej-

sze tªumienie drga« ukªadu, ni» w przypadku tªumienia dziaªaj¡cego w sposób pasywny.

W zale»no±ci od zastosowanego materiaªu i wybranej strategii sterowania, drgania udaje

si¦ wytªumi¢ w czasie krótszym o 20%�30%. Okre±lono zakres stosowalno±ci i ogranicze-

nia proponowanych rozwi¡za« oraz strategii sterowania. Wskazano korzy±ci wynikaj¡ce

z ich zastosowania oraz mo»liwe docelowe aplikacje in»ynierskie.
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CHAPTER 1
Introduction

1.1 | Motivation

In the process of designing mechanical systems and structures, a major concern should be

dedicated to face the challenge of unwanted vibration reduction. Exposing the structure

to excessive stresses and strains caused by vibrations may lead to a catastrophic failures.

One of the most spectacular examples of such a failure is the collapse of the suspension

bridge that spanned the Tacoma Narrows with the Kitsap Peninsula in USA, which was

named the �Galloping Gertie� after the incident in 1940. The underdamped structure of

the bridge was exposed to a wind excitation, which frequency was close to the natural

frequency of a bridge and thus the amplitude of the forced system grew without a bound,

eventually causing the bridge to fall (Figure 1.1a). The unexpected, dangerous vibrations

still occasionally plague modern designs. The concrete girder bridge over the Volga River

had been inaugurated in October 2009, and closed by the authorities to all motor tra�c

on May 2010, due to severe, wind-driven twisted mode vibrations (Figure 1.1b). During

the opening day of the London Millennium Footbridge in 2000, unexpected synchronous

lateral movements occurred when thousands of people were crossing the bridge at one

time. Since day one, the bridge remained closed for almost 2 years.

In the design of machinery and structures, whether bridges, buildings, cranes, suspen-

sion of a car or an airplane's wing, actions leading to vibration attenuation help to prevent

the system from the risky states and failures, assure its robustness, reduce the noise level,

enhance the fatigue life and the comfort of use. As the possibility of reducing the source

of vibrations and isolating the system members is highly limited, the additional damping

members need to be introduced. The development of the modern smart materi-

als motivates to study the possibility of improving the damping properties of

structures, by utilizing their unique controllable properties.

To face undesired dynamical e�ects, either passive, active or semi-active damping

method needs to be put into practice. The passive control involves selection of the mass,

11



1.1. MOTIVATION

(a) Tacoma Narrows Bridge (b) Volga Bridge

Figure 1.1: Examples of mechanical systems plagued by unwanted oscillations.

sti�ness or damping properties of the system, to make it less susceptible to vibrations,

without requiring an external power source to operate. The obvious drawback of such

a system is the lack of possibility to actively adjust its parameters. Once the system

is con�gured, the parameters cannot be changed easily and passive vibration damping

strategies become ine�ective when the dynamics of the system or frequency of the distur-

bance varies with time. Materials mostly used in passive damping are composites [51],

polymers, urethanes and synthetic rubber [21, 22, 99] or viscous �uids [90].

The active damping solutions require an external power source to operate properly.

Usually they are based on the force actuators attached to the vibrating structure. The

parameters of the system can be controlled in real time to increase the stability or perform

desired trajectories of motion [56, 89]. Nevertheless, the poorly designed or malfunctioning

active system can act in anti-phase, supplying the energy that may rapidly cause the

damage of a structure [31]. A variable damping is widely used in vehicle suspension

systems, improving the travel comfort by keeping the passage trajectory as smooth as

possible (Figure 1.2), resulting in a greater performance than in case of a classic passive

suspension.

The most interesting damping method seems to be the semi-active control. It utilizes

the motion of the vibrating mechanical system to develop the control forces, so the energy

requirement is lower than in the typical active damping treatment and the system is

safer in the case of malfunction. Nevertheless, the semi-active solutions are usually less

e�cient than the active. The recent trend is to replace the active force actuators with

adjustable rheological dampers or devices utilizing smart materials like magneto- and

electrorheological �uids with controllable rheological properties, shape memory alloys or

piezoelectric devices.

12



CHAPTER 1. INTRODUCTION

(a) Passive (b) Semi-active

Figure 1.2: Comparison of the vertical displacement of a car with di�erent types of
suspension passing a road bump.

This work introduces a semi-active control strategy of a three-layer beam, treated with

the damping member made of magnetorheological elastomer (MRE) or special granular

structure. The sandwich beam comprises thin, aluminium face sheets bonded to one

of the two types of smart damping elements. The parameters of the damping member

may be controlled by altering the magnetic �eld (for the MRE) or the underpressure

(for the special granular structure). The parameters of the mechanical system, such as

the sti�ness or the coe�cients of damping can be modi�ed in real time to increase the

stability of the system or to obtain the desired dynamical response. This type of an

adaptive structure allows damping at much higher level than its equivalent traditional

passive damping system.

Choosing the material, which properties best suits the particular application, is only

small part of contribution in developing practical system with high e�ciency of energy

dissipation. The appropriate control strategy of the properties of the smart material

is as much important as the material development itself. When properly designed,

the semi-active modulation of the system parameters can raise the damping

capacity and at the same time decrease the amount of the energy required by

the system to operate, making it more e�cient.

The damping solution presented in this work can lead to further improvements of

existing damping systems and increase the number of applications utilizing properties

of magnetorheological elastomers and special granular structures. It gives a chance of

fabricating high-quality and cost-e�cient damping systems that enable certain design

�exibility.

13



1.2. THESIS

1.2 | Thesis

Magnetorheological elastomers and special granular structures use di�erent mechanisms

to achieve the damping behaviour. For both of these materials the real time parameters

of the damping element of a proposed sandwich beam can be controlled. The purpose of

placing the lightweight member between the face materials is to sustain its deformations.

It is assumed that as a result of the instantaneous local change of the sti�ness in the

inner layer, the entire beam starts to oscillate with higher modes. A controlled switching

of the damping and sti�ness leads to a faster energy dissipation, which means a quicker

convergence to a steady state. No additional energy is introduced to the system, as the

semi-active control utilizes the motion of the structure to develop the control forces.

The thesis of the work states that

switching at selected moments the damping properties of the magnetorheological elastomer

or special granular structure, allows attenuating the vibration of the beam more e�ectively

than when the damping is turned on constantly.

1.3 | Objectives

The main objective of this study is to design an e�cient semi-active control method for

free vibrations of a layered-cantilever with a smart material used as a damping element.

Two materials of di�erent mechanical and structural properties are considered: the mag-

netorheological elastomers controlled by the augmentation of the magnetic �eld, and the

granular structures subjected to controlled underpressure. The e�cient control is the

one that allows limiting the displacement amplitude and provides shorter sta-

bilization time than the passive treatment. The designed control system should be

easy to adapt in a practical realization.

The optimal stabilization is the initially considered control objective. To solve the

optimal control problem, the observed phenomena require development of an appropriate

mathematical formulation of a sandwich beam with a core of variable parameters. The

goal is to design the control laws that provide, with respect to some assumed metric, the

fastest convergence of the beam vibration towards the equilibrium point. Prior to solving

the optimal control problem, the identi�cation of the parameters of the structure has to

be performed.

The theoretically obtained control strategy needs to be veri�ed and evaluated on a real

object, hence the laboratory stand needs to be developed. Di�erent control strategies,

including the theoretically obtained one, need to be adapted as programmable logic con-

14



CHAPTER 1. INTRODUCTION

troller algorithm.

The outcome of this work will be the experimentally veri�ed optimal control strategy

for layered beams with the semi-actively controlled damping treatment and suggestions

for improvements to existing applications and engineering solutions.

1.4 | Research Scope

The scope of the research was limited to the experimental and analytical investigation of

the free decay of a three-layered sandwich beam in a free-clamped con�guration. The scope

includes:

• the literature review on the topic of vibration damping with the particular smart

materials to settle the problem among the existing levels of knowledge,

• the mathematical modelling of a sandwich beam with controllable core for two

materials: a magnetorheological elastomer and a special granular structure,

• solving the optimal control problem for both considered cases of layered beams,

• designing and implementing the switching control method with the reduced number

of switchings; the control variables are the moments for turning on and o� the

damping properties of the material (changing the intensity of the chosen parameter

of the system),

• transient response analysis of the real beam structure with passive and semi-active

damping, for parameter identi�cation.

The following problems are out of the scope, and they may be dedicated to the future

works:

• the problem of composing and manufacturing the magnetorheological elastomer with

properties providing the most e�cient damping performance,

• fabrication of the granular damping element with the optimal parameters consid-

ering the geometry, topology and material properties of the granules, suited for

particular application,

• investigation of the in�uence of size and location of the damping elements on the

overall performance of the damping system,

• multi-physics modelling of the particle interactions of the special granular structure,

15



1.5. DISSERTATION OUTLINE

• studying the response and e�ciency of the system for di�erent types of excitations

like dynamic or impulse loads.

1.5 | Dissertation Outline

The dissertation is divided into six main chapters and the appendices. The content of the

chapters is as follows.

Chapter 1: Introduction

A short overview of the problem of vibration abatement is given, as well as the overview of

the damping treatment methods. The main problem of the dissertation is introduced and

the thesis is formulated. The objectives and scope of the research are stated in dedicated

sections.

Chapter 2: Literature Background

This chapter provides literature background and information on application of the smart

materials in vibration damping. The properties of magnetorheological elastomers and

granular materials are characterized in Section 2.1. Exemplary applications for both

types of materials are given. A short review of the approach to modelling of the sandwich

structures is presented in Section 2.2.

Chapter 3: Problem Formulation and System Modelling

Chapter 3 focusses on the mathematical modelling of the proposed damping system.

First, the method of periodically switching the parameters of a vibrating structure is

described. A detailed principals of the mathematical analysis are discussed. Mathematical

model of the layered beam with controllable MRE core and the mathematical model of

a layered beam with the granular damping structure are formulated. Optimal control

problems are posed and solved. The interpretation of numerical results is provided as

well as the computed optimal control strategy.

Chapter 4: Experimental Setup and Calibration

This chapter provides technical information on the designed laboratory stand. The oper-

ation of the experimental equipment is covered along with the calibration of the measure-

ment apparatus and the data acquisition system. The operation of the control system

for the beam with magnetorheological elastomer and the beam with underpressure gran-

ular structure is covered with details. The geometrical and material parameters of the

specimens are enclosed. Dedicated section describes important �eld of the signal process-

ing of experimental data with the examples of data extraction, smoothing and �ltering

procedures.

16



CHAPTER 1. INTRODUCTION

Chapter 5: Experimental Results

The content of Chapter 5 is based on the experiments carried on sandwich beams with

smart dampers composed of materials with controllable material properties. The in-

depth look at the most important results and parameters in�uencing performance of

the damping members are critically reviewed. Identi�cation of the parameters of the

granular structure is given. Results from the theory and the experiments are compared.

Observations concerning the proposed technique for the damping enhancements are made.

The switching control strategy is thoroughly examined.

Chapter 6: Conclusions

The overview of the work and the �nal conclusions are drawn and discussed. The scope

of applicability and the limitations of the proposed solutions, as well as the bene�ts from

using that type of structures are de�ned. The dissertation concludes with possible engi-

neering applications, perspectives and recommendations on the topic of the dissertation.

Finally, the directions for further work are recommended.

Appendices

Following the main chapters, Appendices provide an extended experimental results

which were omitted in the main part of the work with some additional remarks. The

programmable logic controller ladder diagram algorithms, used to compute the real out-

put signal for the actuating electromagnets and electrovalve are enclosed.
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CHAPTER 2
Literature Background

The topic concerned in this dissertation is a multidisciplinary problem, which combines

mainly the mechanics of layered structures and the semi-active control of beams vibration.

Literature on these issues is extensive and it would be a major challenge to create the full

list, whereas the studies on damping properties of the magnetorheological elastomers and

vacuum packed granules are very rare. Therefore, the author decided to shorten the list

of the well described issues on layered beams and elaborate on the ones dealing with the

unique properties of the materials of interest. More examples of possible applications of

the discussed materials were formulated on the basis of the acquired research results, and

discussed in Section 6.1:Perspectives in Chapter 6: Conclusions.

2.1 | Smart Materials in Vibration Damping

2.1.1 Magnetorheological Elastomers

Since the discovery of magnetorheological (MR) e�ect by Rabinow in 1948 [74, 75], these

smart materials have developed into a family with MR �uids, foams, greases, gels, and

elastomers. Generally, the MR materials are ferromagnetic, micrometer-sized carbonyl

iron particles suspended in a carrier medium. The most common in this group are the

�uids, with particles suspended in a silicone oil [6].

Elastomers are the new branch in the group of magnetorheological materials. They are

the structural solid analogues of the �uids but the magnetizable particles are dispersed in

a non-magnetic, solid polymer matrix. Usually they are composed by randomly mixing

particles in the matrix or alternatively, using strong uniaxial magnetic �eld to induce

dipole moments in the particles pointing along the constant magnetic �eld. When the

elastomer matrix is cured, the ferrous particles chains are locked and embedded in the

matrix, as shown in Figure 2.1.

The magnetorheological elastomers exhibit unique mechanical performance compared
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(a) Randomly dispersed particles (b) Aligned particles

Figure 2.1: SEM images of the alignment of ferromagnetic particles in a matrix of a cured
magnetorheological elastomer [37].

to other materials. When exposed to a magnetic �eld, the properties of the material

change rapidly and reversibly in a matter of several milliseconds [30].

Shearing of the cured elastomer causes particle displacement from the low net energy

state. It requires additional work, which increases with the applied magnetic �eld, thus

resulting in a �eld dependent shear modulus (Figure 2.2a), while �uids have a �eld-

dependent yield stress (Figure 2.2b). The particles within elastomers typically operate in

the pre-yield regime while MR �uids typically operate in the post-yield continuous shear

or �ow regime. This makes the MR �uids and elastomers complementary materials, rather

than competitive to each other. From Figure 2.2a it can be seen that the shear modulus

for elastomer is increasing with the magnetic �eld intensity, until the material reaches

the magnetic saturation. Further enhance of the magnetic �eld got no e�ect on the value

of the shear modulus. The fraction of the magnetizable particles should be su�cient to

provide the required on-state mechanical properties.

The main advantage of MR elastomers over the �uids is their stability against sedi-

mentation, coagulation and particle clustering [47]. As a consequence of the fact that the

chain-like particle structures have been locked in the matrix material during the process

of curing, the rearrangement of the particles is eliminated when the external magnetic

�eld is applied. Consequently the response time of MRE is much quicker than for the

�uids.

Elastomers are easy to process, which gives possibility of embedding them between

beams or plates to obtain a layered structure. Furthermore, the size and shape of the

pad can be designed to �t particular requirements. The urge for container to keep the

MR �uid in place is eliminated for the elastomers. Also they do not change their prop-
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(a) MR elastomer (b) MR �uid

Figure 2.2: Comparison of typical characteristics of di�erent MR materials.

erties rapidly with temperature, as it can be observed for the �uids [6]. Nevertheless,

MRE compared with MR �uids have only found limited applications, mainly due to the

fact that the �eld-dependent modulus change is not wide enough to meet the demands

of particular applications. Several groups of researchers have taken e�orts to improve

the parameters, reporting on elastomers with magnetorheological e�ect enhanced several

times [19, 72, 85]. Further material technology development is crucial to signi�cantly

improve the characteristics of these materials.

Although much research on MRE is still at a primary stage, undoubtedly they predes-

tined for the applications focused on three main areas that can make use of controllable

sti�ness:

• sound and vibration control, especially for the vehicle applications, like the

tuned vibration absorbers [23, 24, 94, 106] (Figure 2.3a),

• controllable sti�ness change and deformation, like in the sti�ness tunable

mounts and suspensions [3] used to stabilize buildings (Figure 2.3b), variable impe-

dance surfaces [18, 20], or adaptive spring elements for the system's natural fre-

quency shift [39],

• sensors and magnetoactive actuators applications like in US20056877193 [68]

and US20040074066 [91] which describe the complex releasable fastener system with

MRE hooks that provide change in shape, orientation or �exural modulus of the

fastener elements.

The solutions utilizing MRE as damping layers for the vibration control of �exible sand-

wich structures are rare. In US7086507 [32], the authors came up with the device for
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(a) Vibration absorber (b) Laminated MRE isolator

Figure 2.3: Exemplary, prototype applications of magnetorheological elastomers.

vibration isolation of mechanical systems for random shock events by changing the stor-

age and loss modulus of the MRE core embodied between magnetic activation layers. In

[61] authors study the transverse de�ection of a three-layered magnetorheological elas-

tomer embedded viscoelastic cored sandwich beam with conductive and non-conductive

skins. The authors investigated how the size and locations of the MRE patches in�uence

the vibration properties of the structure. Ying and Ni [102] adapted MRE for damping

of the micro-vibration of a clamped-free sandwich beam under stochastic micro-motion

excitation. In several studies the in�uence of the magnetic �eld on the vibration sup-

pression capabilities of such beams is described in the form of variations in loss factors

[44, 93, 101], vibration amplitudes [76, 98] and shifts in natural frequency values [100].

2.1.2 Granular Materials

Di�erent methods for reducing vibration are based on the dissipative nature of particle

collisions in the granular material. It may be compared to a derivative of a single-mass

impact damper (Figure 2.4a). This is a relatively simple concept, where particles of

a small size are placed in a container that is attached to the structure, as illustrated in

Figure 2.4b. In typical applications the movement of the loose grains inside the enclosure

causes the dissipation of part of the energy through non-conservative collisions among the

grains, and the grains against the container walls.

This mechanism was applied in linear particle impact dampers like the one presented

in [82, 83, 86] and further used for damping of the beams vibrations, by placing the sti�

box at the tip of an oscillating cantilever [52] (Figure 2.5a). Furthermore, the solution
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in the hermetic and elastic envelope with the remaining possibility of adjusting the un-

derpressure value among the granules (Figure 2.6), gives such obtained structure features

typical for smart materials.

Figure 2.6: Construction of the beam with the granular damping member controlled by
the underpressure value (compliant state and jammed state).

Unlike in [62] or [69], the particles are much larger, with the diameter of several mil-

limeters and their movement is signi�cantly limited by the boundary conditions,

forced by an elastic envelope. The proposed pneumatic structure exploits �uid-like

to solid-like reversible phase transition of the granular material, known as the jamming

[13, 17]. The transition to a jammed state is forced by subjecting the struc-

ture to an underpressure, and the properties of the structure can be real-time

controlled by adjusting the value of the partial vacuum. The details covering the

fabrication, dimensions and principles of operation of the discussed beam are presented

in Chapter 5.

According to the de�nition of smart material formulated by Ahmad [2], this special

granular structure may be concerned smart, as the material is capable of responding to

the stimulus in a predetermined manner and extent, in a short time, and reverting to its

original state as soon as the stimulus is removed, which is a feature unattainable by the

classic granular dampers.

The negative pressure intensi�es the mechanisms which enhance the rigidity of the

structure and the energy of dissipation, like the friction and slips among the particles

and between the particles and the enclosure [36], hence it enables the reduction of the

free transverse vibrations. Other mechanisms, such as the particle intrusion, occur when

the granules change their position or orientation. The particle can also be pushed over
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an underlying layer as the particle hopping takes place [16]. The particle deformation

can promote or inhibit the total deformation [46]. The level of deformation of particles

depends on the hardness and sti�ness of the granular material [38]. The stability of the

packing and the probability distributions of the forces depend on the number of layers up

to a certain limit and were examined in [1].

The applications of underpressure granular materials in elastic envelopes are mainly

limited to medical services like the vacuum medical pillows, mattresses [49] or splints [14]

which form a �rm, uniform support for parts of the body (Figure 2.7a). Furthermore

interesting prototype constructions are developed, like the vacuum granular endoscope

guide [46], laparoscopy camera shaft [35] or upper-arm orthotic [55]. By controlling the

inside air pressure, the orthotic can exert a sti�ness or viscosity on the joints. The

interesting �eld of research are the soft robots that move respectively to the underpressure

[88] or the universal robotic gripper with an elastic cell �lled with granules (Figure 2.7b),

which allows picking di�erently shaped objects [15].

(a) Medical sti�ener (b) Universal robotic gripper Versaball

Figure 2.7: Example of applications of granular structures subjected to underpressure.

Despite the medical applications and prototype robots, there are only a few

studies dealing with the potential of using such structures subjected to un-

derpressure as a damping material with smart properties. Broad overview of

the models for loose and compacted granular materials is presented in books [63, 81].

However, the connection between these models and the case when the granular material

is dynamically switched between two states is somehow unsettled.

The concept itself was introduced and brie�y characterized in papers [7, 8]. Main

research e�ort was directed towards determination of the damping and elastic properties of

the pneumatic granular structure used in a linear damper, subjected to axial forces [9, 10].

The rheological models of granular conglomerates under partial vacuum were presented in

[103]. The constitutive model was later expanded to a six parameters rheological model

25



2.2. MODELLING OF SANDWICH STRUCTURES

capable of capturing the response of the conglomerate subjected to an axial cyclic loading

[105]. Nevertheless these models do not translate directly for the sandwich beams. The

experimental approach to the analysis of the vibration of a steel beam, fully covered with

a sleeve �lled with granules was given in [104] and later compared with a simpli�ed model

of the dynamics in [11].

2.2 | Modelling of Sandwich Structures

One of the usual solutions for beam damping are the composite sandwich sheets into which

a thin layers of viscoelastic materials has been placed between the face layers. Usually the

structure comprises outer metal skins to enhance their bulk zero-�eld �exural rigidity and

utilizes the soft core properties to alter their bulk �exural rigidity due to the transverse

shear modulus. The integrated viscoelastic cores were proven to be e�ective in reducing

vibration response of lightweight and �exible structures [58, 59]. Over the years many

di�erent mathematical models were employed to describe the dynamic response of such

structures.

Since when Kerwin in 1959 in his pioneering work [41] examined the possibility of

utilizing properties of viscoelastic material sandwich structures to reduce vibration and

initiated modelling studies, the theoretical investigation of a three-layer damped beams

has received considerable attention. In his work, Kerwin refers to the transverse vibration

of an in�nitely long beam with the damping layer. A simply supported sandwich beam was

considered, supposing only transverse shear for the core and negligible bending rigidity

for the core and the constraining layer. The solution was obtained in the form of the

travelling waves.

The work was continued by Ross et al. [80], who derived an expression describing the

loss factor and complex bending sti�ness of a beam from relationship of the displacements

and forces, and compared theoretical and experimental results. In the RKU model called

after Ross, Kerwin and Ungar, the vibratory energy is dissipated through the predominant

mechanism of shearing of the viscoelastic layer. The RKU model was later extended by

Ditaranto [25, 26], who derived a sixth-order di�erential equation which could predict the

longitudinal vibration response of a three-layered damped plate. The equation was solved

in the form of the standing waves for arbitrary boundary conditions. The performed

calculations showed that the parameters responsible for the e�ciency of the damping

layer described in [41], limited to the analysis of an in�nite beam, can also be used for

any non-dissipative boundary conditions and forced vibrations.

Mead and Markus [54] came up with the sixth-order di�erential equation for general-
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ized boundary conditions of viscoelastically damped transversal oscillations of a sandwich

beam. The model was experimentally veri�ed by Lu and Douglas [48] who proved that

it adequately predicts the damped resonance frequencies and damping inherent in the

low-order modes of relatively thin three-layer laminates. Formulation proposed in [27]

includes thickness deformation of the core layer and deals with the case where only a por-

tion of the base structure receives the treatment. Later, in [95, 96] Mead and Markus

model was extended to homogeneous and non-homogeneous adaptive beam with smart

damping layers for various boundary conditions. In [97], the energy method was used to

predict and compare the vibration responses of adaptive structures.

The vast majority of further work makes use of a mathematical basis from the solu-

tions presented above, identifying the loss factor [77] or stability of the system [40]. In [12]

a non-uniform shear stress variation across the thickness of each layer was assumed. The

proposed approach enabled to determine the loss factor of the simply supported sandwich

beam. Numerical results showed that the existing models are not suited when the shear

modulus of the core is small. The analytical model that takes into account the compres-

sional vibration of the layered beam is shown in [87]. Attempts to describe the sandwich

beams with simple models were given in [4]. By implementing the frequency-dependent

parameters, the vibration of sandwich composite beams can be approximated by using

a simple fourth-order beam theory. A higher-order sandwich beam model is used to obtain

estimates for frequency-dependent �exural sti�ness and shear modulus corresponding to

Euler and Timoshenko models. In [73] Posiadaªa presented the solution of the free vi-

bration problem of a Timoshenko beam with di�erent disturbing elements attached like

elastic supports, rigidly or elastically mounted masses, etc. In [50] the theoretical �ve-

layered beam model, which incorporates thin adhesive layers connecting the face-plates

to the core was examined.

In order to take into account large amplitude vibrations of sandwich structures, the

nonlinear modelling is also carried out. In [33] the harmonic forced vibration of a clamped-

clamped sandwich beam with viscoelastic core was analyzed. The proposed model takes

into account the geometric nonlinearity introduced by von Karman strain. The theoretical

analysis con�rmed the super-harmonic type of the resonance observed in the experiment.

Likewise in [42] von Karman non-linear dependence between deformation and displace-

ment was assumed for the beam subjected to periodic distributed load. The gained load

in combination with a sharp increase of de�ection (loss of stability) results in change from

regular to chaotic oscillations.
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CHAPTER 3
Problem Formulation and System Modelling

3.1 | Switched Parameters Damping Method

The essence of this work is to combine two components into a single entity: the layered

structure with a core of variable dynamic properties and a concept of semi-active control

strategy, aimed at mitigation of the displacement amplitude. Numerous variants of semi-

active methods have been already considered in the literature on structural control, as well

as the concept of periodical modi�cation of the system parameters [5, 57, 65]. However,

since many new adaptive materials were developed just quite recently, the possibility of

practical application of it remains somehow unexplored. This section will elaborate on the

unique solution for the beams with magnetorheological elastomers and special granular

structures, which was not studied elsewhere. For both materials the strategy of pe-

riodical switching of the parameters is assumed, although di�erent parameters

are altered because of the di�erences in the dissipation mechanisms. For the

elastomer the change of the value of the shear modulus is realized by altering the mag-

netic �eld. For the granular materials we are periodically jamming and unjamming the

structure by changing the underpressure, thus the rigidity, damping and friction change.

The proposed models were later confronted with the experimental results.

The worth-mentioning papers on the variable sti�ness devices are in the �eld of tunable

vibration isolators. Despite the papers that describe theoretical solutions, mostly for

a single degree of freedom system like in [34, 43, 64], only a few consider beam-like

structures. In [60] authors studied simply supported beam equipped with a piezoelectric

actuator, which realized two functions: full adhesion between two beam layers and full

delamination. The study proved that the strategy can be very e�ective in mitigating of the

fundamental mode of the structure, as the vibrations were fully damped in just four cycles.

In [66] and [67] Ostachowicz et al. used counteracting shape memory alloys to suppress

forced vibration of smart beams. Each of actuators was activated only under compression,

while at the same time the opposite actuator remained inactivated, which resulted in �ne
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damping performance. In [78] the switched sti�ness method was applied to a �exible

beam with a moving base. In [79] the author proposed a simple semi-active vibration

control algorithm for free vibrations of the beam �lled with MR �uid. The method was

based on switching the yield stress between two distinct values.

In a nutshell, the strategy of periodical switching of the parameters aims at converting

the strain energy of a vibrating system into kinetic energy, which is then released from the

system by the means of a dissipative device during its deformation. The process consists

of two main stages. In the �rst phase some kinematic constraints imposed on the system

are released when the maximum strain energy can be converted to the kinetic energy. It

usually results in a local, higher frequency of vibrations. In the second phase kinematic

constraints are reimposed. It leads to conversion of the part of the kinetic energy into

other, non-mechanical form, for example heating-up of the actuator device. This can be

compared to periodically switching the equilibrium position of the whole system. The

system returns to its initial con�guration, but with the declined amplitude of vibration.

The process is semi-active as it does not require adding any substantial amount of energy

into the system.

Let's demonstrate the idea considering a simple mass with spring system as shown in

Figure 3.1. The spring posses the possibility of step-variable sti�ness switching between

Figure 3.1: Single mass with variable sti�ness spring system.

the high value kh and the low value kl. One can imagine, that there are partic-

ular points of switching the parameters that will result in a better damping

behaviour than others.

For an idealized case of free vibrations, neglecting the inertia of the spring, the motion

is governed by the equation

mẍ(t) + ηẋ(t) + kx(t) = 0 . (3.1)
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Let's switch the sti�ness of the spring to kh when the mass is moving away from the

equilibrium position x = 0, so the potential energy is maximized. The potential energy

of a spring is equal to the work of the elastic force which acted along the displacement.

The maximum potential energy occurs at the point of maximum displacement of the mass

where ẋ = 0, thus at this point the kinetic energy vanishes

Epmax =

xmax
∫

0

khxdx =
khx

2
max

2
. (3.2)

When the potential energy reaches maximum, the sti�ness is switched to the low value kl

and kept until the mass reaches back the equilibrium position. The loss in the potential

energy caused by switching of the sti�ness is equal to

∆Ep =
∆kx2max

2
, (3.3)

where ∆k = kh− kl. The loss in potential energy results in a declined kinetic energy, and

is proportional to the absolute change in the sti�ness of a spring. During the following

phase, the system acts same as before, however, a considerable part of the total vibration

amplitude is gradually diminished in each following cycle. If the desired e�ectiveness is

reached then the operation of switching can be repeated again near the initial equilibrium

position, resulting in returning to the initial con�guration.

In practice part of the released strain energy is dissipated by the device which performs

switching of the sti�ness and the remaining part introduces higher frequency vibrations,

nevertheless, it can be suppressed with natural damping of the system. For both types of

the smart damping elements considered in this dissertation, the mathematical models of

layered beams were formulated taking into consideration their unique characteristics in

order to obtain the optimal moments for switching the system parameters.

3.2 | Beam with Magnetorheological Elastomer

3.2.1 Model of the Beam with MRE

Theoretical analysis can not be performed for arbitrary structures with equal simplicity.

For the analytical solution, we choose the simply supported beam as one of the most

representative structures. The governing set of di�erential equations for the vibrating

sandwich beam was derived in [54]. The necessary assumptions and simpli�cations of the
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analytical model are described below.

Let us consider a three-layered sandwich beam. Its cross-sectional geometry has the

characteristic width b and the thicknesses of each layer is h1, h2, and h3 (Figure 3.2).

Longitudinal displacements u in the x direction and transversal displacements w in the z

direction of the beam were taken into account. The face-plates are assumed to be purely

Figure 3.2: Dimensions and coordinate system of a three-layered beam with a viscoelastic
core.

elastic, with Young modules E1 and E3, respectively. The core is linearly viscoelastic

and de�ned by the shear modulus G. The obtained mathematical model is the result of

some physically simplifying assumptions. The shear strains in the outer layers and the

stresses in the longitudinal direction in the core were neglected. Moreover, the transversal

direct strains in each layer were neglected as well, so the displacements w of the entire

cross-section of the beam are constant (Figure 3.3a).

The shear strain in the core is given by the formula

γ =
∂w

∂x
+
∂u

∂z
. (3.4)

The geometrical relationships in the deformed beam allows describing the term ∂u/∂z by

the displacement pattern u1, u3 and ∂w/∂x of the face plates

∂u

∂z
=

1

h2

[(

u1 +
h1
2

∂w

∂x

)

−

(

u3 −
h3
2

∂w

∂x

)]

. (3.5)

It should be mentioned that the applied dependency has certain restrictions and is accu-

rate for h2 tending to zero. Otherwise, for large h2, we should expect some discrepancies
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(a)
(b)

Figure 3.3: Displacements of the beam element (a), forces, moments and loads acting on
a beam element (b).

between the computed results and the real motion. By subjecting Equation 3.5 into

Equation 3.4, and after some rearrangements we obtain

γ =
d

h2

∂w

∂x
+
u1 − u3
h2

, (3.6)

where d = (h1 + 2h2 + h3) /2 is the distance between the mid-planes in the outer face

plates. If we know the explicit form of γ, we can determine the shear force in the core.

The shear forces in both remaining layers are also computed. We assume zero longitudinal

direct stress in the core

τ = G · γ . (3.7)

The total shear force consists of three main components. The shear force of the upper

beam and shear force on the lower beam (Figure 3.3b) is

S1 = D1

∂3w

∂x3
, (3.8)

S3 = D3

∂3w

∂x3
, (3.9)

and the force caused by the core shear stress

S2 = −τdb , (3.10)

where D1 and D3 are the �exural rigidities of the face layers.
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The total force is the sum of three forces

S = S1 + S2 + S3 = (D1 +D3)
∂3w

∂x3
−Gdb

[

d

h2

∂w

∂x
+
u1 − u3
h2

]

. (3.11)

The assumption that the transverse load is carried by the total shear force p = ∂S/∂x on

the section after rearrangements gives the following formula

p = Dt

∂4w

∂x4
−G

d2b

h2

∂2w

∂x2
−G

db

h2

(

∂u1
∂x

−
∂u3
∂x

)

, (3.12)

where Dt = EI1 +EI3 is the sum of the �exural rigidities of the top and the bottom face

plates.

Let us denote the longitudinal force in the face plates P1 and P3. They act in the midplane

and are connected with the longitudinal displacements by the relations

P1 = E1h1b
∂u1
∂x

, (3.13)

and

P3 = E3h3b
∂u3
∂x

. (3.14)

The total longitudinal force along the section equals to 0, so P1 = −P3 and hence we

obtain the relation
∂u1
∂x

=
−E3h3
E1h1

∂u3
∂x

. (3.15)

Considering the physical system we can write

E1h1u1 = −E3h3u3 . (3.16)

Finally the Equation 3.12 can be rewritten as

p = Dt

∂4w

∂x4
−
bGd2∂2w

h2∂x2
+
bGd

h2

(

E1h1 + E3h3
E1h1

)

∂u3
∂x

. (3.17)

The second equation connecting w and u3 is derived from the equilibrium of the longitu-

dinal forces on an in�nitesimal element of the lower face

δP3 = −τδx . (3.18)

This equation assumes the equilibrium of the axial forces in the outer layer and the longi-

tudinal force resulting from the shear stress in the core. With respect to the longitudinal
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force on the lower face plate, Equation 3.18 can be written in the following form

−τ = E3h3b
∂2u3
∂x2

. (3.19)

In order to determine the relationship between the longitudinal displacements u1 and u3,

and the relationship between their derivatives with the respect to x, the condition of no

resultant axial force on the whole section was assumed

∂2u3
∂x2

−
G (E3h3 + E1h1)

E1h1h2E3h3b
u3 = −

Gd

h2E2h3b

∂w

∂x
. (3.20)

Finally, we obtain the couple of di�erential equations

∂4w

∂x4
− gY

∂2w

∂x2
+ g

db

Dt

E3h3
∂u3
∂x

=
p

Dt

, (3.21)

∂2u3
∂x2

−
g

b
u3 = −gY

Dt

E3h3b2d

∂w

∂x
, (3.22)

where

g =
G

h2

(

1

E1h1
+

1

E3h3

)

, (3.23)

Y =
d2b

Dt

E1h1E3h3
E1h1 + E3h3

. (3.24)

are the shear and sti�ness parameters. This mathematical formulation is used for the

simply supported three-layered beam with a controllable core.

3.2.2 Vibration of the Beam with MRE

Let us consider a simply supported, three-layered beam, of mass density µ and length l,

with point mass m placed in the middle of the structure. The considered sandwich beam

is depicted in Figure 3.4. The following boundary conditions were assumed

w(0, t) = w(l, t) = 0 , M(0, t) =M(l, t) = 0 , u′3(0, t) = u′3(l, t) = 0 , (3.25)

where the total bending moment of the sandwich beam model from the previous section

is given by the formula

M =M1 +M2 +M3 = Dt

∂2w

∂x2
+ E3h3db

∂u3
∂x

. (3.26)
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Figure 3.4: Simply supported sandwich beam.

The vibrations of the beam are initiated by the kinematic excitation. The structure is

initially de�ected according to the formula

w0(x) = 4w̄0

x

l

(

1−
x

l

)

. (3.27)

Then the following initial conditions were taken into account

w(x, 0) = w0(x) , ẇ(x, 0) = 0 , u3(x, 0) = 0 . (3.28)

The equations of motion of the sandwich beam of Figure 3.4 are described by Equa-

tions 3.21 and 3.22, where the transverse loading is written in the following form

p = −µ
∂2w

∂t2
− δ

(

x−
l

2

)

m
∂2w

∂t2
. (3.29)

Finally, the governing equations of the considered problem are

∂4w

∂x4
− gY

∂2w

∂x2
+

g

ηb

∂u3
∂x

+

[

µ

Dt

+ δ

(

x−
l

2

)

m

Dt

]

∂2w

∂t2
= 0,

∂2u3
∂x2

−
g

b
u3 + gY η

∂w

∂x
= 0 .

(3.30)

The simpli�cation of the above formula is accomplished with the substitution

η =
Dt

E3h3db2
. (3.31)

The system of partial di�erential Equations 3.30 can be solved by the separation of vari-

ables. The transversal displacement is developed into the Fourier sine series

w(x, t) =
2

l

n
∑

j=1

Uj(t) sin
jπx

l
, (3.32)
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while the longitudinal displacement is developed into the Fourier cosine series

u3(x, t) =
1

l
V0(t) +

2

l

n
∑

j=1

Vj(t) cos
jπx

l
, (3.33)

where

Uj(t) =

∫ l

0

w(x, t) sin
jπx

l
dx , Vj(t) =

∫ l

0

u3(x, t) cos
jπx

l
dx . (3.34)

These series satisfy the boundary conditions (3.25). As a result of the Fourier transfor-

mation of (3.30), we obtain

j4π4

l4
Uj(t) + gY

j2π2

l2
Uj(t)−

g

ηb

jπ

l
Vj(t) +

µ

Dt

Üj(t) +
m

Dt

sin
jπ

2

∂2w

∂t2

∣

∣

∣

∣

x= l
2

= 0,

−
j2π2

l2
Vj(t)−

g

b
Vj(t) + gY η

jπ

l
Uj(t) = 0 .

(3.35)

According to (3.32), the acceleration of the concentrated mass m in the middle of the

beam is given by the series

∂2w

∂t2

∣

∣

∣

∣

x= l
2

=
2

l

n
∑

k=1

Ük(t) sin
kπ

2
. (3.36)

After rearrangement, the set of Equations 3.35 can be written as one equation, dependent

on Uj(t):

µ

Dt

Üj(t) +
2m

Dtl
sin

jπ

2

n
∑

k=1

Ük(t) sin
kπ

2
+ ω4

j

(

1 +
gY b

ω2
j b+ g

)

Uj(t) = 0 , (3.37)

where

ωj =
jπ

l
. (3.38)

The sine Fourier transformation of the initial condition of the sandwich beam (3.27) is

Uj =

∫ l

0

w0(x) sin
jπx

l
dx = 8w̄0

l

j3π3

[

1− (−1)j
]

= Uj(0) . (3.39)

The initial de�ection of the beam is symmetrical, so the even terms of the resulting series

are zero. The system of Equations 3.37 can be written in a matrix form and solved

numerically for an unrestricted number of terms in the solution. Figure 3.5 presents the

solution of the problem for 1 and 10 terms of the Fourier sine expansion (3.32). We see

that the �rst term gives su�ciently accurate results.

In order to enable the analytical solution of Equation 3.37, the solution was con�ned
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Figure 3.5: Free vibrations response of the sandwich beam with 1 and 10 terms of the
Fourier expansion.

to the �rst term of the series (3.32). The resulting ordinary di�erential equation takes

the form
(

µ

Dt

+
2m

Dtl

)

Ü1(t) + ω4

1

(

1 +
gY b

ω2
1b+ g

)

U1(t) = 0 . (3.40)

After Laplace transformation, we obtain

(

µ

Dt

+
2m

Dtl

)

[

s2Û1(s)− sU1(0+)
]

+ ω4

1

(

1 +
gY b

ω2
1b+ g

)

Û1(s) = 0 . (3.41)

The solution of the algebraic form (3.41) is given by

Û1(s) =
s

s2 + β2
U1(0+) , (3.42)

with the coe�cient

β = ω2

1

√

Dtl

µl + 2m

(

1 +
gY b

ω2
1b+ g

)

. (3.43)

Now the Equation 3.42 can be transformed back to the time variable

U1(t) = U1(0+) cos βt . (3.44)

Finally, with the Equation 3.32 the �rst term of the transversal displacement can be
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written

w(x, t) = 32w̄0

1

π3
cos βt sin

πx

l
. (3.45)

This formula is the basis for optimization. The parameter β contains all the material

and geometrical data. We can now simply derive the velocity and the acceleration of the

layered structure.

3.2.3 Control Strategy for MRE

In general case the control strategy depends on the type of the structure, its geometry

and topology, boundary and initial conditions and type of excitation. In our research

the e�ciency of a controlled damping is related to the permanently damped beam in

a cantilever con�guration.

Here, we will consider a vibrating beam in Ω = {x : 0 ≤ x ≤ l}, subjected to initial

displacement. The displacement �eld being reduced w(x, u, t) depends on the control

input u(x, t) that in�uences the shear sti�ness of the �lling material. The objective of the

control is to distribute the shear sti�ness G(x, t) over time to achieve the highest damping.

In our problem, the �lling core material has a shear sti�ness that is uniform over its length.

It can only vary in time. We assume a �nite time horizon. The optimization problem can

be written in the following form:

Minimize J =
1

2

∫ T

0

∫ l

0

[w(x, u, t)− wd(x, t)]
2 dx dt+

+
α

2

∫ T

0

∫ l

0

[u(x, t)]2 dx dt , (3.46)

subject to the constraints

∂4w

∂x4
− gY

∂2w

∂x2
+

g

ηb

∂u3
∂x

+

[

µ

Dt

+ δ

(

x−
l

2

)

m

Dt

]

∂2w

∂t2
= 0,

∂2u3
∂x2

−
g

b
u3 + gY η

∂w

∂x
= 0 ,

w(x, 0) = w0(x) on Ω , (3.47)

w = 0 on ∂Ω ,

u ∈ U .

This problem is a linear quadratic hyperbolic problem with distributed control. The

treatment of this type of a problem is much more di�cult, due to the weaker smoothing
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properties of the associated solutions.

Most of the numerical algorithms developed for the optimization of partial di�erential

equations are designed for convex problems. Their solution is simply obtained if the

objective function is quadratic. There are a few reasons for this. The most important

one is that a convex problem has a unique solution and, therefore, less or more e�cient

gradient methods can be used. Moreover, quadratic functions enable us to derive simple

formulas for the gradients by introducing the adjoint state.

For practical reasons, we assume an objective function which minimizes the amplitudes

of the displacement at the midpoint, which is equal to the full length of the experimental

beam. We will take n time intervals per observation time T and denote by ui, i = 1, 2, ..., n

the control variable in each period i. Then our problem is de�ned as follows:

Minimize J =
1

2

∫ T

0

[w(l/2, u, t)− wd(l/2, t)]
2 dt +

+
α

2

∫ T

0

[u(l/2, t)]2 dt ,

Ω = {x : 0 ≤ x ≤ l} ,

∂Ω = {0, l} , (3.48)

0 ≤ ui ≤ 1, Gi = Glow · (1 + 0.2 ui) i = 1, 2, ..., n ,

with the governing Equation 3.47.

In our numerical implementation of the optimization problem, we divide the limited pe-

riod of observation into short intervals of identical lengths. In each interval, the control

function is assumed to be constant. We search for values in these intervals. The higher

the number of intervals used, the more precise is the resulting control function. In the

case of steady state vibrations subjected to an oscillatory force, we can successfully adjust

the control to a single period of vibrations. In the case of free vibrations being controlled

by a chosen material parameter, each action modi�es the form of vibrations in the next

cycle. Both the period of the vibrations and the function of displacements in time are

changed. For this reason, we must consider several successive cycles and the entire process

must be treated homogeneously.
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Our problem is characterized by the following features:

• the change of one control variable at a particular time in�uences the response of the

remaining process, starting from the moment of a decision,

• a less acceptable local response can result in a response that is, on the whole,

advantageous,

• the neighbouring values can be radically di�erent, although usually they are similar,

• optimum solutions can be achieved for zero-one control variables,

• the objective function is very sensitive to the control variables.

An elongated observation requires a higher number of control variables. The observation

of four cycles, divided into 40�400 intervals is proposed. Since the objective functions

are not convex, the known computational methods for minimization are ine�ective, as for

example the IPopt package, devoted to optimization by the interior point method.

The �rst attempts showed the e�ciency of random methods. The simple Monte Carlo

method is, unfortunately, ine�cient. The increased number of variables dramatically

diminishes the convergence rate. Genetic algorithms, which seem to be good for some

minimization problems, also fail in our case. One can explain the limited e�ciency of the

known algorithms by particular features of our task. The process is continuous in time and

a locally estimated control function can be demolished by a few variables re-established in

the subsequent moments. The change of the period of vibrations is a su�cient reason for

such a scenario. That is why we optimize the problem in small groups of variables, usually

de�ning the values of the control function in successive moments. Such subsequences of

variables have alternating lengths and move along the time of simulation, and from time

to time these subsequences contain variables from the entire set, i.e. inconsecutive.

The control problem (Equations 3.46�3.47) was computed with two levels of shear

sti�ness of the core: Glow=45·10
3 Pa and Ghigh=1.2×Glow. The remaining data are:

length l=1.44 m, width b=0.04 m, height h1=0.5·10−3 m, h2=5·10−3 m, h3=0.5·10−3 m,

point mass m=0.740 kg, and the Young modulus of the outer layers E1=E3=69·109 Pa.

The initial de�ection of the end of the beam is w0=0.06 m.

The small number of decision variables results in a su�ciently accurate normalized

control function (Figure 3.6a). The increasing precision improves the sharpness of the

slopes in the diagram (Figure 3.6b,c,d). All the normalized values practically vary between

extreme values, i.e. zero and one. This can be simpli�ed to an "On/O�" or "bang-

bang" class of control strategies, where the actuator can assume only two states, which
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(a) 40 time intervals (b) 80 time intervals

(c) 160 time intervals (d) 240 time intervals

Figure 3.6: Resulting control function trace computed with partition of the time horizon
into di�erent number of time intervals.
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is a condition easy to apply on a physical object by using electromechanical relays. Our

control requires activation at times of the extreme displacements and switching o� at

times of the static equilibrium, i.e. after 1/4 of the vibration cycle (Figure 3.6 and 3.7).

Figure 3.7: Moments for switching the shear modulus of the beam with MRE.

The action of activating the magnetorheological elastomer is carried on for one-half

of the total time. For comparison, Figure 3.6 depicts the vibrations without any control

(red line) and with the permanent control (green line). It is obvious that the structure

vibrating with the constant-in-time low or high shear sti�ness of the inner layer and

excited with the same initial de�ection di�ers only in the periods of its vibration.

If the form of the control function is known, we can replace the great number of vari-

ables that constitute it with a much smaller number of variables that de�ne the limits of

a zero-one rectangular cycle. This technique was previously applied to a beam supported

with a set of dampers, controlled semi-actively [70, 71].

The control function, which enables the reduction of the amplitudes, di�ers from the

solution of a similar problem described in [28]. Its enhanced damping of a rotating shaft

controlled with magnetorheological dampers occurred with a sinusoidal control function.

3.3 | Beam with Granular Structure

The second variant of the complex beam incorporates the granular structure that allows

changing the damping characteristics by varying the underpressure value inside the struc-
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ture. To analyse the properties of such a material we need to consider interactions among

the granules, i.e. the stress in a plane section of the granular structure. For simplicity, a

section with only two granules in contact is speci�ed (Figure 3.8).

Figure 3.8: Contact between two granules of the structure.

The following force equation can be stated

N = Acpc + Aup , (3.49)

where Ac is the contact area between the granules, p is the pressure of the air among the

granules and pc is the stress on the contact surface of the granules.

The area Au from the Equation 3.49 is equal to

Au = Ag − Ac , (3.50)

where Ag is the single granule's area.

The total stress value is obtained from the Equation 3.49,

σ =
Ac

Ag

pc +

(

1−
Ac

Ag

)

p . (3.51)

According to Terzaghi's principle, all the measurable e�ects caused by the change of stress,

such as compression, distortion and a change in the shearing resistance are due to changes

in the e�ective stress. The e�ective stress describes the forces inside the skeleton, and in

our case may be expressed as

σ′ =
Ac

Ag

pc . (3.52)
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If we note that Ac/Ag << 1, then we get

σ′ = σ − p . (3.53)

In the case considered in this work, a partial vacuum is applied to change the properties

of the airtight structure. The value of the pressure p is negative, so the e�ective stress

increases. The underpressure intensi�es the mechanisms which enhance the rigidity of

the structure and the dissipation of the system. As a result, we obtain a new type of

structural material with the possibility of changing its parameters.

3.3.1 Model of the Beam with Granular Structure

Software packages like LGMC90, PFC3D or YADE are capable of modelling collections of

deformable or rigid particles of various shapes and sizes, de�ning interaction laws (contact,

friction, cohesion, fracture, wear, etc.) including multiphysic coupling. However, at this

point, an in-depth look on the particle interactions of the granular structure encapsulated

in an elastic envelope would be a complex and time consuming issue by itself. Such

meticulous model would be impractical to pose and solve the optimal control problem.

The mechanical properties of granular materials were modeled by constitutive laws of the

equivalent, simpli�ed system.

Let us consider two parallel cantilevers coupled by the dynamical system at free ends

(Figure 3.9). Di�erent models coupling the beams were considered: Zener, simple Maxwell

and Kelvin�Voigt. Here the Kelvin�Voigt model is considered, as it enables easy analytical

computations and describes the global properties of the granular structure with fair ac-

curacy. The justi�cation for this choice , and comparison of the performance for di�erent

models and parameter identi�cation is thoroughly described in Chapter 5:Experimen-

tal Results: Parameter Identi�cation, after the experimental results were collected.

The vibrations of the system were described by the set of the discrete-continuous

equations of motion. In order to obtain a closed analytical solution of the problem the

inertia of the beams was neglected. Sti�ness of the continuous beam can be represented

by the discrete spring. The problem was reduced to a two degrees of freedom (Figure 3.9).

The simpli�ed problem concerns vibration of the coupled ends of the beams. According

to the above scheme, each of the beams' length is L and the �exural sti�ness is EI. The

transversal displacements of each of two beams were described by the functions w1 and

w2, respectively. The conjugated two degrees of freedom system can be de�ned by the

parameters m, c and k.
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Figure 3.9: Phenomenological model of the two cantilever beams coupled with the granular
damping structure.

All the considered parameters are real numbers and their values are greater than zero.

The partial di�erential equations describing the discrete-continuous case are given by the

following set of equations
EI w′′′′

1 = f1(x, t),

EI w′′′′

2 = f2(x, t) ,

(3.54)

where
f1(x, t) = −δ(x− L) [mẅ1 + c (ẇ1 − ẇ2) + k (w1 − w2)] ,

f2(x, t) = −δ(x− L) [mẅ2 + c (ẇ2 − ẇ1) + k (w2 − w1)] .

(3.55)

Boundary conditions for the cantilever are as follows

wi(0, t) = w′

i(0, t) = w′′

i (L, t) = w′′′

i (L, t) = 0, i = 1, 2 . (3.56)

Vibrations of the system were initiated by the kinematic excitation. The initial conditions

are given as follows

wi(x, 0) = wi(0), ẇi(x, 0) = ẇi(0), i = 1, 2 . (3.57)

In order to replace the discrete-continuous model with the simpli�ed approach, the theory

of distribution was applied. The properties of convolution were used to calculate the

reduced sti�ness for the massless cantilever beam

w(x, t) = G(x, s) ∗ f(s, t) =

∫ L

0

G(x, s)f(s, t)ds , (3.58)
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where G(x, s) is the in�uence Green function, which is obtained by solving the basic

equation. It was produced by replacing the right hand side of Equation 3.54 by the

Dirac's delta δ(x − s). The solution to the complete equation is the convolution of the

fundamental solution and the inhomogeneity (3.55). Finally, according to Equation 3.58

we obtain
mẅ1 + c (ẇ1 − ẇ2) + k (w1 − w2) +Kw1 = 0,

mẅ2 + c (ẇ2 − ẇ1) + k (w2 − w1) +Kw2 = 0 ,

(3.59)

where

K =
3EI

L3
, K > 0 , (3.60)

is the substitute sti�ness of the beams in the simpli�ed model.

In order to solve Equations 3.59 the integral Laplace-Carson transformation was applied.

According to initial conditions (3.57) the set of equations can be written in the following

form

(

ms2 + cs+ k +K
)

ŵ1(s)− (cs+ k) ŵ2(s) = ms [sw1(0+) + ẇ1(0+)] +

−cs [w2(0+)− w1(0+)] ,

(

ms2 + cs+ k +K
)

ŵ2(s)− (cs+ k) ŵ1(s) = ms [sw2(0+) + ẇ2(0+)] +

+cs [w2(0+)− w1(0+)] .

(3.61)

The solutions of the above set of algebraic equations describe the response of individual

degrees of freedom.
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3.3.2 Vibration of the Beam with Granular Structure

For the �rst degree of freedom we obtain

ŵ1(s) =
ms2 (ms2 + cs+ k +K) + cs (ms2 +K)

(ms2 + cs+ k +K)2 − (cs+ k)2
w1(0+)+

+
ms (ms2 + cs+ k +K)

(ms2 + cs+ k +K)2 − (cs+ k)2
ẇ1(0+)+

+
s (kms− cK)

(ms2 + cs+ k +K)2 − (cs+ k)2
w2(0+)+

+
ms (cs+ k)

(ms2 + cs+ k +K)2 − (cs+ k)2
ẇ2(0+) .

(3.62)

To return to the time domain the inverse transformation must be performed

w1(t) =
1

2πi

∫ a+i∞

a−i∞

ŵ1(s)

s
ets ds . (3.63)

In order to perform the inverse Laplace-Carson transform we must apply the decomposi-

tion of the integrand into simple fractions. The roots of the polynomial of the denominator

of Equation 3.62 are as follows

s1,2 = ±i

√

K

m
, s3,4 = −

c

m
±

√

c2 −m(K + 2k)

m
. (3.64)

Identi�cation of the parameters of a granular material limits the solutions which ful�ll

the condition

c2 −m(K + 2k) < 0 . (3.65)

Finally, displacements of the �rst degree of freedom can be written in the following form

w1(t) =
w1(0+) + w2(0+)

2
cos

(

t

√

K

m

)

+

+
ẇ1(0+) + ẇ2(0+)

2

√

m

K
sin

(

t

√

K

m

)

+

+ exp (−
c

m
t)

{

w1(0+)− w2(0+)

2

[

cos

(

β

m
t

)

+
c

β
sin

(

β

m
t

)]

+

+
ẇ1(0+)− ẇ2(0+)

2

m

β
sin

(

β

m
t

)}

,

(3.66)
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where

β =
√

m(K + 2k)− c2 . (3.67)

According to (3.65) the parameter β is a real number and greater than zero.

For the second degree of freedom the displacement is given by the formula

w2(t) =
w1(0+) + w2(0+)

2
cos

(

t

√

K

m

)

+

+
ẇ1(0+) + ẇ2(0+)

2

√

m

K
sin

(

t

√

K

m

)

+

+ exp (−
c

m
t)

{

w2(0+)− w1(0+)

2

[

cos

(

β

m
t

)

+
c

β
sin

(

β

m
t

)]

+

+
ẇ2(0+)− ẇ1(0+)

2

m

β
sin

(

β

m
t

)}

.

(3.68)

The closed form solutions for the individual degrees of freedom (Equation 3.66 and 3.68)

allow us to derive the formulas for the velocities and accelerations. We know the evo-

lution of the structure at the selected time without the necessity to calculate the entire

problem. It allows us to elaborate the proper semi-active control strategy of the damping

parameter c and sti�ness k easily.

3.3.3 Control Strategy for Granular Structure

First we will solve the problem of �nding the control strategy for the case when the

sti�ness k is the only variable that we modify over time. Then, we can analyse the case

when sti�ness k and damping coe�cient c are controlled simultaneously. The particular

moments for switching the variables that will result in an better damping behaviour need

to be computed. We assume the time of observation equal to 1.5 of the main period

of vibrations, which is divided into n number of time intervals. Then, the m successive

amplitudes are to be minimized, preserving the oscillatory form of the displacements.

The objective function I for the switched sti�ness is formulated as

I =
1

m

m
∑

i=1

A(k)2i . (3.69)
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For the switched sti�ness and damping coe�cient, the objective function depends on two

variables

I =
1

m

m
∑

i=1

A(k, c)2i . (3.70)

The damping is e�cient when the sum of the squared values of the amplitudes signi�cantly

decreases. The number of successive amplitudes taken into account should be low to keep

the problem simple. The larger number m would introduce adverse local minima and

increase computational time. This would lower the regularity of the observed periodic

motion of the beam, as additional cycles would be considered in the optimization problem,

making the solution complicated.

Figure 3.10 shows how do the discrete control of variable k and simultaneous control

of k and c a�ect the results. It is clear, that altering the number of time intervals highly

in�uences the results of the optimization, so picking up the right number of n time intervals

seems di�cult. The �rst candidate is n = 10 (on both plots), where the curves reach �rst

local minimum. The next minimum indicating better results is achieved for n = 20 and

n = 21 for the Figure 3.10a and b, respectively. Higher number of time intervals does not

result in much of an additional improvement. The 80 time intervals are taken as the last

case.

Figure 3.11 presents the simulation results without any control (black line) and with

the applied control (red line), obtained for the analytical solution of Equations 3.66

and 3.68. The plots in the left column show displacement over time for the case when

the sti�ness k is the only decision variable. Three di�erent time resolutions of the control

function are considered: 10, 20, and 80 time intervals. The plots in the right column show

respective results for the case when k and c are the controlled variables. The time was

split into 10, 21, and 80 intervals.

It may be noted that the change of the sti�ness k is the major component that con-

tributes signi�cantly to the vibration abatement. The additional in�uence of the damping

c is rather marginal. The resulting form of the control signal may be simpli�ed by distin-

guishing dominant stages. In the �rst stage, when the vibration starts, the control signal

is turned constantly on (blue line). The control variables (whether is k or k and c si-

multaneously) are maximum. Then, after some time, the control signal is rapidly turned

o� and the control variables are equal to zero. Then, depending on the time intervals

considered, the process is repeated, but the moments for switching the control on and o�

changes.

For 10 time intervals the tendency is very clear, and the particular moments for switch-

ing can be estimated from the graphs. The control requires activation at times of the
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Figure 3.10: Results of the optimization performed for di�erent cases of permitted control
variables.
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Figure 3.11: Displacements in time for the control of variable k performed in 10, 20, and
80 intervals (left column � a) and simultaneous control of k and c performed in 10, 21,
and 80 intervals (right column � b).
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extreme displacements (x = max, ẋ = 0) and keeping the signal turned on, until the

beam passes the equilibrium point x = 0. Shortly after passing the equilibrium, the con-

trol signal can be switched o� until the beam reaches another maximum. The proposed

control algorithm may be classi�ed as an "On/O�" control strategies, where the actuator

can assume only two states: on and o�.

For larger number of time intervals (20, 21 and 80) the points of switching are not so

easy to pick, but some conclusions can be derived. First of all we see that the higher modes

of vibration manifest when the control is applied. For the �rst cycle of the response, when

the sinusoidal waveform is regular, it is recommended to keep the underpressure constantly

activated at the �rst stage, and turn it o� three times, before the beam reaches another

maximum de�ection point. After that cycle, further control introduces higher modes

of vibration. The movement of the beam is less regular and thus the control strategy

becomes complicated.

Optimal damping of higher modes introduces not only switching between the extreme

values (on and o�), but also between intermediary values. That type of strategy would

be hard to adapt in real structure and made it less operative. Also at some stages, the

moments for turning signal on and o� are very short. This would be impractical to

achieve on a physical object, shortening the live time of the electromechanical actuators

controlling the underpressure. By assuming some hysteresis, the real control signal may

be simpli�ed. The switching between two extreme values of vacuum is easy to achieve,

and eliminates the necessity to continuously measure and adjust the underpressure in

short periods of time. By keeping the control algorithm simple we avoid introducing

higher modes of vibrations, nevertheless the solution is less e�cient. For the experimental

results, the algorithm achieved for 10 time intervals was examined, and the �rst cycle of

the algorithm for 20 and 80 time intervals.
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CHAPTER 4
Experimental Setup and Calibration

The purpose of the experimental research was to determine whether the change of the

beam's smart damping member parameters can be su�ciently large to be e�ectively used

in vibration reduction. Also the experiments were necessary for the parameter identi�ca-

tion and to �nd how the magnetic �eld or the underpressure among the granules in�uences

the damping capacity of the system. The theoretical analysis and the mathematically ob-

tained control strategies for both types of materials were confronted with the experimental

results. The construction and principle of operation of the manufactured laboratory stand

and specimens is described below.

4.1 | Laboratory Stand for the Beam with MRE

The laboratory stand presented in Figure 4.1 consists of a �xture frame, supported �rmly

by a steady base plate. A proper care was taken to ensure a perfect cantilever condition.

A massive mount, acting as a mechanical vice attached to the frame, allows suspending

the tested beam vertically in a clamped-free con�guration. In order to set the initial

displacement of the beam, a holding band was connected to the free tip of the beam.

The band was strained to give an initial transverse displacement of the tip 0.06 m. The

data acquisition starts when the holding band is released and the beam is free to oscillate

around its equilibrium point.

The component of the displacement of the amplitude was the basic, directly measured

variable. The displacement was measured at three points (top, middle and bottom of the

beam) with dedicated laser sensors, with a resolution up to 8 µm and 10 kHz maximum

sampling frequency. The design of the test bench allowed easily setting the position of the

displacement sensors, so it was possible to acquire data for a desired point on the beam.

The measurement system featured functions for compensating the inaccuracy of mea-

surements up to 15◦ of inclination angle. Such inaccuracy may occur for large displace-

ments, as the laser beam is re�ected from the deformed surface of the beam. The re�ected
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4.1. LABORATORY STAND FOR THE BEAM WITH MRE

Figure 4.1: Scheme of the experimental setup: 1 � laser displacement sensors, 2 � elec-
tromagnets, 3 � displacement signal ampli�er, 4 � PLC controller, 5 � data acquisition
system.

beam may not be pointing directly into the CMOS sensor which may causes imprecise

measurements if no compensation is performed. A 16-bit National Instruments 6210 data

acquisition card connected to a computer was used to record the measurement results.

The supported software features programmable graphical interface for con�guration, op-

eration and access to the real-time analysis of the signals by means of Fourier's transform,

data �ltration, smoothing and other tools. A Programmable Logic Controller (PLC) Om-

ron CP1L-L14DR-A with built-in relay outputs and additional analogue In/Out module

CP1W-MAD11 allows directly programming the cycles of turning the electromagnetic

actuators on and o�, depending on the control strategy. The test bench is equipped with

two DC current power supplies, additional signal ampli�ers and digital value displays,

with the necessary wiring. A photo of the designed test bench is presented in Figure 4.2.

The preliminary test results were conducted to con�rm the proper operation and con-

�guration of the measuring equipment, calibration of the sensors and the data acquisition

system, con�rming that the boundary conditions are clamped-free, and to acquire data

used as a base for the results of the beam with the embedded smart damping member.
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Figure 4.2: Test assembly with the de�ected sandwich beam with the embedded magne-
torheological elastomer ready for tests.

4.1.1 Con�guration of the Beam with MRE

A photo of the real, de�ected specimen and measurement system is presented in Figure 4.2.

The thin face beams are made of aluminum PA4 of Young modulus E=69 GPa. Both

of them are 720 mm long with a rectangular cross-section of 40×0.5 mm (Figure. 4.3).

Aluminum was chosen for this purpose because of its low damping properties and the

higher sti�ness when compared to that of the MRE material. Moreover, the relative

magnetic permeability of aluminum is equal to zero, which prevents the magnetic �eld

from being trapped in the face layers rather than passing through the elastomer.

The beams are connected at the tip by the magnetorheological elastomer element

of dimensions 40×40×20 mm, which weighs 20 g. The magnetorheological elastomer

was a custom fabricated, isotropic material of density 3560 kg/m3. The fraction of iron

particles was 8% by volume. Particles were randomly dispersed in the matrix. The

matrix was made of rubber, cured for 20 min at 145◦C. The measured shear modulus

of the elastomer is G=310 kPa for no magnetic �eld, and G=340 kPa for a magnetic

�eld of 700 mT, which is the maximum value, limited by the magnetic saturation of the

elastomer.
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Figure 4.3: Dimensions (in mm) of the sandwich beam with the MRE damping member.

Two island-pole, 24 V DC electromagnets were used as actuators to control the prop-

erties of the smart core in the desired manner. They were also treated as a 0.37 kg point

mass, which decreases the natural frequency of the system. The magnets were placed

on opposite sides of the beam. The magnets were circuited in such a way that the �rst

magnet's pole was N-type polarized, while the other magnet's pole was S-type. That type

of con�guration (Figure 4.4) increases the maximum value of the induced magnetic �eld

�ux density between poles up to 700 mT, and creates a �eld �ux Φ that is normal to the

sheared area of the elastomer.

Figure 4.4: Polarization and placement of the electromagnets on the cantilever beam with
the embedded magnetorheological elastomer.
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4.2 | Laboratory Stand for the Beam with Granular

Structure

The laboratory stand used for the studies on beams with granular damping element

was the modi�ed version of the previously introduced one, used in the studies on MRE.

Nevertheless, to allow the control of the underpressure among the granules several crucial

modi�cations were necessary (Figure 4.5).

Figure 4.5: Schematic diagram of the experimental setup: 1 � laser displacement sensors,
2 � PLC controller, 3 � digital underpressure sensor, 4 � electromagnetic valve, 5 � vacuum
pump with underpressure accumulator, 6 � data acquisition system.

The pressure inside the hermetically sealed envelope is controlled by a vacuum pump

which is connected to the hose of the underpressure accumulator. The PLC with relay

outputs was used to control the electromagnetic valve and thus to control the jamming

in the granular element. When the electrovalve is in the closed position, the inlet of the

damping element is connected to atmospheric pressure - the structure is in its compliant
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STRUCTURE

Figure 4.6: Photo of the laboratory stand for the granular beam investigation.

state and the beam can easily bent. When the valve is actuated, the inlet is connected

to the underpressure accumulator, and the air is rapidly removed from the envelope, the

granular material becomes jammed. The characteristic of the valve and the parameters

of the pneumatic components allowed switching between the partial vacuum and the

compliant state of the material in time shorter than 50 ms. The experimental setup

was integrated with sensing, amplifying and signal analysis equipment. The instruments

include laser displacement sensors described previously and a digital underpressure sensor

that constantly measures underpressure value inside the airtight envelope. A photo of the

laboratory stand with the specimen connected to a vacuum pump with the accumulator

is presented in Figure 4.6.

4.2.1 Con�guration of the Beam with Granular Structure

The parallel face beams of the specimen are made of aluminium of Young's modu-

lus E=69 GPa. Both of them are 720 mm long, and have a rectangular cross-section

40×0.5 mm, the same as in Figure. 4.3. The beams are connected at the end by a thin

(0.5 mm) elastomer layer made of PVC foil, which forms a hermetic envelope. The en-

velope is �lled with a homogeneous granular material. Four test specimens were made

and each one was �lled with a distinct type of granule, which di�ered in size, shape or
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structural material. Figure 4.7 presents macro photographs of the granules. The �nal

dimensions of the damping element were 50×40×20 mm.

Figure 4.7: Types of the tested granular materials, from the left: plastic rollers, plastic
spheres, steel spheres and plastic cubes.

In order to minimize the in�uence of the �lling method, all of the granular damping

elements were made in the same manner: the envelope was left open at one end and

�lled tightly with particles. The open end was then temporarily sealed. The beam

vibrated for some time to rearrange the grains and the remained volume was further

�lled with particles. After that the open end of the envelope was sealed with silicone.

Certain properties of the granular materials used for the experimentation are collected

and presented in Table 4.1. From now on, the names listed in Table 4.1 are used whenever

Table 4.1: Properties of the types of granular material �lling

Name Material
Grain

dimensions [mm]
Specimen
weight [g]

Surface

Rollers
acrylonitrile
butadiene styrene

φ2x3 30 matt

Plastic spheres PVC with barium carbonate φ6 65 polished
Steel spheres steel φ4 130 polished
Cubes polymethyl φ2x2x2 40 polished

referring to the particular �lling type. A total mass of 0.37 kg was added to the tip of

the beam to decrease the natural frequency of the system (the electromagnets were used

as weights).
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4.3 | Data Processing and Analysis

The recorded experimental data, even though that the signal transducers provided hard-

ware signal �ltering, was burdened with noise and interferences. To obtain reliable and

accurate experimental results it was necessary to use additional software tools at the stage

of data processing. The experimental data was then used for the parameter identi�ca-

tion procedures. To make the numerical computations faster and more accurate proper

preparation of the experimental curves is inevitable.

The used �ltering method developed by Savitzky and Golay [84] is based on the use

of local polynomial regression for the particular point of time series without signi�cantly

distorting the signal. An example of rough experimental curve (black line) and the one

obtained by using Savitzky-Golay smoothing (red line) is presented in Figure 4.8. It is

obvious that having the �ltered curve, the numerical computations of the parameters will

be more e�cient as we got rid of the disturbing noises.

Figure 4.8: Comparison of the rough data and the plot smoothed with the Savitzky-Golay
method.

The successive sub-sets of adjacent data points were �tted with the low-degree poly-

nomial by the method of linear least squares. When the data points were equally spaced

an analytical solution to the least-squares equations was found. The resulting adjusted
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value gi was determined according to the formula

gi =

nR
∑

n=−nL

cnfi+n , (4.1)

where gi is the new adjusted value for the time moment, nL, nR are the number of sam-

ples taken for computations, placed on left and right from the center point i, cn is the

�lter convolution coe�cient and fi is the input data. The computations for every single

point take place independently of others, so the result obtained after such treatment can

produce a better representation of maxima and minima than the classic procedures of

data smoothing. This prevents from the distortion of the original waveform which was

important when analysing amplitudes for low displacements.

In some of the experimental results, the process of obtaining the curves "enveloping"

the source data was performed. Envelope is tangent to every peak in the source dataset.

The function obtains both the upper and the lower envelopes of the source data by apply-

ing a local maximum method combined with a cubic spline interpolation. In the �rst step

the function �nds out all the extreme values points whose �rst-order derivative is equal to

zero in the source data. Then the cubic spline interpolation through these extreme values

is performed with some Savitzky-Golay smoothing.

A �tting function was built to automatically initialize parameters and adjust initial

parameter values to datasets. Pearson's χ2 statistical value was computed to evaluate

the goodness of the �t. The values of the data �tting variables are attached in the

Appendices. The scheme of analysing all the collected data is presented in Figure 4.9.
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Figure 4.9: Consecutive steps of the experimental data analysis.
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CHAPTER 5
Experimental Results

5.1 | Magnetorheological Elastomer in Vibration Damp-

ing

The presented results of the displacements in time are considered for the tip of the can-

tilever, where the maximum amplitude occurs (signal from the bottom laser sensor), as

only the �rst mode of vibration was excited.

The On/O� control strategy was performed, switching the magnetic �ux density be-

tween 0 and 700 mT in the particular moments obtained from the model, as presented

in Figure 5.1. The control signal was computed by the PLC controller according to the

Figure 5.1: Displacement and control signal over time for the real beam with MRE.

numerically determined strategy, i.e. it achieved a high level at extreme de�ection and

a low value during a neutral displacement state. For comparison of the signals please refer
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to Chapter 3: Problem Formulation and System Modelling).

The �rst 60 s of vibrations were acquired. This gave us enough information about

the process. These results showed that if the smart material is embedded between the

face layers, the overall damping of the beam enhances. Figure 5.2 illustrates the �rst

segment of 30 s of vibration. The presented plots show how the magnetic �eld a�ects the

amplitude of the displacement of the beam's tip for an initial de�ection of 0.06 m, in three

di�erent cases: MRE not activated (0 V, black line), MRE turned on constantly (24 V,

blue line), and MRE activated for selected moments (24 V control, red line), according to

the control strategy. The case of free vibrations of a beam with the non-activated smart

core is treated as the reference measurement.

Figure 5.2: Displacement in time for di�erent treatments of the beam with MRE damping
member.

All three curves in Figure 5.2 exhibit damping. It has been observed that for no

magnetic �eld applied, the response amplitude is the largest. Despite the elastomer

merged locally in the sandwich beam, it caused a signi�cant decrease of amplitudes for

constant and periodic magnetic action. Although the experiment di�ers in this case from

our theoretical analysis, the e�ciency of the control with a small elastic inclusion, related

to the entire length of the beam is e�ective.

It can be clearly seen that the controlled switching between active and non-active

state of the MRE results in a more e�ective vibration damping in time than the one-time

selection. The amplitude declines faster to the equilibrium point than for the previously
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described cases. When the magnetic �eld is periodically switched, the response amplitude

further decreases as the dynamic �exural rigidity of the beam increases with the shear

modulus of the MRE core.

Longer observations allowed us to estimate the rate of damping. After 60 s, the

amplitude of displacement for 0 V (0 mT magnetic �eld) is 12 mm, which is 20% of

the initial de�ection. If the MRE was constantly activated, the amplitude after 60 s of

vibration decreased to 4.2 mm, which is 7% of the initial value. In the controlled switching

case, the amplitude dropped to 2.6 mm, i.e. to 4% of the initial value.

The values of the logarithmic decrement of damping were computed in the process of

�tting of the envelopes. The results obtained for the full time segment of 60 s and the

envelopes of the displacement curves are plotted in Figure 5.3. It is apparent that the

envelopes of the experimentally obtained signals can be very well �tted with exponential

decay curves typical for systems with viscotic damping. The parameters of the �tted

curves are presented in the Appendices. This enabled us to easily and precisely compute

the value of the logarithmic decrement of damping

δ = β · T , (5.1)

where β is the decay coe�cient obtained in the curve �tting process and T is the period

of the waveform.

Figure 5.3: Fitted envelopes of the displacement amplitude for di�erent damping treat-
ments of the beam with MRE.
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For the non-activated elastomer, the logarithmic decrement was δ = 0.034, which is

the reference value. As the material was constantly activated, the intensi�ed dissipation

resulted in a damping increased to δ = 0.052. As the control strategy of switching the

shear modulus is applied, the damping is increased by 67% compared to the basic value,

up to δ = 0.057.

Further analysis required to transform the time domain �gures into the frequency

dependencies. The Fourier Transform (FT) yields the average characteristics of the am-

plitude and the frequency contents over the full time span of the signal. The amplitude

on the presented FT plots is the relative strength of the harmonic component present in

the original signal. Since the strengths are related to the original signal value, the Y-scale

of the graphs is unit-less.

The results in Figure 5.4 showed that the response of the cantilever consists of one

intrinsic modal function, which corresponds to the �rst mode of vibrations with the fre-

quency of 0.745 Hz for no magnetic �eld applied. The frequency slightly shifts toward

higher frequencies (0.77 Hz) when the MRE member is activated permanently. From the

above observations, it is evident that activating the material intensi�es the global �exural

rigidity of the system. When an external magnetic �eld is applied, the polarized particles

tend to keep a chain-like linear structure while the rubber matrix moved in the direction

of the shear force, and the rubber matrix and particles began to slip. For the controlled

variant basically no frequency shift is observed. In fact the sti�ness and frequency is

increased just for a short period, and then it backs to the basic value, so the average

frequency over the time span remains almost unchanged.

In the meanwhile, the peaks representing the vibration amplitudes decline due to the

enhanced damping caused by the magnetic �eld presence. The damping ratio may be

evaluated from the frequency spectrum as well, using the half-power band width method,

which gives an overall idea about the damping of the system. In this method, the damp-

ing is evaluated from the frequencies on either sides of the peak in frequency spectrum

observed at resonance condition. The non-dimensional damping ratio is de�ned as the

ratio of the frequencies observed at two half power points of the natural frequency

ψ =
ω1 − ω2

2ωn

(5.2)

where ω1, ω2 are the half power frequencies and ωn is the natural frequency. The loss

factor can be expressed as

η =
ψ

2π
(5.3)

For the case when no magnetic �eld was applied, the damping ratio was ξ=0.0020. When
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Figure 5.4: Frequency response of the cantilever with magnetorheological elastomer for
di�erent damping strategies.

the damping was turned on constantly the ratio was ξ2=0.0032. As the temporary switch-

ing was performed, the damping raised up to ξ3=0.0034.

5.2 | Granular Structure in Vibration Damping

For each type of granular material (Figure 4.7), the displacement's amplitude was recorded

in order to measure the in�uence of the underpressure on the response of the cantilever.

The underpressure value at the entrance of the hose connector was monitored during each

measurement and was set to constant value chosen from the range 0 � 0.07 MPa. The

atmospheric pressure was 100.3 kPa, so the examined underpressure values were equal to

0% and 70% vacuum. This part of the research was necessary to �nd the material which

characterizes with the best damping properties. Also results of this part of the study were

used for the identi�cation of the parameters of the model.

5.2.1 Passive Damping for Constant Underpressure

Figure 5.5a illustrates the in�uence of the constant underpressure on the component of

the amplitude of the displacement for initial de�ection 0.06 m and zero initial velocity for

the roller �lling. First 60 s of the response are depicted. The negative pressure was set
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individually before every measurement and remained constant during the vibrations, so

that all of the measurements were performed after the initial jamming.

The obtained trial is a damped sine waveform, with frequency and amplitude depend-

ing on the set value of underpressure. The expanded view on Figure 5.5b gives details on

the response for di�erent constant values of the underpressure plotted as di�erent colored

lines.

By examining the free-decay time traces of the displacement, one may �nd that the dis-

placement amplitude slightly increases when compared to the compliant state for 0 MPa,

as the jammed state interactions are intensi�ed by the higher underpressure value, which

results in a slower reduction of the amplitude. The loss of the damping e�ciency is rather

small and is mainly related to the restriction on the movement of the granules, which can

no longer slide easily. These observations were true for all of the types of the examined

materials, so the individual plots were omitted in this part and disclosed in Appendices.

By analyzing the minimum and maximum beam de�ections, the envelopes of the

responses were obtained. The amplitude decreases exponentially at an almost constant

rate, so the envelopes were approximated by the exponentially modulated decay curves

- typically used for systems with viscous damping. This gave a very �ne agreement.

This was performed for all materials and every underpressure value. In Figure 5.6, the

exemplary experimental curve (scatter) is plotted against the best �tted curve (solid line)

for the roller granules subjected to 0.07 MPa. The detailed results and �tting parameters

for di�erent types of granules are disclosed in Appendices.

The comparison of the logarithmic decrement of damping for di�erent �lling materials

is presented in Figure 5.7. The highest logarithmic decrement value was observed for the

cubic granules. The second best damping performance was obtained for the rollers. Both

types of the spheres exhibit slightly smaller logarithmic decrements of damping, with the

steel spheres having the lowest damping value. This is a consequence of the fact that

the small, cubic granules initially exhibit stronger force chains and high rolling resistance,

compared to the other shapes. On the other hand, as the underpressure value is increased

from 0 to 0.07 MPa, the absolute change of the logarithmic decrement is the most notable

for the spherical granules while cubes exhibit minor change. The edgy, cubic particles

initially form a highly ordered structure which is hard to reorganize. Spherical granules

can be quite easily reorganized, as they have no edges that restrict certain movements.

The performance of the roller granules can be located somewhere between the edgy and

the spherical surfaces, giving high initial damping. Also the possibility to alternate the

damping value is very �ne.

Figure 5.8 presents the variation of the natural frequencies for a beam partially treated
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(a) Response of the beam

(b) Detailed view

Figure 5.5: Displacement over time for constant underpressure, granular structure �lled
with rollers.
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Figure 5.6: Envelope of the experimental response and the exponentially �tted curve for
constant 0.07 MPa, roller granules.

Figure 5.7: Logarithmic decrement of damping for constant underpressure for di�erent
types of granules.
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with the granular structure with rollers. The amplitude on the FFT plot is the relative

strength of the harmonic component present in the original signal. The frequency slightly

shifts toward the higher values when the jamming is intensi�ed by the negative pressure.

The jammed material has a higher density of force chain network, and thus an intensi�ed

�exural rigidity. This was also true for all of the examined materials, but with di�erent

intensities - rollers exhibited the highest change.

Figure 5.8: Frequency response for di�erent values of constant underpressure, granular
structure �lled with rollers.

As can be seen from Figure 5.9, an intensi�ed jamming shifts the natural frequencies

to higher values when the underpressure is applied. The damping element �lled with steel

spheres was the heaviest one, so the frequency for it was the lowest. On the other hand,

the cubic and roller �llings were the lightest, so they yielded the highest frequencies.

For the considered case, when only a part of the beam is treated with the granular

damping member, the absolute frequency change is rather small, but the tendency seems

to be clear. For the steel and plastic spheres, the increase reached 1%. For the roller

and cubic shaped granules, the increase was 0.7% and 0.3%, respectively. The material

that allows the highest change of the parameters seems to be the best to be used in the

semi-active control based on periodical switching of the parameters. The roller granules

were chosen for further investigation, as they allow large changes in their damping and

frequency, exhibiting high values of these parameters.
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Figure 5.9: Frequency vs. underpressure for di�erent granular materials.

5.2.2 Parameter Identi�cation

This section describes the identi�cation of the parameters of the model of the beam

with granular structure presented in Chapter 3: Problem Formulation and System

Modelling. The identi�cation was based on the experimental results presented in the

previous section.

A complex investigation of the non-trivial behaviour of a jammed granular structure

and determination of all its parameters is a di�cult issue. The problem of formulating

the model of the real, complex, jammed granular structure with controllable properties

requires considering contact, friction, rotation, slips, nonlinear large de�ection phenom-

ena, etc. Solving the reverse modelling problem would result in a signi�cantly di�erent

results obtained for models considering di�erent dominant interactions. Here, we analyse

the problem for the one, dominant degree of freedom. Reasonable computational models

for the mathematical simulations require knowing the values of the sti�ness and viscosity.

That is why we have chosen the Kelvin�Voigt, classic Maxwell, and a generalized Maxwell

model [45] simpli�ed to a Zener con�guration (presented in Figure 5.10) to examine, which

one is the best for modelling of the beam with granular damping element.
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(a) Zener (b) Kelvin�Voigt (c) Simple Maxwell

Figure 5.10: Di�erent models used for the parameter identi�cation of the cantilever with
granular damping member.

The reported estimation of the �t of the measured and computed displacements is

denoted by ε and given by the relation

ε =
1

∆t

∫ tf

0

(w(t)− w̄(t))2 dt , (5.4)

where ∆t is the time step of the registered data.

We assume displacements in time of the real beam (Figure 5.5a) as a reference function.

The minimization problem allows us to determine the material parameters. We compare

the �rst 30 seconds of vibrations with the chosen model of the structure. The computed

parameters for the Kelvin�Voigt model are presented in Table 5.1. Furthermore, the

Maxwell and Zener models (Table 5.2 and 5.3) also give a good aapproximation to the

experimental curves.

The general Zener model reduces to the simpli�ed models during the minimization

procedure by assuming certain particular values of the model parameters. By assuming

in�nite value of the sti�ness k2 (Figure 5.10) the Kelvin�Voigt model is obtained. For the

simple Maxwell model k1=0 and parameters k2 and c remain.

Figure 5.11 presents the estimation error of the models. Although the Zener combines

features of the two other models and theoretically it should provide the best �t because it

allows modifying more parameters, the computational identi�cation for numerous param-

eters is less e�cient than for the simple models. The generalized model approach is even

less accurate than its equivalent Maxwell model with the same probability of establishing

the minimum, i.e., for the same number of Monte Carlo attempts.
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Table 5.1: Computed parameters for the Kelvin�Voigt model for the roller granules.

∆p [MPa] k1 [N/m] c [Ns/m] error ε
0.00 8.601 0.03082 427
0.01 8.633 0.03117 463
0.02 8.672 0.03162 598
0.03 8.682 0.03244 818
0.04 8.690 0.03180 669
0.05 8.705 0.03094 536
0.06 8.706 0.03037 463
0.07 8.707 0.03011 432

Table 5.2: Computed parameters for the Maxwell model for the roller shaped granules.

∆p [MPa] k2 [N/m] c [Ns/m] error ε
0.00 8.602 112.778 410
0.01 8.654 112.410 583
0.02 8.674 111.100 576
0.03 8.683 108.343 790
0.04 8.690 110.893 666
0.05 8.705 113.358 518
0.06 8.706 115.820 450
0.07 8.707 118.121 426

Table 5.3: Computed parameters for the Zener model for the roller shaped granules.

∆p [MPa] k1 [N/m] k2 [N/m] c [Ns/m] error ε
0.00 0.0538 8.542 112.12 410
0.01 0.0002 8.621 111.80 592
0.02 0.0040 8.660 110.60 576
0.03 0.0391 8.664 107.50 789
0.04 0.0073 8.672 110.31 666
0.05 0.0607 8.686 112.81 518
0.06 0.0760 8.697 115.56 449
0.07 0.0657 8.708 117.60 425
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Figure 5.11: Error of the parameter �tting for di�erent models.

The Zener model coincides with the simple Maxwell model for almost every value of

∆p except small discrepancy for 0.01 MPa. This means that we can use simpler model for

computations to get fair results. The Kelvin�Voigt model exhibits almost equally good

results, and the error for 0.01 MPa is the smallest one for all the models.

For both of the simpli�ed models the traces of the parameter k (Figure 5.12a and b)

show that the sti�ness increases with the underpressure in the range 8.60�8.71 N/m. The

increase of the sti�ness is nonlinear, however it seems that it tends to reach saturation,

and further increasing of underpressure above 0.07 MPa is pointless. The in�uence of the

damping c on the �nal displacement turns to be marginal. The damping c turns not to be

a monotonic function of the underpressure. For both, Kelvin�Voigt and Maxwell models,

it follows an opposed tendency since the role of the viscotic damper is di�erent in each

model.

It turns out that the Kelvin�Voigt model combines the fastest and simplest compu-

tations with a good accuracy. This is the reason why it was chosen for the optimization

presented in Chapter 3: Problem Formulation and System Modelling.
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(a) Kelvin�Voigt

(b) Simple Maxwell

Figure 5.12: Results of the parameter identi�cation for the Kelvin�Voigt and simple
Maxwell model.
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5.2.3 Semi�Active Damping for Selective Underpressure

The next step was to study the concept of the switched jamming treatment obtained with

the granular damping structure. The control strategy involves switching the underpressure

between 0 MPa and the selected threshold value. Any value from the range of 0�0.07 MPa

may be chosen, however research showed that the highest change of the parameters is

obtained for the maximum value of underpressure, so 0.07 MPa was selected as the extreme

threshold value. Further analysis concerns the question whether the controlled switching

between 0 MPa and 0.07 MPa may result in an e�cient vibration suppression.

Figure 5.13 presents the controller-adapted version of the theoretically obtained strate-

gies from Subsection 3.3.3: Control Strategy for Granular Structure. The �rst

strategy named optimal10 is the simpli�ed version of the control signal from Figure 3.11

obtained for 10 time intervals. The second one, named optimal20 is the simpli�ed theo-

retical strategy which was obtained for 20 time intervals.

Figure 5.13: Displacement amplitude and simpli�ed control signal sequences used for the
experimental research study.

The �gure also shows how the negative pressure inside the envelope (green line) change

over time as the underpressure is switched. It turned out that the highest possible fre-

quency of switching is 20 Hz and is limited by the inertia of the process of jamming, and
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the time needed to remove the air from the envelope.

In Figure 5.14 the response of the controlled beam with the roller �lling is compared

with the reference results for a one-time selection of a constant underpressure of 0.07 MPa.

The results clearly show that proper control of the underpressure and switching its value

in particular moments may notably improve the e�ciency of the proposed damping sys-

tem. The e�ciency of both control strategies is similar, however the beam exhibits faster

vibration suppression for strategy optimal20.

Figure 5.14: Comparison of the displacement for constant underpressure and di�erent
switching control strategies.

For constant damping, after 60 s of vibration the displacement was suppressed to

9.2 mm (15.3% of the initial value). For optimal10 the displacement was suppressed to

3.2 mm (9.3% of the initial value), compared to 1.4 mm (5.3% of the initial value) obtained

with strategy optimal20. The value of the logarithmic decrement of damping increased

from 0.042 for constant underpressure 0.07 MPa, up to 0.065 for optimal10 strategy and

0.076 (optimal20 ). The surplus is almost 80% compared with the case when structure is

permanently jammed by constant underpressure.

Let us take a look how the damping e�ciency change, when we switch the underpres-

sure from 0 MPa to any other threshold values. The value of the logarithmic decrement

obtained for the algorithm named optimal10 is presented in Figure 5.15. The value

of the logarithmic decrement obtained for algorithm named optimal20 is presented in

Figure 5.16.
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Figure 5.15: Logarithmic decrement of damping for the control algorithm optimal10,
obtained for di�erent threshold values of underpressure.

Figure 5.16: Logarithmic decrement of damping for the control algorithm optimal20,
obtained for di�erent threshold values of underpressure.
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For each of the materials, the highest e�ciency of damping was achieved with con-

trol algorithm optimal20. Rollers turned out to be the most e�ective material, that

allows widest control of damping capacity, i.e. highest damping ratio in compliant state

to damping ratio in jammed state. It can also be stated that for optimal20, the character-

istic exhibits much more notable saturation than for the algorithm optimal10, escpecially

when cubic granules are considered.

The frequency response for the most e�ective algorithm optimal20 (Figure 5.17)

showed that the response of the free vibrations of the beam consists mainly of one intrin-

sic modal function, which corresponds to the �rst mode of vibrations with the frequency

of 0.74 Hz for no underpressure (for the roller granules). The frequency slightly shifts

toward the higher values when the granular material is jammed permanently or tem-

porarily. This is a natural consequence of the fact that the jammed material characterizes

with intensi�ed �exural rigidity as the force chains are formed.

Figure 5.17: Frequency response of the beam with granular damping element �lled with
rollers, for the optimal20 algorithm.

Alternatively the damping ratio was computed from the half-power bandwidth method.

For no underpressure the damping ratio value was 3.1 · 10−3. The value of damping ratio

for constant 0.07 MPa was 3.2 · 10−3. In the jammed state, intensi�ed by the locking

pressure, the dissipative interactions between the granules are much stronger. Then the

damping ratio increases. For the controlled case, the damping is highest and reached
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3.5 · 10−3, which is 13% greater than the value without control.

The mechanism was found to be e�ective in reducing the amplitude without signi�-

cantly shifting the natural frequency of the cantilever. For no underpressure and switching

underpressure, the frequency was almost identical, around 0.74 Hz. In the case of constant

underpressure, the frequency shifts slightly to 0.75 Hz.

The experimental studies proved the e�ciency of the elaborated algorithms. Rollers

turned out to be the most versatile material, providing high damping and vast possibility

of control. The presented results are justa a small piece of the experimental studies that

had to be done to acquire the results. A very intrusting part of the further study on the

control algorithms was devoted to searching for even more e�cient strategies than the

theoretical ones. Total of 8 empirical algorithms were examined and compared. That

part of the study is presented in Appendices. It turned out that there are algorithms

that exhibit even better vibration attenuation than the examined strategies. This clearly

indicates that the modelling studies still needs to be expanded, which motivates further

studies.

5.3 | Discussion of Results

From the laboratory research it was observed that both materials can be successfully used

as a smart adaptive structures, and the proper momentary switching of their properties

allows reducing the vibrations more e�ectively than if the treatment is passive. The

coincidence between theoretical and experimental results obtained for magnetorheological

elastomer and granular structure was satisfying, nevertheless, some discrepancies were

noted.

For granules and elastomers, the damping capacity acquired by means of switching

control was less e�ective than in obtained numerical results. This is the consequence of the

modelling simpli�cations, di�erences between the assumed model and the real structure.

The experimental cantilever with MRE was treated with the smart material only at the

tip of the structure. In the mathematical model of the elastomer, the modelled beam was

�lled with the damping core all along the face sheets, which gives much greater increase

in the rigidity of the structure. For simplicity of computation, the case of the cantilever

beam supported from both sides was considered theoretically, and solved for the middle

point. The experiments were carried on for a free-clamped con�guration of the beam,

which resulted in the better damping behaviour obtained numerically.

For the granular material the behaviour of the structure was simpli�ed to a two de-

grees of freedom model, replacing the complex granular interactions with the Kelvin�Voigt
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model, displaced axially. The theoretical control strategy was simpli�ed to a more practi-

cal On/O� control algorithm. Moreover in much more complex practical problem smaller

portion of the total energy can be released from the system in each cycle, nevertheless

the strategy could be applied to mitigate the vibrations. Although the real application

was less e�ective than theoretical one, the simpli�ed strategy exhibited an improvement

of the damping property. Further development of the material model and taking into

consideration more interactions between granules could result in even better damping

performance.

The thesis which states that changing of the damping properties of the

magnetorheological elastomer or granular structure in selected moments, al-

lows damping the vibration of the beam structures more e�ectively than when

the damping is turned on constantly, was con�rmed in theory any by the ex-

perimental investigation.
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CHAPTER 6
Conclusions

Throughout this work, the semi-active damping method for transverse vibration of a vi-

brating sandwich beam, treated with two types of smart materials was investigated. For

the beam with magnetorheological elastomer the distinctive feature is the ability to con-

trol the damping capacity by varying the magnetic �eld. For the beam with the granular

damper the vibration attenuation is obtained by changing the underpressure value among

the granules.

For both types of the damping materials, theoretical models of the systems have

been developed. The mathematical model for the layered beam with MRE was based

on the assumption of having a variable shear modulus material placed between purely

elastic layers. Bending parts of the beam structure were described with the di�erential

equations as layered elements of a sandwich structure, and the semi-analytical solution of

the initial-boundary problem was obtained.

For the granular damper the phenomenological model was proposed to represent the

complex behaviour of the system. The modi�ed Kelvin�Voigt model was proven to be

e�ective and accurate, however further model development is recommended. Models for

both considered materials have allowed accurately describing the dynamic response of the

concerned cantilevers. The optimal control problems were posed, considering the concept

of periodically switched controllable capabilities of the systems in order to e�ciently

attenuate free vibration. The resulting control functions were simpli�ed to a rectangular

On�O� shapes, which are easy to realise on a classic electromechanical relay system.

The numerical analysis proved that the idea of periodical changing the material proper-

ties can be very e�cient if the switching is presumed in a proper manner. To demonstrate

the validity of the control strategy obtained numerically, the experiments were carried out

for the real, initially de�ected sandwich cantilever. The experimental veri�cation was less

e�cient than the theoretical one, since the damping members were placed only locally

at the tip of the beam, but the agreement between the theoretical and the experimental

results was satisfactory.
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The surplus of free vibrations of the real beams partially treated with either type of

the smart material reached 10%�40% or more, depending on the material and the control

strategy used. A detailed discussion of the experimental results concerning the ampli-

tude of vibration, logarithmic decrement of damping, loss factor, sti�ness, and natural

frequencies has been provided. Both of the investigated functional materials have many

applications prospect, which provides an impetus for continued research in this area.

6.1 | Perspectives

Designing lighter, safer and more e�cient damping structures which are cost e�ective,

has been in high demand in modern vibroisolation technology. Properly designed adap-

tive structures allow signi�cant improvement of the dynamic properties of the systems,

related to their passive equivalents. Unlike the passive type, the controllable system al-

lows adapting to various loading conditions and excessive structural vibrations. Hence we

obtain lower displacements, improved fatigue strength and the safety of the structure.

Both, the elastomers and the granular structures provide some �exibility in the shape

design and material tailoring variation to obtain desired dynamical performance and func-

tionality. The granular materials encapsulated in elastic envelopes can possess almost any

suitable shape which allows installing them in irregular-shaped spaces.

The mechanism of triggering the jammed state in granular structure is reliable and

relatively simple to apply, plus the cost of the structure is low. However, the structure

itself is less robust due to the necessity of keeping the envelope hermetic, which is the

weakest point of the solution. The applicably is limited to the applications with lower

frequency excitations, since the granules need some time to reorganize, and it takes some

time to evacuate the air from the envelope. The MRE provide better robustness, much

quicker response, but require electrical supply system and the production cost is higher.

The change from one state of the elastomer to another takes a short time (order of

milliseconds), therefore MRE are excellent for applications where strong dynamic features

are required. One of the branches of applications of the MRE is the aerospace industry

in which structures are mostly based on the metallic and composite layered solutions in-

cluding carbon �bre-reinforced plastics, which have low internal damping. The ability to

modify the internal layer parameters will in�uence dynamic properties of the structure.

The proposed material and control strategy can be used to mitigate vibrating parts of

the plane, and e�ciently reduce wind �utter e�ects. The increase in capacity, and con-

sequently the possibility of reduction of the weight of the airplanes will lower the fuel

consumption.
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(a) Civil engineering (b) Traveling load

(c) Wind turbine towers (d) Elastomeric bearings

(e) Wheel guiding transverse springs
(f) Stabilizer bars

Figure 6.1: Areas of potential application of semi-active layered damping systems.
Sources: barbarashdwallpapers.com, windaction.org, freyrom.ro, zf.com.
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The automotive industry may also be a potential recipient of both of the proposed

damping variants. Vibrations generated by the vehicle drive system and the suspension

could be suppressed by the self-adaptive absorbers, or smart lightweight suspension beams

(Figure 6.1e), stabilizer rods (Figure 6.1f) or suspension bushings in order to reduce the

shudder e�ect. The electrical current could be supplied from the automotive electrical

system, while the underpressure could be generated by one of the pumps. It would

be particularly useful to adjust the vibration of the adjacent structures in response to

present conditions such as vehicle speed, road type and whether conditions, vehicle load

and similar.

The semi-active solution with an e�cient control algorithm may also be used for appli-

cations where we have to deal with the fast traveling load such as train-track (Figure 6.1b),

vehicle-bridge, crane-weight systems (Figure 6.1a) or robotic linear guideways which are

of a special interest for practising engineers. Existing structures could be reinforced by

supplementary supports with magnetorheological elastomers controlled externally to im-

prove the stability of the structure. That type of control, when only a few of many MR

�uid dampers are activated was described in [5]. The construction might bene�t from

incorporating magnetorheological elastomers as an alternative to �uid dampers.

The seismic performance e�ciency of the base isolation system, which decouples the

civil structures from the ground motion (Figure 6.1d) can be highly improved by adapting

the concept of the smart materials controlled according to the switching strategy. The

controlled elastomers with sti�ness-tuning ability strive to alleviate limitations of existing

passive-type base isolators, which works well on a site with a sti� soil condition, but are

not be e�ective at all on a site with a softer soil.

Existing mechanical structures viability may be enhanced by the additional supports

with one of the proposed, semi-active solutions. Only in the United States about 40% of

bridges are obsolete or are not able to meet current requirements raised by the intensity

of public transport. Studies prove that half of the cost of replacing the bridge is tra�c

redirection to another route, during its construction or reconstruction. For the massive

structures MRE elastomers seems to provide enough strength, robustness and range of

controllable sti�ness. Although the problem at the closed Volga River bridge (please see

Chapter 1: Introduction) was solved using magnetorheological dampers, application

of smart elastomers with variable shear modulus would give a completely new possibility

of overcoming such problems.

A granular-based system would be preferred in lightweight structures, for example in

mitigating the low frequency vibrations of a tower pole of a wind turbine (Figure 6.1c)

where they can be employed as an environmentally friendly solution operating in relation
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to the time changing wind speed and variable speed mode used in a large scale turbines.

For normal operating condition the structure could be damped by the loose granular

material, while the switched jamming strategy would be active for an exceeded level of

vibrations.

Properly adapted, smart granular damping elements may also be used as well in in-

telligent rail ties, speed bumps, marine dock bu�ers, loading bumpers, fenders in the

warehousing industry, pedestrian walkways, pipeline systems, speed humps and many

other types of structures. It is an attractive alternative in semi-active damping due to its

conceptual simplicity, potential e�ectiveness and very low cost. In spite of these bene�ts,

the proposed semi-active damping systems bears some drawbacks, primarily because they

are more complex than the passive counterpart and require additional sensors, actuators

and controllers.

6.2 | Recommendations

Although the idea presented in this work is in the initial phase, its potential seems to be

very attractive and it deserves a major attention. The proposed approach opens a lot of

new and interesting research problems and potential solutions for engineering applications.

Numerous problems still seem to be open to further study.

The modelling section could be still signi�cantly improved, considering more in-depth

look at the material properties and additional laboratory material test. The optimal

composition and geometric parameters of the damping members, and minimizing their

weight by selecting their optimal placement can help in maximization of modal damping

ratios and modal strain energies and can lead to signi�cant saving in the amount of

used material. The structures with MRE can bene�t from the fact that the certain

properties can be achieved in the manufacturing process. The methods include coating of

the magnetizable particles for corrosion protection or improvement of the bonding between

the particle and the matrix, di�erent matrix choices and alignment of the particles in

the curing process. This gives the possibility of tailoring material variation response to

obtain desired dynamical performance and functionally in the structure, but also needs

a complex investigation to �nd the optimal compositions. In order to study in details the

possibilities of controlling the vibrations of the beams treated with smart material, it is

necessary to analyse the response of the systems subjected to the dynamic exploitation

loads and harmonic excitations, for example reproducing the excitation caused by the

vehicle riding on the bumpy road, seismic vibrations or environmental load or an impulse-

excited system. Versatility of the construction of the presented laboratory stand makes
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it possible to take the advantage of the currently equipped elements and to utilize them

on the test bench intended to investigate the dynamic loads response. The presented

analysis will help the designers to estimate the damping capacity of structures vibrating

under dynamic conditions in order to maximize it as per the requirements in the actual

applications. Further study on the topic is to be highly recommended.
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APPENDIXA
Additional Experimental Results

In the main part of the work the most important results were showed and discussed.

However, a major e�ort and a huge amount of time was spent to �nd the best materials

used for the research, proper con�guration of the specimens, calibrating the measurement

system, etc. This appendix includes small part of the supplementary, most important

results for the research presented in the Chapter 5: Experimental Results.

Although many interesting behaviour concerting granular materials and elastomers

were noted, they were not published in this dissertation as they are not strictly signif-

icant for the topic of selective control. However, the author hopes that the collected

experimental material will be soon published in form of scienti�c articles.
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Magnetorheological Elastomer
The computed parameters of the �tted curves for the magnetorheological elastomer pre-

sented in Figure 5.3 are listed in the Figure A.1. The average error of the exponential

decay curve �tting was su�ciently low to use the logarithmic decrement as measure of

damping in the system.

Figure A.1: Parameters of the �tted envelopes for the beam with MRE.
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Passive Damping for the Granular Structure
Time and frequency responses of the cantilever with the granular structure �lled with

di�erent types of materials are presented in Figure A.2. The time analysis itself is not

su�cient for the complex research so the Fourier Transform vibration analysis was applied.

This allowed transforming the time domain data into the frequency domain.

The recorded waveforms allow drawing basic conclusions about the analysed process,

such as the nature of the vibration amplitude at particular moment, phase shift or the

envelope of the signal, for certain type of the granular material. The presented results

were used to compute the logarithmic decrement of damping and calculate the frequency

of vibrations for di�erent underpressure values, described in Section 5.2.1: Passive

Damping for Constant Underpressure.

The parameters of the �tted envelopes for the beam with the granular damping structure

for the passive-damping case are presented in Figure A.3.
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(a) Displacement for plastic spheres (b) Frequency for plastic spheres

(c) Displacement for steel spheres (d) Frequency for steel spheres

(e) Displacement for cubes (f) Frequency for cubes

Figure A.2: Displacement and frequency response for constant value of underpressure for
di�erent types of granular materials.
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Figure A.3: Parameters of the �tted envelopes for the beam with MRE.
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Empirical Control Strategies for the Granular Structure

Despite studying the response for the theoretically obtained strategies of switching the

underpressure, additionally eight di�erent empirical strategies were studied for compari-

son. The shape of the control signals and the moments for activating the underpressure

are presented in Figure A.4.

Even small di�erences in the moment of jamming the granular material resulted in a

notable change in the damping properties of the beam. From the presented strategies the

most interesting results were obtained for the algorithm named new20-100. The results

con�rmed that the proposed controlled jamming system outperforms the passive one, and

may be e�ciently used in mitigating the response of the structure. It turned out that the

empirical algorithm also outperforms the theoretical strategies studied in the main part

of the dissertation.

Better damping behaviour is achieved when the material is constantly activated through

the whole cycle of vibrations, and becomes unjammed just for very short moment near

the maximum de�ection points, as presented in Figure A.5.

Just a short time before the tip of the beam reaches the point where ẋ = 0, the

material is switched to the unjammmed state. All the remaining, weak particle chains

are removed. Then it is quickly switched at the maximum de�ection point where ẋ = 0,

so the large number of strong particle chains is recreated. The jammed beam is coming

back to the equilibrium point, passes it and reaches maximum de�ection point at the

opposite site. This movement causes major dissipation caused by the breakage of the

force chains, which are once again recreated at point ẋ = 0. This can be compared to

periodically gluing particles at maximum de�ection points, breaking the bonds during

their movement, and gluing the material once again. Once again rollers turned out to

be the most e�ective material. For the control strategy optimal20 the decrement was

δ = 0.076 while the selective switching of 0.07 MPa according to new20-100 allowed

increasing it up to δ = 0.092 as presented in Figure A.6.
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Figure A.4: Control signal sequences used for the experimental research study.
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Figure A.5: Distinct moments for momentary switching the granular material state, ob-
tained for the control strategy new20-100.

Figure A.6: Comparison of the best theoretical algorithm optimal20 with the best empir-
ical algorithm new20-100 for the roller granules.
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APPENDIXB
PLC Controller Algorithms

All of the programmable logic controller algorithms discussed in Chapter 5: Experi-

mental Results were programmed using ladder diagram language in CX-Programmer 9.4,

software dedicated to OMRON compact automatic controllers.

Figure B.1 presents the ladder diagram program used to switch the electromagnets

acting as actuators for the cantilever beam with the embedded magnetorheological elas-

tomer. Every ladder step of the algorithm was commented to give an idea how the program

operates.

Figure B.2 and B.3 present the code used to switch the underpressure among the

granular structure at selected moments to obtain the optimal control and maintain the

operation of the electrovalve.
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If the electromagnet was activated put 10 V on out 101 (on the rising edge W2.01)
6

14 

Q: 100.01

electromagnet

MOV(021) &0 101
 

W2.02

If the electromagnet was activated put 0 V on out 101 (on the falling edge W2.01)
7

17 

T0000 W0.00W0.00

TIM 0000 #42I: 0.06

zero cross

1

Algorithm for switching electromagnets. Place before END instruction. Switching at maximum defl. and zero crossings.

1 Turning off the electromagnet at equlibrium point.
2 Timer BCD type Set Value #4 = 4*100 ms = 400 ms

8
20 

I: 0.05

emergency

I: 0.07

electromagnet
Q: 100.01W0.009

25 

END(001) End

END OF THE PROGRAM; FURTHER INSTRUCTIONS ARE IGNORED
10

29 

11

Figure B.1: PLC ladder diagram for the beam with MRE damping element.
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APPENDIX B. PLC CONTROLLER ALGORITHMS

    

P_First_Cycle

First Cycle Flag

BSET(071) #0 D0 D100

[Program Name : NewProgram1]
GRANULAR BEAM  Semi-active damping of cantilever. 

[Section Name : Section1]
Granular structure properties controlled by the underpressure. CV=underpressure; PV=electrovalve On/Off.

Clear system DATA MEMERY area D0-D100 for operation

0
0 

P_First_Cycle

First Cycle Flag

MOV(021) #8099 101

MOV(021) #8099 102

Prepere the Analog I/O module for operation: every Inut/Otput works in 0-10V range
1

2 

Q: 100.00I: 0.00

Configuration of the switches (Inputs 0.00-0.03) - every switch changes the state of the selected Output (100.00-100.03 and W100.01)
2

5 

I: 0.01 W100.013
7 

I: 0.02 Q: 100.024
9 

I: 0.03 Q: 100.035
11 

I: 0.01 MOV(021) &600 1011

Q: 100.05

Electrovalve

Q: 100.01

electromagnet

Acqusition of the control signal. Generation of the waveform to be recorded. If electrovalve was activated - 10 V on analog Output no 101

1 If electrovalve was activated - 10 V on analog Output no 101

6
13 

I: 0.01 MOV(021) &0 1011

Q: 100.05

Electrovalve

Q: 100.01

electromagnet

1 If electrovalve was deactivated - 0V on Analog output no 101
7

17 

T0100 I: 0.05

emergency
Electrovalve

Q: 100.05

I: 0.03

FIRST ALGORITHM., generates "NEW" control strategies. This line is responsible for turning OFF the pressure for the time set in max. deflection.
8

21 

I: 0.06

zero cross

SET W0.019
25 

W0.01 TIMH(015) 0100 #261

Time needed for the beam to move from 0 to maximum deflection

1 Time interval between zero crossing (0) and maximum amplitude of displacement. High Speed timer BCD #26=260 ms

10
27 

Figure B.2: Part 1 of PLC ladder diagram for the beam with granular damping structure.
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Q: 100.05

Electrovalve

TIMH(015) 0102 #101

Set time for "how long the underpressure is OFF" in maximum deflection

1 High speed timer BCD type Set Value #10 = 10*10ms = 100 ms

11
29 

T0102 RSET W0.0112
31 

END(001) End

END OF THE PROGRAM; FURTHER INSTRUCTIONS ARE IGNORED
13

33 

I: 0.06

zero cross

1 TIM 0000 #32

W0.00 T0000 W0.00

ALTERNATIVE ALGORITHM. Allows to generate different control patterns (OLD control ). To use this algorithm place it before the final END instruction.

1 Turning off the underpressure when the beam crosses zero.
2 Timer BCD type Set Value #3 = 3*100 ms = 300 ms

14
34 

W0.00 I: 0.05

emergency
electromagnet

Q: 100.01

I: 0.07

15
39 

16

Figure B.3: Part 2 of PLC ladder diagram for the beam with granular damping structure.
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