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AAbbssttrraacctt

The dilemma of an independent data access is, and always has been, a challenging task.
The reader is hereby presented a dissertation that proposes a solution to this problem. This
dissertation is focused on transparent and efficient integration of heterogeneous and distributed
data, making it available in a unified form to top-level users as a data source origin agnostic
repository. Readers should also note that the core of the devised solution is to provide a dedi-
cated architectural model, facing some of the most common issues appearing while the data
integration is being considered. Thus the presented solution is capable of interfacing between
the legacy data sources (i.e. an arbitrary and already existing data sources) and the virtual,
data-agnostic perspective – designed to serve best for client data request calls. What is more, the
discussed solution additionally considers enabling fast data retrieval with native methods and
auxiliary query evaluation and optimization. The mediating approach for incorporating legacy /
integrated data storage engines has provided means to read from integrated sources.

The solution presented in this dissertation, includes a complete approach to transparent
data integration. It is based on architecture that utilises Qboid as a main integration entity that
plays a main point-of-reference for client data requests. The goal of the architecture is to provide
an universal meta-model for accessing heterogeneous (i.e. relational, structural, graph, etc.)
data with a unified client request API. The architecture is presented as a middleware that collects
information on integrated data sources and thus provides an additional abstraction layer for
storing data-model independent optimization techniques for accessing the integrated data. The
data access methods are unified regardless of the target data storage engine origin.

The main goal of this dissertation is to design a solution based on the dedicated architecture
model that would be able to solve the most profound issues during data integration. Thus the
presented solution is able to mediate between the iterated data sources and their virtual- and
storage-independent global view. This view will then be used for serving the client data requests.
What is more, the proposed solution tends to base its data source access on most basic native
and low level access methods available, like the JDBC – that are available for each data storage
engine. Secondary goal is to provide a design, that would be elastic and flexible enough to
provide means for applying access optimization methods globally i.e. regardless of the local data
storage model, or its local optimization capabilities. Such optimization techniques might later
be manually or automatically applied for specific and / or defined data request types.

The research on integration of the distributed, heterogeneous, fragmented and redundant
data is present since the ’80s of the twentieth century in form of federated databases. However,
back then the available set of storing solutions mostly concerned the relational model, less
attention was focused on alternative data storage models. Another aspect was that then the data
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were in general placed locally and the internet connections did not allow for significant data
transfers, not to mention live or streaming communication.
Proliferation of numerous new, dedicated data storage engines and their models in recent years
has made the heterogeneity move forward and become a major aspect of data integration. Apart
from evolution of relational model into new SQL standards, the model has also evolved and
resulted in object-relational, and even purely object data stores. Of course this object-oriented
revolution was originating in a great widespread of object-oriented paradigm in programming
languages, such as C++ or Java. For past fifteen years or so, also some new data analytical facilities
in terms of data warehouses have emerged. The extract, transform, load (ETL) environment
has emerged and business intelligence (BI) has become to play the significant, if not leading
role in the data processing enterprise. Dissemination of broadband internet access popularised
the online data access across numerous small and medium businesses. The data storage and
processing were no more applied only in the domain of scientific researchers and large IT
companies. The major boost of electronic data growth, computation and transfer were caused
by the online banking, financial operations and trading. Moreover, the projects of digitizing the
governmental institutions, their work flow and bringing in the online services for citizens made
the electronic data processing as popular as never before in history of mankind. Finally, last but
not least, the entertainment area has sealed the online data manipulation to become popular
and an important aspect of everyday life in civilized world.

Regardless of the data origin or its goal, there is a serious demand for presenting complete
and final business information transparently. This information might be combined of data stored
in underlying resources however, must precisely match the client demands and requirements
with neither dependency, nor client awareness of the integrated system underneath mechanisms.
The data resources, or storage engines in general refer to any data source and / or feed that has
become a part of the integrated grid. This includes – the most common – relational databases,
object-oriented and object databases, XML / RDF data stores, NoSQL data stores, NewSQL data
stores and potentially even the database federations or HDFS based storages. The urging need
for integration of such a wide spectrum of different paradigms and models is caused by the
public, common, and therefore unspecialised data demand by IT unaware clients.
However, problem is that the front-end software for data access is written in a top-level language
that leads to additional complexity while considering low level, query-based, back-end data
access. This involves the impedance mismatch issue for the object-to-relational case but this
lack of adjacency is present while accessing any type of persistent storage. This always forces
some additional data source-specific code to be written.

Therefore the process of integration must therefore, be completely transparent for the end
user. Each data request should be independent and unaware of the well encapsulated data
source model and structure. This way the mediation – that would be able to conform some
common integration and back-end communication schema – must be made available for the top
level abstraction. This is done with a mediating approach that is specific for every data source,
but on the other hand, assures the common communication scheme for information transfer
towards the global, integration abstraction. Thus each mediator must work on a black box basis
so that the top-level integration abstraction can use it for indirect access to the requested data.
This is possible due to the generic nature of the mediator interface for higher levels of abstraction
while at the same time the mediator keeps the resource interaction opaque. The global integrator
enables access to integrated view with use of some API (e.g. REST) that can be utilized by the
client without any prior knowledge of original data characteristics

The top-level integration abstraction works as a virtual metadata repository, storing the data
location and access details with the use of a unified schema. All of the local access methods
and particularities are supplied with the registered mediators instance of each data source. The
resources distribution, fragmentation, replication, redundancy and heterogeneity characteristics
are required to be a product of manual configuration, made by the integration administrator
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that has to design each and every of the global, integration views.

Keywrods database, data integration, integration middleware, heterogeneous integration,
middleware optimization, mediation





RRoozzsszzeerrzzoonnee ssttrreesszzcczzeenniiee

Integracja danych jest problemem rozwiązywanym od wielu dekad, który moim zdaniem nadal
nie doczekał się całościowego rozwiązania. Niniejsza rozprawa zawiera propozycje komplek-
sowego podejścia do problemu przeźroczystego dostępu do heterogenicznych danych. Roz-
wiązanie oparte jest o architekturę integracji danych wykorzystującą ideę Qboidu. Celem tej
architektury jest dostarczenie uniwersalnego meta-modelu integrującego dostęp do hetero-
genicznych danych (m. in. relacyjnych, XML i NoSQL) w sposób zunifikowany dla zapytań
klienckich. Model ten jest zrealizowany w postaci middleware zbierającego informacje o do-
stępnych źródłach danych jednocześnie pozwalając na złożenie w nim metod optymalizacji
dostępu do tych danych. Dostęp do danych dzięki proponowanej architekturze jest realizo-
wany w identyczny sposób bez względu na to z jakiego źródła danych pochodzi żądany zasób
informacji. Głównym celem pracy jest zaprojektowanie rozwiązania opartego o dedykowany
model architektury, który będzie w stanie rozwiązać najbardziej istotne problemy pojawiające
się podczas integracji danych. Dlatego też prezentowane rozwiązanie będzie w stanie pośred-
niczyć pomiędzy integrowanymi źródłami danych i ich wirtualnym i niezależnym od źródła
danych globalnym widokiem. Widok ten będzie następnie wykorzystywany dla obsługi zapytań
klienckich. Ponadto, proponowane rozwiązanie stawia sobie za cel umożliwienie dostępu do
integrowanych danych za pomocą natywnych metod dostępu, charakterystycznych dla modelu
lokalnego źródła danych. Dodatkowym celem jest umożliwienie zastosowania w architekturze
integracyjnej mechanizmów pozwalających na stosowanie dodatkowych metod optymalizacji
dostępu dla konkretnych typów żądań klientów. Na najniższym poziomie dostępu do każdego
ze źródeł danych wykorzystany zostanie dobrze znany wzorzec mediacji. Dzięki temu, możliwe
będzie podłączanie się do integrowanych źródeł danych w typowy dla nich sposób. Albowiem
inaczej, wygląda wykorzystanie języka wysokiego poziomu do obsługi relacyjnej bazy danych,
bazy typu NoSQL czy pliku z danymi. Za sprawą prac prowadzonych nad federacyjnymi bazami
danych pierwsze badania nad integracją danych datuje się na lata osiemdziesiąte dwudziestego
wieku. Jednak wówczas liczba możliwych modeli przechowywania danych była mała i ogra-
niczała się właściwie w większości do relacyjnych baz danych. Inną cechą danych w tamtym
okresie był fakt lokalności danych. Natomiast połączenia internetowe były limitowane nie tylko w
przepustowości ale również nie było do nich powszechnego dostępu. Stąd dane miały charakter
lokalny a ich przesył był wręcz niewskazany, nie wspominając już o analizie danych przesyłanych
na żywo. W ostatnich latach można jednak zaobserwować wzmożony rozkwit nowych źródeł
danych o zróżnicowanych zastosowaniach, a więc i modelu. Z tego względu mamy do czynie-
nia ze wzrostem znaczenia heterogeniczności w aspekcie integracji danych. Oprócz rewolucji
obiektowej w językach programowania tak jak choćby C++ czy Java, która przeniosła się na
nowe modele obiektowo-relacyjne oraz obiektowe, mamy również do czynienia z kompletnie
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nowymi paradygmatami. W ciągu ostatnich piętnastu, dziesięciu lat, dodatkowo można było
zaobserwować wzrost biznesowego znaczenia narzędzi analitycznych typu hurtowni danych.
Ponadto, narzędzia typu ETL czy BI stały się głównym obszarem zainteresowania biznesowego.
Nie bez znaczenia dla formy współczesnych źródeł danych i ich wykorzystania jest również
rozwój technologii szerokopasmowego dostępu do internetu. Internet stał się nie tylko szybki
i bardziej przepustowy, ale dodatkowo dostęp do internetu został upowszechniony w bizne-
sie jak i w codziennym użytku osobistym. Pierwotne składowanie jedynie danych naukowych
bądź czysto księgowo-biznesowych okazało się niewystarczające dla współczesnych wymagań.
Powszechność bankowości internetowej, transferów finansowych oraz handlu internetowego
zmieniła całkowicie ilość i naturę informacji jakie należało utrwalać w składach i bazach danych.
Wprowadzenie cyfryzacji w sektorze państwowym również wymogło na urzędach i instytucjach
państwowych wprowadzenie dodatkowych źródeł składowania, a elektroniczna droga rozpatry-
wania spraw obywateli sprawiła, że wykorzystanie źródeł danych stało się tak powszechne jak
nigdy wcześniej w historii. Ostatnim, ale nie najmniejszym, czynnikiem różnicowania źródeł
danych stała się rozrywka. Cyfrowa rozrywka i sieci społecznościowe spowodowały masowe
upowszechnienie się wykorzystania źródeł informacji na wszystkich etapiach rozwoju i życia
codziennego każdego człowieka z obszarów rozwiniętych współczesnego świata. Bez względu
na pochodzenie danych i ich przeznaczenie, koniecznym staje się ich przeźroczysta prezentacja.
Prezentacja informacji może być oparta o dane zebrane z wielu źródeł. Dlatego też częstokroć
jest ona poprzedzona zbieraniem i łączeniem danych z wielu źródeł, które następnie są prezen-
towane jako jeden, wspólny widok informacyjny. Ostatecznie, zwracane informacje nie powinny
zawierać nadmiarowych informacji o tym skąd pochodzą ani o tym od czego zależy dostęp.
Powinny one natomiast zawierać informacje dokładnie odpowiadające na żądanie klienta. Przez
zasoby czy źródła danych rozumieć należy mechanizmy i sposoby składowania danych. Należy
tu wymienić takie źródła danych jak choćby – najpopularniejsze – RSZBD, obiektowo-relacyjne
bazy danych, obiektowe bazy danych, składy danych XML / RDF, składy NoSQL rozwiązania
typu NewSQL, a nawet rozproszone systemy składowania plików typu HDFS czy GFS. Olbrzymie
zapotrzebowanie na integrację tak szerokiego spektrum zasobów danych jest spowodowane
przez powszechność zastosowania mechanizmów składowania danych w coraz to nowych ob-
szarach pracy i życia codziennego. Wynika stąd jedna bardzo ważna cecha. Chodzi mianowicie
o przeźroczystość i łatwość w dostępie do danych bez względu na złożoność ich składowania. Ze
względu na powszechność zapotrzebowania na składowanie danych wyspecjalizowana wiedza
ekspercka nie może być zatem wymagana od każdej osoby, która potencjalnie będzie chciała
wykorzystać dane z wielu źródeł. Odpowiedzią na ten problem staje się właśnie proponowana
architektura oparta o Qboid. Zauważyć należy, że oprogramowanie służące jako bezpośrednia
droga komunikacji z architekturą integracyjną napisane jest z wykorzystaniem języków progra-
mowania wysokiego rzędu. Zapewnia to dodatkowe ułatwienia dla programistów w dostępie
do żądanych danych, do których dostęp w przeciwnym razie musiałby być niskopoziomowy i
oparty o zapytania. To właśnie tu pojawia się zagadnienie obiektowo-relacyjnego niedopasowa-
nia impedancji. W takich sytuacjach zawsze wymagana jest dodatkowa złożoność kodu, czy to
postaci gotowych frameworków typu ORM, czy własnego kodu wykorzystującego sterowniki
typu JDBC.

Nie do przecenienia jest fakt, że dobrze zaprojektowana integracja danych musi być prze-
źroczysta dla końcowego użytkownika. Każde żądanie skierowane do integratora musi być
niezależne i niezwiązane ze sposobem pozyskiwania danych z różnych źródeł. Z pomocą przy-
chodzi w tej sytuacji podejście oparte o mediację. Dzięki niemu, każde źródło danych jest
obsługiwane przez dedykowany kod wyspecjalizowanego mediatora. Z drugiej strony, każdy
mediator zna wspólny schemat komunikacji pomiędzy każdym mediatorem a integratorem. W
taki sposób dostęp do lokalnych źródeł jest zapewniony, przy czym dodatkowo mediator jest w
stanie przekazać informacje z lokalnego źródła do globalnego integratora. Integrator z kolei, już
w transparentny sposób, przekazuje te informacje w odpowiedzi na żądania klientów. Każdy



Rozszerzone Streszczenie 15

mediator wobec tego, pracuje w sposób niewidoczny dla klienta, przy czym integrator posiada
jedynie dane, które mediator udostępni dzięki wspólnemu schematowi komunikacji. Sam in-
tegrator udostępnia widok danych dzięki prostemu API (np. REST), dzięki któremu dowolny
klient może wykonać zapytania bez uprzedniej wiedzy na temat charakterystyki danych. Główny
integrator jest swoistego rodzaju abstrakcją działającą jak wirtualne repozytorium metadanych
opisujących docelowe dane. Instancja integratora w postaci Qboidu przechowuje wszystkie
dane adresowe i dostępowe dzięki uniwersalnemu schematowi. Wszystkie lokalne metody dostę-
powe i charakterystyki danych są dostarczane dzięki zarejestrowanym w Qboidzie mediatorom
poszczególnych źródeł danych. Główne problemy wynikające z integracji danych takie jak ich
rozproszenie, różne schematy fragmentacji, nadmiarowość czy heterogeniczność ich źródeł są
reprezentowane przez ręczną konfigurację wykonywaną przez administratora integratora, który
jest odpowiedzialny za zaprojektowanie każdego widoku integracyjnego.
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CHAPTERCHAPTER

1
IInnttrroodduuccttiioonn

“There is nothing more difficult to take in hand, more perilous to conduct or more
uncertain in its success than to take the lead in the introduction of a new order of
things."

— Niccolo Machiavelli, The Prince (1532)

In modern world the amounts of stored computer data – as a form of information – has been
rapidly growing since the beginning of the Internet era. This data, often scattered across the
Internet, suffers from all of the issues known to the data integration domain. It includes distri-
bution, fragmentation, redundancy (i.e. replication) and the most importantly – heterogeneity.
Hence, gathering such information and presenting it in the human understandable and readable
form requires much effort. Getting the requested aspects mostly involves human interactions
that requires laborious and error-prone analysis.

At present human part is still crucial to the integration process, its influence should be
reduced to minimum and made self-checking.

1.1 Motivation

The integration of data sources, as the data storage facilities, in modern world mainly focus
around the databases in terms of DBMS. A data source can be considered as every piece of soft-
ware or hardware that can be accessed for requested data. This includes file systems, spreadsheet
programs, networking services or memory access. Hence, the digitized data can be recorded
as a stream, or a piece of memory in multiple ways. Considering the number of data models
and their related access methods we have a serious problem of abundance. While it is not bad
per se, but when a considerable unified interface is the goal – the solution would require an
accurate and holistic understanding of the problem. Prudential assumptions for thoughtfully
designed architecture requires comprehensive justification of design choices and decisions.
Thus, a firm theory of software engineering would be taken into consideration during the design,
implementation and development of postulated architecture.

Along the years software engineering has defined some common situations where a pattern
can be found. These frequently occurring circumstances have also been classified and some
common solutions have been proposed [1]. Based on the accurate understanding of software
engineering conceptual tools, the general integration interface requires a deeper discussion on
variety of its aspects.

The goal of this dissertation is to design and implement an initial base for a major architec-
ture capable of providing a unified data access interface. As the integrated data will originate
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from many – presumably enterprise-sized – data sources, the proposed solution must be de-
signed to be lightweight. While combining data from multiple data sources, potentially with high
volume, this is a prerequisite not to move the actual, stored data from the original location. This
condition applies to the integration process. In other words the integration should not collect
the data itself. On the other hand, the developed architecture should provide special means for
its clients, to receive the target data located at the integrated data source.

1.2 Considerations, Objectives and the Thesis

The idea designed and implemented in this thesis, assumes a virtual integration of an arbitrary
data source into a form of a central and homogeneous, non-redundant, schema independent
and consistent virtual meta-repository. Such unified data access interface requires considering
safe (i.e. assured reliable results) and secure (i.e. authorisation, privacy, roles etc.) infrastructure.
The proposed solution is designed to work with any kind of registered data source and can be
easily extended to work with new data sources, not even considered as of the moment of initial
development. All of the dissonance between the data models (e.g. the impedance mismatch)
and the high-level programming languages used by developers, will be resolved due to dedicated
architectural design of the proposed solution. It is also not likely that each programmer would
learn / know every data source’s particularities.

These factors reveal a justified need for providing a transparent and effort-less API to the
legacy data sources, enabling effective and straightforward data manipulation without signifi-
cant additional resources, by simply using lightweight and high-level programmer friendly REST
API.

The novel approach of this dissertation involves transparent integration of heterogeneous,
fragmented, replicated and distributed data sources utilizing dedicated API. This API is available
to client’s requests and supplies a common data integration perspective/schema consisting of
data access objects (a.k.a database object reference – DOR) enabling fast and native access to
actual target data. The native access methods are crucial to get the highest speeds while access-
ing and manipulating data at the legacy data source. The client is not aware of actual resource
location, data model or even role which is used while connecting. The legacy data source content
is mapped to specially designed integration schema that can be created regardless of the local
schema at the data source (if any). Therefore integration schema can be transparently queried
by client’s calls using the API, for integrated data that is being described by this schema. Due to
the requests via Representational State Transfer (REST) – which is a software architecture style
based on HTTP stateless protocol – communication is narrowed to well known, basic concepts
available and easily mappable in every major high-level programming language that client might
use.
However, this versatility must involve a kind of a translating layer that would enable covering all
of the integrated data sources’ particularities. Such a dedicated interface would be capable of
data communication between the particular data source and the integrating instance. This piece
of software will be referred to as a data source mediator. The mediator has two types of interface –
a reporting interface and the data source interface; however, the latter one – the mediator-to-data
source communication interface, can only be used by the mediator itself. In other words – the
mediator has to work as a black box so that the wrapped resource would be opaque to the
upper layers of the integration architecture. The last assumption about the mediator is that its
reporting interface is generic; meaning its reliability and functions are independent of the data
source type.
The important part of the integrating architecture assumptions is its transparency. Each client’s
request is made towards the integrating service API and is not aware of the actual data source
particularities, like, model, location, schema, role etc.
As the integrated data potentially involve enterprise-sized data sources, materialization of the
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integrated data apart from its origin location, is not considered. This does not include cases
when the requested results must somehow be returned to the calling client.
Additionally, considering potential integration of replicated data sources, the integration schema
would have to consider replication representation by design, due to potential optimization gains
regarding current particular data source workload and networking performance.

The concluding theses are:

1. Legacy data sources can be transparently integrated and interfaced with a Qboid based
virtual meta-repository, while the data could still be gathered utilizing RESTfull ser-
vice, without additional data manipulation, nor replication.

2. Well known optimization mechanisms and dynamic performance metrics can be im-
plemented for Qboid based architecture, enabling optimized data access without in-
terfering with the local data source potential optimization engine, or its data schema.

The thesis has been verified and tested accordingly with the use of prototype implementation
based on software engendering S.O.L.I.D. principles and modular approach. This is not only
imposed by the clean code postulates but also required due to highly complex nature of the
problem.

At the beginning the state of art in the field of numerous data storage engines and present
integration solutions for those heterogeneous data sources were analysed. The most notable set
of solutions has been isolated with their assumptions, advantages and weaknesses, considering
their purpose and possible adaptation for the introduced architecture – Chapter 2. The resulting
conclusions from this work, combined with the tenet of virtual metadata repository and the
author’s experience based on commercial software craftsmanship best principles and practices
1 , enabled a design of an Qboid-based architecture that tends to face the most prominent
integration issues – Chapter 3. The goal for the devised architecture is to become a lightweight
and generic solution – in terms of communication and data transfer – that provides a flexible
and reliable platform for integrating every data source equipped with a dedicated mediator
component. Due to prototypical, read-only nature of the presented solution a dedicated ap-
proach based on CQRS is postulated. Based on CQRS the author additionally propose a couple
of approaches that might be considered when balancing between the separation and complexity
while reducing architecture’s coupling – Chapter 3.2.4.

For the purpose of client access optimization, advanced design patterns have been con-
sidered for utilization, in order to allow effective client handling without the need of platform-
dependent multi-threading – Chapter 3.2.7. The same Chapter also considers the architecture’s
resemblance to the well defined, and accustomed standards such as OMG CORBA – Chapter
3.2.5.

The first prototype implementation lacks functionalities of a complete enterprise class
solution. However, this allows transparent and reliable access to the integration-participating
resources for the purpose of testing its utility value towards application of source-independent
optimization techniques.

This stage of analysing various optimization techniques – Chapter 4 – involved the usage
of three well documented and tested optimization approaches. The goal was to prove that the
architecture is flexible enough for arbitrary optimization. It involved the process of accommo-
dating the architecture with optimizations based on different approaches, varying from well
known indexing, through order dependencies – involving query rewriting (Chapter 4.2.3), to the
advanced, task-oriented data storage model appliances according to the data’s nature – Chapter
4.2.4.

1 Such as agile development (SOLID, DRY, KISS), clean code, low coupling recommendation, and test driven
aspects.
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Devising of the architecture was based on the analysis of existing solutions that were consid-
ered related in terms of data integration architecture. The conclusions resulted in some general
assumptions and considerations that become the basis of the proposed solution. The postulated
architecture assures completely transparent read access for arbitrary, registered data which is
presented by Qboid’s integration view.

Apart from access transparency, the most effort has been devoted to efficient data transfers.
This feature involves using pure metadata for describing the target "heavy" data. With such an
approach, the actual data is being transferred only on as-needed, lazy basis – while all of the
optimization, localization and access have been assured by the metadata.

The prototype testing environment realising the above goals and functionalities has been
implemented with Java language. Additionally, for the sake of future development existing
Spring Framework and JDBC drivers have been used for connecting and developing the client
REST API. The universal approach of dependency injection has also been used across the entire
prototypical testing environment. Networking connections are based on the TCP/IP stack.

1.3 History and Related Work

All kinds of digital video, audio, statistical, financial and industrial data whose volumes are kept
growing almost exponentially – forced multiple dedicated data storage technologies. This in
turn, caused a need for data integration. However, the integration is not a new area of interest
and research. The aspects of data integration have already been considered in 1980’s while
the concept of federated databases first emerged. Next was, the introduction of mediator and
wrapper concepts formulated by G. Wiederhold in [2] in early 1990’s .Since then there were many
solutions based on the mediation model in different ways and flavours 2 . The mediator was
defined as:

DEFINITION 1.1: Mediator

Mediator – an autonomous software module capable of processing data from an underlying
data source, according to the general system requirements.

The mediators are expected to be resource independent. The second concept considered in [2]
is a wrapper. It is considered as a piece of software that lies between the mediator and the target
data source. What is more (just as in the case of the presented solution), the Wiederhold states [2,
p.17] that there is no need for a user-friendly mediator’s interface. What mediator’s interface is
expected to be is the machine- and communication-friendly interface. This is the responsibility
of the client top-level API and client application to provide applicable data display depending
on the client type. The goal of the actual mediation process is gathering the information about
data stored at storage engines. This should be executed in the user-undisclosed manner – while
transparently, efficiently and reliably delivered. The approach presented in [2] has been followed
by numerous implementation from early projects such as federated multidatabase Pegasus
[3–5], Amos [6], heterogeneous distributed database DISCO [7], to more modern and rather
enterprise related: IBM Infosphere Information Server for Data Integration [8], Oracle Data
Integrator [9] (oracle-oriented), Oracle GoldenGate [10] (heterogeneous), Pentaho [11], Talend
Data Integration [12].

Next in evolution there were various Object-Relational Mappers (ORMs) and Data Access
Object (DAO) solutions aiming at mapping the existing data from the relational systems into
object-oriented structures of programming languages. On the other hand, these solutions also

2 None were closely related to the number of issues considered by the proposed solution, which actually also
uses mediators as low-level layer data source connectors.
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tended to provide means for persisting programming language objects. It was also the time
when the first object-oriented databases were introduced as an alternative to those based on
relational theory [13].

As of the federation model, it has evolved together with the mediator-based concepts in
1980s and early 1990s. The representatives of that era, were early prototypes of mediators used
in the federated systems like: TSIMMIS [14], Garlic [15], and Mariposa [16]. The research also
involved federated data based on disparate schemas [17] (later elaborated also in [18]), and
application semantic mismatch resolving [19]. Alike the presented architecture some research
was postulated back in 2005 [20] to use a concept of a general dataspace that should be able to
model any kind of relationship between two (or more) participants. This idea can be interpreted
in terms of Qboid’s virtual data integration views.

The most recent research, like the BigDWAG project, is also based on the mediators used
in the federated database approach. In contrast to previous understanding of mediator as
an instance that is expected to cover domain-specific functionality, BigDWAG use mediators
(i.e. BigDWAG islands) to span multiple data models. On the other hand, the same as the
Qboid proposed in this dissertation, BigDWAG also aims to focus on data replication and its
location – unlike the generic mediator concept. It is worth mentioning that while the Qboid
based architecture can easily provide query execution across multiple data storage engines
(see Chapter 4.2.4) with result joining, and schema ready for metrics, whereas BigDWAG still
lacks [21] partial query executions and adaptive query processing depending on the data source
performance status. However, it must be noted that Qboid architecture is a very basic prototype
whereas BigDWAG is a fully functional prototype that has been developed by the experienced
and dedicated team.

Currently the most widespread solutions for data integration are the extract, transform, load
(ETL) systems that can build schema, handle error cleaning, provide attribute transformation
rules to common units, and remove duplicates. However, in terms of modern days data nature
this solution has become very costly. The bulk-loading data warehouses that used to keep all of
the data, presently tend to fail while considering the real-time data streams, and additionally
mostly not ready for semi-structured or text data. The ad-hoc solution to these problems is
provided in the form of data lakes where all data are placed. In such case the persistence is
handled by file systems that mostly base on open-source HDFS, and Hadoop solutions. The
down side of this solution is that still it lacks important features like true transactions and its
batch nature makes it not suitable for all kinds of applications. However, this began to change
during last year [22].

Due to enormous research attempts last two years, it is almost certain that in the nearest
future the data storage mechanisms will evolve significantly compared to what legacy and partial
/ ad-hoc solutions are presently available.

1.4 Thesis Outline

The thesis is divided into the following chapters:

Chapter I: Introduction The first chapter presents the motivation as well as historical and
present research landscape of the exploration of the mediator-based heterogeneous data inte-
gration. It depicts the dissertation objectives and the technologies considered briefly.

Chapter II: The State of the Art and Related Works The state of the art and the related works
chapter conducts the discussion of data source model taxonomy and the reasons for present
data storage model types proliferation. It additionally focuses on theoretical approaches that
have already been considered in the literature. An extended view is being considered regarding
distributed storage solutions as one of the prospective future evolutionary steps for storing data
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Chapter III: The Model of the Architecture This chapter considers the patterns and general
assumptions that should be taken under account while the Qboid based architecture is involved.
It also compares the Qboid based architecture to the concept of OMG CORBA Implementation
Repository that the Qboid is partially patterned on. The chapter contains an in-depth discussion
of the Qboid architectural layered design. It also elaborates on the communication schema
that has been designed for the architecture, and a detailed description of its components. The
chapter also describes and follows a complete workflow of the Qboid-based architectural life
cycle.

Chapter IV: The Applications This chapter discusses the proof-of-concept testing optimiza-
tion scenarios of the postulated Qboid integration architecture prototype. It provides detailed
experiment assumptions and testing environment descriptions. The tests were based on rel-
atively large resulting sample data for heterogeneous data storage engines. Additionally the
chapter includes the tests results confirming the expected utility of the Qboid-based architecture
for the integration and heterogeneous optimization purposes.



CHAPTERCHAPTER

2
TThhee SSttaattee ooff tthhee AArrtt aanndd tthhee
RReellaatteedd WWoorrkkss

“Integrity is a concept of consistency of actions, values, methods, measures, principles,
expectations and outcomes."

— The Definition

As a Ph.D. dissertation it deserves to start with some philosophical justification for the discussed
solution due to settling the taxonomy and understanding how definitions have been recognized
in terms of proposed approach.
The following sections will also further process to some more in-depth overview of existing
solutions. However, one has to be warned that, considering the area of data storage and DBMS
it must be noted upfront, that the statements gathered here as an overview are accurate as of
the time of writing this dissertation. This is due to multidimensional, rapid changes in this field.
Thus, a level of abstraction has been preserved to provide more time-proof knowledge. For the
same reason, more detailed descriptions of chosen solutions have been carefully specified with
version classification for reasoning precision.

2.1 Integrity - the Philosophy of Integration

Consistency. Consistency is the key word that defines the way to approach final understanding of
the data integration problem. Presently our civilization is witnessing an informational revolution,
just as it was in the 18th century with the steam and combustion engine during the industrial
revolution and the electrical revolution at the beginning of the 19th century. Just as it happened
in the past, with steam and electricity - when everything changed to adopt the newly discovered
phenomena - presently our reality is being digitized. This means that in the evolutionary order
of things, we try to map the existing natural (i.e. as we percept it) information dialect - reality -
into newly discovered conditions i.e. the computer based inscription.

To succeed with this mapping, some definitions need to be formulated. First of all, what is
information - as the mapped subject - then? For the purpose of this dissertation, let us say that
information is a measure of entropy. On the other hand, we have to follow the definition of an
entropy as a measure of unpredictability/uncertainty of information content.

DEFINITION 2.1: Entropy

In terms of Information Theory Entropy is the average amount of information contained in
each message received.

In other words, the more information, the less chaotic environment we deal with. Now even
though sometimes we can not explain some of the phenomena - this does not mean that they

25
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are chaotic, we simply lack detailed information. So if the probability of an event A is 1 then its
entropy is 0.

Pr(A) = 1 =⇒ H = 0, H ∈ [0,1]

On the other hand the entropy of e.g. coin toss, is as high as it could be, only when the
probability of heads is the same as the probability of tails.

Pr(Head s) = Pr(Tai l s) =⇒ H = 1, H ∈ [0,1]

Now if we recall the physical research on micro-structure of the universe, we can find out
that the real fabric-made particles, regardless of the model, are located in great distances from
each other. Therefore we can state that every aspect of reality and thus - our life, consists entirely
of information defining an extremely sparse matrix of physical fabric.

Now let us refer to the digitalization of the information mentioned earlier. In computer world
this form of information is refereed to as the data.
To effectively handle information – or its digitized form – we always need some schemas to be
settled. In real life the schemas are passed to us as a raising process or discovered autonomically
as a result of learning. From the computer science point of view, an ontology as a formal and
explicit specification of common conceptualization is required. However, respective computer
model of data acquisition and ontology learning in the area of databases is not as dynamic as the
real life learning. Therefore the ontologies and schemas must be settled explicitly and without
any ambiguousness. Nevertheless some fields of computer science like artificial intelligence
or semantic web try to use RDF or XML languages to organize data; however, it is done only
for specialized and limited complexity ontologies. Despite such attempts to mimic the reality,
learning, intelligence, and the information storing capabilities by modern computer systems
and algorithms, they are still not even congruent to natural effectiveness of human brain.

Prior to remembering information or primitive data storing a way of the data acquisition
needs to be developed. Therefore, the next step in evolution of information utilization is the
communication. In society or adequately in computer world networking – the environment,
communicating and sharing data become gradually even more complicated, depending on the
number and diversity of communicating sides. The communication means that the stored data
has to be transferred between storing sides while keeping (over entire communication life-cycle)
its accuracy and consistency - namely the data integrity. Data integrity in general considers two
aspects. The basic concern is to assure physical integrity by correctly fetching and storing the
data. This includes using redundant hardware, error correction codes (ECC), uninterruptible
power supply (UPS), some of the RAID arrays, hash function, file systems with block level
checksums etc. All to prevent some unexpected external challenges. However, such techniques
must be used in considerable combinations. For instance, in the field of databases, assuring
that we use reliable transactions 1 is not enough because the RAID controller or the hard drive’s
internal write-cache might not be accustomed for this purpose. The second step is assuring
the correctness of the data in a concrete context, i.e. logical integrity. Logical integrity assures
that the data simply makes sense under defined circumstances. To ensure this kind of integrity,
databases e.g. include mechanisms such as check and foreign key integrity constraints that makes
the stored data fit into the conceptual assumptions of fixed schema. Both logical and physical
integrity can be disrupted by same factors like human error, design flaw, concurrent requests for
record manipulation. In such a case those factors violate one of the integrity constraints that
originates in the relational model but might partly be translated to the concepts present in other
models.

Let us then consider some of the most significant integrity constraints.

1 In the context of databases, a single logical operation on the data is called a transaction. A transaction is reliable
when it is ACID (Atomicity, Consistency, Isolation, Durability) - see [23]
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• The most general is the entity integrity which must contain the best row id that can have
multiple forms regarding different models: primary key (relational), object id (object), key
(key-value stores), document id (document stores) etc. Typically enforced through indexes
or constraints like UNIQUE or PRIMARY KEY.

• Things get more complicated when we consider the second constraint i.e. the referential
integrity. Referential integrity ensures the relationships between tables remain preserved
as data is inserted, deleted, and modified. It is based on the assumption that a foreign
key in one table refers to the link field (mostly primary key) in another table. In other
words it should not be possible to remove the linked record while leaving the referring
record, or throwing an error. In simple terms, the referential integrity guarantees that the
target reference (’refers’ to), will be found. While with RDBMS it is pretty straightforward
because we consider a foreign key to primary key relation, it is not obvious to fill the
referential integrity constraints by other models. The NoSQL databases in general were
designed to scale (See Definition 2.2 p. 31 ) better than RDBMSs. However, this has been
achieved at the cost of consistency, of which referential integrity is part of. Thus, most of
the NoSQL solutions do not support the referential integrity and it becomes an application
responsibility to assure such a constraint. There is, however, one exception to this rule
i.e. the graph databases 2, that were designed especially to support explicit relations in
the form of edges between nodes. So, if a node is deleted, its edges will be deleted too,
preserving the constraint 3.
In general this constraint is enforced through the FOREIGN KEY and CHECK constraints.

• Domain integrity requires more effort to define it properly. Domain integrity validates data
for a column of the table. It requires that the primary units of data are atomic. Domain
integrity ensures the data values inside a database follow defined rules for data type,
length, size, values, range, and format. They are typically enforced through the following
constraints: FOREIGN KEY, CHECK, UNIQUE, and DEFAULT.

• User-defined integrity is the most general and arbitrary of the integrity categories, and it
enables setting up some business rules, defined by the user that do not fit the remaining
categories. However, all of the integrity categories support the user-defined integrity.

Since 2012 most of the modern databases support integrity constraints and consistency
model (i.e. predictable results) of data storage and retrieval.

Apart from the discussed mandatory integrity requirements, we should also consider data
retention policies – based on the political or privacy protection ground – that ensure adherence
to the laws and regulations concerning specific data and rules defining the period of time it can
be retained in a particular database.

2.2 Integration - Cure for Chaos of Multiplicity, General
Considerations

The problem of multiple data sources has emerged together with the immense growth of com-
puter utilization in almost every aspect of everyday life and widespread of broadband Internet
access. Due to the enormous number of data being generated in distinct ways, the need to
consolidate such data in a unified way has become an urgent demand of modern computer
world. The solutions like federated databases or the mediator based architectures emanate this
pursuit of data access unification.

2 E.g. Neo4j which actually supports not only ACID transactions but also guarantees that there are no dangling
relationships.

3 Still, for some cases, like where data-model requiring dynamic, post-priori schema, with meta-schema elements,
it would not be a handy choice to use RDBMS, even with its referential integrity.
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To understand the complexity of integration process one has to be aware of the past and
current achievements in the field of data integration. To obtain the expected goal, which is
the access unification, it is required to gain some kind of translator or mapper that could
expose the intended type of stored data in the form of canonical protocol. Rapid database
adaptation, started [24] in 1960s 4 , led in a natural way to the need of integrating and merging
the proliferating types of data repositories. Therefore, as of the 80s of the last century, the concept
of federated databases has been risen. This was a response to a need of integrating the databases
while covering distribution, heterogeneity, data fragmentation and redundancy. Moreover, since
late 80s of the twentieth century there have been numerous papers on the wrappers, mainly
focusing on relational databases. Motivation behind the emerging wrapper technologies was
to diminish the difference in approach between the legacy data source (e.g. database) content
manipulation protocols, and the superior data request calls that should not or can not be aware
of the underlying database undergoing mechanisms.

2.2.1 At the beginning there was a relation

The leading solutions since the beginning of the database era have been based on the relational
model proposed by Edgar F. Codd in [25]. Codd proposed change of CODASYL 5 (network
model) approach from the linked list of free-form records into the table of fixed-length records
while each table represented a different type of entity. The linked list model was inefficient
while considering sparse cases when any part of the data record could be left empty. Codd also
introduced the data normalization 6 (see also 2.3.1) concept that assumed refractorization of
data into smaller tables 7 according to its schema. This data isolation caused its manipulation
to deal only with the adequate table and propagate through the rest of the database using the
defined foreign keys. Compared to the previous concepts of CODASYL, no pointers and links
rewriting was necessary when the database content was to evolve. The relations of one-to-many
(hierarchical model) or many-to-many (navigational model) allowed to reference between the
entities and thus, enabling efficient data modelling. The relational model occurred to be stable
and well-suited for the client-server programming. It become a predominant technology used
for storing schema based data for web and business applications. The fundamentals of current
RDBMS were defined eventually in [26] and [27] (System-R [28, 29]). Additionally, in order for
DBMS to operate efficiently and accurately, the general assumption for the relational model was
based on the ACID rules for the transactions 8 to follow. The rules were introduced in [30] and
finally the ACID term was coined in [23].

4 The term "database" was first coined in 1964 by the military information system workers with reference to the
collections of data shared by end-users of time-sharing computer systems. At that time the civil terminology was
rather "integrated data processing" but soon evolved to utilize the "database" term with reference to data collections
that fit the consolidated data requirements.

5 A consortium formed in 1959 to guide the development of a standard programming language that could be
used on many computers.

6 The process of organizing the attributes and tables of a relational database to minimize data redundancy.
7 Table (set of rows) can be considered a convenient representation of a relation (set of tuples), but the two

are not strictly equivalent. For instance, the relation with three attributes and five values can be represented as a
table with three columns and five rows. The table may have duplicated rows (values) while the relation can not have
duplicate tuples.

8 Transaction – a single logical unit of work performed against the database. Transactional operations are
coherent and reliable, whereas independent of other transactions.
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INFOBOX 1: ACID priciples

• Atomic : A transaction is a logical unit of work which must be either completed with
all of its data modifications, or none of them is performed.

• Consistent : At the end of the transaction, all data must be left in a consistent state.

• Isolated : Modifications of data performed by a transaction must be independent
of another transaction. Unless this happens, the outcome of a transaction may be
erroneous.

• Durable : When the transaction is completed, effects of the modifications performed
by the transaction must be permanent in the system.

While Codd developed the structure for relational databases, the declarative query language was
also developed by the IBM employees Donald D. Chamberlin and Raymond F. Boyce [31]. The
query language evolved from the terse mathematical syntax of SQUARE 9 into SEQUEL, with the
linear notation and block-structured English keywords syntax easy to modify and maintain; and
finally due to the trademark collision with other companies the name was changed by removing
vowels to form SQL.

Due to constant evolution of modern technologies, the distance between the relational
databases (design originated in 60s) and the current, leading methodologies (modelled with
complex UML) has increased. This includes the software engineering evolution towards the
object-oriented paradigms of modern programming languages (e.g. Java, C++, C# etc. ) and
even more interesting, new middleware designed for Internet communication like the CORBA
standard or the XML/RDF based web technologies. The evolution also brought some novelty to
databases.

Considering emerging object-oriented programming in 1980s, the designers and program-
mers also moved from treating attributes of table records as extraneous and individual fields to
the more object based approach. This switched the main perspective from the database relations
scope to the relations between the objects and their attributes. That is when the object-relational
impedance mismatch problem came in first. The problem can be described in general, as a set
of difficulties while migrating the data from the database tables to application objects. To face
the issues behind the impedance mismatch, some dedicated solutions were devised.
First of all, to eliminate the relational-object "gap", a new database model has emerged – that
aimed to eliminate the relational part – and treated the data in an object manner. A couple
of new object 10 and the object-relational databases have been developed, providing native
object-oriented languages, alternatively to purely relational SQL. Due to the fact that object
databases got integrated with the object-oriented programming language, the same model of
data representation guaranteed the consistency. Object Oriented Database Management Sys-
tems (OODMBS) become especially useful for storing complex data, as there was no need for
columns and rows. Instead the relations were preserved directly between data objects. Moreover,
many-to-many relations could have been achieved using pointers that were linked to objects
and thus, established this kind of relations between them.
On the other hand, in the early 1990s, the object-relational DBMS (ORDBMS) chose to take some
of both, relational and object world. The differences between relational and object-relational
DBMSs deserve a detailed distinction (see 2.3.1). In general – by contrast to the object databases
– while using the mixed model, data ought to be stored in database and it should be manipu-

9Specifying Queries As Relational Expressions
10 MUMPS (1966), Gemstone (1982), Versant (1988), db4o (2000)
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lated with query language. Thus, the object-relation model would have to consider keeping the
declarative query language while adding object concepts.

Despite proliferating new models, the relational model has occupied its predominant po-
sition as of the enterprise applications of databases – at least until present. A comprehensive
overview of the modern data storing solutions will be presented in the following sections.

2.2.2 Revolution - the Web changes everything

Not Only SQL. Apart from immense growth of relational databases and their massive adoption,
the first research on object and – even more surprisingly - NoSQL based database is dated to
1980 and 1966 11 respectively. However, since the early (as already mentioned – 1966) NoSQL 12

introduction, the situation has changed dramatically and forced massive adoption of arising
NoSQL models in 2000s. This was due to Internet access widespread and the fact that it has
become part of everyday life for most of the civilized world. The amounts and sizes of data that
had to be collected and stored grow exponentially (see Figure 2.1). The augmentation of new

Figure 2.1: Increase of web data storage.

data and its increasingly complex nature that also often had to be changed dynamically and
accessed instantly, caused rapid development of dedicated and highly specialized NoSQL data
models. Responding to this demand, post-relational data stores aimed at specific needs of the
systems that required rapid data delivery. This resulted in compromise solutions between the
traditional database models and the new, NoSQL approach 13 . The NoSQL concept came up as
a result of a few reasons due to Internet proliferation. Firstly, the present relational databases
could not easily scale (i.e. system ability - as discussed in [32]) to handle unprecedented data set
sizes.

Scalability The scalability term is a system property that is quite complex and thus, difficult
to form in a concise definition [33].

11 MUMPS (Massachusetts General Hospital Utility Multi-Programming System) or alternatively M, provided
ACID (Atomic, Consistent, Isolated, and Durable) transaction processing with build-in, schema-less database.

12NoSQL was first used by Carlo Strozzi in 1998. It was used to name his Open Source, Light Weight, DataBase
which did not have the SQL interface.

13 As there is no strong definition of the NoSQL concept author will develop one in following section (see 2.3.1).
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DEFINITION 2.2: Scalability

Scalability is the desired property of a system, network, or process to handle a growing
volume of data in a capable manner or its ability to be enlarged to accommodate such
growth.

In particular, we can refer to the online transaction processing system or the database manage-
ment system to be scalable as it enables more transactions due to new CPU or storage added
transparently and in a hot-plug manner. Some other examples of scalable systems are routing
protocol, peer-to-peer (P2P) architecture or distributed nature of Domain Name System (DNS).
Although relational solutions allow horizontal scaling to improve transactions per second, but
only for the requirements originated in slower networks, hardware architectures of CPUs and
smaller disk sizes that were used in the past.

INFOBOX 2: Scaling categories based on the resource add method

• Scale OUT/horizontally – based on adding more nodes to the distributed system.
Connections based on efficient, broad band gigabit ethernet encourage the cluster
based low-cost commodity systems that can accommodate to multiple nodes.

• Scale UP/vertically – upgrading single node of a cluster with the use of new hardware
components and improves the performance of the applications that run on the
amended machine

There are some obvious tradeoffs that those models impose. The increased number of nodes
also increases the complexity of management and application handling. Also complicated
programming model and the throughput or latency between nodes are unavoidable issues. In
general, NoSQL solutions sacrifice some of the relational virtues to meet the challenge of the
new modern computer world demands like web-scale data volumes or scalability. Due to the
Web based nature of the modern data, its distribution and requirement for partition tolerance
have also become serious challenges for the traditional database solutions. RDBMS has ACID
and supports transactions, therefore scaling out with RDBMS is harder to implement due to
these concepts. On the ground of growing demand for fast access to large amounts of data,
new models that prefer loosening the tight relational rules, has emerged. NoSQL solutions have
introduced specific rules, adequate for newly emerging web solutions and their data access
requirements.

General expectations while considering web based and thus, distributed databases have
been put in a concise form of CAP Theorem.
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THEOREM 1: CAP Theorem (a.k.a. Brewer’s theorem)

It is impossible for a distributed computer system to simultaneously provide all three of the
following guarantees:

• Consistency: all nodes see the same data at the same time

• Availability: a guarantee that every request receives a response about whether it
succeeded or failed

• Partition a tolerance: the system continues to operate despite arbitrary message loss
or failure of part of the system

a Partition should be considered not as a discrete switch but rather as a probability function based on
sub-upper bound of latency. If a request times out we call it a partition and move on and do something in
response.

However, the problem with NoSQL solutions is that mostly they support only reduced level of
consistency - so called eventual consistency. The CAP theorem is often considered as justification
for this fact. Design assumptions of NoSQL pushed out the problem of strong consistency to the
application business logic. In this manner NoSQL consistency is sacrificed in the name of high
availability and decreased system load. On the other hand, assuring the eventual consistency
also increases cognitive complexity of distributed applications for developers and users.

DEFINITION 2.3: Eventual Consistency

Eventual Consistency – A limited version of consistency assurance that assumes that replicas
of every single record across the distributed nodes of integrated grid can diverge in their
value for some period of time.

It means that even if all operations stop, it will take some time for the system to make all the
copies of replicated data the same. This makes it a complex problem to assure the data up-to-
date state. Such assumption makes consistency a purely liveness 14 [34] guarantee because the
consistency might only theoretically occur at some time after execution ends.
Despite the present NoSQL revolution, one has to be aware that still, there is a major need for
stable and reliable, fixed schema databases. It is important to take notion that the NoSQL only
complement the relational model in the cases when relational strict rules become obstacles for
reaching the goal.

Nowadays we are witnessing an evolutionary step forward that merges the best from the
relational and NoSQL worlds. But before we can discuss it, we should consider the enterprise
logic that has initiated rise of this new approach. Basically there are three trends that have driven
the evolution of thinking about data over the last few years.
First, fairly obvious - and already mentioned – is that data sizes are getting bigger. This is caused
by collecting and keeping more data that becomes available due to Internet popularization.
Secondly, since different data sources have been brought together and because the data tends to
evolve more quickly presently we are experiencing a kind of de-emphasis on modelling data
with schema and being strictly formal about it. In the same way we recognize code modelling as
counter productive if taken too far with the UML object diagrams.
Finally, migration to the data-driven applications, and by this eliminating the need for imple-

14 Informal requirement toward the distributed system that some positive characteristics will eventually be
achieved.
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menting the domain behaviour from the application code, should be considered.

The designers of relational solutions did not foresee such intense progress of hardware
technologies. Bigger SLA 15 requests were solved simply with more hardware not considering
the horizontal scaling. Yet the leading enterprise, internet companies perceived the horizontal
scaling of traditional relational databases to be too difficult or too expensive. In some cases,
traditional, relational solutions could be sharded to meet the needs, however it usually occurred
to be too expensive in terms of energy costs and a number of servers to achieve the expected
performance and goal of the system. An interesting solution to distribute such data could
be simply adding disks working with data on the affordable [35] and distributed file system,
just as Hadoop Distributed File System (HDFS). However, the ideas to face such problems also
considered some trade-offs, like promoting availability at cost of eventual consistency (accepting
transient inconsistencies that could be fixed post-hoc if needed) and neglecting the need to store
everything in the relational database. It occurs that some data can be stored with evenly efficient
results as non relational models like: key-value stores, document stores (XML or JSON) or column
stores. For instance the document store has proven its fitness to store deeply structured and
nested data and therefore became a convenient way of storing semantic knowledge about
data structure, embedded in the system due to XML or JSON. Another example considers
denormalizing data and storing it in multiple columns. Due to high cost of JOIN operations a
column store can cheaply get the columns that we are interested in, without the need to read
entire rows and extracting the requested data.

In general those emerging issues are often gathered under the Big Data term. The Big Data is
all about integrating different model data sources, taking data as they are and integrating them
into one, fixed integration schema. However, it must be noted, that this class of problems applies
to data stores that are more than just a few terabytes of data. In such a case the architecture of
an application using Big Data should minimize the domain knowledge in the code and focus on
the actual data that is already present in heterogeneous, NoSQL data sources instead of trying to
model every aspect of the data.

Now let us compare and contrast the possible solutions of NoSQL and storing data in the
distributed file system like HDFS (e.g. HBase providing BigTable-like capabilities for Hadoop).
The DFS as a general purpose file storage gives more flexibility about how the data is being
structured. It is true in terms of its internal representation on the system and in terms of
structuring data in directories, and how they are going to be shared. It is most suitable for
table scans and writes with contrast to rather being unfriendly towards CRUD operations with
individual records. However the NoSQL – as a database persistence – is not as scalable in terms
of cost per TB and speed of scanning but it is handling CRUD operations very well. Therefore
the choice of the particular model must be made carefully and it should be considered which
solution suits the data best.

For example: moving the transaction logic to application, using key-value store while parsing
the value BLOBs into objects or writing queries in JSON instead of SQL - are all signs of serious
mismatch between the data requests and used data model.

STATEMENT 1: Data-model matching requirement

Data storage model must be adequate to the stored data future appliance and data request
cases.

Regarding the web nature of current computer systems, the modern solutions would have to
consider the On-line Transaction Processing. OLTP facilitates and manages transaction-oriented

15 A service contract defining the service quality conditions and guarantees; e.g. contracted delivery time of
service from service provider to service client
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applications for data entry or retrieval. OLTP was used to handle client transactional request
(money withdraw, order item from shopping cart, etc.) with RDBMs. Since statistical and busi-
ness reasons, such transactional OLTP data have to be consolidated. For this purpose the Extract-
Transform-and-Load (ETL) tools are used to convert a collection of OLTP systems to a common
format and load it into one or more data warehouses. Business Intelligence (BI) queries towards
data warehouses are rather heavy and stale due to the data being supplied to data warehouses
periodically from DBMSs. These circumstances are not acceptable for the OLTP application
main goals of availability and throughput (speed 16 and also concurrency and recoverability)
and can not assure timely transaction responses. Such combination was working for the pre-web
intense applications. The current Web-based (social networks, online gaming) and smartphone
sensor applications, however increase the volume of interactions with DBMS and require far
more OLTP throughput with better DBMS performance and enhanced scalability. Moreover,
due to the intense data input and usage a real-time analytics becomes also crucial. This is
especially substantial to e.g. electronic trading or augmented reality smartphone applications
that require maximum of real-time inquiries to the current data. On the other hand, the costs
of data warehouses extensions and upgrades are high. Thus often data warehouses for large
internet companies store only the data for a limited period of time e.g. couple of months and
then have to purge it because upgrading its capabilities would involve million dollar investments.
On the whole, the data warehouse has mature, rich SQL analytic functions but only for scaling
mid-sized 17 data. On the other hand, the Hadoop is a way cheaper solution as of cost per TB of
data (see [37]) and scale well with Big Data petabyte sizes.
Now the traditional, SQL-based OLTP architecture capabilities can be exceeded by workload of
modern OLTP needs and moreover, the outdated data stored in the data warehouse becomes
useless while considering real-time interactions. On the other hand, the NoSQL solutions with
their non-transactional approach does not provide the real ACID and pushes the responsibility
for it to the application programmer. What is more, the analytical and non-programming experts
use SQL, that NoSQL solutions in general lacks.

The solution was to move data from warehouses into Hadoop which was less mature but
supported massive scalability with the orders of magnitude less costly per TB. The main issue,
however, was that Hadoop, as an exemplary solution, lacked native SQL. This has changed when
the HIVE – providing a data warehousing infrastructure with the SQL-like syntax query language
(HiveQL) and analytics build on top of Hadoop – came in 18 . This was crucial as SAP, marketing
or statistical experts were not programmers and needed the SQL. However, HIVE was based on
MapReduce that has proven not to be efficient even with medium result sets. This resulted in
many alternatives like SparkSQL, Impala, Presto, Drill etc. has emerged (See section 2.4.3).

2.2.2.1 NewSQL - the Evolutionary Step

Recently the data storage evolution has moved to a stage where, what would seem to be the
best solution, is to acquire high performance with scalability, while sustaining the traditional,
transactional ACID. The response to such problem would be the most recent – as of 2015 –
database evolutionary step – NewSQL 19 databases. The NewSQL solutions combine the high
throughput of NoSQL approach and preserve the internal consistency assurance mechanisms in
the form of real ACID. What is more, NewSQL would employ SQL as the primary mechanism for
application interaction and should represent scale-out, shared-nothing architecture, capable of
running on a large number of nodes without bottlenecking.

16 Query Throughput is a classical metric measure characterizing the ability of the system to support a multi-user
workload in a balanced way. This is often used to determine the performance of a database system [36].

17 I.e. less than a petabyte.
18 Published in 2009 in white paper [38] by the Facebook Data Infrastructure Team and elaborated in [39, 40].
19The term was first coined by Matthew Aslett in [41] report.
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???

This short review of existing data storing solutions and the diversity of their functioning
mechanisms has established a need for blazingly fast unified access, integrating middleware. The
requirement also states fast access regardless of dynamically changing data and structure. The
requested solution would also have to be extremely elastic and easy to modify. On the other hand,
such middleware needs to face potential distribution issues across integrating data sources.
Even more problems arise when we consider middleware that works with distributed and het-
erogeneous – i.e. different origin – data sources. The distribution and data source particularities
have to be taken into careful consideration in the middleware development process. In the
following sections integration rules and crucial issues, that must be solved, will be elaborated.

2.2.3 Integration - Principia and Taxonomy

Challenging new data processing issues of large volumes of data or real-time stream processing of
unstructured data have resulted in proliferation of the purpose-dedicated data storing solutions.
A long time perspective of using different and numerous data sources, and the need of absorbing
its data for central querying and analysis have forced some ideas (like federated databases
management systems (FDBMS) or multi-database 20 ) for data integration.

2.2.3.1 Data Integration - DI

The ultimate goal of data integration is combining data – stored with the use of various technolo-
gies – from two or more disparate data storing sources into one, end-user unified data access
interface. This process involves commercial, industrial and scientific domains. The need to
share the existing data from the proliferating data sources and their great volumes (See section
2.3.7 for numbers) made data integration a very important aspect of modern data processing
and analysing computer systems. The data integration is a growing market and one of the major
challenges for the future of IT. This is mainly due to two contexts: the internal organization data
integration and the inter-parties data integration. Moreover, it must be noted that under data
integration term one can refer to several sub-areas of interest – such as:

• Data Warehousing (DW) – As a central repository of data from disparate integrated sources,
used for reporting and data analysis. (See also section 2.4.1.1

• Data Migration – Simply a process of transfering data between two or more storage systems.
In terms of the Extract-Transform-Load (ETL) processing at least extract and load phases
must take place. Most often present while migrating between hardware architectures,
databases or data-based applications.

• Business Intelligence (BI) – The process of interpreting the data context. Making raw data
an information rich analytical resource for supporting decision making. Sometimes also
referred to as Decision Support Systems (DSS). BI involves data visualization, data mining,
reporting, time-series analysis with predictive techniques (behavioural prediction in time),
On-line Analytical Processing (OLAP) and statistical analysis. (See also section 2.3.7)

• and Master Data Management (MDM) – A paradigm that proves its value especially in
large and diversified environments like big corporations, based on linking/storing all
crucial system data 21 in one file – master file. The master file serves as a point of reference.
The central file can facilitate computing in various system applications, platforms and

20Comparing to FDBMS less integrated, but owing to middleware supporting distributed transactions across the
participating databases used by a single application

21 E.g. business objects for transactions. MDM is also complementary to BI and can provide an excellent source of
dimensional data for analysis and the analytical data itself – thus supporting decision making.
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architectures. It can be stored in central hub, data warehouse or every application can
have its own MDM that is later merged across applications with a central registry

In general, the data integration techniques can be applied in different forms. Let us point
them from the most manual to the most automated.

• Manual Integration – the user has to deal with integration involving accessing all data
sources using Common User Interface. However, the data here has no unified view.

• Application-based Integration 22 (AI) – The integration is handled by application. This
level of integration is sometimes referred to as Enterprise Application Integration (EAI) (e.g.
TIBCO). This type of integration is used as a link between multiple applications at the func-
tional level. It is focused around transactional or service call level. This is transaction-aware
software, thus it can proceed with one work unit (e.g. employee creation) decomposed
into many diverse pieces in various data storing sources. Such integration deals with
integrating live operational data in real-time between two or more applications. The AI is
event-based, due to providing as-soon-as-possible rise of a transaction across integrated
applications when a new request is commenced. This assures real-time reactions and most
current system synchronization. The main effort has been put on real-time performance,
transactionality, reliability, and once-and-only-once guaranteed delivery. This is due to
the fact that AI applications have mostly come into existence from the message-queuing
and the Enterprise Service Bus (ESB) (see section 2.4.4) products. AI is best suited for oper-
ational transactions while the DI is made for analytics. The most modern incarnation of
Application Integration is the Cloud-based approach (e.g. MuleSoft), as a result of general
trend towards cloud. The biggest advantages of AI are its agility to accept fast changing
requirements of integration:

– Instant data – No DI batch processing. It involves moving toward time effectiveness
of ESB level – i.e. seconds.

– Data Software as a Service (SaaS) – Moving from explicit database interactions into
the cloud-based SaaS application API

– Agility – The need to provide elastic approach to data and logic changes in favour of
application based data access due to ease of modification of well designed applica-
tion

– Cloud Application API – no need for complicated data center support in the case of
Cloud-oriented storage applications

• Middleware Data Integration – Moving the integration logic from applications to one
integration layer

• Virtual Integration – The data is kept in the source systems but an integration views are
developed providing unified and transparent access for the end-user. This approach brings
near to zero latency for the data updates on the integrated data sources to propagate across
the integrated grid. Moreover, there is no need for the additional storing infrastructure.
The disadvantage is difficulty of version managing after data updates 23.

• Physical Data Integration – Creating a copy of all integrated data in the central repository
(e.g. data warehouse). Fast access, analytics and ease of data manipulations are the main
benefits, while on the other hand, a large data center must be assured for the large amounts
of data to be centralized and handled.

The most general case of data integration involves one, unified user query towards the DI
global/integration schema, and a set of legacy/integrated data sources’ mappings that are

22 In contrast, DI is batch and unaware of concept of transaction. The DI software, most often is an evolution-
ary step that has originated in the ETL tools. The DI also deals with standardization, validation, transformation,
synchronization and mapping of large data volumes. Owing to physical data abstraction enables the data access.

23 Solution proposed in this dissertation overcome this drawback.
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handled and transformed into real data, required by the user query. Techniques developed to
meet the integration needs involve:

• distributed database systems – utilizing homogeneous data sources managed by distributed
DBMS

• tools for source wrapping – including the mediator based architecture with global schema
and mapped heterogeneous and autonomous data sources

• federated databases – utilizing heterogeneous and autonomous data sources (i.e. DB2
Information Integrator)

• distributed query optimizations – used in P2P network of autonomous data sources
mapped with each other, without global schema

Moreover, a well designed DI solution must comply with some basic characteristics:

• Location & Access Transparency – no physical notion and characteristic of the actual
source data are supposed to be revealed to the end-user

• Heterogeneity – variety of multiple diverse data sources should be supported (see also
section 2.2.6.1)

• Extensibility – there always should be an easy way to plug-in a new data source without
need of architectural changes

• Performance – solutions should be ready for petabyte-size data volumes to be integrated
as a sum of all data sources

• Autonomy – integrated data sources should work the same as before becoming part of
integrated grid, without any disturbance

More complex than the structural transparency of location or access methods for integrated
data, is to assure the logical transparency of integration schema. The integration schema (or
ontology) should provide conceptual view, independent of contributory data schemas of the data
sources. Thus integration schema is a formal meta-description of the schema that the end-user
actually queries. Transformation of the data source contributory schema views into the global,
integration view is done with a set of mappings that also requires some formal specification.

Such requirements are most often implemented with one of the approaches: mediated
architecture, global view materialisation-based data exchange and P2P data integration. The
data exchange however, in contrast to DI, considers data restructuring with possible data loss of
content (i.e. no/many way(s) of transforming an instance of a data with given constraints) and
central data store due to global schema materialization. On the other hand, the P2P solutions
also bring some disadvantages, while each peer using local and external sources with distributed
queries, which in turn causes the network overhead in query-intense environment, especially
with high volume data transfers. Due to the mentioned drawbacks of the two approaches, this
dissertation is focused around the mediator-based architecture.

Enterprise Information Integration (EII) In general the Information Integration (a.k.a. ref-
erential integrity - see 2.1) merges information with diverse conceptual, contextual and typo-
graphical representations. The goal is to combine information from the data stored in different
sources, and thus to reduce information uncertainty.

Regarding the commercial data integration the Enterprise Information Integration (EII)
has been a goal for multiple - mainly big - companies. Its target is to provide unified data
access as a data abstraction over multiple company’s resources, stored in multiple data sources
(like: a large number of RDBMS varieties, text files, XML files, NoSQL stores, NewSQL stores,
spreadsheets, etc.) all involving various, dedicated storage, indexing and data access methods,
that are also often proprietary. The uniform data access requirement, on the other hand, assures
the unified connectivity and data control across the data sources. Such a unified information
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representation, regardless of its discipline or realm, covers the domain impedance and enables
the data to be displayed and processed, as if there was no difference in its origin. Different
methodologies or metrics for data collections stored in the target sources are represented as
a single collection conforming integration schema filled with raw data without legacy sources
heritage characteristics.
As an enterprise solution the integration method must confirm its maturity. There are some
characteristics that can help to conform that a software is EII-ready.

• Loose Coupling – System must have its components designed with little of no knowledge of
the definitions of remaining components of the system. Lack of direct knowledge between
the components makes the system more elastic.

• SOLID-based 24 – Implement basic principles for the object oriented software (if imple-
mented using the object-oriented language)

• Disparate data sources ready – The integrated data sets should be complete and accurate
according to the configuration based on commonalities between data sources. Each data
source may have a commonality that can be used to implement disparate data joining
rule (e.g. primary key, object ID, virtual best row ID etc.)

• Lightweight – as integration usually deals with massive amounts of data the overhead
provided by the middleware integration software should be minimized

Some of the EII most suited technologies are ODBC, JDBC, XQJ, OLE DB, ADO.NET, XML-XPath-
XQuery, etc. The integration goal has been approached in multiple ways. Let us then discuss
some of the most significant ones.

2.2.4 Data Integration Practices

The service that could provide unified and transparent access to the collection of data stored
in multiple, autonomous and heterogeneous sources – in the form of data integration solution
have been an ultimate goal for many years now. There have been three architectural approaches
for data integration based on the data warehousing, mediation and federating.

Data Warehousing Based on the approach that data sources are translated from their local
schema to a global schema and copied to a central DB. The first research for this kind of data
integration started in 1981 [42] and since then the integration was based on the Data Warehouse
ETL-based solutions. A single data repository made query resolving fast, but on the other hand
– brought the problem of tightly coupled 25 (see also section 2.2.5) data architecture. Such an
approach becomes a real problem, especially when considering data sources with frequently
updated data, that requires the ETL jobs to perform a continuous synchronization with datasets
[43].

Mediation Some evolutionary changes have been considered with the use of mediated schema
and real time access to the source data 26 . This is also often referred as virtualization, schema
translation or mediation, lazy integration, database federation, Information-as-a-Service (IaaS)
or – as already mentioned – Enterprise Information Integration(EII). The general idea behind
this approach is to integrate heterogeneous data sources without the need of ETL jobs. Owing to
a common, global integration schema definition, the end-user will have a unified view to the
integrated data. Each integrated data source requires a wrapper that enables its data access
and an execution engine/architecture. The user query against the integrated schema is then

24 Single responsibility, Open-closed, Liskov substitution, Interface segregation and Dependency inversion
25 Considering more: interdependencies, coordination and information flow.
26 This is the approach that will be elaborated in chapter 3 as the main idea for the dissertation topic integration

architecture developed in 2009 by the author.
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decomposed into multiple sub-queries understandable for each data source participating in
the integration. Then each of the sub-queries is sent to the wrappers that by-pass the queries
towards the data source itself. The result sets are then transformed into the integration view
according to the designed strategy. Thus all the time requested data is up-to-date and does
not require one central data repository to be filled in contrast to the earlier DW and ETL based
integration. The lack of one central integrated data store, on the other hand, resulted in long
response times due to the network and data transfer overhead. According to [18] there are two
main approaches of global schema to the source schema mapping (Global As View) and the
source schema to the global mapping (Local As View) – see section 2.2.5 for details.

Federation The mediator approach forces the use of some central unified schema that is a
central point of failure. However, solutions based on the federated architectural model have
overcome this problem by providing a component based model of centralized or distributed
(Peer-to-Peer based) nature. The goal of federated architecture is to provide:

“ (...) mechanisms for sharing data, for sharing transactions (via message types) for
combining information from several components, and for coordinating activities
among autonomous components (via negotiation).

– Heimbigner and McLeod (See [44]) ”
Moreover, component interactions in the federation are managed due to the export schema

and the import schema. The information that each component will share with other components
is specified with the export schema, while the import schema specifies the non-local information
that a component wishes to manipulate[44]. Therefore the federated approach provides all its
components (i.e. autonomous and heterogeneous databases) a notion of data materialisation.
This way when a client queries the federation, the system knows which component stores the
requested data and passes the request to it. In the case of heterogeneous components the
federation already must be, prior to the query execution, configured to handle multiple queries
and automatically combine the results.

However, it should be noted that the federated databases have a couple of drawbacks,
regardless if their nature is centralized or distributed. As data is scattered across all data storing
components of the federated architecture single failure of a component can cause an issue
just in the same manner as a single point of failure in centralized architectures. Moreover, as a
distributed architecture a single component latency will cause the entire system call delay. This
results in the additional effort to program the applications to consider incomplete query results
in the case of such time-outs of component database. The case when all sources in federation
must communicate also results in network overhead of n2 mappings. The issue is getting even
more complicated if the sources are dynamic, and therefore need constant mapping changes.
Additionally, this architecture requires an initial configuration at start, and maintenance during
functioning of such a federation, thus increasing overall costs.

???

However, the architectural approaches for structural integration has occurred insufficient in
cases when integration involved related domains that describe the same data with different
terms. Overcoming such issues has forced devising ontologies.

Ontologies Due to constant evolution and more advanced integration implementation re-
quirements a new semantic-based problem has arisen. As the data structure – while being
integrated – still, might vary not only with a structure, but also with the semantic context of
its content. In other words, the architectural structure might be consistent, but the semantic
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interpretation of its content might be different due to collisions of semantic understanding.
For example, the concept of profit can be considered as a monetary gain or in another case,
as a number of transactions. This set of semantic collisions has been considered as a target
for ontology – i.e. "formal and explicit specification of a conceptualization" (see [45]) – based
solution. This includes:

“ The objects, concepts, and other entities that are presumed to exist in some area of
interest and the relationships that hold among them.

– Encyclopedia of Database System (See [45]) ”
Ontologies allow to solve a semantic issue due to their role of describing (formally specifying)

the concepts and relationships for a given domain, and thus also the architectural components
of integrated data view. However, ontology is not only limited to traditional perception of def-
inition that introduce terminology of a domain without any knowledge. Ontology also states
axioms 27 to constrain interpretation of a defined term [46, 47]. At the heterogeneous infor-
mation level, ontologies provide unambiguous entity identification and assertions for named
relationships that connect those entities. Thus, explicit definition of terms and relationships in
ontology supply accurate data interpretation in context of numerous data sources. Moreover,
ontologies can play a role of global query schema (where queries are being build), and finally
mappings between various data sources schemas can get verified with the use of ontologies
[48]. The meaning of ontology in data integration is focused around explicit description of data.
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Figure 2.2: Ontology types.

Due to semantic complexity of the data, ontology-based integration evolved into three main
ontology approaches: single ontology, multiple ontology and hybrid 2.2. Now the single ontology
approach uses one global ontology that shares the semantic terms vocabulary 28 . This means

27Assertions with a logical form of rules. Axioms include only statements asserted as a priori knowledge. Moreover,
axioms cover the theory derived from axiomatic statements.

28 Vocabularies are used to describe and represent an area of concern by defining the concepts and relationships
(also referred to as "terms"). They are used for classification of terms used in particular application, characterise
possible relationships or define possible constraints on using the defined terms. No clear discrimination between



2.2. INTEGRATION - CURE FOR CHAOS OF MULTIPLICITY, GENERAL CONSIDERATIONS 41

all of the information from the integrated data sources are described with one global ontol-
ogy. Such feature is especially important for modularization purposes. This means that each
domain ontology describing concepts of a specific domain in a uniform way, can also enable
generalization when two distinct ontologies merge, based on some foundation ontology. Which
is especially important while designing one, large and monolithic ontology. Single ontology
should be applied for the cases dealing with integrated information that considers the same
domain aspect. The drawback is that it lacks flexibility for data source changes that can affect
the domain concept.
An answer to this issue are the multiple ontologies, where each ontology models an individual
data source, and thus, while combined can be used for integration. In this case, each data source
has its own ontology that does not share common domain vocabulary among other data source
ontologies. However, a single data source ontology can be composed of many local ontologies
sharing the same, local domain vocabulary. This approach does not require a foundation, mini-
mal and common ontology for all data sources. Each ontology is autonomous and related only
to local data source, and thus immune to local domain changes. However, a lack of common
domain vocabulary shared across multiple data sources ontologies makes the inter-ontology
communication difficult. Thus, the additional formalization in the form of mapping that ex-
presses similarity or identical nature of separate data sources ontologies is required [49].
Finally, the hybrid ontology attempts to face all of the issues from the two previous approaches.
The hybrid approach is the same as the multiple ontology approach, however, it utilizes shared
vocabulary across all integrated data source local ontologies. The local ontologies must use
the shared vocabulary to be build. The shared vocabulary cover basic domain terminology.
The vocabulary itself can sometimes be described as an ontology. The great advantage of this
solution is simplicity of adding new data sources without the need to interfere with the global
system. Moreover, evolution of ontology is easy to perform and reduces the need for existence of
the mappings between local ontologies. The most important disadvantage of this approach is
that each data source ontology cannot be reused and must be rewritten from ground up.

Ontologies must be formed with a representation language, as an intended semantic level
specification, and thus independent of data modelling strategy or implementation. One of the
most popular languages is Web Ontology Language (OWL) as an evolution of RDF knowledge
representation data model (see 2.3.5.2). It enables making ontological statements for WWW, its
classes, properties and individuals defined as the RDF resources with the use of RDF Schema
and identified with URIs.

Across multiple ontology languages most of them encodes common components of ontology
such as: Individuals, Classes, Attributes, Relations, Restrictions, Events, etc. See Listing B.1 for
exemplary OWL/XML syntax for an ontology.

Listing 2.1: OWL/XML Syntax for Ontology Management

1 <!DOCTYPE Ontology [
2 <!ENTITY xsd "http://www.w3.org/2001/XMLSchema#" >
3 ]>
4 <Ontology
5 xml:base="http://example.com/owl/families/"
6 ontologyIRI="http://example.com/owl/families"
7 xmlns="http://www.w3.org/2002/07/owl#">
8 <Prefix name="owl" IRI="http://www.w3.org/2002/07/owl#"/>
9

10 ...
11 </Ontology>

ontology and vocabulary has been settled. One is mostly accustomed to using the term – ontology – for more formal
and complex collections of terms, whereas the vocabulary is used when loose or non formalization is required. E.g. in
the case the book author can be related with two distinct relations (say "author" and "writer") in integrated grid, a
very simple vocabulary would be used here to express the identical nature of both relations
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This ontology-based data integration allows to integrate information about data that can be also
classified as the GaV approach. This is due to possibilities of unambiguous identification of
entities from the integrated sources and assertion of applicable named relationships used to
join such entities. Effectiveness of such integration, however, depends greatly on how expressive
the ontologies are and how concise their domain perspective is.

2.2.5 Integration Theory

To formalize the data integration theory – as a subset of database theory – the first-order logic
(a.k.a. first-order predicate calculus) formal system can be applied. To describe the difficulty and
complexity of data integration some abstract and general definitions can be settled.

Considering a theoretical approach for data integration one can formalize an integration
system according to Definition 2.4.

DEFINITION 2.4: Data Integration System - DIS

A data integration systemI is a triple 〈G,S ,M〉, where

• G is the integration (a.k.a. mediated or global) schema.
G is expressed with LG language over AG alphabet. AG contains symbols for every
element of the G schema a

• S is the heterogeneous source schema.
The S schema is expressed with LS language over AS alphabet. AS contains symbols
for every element of the source.

• M is the mapping between S and G
M is created based on the following transformations:

qS qG ,

qG qS
(2.1)

where, qS and qG are two queries of the same function over the source S and global
schema G that "leads-to" each other.

a e.g relation if G is relational, class if G is object-oriented, etc.

Now the M is a set of assertions that are used for semantic translation between S and G. The
assertion here, is a statement ConceptX  ConceptY that instructs that the concept expressed
on schema X is the same as the concept on schema Y .

2.2.5.1 Schema Mappings

Regardless of architectural approach for data integration there is always a need to represent data
in a kind of unified form. For this reason some global unification patterns can be applied.
As already mentioned there are a couple of types of M mappings. GAV, LAV, their hybrid – GLAV
and decentralized Peer-to-Peer approach. Let us discuss some of the main features of those
mapping approaches.

Global-As-View mappings (GaV) GaV can be described as a limited view over the data. Here
the mediator schema, acts as a view over the source schemas. This involves rules that map
a mediator query to source queries. Likewise regular views, the accessible view perspective
through the mediator is a subset of actual available data from sources. This means a set of
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queries on local resources S (with real data), one for each element g ∈ G – of global schema.
In other words, GaV represents mapping model with the assertion of mapping elements, that
associates a query over source schemas to each element of mediated (integration) schema.
Thus, mapping defines exactly how the element g is computed from the local source. In formal
notation GaV connects in mapping M each element from the global schema G with the query
characteristic of schema S . Thus, query language LM,G allows expressions that are build based
on AG alphabet. Thus the GaV mapping (M) is a set of assertions , one for every g ∈G

∀
g∈G

g qS (2.2)

The GaV model is based on defining global schema as a set of views based on local schemas. Thus
global (virtual) schema building elements contain a view for a part of adequate local schema.
The mapping itself defines how to request for the local data while querying the global schema.
This approach, due to its a’priori local access is especially efficient while considering well known
and invariant, local (set-up and schema) data sources. Therefore any local data source changes
or new data sources require intense effort for adopting them to the global schema.

Local-As-View mappings (LaV) In short, this mapping is a set of queries on the global (virtual)
schema, one for each local source (with real data). The LaV views define how sources contribute
to the global (virtual) schema. The LaV mapping approach connects every element of the S
schema, with a query characteristic of schema G. In other words, the query language LM,S
accepts expressions created based on the symbols of the AS alphabet. Thus the LaV mapping is
a set of assertions (translation), one for every element s ∈S :

∀
s∈S

s qG (2.3)

Therefore LaV mapping expresses a type of mapping model that has assertion of mappings for
every element that associates each element of the source schema to a query over the global
(integration) schema.

Lav is based on the assumption that each data source content schema (local), should be
characterised in terms of global schema G – hence local is a view.

This makes LaV well suited when dealing with already stable, well established, mature and
invariant global schema – e.g. enterprise or ontology.

This approach can easily handle the addition of new data sources, that require only enhanc-
ing the existing assertions or new mapping with new assertions. All of the potential changes
made to already integrated data source, can also be handled with transformation modifications.

Query processing in GaV and LaV In GaV the views of relations in the union of local
schemas express the relations in the global schema, therefore this usually results in a lack of
integrity constraints using this kind of mapping. Therefore, the mappings express the exact views
– considering Closed-World Assumption (CWA) 29 – in the global schema.

DEFINITION 2.5: Closed-World Assumption (CWA)

CWA is a presumption that a true statement is also known to be true. Thus if something is
not known to be true is false.

The CWA is used mainly in two situations: when the knowledge base is complete (in GaV, a set of
data sources should be well known and stable), or the knowledge base is not complete and the

29 SQL is an example of a CWA. If the query result is empty it means there are no records that fit query’s conditions.
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"best" final answer must be derived from incomplete information.
Owing to this exact representation, it is possible to process (with GaV) queries dependent on
straight forward unfolding.

The price for LaV appliance is high overhead of query transformations between the global
and local schemas. This is due to local schemas being designed based on the global schema.
Therefore, views must be reversed prior to the query execution. Query processing, in the case of
LaV, is based on partial views from the local schemas, and thus uses incomplete information in
the global schema. Therefore answering global queries is much more complex in LaV – in terms
of data and expressions – than in GaV.

Let us provide a general example of both approaches and their query processing. Please refer
to Figure 2.3 for the assumed global and local schemas. The GaV based view would look like in

S1_emp Name Age
John 65
Alex 24

S2_emp Name Age
John 65
Jack 56
Michael 33

G_emp Name Age
John 65
Alex 24
Jack 56
Michael 33

Local: S1_emp (Name, Age)

Local: S2_emp (Name, Age)

Global: G_emp (Name, Age)

Figure 2.3: Exemplary local and global (integration schema).

the Listing 2.2:

Listing 2.2: GaV on data sources

1 CREATE VIEW G_emp AS (
2 SELECT S1_emp . Name as Name , S1 . Age as Age
3 FROM S1_emp
4 UNION
5 SELECT S2_emp . Name as Name , S2 . Age as Age
6 FROM S2_emp
7 ) ;

Now if one wants to query such integrated schema, for example for employees older than 50. The
query would look as in Listing 2.3. However, the G_emp will have to be substituted – unfolded –
(see Listing 2.4) with the definition of the view.
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Listing 2.3: GaV based query.

1 SELECT G_emp . Name
2 FROM G_emp
3 WHERE Age > 5 0 ;

Listing 2.4: GaV query unfolding

1 SELECT Name
2 FROM
3 SELECT S1_emp . Name as

Name ,
4 S1 . Age as Age
5 FROM S1_emp
6 UNION
7 SELECT S2_emp . Name as

Name ,
8 S2 . Age as Age
9 FROM S2_emp

10 WHERE Age > 5 0 ;

The 2.4 query is later executed by the mediator because in the GaV query execution is a simple
substitution of the reference to G_emp with the mapping in terms of local schemas.

In the case of LaV mapping, it describes the contribution of the local data sources to the
expected extension of the global (integration) schema.

Listing 2.5: LaV S1_emp(Name, Age)

1 CREATE VIEW S1_emp ( Name , Age )
2 AS (
3 SELECT
4 G_emp . Name AS

S1_emp . Name ,
5 G_emp . Age AS S1_emp . Age
6 FROM G_emp ;
7 ) ;

Listing 2.6: LaV S2_emp(Name, Age)

1 CREATE VIEW S2_emp ( Name , Age )
2 AS (
3 SELECT
4 G_emp . Name AS

S2_emp . Name ,
5 G_emp . Age AS S2_emp . Age
6 FROM G_emp ;
7 ) ;

Let us consider the LaV mapping query on the global schema. Due to opposite to the GaV
direction, no query unfolding can be done by mediator. Thus, mediator is required to reason. For
example the mediator can adopt strategy that assumes fusion of the results simply by looking-up
of employees names in both views.

LaV could be suitable for three classes of problems. Firstly, one could consider using LaV
for the systems that integrate data warehouses. Instead of replicating and copying the data, it
is better to create a virtual schema that integrates such large stores. Another example of LaV
appliance, would be applications that are aimed to be proof-of-concept ones. As the LaV is a
faster approach to implement – than the GaV – it fits better for prototype development. However,
the best suited for LaV are the applications that require strict rules regarding the data being
up-to-date.

In general the GaV approach is procedural as the mapping says explicitly how to retrieve
data from local sources to prepare global query responses. Due to simple unfolding of the query,
global query answers are computed easily. This is due to mediator following the existing rules
and templates to translate the global query to source-specific, local queries. However, system
extension is not a straightforward task and requires the global views to be redefined.
In contrast, the LaV approach is declarative as the local sources’ content is described with the
views over the global schema. Every source provides expressions on how it can generate pieces
of the global schema. Now the mediator combines such expressions and finds all possible ways
to answer global schema query. LaV can be simply extended with new local sources due to new
views over global schema.

Global-and-Local-As-View mappings (GLaV) Facing all the drawbacks from the GaV and LaV
approaches, a hybrid GLaV approach has been devised. The GLaV is a generalization of GaV and
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LaV. In the formal form it adopts the following shape:

qS qG (2.4)

Where, qS and qG relate to the queries over the local and global schemas, adequately. GLaV in a
simple way can express either GaV or Lav mappings. It can be achieved with assigning queries
resulting in single global relations to qS and respectively, assigning queries resulting in single
local relations to qG . Because qG can be a query from the global point of view, the GLaV enables
independent addition of new, local data sources, just as it happens in the case of LaV.

Peer-to-Peer (P2P) The distributed P2P architecture consists of nodes that are obliged to store
their local schema, schema of mappings between schemas present in the P2P environment and
some additional constraints. Data integration in the P2P architecture assumes that the answer
to a query sent to any of the P2P participants will contain all of the requested data collected
all around the P2P network nodes. The data sources are not connected to each other from the

Figure 2.4: Peer-to-peer data integration

perspective of mapping between schemas. A sent query Q must be decomposed between all
P2P network participants, and the partial results should be matched and sent back as in the
form of full response to the end user.

The advantages of the P2P approach are decentralisation, dynamic nature and scalability.
However, it also brings new drawbacks such as a lack of control over the result processing,
possible long routes between the network nodes, and the network latency burden as well as
connections overhead of n(n −1)/2 scale, with every-to-all connections.

Coupling and Cohesion As already mentioned, in the case of EII, coupling as a degree of
independence between the system modules is very important not only from the point of view of
an enterprise architecture but also a general assumption for discovering integration patterns. A
well designed integration system should be loosely coupled, where each of the functional com-
ponents does not need or require very little information about definitions of other components
of the system. In such a case one can state that a system is well structured. The presence of high
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coupling brings all the pathological issues into consideration. This involves, redundant message
transmissions assuring system-wide, coupling-resulted consistency constraints, message trans-
lations, and interpretations, as well as additional validity checks. An example of a coupling-free
system is CORBA that allows for object communication without the need of prior knowledge
about the object implementation.

Cohesion is a coupling-related, data integration system metric. While coupling refers to the
inter-module dependencies, the cohesion describes how strongly related functions are within
a single software component or module. The less cohesion within a component, the more
unrelated functionalities it implements, and thus grows in size instead of solving one, prior goal.
Hence, the best approach is to assure functional cohesion when all module components are
gathered into one module due to solving a single, well-defined task.

2.2.6 Data Integration Issues

While dealing with integration there are a couple of issues that sooner or later will become an
obstacle for the system. Designing and implementing an enterprise class integration system
focus should be made on real life examples, while still considering the worst case scenario. Thus
an approach should consider heterogeneous data sources that are fragmented into an arbitrary
pattern. Moreover, the target data must be able to be combined from numerous replications
that have the same semantic meaning but are represented in different model, location, access
method and present different persistence characteristics. Data integration must also consider
important design consideration of where to store central-integrated data or how to organize the
virtual integration approach that does not require additional resources at integrators site.

The most profound issues that must be faced while approaching the integration of dis-
tributed and heterogeneous resources are studied in the following sections.

2.2.6.1 Heterogeneity - from Structural to Semantic Mismatch

While considering central processing of such naturally diversified data a term of heterogeneous
data has been introduced. The term heterogenes (gr. ἑτερογενής) comes from Ancient Greek as
a conjunction of heteros (gr. ἕτερος, “other, another, different”), followed by genos (gr. γένος ,
“kind”); –ous as an adjectival suffix. According to Webster’s Dictionary heterogeneous means:

“ Differing in kind; having unlike qualities; possessed of different characteristics;
dissimilar; – opposed to homogeneous, and said of two or more connected objects,
or of a conglomerate mass, considered in respect to the parts of which it is made up.

– Webster’s Dictionary (See [50]) ”
To permanently qualify the term of data heterogeneity in an inclusive aspect considered

within the scope of this dissertation, the author has come up with definition 2.6.

DEFINITION 2.6: Heterogeneous data

While considering a piece of data as a part of a bigger (possibly virtual) data collection (or a
superset), one should recall it as heterogeneous, meaning that the particular data chunk has
a non-uniform technical, structural and/or semantic characteristic within considered data
superset.

One should consider some basic issues while integrating heterogeneous data sources. Those
problematic heterogeneity characteristics, as far as data sourcesare considered, can be catego-
rized into three main constituents:
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• Syntactic – Involves technical, data perspective differences. Multiple data sources in a
natural way impose multiple and various access methods resulting from diverse communi-
cation protocols, file formats or query languages.

• Schematic – Additional data model diversity is provided due to various ways of storing
the same data. Even with the same semantics, data may vary in its labels/column names
across multiple data sources.

• Semantic (study of meaning) – Mostly occurs while dealing with the same domain data
but different data schema provider. This is when we deal with related data, but different in
terms of data values interpretation.

• System – Multiple hardware platforms and operating systems cause this type of hetero-
geneity

SchemasSchemas Generalization /
Specialization

Generalization /
SpecializationAggregationAggregation TypingTyping CompletnessCompletness

ModelModel

LanguageLanguage

TaxonomyTaxonomy

ValuesValues

CognitiveCognitive

DataData
ConflictsConflicts

DataData
ConflictsConflictsSyntacticSyntactic

S
tructur al

S
tructur al

SemanticSemantic

Figure 2.5: Taxonomy of heterogeneity

The most fundamental one is the semantic heterogeneity, as the source of most differences. This
is due to the most often use case and challenge to integrate data systems storing data for the
same or overlapping domain concepts, however, developed for vastly different business needs –
thus modelled in different ways. The semantic heterogeneity requires a careful consideration
to be made on mapping and transformation schemes for data uniformity. This type of hetero-
geneity problem has been considered for a long time now, since 1989 when there was the first
data dictionary-based classification for data semantics of structural mapping [51]. In 2000 an
introductory classification for schematic and semantic heterogeneity classes has been published
in [52],

• Domain heterogeneity – raised due to semantic discrepancies in the integrated data
sources. This includes schematic discrepancy, precision, unit, data representation. Solved
with: contrasting the domain knowledge with the data within schema

• Data heterogeneity – occurs when data values differentiate and a conflict among multiple
data sources (e.g. different ID, wrong spelling of the same values, missing data) arises
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• Structural heterogeneity – includes differences with overlapping data values (e.g. aggrega-
tion differences 30 , missing items, homonyms 31 ,encoding mismatch 32 , types mismatch
or generalization/specialization conflicts 33 )

that has led to the current [53] most comprehensive form of four categories, evolved by dividing
Structural category into Language and Conceptual (See Figure B.2 for details and examples).

The semantic heterogeneity has also become a target for applying the ontology-based
integration approach. Explicit concept definitions and named relationships used by carefully
designed ontology can bring powerful tools for handling the semantic mismatches.

2.2.6.2 Impedance Mismatch

Incompatibility in data integration of multiple, heterogeneous systems – also model incompat-
ibility – is considered widely as a negative phenomenon. As a mere analogy to the electrical
engineering, impedance mismatch refers to a set of conceptual issues when two incompatible
data storing and manipulation models are being integrated. The impedance mismatch is a
straightforward consequence of a Data Independence principle. The principle states that:

“ (. . . )data, as a clue element of any computer system, should be independent of
applications that retrieve and manipulate data.

– Data Independence Principle ”
As a result there are several data independence levels:

• Physical independence – application is not aware of the physical details of data organiza-
tion, which is managed by DBMS, only. Some of the details, however, (like indexes or file
organization) are only available for DataBase Administrator (DBA).

• Logical independence – DBA can perform certain operations towards data (add/remove
attributes, change user privileges, define views, program stored procedures, etc.)

• Conceptual independence – with the use of wrapper/mediator/views a database schema
can be changed without or with only small changes to applications

This independence also forces the query language to be declarative as it has no notion of physical
details of data organization (eg. presence of indexes). The most often case is using an object-
oriented programming language to access the RDBMS. To name just a few of mismatching
difficulties: declarative vs imperative model, syntax, typology, semantics, namespaces, target
data nature of persistent (DBMS) vs volatile (programming language), etc.

The solution to this phenomenon is a wrapper/ODBC/JDBC based architecture at the data
access, bottom layer of the application. The most common tools for impedance mismatch are
the Object Relational Mapping (ORM) frameworks that provide patterns and design approaches
for mapping rules for inter-model mismatches.

2.2.6.3 Transparency of Fragmentation/Portioning, Allocation and Replication

Considering a distributed environment/network of heterogeneous data processing elements
in the form of data sources one has to carefully consider the way that the related data is being
distributed across all the participants. The distributed database as a collection of interrelated

30 E.g. the same population is divided differently (first-name, full-name etc.) by schema or sum/count added
values differ

31 E.g. refer to the same name referring to more than one concept.
32 E.g. import or export of data to XML assumes different encoding types
33 E.g. when single items in one schema are related to multiple items in another schema.
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and shared data, physically distributed over network in some cases must consider three basic
design aspects: fragmentation, allocation and replication.

Fragmentation (a.k.a partitioning) is essential for enhancing performance and provides
simpler data management. As a way of dividing related data across data sources, fragmentation
improves the system load balance by optimizing the hardware usage. There are two main factors
that result in the system wide data fragmentation. Firstly, while considering large data volumes
one has to consider the fact that data might be forced to be divided into a couple of sources in
order to gain simple manageability and performance gain. Thus, data from one source has to be
divided and moved to more stores.
Secondly, in the case of integration, two or more data sources can already store schema-related
data, prior to the integration process. Therefore the integration has to consider that the global
schema would have to merge the fragmented data stored on diverse data sources. There are
three general types of data fragmentation: horizontal, vertical and mixed/hybrid.
Regardless of the two mentioned reasons for fragmentation the data fragmentation is always
considered the same way. However, there must always be a possibility to define an operation
that will reconstruct the entity from the fragments. The reconstruction operation for the hor-
izontal fragmentation is UNION, while in the vertical case it is a JOIN-ing process. Each of the
fragmentations is also required to satisfy completeness (see definition 2.7).

DEFINITION 2.7: Fragmentation Completeness

If an entity is decomposed into fragments F1,F2, . . . ,Fn , each data item that can be found in
entity must appear in at least one fragment.

The horizontal fragmentation divides the data table horizontally, considering part of the entire
table records as stored in a separate data source. The vertical fragmentation, on the other hand,
considers dividing the table by splitting it, and considering some of the table records attributes as
stored on the separate data source. Thus, data item is a tuple. In vertical fragmentation however,
Best Row Id (BRI) must be repeated to allow reconstruction of each record. Thus the data item
is an attribute. As a consequence, the third type of fragmentation is simply combination of
horizontal and vertical types applied on different or the same groups of records of a target table
for example in a RDBMS. The most obvious benefit of data fragmentation is that relation can
be divided into a number of sub-relations which are then distributed. However, it also brings
locality of reference or improved performance in terms of load balance the query processing
costs.

Regarding the data allocation there can be discriminated the following data placement
strategies:

• Centralized – Single DBMS stored at one site

• Fragmented – Data partitioned into disjoint fragments, with each fragment assigned to a
different site

• Completely Replicated – Storing complete copy of the data at each site of an integrated
grid

• Partially Centralized – Considers combination of fragmentation, replication and central-
ization

As for the replication in the integrated environment it has two sources. First, by integrating two
databases that already share some subset of the same data. Secondly, there might be a need
to copy some of the data for security or load balance reasons to more data storing sites. The
presence of replication in many sites gives the following undeniable improvements:
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• Reliability – In the case one site storing data fails, the replicated data can be acquired from
the replicas.

• Availability – With intense system overload or security reasons of the primary data source
one can forward queries to the replicas.

• Performance – Many queries can be redirected for the same data to separate data sources
for load balancing.

• Parallelism – Parallelism is increased when read request is served.

The dominant characteristic of all of the above integrated data sources approaches is trans-
parency. It states that the end user finds interactions with the integrated data source system
as if there were no integration of structures, semantics, replications, fragmentations or data
allocation schemas. Regardless of architecture the end user should not be obliged to know any
of the system characteristics and nevertheless should be able to use them with full power of
queries or API.

2.3 Data Stores - the Integration Targets

Classical integration solutions and approaches discussed in the previous sections have been de-
signed to deal with multiple heterogeneous sources. Especially now, eclectic mixes of structural
and model constructs across the modern integration systems have proliferated. In this section
the author draws a sketch to only briefly classify the current state of the art in the field of storage
sources as a target ingredient of data integration systems.

2.3.1 Database modelling - persistence

Right from the beginning of data integration the most common way to store and transfer data
were tabular data files. This simplest way to store data involves numerous formats such as CSV
(tab-delimited files-TSV, or any type of *SV delimiter), spreadsheets, fixed field formats, HTML
tables, and SQL dumps. These formats enable displaying, or creating other formats. The file
structure of an exemplary CSV file is based on rows, each containing information in the form of
cells about a thing. Cells within the same column in a such format provide values for the same
property of the things described by each row. Therefore such a file can store records with no
structured relationships. A simpler incarnation of such a file is a file where each line contains
unstructured data and for each line first two bytes define the format of the data stored in such
a line. The undeniable advantage of flat file is that it take up less space than a structured file.
The great problem, however, is that the application has to know, how to properly decode each
and every line of the file. As a matter of fact, such solutions in the past were applied for the
file systems (e.g. original Macintosh used flat file based Macintosh File System (MFS)) that has
stored all the data in a single directory. At present some flat files can be found in the Unix-like
operating systems namely the files such as /etc/passwd or /etc/group. As for the data transfer
in recent years the flat file has consequently been replaced by the semi-structured files e.g. XML
compressed files (according to Efficient XML Interchange (EXI) as a binary XML standard [54]).

2.3.2 Relational Model

The most accustomed and long time present data storing model is the relational model. The
foundation of current relational concepts were formulated and proposed in [26, 27] based on
the first-order predicate 34 logic (System-R [28, 29]). The Codd’s proposition [26] involved logical

34 Predicate is a statement that may be true or false depending on the values of its variables (i.e. predicate on X :
P : X → {tr ue, f al se}). In terms of first order-logic exact semantic interpretation of an atomic formula and an atomic
sentence says that the atomic formula consists of a predicate symbol applied to an appropriate number of terms.
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concept of value-based data model. The data was supposed to be stored in tuples with named
attributes while a set of tuples constituted relationships.

2.3.2.1 Relational Calculus and Relational Algebra

Relational calculus as a part of relational model [26] provides a declarative method for specifying
database queries and is equivalent to the first-order logic. There are two components of relational
calculus the tuple relational calculus and domain relational calculus 35 . The relational calculus
refers to the quasi-natural language expressions used for non-procedural composing of SQL
queries and statements 36. Thus the relational calculus instead of queries (from relational
algebra) would formulate a descriptive, declarative way. The relational calculus enabled defining
the result of a query by describing its properties. Query in the relational calculus form would
consist of two components: the target list and selection expression [56].

The relational calculus is logically equivalent to the relational algebra [13, 26], which is
also part of the relational model, but provides a more procedural way of formulating queries
based on the mathematical logic and set theory. It means that each algebraic expression can be
formulated as an equivalent expression in the relational calculus. As stated by Codd’s Theorem 2
– this is also true the opposite way. A database query can be formulated in one language if and
only if it can be expressed in the other.

THEOREM 2: Codd’s Theorem

Relational algebra and the domain-independent relational calculus queries are precisely
equivalent in expressive power.

According to this theorem – query languages that are equivalent in expressive power to relational
algebra are called relationally complete. So is relational calculus. However, there are exclusions
from this general statement. It involves aggregations, transitive closures 37 or SQL NULL, nor any
of the three-valued logic (3VL; with true, false and indeterminate 3rd value) they require.

Relational algebra and calculus constituted the basis of SQL. As a whole the relational model
has never been implemented entirely according to its mathematical foundations. Relational
model theory defines some basic terminology:

• domain – basic relational building block in the form of data type. Database interpretation
is build-in types or user-defined ones.

• attribute – ordered set of attribute name and type name. Database interpretation is col-
umn.

• tuple – ordered pair of domain (data type) and value that forms an ordered set of attribute
values (ir. valid value for the type of the attribute). Database interpretation is row (a record).

• relation – set of tuples. Relation consists of relation header as a set of attributes, and
relation body which is a set of n-tuples for an n-ary relation. Database interpretation is
table.

• relation variable (a.k.a. relation schema or relvar 38 ) – ordered pair of a domain and a
name (relation header). Variable to which relation is assigned and the relation itself.

35 Both are considered out of scope of this dissertation. Briefly speaking. Complete description of tuple relational
calculus, that can be found in [26], deals with atomic values (atoms), operators, formulas and queries. Whereas the
domain relational calculus details found in [55] discuss its declarative approach to query languages.

36Relational calculus has also played a significant role in design of declarative logic programming language –
Datalog (syntactically a subset of Prolog). It is often used as a query language for deductive databases.

37 First added as part of a declarative query in 1980 to Oracle Database with the use of CONNECT BY... START
WITH statement.

38 According to [57] introduced to distinguish the data that the relation is assigned to from the relation itself. The
term is not widely accepted in enterprise solutions. There is a similar term of base table treating the concept the same
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– basic relation variables – not derived from other relation variables. Database inter-
pretation is base table created with the use of CREATE TABLE statement.

– derived relation variables (a.k.a views) – expression (using the operators of the rela-
tional algebra or the relational calculus) operating on one or more relations. When
evaluated yields another relation. The view’s expression can be named, and thus
used as a variable name. Database interpretation is view created with the use of
CREATE VIEW statement.

The basic rule for the relational model is the Information Principle:

INFOBOX 3: INFORMATION PRINCIPLE

All information is represented by data values in relations

and according to this principle, relational database becomes a set of relvars, and the result of
every query is presented as a relation. Relvar is often related in context of schemas. A relational
schema is a set of attributes tied with a set of constraints to define a set of relation. This often
leads to another important aspect of relational data modelling which is the data normalization
as the process of logical design.

2.3.2.2 Database Normalization

Normalization 39 of a database is a process of relation schemas with unwanted organization
which are decomposed into smaller relational schemas with elimination of undesired character-
istics. In general, such refactorisation of attributes and tables in a relational database ensure
reduction of redundant data without losing information. This is in favour of data isolation so
that CRUD operations can be conducted within only one table and with the use of foreign key
propagated across the entire schema. The redundancy of data is for example a fact of existence
of an attribute, in two or more tables – which causes inconsistency. This is due to possibility of
the same attribute to become a different value in different places.

Functional Dependencies The starting point for the normalization process are the functional
dependencies within relations. the functional dependency describe dependencies between
attributes. This is a semantic predicate that must be true for arbitrary two tuples. Functional
dependency is a characteristic of a realtion’s schema, and not the relation’s instance. Let us
introduce some formal definitions:

as the variable in the programming language or relation schema. However, a relation schema is often considered as a
relvar plus its constraints.

39 From the point of view of integration, the normalization is a feature of only the relational-based solutions while
the NoSQL solutions tend to marginalize its meaning.
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DEFINITION 2.8: Functional Dependency

For a given relation r with schema R . Let X ,Y be subsets of attributes of R . In the schema R
we say that Y is functionally dependent on X i.e.

X → Y ⇔ ∀
t1,t2

t1(X ) = t2(X ) ⇒ t1(Y ) = t2(Y )

where:
t1, t2 are tuples and
ti (A) states attribute’s A value of ti tuple

The relations that comply with the functional dependencies are called legal instances. Along
inventing the relational model Edgar F. Codd has also introduced, at the same time the concept
of normal forms – first [25], second and third normal [58] forms (1NF, 2NF, 3NF) and in 1974
the Boyce-Codd Normal Form (BCNF) [59]. Each consecutive NF must also conform to all
predeceasing NFs. Now let us briefly discuss definitions of each of the normal forms.
We state that relation r from R schema is in:

• 1NF – if all attributes values are atomic

• 2NF – if none of its non-prime 40 attributes is dependent on any proper subset of any
candidate key of the table

• 3NF – all the attributes in a table are determined only by the candidate keys of that table
and not by any non-prime attributes

• BCNF – if X → Y is a trivial functional dependency (i.e. Y ⊆ X ) OR X is a super key 41 for R
schema

The database is considered normalized if it is in 3NF – satisfy all its requirements. In this manner
the database normalization improves queries performance at the price of schema complexity.

2.3.2.3 Object-Relational Database Model

So the main goal - of the ORDBMS - was to retain the declarative, predicate calculus 42based
query language from the RDBMSs’, while adding the object concepts. Database schema and
query language should also directly support classes, object behaviour with Object IDs (OID),
complex data with the user-defined-types and type inheritance. One of the most recognized
projects that adheres to such object-relational model was Postgres developed at UC Berkeley.
Many remains of the object-relational evolution have also become incorporated as a part of
SQL:1999 [60] standard in the form of structured user-defined types (or briefly structured types)
that are present for instance in Oracle database, IBM DB2, PostgreSQL or Microsoft SQL Server.
This gives the user the ability to define custom data object types that can later be used just as
in the case of native relational types like CHAR or VARCHAR. This means the object types can be
either types of columns in relational table or types of variables. To explain the concept, let us
discuss a tangible example of queries that is of object-oriented nature.

40Non-prime attribute of a relation (table) means that it is not a part of any candidate key of the relation
41 Set of R schema attributes upon which all attributes of the schema are functionally dependent
42Predicate - (def.) is a verb template that describes a property of objects, or a relationship among objects

represented by the variables. A predicate calculus is also called Logic Of Quantifiers
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Listing 2.7: Declare emp_type object with methods 43- PL/SQL style

1 CREATE TYPE emp_ type AS OBJECT (
2 e ID NUMBER ,
3 f i r s t _ n a m e VARCHAR2 ( 2 0 ) ,
4 l a s t _ n a m e VARCHAR2 ( 2 5 ) ,
5 e m a i l VARCHAR2 ( 2 5 ) ,
6 MAP MEMBER FUNCTION g e t _ e I D RETURN NUMBER ,
7 MEMBER PROCEDURE g e t _ F u l l N a m e ( SELF IN OUT NOCOPY emp_ type ) ) ;
8 /

Listing 2.8: Define emp_type object with methods - PL/SQL style

1 CREATE TYPE BODY emp_ type AS
2 MAP MEMBER FUNCTION g e t _ e I D RETURN NUMBER I S
3 BEGIN
4 RETURN e ID ;
5 END ;
6 MEMBER PROCEDURE g e t _ F u l l N a m e ( SELF IN OUT NOCOPY emp_ type ) I S
7 BEGIN
8 DBMS_OUTPUT . PUT_LINE ( f i r s t _ n a m e ’ ’ l a s t _ n a m e ) ;
9 END ;

10 END ;
11 /

In Listing 2.7 and 2.8 an exemplary object type has been prepared. Now one can create an
arbitrary column of emp_type type or create a table of this type as displayed in Listing 2.9.

Listing 2.9: Define column and table of emp_type type

1 CREATE TABLE c o n t a c t s (
2 c o n t a c t emp_type ,
3 c o n t a c t _ d a t e DATE ) ;
4

5 CREATE TABLE p e r s o n _ o b j _ t a b l e OF emp_ type ;

Then the following method execution would be possible:

Listing 2.10: Query column of emp_type type

1 SELECT c . c o n t a c t . g e t _ F u l l N a m e ( ) FROM c o n t a c t s c ;

Some syntactical differences between the dialects and the scope of object-oriented paradigm
are comparable between the existing ORDBMS solutions.

2.3.3 Object-oriented Database Model

The object databases use the data model where information is represented in the form of objects
in sense of modern object-oriented programming languages. The operations on data (in the form
of objects) are executed with the use of integrated object-oriented programming language. This
model thus overcomes the impedance mismatch while assuring the same model representation,
and thus providing consistency between the data storage format and the data manipulation
language. This object query language in also declarative 44 . Some undisputable advantages of
ODBMSs are:

43According to Oracle PL/SQL Language CREATE TYPE statement
44 The Object Data Management Group (ODMG) has even made some efforts in the past to standardize the Object

Query Language (OQL).
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• Expensive join operations are often needless, due to no need for tabular joining and no
need for searching while following pointers are sufficient

• The same type definitions between the data store and the programming language

• Compared to RDBMSs, collecting massive amounts of information about a single item
is easy as using pointers and changes from O(n) to O(1) (e.g. bank collects data about
certain customer history including operations, debits etc.)

• Complex data are simply handled without need to mapping into relational rows and
columns

• With the use of pointers many-to-many relation is simple for objects because pointers are
linked to objects and establish relations

However, due to work suspension and withdraw of some standardisation participants and
vendors in 2009 the model stagnated. Apart from enterprise ready solutions from Versant or
Gemstone, there was a promising prototype of the Polish OODBMS project called ODRA (Java
based) based on Stack Based Approach (SBA) [61] which however, unfortunately tends to be also
deserted, so as its two remaining SBA implementations: LoXim [62] (C++ based) and PySBQL
(Python implementation).

2.3.4 Column-oriented Relational Database Model (CORDB) – Relational
Approach

Query processing in "classical", row-oriented (or record-oriented) database requires reads of
entire rows (if no indexes). It is important that optimization requires storing of the data in the
same area to minimize the hard disk seek, as the most expensive operation. This is known as
a Principle of locality – i.e. data often accessed should be stored together. In context of row-
oriented database, the principle implication is that the same record values will be frequently
accessed together. Now to reuse the specific data with a relatively small answer duration time,
and as the data is organized in records then the related records are put in the same hard disk
block. Thus the number of blocks to be read is minimized. While this is good for the situations
when one needs information about particular object, this is not efficient in the case of applying
operations over multiple rows or data subset. In such a case a row-oriented approach would
require entire data set seek.

Some workaround of this problem is the idea of index that stores column values and the
pointers back to original best row id (BRI). By storing only the dedicated value from a row,
indexes generally are much smaller than the entire table size, and thus scanning times with use
of the indexes are greatly reduced. On the other hand, indexes bring an overhead to the system
especially when considering new data updates. In such cases, the non-clustered indexes needs
to be updated towards new, bigger data stored in tables. Some more in-depth level of index
optimization are the clustered indexes. Such a cluster index – with contrast to a non-clustered
index – changes physical data records storage order, to match the order of index. This way the
data can be retrieved much faster in the cases where we need to access the data sequentially
according to the same or reverse order as the one imposed by the index. However, due to this
assumption, there can be only one clustered index per table.

A more general answer to this class of access optimization problems is a dedicated column-
oriented data model. In this model each column is closely similar to the idea of an index in
a row-oriented model. It redesigns the way of organizing data stored in hard disk blocks by
serializing all of the column values together. Moreover, if the next column would fitted the same
block, it would also be stored next to the first one, right in the same manner. What discriminates
this model from the row-oriented model with index on every column is the mapping. In contrast
to row-oriented model, where the rowID is the best row id mapped to the index data – in the
column-oriented model – the BRI is the data that is mapped to rowIDs. Thus one value is stored
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in the column-oriented model only once45 . Therefore, searching for all its occurrences boils
down to a single retrieving operation. Moreover, aggregating operations (counting, summing,
math operations) over a set of data can gain optimization improvements through this model.

However, the efficiency drops, in the case of object (record) retrieving queries that would
be much slower, as they would require to scan over couple columns that are stored separately.
However, complete record operations are relatively uncommon. Mostly it is required to gather
only a subset of records attributes (columns values). The column-oriented model is also efficient
in the case of operating on the sparse data where multiple columns presence is optional due
to the attribute values belonging to the same column stored contiguously, compressed, and
densely packed. In general we can state that the more rows in table and the bigger size of a row
is – the more we gain with the column-oriented model.

number _o f _r ow s × si ze_o f _r ow

si ze_o f _db_pag e46 ≈ number _o f _IO_oper ati ons (2.5)

The column-oriented model has proven its real-world good performance [63] and fitness for
the purposes such as OLAP analysis, reporting or Decision Support Systems (DSS).

The most importantly, it is not possible to move the column-oriented benefits to the row-
oriented model in a straightforward manner by simply using vertically partitioning of the schema,
or by using the index towards every column to be accessed independently. To gain the column-
oriented advantages in the row-oriented model it requires considerable changes of the storage
mechanisms and query executor engine (i.e. vectorized query processing, or compression) can
bring even more performance from the column-oriented model [64].

While the row-oriented model is still the better choice for the OLTP operational systems, how-
ever the OLAP analytical approach for aggregating and reports can profit more from applying the
column-oriented model in terms of performance and data storage space optimization. There-
fore, the column-oriented model is most often used in the data warehousing implementations.
The most profound representatives are: Sybase IQ, Vertica, ParAccel and Infobright.

2.3.5 NoSQL – Distributed Storage Services

The NoSQL stands for Not Only SQL, which is often mistakingly referred to as No SQL - the
difference is enormous. Contrary to the misconceptions caused by its name, it does not prohibit
SQL in general, but labels the "Not ONLY SQL" approach. Because there is no strong NoSQL
definition, to become more specific, the author has developed the following formalization.

DEFINITION 2.9: NoSQL databases

NoSQL databases - is a class of DBMSs that had to give up the set of the tight relational rules
that become obstacles to meet the challenges, and were sufficient to fulfil the requirements
of concrete application while preserving the rest of the principles and regulations.

Below there are some principles that have driven the NoSQL emergence.

• Availability comes first

• Fixed database and table schema are not required

• Simplicity of design

• Strict rules, that govern transactions in relational databases, are not required

45 Consecutive duplicates within a single column may be automatically removed or compressed efficiently.
46E.g 4KB, 8KB, 16KB, etc.
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• Costly joining operations are undesired

• Store denormalized data due to join elimination

• Horizontal scaling should be simple

• Designed to run on large clusters

On the whole, it can be brought to a point when we consider the NoSQL as a flexible schema
solution that is quicker, and thus cheaper to setup, and provides massive scalability at the cost
of relaxed consistency due to high performance and availability. However, one has to be warned,
that the relaxed consistency means fewer guaranties, and a lack of declarative language simply
implies the need of more code, and thus more error prone development.

2.3.5.1 NoSQL Motivation

Considering a general set of requirements that defines a RDBMS, in some applications, some
of those requirements are not always necessary, and what is more, it sometimes might be
advantageous not to have it supplied. This is where NoSQL comes in, assuring only a subset of
requirements that a RDBMS would have to provide. Due to the networking nature of the modern
computer systems NoSQL databases has become a convenient way to work on the distributed
nodes across network. Such nodes did not aim at rich query abilities, as it was not considered as
important as the improved availability at the cost of consistency. However, most of the NoSQL
implementations provide only the "eventual consistency" model 47 . The model states that after
some data manipulating operation, it will eventually become consistent after some time if there
is be no further interaction with the manipulated data for a sufficient period of time.

According to CAP Theorem, high efficiency of read/write access – i.e. availability – in a dis-
tributed data store, implies the disadvantage of sacrificing the consistency. This is not only in
order to high availability, by also partition tolerance.

2.3.5.2 NoSQL Models

There are five main incarnations of NoSQL store models that are being presently widely used.

Key-Value This model has been designed for more OLTP kind of operations. It involves small
operations over a small number or single records in a massive database. The data model is very
simple as it involves the keys and values pairs and support Insert, Fetch, Update and Delete. The
result is a very fast solution that can assure efficiency, scalability and fault-tolerance. This is
mainly due to implementation based on records distributed to nodes based on key (e.g. hash
value over the key), supporting record replication across the multiple nodes with a single-record
(i.e. one operation; no record groups) transactions and eventual consistency. One has to be
aware that in the key-value store the data is considered to be inherently opaque (i.e. form of
a BLOB) to the database and the data is treated as a single opaque collection which may have
different fields for every record.

Column The key-value data model with its operations is sometimes not enough and therefore
some key-value stores introduced a concept of column within the value part of the model. So
that the value enables more structure than just a simple BLOB of bits. The resulting Column
model resembles the embedded key-value store with a non-uniform, strict structure of the
columns. This model also enables fetching operation that works on a range of keys in contrast to

47 Often classified as providing Basically Available, Soft state, Eventual consistency (BASE) semantics, in contrast
to the traditional ACID.
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a single key in the regular key-value store. To contrast the column model to RDBs, a counterpart
of schema from RDBMSs in the Column model is a Keyspace. Thus in the most frequent cases
the column based applications have only one keyspace - which is the most general abstract
container of this model. On the other end, the most basic element and low level object that the
keyspace contains is a column. As the smallest increment of data, the column is represented
by a tuple (a key-value pair) of three elements <name, value, timestamp>. The timestamp
value is important due the to actual lack of consistency and distribution of data nodes. By dint
of the timestamp one can check if the data stored in a replicated/backup node is up-to-date.
A Super-Column, on the other hand, is a tuple with a name and a map of unbound number of
columns. The exemplary column and supercolumn are depicted in Listings 2.112.12

Listing 2.11: Column

1 { name : " e m a i l A d d r e s s " ,
2 v a l u e : " j ohn@examp le . com " ,
3 t imestamp : 12345
4 }

Listing 2.12: Super-Column

1 { name : " homeAddress " ,
2 v a l u e : { / / map o f u n l i m i t e d n u m b e r o f c o l u m n s
3 / / | KEY | COLUMN VALUE |
4 s t r e e t : { name : " s t r e e t " , v a l u e : " B a l l a d y n y " , t imestamp : 1 2 3 4 5 } ,
5 c i t y : { name : " c i t y " , v a l u e : " L u b l i n " , t imestamp : 1 2 3 4 5 } ,
6 z i p : { name : " z i p " , v a l u e : " 2 0 − 6 0 1 " , t imestamp : 1 2 3 4 5 } ,
7 }
8 }

Again each column and super-column can become part of a Super-/ColumFamily. Column-
Family can be compared to rows from the entity-relationship model. ColumnFamily contains a
number of columns or super-columns, however this is where analogy ends as there is no schema
enforced at this level and its rows do not have a predefined list of Columns that they contain.
Moreover row can change in structure between consecutive updates.

Listing 2.13: ColumFamily - simplified notation - i.e. no timestamps and column/super-
column names removed

1 U s e r P r o f i l e = { / / C o l u m n F a m i l y
2 JohnDoe : { / / K e y t o t h i s Row i n s i d e t h e C o l u m n F a m i l y
3 / / i n f i n i t e n r o f c o l u m n s i n t h i s r o w
4 username : " John Doe " ,
5 e m a i l : " j ohn@examp le . com " ,
6 g e n d e r : " ma le "
7 } , / / e n d r o w
8 J a c k S m i t h : { / / K e y t o a n o t h e r Row i n t h e C o l u m n F a m i l y
9 / / n e x t i n f i n i t e n r o f c o l u m n s i n t h i s r o w

10 username : " J a c k S m i t h " ,
11 e m a i l : " j a c k @ e x a m p l e . com " ,
12 phone : " + 4 8 555 444 4 4 4 " ,
13 age : " 3 3 "
14 } , . . .
15 }

Therefore, ColumnFamily is more like a HashMap/dictionary or a associative array. At this level
we move on to a Keyspace as a grouping container for ColumnFamilies and a single and most
general container for application’s data. The column model, in the case of distributed data stores,
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makes the row handling all pushed towards programmers. The most prominent representatives
of this Column based model are Google BigTable, Cassandra and HBase, but there are also
Amazon Dynamo, Voldemort and more.

It must be clearly stated that column stores or more often called columnar databases in
another sense are a way of organizing RDBMSs data in columns instead of rows for higher
performance in certain applications. Owing to this, data can be highly compressed which allows
aggregating the functions – like MIN, MAX, SUM, COUNT and AVG for rapid performance boost.
The second advantage of columnar arrangement is that it is self indexing and uses less space
than regular RDBMS with the same data.

CODBMS vs NoSQL column model Here the author is obliged to explain the high level
discrimination between the Column-oriented DBMSs and the NoSQL column model. To name
just a few representatives of both groups:

• CODBMS (relational) – Sybase IQ, Vertica, C-Store, MonetDB, VectorWise, ParAccel, and
Infobright use column based storage and access 48

• NoSQL column model (non-relational) – BigTable, HBase, Cassandra and Hypertable are
able to store and access column families separately

There is no widely accepted terminology that could allow to divide and classify existing solu-
tions into these two groups. However, there are some important design differences that can help
to provide a reasonable taxonomy. The main differences are depicted in Figure 2.6. Additionally,

Characteristics Non-Relational Column Sore Relational CODBMS

Data Model
• sparse, distributed, persistent multi-dimensional sorted map

(Row-name, Column-name, Timestamp) → value 
in database i.e. non-relational model

• Traditional relational model

Independence of
Columns

• Store parts of a data entity / “row” in separate column-
families and column-families are accessed separately

• Not all parts of row are picked up in a single I/O operation 
from storage →optimization in case when only subset of a 
row is relevant for particular query

• Column-families may consists of many columns while its 
component sub-columns can not be accessed 
independently

• Every column is stored separately in traditional 
relational database table

• Best suited for queries requesting only subset of 
table attributes

Interface • As a part of NoSQL no SQL interface • Supports standard SQL interfaces

Workload
Optimizations

• More diverse set of applications e.g. handle higher update 
rate

• Struggle with aggregation-heavy workloads
• Best for individual row queries due to:

• possible column-family placement of co-accessed 
attributes (save on seek cost compare to separate 
columns as in relational CODBMS)

• storage layer implementation (see characteristic 
below)

• Best suited for read and analytical workloads with 
fast load times – aggregations over large number of
similar items scanning many rows in a single query

• Low update rate
• Sourcing from single-column row representation  
• Appliance: data warehouses due to bulk-loads, read

queries and rare updates and ad hoc inquiry systems
(i.e. CRM, catalogues)

Storage Layer

• Sparse data model implies:
• different rows can have very different set of columns 

defined –  thus, explicit storing (row-
name/column-name, value) pairs for element 
within each column/column-family

• No  NULL filling due to sparse nature

• All values from a single column are stored 
consecutively without notion of row or column 

• Above implies that undefined column values for  a 
row must be NULL to match up values based on 
their positions in corresponding lists representation 
of columns

• Typical take less storage space for structured data 
(and not storing column/row names)

• Optimized for column operations: read column 
element and apply operation (i.e. predicate 
evaluation or aggregation)

Figure 2.6: Taxonomy of heterogeneity

one of the creators of Vertica (developed from C-Store [65], and also actively involved with
H-Store) has highlighted the following distinction between the two models:

48 Those are strictly column-oriented model representatives. However, this list can be larger as there are more
solutions of hybrid – column and row paradigm elements – such as: IBM DB2, Amazon Redshift or Google BigQuery,
to name just a few best known.
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“ (...)(non-relational model solutions) are really row stores. I.e. they store a column
family in a row-by-row fashion. Effectively, they are using materialized views for
column families and storing materialized views row-by-row. Systems in (CODBMS)
group have a sophisticated column-oriented optimizer – no such thing exists for
(non-relational group) (...).

– prof. Michael Stonebraker ”
On the whole the the CODBMS are best suited for OLAP kind of applications requiring

complex queries towards large volumes of data (i.e TB, PB, etc.). While in the case of non-
relational column-model it can deal easily with many simple and row oriented queries.

Document This category is one of the most popular among the NoSQL world possibly due to
being designed for managing of a semi-structured data. The document-oriented model may
seem to be a straightforward inherent subclass of a key-value store concept. However, the differ-
ence is the data processing. As already mentioned, with the key-value stores, the data is opaque
to the database. Within the document stores, however, the value is a data document containing
its internal structure (i.e. metadata) which is represented in the user-readable form (XML, JSON,
Yaml, semi-structured formats, or even binary formats like BSON), that is understandable and
used by the database engine. This way the metadata based document structure can be a subject
for automation while staying direct towards the actual data instead of being tied by its schema.
In general, we can call this model a key-document model that – in contrast to the key-based
Fetch from the key-value model – additionally enables fetching on document contents. As a
sub-class of key-value store, in general the document stores also differ from RDBs. The main
difference lies in typing. The RDBs store strongly typed data, while the type is introduced in
process of schema creation and is limited to a given set of types. Once created one has to follow
the given type schema and changes are considered uneasy and complicated. In contrast, the
document-oriented stores obtain type information from the data itself as it is kept together with
the data. Data formats are not predefined in the document case. Moreover, each instance can
change its type set and can vary compared to any other instance of the data. Thus, one can
benefit from flexibility to change the metamodel and provide optional values, which is especially
very useful while mapping onto the existing concepts of object-oriented programming (OOP).
This is why the impedance mismatch problem of RDBMSs does not exist in a document-oriented
system or in general, in the NoSQL systems.

The most straightforward and obvious implementation of the document-oriented database
are the XML databases that use XML to extract metadata information from it and sometimes
even store the actual data. However, the most popular document-oriented DBMS is MongoDB.

Listing 2.14: Raw XML based document

1 < a d d r e s s >
2 < fname > John < / fname >
3 < lname >Doe < / lname >
4 < s t r e e t > Kw ia towa < / s t r e e t >
5 < c i t y > L u b l i n < / c i t y >
6 < z i p >20 −601 </ z i p >
7 < c o u n t r y >POLAND < / c o u n t r y >
8 < / c o n t a c t >

Listing 2.15: JSON-based document;
MongoDB style

1 {
2 _ i d : < O b j e c t I D > ,
3 fname : " John " ,
4 l name : " Doe " ,
5 / / e m b e d d e d s u b − d o c u m e n t
6 a d r e s s : {
7 s t r e e t : " u l . K w i a t o w a " ,
8 c i t y : " L u b l i n "
9 }

10 }
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Listing 2.16: Metadata document for page node

1 {
2 _ i d : O b j e c t I d ( . . . ) ,
3 nonce : O b j e c t I d ( . . . ) ,
4 m e t a d a t a : {
5 t y p e : " b a s i c −page " ,
6 s e c t i o n : " my−p h o t o s " ,
7 s l u g : " a b o u t " ,
8 t i t l e : " A b o u t Us " ,
9 c r e a t e d : ISODate ( . . . ) ,

10 a u t h o r : { _ i d : O b j e c t I d ( . . . ) ,
11 fname : " M i c h a e l " } ,
12 t a g s : [ . . . ] ,
13 d e t a i l : { t e x t : ’ # A b o u t Us \ n " , l a s t e d i t e d : " " }
14 }
15 }

Overall, there are multiple implementations of this paradigm like MongoDB, CouchDB, Redis,
MUMPS, RavenDB and many more.

Graph This model was designed for storing and querying over very large graphs. The model
involves two kinds of objects. A Node and an Egde ( which is placed between two nodes). The
node contains properties (like node ID) and edges have labels/roles. The node properties are
again key-value pairs. The operations or querying languages available for graph databases are
not standardized, therefore there are single step-queries (e.g. in the social graph ask for all
friends of a person-node), path expressions 49 , but also a full recursion 50 . The most significant
of the graph systems is Neo4j, but again there are many more like FlockDB, Pregel, etc.

Resource Description Framework (RDF) RDF is based on the relations between objects, so
one can find resemblance to nodes and edges from the graph model. The RDF is a family of
World Wide Web Consortium (W3C) specifications [66, 67] aimed at representing a data model as
metadata. Just as in the case of class diagrams it is based upon the idea to make statements about
resources in the form of subject–predicate–object expressions (a.k.a triple stores). This similarity
and the triples idea make it easy to map the RDF triple stores to a graph database. One of the
most prominent RDF query languages is Protocol and RDF Query Language (SPARQL), that is a
semantic query language for the RDF databases used for data manipulations.

MapReduce This model should be considered as the one of couple of systems 51 designed for
more OLAP and analytical kind of operations that involve scanning most of large amounts of
data to do complex analysis. It originally comes from Google. Its distinctive characteristic is that
there is no data model at all. The data is stored in files e.g. Google File System (GFS) or for the
Hadoop open implementation version – HDFS. The operations, in case of MapReduce model –
are limited to Map, Reduce, Reader, Writer functions that will be extensively discussed just as the
entire Hadoop ecosystem in Section 2.4.3.3.

As the regular DBMS the MapReduce is sometimes used for views and queries as it is with
CouchDB.

Multi-Model In contrast to most of DBMSs, a new Multi-Model database design approach has
been introduced. Its basic feature is that it can use multiple models against a single, integrated

49Following edges and nodes to find e.g. female friends of friends for a given person-node.
50Traversing in-depth the graph for a given depth.
51 See subsection 2.4.3.3 for examples with details.
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backend. As already discussed in Section 2.2.3, challenging enterprise application often requires
multiple data models to be supported and therefore solving this problem, can be done by
adopting strategy pattern of polyglot persistence. In a straightforward manner this solution has
two major drawbacks. It increases the operational complexity 52 and it does not guarantee data
consistency across the integrated data sources 53. These problems are target for the multi-model
solutions that aim at reduction of the operational complexity with provision of single data store
54 [68].

The examples of this model are: FoundationDb (that not only supports multiple layers of
NoSQL solutions but it also supports ACID), Aerospike, OrientDB, ArangoDB, Couchbase Server
2.0, Riak (as a key-value store it accepts JSON as a value) or NuoDB. Most of those solutions like
the OrientDB, ArangoDB or FundationDB supports SQL, key-value/document/graph/object
stores and ACID functionality; in some cases even distribution.
Moreover, some of the general-purpose databases also have multi-model options, like the Oracle
MySQL 5.6 that support both SQL and key-value access with the Memcached API or PostgreSQL
h-store that can store key-value pairs within a PostgreSQL data field, thus enabling schema-less
queries against data in PostgreSQL.

Some of those solutions often belong to a class of modern RDBMSs that provide scalable
performance of NoSQL for the OLTP procedures while maintaining ACID guarantees. For some
time those products have been named NewSQL.

2.3.6 NewSQL

Despite of fact that NoSQL trend evolved from the relational model as a response to new massive
amounts of data, the well established and reliable relational solutions were not able to face new
challenges. This was due to conceptual model issues that the traditional relational solutions
suffered from design. However, the NoSQL movement is based on highly specialized solutions
that complement the transaction-ready solutions rather than replace them. This situation was
noted by new DB vendors that have presented brand new approach to data storage that intended
to merge the best from both worlds. This involved the attempt to improve the relational model
for distributed systems and vertical scalability.

The current situation involves large scale systems, with huge and growing data sets (like
Facebook 9M messages/hour or Twitter 50M messages per day), often generated in an automated
way by software and devices. Modern systems require also high concurrency requirements data
model that requires some relations and transactional integrity. As a result, the architectural
trends changed towards moving traditional dedicated databases into cloud due to consistency,
transaction handling, storage optimization and scalability purposes. The NoSQL as a new kind
of non-relational database products have rejected a flexible table schema and join operations. Its
goal was to meet the scalability requirements for distributed architectures while presenting none
schema data management requirements. The CAP and ACID were replaced rather by the BASE
architectural trend. NoSQL provided also horizontal scaling with the use of custom APIs. This
forced the additional application level sharding and logic to provide functionalities previously
present in classical, relational solutions. Moving the logic to applications has risen a complexity
and support cost of such systems. This was the reason that the new class of solutions, called
NewSQL 2.10, has emerged.

52 Each data storage mechanism introduces a new interface to be learned.
53 The purpose of this thesis is to provide a solution that would eliminate this disadvantages while still providing

the polyglot persistence. See following chapters for details.
54However, single data store requires data migration which is not always possible or affordable. The thesis provides

here a meta solution that eliminates this problems.
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DEFINITION 2.10: NewSQL

The NewSQL term refers to new products (rather than SQL itself) that:

• deliver scalability, flexibility and transactions over distributed architectures a , while
retaining the SQL support queries and ACID, or

• improve performance in terms of vertical scalability, if that is good enough, horizontal
scalability is no longer a necessity.

a i.e. what the NoSQL complements towards RDBMSs

The goal of the NewSQL concept is to provide solutions with the SQL-based interface with the
ACID support but still with non-locking concurrency control, high per-node performance with
scalable, shared nothing architecture .

“ I would define a NewSQL DBMS as one having the following 5 characteristics:

1. SQL as the primary mechanism for application interaction

2. ACID support for transactions

3. A non-locking concurrency control mechanism so real-time reads will not
conflict with writes, and thereby cause them to stall.

4. An architecture providing much higher per-node performance than the avail-
able from the traditional "elephants"

5. A scale-out, shared-nothing architecture, capable of running on a large number
of nodes without bottlenecking

– prof. Michael Stonebraker (see [69]) ”
The shared nothing architecture eliminated the single point of failure as each node is inde-

pendent and self-sufficient. There is no shared disk nor memory that enables infinite scaling
and data partitioning.

The reasons for NewSQL approach was due to a couple of aspects. The OLTP solutions
as designed and optimized towards computers in 1970’s include disk-resilient B-trees, heap
files, locking-based concurrency control has changed a little compared to the changes that
took place on the ground of hardware. It moved to an extent where in some cases the OLTP
database can fit into memory, thus the transactions can take less than milliseconds. As shown in
[70] performance exploration of modern conventional databases transaction processing (TP)
components there are many overheads – see Figure 2.7. The test has proven that eliminating the
overheads has increased the number of transactions per second (TPS) from 640 up to 12 700
TPS with the single-threaded, lock-free query processing kernel. The most overhead was caused
by buffer management that has involved buffer pool for accessing data stored on the fixed-size
disk pages – providing level of indirection while accessing each record which must be located on
those pages with identified field boundaries. What is more, the buffer pool determines which set
of disk pages is cached in memory at a given time. One can eliminate this aspect of TP if data is
held in memory for the maximum throughput. In the cases data does not fit (due to size) the
memory, one should consider Anti-Caching [71] that enables better main memory management
and does not require data conversion between the main memory and the disk format.
The second most significant issue is the records write-ahead logging and change tracking.
The duplication of each write , i.e. the database and the log writes, that are stored at disk for
transaction durability provide the second biggest overhead. However, in the case of negligible
recoverability or its external assurance (e.g. automatic / external / versioned replicas in the intra-
and inter-cluster high availability nodes) one can bring approx. 20% TPC gains while stripping
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Figure 2.7: Traditional OLTP overheads.

this functionality.
Next is the locking – in terms of traditional two-phase locking governed by Lock Manager entity
it requires setting a lock on the lock table.
In the case of arbitrary data access optimization B-trees, hash tables and any other disk-based
index structures require also additional CPU and I/O. In the case of in-memory database this can
become a significant overhead with classical B-trees and might require more cache-conscious
index e.g.[72].
The multi-threaded nature is assured with the use of short duration latches, while updating
the database shared structures (e.g. B-trees, lock tables, resource tables, etc.). This is required
during every multi-threaded database access. This overhead can also be considered redundant,
and eliminated, by using single-threaded implementation with autonomous operating parti-
tions. One can achieve this way database parallelism due to distribution of single-threaded,
autonomous execution nodes among cluster wide servers’ CPU cores.
This show how potential is in careful elimination of such overheads.

“ (...) removing those overheads and running the database in main memory would
yield orders of magnitude improvements in database performance.

– VoltDB white paper (see [73]) ”
Those overhead components, originally aimed at assuring the data integrity, however cur-

rently they prevent the modern systems based on traditional databases from scaling, thus facing
modern workload and data volume requirements. The traditional scale-up approach is costly in
terms of hardware and software, but what is more important it generates additional complexity,
thus the maintenance costs also increase.

Therefore, the modern – NewSQL – approach considers the scale-out, shared-nothing ar-
chitectures with close to linear scalability. Moreover, NewSQL solutions tend to apply the well
tested and used for a long time architectures and provide their an in-depth tuning moving
towards modern scale-out requirements. This often involves stored procedures interfacing for
transaction handling, using main memory based architectures with automatic partitioning
across the shared nothing server cluster.

The NewSQL solutions can be classified under three main categories:

• New Approach: VoltDb, Clustrix, NuoDB, etc.

• New Storage Engine: TokuDB, ScaleDB, etc.

• Transparent Clustering: ScaleBase, dbShards, etc.
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The first one to deliver the NewSQL oriented solution was Google. The company answered to
SQL demand (not answered by NoSQL) 55 with Spanner and F1 projects that enabled globally-
distributed transactions, thus pushed SQL further than ever. However, recently new vendors
introduced interesting solutions. This involved VoltDB 56 , an in-memory DB, aiming for speed
and make SQL semantics work over streaming applications. Similarly to SparkSQL (see section
2.4.3.3) and its streaming module that allows to stream data through and write SQL queries
that evaluate over a chunk of data that comes in. VoltDB uses stored procedures interface with
asynchronous/synchronous execution with data access serialization and horizontal partitioning.
It also enables multi-master replications with K-safety 57 . This means that the appropriate
number of partitions out of the cluster will be assigned as duplicates, and ensure that the
duplicates are kept on separate nodes of the cluster in order to assure given K value.
Another project is NuoDB that uses the distributed ACID transactions with D supported as a
key-value store. NuoDB is a CP class system that needs majority of nodes to work. This is the
same as another CP-class system named Clusterix. Its goal is to provide real-time analytics with
distributed SQL in terms of performance for better resiliency in. A great example of evolution
of the "legacy-SQL" databases is MariaDB Galera Cluster as a fork of MySQL. The vendor here
assumed the evolutionary approach to re-engineer and extend the existing solution to be more
distributed and more like the NoSQL solutions. Additionally, joint effort initiative of Facebook,
Google, LinkedIn and Twitter engineers called WebScaleSQL.org consortium tries to coordinate
efforts to make SQL more scalable. The new approach has been part of the TokuDB that aims at
high performance storage engine for the use with MariaDB or MySQL. It uses fractal tree index
58 for performance while still complying ACID and Multiversion Concurrency Control (MCC or
MVCC) 59 , a concurrency control method to provide concurrent access to the database. The
others are: the GenieDB and ScaleBase (as globally distributed MySQL as a service DBMSs),
ScaleDB (serves streaming inserts and analytics with SQL) and TransLattice (globally distributed
transactional SQL-based on Postgres). In general the solutions are based on taking the existing
technology and adding underneath a distribution or on top of it a better management.

2.3.7 Big Data - all or nothing

However NoSQL, is simply a part of a bigger trend that has emerged. Due to the natural growth
of digitized global information, the data to be stored and analysed has become unmaintainable
with the traditional approach. According to the Science article [74], the world per-capita capacity
to store information has doubled every 40 months since 1980. Every day new 2.5 exabytes
[75] (2.5 quintillion or 2.5×1018 bytes) of data are being created. What is more, the network
throughput capacity also increased from 281 (1986) and 471 (1993) petabytes to 2.5 (2000) and
65 exabytes in 2007. As for 2014 only the mobile global traffic reached 2.5 exabytes per month.
This means 69 percent growth from only 2013 with 1.5 exabytes per month. With forecasts of 24.3
exabytes per month [76], considering only the mobile traffic with Compound Annual Growth

55 The BigTable proved good for storage but insufficient for SQL.
56 From M. Stonebraker the creator of Postgres
57 Property of a cluster that defines number of nodes that can fail while the database continues to run normally.

Most often this requires calculating the maximum number of unique partitions that can be created with the given
number of nodes, partitions per node, and the desired K-safety value. If more than K nodes fails, the system is no
longer K-safe and turns off to prevent inconsistencies. E.g if K = 1 then half of partition will be assigned as duplicates
of the second half, if K = 2 then 2/3rds of the cluster’s partitions will become copies of the remaining 1/3rd

58 A generalization of binary search tree (BST)(just as B-tree) tree data structure with the sorted data, with access
times the same as B-trees, but with insertions and deletions asymptotically faster than the B-tree. This is due to
more than two children and that each node has buffer allowing to store update operations (insertions, deletions) in
intermediate locations, thus scheduling disk writes.

59 The simplest method is locking which is when readers must wait until the reader stop writing. However, this
makes the system slow. With MVCC each user sees a snapshot of the database that was consistent at that particular
time. Any changes made by the writer are made available to the readers only after writing transaction which is marked
complete.
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Rate (CAGR) 2014-2019 of 57%, brings the idea of Big Data to tangible numbers. The Big Data

(a) Ericsson Forecast [77] (b) Cisco Forecast

Figure 2.8: Monthly Mobile Data Traffic Forecasts by 2019

definition has been coined in numerous ways, [78], or [79]. However, the problem however,
was discussed much earlier in technical report [80](2001) from META Group (later acquired by
Gartner). It introduced the 3V principle describing data growth challenges in 3D manner.

INFOBOX 4: 3D BigData model (3V PRINCIPLE)

BigData’s 3D nature is composed of the following dimensions:

• Volume - amount of the data. It is important in the context of BigData that we deal
with characteristic of the ’Big’ data

• Velocity - data generation time. The speed of data generation and processing to meet
the demands and challenges put ahead due to growth and developement

• Variety - quantity of data types and sources. Heterogeneous data sources, their types
and particularities are getting more diverse as BigData is being developed and more
demanding. Moreover BigData extends beyond structured data, including all unstruc-
tured data varieties text, audio, video, click streams, log files and more.

Veracity and Value are sometimes added. Veracity depicts the data cleanliness or quality and
how precise it get so that the end user can be sure the data is accurate. It answers the question
if the data is trustworthy. It must consider the aspects of: duplication, ambiguities, latency,
inconsistencies and eventual approximations. On the other hand, the Value takes into account
the business value of the collected data. Therefore, one must consider what benefits will be
provided due to cost generated while collecting the data. In this manner one way of accessing
the data is to integrate it in a structured way of purpose-built format (like files or folders in the
structured data warehouse) or in the form of data lake where it is copied as-is, in its native data
format and stored for further analysis. The data lake idea is driven by eliminating the cost of
data ingestion (like transformation), increase agility and accessibility. However, the noticeable
downsides are a lack of semantic consistency, governed metadata, and need for additional data
manipulation prior to actual data analysis. The true beginning of the big data was in 2012 when
the U.S. White House introduced the "Big Data Initiative" with $200 million intended for multiple
research and government agencies like AMPLab at UC Berkeley, DARPA, Department of Energy,
National Science Foundation (NSF) etc. This was also when the definition for BigData was widely
commercially adopted [81] and become re-coined by Gartner as presented in Definition 2.11
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Figure 2.9: BigData: Expanding 3D data space

DEFINITION 2.11: BigData a

Big data is high volume, high velocity, and/or high variety information assets that require
new forms of processing to enable enhanced decision making, insight discovery and process
optimization.

As of the present (2015), the most recent definition, that aimed at becoming the most consensual
one, recalls BigData as follows:

“ Big Data represents the Information assets characterized by such a High Volume,
Velocity and Variety to require specific Technology and Analytical Methods for its
transformation into Value

– See [83] ”
Traditional data processing 60 applications – in the BigData era – proved to be inadequate

and insufficient. Using the classical solutions towards BigData resulted in difficulties with data
analysis and retaining reasonable costs at the same time. The issues with BigData support by
traditional solutions, forced development of dedicated, new solutions broadening the entire
spectrum and brought new, cutting edge ideas.

Due to rapid technology changes BigData is constantly changing, however, it is always all
about unveiling large hidden values from large datasets. What is especially important is that
regardless of what set of techniques or technologies is included in BigData term, it will always
require new ways of integration for heterogeneous, diverse, complex and massive scale data that
can bring agility and work unconditioned to the data sizes.
The goal of this dissertation is to introduce such a new way of data integration that will be
elaborated in the following chapters.

2.3.8 After SQL Era

Back in the past the only methods to store data were flat files and the SQL solutions. The
Internet made everyone to rethink persistence in a way that brought the NoSQL and many of its
essentially new ideas. And finally in recent years, there has been recap that SQL was actually very

60 Like the basic: validation, sorting, summarizing, aggregating, analysis for data interpretation, reporting com-
puted information or classification that separates data into various categories.
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valuable and should not be abandoned while following fashion for NoSQL. Therefore, return
of relational model led to reconsidering the approach to scalability, availability, etc. There are
some interesting new areas developing recently in the area of data approaching. However, SQL
is sure to be always present. The NoSQL revolution expanded the possible options and become
important part of the persistence tools set.

Graphs The graph data representation model has already been present for some time with
some promising implementations – e.g. Neo4J. However, graphs are often misconcepted as an
object models. To determine a model as a graph model one could think of trying to answer the
ACID compliance question – i.e. would the standard graph traversal algorithms make sense (e.g.
find the connected components with the shortest path, minimum spanning tree, find cliques in
a graph, etc.)? Moreover the model is probably more like a relational model. On the other hand,
if a relational model requires more and more joining the graph model should be considered
useful.
In modern system a sharding problem is a very important issue. In terms of graph, finding the
place where we put the cutting line, and answering questions such as how graph can be cut
into sub-graphs dynamically, then how to restructure the graph due to connections change. In
general performant, distributed graph technology is still a research problem, and therefore there
are not many stable distributed graph solutions.
The most mature of the graph solutions would be the Titan supporting Cassandra and HBase
storage. Also Google has made some effort to develop a graph engine called Pregel. The model
applied to traverse the graph is called Bulk Synchronous Parallel (BSP). With BSP the compute
model is based on moving in steps from each node to all links to the next nodes, and later to the
next nodes etc. Actually the same BSP model is used in two other products Apache Hama and
Giraph.
Regarding solutions based on the distributed FS the GraphX should also be mentioned. GraphX
is an engine for graph algorithms on top of Spark as an underline compute engine and the
distributed FS as the storage.

Logic Programming In this area we represent queries as logic statements. The Datalog repre-
sentative solution is not really new as it was originally implemented as a subset of Prolog. It is
actually an alternative to the SQL relational model. The most recent examples are Datomic that
uses Datalog query model and Cascalog that is a Clojure dialect 61 on top of Cascading which
provides one of the most concise statements, even compared to Scala or SQL, e.g. in terms of the
world count task.

Probabilistic Programming The area of probabilistic programming is a good example to a
trend to de-emphasing data model and letting the fundamental algorithms to process the data.
One of the appliances are the probabilistic graphical models for inherently probabilistic systems
e.g. weather forecasting or medical diagnostic predictions about diseases based on symptoms.
The example of this approach are Bayesian Networks. Here the model involves probable causes
and symptoms that are likely to take place, leading to outcomes. E.g. M.D. can observe symptoms,
and then can use the model and infer the probability that is caused by a disease. This approach
is used for modelling some areas where there are no absolute answers, based only on certain
outcomes and symptoms and infer the probability of likeliness of precise facts or scenarios.
Another example is Markov Chains or the Monte Carlo Markov Chain used for modelling the
sequence of events where the probability of the next event depends on one or more previous

61 Created by Nathan Marz – the creator of Lambda architecture. (Lambda architecture was designed for massive
data volumes with the batch- and the stream -processing. It is based on providing accurate views of batch data with
batch processing (balancing latency, throughput, and fault-tolerance), while simultaneously providing real-time
stream processing for viewing online data. Thus the use of streaming map-reduce latency is being reduced.)
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events. The difference is that the Monte Carlo case is based on a simplified assumption that only
the current event matters when predicting the next one regardless of what happened in the past.
The modern autonomic driving cars can be an example of its appliance when the map and the
sensor data are combined with a probability of being real. This is never a precise mapping of
real-to-virtual view due to measuring errors, real-world object not on the map etc. Thus we deal
with inferring a probabilistic view of the car location and real world surrounding.
The related project originated at Berkeley is called BlinkDB. This is a massively parallel, approxi-
mate query engine for interactive SQL over large data sets. It enables to sacrifice query accuracy
for the response time. Therefore the answers are rather approximate than absolute.

Dataflow Programming Cascading / Scalding (Scala-based equivalent) or Spark API tools
encourage a dataflow-style model that is based on pipelines of data streamed through. An
example of defining the dataflow that internally handles synchronizing data state. An exemplary
implementation of dataflow programming, written in Haskel and JavaScript, is called Functional
Reactive Programming. It empowers synchronizing mutable states over large datasets. It is
especially practical when considering the model for Convergent Replicated Data Types (CRDT)
[84, 85] for synchronizing shared mutable state at scale. In such case concurrent updates can
actually commute and it is not possible to assure execution of the updates by all replicas in
a correct order of arrival timestamp. Thus the issues of operations while concurrent updates
commute and all replicas execute all updates in casual order are solved. Currently it is being
implemented in Riak and Akka.

2.3.9 Database taxonomy

The dissertation present only a draft of available real scale dedicated and emerging new sources.
The scale is, however, enormous and recently one can observe a noticeable increase in evolution-
ary changes in the area of data storing solutions. To give just a brief overview of how the present
situation looks like, a schema was attached to acknowledge the current state of evolution in the
data storing solutions – see Figure 2.10. From the economic point of view one should consider
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all aspects of storage, integration, processing and analytics of the data. The total number of
essential factors is important and requires some classification. The data solutions dealing with
the mentioned aspects must be considered regardles of the data nature itself. The areas that
should be considered while deciding about economics should be considered individually for
each business case – see Figure 2.11

Figure 2.11: BigData vs Economy [86]

2.4 Related Works - Overview of Modern Integrating Solutions

Integrating distributed data and service resources are an ultimate goal of many current technolo-
gies, including distributed and federated databases, brokers based on the CORBA standard [87],
Sun’s RMI, P2P technologies, grid technologies, Web Services [2], Sun’s JINI[3], virtual reposito-
ries [4], metacomputing federations [5, 6] and perhaps others. The distribution of resources has
desirable features such as autonomic maintenance and administration of local data and services,
unlimited scalability due to many servers, avoiding global failures, supporting security and
privacy, etc. On the other hand, there is a need for global processing of distributed resources that
treats them as a centralized repository with resource location and implementation transparency.
Distributed resources are often developed independently (with no central management) thus
with the high probability they are heterogeneous, that is, incompatible concerning, in particular,
local database schemas, naming of resource entities, coding of values and access methods. There
are methods to deal with heterogeneity, in particular, federated databases, brokers based on
the CORBA standard and virtual repositories. If a global defragmented collection is very large
(millions or billions of records), it would be practically impossible to process it sequentially
record-by-record. Hence some query optimizing mechanisms are required. For instance, some
optimization methods such as indexes and query rewriting are described respectively in [88, 89]
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and in [90]. To some extent, these methods can also be applied to distributed heterogeneous
databases with the fragmentation transparency, but their scope is limited. Distribution, het-
erogeneity and defragmentation concerning arbitrary model databases imply very challenging
optimization problems which practically have not been considered in a holistic way so far in the
database literature.

2.4.1 OLTP & OLAP - sets of operations

Overall database activities can be divided into two broad classes. The first, traditional one - is
called Online Transaction Processing (OLTP). It involves short querying, inserting and updating
transactions, simple queries dealing with small portions of data, while still allowing small, fre-
quent and fast queries. The very fast and effective (transactions per second) query processing,
maintaining data integrity in multi-access environments is the main emphasis of OLTP. OLTP
only considers current and detailed data based on entity model (usually third normal form -
3NF)
The second and more recent one is Online Analytical Processing (OLAP) 62 . Its characteristic is
rather opposite to OLTP with low volume of long transactions involving complex queries with
aggregations that result from rather large volumes of data, rarely or never being updated. Its
effectiveness is measured with the response time. The data that it uses is historical, aggregated
and stored in multidimensional schemas.
Those are two, quite extreme definitions with broad spectrum in between. This includes moder-

Nr Property

1 Every day processing Heterogeneous OLTP databases

2 System Goal Fundamental business jobs

3 Data Date Current data processing Historical information processing

4 Users DBAs, database professionals, db clients

5 Thousands Hundreds

6 Goal Snapshot of current business processes Set up of data with analytical  significance

7 Outcome Focus Data is output oriented Data is application oriented

8 Data Nature highly detailed and primitive data Consolidated and summarized data

9 Data Structure Flat relational data schema Multidimensional views – hypercubes

10 Database Design Highly normalized, multiple  tables

11 Inserts/Updates Run by user; fast and short

12 Queries

13 Speed Very fast

14 Volume Size

15 High performance High flexibility 
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data mining
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Return millions of records; complex with 
aggregations

Depends on complexity of input data; might 
take even a few hours

Relatively small due to only current data 
storage

Integrates multiple OLTP with intense 
aggregation and historical data thus large and 

optimization (e.g. index) dependent use

Overall 
Characteristics

Figure 2.12: OLTP vs. OLAP collation.

ate amounts of data, update queries or the transaction complexity. However, the problem was
that right from the beginning the databases were designed to meet the OLTP requirements. Over
the years additional techniques had to be developed though, to assure the OLAP support. Thus,
presently DBMSs can be tuned up to be compatible with the OLAP requirements.

62 The term was coined by E.F.Codd himself in [91].
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DEFINITION 2.12: Online Analytical Process (OLAP)

OLAP - set of operations a /approach that enables processing of multi-dimensional an-
alytical queries/operations on OLAP hypercubes representing the data prepared in data
warehouse or other data source. Part of Buisness Intelligence.

aby Gartner[82]
apivoting, slicing, dicing, drilling

This kind of software model is especially popular with the enterprise class solutions. It is due
to large sizes of such systems and numerous operational data sources (that often occur to be
numerous OLTP databases), that are expected to provide integral analysis and reports.

DEFINITION 2.13: Business Intelligence (BI)

Business Intelligence refers to collecting business data to find information primarily through
asking questions, reporting, and online analytical processes. It is a process of collecting
data, transforming it to information and obtaining knowledge out of this information.

OLAP is a part of Buisness Intelligence (BI) which is gaining new insights about business or
markets by dint of technology, systems and good practices for analysing crucial business data
(like the BigData, text or network [92]). This gives obvious gains in the form of improving
efficiency, workflow and finally the product.

Here the author is obliged to explain how one can distinguish between the BigData and the
BI regarding data and its usage.

INFOBOX 5: BIGDATA VS BUSINESS INTELLIGENCE

The BigData use inductive statistics a to infer rules b from large data sets with low schema
information density to unveil relationships and dependencies. It can also try to predict
behaviours and outcomes. On the other hand, the BI uses high information density data,
measuring and detecting trends with the use of descriptive statistics. Therefore, the BI aims
at summarizing the target sample data rather than extrapolating and learning about the
entire data based on the data sample.

aDealing with conclusions, generalizations, predictions, and estimations based on the data from samples.
bOften uses also non-linear system identification method for identifying or measuring the mathematical

model of a system using the IO measures. It is categorised into four approach models of neural network, Volterra
series, block-structured and NARMAX.

2.4.1.1 Data Warehouses - Integration and Analysis

Through proliferating data sources a need of data integration entrenched in modern computer
world. What is more, exponential growth of stored data and new applications for databases have
enhanced this effect even more. The collected data required a solution for a holistic governance
of analytical summaries. A kind of workflow where the data is brought from the operational
OLTP sources into single "warehouse", for the OLAP analysis, has emerged and called data
warehousing. The reason for OLAP emergence was that issuing complex OLAP queries against
OLTP generally would result in unacceptably high costs and thus, low performance. What OLAP
has also enabled was heterogeneous integration of historic data and provision of special data
organization and access methods not provided by operational, RDBMs serving the OLTP. As a
result, the data warehouses become implemented separately from operational databases.
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DEFINITION 2.14: Data Warehouse (DW, DWH) / Enterprise Data Warehouse (EDW)

Data Warehouse - store used to bring together data from different data sources in easy for
analysis format and optimized for further OLAP analysis.

Based on the warehousing analysis, in the enterprise scale systems an infrastructure of Decision
Support Systems (DSS) is also often introduced. In such cases the data collected from multiple
databases is stored in specially tuned - for OLAP analysis - data warehouse, which is referred
to as the DSS. There can be basically data-, document-, knowledge- or model-driven systems
depending on the needs and target area of requested decision making based on data analysis.
On the whole what DSS consists of [93, 94], is:

• database (most often numerous with data crucial to decision making)

• the model that determines the context of the decision and the criteria

• the user interface

Basically there are three main applications for data warehouses:

• Information Processing - Querying, statistical analysis, reporting with tables, charts and
graphs of data processed within data warehouse.

• Analytical Processing - The analysis made with the use of slice/dice, drill down/up, and
pivoting OLAP operations.

• Data mining - Using the data warehouses for knowledge discovery using hidden patterns,
associations, building analytical models or performing predictions and classifications.

The following chapters of this dissertation will include a in-depth discussion of a Cuboid
integration concept that might get confused with OLAP cube. Therefore, for the sake of discrim-
ination between those two terms, in the following paragraphs the author presents a detailed
description of what OLAP application and design principles are. The detailed comparison and
contrast analysis will be enclosed in the chapter dedicated to Cuboid based architecture.

???

OLAP solutions are mostly based on a type of relational schema named Star Schema / Dimen-
sional Model 63 (as proposed by Ralph Kimball) , snowflake schema 64 or fact constellation which
is actually a collection of star schemas that contains multiple fact tables sharing many dimension
tables. Typically it includes one very large table named fact table with references to many smaller
tables of the schema. This table is a subject of frequent updates 65. The rest of the star schema
tables are called dimension tables that in contrast are not that large as the fact table and tend to
get updated infrequently. The most common case is that the fact table is based on inserts only
originating from the dimension tables – which store more basic or real world data, compared
to reporting/logging nature of the fact table. The fact table attributes can be divided into two
groups. The first group consisting of foreign keys to the dimension tables is called dimension
attributes. The rest of the attributes are called dependent attributes due to being dependent on
the values of the dimension attributes. In the fact table you can also have non-key values that can

63 In this schema the dimensions are denormalized- one table, one dimension. Owing to this, we have fast aggre-
gations and simpler joining queries compared to normalized alternatives. On the other, a hand lack of normalization
results in no enforcement for data integrity.

64The normalization of this multidimensional database originates in removing low cardinality attributes by
creating new tables [95]. In this form, retrieving results involve increased complexity of query joins comparing to
denormalized case.

65 However, one has to be aware that OLAP query session often works only on a snapshot and therefore no updates
would be commenced.
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be a target of aggregation when analysing based on criteria in the dimensions. Those are called
measures. The SQL-based, OLAP queries, executed over the OLAP star schema usually tend to
aggregate on the dependent attributes. Basically they tend to expand the fact table data with use
of foreign key to the dimension tables, using joining, filtering, grouping and aggregating. Indeed,
the JOIN operation is always costly regarding the performance especially when considering
large data size as a result of being consolidated from multiple sources. To solve this problem a
specially designed query optimization [96], indexing [97–99], compression [100, 101], forecasting
[102, 103] or pre-aggregating techniques – e.g. with intensive utilization of materialized views 66

– have been developed over last fifteen years.
The second approach, apart from the dimensional model, is the Third Normal Form (3NF)

approach [104]. It declares that the data warehouse should be modelled with the E-R normalized
model. Comparing the two models – the dimensional approach seems to model in a more
intuitive way the business domain for the users, and moreover, the lack of complexity results in
better performance. However, preserving the integrity of facts and dimensions while loading
new data from the multiple data sources is complicated. What is more, in the case when business
domain requires fundamental changes in functioning, applying new rules will become a serious
issue.
The normalized model is based on normalization rules described already in 2.3.1. The subject
areas representation is divided into tables grouped by categories and stored in the relational
database. This makes adding new data easy and simple. On the other hand, the complicated
schema of tables in large business use cases cause multiple heavy join operations requests.
Both models can be represented in the E-R diagram and both involve relational tables joins.
The difference is the degree of normalization. However, some research [105] has been made to
show that even with the same fields used in both models the normalized ones provide far more
information than their dimensional equivalents, however, at the cost of bad usability 67.

Integrating Heterogeneous Databases with Data Warehouses The data stored within the
data warehouse originates from multiple and various databases. In this manner those data
sources can be called heterogeneous. To gather such information the DWs have two approaches:
query-based and update-based. The first one represents the traditional and already mentioned
wrapper/integrator (a.k.a mediators) method on top of integrated databases. The query method
is as fallows:

• When a query is committed on client’s side, it is mapped to an adequate form, using the
metadata dictionary, and transmitted to an adequate set of database sources

• At the database site each query is processed by the local query engine

• Each site result set is sent to the data warehouse and integrated into the global result set

However, such an approach, apart from being straight forward, results in serious disadvantages:

• Enabling heterogeneous querying requires complex integration and filtering processes

• All the intermediate steps require time and makes it inefficient

• The higher the frequency of querying, the more expensive it becomes

• Aggregation queries also become very expensive due to such an approach

A successor and modern way of integration present in today’s data warehouses are based on the
update-based architecture. This model assumes that all data from the data sources is going to
be stored at the warehouse site and pre-fetched from the integrated data sources. Thus direct
data queries and analysis are possible. This brought some advantages:

66 In the cases of many repetitive requests/queries and a few updates for the data.
67 The volume of information was measured in terms of entropy as defined in 2.1. The usability data transforma-

tion measure was defined in terms of network theory of “Small Worlds“.
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• The most important is that the network overhead was eliminated due to local store and
querying, thus allowing high performance

• Data retrieval, manipulation, integration, restructuring and pre-analytics are performed
prior to the client’s request, thus the answer is ready before the question is asked

• No query evaluation at local sources is expected as all the workload is kept at the data
warehouse side

Metadata - the DNA of the Data Warehouse Integration Process One of the most important
concepts in terms of data integration and manipulation is the metadata 68. In short, metadata
is the information in the form of data that is used to represent the target data. As of the data
warehouse its crucial goal [106] is to house standardized, structured, consistent, integral data
collected from the heterogeneous data systems across distributed resources. It requires an
efficient, structural and common approach to provide a grid wide perspective ready to meet
reporting and analytical requirements. Thus the metadata is considered important and even
referred to as the "DNA of the data warehouses" [107]. The applications of metadata are also
extensive on the ground of data warehouses and can (as mentioned in [107, pp.116-117]) be
divided into: technical metadata, business metadata and process metadata categories. The
Business Metadata and Process Metadata are irrelevant from the point of view of integration.
Business Metadata describe the data warehouse local data characteristics of: where it comes
from, what their purpose is in the warehouse and how it is related to the remaining local
data. Whereas the Process Metadata contains logging information generated during the ETL
processes, which is useful while analysing query execution process issues thus, it becomes
a business metadata for the fact and dimensions tables. From the integration point of view,
the most relevant is the technical metadata. In general, it describes the inner store of data
warehouse like dimensions, measures, and data mining models. However, it is also responsible
for storing data structures of the integrated relational data source, like its: schema (including
tables, attributes and their types), indexes, partitions etc. Metadata is about controlling the
quality of data entering the data stream by assuring unified view metadata policies compliance.
This was considered so important that even a standard was developed by OMG’s Common
Warehouse Metadata Interchange (CWMI) 69 ( See [108, 109] ) that proposes a way to metadata
interchange in the distributed heterogeneous environments including metadata repositories for
data warehouses.

This kind of metadata is stored in a metadata repository/manager that is a part of data
warehouse build system, and is responsible for governing the extraction, transformation and
loading (ETL) target data into the data warehouse. The metadata can be manually obtained
or automatically generated from the scanning process through the SQL catalogues and other
metadata sources. The responsibility of the metadata repository is to manage metadata con-
sidering its multiple aspects, of which the most interesting – in the scope of this dissertation
– is integration. Mapping from the operational environments to the data warehouses requires
extraction of source contents –database data – and its partitioning, transformation rules, data
refresh and also rules of purging.

Despite the fact that metadata importance in data integration can not be overestimated,
there are no industry-wide accepted standards and data management vendors considering
provision of solutions for only a narrow spectrum of appliances. This results in unaccepted
methods for interchanging metadata globally and between heterogeneous sites.

68 As the metadata plays significant role in the solution proposed by the author in this dissertation its current
data warehouse applications will be elaborated here in more detail.

69 It worth of mentioning that it correlated in time with the Sarbanes–Oxley Act that was acted as a reaction to
major corporate scandals including Enron and Worldcom. It forced a set of new or enhanced standards for all U.S.
public company boards, management and public accounting firms.
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Populating Source Data – Extract, Transform and Load (ETL) The first basic step in func-
tioning of the data warehouse is the ETL phase. It is governed by the Load Manager. The first
step is to Extract the data from the heterogeneous data sources and operational databases.
The connection is being done with client SQL queries using gateways like the Open Database
Connection(ODBC) or Java Database Connection (JDBC). Then the result, in the unified format,
is fast loaded into temporary data source. During this process, data is validated to meet the
expected domain values. If the validation fails the data is rejected and analysed towards the
source system to repair the incorrect records. It is also possible to modify data-validation rules
to fit specific characteristics not considered from the beginning.
The second – Transform – phase applies a series of rules and functions against the results of the
first – extract phase. This includes covering character sets incompatibility between the systems,
cleaning the extracted data from the unwanted parts like removing unwanted columns, encod-
ing the free-form values like the gender format, joining data from multiple sources, splitting
column into multiple columns while covering separator based lists etc.
The final stage is the Load phase when the transformed data is ready to be loaded into the target
data warehouse database. This addition can be done on: override, append or time interval bases.

Two models of data storage – dimensional and normalized In general we have a simple cat-
egorisation of OLAP based on the data storing model. Multi-dimensional Online Analytical
Processing (MOLAP) uses a multidimensional array storage with pre-computed information
in the form of a data cube. This fact of storing all pre-combined possible data requests make
the solution very fast responses. However, the step of pre-computation is often very resource-
consuming and can involve data redundancy. MOLAP also provides indexing and storage com-
pression [110] thus, requires less storage space. In contrast the Relational OLAP (ROLAP) uses
the relational databases as a data source. Based on the relational paradigms no pre-calculation
is needed here and arbitrary query can be committed and will become SQL query. ROLAP is
highly database-dependent therefore its scalability and efficiency are based on the underlying
solution and the way it was implemented into ROLAP.
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Figure 2.13: OLAP cube example.

OLAP applications have introduced a new way of looking at the data - called data cube



78 CHAPTER 2. THE STATE OF THE ART AND THE RELATED WORKS

a.k.a. MultiDimentional OLAP (MOLAP). The nature of the schemas stored at the OLAP sources
in the form of dimension tables in a straightforward way can be associated with the physical
dimensions of space. Thus it is easy to create a 3D representation in the form of cube, with the
axis represented by dimensions. Of course, it is possible to correlate more than three dimensions
and have an arbitrary number of axes that give us a hypercube. Now the content of such a
cube is divided into the form of n-dimensional subcubes that can be considered as cells, whose
value is defined by the dependent (or fact) data. The hypercube is spanned by the dimensions
of vector space. The intersections of hypercube contain the measures - which is how numeric
facts categorised by dimensions are called. Moreover, the aggregated data values are situated
on the sides, edges and corners of the cube. The requested data is obtained by performing
aggregations or projections along the dimensions. This is an important reason why OLAP
operations outperform the ROLTP solutions [111] greatly for complex analytical queries. All
possible aggregations provided by the OLAP can be determined by the number of all possible
combinations of dimension granularities. Every single change on granularity of a fact table
specific dimension results with a set of data that can be aggregated up, along this dimension.
The chosen 70 materialized views, as the form of optimization, expressing the pre-calculated
aggregations, can be determined by the number of pre-defined aggregations or time required to
update them from the changes taken at the base data store. The materialized views goal is to
shorten the time needed for OLAP query result data acquisition.

OLAP Operations The multidimmensional approach enables an extended view of the data
but is also a good target for specialized analytical operations:

• Slice - picking one value for one dimension and reducing the number of dimensions to
gather information only for remaining dimensions related to the given value

• Dice - pick a subcube by choosing specific values for different dimensions

• Drill-Down - is to move along the range of dimension hierarchy to the most detailed one
(down).

• Roll-Up - reverse operation of Drill-Down; involves data aggregation along dimension –
e.g. computing totals along hierarchy like stating Locations dimension as Countries
instead of detailed Cities that is lower in the location hierarchy

• Pivot - enables cube rotations in order to provide an alternative presentation of data

Data Warehouses Issues with Modern Data The problem with the data warehouses, however,
is extremely fast data volume growth that doubled its magnitude in the last few years. It becomes
more and more difficult to store cumulative amounts of such big data in one data warehouse.
Moreover, some dedicated sources now include not only textual data, that is easy to manipulate
and search, but provide dedicated mechanisms for multimedia BLOBs. Some new, modern
solutions, however, proved to deal quite well with these issues (See 2.4.3).

2.4.2 Metamodels - Metadata

The metadata term was first coined in 1968 [113] and its basic meaning was: a data, providing
information, about the additional aspects of the target data. Since then it has been widely
and continuously adopted as an important part of multiple data oriented software, especially
along the distributed and web-based solutions. Metadata is composed of multiple aspects that
influence on its categorisation due to different functions they support. The broad spectrum of
metadata appliance urged standardisation definitions to be stated. This process originated from
the metadata taxonomy, based on its structure and functions.

70 The problem of choosing the optimal, pre-calculated aggregation set for solving given problems and potential
OLAP queries is stated to be NP-Complete [112].
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2.4.2.1 Metadata taxonomy

The main categorisations of metadata are based on three alike approaches. In the first one [114],
there is a distinction between raw architectural description of database tables, columns, keys
etc. – called the structural metadata, and the guiding metadata defined by a set of keywords in
natural language that helps the user find requested data. The second (already mentioned [107]
in Section 2.4.1.1) approach has renamed this to technical metadata focused around internal
mechanisms and business metadata - dealing with the business external processes. Additionally,
the process workflow data has also been categorised as process metadata. Finally, National
Information Standards Organization (NISO) introduced its approach in [115] that defines the
following categories of metdata:

• Descriptive - enables discovery, identification and retrieval location of the information
requested from distributed data sources by the clients

• Structural - describes the technical processes of finding according to the schema the data
is organized – e.g. sorted

• Administrative - preserves the data source management information about the file type
and its creation particularities - also known as the meta-metadata

– Rights Management - defines the intellectual property rights

– Preservation - preserving integrity and safety information – e.g. checksum calcula-
tions

2.4.2.2 Designing Metadata

The complete metadata statements assembly process requires predefined vocabularies based
on standards and metadata modelling approach. This way a complete metadata scheme can
be stated. This is especially important while considering the data model for stiff schemas
of database designs. Syntax of each schema statement, conforms to the rules created by the
structure of the meta-content fields. This enables ease of schema representation with an arbitrary
markup language like XML, HTML or RDF 71 . The schemas can also be classified by the adopted
schema model. This includes hierarchical nesting of elements in the parent-child relation model
(e.g. [116]). The simplest form of metadata schemas are those dimensional, linear schemas with
totally discrete elements like [117]. Moreover, planar schemas with the elements based on two
orthogonal dimensions and specialised applications (like GIS) with more than two dimensions
are also present. The more complex structure of the target data is, the more complex schema
structure is required. Data with a deeply structured nature in those cases requires metadata
schemas which are refereed to as the high granularity schemas. This enables encapsulating
more detailed information within such a schema but with relatively higher costs of creation
process.

Metadata Modelling Prior to designing the dedicated schema type, all aspects of predefined
class of problems that are about to be represented needs to be carefully considered. This mod-
elling of metadata schema involves defining and analysis of rules, constraints and relations by
adopting concept generalization, associations, multiplicities and aggregations. The modelling
should also consider existing tools and standards that have already been proposed and discussed.
Such standardized approach would probably be more general and agile in terms of general
application, however, it must be carefully investigated against particular use case requirements.

Metadata standardisation There have been numerous standards enabling the best possible
description of a resource type for the dedicated need. The appliance spectrum is very wide from:

71 For instance in case of Dublin Core Metadata Initiative syntax specifications
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social science, audiovisual content, archiving, arts, biology, book industry, data warehousing,
ecology, education, geographic data systems, up to government public sector organizations
etc. (See Figure B.1 for metadata standards). However, one core standard that would be widely
accepted and applied has never emerged.

2.4.3 Distributed File Systems - Embracing Scaling Up in Size

As already mentioned in 2.2.2 and 2.4.1.1 data warehouses are very mature solutions with rich
SQL analytics. However, the problem is the poor scalability and great costs per terabyte. In
class of hundreds-of-terabytes-a-day cases, despite the already mentioned advantages, data
warehouses seem insufficient. Therefore, an adequate and cheaper solution would be required.
An answer to the web scale data analytics, with petabytes of data, might be a distributed file
system solution that seems to supersede data warehouses well enough.

A straightforward choice could be to replace data warehouses with one of the NoSQL solu-
tions like Cassandra or Riak that scales up really well. However, despite that fact, most of the data
warehouses users are SQL experts that are not programmers and thus, have to be able to work
with SQL. Another barrier would be the SQL-base infrastructure, that is already built up and
storing current data. It should be noted that NoSQL solutions are also stores that are only suitable
for specific purposes that favour one preferred data model. Therefore, the NoSQL replacement
solution for data warehouses, despite being theoretically possible, raises new serious issues
that makes it most of the time ineffective. That is where solutions like Hadoop including the
MapReduce framework and HDFS or Dremel with the database or GFS based storage might
came in.

2.4.3.1 MapReduce - Functional Approach to Distributed Data Processing

In 2004 a new programming model for processing parallelizable issues across very big datasets
using a large number of computers (nodes), collectively referred to as a cluster or a grid, was
developed and thus providing new abstraction. The model aim was to hide complex details of
parallelization of distributed computations, target data distribution and failure handling while
dealing with very large and unstructured datasets [118]. The inspiration for this was based on the
functional programming paradigm [118] including namely the map and the reduce primitives.
Also the general principles of the map and reduce model have been known since 1995 in the
form of Message Passing Interface with its scatter and gather operations [119]. In contrast, the
MapReduce implementation [118] was tailored towards the cluster-based computing environ-
ment. Nevertheless the map/reduce functions are not the key feature of the framework. Its
most important feature is that it provides fault-tolerance for a variety of applications due to the
execution engine optimizations. In general, what is being provided by the system is replication
based fault-tolerance, scalability and the algorithm of processing the data with the functions.
The framework takes care of scheduling tasks, monitoring them and re-executes the failed tasks.

MapReduce - Algorithm Overview Although the details of Google MapReduce implementa-
tions are not disclosed an open Hadoop implementation of MapReduce is freely available. It can
be considered as a distributed sort-merge engine. The first principle of MapReduce framework
is that there is no data model and the input/output data is stored in files (unstructured data) or
in the database (structured date). The algorithm expects the user to provide some functions via
implementations of appropriate interfaces and/or abstract-classes. That would be obviously
Map() and Reduce() functions. Additionally, three more functions are required. Firstly, a Reader()
function that reads input data from files and provides them as records. A Writer() function that
will form the output records and put them into files of distributed file system (DFS). There is
also an optional Combine() function.
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The map function divides each input problem (record) into subproblems in the form of
key-value pairs – i.e. the result of map function is a zero or set of value records associated with
each key. Now we can process separately every record associated with each key.

M ap(ke y1, value1) −→ l i st (ke y2, value2)

As of the second – Reduce() – function it works on the subproblems and combines the results.
Its output is zero or more records.

Reduce(ke y2, l i st (value2)) −→ l i st (value2)
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Figure 2.14: MapReduce concept diagram

Let us focus on details of the MapReduce algorithm as explained in Figure 2.14 72:

1. Split- Input reader - Firstly, algorithm identifies a basic unit of input data that keeps
repeating and forms an input record out of it. This includes assigning each map processing
unit a key value and all of the input values associated with it. So the stage splits the input
files into a number of mapper pieces and starts multiple copies of the program on a cluster
machines with one Master copy and remaining Worker copies.

2. Run Map() function - Each worker parses input split file into key/value pairs. The user
defined mapping function on each mapper copy, runs once per one key/value pair. Its
input is a set of (input key, value) pairs and the output is a bag of zero or more
(intermediate key, value) pairs. The system applies the map function in parallel to
all (input key, value) pairs in the input file. The output pairs are buffered in memory.

3. Shuffle - The output (intermediate key, value) of the Map() function is redirected to
the adequate reduce processors. It is done as depicted in Figure 2.15. Periodically buffers
from the memory are written to the disk and partitioned by the Partition() function. But

72 In Big Data the most popular exemplary problem that is solved with MapReduce is Word Count which is like a
Hello World in the case of programming language examples.
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before that, an optional pre-aggregation of the data, locally consolidating Combine()
function – connected with the mapper – is called on the mapper output pairs. As an
optional function it is responsible for a pre-reduce phase 73 that aims at taking a set of
records for a given key and producing a combined version of such records, and hence
it can reduce the data sent to the reducer. This makes things more efficient and causes
sending less data over the network. Next the Partition() function defines the partition for
the records emitted from the map – the partition determines which reducer will process
the record. After the Partition(key) determines the partition, records are sorted for
each partition by the record key with SortByPartition() function. Finally, so called
spill file is created gathering all the output records. Its content is ordered by partition, and
with map output key within each partition. As a result, this information about partitioning
stored at the disk is being forwarded by the master to appropriate reduce worker.

4. Reducer employed - Master worker notifies the reducer worker about the location of the
data. The reduce worker reads the remote data from the local map workers disks. Then
the reduce worker sorts all data by the intermediate keys and groups them.

5. Reduce() function - The Reduce() function processes for each unique intermediate key its
values. The resulted output is appended to the output file for each reduce partition.
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Figure 2.15: MapReduce Shuffle mechanism.

MapReduce - performance There are no guarantees that MapReduce assures speed. Its main
advantage is the opportunity to decompose large amounts of data 74 of similar processes into
a parallel and distributed manner and provide transparent fault tolerance. Moreover, careful
consideration of trade-offs between the cost of computation and communication is obligatory
[120]. The efficiency of the MapReduce – due to its distributed-by-design nature - is based on
the cost of the network communication. Communication cost often exceeds that of actual

73 The Combine() function typically implements the same algorithm as the Reduce() functions. The only difference
is that its output is not the final output but it becomes a part of a Reduce() function input.

74 Where the data does not fit into memory of a single machine or a small cluster.
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computation. Therefore reducing the network traffic where possible is a key to achieve good
overall system performance. Right from the first steps of the algorithm some optimization on
this field can be commenced. This includes running the data split and the Map() function logic
at the same node where the data is stored. This is possible while considering Cassandra or HDFS
as a store but not e.g. the Amazon S3. So execution of the mapper logic at the storage node is the
first optimization consideration that can influence the general performance.
Collocating Map() and Reduce() at the same node would be effortless because the reducer is
picked by the key. The only way to optimize the networking overhead is to provide optional
Combine() function whose goal is to consolidate the amount of local data before sending it to the
reducer. The most fragile part of the algorithm is writing of the output to the output store. In the
case of HDFS, as an output store – due to its replication safety features- it can be a very expensive
task. On the other hand, the NoSQL solutions like the Cassandra, enable configurable latency
however, at the cost of consistency trade-off. Thus the overall performance of this algorithm
step depends mainly on the amounts of data resulting from the reduce phase and fortunately
this resulting volume is mostly, relatively reasonable.

It should be mentioned that MapReduce in single-threaded implementations will not provide
any performance gains compared to non-MapReduce implementations. This can be noted for
example, in the case of MongoDB implementation where the price for using MapReduce is
speed [121], due to slow grouping. MapReduce is not suitable for real-time either. In exemplary
case of MongoDB implementation, the real-time querying is possible only against MapReduce
background job resulting collections. Main MapReduce gain could be achieved by running on
parallel, however, in the case of MongoDB, it runs on a single server, while parallelizing on
shards. Thus, although MongoDB’s MapReduce can be executed in parallel at each shard, there
are major drawbacks like the JavaScript language SpiderMonkey implementation that is used
by MongoDB, which is not thread safe and thus, again only one MapReduce program can be
run at a time. Actually MongoDB built-in MapReduce implementation is several times slower
than MapReduce provided by e.g. Hadoop using HDFS as a back-end due to design differences
75 [122].

MapReduce - applications As for the MapReduce spectrum of application scenarios, this
is very encouraging. Many existing algorithms from various areas can be morphed into the
MapReduce model. It turns out that MapReduce is especially useful while considering parallel
data processing design methodology.
MapReduce can be applied to multiple classes of problems. One of them are the Map-Only issues
that include problems such as Distributed GREP, Document Format Conversion, ETL, Input Data
Sampling etc. Such problems have no need for consolidate data or aggregating individual results
after the map phase, thus no reducer required. This means that the Map() results becomes the
final results. The other cases are:

• Generating the inverted indexes that involve parsing different documents to build a word
search index. It was used to completely change the way Google has processed the WWW
index.

• Simple statistics generation of count, min ,max, avg etc.

• SQL model can be applied to extract data. E.g. While the Map() function can implement the
projection (SELECT) and filtering (WHERE), the Reduce() phase can be used to implement
the aggregation functions(Min,Max, Avg, etc.), grouping (GROUP BY/HAVING).

75 Like the fact that Hadoop DFS is optimized for sequential reads and writes of data in relatively large chunks
whereas MongoDB is optimized for random and parallel access, i.e. queries to the data. What is more, MongoDB
turns out to provide unsatisfactory performance regarding parallel writes due to the global write lock.
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• Data joins (JOIN) including the reducer-side join, map-side partition join, map-side
partition merge join etc. ([123, 124] )

• etc.

In general, MapReduce has no data model and data is stored in files, regardless of the data
schema. The user is obliged to provide the main algorithm functions. The system provides the
system algorithm integration, fault-tolerance and scalability. However, it is obvious that the idea
requires low-level programming and notion of database schemas and a declarative querying
engine is missing. The solution was later proposed in the form of Hive and Pig languages situated
on the top of MapReduce implementations like Hadoop (See 2.4.3.3).

The MapReduce was investigated against the RDBMS and tested for several specific prob-
lems, and apart from the assumption that it has never intended to be treated as a database, it
was proved [125] that RDBMSs still can offer desirable features while compared to MapReduce,
especially in enterprises. The MapReduce, on the other hand, proves to be easy to implement
and adequate for simple or specific processing tasks.

2.4.3.2 Dremel - Interactive Analysis of Web-Scale Datasets

At this point it is obligatory to mention a closed project from Google Inc. named Dremel. The
project has been in production since 2006 for the Google internal usage. It was designed to
support real-time analysis of large datasets over commodity based machines of shared clusters.
Dremel uses the distributed Google File System (GFS) to execute many queries in just a fraction
of the execution time compared to a sequence of jobs required by the MapReduce-based archi-
tecture. However, the Dremel usage is not replacement or substitute but rather to complement
and reinforce the MapReduce-based computing [126]. Google BigQuery is a Dremel based plat-
form for very large data sets interactive analysis stating: tree based query processing, SQL-like
semantics and column-oriented storage.
Inspired by Dremel, an Apache TLP Drill project started to provide the same functionality
within the open source environment. Drill has provided the schema-free ANSI SQL query en-
gine with real-time interactions. As such, Drill became useful Hadoop based rapid application
development with BI analytics.

2.4.3.3 Hadoop - The Petabyte "Elephant" of Distributed Warehouseing

Hadoop is a software MapReduce-based framework that enables integration and distributed
processing of large data sets across clusters of computers, using simple programming models. Its
goal is to scale up to thousands of servers that are expected to be error prone and thus, Hadoop
detects and handles failures at the application layer 76. Hadoop contains a distributed, scalable,
and portable Hadoop Distributed File System 77 (HDFS). Hadoop goal is to complement current
data center capabilities with large structured and unstructured data set analytics. Regardless
of the operating system, Hadoop divides large data sets into smaller pieces that can later be
simultaneously processed at multiple nodes stored on regular, cheap servers.

The first and one of the biggest users of Hadoop is Facebook that migrated a few years ago,
and moved several hundreds petabyts of data, from data warehouses to Hadoop. Apart from
Facebook or Yahoo!, however, Hadoop has been adopted in more than a half of companies 78

from the Fortune 50 list [127]. The only disadvantage of rapidly developing Hadoop, is the fact
that it is still not as mature as data warehouse. However, apart from that, it has the order of
magnitude lower costs of scaling the data size (as of [37]) and – unlike NoSQL – SQL support.

76 Failure handling can be done by repeating the failed task at another node.
77 The file system uses TCP/IP sockets for communication. Clients use the remote procedure call (RPC) to

communicate between each other.
78 To name just a couple of the most recognisable: Amazon, Facebook, Yahoo!, last.fm, New York Times etc.
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On the other hand, Hadoop is not a solution to transaction handling. One transaction started
on a distributed system can generate many additional operations that would have to be rapidly
executed - which Hadoop can not assure. Therefore, low latency systems are also a no-go for
Hadoop. However, Hadoop can replace sometimes the ETL tools. For instance, let us consider
an enterprise website with trade transactions being transferred with ETL to the data warehouse
every night. The size of the data, after the ETL transformation, decreases by about five times
compared to the actual transaction data volume. So the ETL process has made some of the
data irreversibly lost and thus impossible to be additionally analysed that was not considered at
the time of launching the ETL task. The opportunity to store such transactional data in HDFS,
replacing the ETL with MapRaduce analysis and finally sending the results to data warehouse,
shortens the analysis time and preserves all of the additional data for further, future processing
if requested.

2009 2010 2011 2012 2013 2014

co
re

Figure 2.16: The SQL-like query engines emergence.

Considering the fact of the SQL support on Hadoo,p makes it the best solution across industry
in terms of scale cost per terabyte. The re-emergence of SQL in terms of Hadoop solution (see
2.16) raised a strong alternative for the data warehouses. The response to this is Apache Hive –
an SQL like interface to the data stored in a Hadoop cluster. It uses MapReduce with rather only
core implementation of ANSI SQL-92 79 . However, it keeps developing and the attempts are
made to comply the full ANSI standard. The missing schemas and declarative query language
were introduced in form of the Hive and Pig that were able to use Hadoop and provide the
missing functionalities. Hive has provided the schemas and a SQL-like query language called
HiveQL. Hive allowed mapping the HDFS files into Hive tables or use the HBase 80 tables and
then query such data. Thus, no MapReduce jobs writing was required. The HiveQL under the
hood is converted into MapReduce jobs and then run on the cluster to give the results. On
the other hand, Pig 81 , as another example, has introduced a data flow language with more
imperative, statement syntax based on relational operators that show some resemblance to

79 HiveQL supports neither transactions nor materialized views, and only has limited support for subqueries
[128].

80 Released HBase 1.0 on 24 February 2015, after seven-year development attempt.
81 Originally developed at Yahoo.
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the statements of relational algebra. Pig allows you to process enormous amounts of data very
easily and quickly by repeatedly transforming it in steps and thus simplifying the writing of
MapReduce jobs. Both languages compile into the graph of MapReduce Hadoop jobs, where job
is one instance of a MapReduce.
Another system enabling generating similar workflow as Hive and Pig would be the Dryad with
its own laguage DryadLINQ. DryadLINQ compiles into the Dryad system in the same way as
Hive/Pig compiles into the workflow of MapReduce jobs.

It must still be remembered that MapReduce implementations like Hadoop are designed for
more OLAP-like kind of operations or analytical operations. Thus MapReduce exhibited its poor
performance in some areas, mainly due to primarily being designed for batch processing which
makes it less powerful for ad-hoc data exploration and machine learning processes.

In 2011, an attempt was made to fix this by using a new compute engine called Spark and
replacing the MapReduce while keeping the query engine. It builds directly on the Apache Hive
code base, so it naturally supports virtually all Hive features like Hive SQL language. This project
was called Shark and resulted in very good performance 82; due to Resilient Distributed Datasets
(RDD) and Directed Acyclic Graph (DAG) execution engine that Spark is based on. The partial
DAG execution (PDE) technique takes advantage of fine-grained data statistics for dynamic
queries run-time optimizations. Thus, DAG made it possible to eliminate the MapReduce multi-
stage execution model, while retaining the fine-grained fault tolerance properties and still
offered even a 100x performance gain [129], comparing to Apache Hive. The extension also
involved column-oriented in-memory storage and dynamic mid-query replanning. Moreover,
Shark results [129] matched the performance reports for Massively Parallel Processing (MPP)
database architectures (e.g. Amazon’s Redshift) that were known [125, 130] to also outperform
the Hive speed. This was achieved while providing fault tolerance properties and complex
analytics capabilities that MPP lacks. Finally, Shark has the possibility to run based on Hadoop or
standalone in the cloud and use any type of Hadoop data source like HDFS, HBase or Cassandra.

The more interestingly HDFS, apart from the Hive based data warehouses MapReduce jobs,
can be used for any sort of application that is based on batch and parallel data processing rather
than real-time, like the Mahout machine learning system or HBase database. The latter one
is a CP (in terms of CAP-Theorem) type system running on top of HDFS. This is due to HDFS,
being a FS, lacks random read and write access. This is where HBase, as a distributed, scalable,
big data store, modelled after Google’s BigTable, has proven to be a very useful. While using
Hadoop as the repository of static data, the HBase plays the role of a datastore that holds the
data that is going to be changed over time after ongoing processing. The HBase has become
adopted by the largest Hadoop users [131]. Owing to the HDFS based deployment, the HBase as
a key-value store enables storing large volume of sparse data in the fault-tolerant way. HBase
has become particularly suitable for finding a specific data in large collections of meaningless
or empty records. Moreover, features such as compression, in-memory operations and Bloom
filters 83 have resulted in the increase of interest in HBase of large companies such as Yahoo,
Adobe or Facebook that used it for their messaging service in the last couple of years [131].

Impala - Abandoning Hive The year 2012 brought the Cloudera’s initiative called Impala (C++
based) 84 . Impala became an enterprise data warehouse system that works well with Hive and
HDFS. At the beginning it was considered to "supplant Hive" [132], however, this has soon
occurred to evolve into dedicated for real-time querying architecture [133].

It was developed to leverage the flexibility and scalability strengths of Hadoop – combining
the familiar and low-latency SQL queries support and multi-user performance of a traditional

82 Executions were up to 100x faster than Hadoop MapReduce in memory, and even 10x faster on disk with use of
an advanced DAG execution engine that supports cyclic data flow and in-memory computing.

83 Space-efficient probabilistic data structure.
84 Created by former Dremel developers from Google Inc.
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analytic database. Impala is a massively parallel processing/MPP-like query engine for the data
stored in the Hadoop cluster that bypass the Hadoop MapReduce with its custom query engine
running on separate nodes. Impala circumvents the MapReduce and access the data directly
through a specialized distributed query engine that is very similar to those in the commercial
parallel RDBMSs. The result is the order-of-magnitude faster performance than Apache Hive.
The data itself can be stored in HDFS and HBase and queried with HiveQL using the ODBC
driver while 3-30x faster [132] 85 than Hive over MapReduce. Impala integration with Hadoop
enables the use of the same file 86 and data formats, metadata, role-based authorisation security
and resource management frameworks used by MapReduce, Hive, Pig and more. Moreover,
Impala enables the use of BI tools to perform analytics via SQL.

Impala, however, is not as mature solution as some concurrent software. Following paragraph
proofs a short maturity study on Impala, commenced by contrasting it with Shark. Shark, in
contrast to Impala, supports all Hive features 87 due to being built directly on Hive codebase
due to Java based implementation. Impala, due to being built with C++ does not support Hive’s
UDFs, but as well as Shark integrates very well with the BI tools. However, Impala’s queries are
compiled into Low Level Virtual Machine (LLVM) intermediate representations, and thus can
be a subject for just-in-time optimizations by the compiler. Shark still lacks query compilation
into the JVM bytecode. What Impala does not provide is in-memory data storage. Shark enables
performance gains due to query processing on the data preloaded into memory. What is more,
Shark uses compressed, column-oriented format for the in-memory data. As for Impala the fault
tolerance is also an issue as query restarts are required in the case of node fails which in the case
of longer queries is unacceptable. On the other hand, due to its underlying Spark engine Shark
can handle mid-query faults. Both solutions have indisputable performance gains over Hive of
up to 100x in-memory and 5-10x on the disk faster. Impala appliance is the enterprise OLAP
and data warehouses. Whereas, Shark not only supports OLAP, but also more complex Hive
usages (like UDFs), processing of unstructured data (e.g. ETL) and – owing to Spark integration –
advanced analytics, like machine learning. Thus Shark is about to support not only SQL but also
advanced analytics (like statistics, etc.)

The result was that Impala became current fastest, in the Hadoop ecosystem, way to run
queries in terms of performance. Some performance results of Impala achieving better concur-
rent latency than its competitors while providing high query throughput, and with a far smaller
CPU footprint can be found in Appendix C. However, due to being developed with C++, it was
hard to reuse things already working on Hive (Java based) or generic Hadoop which actually
required custom patches for Hadoop jars to work with Impala.

Hadoop 2 The second iteration of the Hadoop framework – in form of Hadoop 2 released
in 2013 had a fundamental importance for further revolution of Hadoop ecosystem. Overall
gains considered better performance and stability, however, some major features made this a
revolutionary step. The change was conducted in main areas including: new HDFS functionali-
ties, introduction of YARN, reconsidering the MapReduce model and providing heterogeneous
storages for HDFS. In general, the Hadoop 2 improvements has focused around three major
areas.

• New Generalization (YARN) - A completely new generic platform framework - called Yet
Another Resource Negotiator (YARN) - as a cluster management technology, has been
introduced to run arbitrary distributed applications. YARN facilitates writing arbitrary
distributed processing frameworks and applications by providing daemons and APIs.
The key functions of YARN were to split MR1’s JobTracker major functionalities into

85See also Appendix C
86 Like text, LZO, SequenceFile, Avro, RCFile or Parquet.
87 This includes HiveQL, Hive data formats, user-defined functions (UDFs) and the use of queries calling external

scripts
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Figure 2.17: Hadoop MapReduce generalization with YARN

two daemons. One with the resource management and other with job monitoring and
scheduling. The MR2 running the MapReduce framework has now become one of many
possible applications that can be run on top of YARN. It is possible because YARN provide
a more generic execution model than MR1 and thus, the new, rewritten MR (i.e. MR2)
can be run on top of YARN as one of many possible applications. However, YARN is not
limited to run only applications that follow the MapReduce model 88 . YARN applications
could be Message Passing Interface (MPI), graph processing 89 , simple services and
more others that are not related to MapReduce. In general, YARN has decoupled the MR
resource management and scheduling from the data processing, thus enabling Hadoop to
support a variety of processing approaches. As a result, interactive querying and streaming
data applications can now run simultaneously with the MR batch jobs. With YARN, an
application means a single job in the sense of MR1 jobs or a DAG of jobs.

Figure 2.18: YARN-enabled applications running on Hadoop 2.

• Storage (HDFS 90 ) - Introduction of the HDFSv2 federation has also brought some changes
to the HDFS based storage. It involved moving from single to multiple node namespace

88 E.g. the proof-of-concept application called the DistributedShell
89 Most popular is the iterative graph processing approach, based on Bulk Synchronous Parallel (BSP) model of

distributed computation as introduced by Valiant in [134] and elaborated on multi-core in [135]. E.g Google’s Pregel
as described in [136] or its advanced open-source alternative Apache’s Giraph.

90 Current stable release 2.6.X also supports High-Availability (HA) feature that brings NameNode architecture that
stores the directory tree for HDFS files and track data storage place in a cluster. This allows to build out horizontally,
while creating multiple redundant NameNodes that share same data storage pool, thus scaling better. A snapshot
functionality (v2.2) has also enabled backup and disaster recovery. Since v2.3 a heterogeneous storages in HDFS has
been enabled (HDFS-2832) and due to v2.6 update it also supports APIs for using heterogeneous (also memory -HDFS-
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management, and thus horizontal scaling, performance improvements, and multiple
namespaces. It also eliminates single point of failure (SPoF), in the form of Hadoop v1
single node namespace management. This separation of HDFS (storage) from MR with
YARN, made Hadoop the environment that is more suitable for operational (real-time)
applications that can not wait for batch jobs to finish.

• MapReduce - Since Hadoop v0.23 the MapReduce (MR) has undergone a complete over-
haul and resulted in MapReduce 2.0 (MR2). MR2 has been designed to provide a more
isolated and scalable model than its MR1 predecessor, due to no single resource man-
agement, scheduling and task monitoring work. This is achieved with each job in MR2
controlling itself, with its own ApplicationMaster (See Fig.2.19) administrating the exe-
cution flow of scheduling tasks, handling speculative execution and failures, etc. MR2
also has no more a single central JobTracker (See Figure 2.17(a)) responsible for resource
management, scheduling and task monitoring work.

An application functioning in YARN based architecture is based on three general stages:
submitting of the application by the client to the ResourceManager 91 , defining bootstraping
application master instance 92 that will govern the actual application execution, and finally, the
actual execution of the application managed by ApplicationMaster instance. The whole process
can be described in eight sequential steps (also illustrated in the Figure 2.19):

1. Client sends the application and its launch (e.g. resource) specifications for
ApplicationMaster to ResourceManager

2. ResourceManager determines the resource allocation - Container - on a specific host
node to launch ApplicationMaster’s tasks. Next such Container is used to launch
ApplicationMaster by ResourceManager.

3. Client is informed about the ApplicationMaster launch details, thus can communicate
directly with its own ApplicationMaster.

4. ApplicationMaster uses resource-request protocol to negotiate more appropriate
resource containers on other nodes.

5. Each of the remaining Containers is launched with ApplicationMaster by providing
each NodeManager 93 their launch specifications.

6. Then the application-specific protocol enables sending each Container’s application
status information to the ApplicationMaster.

7. The application-specific protocol also enables the application Client to receive from
ApplicationMaster total status and progress data.

8. In the end when the application completes, ApplicationMaster’s jobs is to deregister
itself with ResourceManager and free the resources for following resource requests of
other cluster applications.

YARN usage statistics are not impressive [137], however, this is probably due to its recent 94 –
as of 2015 – introduction and migration process safety complexity due to big data volumes and

5851) storage tiers by the applications (HDFS-5682). As for v 2.3 (HDFS-4949) there also has been Hive/Pig/Impala
improvement for effective cluster memory management by dint of possibility to explicitly cache important datasets
and placing their tasks for local memory.

91 As a a contrast to its name, it is a pure-scheduler, as all of the resource (hostname, memory, CPU and in future
disk/network/IO/GPUs etc.) fault-tolerance is moved to the ApplicationMaster (which makes it much better scalable).
It redistributes cluster nodes’ resources in the process of intermediate among resource competing applications.

92 ApplicationMaster represents the instance of a framework-specific library per application in a cluster that also
negotiates resources with the ResourceManager and execute/monitor resource consumption due to NodeManager
communication. See Figure 2.19

93 One-per-machine, responsible for creating applications containers, monitoring their resource usage and
reporting it to the ResourceManager.

94 Announced Aug. 2012 as an Apache Hadoop sub-project in the Apache Software Foundation (ASF)
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Figure 2.19: YARN based application lifecycle.

their significance. However, binary compatibility between Hadoop 1 and 2 has been maintained
and new important features, as of present, are being implemented [138].

Stinger Initiative – Hive Strikes Back With Interactive SQL Sting The Impala approach of
starting with the ground up as a new project, regardless of Hive has caused an interesting
community effort, to preserve the investments of Hive’s end users and broad ecosystem of
vendors already integrated with Hive and to modernize Hive to be real-time SQL ready. This
initiative initialized by Hortonworks 95 was called Stinger and turned out to be a success since
2013. There were three roadmap vectors for Stinger: Speed, Scale and SQL-compliance. The goal
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Figure 2.20: Stinger evolutionary steps.

95 Yahoo’s spin-off dedicated to driving the Apache Hadoop bus with Apache Hive.
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was to assure batch and interactive SQL query workloads in a single engine. Hive used to process
even simple queries with hundreds of records within minutes. This was due to startup overhead,
un-optimized file formats, CPU-consuming inner loop, and file spooling costs. The YARN made
it possible for multiple new engines to emerge for Hadoop, however the most popular Hadoop
integration point still remained SQL/Hive. Joined community effort has not only proven its case
but also has resulted in impressive performance boost. Stinger evolved the Hive’s traditional
architecture and made it faster, with richer SQL semantics (as of near SQL:2011 compliance)
and petabyte scalability.

The Stinger Initiative has assumed a three phase ( Figure 2.20) evolution (See Figure C.6 for
details).

• Phase one - Hive v0.11 - introduced optimized ORCFile, data types made more SQL-
compatible, analytic functions 96, aggregate 97 functions and making star joins more
efficient.

• Second phase - Hive v0.12 - involved significant increase in SQL semantics 98.

• Third phase - realized in Hive v0.13 included a major speed and scale improvements with
Tez integration. It has enabled executing queries on Tez, thus the dataflow model on a
DAG of nodes facilitated more efficient and less complicated query plans for interactive
queries to run on Hive. Also a Vectorized Query Execution has been included for better
CPU computation optimization and - for the first time - a Cost-Based Optimizer (CBO)
has been supported to generate efficient execution plans by examining the tables and
conditions specified in the query for join reordering. The benchmarks has conformed the
expected performance gains ( Figure C.7; benchmark details [139]).

As already mentioned the Stinger initiative brought many improvements that were mainly
possible by dint of the following projects:

• The Tez project - new data processing engine for Hadoop that has not only support for
batch processing but also interactive data processing on a large scale. With emergence of
YARN, Tez enabled multiple data access applications to work on the Hadoop petabytes of
data over thousands of nodes while additionally enabling the users to express complex
computations in the form of dataflow graphs with dynamic performance optimizations
for specific data/resource requests.

• The new Hive’s Vectorized Query engine allows to process more data in less time, thus
improving scalability and enabling impressive CPU and throughput gains ()

• Optimized Row Columnar (ORC), a new file format providing high compression and high
performance

Tez is an implementation of [140] paper describing the Dryad MapReduce generalization from
Microsoft. Tez is an extensible framework targeted for building high performance batch and
interactive data processing applications, coordinated by YARN in Apache Hadoop. It can be
considered as a more flexible and powerful successor of MapReduce framework, however, it
is based on expressing computations as a dataflow graph. Replacing MapReduce with the Tez
application framework enabled a complex directed-acyclic-graph (DAG) of tasks for processing
data. The Tez project became important – from the scalability point of view – as it allows to
reduce multiple MapReduce jobs, required by Hive’s jobs, into single Tez job. This made the
scaling much more straightforward. Tez has also enabled Hive or Pig to run a complex DAG
of tasks (Figure 2.22). For the first time Hive v0.13 has also given a preview of transactions by

96 RANK, LEAD/LAG, ROW_NUMBER, FIRST_VALUE, LAST_VALUE, etc.
97OVER functions with PARTITION BY and ORDER BY
98Data types: VARCHAR and DATE and better performance of ORDER BY and GROUP BY
99Source: Hortonworks Inc. http://hortonworks.com/wp-content/uploads/2013/05/H1H2Tez-1024x537.png
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Figure 2.21: Tez API/framework to write native YARN applications99

Pig/Hive - MapReduce
Pig/Hive - Tez

Figure 2.22: One Tez job instead multiple MapReduce jobs thanks to DAG

enabling data streams into Hive using Apache Flume 100 , making data available within seconds.
ACID has also been considered in this version mainly for managing dimension tables and master
data providing consistency and repeatable reads.

Stinger.next: ACID and Transactions in Hive After the Stinger:Initiative has succeeded in
making some of the queries faster a new version, called Stinger.next, introduced the goal to
provide Hive with fully and truly near real-time responsiveness. It aimed at sub-second response
time and required fast per-row query processing 101 and low query setup time 102 . The first phase
of Stinger.next was released late 2014 in the form of Hive 0.14. Its goal was a sub-second query,
interactive response times, transaction support, a full SQL:2011 analytics for Hive to allow rich
reporting and CBO (see [141] for details) for complex queries and tool-generated queries to run
on the Hadoop scale. The crucial - from the enterprise point of view - are the transactions and
ACID compliance. Since Hive was first used for write-once, read-often applications with multiple

100 Framework to aggregate huge amounts of data into the Hadoop environment in a distributed and parallel
manner.

101 Developed as a continuation of Tez integration and Vectorized Query Execution from Stinger:Initiative.
102This was developed with multi-threaded service process (daemon) - Live Long and Process(LLAP) working

on every node. LLAP maintains an in-memory data cache, thus reduce process startup costs, I/O latency, and
deserialization overhead.
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partitions the ACID provided paradigm shift with Insert, Update or Delete SQL transactions [142].
However, at the time of writing this dissertation, according to [143] the work is still ongoing.
However, there are still some interesting ideas proposed like integrating with replication tools
for periodical (arbitrary time threshold) updating data from operational (OLTP) databases. The
actual plans have partially become implemented according to the schedule in Figure 2.23 and
are depicted in more detail in [144], however, due to not being fully implemented will not be
discussed in this dissertation.

Figure 2.23: Stinger.next roadmap.

Tez vs Spark on Hive Spark has already been mentioned in section 2.4.3.3. It is a DAG executing
project similar to Tez. Spark however, is more mature and has been developing for 5 years based
on the Bekeley’s [145] paper, that on the other hand, is built around the [140] which Tez is based
on. It is worth mentioning that both frameworks provide:

• Distributed execution engine targeted towards processing large amounts of data that can
handle arbitrary DAGs

• Use the MR I/O format to read/write from Hadoop

However, Tez is more focused on provision of faster engine than MR under the Hadoop’s lan-
guages like Pig or Hive. Tez also provides API for DAG construction (edges,vertexes) and defines
its dataflow.
On the other hand Spark also provides not only a better engine for Hive/Pig than MR, but
also extensive API that makes code development much easier compared to Tez 103 . What is
very important, Spark also provides Resilient Distributed Datasets (RDDs) abstraction which
is extremely useful to process distributed in-memory data. Spark also tends to be supported
by multiple companies such as Intel, Yahoo! or Cloudera whereas Tez is strictly one company -
Hortoworks. Therefore, Tez seems to be most suitable for backend of Hive/Pig based execution
engine over MR. Spark, on the other hand, tends to be better suited for direct API usage, writing
data transformation job, implementing a distributed machine learning algorithm or with its
own and dedicated high-level data processing language.

???

Apart from that there are also other less popular frameworks like Presto (Facebook) or Lingual
based on Cascading API. To compare the discussed cutting edge technologies, a dedicated bench-
mark was developed at AMPLab – UC Berkeley [146]. This benchmark is based on workloads
and queries from already cited [125]. It includes Redshift, Hive, Shark, Impala and Stinger/Tez
comparison. The latest results (February 2014) show that still Impala and Shark outperform
Hive, but only 3-4x.

103 WordCount code for Tez is approx. 300 lines where for Shark is only 3.
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Figure 2.24: Compute engines

2.4.4 Enterprise Service Bus (ESB)

The integration processes are often more than only a dedicated and even distributed heteroge-
neous environment. Every integration architecture must also consider the networking model of
communication between the storages in the distributed system architectures.

Since early beginnings of data integration the basic mechanism of integration is batch file
transfer. It does live on in modern systems as it is not effective but also extremely simple that
many designers use it, and thus it has become almost impossible to be eradicated.

Enterprise Application Integration (EAI) hub The more advanced architecture considering
integration is the Enterprise Application Integration (EAI) hub. It is based on single central system
that the applications from the integrated sites must be used to communicate. It must understand
all the different formats, transform them between each other, and thus links the different systems
together. Its big advantage is reducing the overhead of P2P connections from n2 to (n −1)n/2,
where n is the number of sites. This model is often present even in modern ESB solutions. The
EAI hub advantages are easy to mange central operating point and well understood pattern.
On the other hand, we get a single point of failure, and thus it becomes problematic to scale
it. What is more, every party involved in the hub processing must strictly conform the settled
communication protocols that require all participants (possibly from distant large companies)
to meet and settle every single change. Moreover, one serious threat is that the data flows in the
EAI hub will be additionally accompanied with hub-resident business logic which would change
a simple and lightweight integration solution into a messy and unmanageable one, especially
when considering scaling-up.

Message Oriented Middleware (MOM) The next step in progress of integrating solutions evo-
lution was the Message Oriented Middleware (MOM). It is largely similar system to the mail
system that would be brought to computer messaging. It is based on decoupling message pro-
ducers from consumers in location-addressing and in time. This involves sending one-way
asynchronous messages to a queue, rather to particular consumer; with request replies using
reply queues. This means that the request-response can be done but not in an instantaneous
manner. The MOM is often referred to when considering reliable delivery. What differs MOM
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from another model of SOA is message decoupling. In MOM the inherent assumption is that
both sides understand the same message format as a part of core model. A crucial aspect of
MOM is the transaction processing based on queues. It is often misconducted that transaction
is a distributed two-phase commit (DTPC) where all actions are part of the same transaction.
However, the in real world there are not many DTPCs because they tend to be ineffective. It ties
up all the distributed systems in a voting process. Thus the overall requirement for all systems to
be fast and efficient becomes problematic. In MOM we deal with a queue broker and a collocated
database, that is with fast connectivity and high availability. Thus one can proceed with updating
the database, and enqueuing of the message in the same, local transaction in a fire-and-forget
way, as the queuing system takes care of the rest. The other side accepts the message and puts it
into its queue message broker, then applies the changes in its transaction locally. This can be
done without any real distribution. That is why the reliable messaging is important. However this
model is not a distributed-transaction-based because we have two distinct transactions. In the
case receiving party’s transaction fails, the sender will not roll-back. In such a case compensation
is required. This means that the site with the failed transaction has to send a message to the
queue that its transaction failed and that the sender must roll-back. The advantage over DTPC is
that the transactions happen very fast, asynchronously and do not tie up the entire system.

The most significant protocol for MOM is Advanced Message Queuing Protocol (AMQP) –
driven from the financial services and also used by cloud environments. AMQP was designed
starting with taking SMTP and applying for machine-to-machine messaging. This protocol is
crucial because most of the MOM vendors (WebSphere SI, TIBCO, Sonic ) provide their own
proprietary protocols for MOM. Thus the MOM advantage of interoperation on the application
level, is that it is tied strictly to one vendor infrastructure.

Event Driven Architecture (EDA) The EDA is an evolutionary fork of MOM. The EDA moves
the MOM’s consumer-producer connectivity decoupling even further, by publishing an event
as a topic while many consumers may subscribe to this topic. Actually, this is a straightforward
analogy to mailing lists and the way how Apache Foundation works. Its advantage is that while
creating a topic, it does not have to be known of how many and who will join it; thus, subscribing
to the event after a fact has taken place. In contrast to EAI, it also eliminates the need for
collaboration netting that settles the communication rules in order to plug into the EAI hub.
The problem with EDA is when systems event feedback loops might occur. For example two
parties creating events when something changes, and then signal both to update state, thus
there is no way to know if the event is done by the party or induced by the change that again
creates an event etc. The solution, however, to this, is creating a master data repository gathering
all of the events and re-publishing only those that were new and/or wanted.

Service Oriented Architecture (SOA) We could state that SOA directly comes out of XML. The
fact is that understanding the schema and the structure of the messages and having the metadata,
policies and security is the key discrimination between SOA and MOM. The security part came
from the fact, that with present solutions there can be no assumption that the integration is going
to take place within a company’s intranet, and thus must be considered along the development
of the SOA implementation.
The point of SOA architecture is that it is a service, thus one can use a service without all the
concerns of possessing it. Therefore every SOA architecture is justified if there are more service
consumers per service than one (EBay has a rule of at least three consumers per service). Thus
SOA is not to be implemented as a client-server architecture e.g. using XML. On the other hand,
the ESB should not be misconcepted with the SOA implementation. It does not guarantee the
proper SOA model.
An example of a real, complex and distributed integration SOA is EBay, with very lightweight,
policy-based mediation that monitors and routes messages to their destination. Moreover, it
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has high reuse with simple system assurance for common message schemas and formats that
results in high productivity. EBay has actually open sourced its complete framework for SOA
called Turmeric. Another example is Amazon that moved to SOA back in 2006 with multiple
service components with common interfaces. Also Netflix uses the SOA model based on the
REST calls which are in turn based on Amazon cloud architecture.

2.4.5 ESB / SOA - Rules of Engagement

The main characteristics of a proper ESB should be based on policies. Policies should be out
of the code. One could use e.g. eXtensible Access Control Markup Language (XACML) [147]
standard as an example of extracting authentication, throttling 104 and Service Level Agreement
(SLA) 105 policies from the code. Moreover, such architecture would require an independent
management based on loose coupling of configuration. This provides the abilities for hot deploys
/ re-deploys in a continuous delivery manner. On the other hand, the continuous delivery
requires the knowledge of how and who will become affected by each new change, and thus an
exact information of dependencies and entire lifecycle is crucial. Additionally, the analysis and
reporting of the metamodel; e.g. to find out (possibly by querying) who had been granted access
to a particular operation according to policies, is important. Now the analysis and reporting, so
as lifecycle and dependency management is essential for well designed governance.
Finally, the most basic but at the same time important is the non-blocking, asynchronous routing
of the messages and the distributed nature of possibly multiple ESBs inter-communicating in
distributed architecture.

The true SOA-based ESB is all about moving from producer-to-one-consumer (i.e. client-
server) into provider-to-consumers. The Internet changes everything but what is really working
for this kind of environment are the services and the APIs. Services are a middle layer between
the business data and the open APIs to heterogeneous consumers – i.e. the use of all known
platforms, tools, and languages. Now what is a key aspect of SOA is that it moves from traditional

ProviderProvider

BusinessBusiness
DataData

ConsumersConsumersConsumersConsumersOpen APIOpen APIOpen APIOpen API
ServicesServices

SOASOA

SOA-oriented distribution channel

Figure 2.25: Service-oriented data distribution.

enterprise service-oriented architecture to a more web-like open API model. However, API is not
just about a message format or the message model. To move from one consumer to multiple
heterogeneous consumers, API should consider:

• simple licence – allow others to contribute and reuse the API within their new products

104 E.g an integration throttling may be embedded in application logic to prevent overloading and slow end-system
down, in an expected way, thus slow down the publishing service in the acceptable manner.

105 Service Level Agreement formally defines service in aspects of scope, quality and its responsibilities that is
agreed between the service consumer and provider.
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• the ease of use – services consumable from any platform, tool, or programming language –
e.g. REST

• reporting and billing – understandable cost policy and traceable spendings

• account management – use detailed client tracking and assure API’s customer classes

• self-service – automated and online singn-ups, licensing, testing, support and integration,
enable fast and cost-effective multiuser interactions (e.g. Salesforce, Amazon, Google
handle hundreds of thousands of customers)

• developed community – design APIs not only to satisfy current customer need but also to
enable developers to make custom changes based on it in the future, due to providing
them with tools and documentation of how additional functionalities can be handled

– as the main aspects [148] while being designed. In the API’s design the remaining two aspects
that must be considered in order to write Web environment ready solution are governance – due
to rate limiting, security audits and version management – and the SLA. The correct design of API
will provide the view of how the API is used for both: the consumer and the provider. A regular,
core ESB does not provide that to gain such functionality an additional SOA management system
is required.

DEFINITION 2.15: (API)

API is a business capability delivered over the Internet to internal or external consumers. It
consists of network accessible function, available using standard web protocols with well
defined interfaces and designed for access by third-parites

To distinguish API from service the API provider assumes that it is ready to use out-of-the-box
without prior configuration / meetings and settlements. Moreover, it should be easy to consume.
In the API sense governance must care about consumer specific needs and constraints. While
considering API maintenance changes, the backward compatibility of crucial elements should
consider it and conform to the SLA and analytics. There are already very well suited tools to
achieve this like OAuth2, REST / Swagger technical and readable description models,

Concluding one should consider APIs and services as policy and metdata -based with a
configurable way to build governance in a very programmatic way.

2.5 Conclusions

Databases should leverage the fact that the hardware and networking architectures have changed
substantially since the databases were first invented. The emergence of multiple dedicated
data sources has caused the proliferation of integration and processing of heterogeneous data.
However, regardless of being a classical data warehouse or a distributed analytical BI tool each
and every solution require2 data to be extracted and loaded to the external data storage. In
the case of data warehouses the ETL tools enable this job while in the case of Hadoop alike
ecosystems we also need tools such as Apache Sqoop [149] that will transfer data from operational
sources. Such tools might work in an incremental manner or free form SQL queries. Moreover,
they might also provide means to export the data back into operational sources from the cluster.
However, one way or another, this requires the operation of data transfer – and in the case of
Big Data it becomes a serious issue. While most of the integration problems, already discussed
in 2.2.6, has been challenged and overcome - there are still unapproached issues of processing
most current data. This is not only problematic in terms of amount of the data, but also its
validity with constantly changing data at the data source site. In the following chapter the author
introduces a new integration architecture based on the dedicated metamodel that will by-design
force usage of the most current state of the data.
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TThhee MMooddeell ooff tthhee AArrcchhiitteeccttuurree

“For abstraction consists only in separating the perceptible qualities of bodies, either
from other qualities, or from the bodies to which they apply. Errors arise when this
separation is poorly done or wrongly applied: poorly done in philosophical questions,
and wrongly applied in physical and mathematical questions. An almost sure way
to err in philosophy is to fail to simplify enough the objects under study; and an
infallible way to obtain defective results in physics and mathematics is to view the
objects as less composite than they are."

— Denis Diderot, A Letter on the Blind for the Benefit of Those Who Can See, 1749

“The key to growth is the introduction of higher dimensions of consciousness into our
awareness."

— Lao Tzu

The integration is a very wide and prominent aspect of modern data systems – especially
enterprise ones. Systems incorporating hundreds or thousands of data centric, custom-build
applications of various origin, operating in numerous tiers on multiple operation systems and
platforms of dedicated or cloud environments, represent a complex multilevel communication
network. Therefore, integration is not an easy task. The enterprise solutions are based on heavy,
dedicated, vendor provided Enterprise Application Integration (EAI) hubs or Enterprise Service
Buses (ESB). Despite urging needs only a few standards made it to establish themselves in this
area. The XML or XSL and Web Services give a lot of opportunities, however, they also introduce
a new ground for different incarnations and interpretations of those standards. Thus, there is
a serious interoperability gap between, even the standard-based integration solutions. Even
such sophisticated integration solutions as the OMG’s CORBA [87] had problems with assuring
inter-system integration for non-interoperability parties. The XML, is often referred to as a lingua
franca of data integration. This might lead to wrong suggestion that the XML and XML-based
Web Services can solve the system integration issues completely. This is mainly due to the fact
that having a common alphabet does not mean that what one has written in one language
is understandable to all languages that use the same alphabet. Thus the semantics is the real
obstacle. As already discussed in the previous chapter, covering the semantic heterogeneity is a
very time-consuming and complex task, that is, however, crucial for correct and well-defined
integration. This problem will be approached within this chapter, along with the most basic
architectural considerations and the discussion proposed by the dissertation dedicated solution.

99
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3.1 Data vs Application Integration Patterns

One should be aware that there is no simple universal, golden rule for integration, regardless if we
speak of data or application integration. Object -oriented design, Service Oriented Architectures,
Event Driven Architecture, Message Oriented Messaging are only means to reach a specific goal.
This goal however, is always somehow different and requires a dedicated effort.

A well known concept from the software engineering in the form of the design patterns
will be helpful to provide some specific establishments on the ground of this dissertation. The
discussed meaning of the pattern term was first introduced in the field of building architecture
in [150] by Christopher Alexander1 . What he has noted is that often general problems have
repetitive sub-problems, that in turn, can be approached in the same way – while still being a
part of a bigger problem, and what is more, possibly contained within different general issues.
Therefore the pattern is a general, reusable solution to a commonly occurring problem. Because
the patterns are discovered (rather than invented) facts of life, it has become straightforward
to apply patterns in computer science, in the form of good practice formulas. With the time,
the design patterns have particularly immersed into software engineering and also software
architectural design. We now consider patterns as smart formulas that describe solutions to
frequently recurring problems also in terms of data integration.

3.1.1 Patterns in Software Development

The periodically occurring problems in software development can be discriminated into two
classes, namely the software design patterns, and a broader scoped – the architectural patterns.
In the design patterns area, a design motif is described by a structure, actors and workflow
rules. Now each design pattern can be applied, according to those three factors to implement
prototypical micro-architecture that will adopt particular design pattern to developers recurrent
problem. The developer’s choice however, is to pick the pattern that will suit and optimize the
problem implementation effectively by making the problem micro-architecture solution similar
to the appropriate design motif. This transformation of a design pattern into the source code is
a form of a good practice in software development, however, it must be made with attention and
applied only when undoubtedly required. The design patterns as a part of software craftsman-
ship are going to be considered in this dissertation prototype implementation, however it is not
its clue or main area of interest and therefore it will not be extensively discussed.
A wider scope of the pattern appliance is considered with an architectural approach. Just as in
the previous class, the architectural patterns in software development are considered in terms
of good practice solutions for solving commonly encountered problems. Apart from detailed
software characteristic issues (as in the case of software design patterns), the architectural pat-
tern should also consider performance limitation, software network particularities, availability
context and business circumstances. With such extensive expectations, architectural design
patterns not only tend to be a complex task, but also often become a crucial part for every
enterprise-class software architecture.

DEFINITION 3.1: Architectural Pattern

Architectural pattern assembles a cohesive image of the system that depicts important
system components’ collaborative nature. Each architectural pattern can be reused for
multi-domain appliances – as a architectural pattern – as long as it is applicable and strictly
defined.

Therefore what is truly considered – is a set of architecture design decisions that must fit within
the context of specific system and provide actual profits from applying, in terms of e.g perfor-

1 He proposed the use of collections of architectural patterns to address deficiencies in modern building design.
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mance, ease of management, clean code etc. The domains that use the modern architectural
patterns have already been discussed in Chapter 2 e.g. the data architecture (data warehouses,
data marts, transactional data stores - OLTP architectural patterns), Business Intelligence (trans-
actional/operational/analytical reporting architectural patterns), Master Data Management 2

, Data Modelling (Entity-Relationship model 3 , dimensional data modelling 4 architectural
patterns), etc. One last area would be the Data Integration. It is mostly considered in terms
of ETL and Managed File Transfer (MFT) 5 (patterns such as SOA, B2B, Cloud, Ad Hoc, etc.).
However, there are still two more patterns of EAI and ESB that we have already discussed in
general in the previous chapter but they will be elaborated more in the following section 3.1.2,
in the context of the dissertation proposed architectural pattern.

One indisputable benefit of using an architectural pattern – that needs to be mentioned –
is the provided language and vocabulary unification that is about to be used across the entire
problem solution. By this, we can already see that the semantic integration must always be
present, while considering architectural patterns. It brings us to the idea of architectural pattern
considered in the scope of integration.

3.1.2 Architectural Patterns in Integration

Semantic unification is just a single example of how the architectural pattern can apply for
the sake of data integration solutions, and to be more specific – how the architectural pattern
can bring profits for the architecture presented by this thesis. Architectural patterns play the
most general and significant role on the ground of integration by filling-in the gap between the
integrated system implementations and the integration abstraction.

The approaches considering general integration have to be discriminated between two
conceptual levels, or as it will be used – patterns. Firstly, the integration can be considered in
scenarios where multiple applications need to communicate and transfer transactions. This
is the case of higher level system integration – eg. EAI/ESB. The second scenario involves
integration on a more basic level i.e. the data level. Both integration scenarios consider the same
goal of providing a unified and homogeneous interface to the system data and/or analytics.

EAI In the first – application integration – pattern, the level of complexity tends to be more
challenging. This is due to the fact that each application owns its specific particularities. These
particularities are only considered within such a specific application and include aspects of the
data storing mechanisms, geographical dispersion, configuration, interface language, platform,
operating system, access rights, user management, etc. – that are different across multiple
applications. Therefore, each application has its own general assumptions (often with a very
high detail level) that can not be foreseen by the designer of application integration solution
at the moment of its creation. This has led to a specific pattern for the application integration
that assumes no interference with the application of internal mechanisms. It states that the
integration should be limited only to the interactions with each application on a black box basis,
while only participating in the integrations based on the messaging interface communication.
This gave a start to a large number of Enterprise Integration Patterns (EIP) [152] that has become
incorporated into multiple EAI solutions.

2 I.e. single-point-of-reference for processes, governance, policies etc.
3Typically implemented as a database. Can be expressed e.g. with the UML class diagram.
4According to [107]: design technique for databases aimed at supporting client queries in a data warehouse. It is

oriented around understandability and performance. Based on the concepts of facts (measures), and dimensions
(context) with star-like schema. See 2.4.1.1

5 Successor of FTP that in contrast can handle adequately support secure, automated, managed and audited file
transfers and according to Gartner Inc. [151] is a recommended for organizations replacement of FTP.
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“ Unrestricted sharing of data and business processes among any connected applica-
tion or data sources in the enterprise.

– Gartner Group, Inc. on EAI (see [153]) ”
EAI is composed of a set of technologies and services used to compose a middleware across

the integrated systems that would not be able to communicate otherwise. EAI main target is
to simplify the process of business/analytical tasks without involving any, or almost any effort
from the integrated applications 6 . In general the EAI is about sharing applications data and
business processes. Main appliance for EAI is often the data integration in form of the Enterprise
Information Integration (EII) (see 2.2.3.1), business policies and rules generalization (i.e. vendor
transparency), and applications’ common, unified access interface.
EAI mostly uses mediation (for inner mechanisms) and/or federation (for outside client request
service) based patterns (see 2.2.4). Those patterns act respectively: as a syncing broker between
integrated applications that propagate a new event across the remaining applications or as
a transparent interfacing facade for client calls. Within those inner / outer patterns one can
also easily find some of the synchronous/asynchronous communication patterns. As already
discussed in section 2.4.4 the EAI can be realized with the hub- or bus- based pattern. Both being
designed for specific purposes.
In most cases it is true that each EAI solution should include:

• central broking facility – that handles policies, coordinates EAI-provided services and
communication e.g. with ESB solution

• canonical data model – used to communicate across the integrated system

• mediator/wrapper – a facility that will enable a single integrated component to communi-
cate with the centralized broker

• API model – for the standardized way of communication with the integrated system from
the outside client perspective

All key middleware technologies required by such EAI system in the form of MOM, SOA, EDA etc.
has already been discussed in section 2.4.4. The central, broking facility and the entire integrated
system uses a canonical data model – most commonly – through an Enterprise Service Bus
(ESB) pattern based or a hub based solution for communication. The communication must
consider message routing, mediation, event processing, security, policies, and many more. Now
an ESB is evolutionarily more advanced than the hub model. A rule of thumb for a well defined
SOA-based ESB has already been discussed in 2.4.5. However – as of the present – there is no
enterprise or global standard for ESB. It has evolved from MOM and became an implementation
standard for the SOA-based architectures. While the current ESB technologies are the EDA
and MOM solutions with combination of message queuing, some of the vendor-claimed-to-be
ESB solutions still do not implement it in the discussed way. This is because ESB should be
platform-agnostic and possess the ability to integrate with anything under any condition. Some
vendors limit the ESB only to their own solutions.
Undoubtedly, ESB based EAI brings the benefits of scalability and, no coding in favour of
configuration. Also when used in the non-centralized architecture it eliminates single-point-of-
failure, and a loosely coupled system for plug-in possibilities.

Issues of EAI/ESB On the other hand, some of the pros and cons characteristics of the EAI
solutions have already been mentioned in section 2.4.4, however additional and the biggest
flaw of the EAI integration is that it increases coupling between the integrated systems. By this

6 Especially important when considering applications that for security or lack of support reasons can not be
modified.
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it increases the management costs and brings additional overhead for infrastructure mainte-
nance. The other disadvantages would be its complexity of management, competing standards,
or constant collaboration and settlement meetings (as of the hub based EAI) that lowers the
effectiveness.

Data Integration A more in-depth pattern for integration is focused on the application target –
i.e. the data. Some general discussion of data integration has already been conducted in section
2.2.3, however here we will abstract the most vital characteristics that will later be covered in the
presented solution.
Each application goal is to process its target data in a dedicated manner for a specific purpose.
While it is enough for a single application site, however when the integration of multiple ap-
plication sites of various origin is involved, it brings a need to provide translation between
each application from each site. As already mentioned in the first scenario of the application
integration, the goal is then to integrate communication between applications. Each of such
applications plays the role of interface for their data or provide data-based analytical reports.
Such integration goal is to provide separate applications to cooperate and produce a unified
set of functionalities. While this is acceptable when the use-case scenario assumes data access
by application interface, it becomes redundant otherwise. In those remaining cases one can
exclude the application layer – with its programmatic characteristics burden – from the integra-
tion process, and provide direct data integration by eliminating all the unnecessary applications
overhead.

As each enterprise-class system is designed for data processing, the integration of application
would not have any further sense if the data available to multiple applications were available in a
unified way to any application. If it were possible to develop a single view of the data, previously
used by multiple applications on the distributed sites, it would eliminate need for EAI at all.

???

This is what the dissertation topic architecture is aiming at. The goal of this thesis is exactly
to provide a general purpose data integrating architecture that would provide a virtual view of
the integrated data. The data is made available due to the arbitrary global schema configuration,
regardless of the data prior purpose, location or access characteristics.
The architecture enables a single client application to grant a direct access to any data that would
otherwise require interface in the form of dedicated, local application. Thus, it eliminates the
need for the application to collaborate with any other application while accessing the local data.
The architecture, however, due to it flexibility and open-endedness does not eliminate the EAI
possibilities. The EAI can still be applied and implemented to compliment the data integration
possibilities. However, this is out of scope of this dissertation and is a target for future research.

3.2 General Architecture and Assumptions

Regardless of what kind of accustomed architecture pattern for integration we choose ETL, MFT
or EAI/ESB, there are always some disadvantages that result in pattern specific appliance. It
has become clear that there is no standard or even a pattern that could be general enough to
overcome the disadvantages of the mentioned patterns and at the same time provide the same
functionality, or at least anticipate its implementation due to its abstract and universal model.
This is what has been aimed at by the presented research.

3.2.1 Virtualization as the Key to Integration – Postulates

The virtualization is a concept introduced early in the 1960s in the form of paging technique used
for memory virtualization. Since then it has become widely used to virtualize almost everything
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from hardware to operating systems.

DEFINITION 3.2: Data virtualization

Data virtualization is the process of offering data consumers a data access interface that
hides the technical aspects of stored data, such as location, storage structure, API, access
language, and storage technology.

The introduced data integration solution, requires a high level of abstraction that impose the
data to be considered virtual. This is due to the fact that generalization of a real (as in contrast
to virtual) data solution would have never led to satisfactory outcome as it would be impossible
to foresee all possible real data configurations and participation scenarios. Moreover, such an
approach enables easy data management without the need of moving potentially large volumes
of target data. The data manipulation is then more flexible, lightweight and stripped off the
access technical characteristics, thus it can be formed and customized arbitrarily. Moreover –
unlike ETL – the actual data is assumed to be fetched in a lazy manner and due to as-needed
access approach, the data tends to be available in a real-time perspective. On the other hand –
with contrast to data federation – virtualization eliminates the need for common data model
across the heterogeneous data sources. However, a kind of canonical model is required. The
context of connecting different data sources and accessing their data must consider logical,
common interface and be prepared with custom transformation rules of their native access
methods. What is more, a federation aspect of the proposed solution is present, as the resulting
virtual data perspectives are based on data from multiple source systems. Finally, the data
delivery is assumed to be available in the form of unified API provided for client calls.

The means of data virtualization are diverse – from the federation server exposed as a one
store, through an ESB that plays the role of abstraction layer providing services for accessing
the connected data sources, to cloud storage with API access and in-memory loading of the
data from physical databases. In the proposed solution we will devise a kind of hybrid of those
approaches, that targets to avoid most of their flaws.

As far as the scope of this dissertation is considered, the access methods are going to be
limited to read-only mode without assuring transactions, however, those issues are recalled as
possible to be implemented within the presented solution.

The benefits of such solution include reducing:

• data error risk,

• system workload (due to no real data manipulation)

• development and maintenance complexity

• data view reduced storage space (due to metadata based descriptions)

On the other hand, such an architecture might also impose some possible difficulties:

• Multiple and unexpected user queries without dedicated optimization can slow down the
entire integrated environment

• Problems with business understanding/interpretation of the data

• Defining uniform application of business rules – i.e. the governance

• Lack of historic record of the data snapshots (with contrast to data warehouses)

• API change would require all consumers to be informed and comply

In the following sections those potentially problematic areas will be challenged with the newly
presented approach (especially in section 3.4).
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3.2.1.1 Virtualization – Existing Solutions

Existing solutions for data virtualizations are all commercially supported products such as:
Red Hat JBoss Data Virtualization, Informatica Data Integration, IBM InfoSphere Server – i.e.
incremental (data replication), and virtual (federated), Oracle Data Integrator etc. However, they
are all closed source and provider support dependent. It is also not disclosed how the integration
takes place in detail, possibly for commercial significance.

3.2.2 Polyglot Persistence – building "The Tower of Babel"

The integration solution that is discussed aims at providing an architecture for flexible data
access regardless of its structural or technical dependencies. As each database is designed to
solve different problems, the use of a single DBMS model for a complex enterprise environment
is not desired. Storing business transactions, session management data, BI data warehousing,
logging or reporting in same database engine is a mistake. Let us assume we have a common
selling use case. It would almost always include a shopping cart and session objects. Now, each
of those parts of the system would have different requirements towards storing properties. that
is session management must be more available than e.g. order history, which in contrast would
require secure backup replication possibilities. Thus taking the best of every of the available
data storing engines seems obvious and is referred to as a polyglot persistence. As a consequence,
one should consider using – e.g. key-value store for storing transient session or shopping cart
content (until it is committed), as the RDBMS is not accustomed to handle transient data as
effectively and responsively. Referring by the user ID key, in case of transient shopping cart or
session, it is more natural for the key-value model to be used. However, after being transformed
from the shopping cart into the final order, the actual data can be moved in secure and stable
RDBMS. Next, based on this example, one can additionally connote recommendations for each
product e.g. of "what has been bought by other buyers of the particular item" or "what accessories
are available for a particular product". For processing such a graph based relations an obvious
choice seems to be the graph based model DBMS. Moreover, one could refer to each order as a
complex structure document of multiple items with their possible characteristics. Thus, moving
such a complex structure to document store, while storing only the inventory and items price in
RDBMS, would seem natural. The appliance of multiple data models is not only useful while
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Figure 3.1: Polyglot persistence.
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serving the prior goal of sales application. It could be also useful to provide additional analytical
or reporting functionalities e.g. by using the graph stored data for market analytical purposes
and client targeting.
To achieve this goal, one could also make the polyglot solution even more productive by provid-
ing services API for the graph engine, so that the graph relations can be accessed by multiple
other applications, and not just the selling one that generates its data thus, providing more
possibilities. The next step obviously is wrapping of each and every data source with a service
with a defined API. Again, this allows interoperation with other applications without the need of
changing the applications, and allowing for communication unification even in case of database
changes. Additionally, the polyglot persistence operating – regardless if it uses multiple data
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Figure 3.2: Service based polyglot persistence.

sources or not – can also be improved in terms of caching for better performance or indexing
7 for better search efficiency. It is especially important in the case when data storage can not
be changed for specific usage due to existing legacy application depending on the existing data
storage. The condition for such improvement however, is to comply to the data synchronization
between the data sources and the cache/index engine. In other words, the index data must
represent the current state of the actual data stored in the database. This can be done in a batch
or real-time manner however, it must assure stale data in the index/cache. For the purpose
of keeping index up-to-date, a special pattern is applicable in the form of Event Sourcing (see
3.2.3). As not all heterogeneous data sources can provide signalizing its data updates, in such
cases every data source interaction would have to use the data source wrapped access service.
Optionally one could develop a service that could check the data changes at the data source. 8 .
However, in the case of the data source such as a flat file or a spreadsheet, this would have been
neither an easy nor lightweight task.

As already described, one can obtain significant gains in performance while considering
such an architectural pattern in terms of polyglot persistence. It is crucial, however, to pick the
right technology for the right purpose. One could use the RDBMS for searching natural graph
hierarchy of product relationships with hierarchical table structure and recursive queries but

7 E.g. Apache Solr as a high performance search server for indexing and caching.
8 This can be based e.g. in MySQL (MyISAM) on information_schema.tables database with its UPDATE_TIME

or the use of triggers in other possible cases.
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this – as proved in Chapter 4 – is a way less efficient than providing a dedicated data model with
all its benefits of node-relation based model.

3.2.2.1 Polyglot Persistence Concerns

As already mentioned in Statement 1 one has to use the right technology, for a particular purpose.
To be precise, most of the data stores can handle defined data requests somehow by persisting
the correct attributes. However, in the case the request changes, later it might be impossible to
handle the modified queries when the conditions change. For instance, the relational database
can handle a particular hierarchical query while the tables are modelled accordingly. However,
in the exemplary use case scenario of "recommended accessories" or "other buyers bought also"
the traversal nature changes between those two requests. In the case of changes of how traversal
is done, a relational database model would require a refactoring and/or migration of the data to
face the new data requirements. Now as for a polyglot persistence solution, that tracks relations
between nodes in the form of metamodel, it is easy to simply programme a new relation model
while using same data store and bring only changes to the metamodel, or use a minimal replica
on a suitable store model (see chapter 4.2.4), in this case a graph model.

However, the polyglot persistence model brings in the complexity of management and
security, which is additionally complicated due to some solutions being open-sourced, and thus
often equipped only with community support. Although, there are some companies providing
the commercial support, it provides an additional instability risk. Following the enterprise point
of view, the proposed polyglot solution clients in the form of ETL tools would want to use the
solution raw data. To obtain this goal a well designed API is a must 9 .

What one should especially note about the polyglot approach key points, is making the data
access encapsulated with the unified API which reduces the impact of data storage choices on
the client calls.
Additionally the polyglot solution proposed in this dissertation will provide a common and
lightweight means for introduction of policies for easy data source integration and interpretation.

9 The API is also provided within the solution discussed in this dissertation.
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3.2.3 Event Sourcing as a Persistence Technique

A specific approach not only for the polyglot persistence, but persistence in general is formulated
with the Event Sourcing as an architectural pattern. The approach is based on persisting all of
the changes to the persistent state, instead of focusing on persisting the application state itself
[154]. The idea is already well accustomed in the form of transactional logs of RDBMS that store
all changes applied to the database, or in the form of a Version Control System (VCS).
In any domain example of Event Sourcing we could distinguish two concepts. One is a command
that indicates requests to the domain for changes. A command might be accepted or rejected.
With contrast to the second concept – a command is only a request that might be refused
typically in the form of exception. This second concept is an event, that is a statement of a fact
that some operation certainly happened in the past within the domain 10 . Using such a definition
there is no mismatch between events (as domain concepts) and the domain. Replaying events,
results also in a domain state. Thus such a system is defined in the domain-oriented way. This
also radically reduces a number of needed model representations as the events already represent
the domain model. Events and commands are both data structures containing simply data
without any behaviour (a.k.a. Data Transfer Objects - DTOs). The main discrimination between
the two is their intent.
The accepted command results in zero or more events being emitted to put new facts into the
system. One additional concept is an aggregate. An aggregate is a stream of events that are
somehow related to each other (e.g. action history for one order). Therefore, aggregate is a single
object without any reference to other objects or a graph of objects with a root as a starting point
of an aggregate.
Therefore, the event sourcing is all about using an application log as a primary source of data. The
pattern is based on the assumption that the application state changes should be all present in the
form of a dedicated event object that captures all information about each change. Now such an
object is stored for evaluation of the application state. Therefore, at the stage of application state
update, the event object is used as a source of current state information to change the application
current state and as a result to make the application’s state updated. Since the application state
is stored in memory, using the in-memory data structures, working on in-memory data also
brings straightforward performance gains eliminating all disk I/O operations and mappings
between the disk and in-memory data structures.

Such solution brings a secure storage for state changes. Moreover, at any time application
can withdraw its current state and apply the one loaded from the event log object. Therefore, the
application state can be recreated – or as we shall use aggregated – at any time. For performance
reasons, technically it can be realized in the form of application state memory image snapshot
that can later instantly replace the current one. Now the snapshot memory image acts as a time
break point from which we can recreate all changes in memory owing to the event object change
log, thus the snapshot does not need to be made on every change bases. Now the policy of event
log start point can be also limited to only log events when the last snapshot is taken.

The event sourcing pattern enables the system to transmit events to multiple systems that
can therefore create different states depending on requirements. Due to the fact that the event
log can aggregate the arbitrary data model, one can use it to broadcast events for nodes with
potentially different models and even schemas.
Event sourcing can obviously also help to store historical information since one can access any
state from the event queue log. Up until now, it has been mainly possible by using the data
warehousing solutions. Due to such possibilities, the event sourcing also brings the possibility of
alternative scenario analysis.

10 Events are very domain-focused states, e.g. in the general selling case an event might be: ItemOrdered, Item-
Cancelled, ItemPayed, ItemPreparedForShipement, TransactionClosedWithSuccess etc. Whereas the commands
describe rather user domain requests, e.g. PlaceOrder, CancelOrder, CloseOrder etc.
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Additional advantages of event sourcing are loose coupling of the current state and the event
log state. Moreover, due to the append-only manner of events, it is easy to scale such solution.
One could also aggregate different data models and schemas based on domain events stored in
an event log.

“ As the events represent every action the system has undertaken, any possible model
describing the system can be built from the events.

– Event Sourcing documentation on Model (see [154]) ”
The problem with event sourcing is the burden made by the necessity to assure that every sys-

tem change is captured and stored as event in log. The obvious consequence of event sourcing is
that all of the event data must be stored in-memory, and be ready to recover fast enough from the
system crash by either re-executing events from the event log or by starting a duplicate system.
Additionally, potential event broadcasts can bring side effects when applied to external nodes.
The event sourcing might also require additional mechanisms that consider the concurrency
access to the event log, or require an event processor single-threaded implementation (just
as in the case of event sourcing implementation of LMAX Buisness Logic Programming single
threaded solution 11 ). An enterprise class system should also consider error handling to roll
back events in the case the application raises an error or simply to replay all events in a correct
sequence. What is more, a bad event is not removed from the event queue, but compensation
events are added to provide a true history of the system, which is further beneficial for system
audits and traceability.

In the systems such as the one proposed in this dissertation, which is read-based in the case
of multiple read requests the postulate would be to base the solution on multiple, read nodes.
As an heterogeneous solution it should also consider nodes with different schemas.

3.2.4 Command Query Responsibility Separation (CQRS) Pattern

In the most common approach, an interaction with an information system in the form of
application is focused on Create, Read, Update, or Delete (CRUD) records from the database.
In the simplest case the goal is to store and retrieve data from such CRUD-based data store.
However, as the use case scenario moves to some more challenging and sophisticated forms,
this approach becomes insufficient. For example, we can easily think of some data retrieval
scenario that must be based on multiple sources or even on virtual instances, while additionally
considering the information validation. In such cases a designer would have one straightforward
option i.e. to focus on the exact domain for data modelling so that the store model becomes
as close as possible to the domain model. This is what we consider the Domain Driven Design
(DDD). The evolution has also brought the layered design that has introduced vertical order for
data representation down from the data source, up to the end user that receives a conceptually
integrated view resulting from multiple lower or adjacent layers.

3.2.4.1 Command-Query Separation

An interesting approach has also been proposed from a different conceptual level. This new
approach has involved some observation that each method is either a command that performs
action or a query that returns data. At start it seems pretty much as a programming language
design level particularity, which is actually where it was originally first postulated. It was Bertrand
Meyer, who has proposed such discrimination as a part of his work on the Eiffel programming
language in [155]. With reference to the layer model, Mayer discusses the Separation of Concerns

11 Multilateral Trading Facility (MTF) for Foreign eXchange FX market trading; that can handle 6 million orders
per second on a single thread.
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12 (SoC) pattern that refers to each layer as assumed to be correct (see definition 3.3) conditioned
only on the correctness of underlying layers, and thus achieves concentration at separate stages
"on a limited set of problems" [155, p. 4].

DEFINITION 3.3: Correctness AS AN EXTERNAL QUALITY FACTOR AND CENTRAL TASK OF

OBJECT-ORIENTED SOFTWARE CONSTRUCTION - ACCORDING TO [155](P.4)

Correctness is the ability of software products to perform their exact tasks, as defined by
their specification.

He also claims that SoC "is essential for maintaining the simplicity of software elements" [155,
p. 363]. The Soc pattern 13 itself, is based on separating program code into distinct conceptual
sections, while each section addresses a separate concern 14 . A code that embodies the SoC
is referred to as a modular program that uses interfaces to encapsulate information within
a section of its code. Another incarnation of SoC presence in a program is – as discussed by
Mayer – the layered designed with the presentation, business, data access or persistence layers.
SoC brings simplification for management and development of software mainly due to the
separations that it imposes. Thus if using SoC, one can easily decompose program into many
sections for later reuse, reimplementation and extensions regardless of their coupling with the
remaining sections. In the procedural languages separation is done by separate procedures/-
functions. In the object-oriented programming we can find SoC while defining separate objects.
Aspect-Oriented Programming (AOP) uses the objects and aspects for this goal, the same way
as the Service-oriented approach use services to separate concerns. Additionally, in the case
of architectural design patterns such as the Model View Controler (MVC) or the Model View
Presenter (MVP), the separation is straight forward in terms of separation of data-access from
the model and the data presentation, that are considered as separate concerns.

Mayer has defined the following principle 3.4

DEFINITION 3.4: Command-Query Separation (CQS) principle

Functions should not produce abstract side effects.

In other words it states that the only procedures (i.e. commands) are expected to produce side
effects in the form of object change, while not returning any results. This is in contrast to queries
that provide information about objects but do not change therm. For the sake of understanding
Mayer defines abstract side effect and concrete side effect as follows:

DEFINITION 3.5: Concrete side effect

A function produces a concrete side effect if its body contains any of the following:

• An assignment, assignment attempt or creation instruction whose target is an at-
tribute.

• A procedure call.

12As introduced by in Dijkstra in [156], and focused around in his work [157]
13 Realized e.g. by internet protocol stack, HTML/CSS/JS, Aspect-Oriented Programming (AOP) (as of e.g. build-in

security and logging inside the code).
14 Which is a set of general (e.g. hardware architecture the code is optimized for) or detailed (class name for

instantiation) information that affects the source implementation of the program.
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DEFINITION 3.6: Abstract side effect

An abstract side effect is a concrete side effect that can change the value of a non-secret a

query.

a The "non-secret queries" (available to specified clients) here – in contrast to "exported queries" (available
to all clients) and "secret queries" (available to no client) – means that non-secret query is the one that is
exported to selected clients. Now changing the result of the non-secret query is an abstract side effect since the
change will be visible to at least some clients.

In terms of object-oriented approach, each abstract data type is expressed by the interface. The
interface is then offered by class to its clients. The side effect affects the abstract object if it
modifies the outcome of any query that is accessible to these clients. However, one must be
warned that separation of side effects and return values are not inherently object-oriented.

What is a serious consequence of the CQS principle that will also become crucial for the
architectural solution 15 devised in this dissertation is bringing in the referential transparency
within.

DEFINITION 3.7: Referential transparency

An expression e is referentially transparent if it is possible to exchange any sub-expression
with its value without changing the value of e.

The referential transparency is a kind of practical consequence of a mathematical principle
of object immutability. For instance

p
4 does not change the number four. An exemplary im-

plementation of such a programming paradigm that would seek to retain this mathematical
immutability would be the functional programming that lately becomes more present in enter-
prise development in the form of Scala and other JVM based languages.

The Command Query Responsibility Separation (CQRS) employs CQS by using Command-
Query objects for data retrieval (READ) and modification (UPDATE).

3.2.4.2 Command Query Responsibility Separation (CQRS)

CQRS proposes domain model access by splitting its conceptual model into two, separate
Command-Query models that can provide less complex model, comparing to common concep-
tual model for both of these operation types. Such an approach gives great possibilities especially
when combined with the command/event based event sourcing. One should not forget that
such a separation, however, brings questions about keeping the model consistent or eventually
consistent. The CQRS obvious profits and advantages can be especially visible while considering
complex domains where the separation can bring significant gains.

However, CQRS is not a panacea for all system architectures. In particular one should not
consider CQRS as a general system base. It should only be used in this particular subset of system
tasks that can effectively benefit from it, and not the entire system. This is of course natural that
a unified model of the entire business domain is not a good idea.

“ Total unification of the domain model for a large system will not be feasible or
cost-effective.

– Eric Evans "Domain-driven design."(see [158, p. 332]) ”
15 This characteristic is important in terms of the remote Data Object Reference (rDOR) that will be discussed in

the next sections.
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As a consequence, a system should be divided into separate bounded contexts – as it is
referred in DDD [158, 159, Respectively: part IV Strategic Design, Chapter 2] – each of which can
then have its own unified, canonical model. Those canonical models can of course overlap while
sharing the same structure and can represent only the aspects required for communication.
Therefore two bounded contexts might cover unrelated concepts (i.e. complaint policy is only
relevant in the complaint support context) and at the same time share some of the concepts
(i.e. seller, consumer etc.). While considering integration one can also consider mapping or
translating mechanisms between unrelated concepts. While considering the CQRS its postulator
claims that:

“ CQRS is simply the creation of two objects where there was previously only one.
The separation occurs based upon whether the methods are a command or a query
(the same definition that is used by Meyer in Command and Query Separation, a
command is any method that mutates state and a query is any method that returns
a value).

– Eric Evans (see [160]) ”
The main benefit of CQRS pattern involves less complex handling of a complex domain.

Additionally, one can consider CQRS a right choice for high performance applications. Since
CQRS enables simple and independent scaling of the Command and Query parts of the system,
it allows a better system handling – e.g. with many queries while a few writes. This is due to
possible separate optimization techniques that could be applied to both aspects. As for the
database integration application we can think of different database access strategies for queries
(reads) and for commands (updates).

CQRS should not, and can not be considered as a silver bullet for every aspect of an applica-
tion. We can easily find use cases of simple domain applications or those that do not require
the command part, where CQRS would possibly only deliver overhead and complexity. Another
example of application where CQRS would not be the best choice, would be an application with
highly coupled request-response communication where the synchronization between the C-Q
separate models could additionally provide latency and therefore uncertain gains. Thus, rapid
query-response interaction use case scenarios should rather be considered inefficient while
using CQRS.

CQRS Implementation Considerations Towards Integration When considering the CQRS to
be used for one or more bounded contexts of the integration solution, one of its implementation
types can be used. In terms of architecture design presented in section 3.3 the author has
considered following CQRS based design types.

Let us assume a scenario when we need to provide an integrated search interface for all
employees.
The classical approach would consider the domain model and classes to serve both the queries
and the commands. This approach would consider the Employee class and the EmployeeRepository
repository domain class.
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Listing 3.1: Employee class.

public class Employee {

public int Id { get ; private set ; }
public s t r i n g Name { get ; private set ; }
public IReadOnlyList <Task> Tasks { get ; private set ; }
public void AddTask ( Task task ) { / * . . . * / }

/ * Other methods * /
}

Listing 3.2: Employee repository class.

public class EmployeeRepository {

public void Save ( Employee emp) { / * . . . * / }
public Employee GetById ( int id ) { / * . . . * / }
public IReadOnlyList <Employee> Search ( Str ing name) { / * . . . * / }

}

While having the Search method as a query that results in a list of employees, it provides
an efficient code without replication nor duplicated functionalities. However, for the purpose
of query optimization, one would possibly require just a list of employees without the need
to retrieve an entire list of their assigned tasks – e.g. simply requesting task count. Querying
for each employee’s task list can become a significantly time-consuming position on such
query evaluation and execution timetable, especially in the case of large numbers of employees,
possibly with extensive lists of duties.
Therefore, this kind of design would not fit well a data integration application with read-intense
focus.

A more advanced pattern would be to provide additional DTO classes responsible for queries,
and the remaining domain class responsible for commands.

Listing 3.3: Employee class.

public class EmployeeDTO{

public int Id { get ; set ; }
public s t r i n g Name { get ; set ; }
public TaskCount { get ; set }

}

Therefore, the repository could now modify its search query to use the DTO:

Listing 3.4: Employee repository class.

public class EmployeeRepository {

public void Save ( Employee emp) { / * . . . * / }
public Employee GetById ( int id ) { / * . . . * / }
public IReadOnlyList <EmployeeDTO> Search ( Str ing name) { / * . . . * / }

}

While this provides the separation, on the other hand it also brings in the code duplication in
domain and the DTO classes. This fails to comply to the good practice of code reuse and also the
SoC pattern, as the same employee’s concern is present in two classes. Additionally, such code
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replication breaks the Don’t Repeat Yourself (DRY) principle of software engineering introduced
by Hunt and Thomas in [161, p. 27].

STATEMENT 2: DRY PRINCIPLE

Every piece of knowledge must have a single, unambiguous, authoritative representation
within a system.

Also E. W. Dijkstra is known for coining the "two or more, use a for" rule of thumb relating to the
case when processing more than one instance of data structure, it is advised to encapsulate the
logic within a loop. On the other hand, there are some less restrictive approaches e.g. approach
devised by Fowler in [162] that states that the code can be replicated only once (so called rule
of three). One could break the DRY principle e.g. for performance reasons like caching to avoid
repeating expensive operations but such decision should not be made on a daily and ad hoc
purpose basis, such as the discussed design issue.

A more acceptable approach – from the point of view of the query (READ) intense application
– would be to provide separated models and thus, APIs for command and query services. While
the remaining domain and DTO classes still provide the code replication, however, now both are
part of separate command (domain) and query (read) models and APIs, and thus their existence
is better justified.

Listing 3.5: Employee repository class – now handles COMMANDS.

public class EmployeeRepository {

public void Save ( Employee emp) { / * . . . * / }
public Employee GetById ( int id ) { / * . . . * / }

}

Listing 3.6: Extracted query search handler class.

public class SearchEmployeeQueryHandler {

public IReadOnlyList <EmployeeDto> Execute ( SearchEmployeeQuery query )
{ / * . . . * / }

}

The extraction of query logic out of the domain model brings optimization towards read intense
query systems, and at the same time leaves the command functionalities intact. This pattern
encourages to optimize the query dedicated part of an API towards dedicated caching solution
or even separate load-balanced server architecture. As already mentioned, such a separation
also foster the scalability of the system.

However, the most pure CQRS implementation improves the query operations scalability
even more. It includes the system separation but also involves the storage separation. Such an ap-
proach provides separate data storages optimized for both parts of our system. One can imagine
that the operational RDBMS would suit the transactional write queries better than read-friendly
key-value store. This can be done with the additional replicated stores. The heterogeneous
storage cluster, however, must consider background synchronization and therefore brings only
the eventual consistency. Therefore the use case scenarios for the NoSQL storage would have to
be carefully considered and tailored towards the system expectations and requirements.

The last proposed solution is the one that is the best in terms of scalability for querying
operations. However, one must still remember that it comes at the cost of increased complexity
and eventual consistency. Choosing the right solution to leverage a particular system should be



3.2. GENERAL ARCHITECTURE AND ASSUMPTIONS 115

faced with the consequences that each approach brings and values against the degree that the
target application would have to comply. CQRS itself is not a panacea for all of the system read
optimization issues and should be only considered in the bounded context of particular domain.
A balance must be found between the degree of separation and the complexity.

In terms of the proposed integration architecture, it is pretty straightforward that the het-
erogeneous integration problem specification brings encoded requirement for the last and the
most complex approach for the CQRS implementation.

3.2.5 OMG CORBA - Standard Specfication

As already mentioned in section Chapter 2.2.1, across many other technologies Common ORB
Architecture (CORBA) [87] is a serious technical standard, and as an object-oriented, distributed
middleware, has become very inspiring for the author. Especially interesting was the way the
standard has defined the service integration in the form of Implementation Repository (IMR).
Despite some other technologies such as Java Remote Method Invocation (RMI), IBM MQ Series,
Microsoft’s COM and .NET, SOAP, and TIBCO Rendezvous, CORBA remains a general standard
that brings for the proposed solution crucial benefits:

• Maturity – developed since 1991

• Open Standard – any closed solution does not provide their detailed specifications; not
tied up to a particular vendor

• Efficiency – uses marshalled 16 data for transfer (as a binary buffer rather than program-
ming language types) compared to SOAP using XML with its verbosity it takes much more
bandwidth. Additionally, parsing XML is always a CPU intense task. Compared to other
solutions CORBA effectiveness looks good, compared e.g. to IBM MQ that requires the user
to write low-level marshalling/marshalling code prior to transmission and retrieving of
actual (non-binary) data that brings possibly error prone code and introduces additional
management complexity.

• Scalability – CORBA can handle large volumes of server data but also high communication
load from thousands of applications

• Enterprise tested – wide range of domains where CORBA has proven its point (see [163])

CORBA is basically an object-oriented implementation of older approach of Remote Procedure
Call (RPC). The Object Request Broker (ORB) (or previously RPC) that forms the CORBA acronym,
is a method for invoking operations on remote processes – i.e. those running on the same or
separate computer. The idea is to make those remote calls to look the same as the local calls.
With such characteristic it might be considered a good choice for a middleware that can play
the role of integration software for distinct applications. CORBA is an independent standard
since its design can be implemented for distributed nodes working on different architectures
and environments, while using most of the high level possible programming languages.

3.2.5.1 CORBA Implementation Repository

A very important feature of CORBA is that it does not separate client from server processes
that are being integrated. Each process participating in the CORBA based communication can
at the same time – serve objects to remaining present processes, and call for objects from
those remaining processes. In short the IMR is a wrapper around database/file that persistently
stores information about each of the servers (and their applications) registered with the IMR.
Additionally, there is a wrapper that can handle application-to-IMR communication. CORBA
provides only partial specification for IMR and thus allows many possibilities for defining how

16 CORBA terminology for converting data from used programming language types into a binary buffer that can
be transmitted
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IMR’s functionalities can be reached. For example it states only that IMR should know how to
access a particular server process and its status.

IMR on Duty for Data Integration Considering all of the CORBA/IMR particularities they can
become a really important part for the integration architecture presented in this dissertation.
Let us follow the life-cycle of IMR and apply it for data integration. Originally IMR acts as a
central-point-of-truth about server applications.

The author has discovered an analogy between the location and manipulation algorithms
for heterogeneous data that could be put in place of IMR’s server applications. The data integra-
tion architecture can consider the IMR as a place to store access methods for particular data.
Moreover, in the case of carefully designed approach one could also think of supplying it with
the data particular characteristics (as described in section 3.3).

Likewise, the data integration solution can be designed to store a modified form of server/ap-
plication information tandem. Such central data integration repository would have to replace
the IMR application oriented data, by the data-source/data-details information. The server infor-
mation from this tandem would then be substituted by the network address details as well as
technical contact details of a particular data source. Similarly, the application details would be
replaced by the data access methods. Storing such information in a central, integrating reposi-
tory would enable the client data requests to be decomposed and possibly forwarded towards
the desired target data in a communication process. This client-to-repository data interchange
would have to consider an API provided by the central repository, which could be used for such
a communication purpose. As a result of the API call, client would get the target data source
contact details including a set of communication characteristics required by the target data
source’s specific particularities. As a result, client would be able to connect to the adequate data
storage compound. Moreover, to reach the exact data from within the data source, a detailed
and fast access method, native to the particular target data storage, would have to be embedded
within the data provided by the central repository’s API. Thus, after settling a connection to the
data source pointed by the API call response, client will be able to use the adequate and expected
query statement towards the specific data storing engine.

The data-source/data-details contained within the central-integration repository, and made
available by its API are actually considered as a metadata – i.e. the information about the data
sources and their existent, real data contents.

3.2.6 Metadata

A wide spectrum of metadata utilized by numerous, modern solutions has already been dis-
cussed in 2.4.2. However, for the purpose of the discussed solution, a well-tailored metadata
representation would have to be provided. A metamodel for data intergation and location must
be flexible enough to face all potential issues that might originate from the fragmentation of
replication data characteristics.

The most widely spread and accepted standard for metadata, often referred to as lingua
franca of the integration is the XML. XML is sometimes marketed as the solution to the semantic
heterogeneity problem. Nothing could be further from the truth. Just because two people tag a
data element as a salary does not mean that the two data elements are comparable (See [164]).

However, the metadata is the key aspect of the presented integration solution. Each data
element present in the integrated data sources grid will be represented with the structured
metadata that conform an integration or contributory view.

3.2.7 Design Patterns - Study of Utility

Referring to the general assumption of CORBA IMR – used by the author in the development pro-
cess of the integration architecture – a careful study can bring some interesting but challenging
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findings. First of all, considering the CORBA IMR data integration architecture, it is highly proba-
ble that a central repository will became a target to multiple concurrent client requests. As a well
designed system this should even be able to handle up to ten thousand clients simultaneously
17 . There have been multiple strategies for handling effectively such cases (see [165]). However,
the C10K class of problems deals with the extended set of issues focusing also on hardware,
operating systems memory management particularities or network stack mechanisms.

Therefore, author has focused only on software design patterns that can be applicable for
software architecture for data integration.

3.2.7.1 Reactor pattern

As prototyped by CORBA IMR, also in the discussed integration architecture, communication
with client data requests must be handled effectively even in the case of multiple requests. Here
is where the reactor design pattern comes in. Actually numerous CORBA implementations [166]
(TAO [167], VisiBroker, or Orbix) also uses the reactor pattern in the ORB Core [87] layer.The
reactor is used for demultiplexing and dispatching ORB requests to servants. The reactor aims
to serve the server application for concurrent multi-client request handling.

The reactor is one of the most well known (since 1995 – [168, 169]) design patterns for
simultaneous event-handling of service requests 18 . In the case of architectural design, an event
(in contrast to domain event from event sourcing) is an action or an occurrence that happened
during program runtime, that must be handled by the program. Events are typically handled by
the dedicated part of the program that dispatches events/messages concurrently in form of the
event loop 19 .

INFOBOX 6: Event-driven program

The application that changes its state and/or behaviour in response to incoming events is
called event-driven program.

However, the reactor is more specific than the general event-driven approach, and can effectively
use event loop to block resources 20 . The problem that the reactor solves is to handle multiple,
concurrent client service requests. Structurally, the reactor is a synchronous demultiplexer of
events, that dispatches them to their adequate event handlers. Each event handler, actually
processes a certain type of events. Additionally, prior to be used, each event handler must be
registered in an initiation dispatcher . The pattern work flow is simple. Multiple, multiplexed
events that reaches the reactor instance are target to synchronous event demultiplexer. Demul-
tiplexer then notifies the initiation dispatcher about the incoming new event. As a result, the
dispatcher synchronously calls back the event handler that is dedicated to such new, particular
event. Finally, the event handler dispatches the event to the concrete event handler, i.e. the
method that implements the requested service in the application-specific manner.

In the discussed application context this application can be a part of the architecture API for
client calls for the integrated data. This will be elaborated in section 3.3.2.3.

17 This is often referred [165] to as C10k problem, that has to deal with hardware considerations and multi- or
single- threaded model for handling with concurrency. In this case we refer to concurrent requests.

18 A.k.a notifier, dispatcher.
19 One of the methods for communication between processes and flow control (often main loop of the program).

Used for dispatching events from event providers to event handlers. Mostly operates asynchronously. Event loop is a
programming structure that continuously checks event sources/providers for new events, and if a new event occurs,
event loop calls the respective routines to handle the event.

20 In the case blocking is not required to start synchronous operation on resource, the resource is sent to the
dispatcher.
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Reactor Pros & Cons The most intuitive, alternative solution of the problem approached by
the reactor pattern is multi-threading. Threading, however, can lead to performance issues 21 ,
might require complex concurrency control schemes and what is more, cannot be considered on
every programming platform. Thus this approach might not be effective, simple to program, nor
portable between multiple platforms 22. The synchronous nature of reactor’s request handler
calls, enables concurrency without multi-threading complexity. This also brings more portability
of reactor-based applications.

The most notable benefit of the reactor pattern is the Separation of Concerns (SoC) – see
section 3.2.4.1. The reactor provides decoupling between the reactor implementation and the
application code. Thus, one can reuse the application-independent components, while still
handling application-specific methods for event handling.
Additionally, since handlers force the functionality decoupling with separate classes 23 , Reactor
also improves modularity and thus reusability. The reactor pattern, on the other hand, is hard to
debug, since the inverted flow of control involves reactor framework and the application method
callbacks. This bring some additional complexity to step-by-step debug of the application as its
programmer might not have access or comply with the framework code.
Additionally, while using reactor, one must be aware that as a single-threaded application, its
event handlers are not preemptive (i.e. tasks can not be temporarily interrupted without their
cooperation, with the intent of resuming at later time) during execution, as blocking one handle
can stop the entire process. In other words, the context switching is not possible.

3.2.7.2 Reactor Related Patterns Considered Applicable for Client Interfacing

The non-preemptiveness of reactor is crucial in the cases when long-duration operations are
involved, like large image (e.g. medical [171]) processing. In such cases one should rather con-
sider patterns such as Active Object [172], that uses multi-threading instead of single thread to
complete its tasks. It simplifies synchronization of shared resource access by invoking meth-
ods in different threads of controls, thus decoupling the method invocation from the method
execution.

The Reactor pattern itself is often considered related to the Proactor pattern [173], which
in contrast to the reactor is asynchronous. It simply demultiplexes and dispatches the event
handlers triggered by the completion of asynchronous events, while the reactor triggers event
handlers when it is possible to initiate synchronous operation without blocking.

Referring to more general patterns as of [1], there are two that show some resemblance – i.e.
the Observer and Chain of Responsibility(CoR) patterns. The Observer aims at handling a single
source of events, all actions are commenced on multiple dependent instances when the single
source induces. In the latter, CoR pattern, client request is forwarded to the responsible service
provider, that is the first matching Event Handler in the chain. In contrast, the reactor matches
the concrete Event Handler with a specific source of events.

3.2.8 Integration Database Model - IDBM

While the general way of interfacing can be approached by the reactor based model, there is still
a considerable amount of issues regarding the central integration repository model. As already
mentioned in section 3.2.6 metadata will be playing a significant role as a data description
language. Regarding the specific nature of virtual and metadata-based information stored in the
central repository one would have to consider a dedicated datamodel. This is due to the fact that

21 Such as context switching, synchronization and data movement (see [170])
22 The solution to raw threading could be with the use of frameworks such as Akka that use the actor model

abstraction over threading complexity, while also providing scalable and real-time interfaces for implementing
concurrent and distributed applications.

23 Single Responsibility principle from SOLID acronym, mnemonic for OO design rules.
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the existing data models like the row-, column-, etc., are designed to handle a particular data
and to face its specific characteristic. While this is the right approach per se, when we know the
target datamodel, however this tends to become problematic and unclear, if the actual data that
is going to be represented and integrated is unknown. Moreover, queries towards the datamodel
will be ad-hoc, and mostly unexpected due to a lack of submitter constraints. All this issues
deserve to be considered in a dedicated way.

Therefore, in the following sections the design decisions – of proposed solution – will be
introduced and justified.

General Data Model Design To achieve the quest of providing integrated data transparently it
is not enough to have only a metadata scheme. A conceptual datamodel is required to present
replication and fragmentation particularities. Moreover, as we deal with a heterogeneous and
distributed environment, it is also expected to represent the integrated data views transpar-
ently. The proposed solution is to introduce a new, concept-oriented model (COM) for global,
integrated schema. The concept here, is referred to as a basic, descriptive component of the
integration schema view that represents distributed data particularities 24 . This new model,
physically represented by metadata, assumes that each unique data value must be retrieved in
an unambiguous way, despite its replications and fragmentations. To assure such explicitness,
one can easily imagine that a key-value model will be essential in such case, to maintain context
of each value. Additionally, single-point-of-reference for every stored piece of data will provide a
great advantage of saving physical space, compared to e.g. insufficiently normalized relational
databases, and most of the non-relational ones. Since each raw data concept is present only
once, in the concept oriented model, its normalization is by-design. Simple matedata value-to-
source mapping function however, is not enough. The model must also consider a concept for
referencing data replications or relationships. The reference type value concept should be stored
the same way as the regular raw data concepts, and thus enabling transparent navigation.

With such assumptions, an index-based metadata storage with the referencing conceptual
entity would be enough to represent and obtain each part of the requested record together with
its replicas and possible fragmented parts regardless of their localization.

Organization and Purpose of Replicas Replication nature, in a distributed and heterogeneous
data grid, can be intentional – to assure high availability and/or disaster recovery, or might
originate in legacy nature of integrated data sources. Therefore, representing replication in
the dedicated concept-oriented data model, would benefit from a common, unified model
that could provide enough abstraction to represent any other datamodel. This way one could
intentionally replicate and store data in the datamodel that would suit it the best regarding its
purpose. For instance, a transactional query would be sent to the operational replica that has the
relational origin, while for scan queries (that focus more on aggregations and summaries) one
could use column store replica etc. This way individual client data requests might be mapped to
the dedicated queries depending on query nature. The proof of a testing scenario is presented
in the final chapter. As for the legacy replications that originate in past data migrations, the
integration architecture can use them simply as a recovery source or a load-balancing target.

3.2.9 Indexing Role in Integrated Datamodel

As already mentioned, the datamodel proposed for the integrating architecture is based on al-
ready well accustomed key-value paradigm – for accessing data unambiguously. This paradigm is
already present in the relational (primary key), object (object id) or NoSQL (MongoDB:ObjectId
_id field, Cassandra: composite/simple key; Neo4j: id_property etc.) data stores. In the inte-
gration architecture the ordered key values are responsible for unambiguous locating of the

24 E.g. attribute, tuple, record, fragmentation component, replica, etc.
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contents of each schema concept (e.g. record, fragmentation component, replica, etc.) of data
from the integrated grid.

Since, in the proposed architecture, the key values for each schema conceptual component
are auto-generated (incremented) at the stage of creating the integration/global schema, the
schema (on concept level) becomes unambiguous and complete while preserving the context
of each concept. This nature makes the key values to act more as a forward index or, in some
optimization cases, an inverted index.

Forward Index As the amount of data stored in a database has significant impact on its
performance we should note that, the bigger data size is, the more the indexing is important
to the system. In a proposed solution, one has to be aware that it is potentially designed for
handling accumulated BigData sizes from multiple sources in a complex schema. Since the
architecture is targeted for data integration, the amount of data made available will become a
sum of all integrated data volumes.

The problem with persistent data access is that (even when dealing with metadata) it is
grouped and stored on disk in blocks of data. To access data from within a block one needs to
access the entire block in an atomic manner. Each block is organized like a linked list (i.e. it
contains data section and a section of pointer to the next block). Thus continuous data access
is imposed. Assuming that one can sort records based on one attribute, finding the requested
record in linear search, for N blocks (that the table spans), would require N /2 block access.
Moreover, if the wanted attribute is not unique the number of search block accesses becomes
N . Now a simple sort on the requested attribute can profit from binary search of log2N block
accesses. Additionally, if the data is sorted, all searched value instances can be found by simply
moving forward the sort order until the first different attribute value found. Indexing, as a
sorting method, brings the advantage of having sorted access based on record attribute values.
Therefore the performance increase is substantial. One main issue of index, is that it takes a
physical storage space.

However, in the proposed solution of the integration architecture, the indexing based model
will be targeted on usage of structured metadata stored at a dedicated storage, thus making this
downside relatively harmless.

Indexing will also become an important optimization technique for searching the distributed
heterogeneous data that has been integrated by the discussed architecture. Please refer to section
4.2.1 for details.

In the integrated environment with the complex metadata, the speed up of the searching
based on the indexed attribute, makes indexes application desirable for the integration data
model. This is why the key-value approach determines how each single part of the integration
schema will be covered (see section 3.3 and Appendix A for details).

Now the unique key values in the key-value approach of the presented architecture play the
role of a best record id, and at the same time – the values of the table forward index. This is due
to the fact that each concept is going to have its unambiguous key, but what is more, all of the
concepts (attribute / cell, tuple, record) that belong to the same record must share its key – i.e.
the best record ID (BRI) playing the role of forward index.

For instance, let us assume that one record attribute is stored in three different replicas, that
additionally involve different fragmentation patterns (Figure 3.4). Now, trying to reach for all
replicas would require reaching for the key index value of the attribute record, to retrieve the first
replica, but additionally, also it would be enough to investigate the attribute metadata, and to
access remaining replicas concepts, due to attribute embedded reference type. This would enable
direct access to selective fragmentation pattern contents of potentially vertically fragmented
incomplete (i.e. missing some attributes) records. Additionally, it eliminates the need of storing
the key reference for each store that holds only tuple (with the requested attribute) instead of
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Figure 3.4: Key, as an index, allows access only to complete record representation. Accessing
single attribute/tuple replicas only from within the complete record replicas.

complete record. However, it imposes one condition. For each record key, there must be at least
one complete record representation regarding vertical fragmentation patterns. See Figure 3.4.

Additionally, due to separate key identification policy for each conceptual domain – i.e. the
keys for entity, record, attribute, tuple, replica or fragmentation component – it also becomes
simple and efficient to distinguish between the nature of the concept referred by the key.

3.3 The Architecture

There are two compelling reasons for using the CQRS pattern for the proposed architecture.
First of all, an enterprise-class application in modern software reality is mostly composed of
multiple layers like: UI code, REST / SOAP service for client calls, transformations from DTOs,
validation, business logic, repositories, data access, DAOs etc. While this is of course good for its
layered model and required by the command part of system interactions, it might be considered
superfluous for the query operations. Therefore, in terms of integration architecture based on
read access, it is most reasonable to provide some separations that will involve the CQRS concept
within particular bounding contexts.

Additionally, what is important is that for the auditing sake, it would also be desired to
consider equipping the CQRS with an Event Sourcing mechanism.

3.3.1 Principia – Assumptions and Directions

As described in Chapter 2 integration has many faces and flavours. Therefore, to expand the
topic architecture the author has provided some rules of thumb and assumptions. The presented
approach faces the following integration challenges:

• Providing a central point of reference for transparent access to the data persisted at many
sources.

• The integrated data sources can potentially be distributed.
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• Each data integrated from the data source is expected to be served by different storage
engine (database provider).

• Data at the integrated sources can have different data schemas from each other and from
the single-point-of-reference integration / global schema

• Each data source can use an arbitrary data model for local data (i.e. relational, object-
relational, object, nosql etc.)

The proposed architecture has also made some integration assumptions and decisions:

• Use a well known, structural model of communication (i.e. XML, JSON, etc.)

• Used technologies must be simple and lightweight.

• Provide client-server peer communication rather than central integration hub (less com-
plex central computations, target data does not play any part in the integration process)

• Use main, central metadata repository as a single-point-of-reference for the integrated
data.

• Use the central metadata integration repository only for the data "addressing" purposes.

Despite its flexibility and versatility, the generic proposal of the architecture is not aimed for
distributed processing, nor data mining. Namely this dissertation considers out-of-scope issues,
such as:

• transactions or distributed transactions,

• SQL query processing and optimizations,

• inter-table relationships (only one virtual entity is considered),

• data source vendor / model dependent mechanisms,

• contributory to global (integration) schema strict mapping rules

The above aspects, while not elaborated, however, can become a target for future research 25 .
In general the architecture works in a Data-Store-as-a-Service (DSaaS) model that treats each
of the integrated data sources as a service. Thus the goals of the solution and main targets take
their origin from this model. Those can be presented as in the following list.

• Do not interfere with the legacy data source storing / querying methods and optimizations,
as it tends to be best suited for its particular nature already by its vendor.

• Legacy data source is stable, well known and accustomed by its local users, and does not
require new knowledge learning.

• One service interface should poses all information about physical storage particularities
of the target data

• Aim at data integration, not the database integration.

• Integrate not all available data, meaning integrate only those data that are required by the
general integration schema. That is regardless of the local schema, data model vendor, etc.

• Use native queries while reaching the target data at local data stores.

25 In Chapter 4 one can find one example of query optimization technique with the use of the proposed architec-
ture.
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Bounded Context Based Caononical Messaging Model for Data Integration and Unification.
Most of the industry solutions for the enterprise class data modelling tend to create one common
and ubiquitous conceptual model. To express the fundamental requirement for integration
model one must assure that the model must be internally consistent in terms of unification (see
Definition 3.8).

DEFINITION 3.8: Unification

The model internal consistency is referred to as unification if the model contains concepts
with the same meaning across the domain, and there are no contradictory rules

As a consequence the model is meaningless unless it is logically consistent. The straightforward
consequence might be to create one common domain model that would cover all aspects. This,
however, tends to be only an idealistic solution, since the integration of heterogeneous systems
is too complex to maintain such a monolithic, and complicated model.

An alternative approach is represented by the presented solution. Here each data source
would have its context suited model residing at each data source side. Of course, each context
must be structured and unified while bounded to the specific data source environment. Some-
times different contexts can cover the same parts of the domain in a different way that is typical
of local data source, but this is irrelevant at the level of each data source. In the case of the
proposed architecture, the only factor for drawing boundaries between different data source
bounding contexts would be purely based on their heterogeneous nature. This is due to the
usage of messaging, that enables canonical integration at the level of mediation across all data
source nodes. These contexts in terms of DDD are referred to as a Bounded Contexts.

Moreover, as for the Domain Driven Design (DDD) it is claimed that:

“ We need ways of keeping crucial parts of the model tightly unified. None of this
happens by itself or through good intentions. It only happens through conscious
design decisions and institution of specific processes.
Total unification of the domain model for a large system will not be feasible or cost-
effective.

– Eric Evans on Maintaining Model Integrity in Strategic Design (see [158, p. 235]) ”
As a consequence, in the proposed solution the design establishes possibility for multiple

models on multiple heterogeneous sites to reside, while integrated at the level of higher, integra-
tion layers. This is also an obvious advantage of the proposed messaging-based architecture over
other integration solutions based on common or shared database approach. The messaging
enables to forget about areas that would have to be unified – between the central repository and
local data sources – in other case. Therefore, one could use:

• couple canonical models instead of forcing one at the integrated sides / nodes

• models that overlap (describe the same terms from the integration-domain semantic area
with the data source particular approach 26 ) at the stage of integration

• many models with translation at the mediating abstraction layer where model overlapping
might occur across multiple data sources

• models that cover only selected parts of data characteristics fundamental to integration

• live data source registering procedures rather than static connections made in advance

26 For instance, the unique record id at local data source in the relational model would mean the primary key, but
in the object model it would be the object id or a key value in the key-value store, etc. In that way the author refers to
those terms as polysemic.
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• simple canonical model for hub based n connections instead of p2p n2 connection burden

With such approach the integration architecture is broken down into smaller modelling sub-
classes that can be simpler to manage and adopt.

???

Most of the modern state of the art solutions that approach this class of problems require
homogeneous integrated environment from the vendor’s point of view or at least the same
data schema on all integrated data sources. Even if there is a set of tools that can overcome
these limitations they tend to be strictly vendor-oriented or closed-source, thus obfuscated and
undisclosed for the end user for understanding or extension. In contrast to this existing solution,
the advantage of the proposed solution is its maximized flexibility, extension-openness and
independence.

3.3.2 Components of the Architecture

For the analytical purpose one can accept the top-down approach as the one to make the design
decisions. However, as for the implementation part, the bottom-up strategy tends to be less error
prone, as some detailed issues that have not been foreseen at the design stage may arise. In such
case, the top-down approach would require additional iteration of already created upper part of
the design, generating efficiency drop.

In the following sections, the author has described the solution components in a bottom-up
fashion.

3.3.2.1 Mediation Layer

While considering the architectural design in a layered model the data access layer would be the
bottom-most one. Its goal is to provide an interface at each data source site, for communication
with the rest of the integrated environment. It also provides local bounded context translation
for higher, integration layers in the form of mediator.

The general principle for each data source, prior to be registered within the integration
central-point-of-reference, is to conform to the common communication protocol. This protocol
would be unified across the integrated environment. The system architecture component that is
going to provide such interface and service at the legacy data source site, would be the mediator.
The mediator as a component of the architecture has a significant role in communication. It
is used for connecting the data source to the main metadata repository, registers its available
data and provides access methods for local data to the central global integration schema. The
mediator also translates between the local bounded context and the global messaging scheme.

Since the implementation of each mediator itself is component based, it consists of the
mediator communication component, local data source access wrapper and the adapter. In
the proposed approach, the adapter is responsible for covering the particular local source
characteristics. It would have to cover the data access layer techniques. For instance, in the
context of relational model, the object-relational mapping could take part in connecting to the
data source. In the area of NoSQL this could be as well, the low level JDBC driver. While the
nature of the data is moved to the programming language model by adapter 27 the wrapper
would have to provide the business logic. It would have to involve the set of operations that
would have to be enabled on the local data. Thus, on one hand, wrapper would have to be aware
of the adapter functionalities, but on the other hand, it would have to serve as an interface 28 for
the mediator requests.

27 In the case of relational paradigm this will cover the impedance-mismatch. In NoSQL it would simply focus on
providing the raw data transfer objects (DTOs).

28 More in a data access object (DAO) fashion.
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Figure 3.5: Mediation component layer model.

Finally, the mediator – as a top-most local layer – would have to provide service interface to
the underlying local data already covered by wrapper and adapter. The services would have to
cover the approved general communication scheme in the integrated grid.

The structural character of the metadata, describing each of the stored entity particularity,
fits well for storing the metadata from multiple data sources in a document store such as e.g.
MongoDB. To justify the usage of the document store, for storing a complete set of metadata
about the local data – or as it will be referred to contributory views – one has to be aware of
what kind of information is going to be covered with it. The contribution of each integrated data
source, is formulated by its dedicated mediator. The output of the mediator is a raw, metadata
description of what is made available for access from within the integration architecture. Thus,
such metadata view of each legacy data source being integrated must cover the local resource’s
data schema. On the other hand, the model of the metadata must be elastic enough to represent
universal schema that can later become part of the global integration view unambiguously,
regardless of what data source model it originates from. The author proposes to use a well
known semantics based on the relational terms of contributory schema and contributory table,
or shortly C_SCHEMA and C_TABLE respectively. In such case, for each covered model, there is a
need for semantic interpretation of what will the C_SCHEMA/C_TABLE tandem mean in the case
of models other than relational.
For example, for the sources accessed with JDBC driver the C_SCHEMA would become a database
schema as defined by JDBC, while the C_TABLE would represent any tabular structures such
as table, view, etc. In the case of integrating some NoSQL solutions like MongoDB, the simple
mapping would be the MongoDB database – as a physical container for collections – to be
the C_SCHEMA, while the collection would be mapped as the C_TABLE. Despite the fact that
in MongoDB, one collection holds documents that are not obliged to enforce a schema and thus,
can have different fields, typically all documents in a collection have a similar or related purpose
according to the convention of namespace 29 .

For the purpose of multi-model contributory view schema, an extended semantic mapping
has been proposed and accustomed – see Section A.1 for details and examples.

Additionally, the raw schema metadata is not the only thing that is being passed from
mediators as a contributory view. Contributory view also contains detailed retrieval information
for each particular C_SCHEMA/C_TABLE contained within the metadata. This information would
be represented in the form of native, Fast Access Methods (FAMs). FAM will refer to a model
specific, native query that can retrieve every single schema element based on the fastest-possible-
way available at the certain data source. For instance, for the relational model FAM would be a
SQL selection query based on the primary key values.

29 I.e. databaseA.collectionA.collectionB would be considered as databaseA as a C_SCHEMA and the
collectionA.collectionB as a C_TABLE.
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Listing 3.7: SQL based FAM selection

1 SELECT ∗
2 FROM p r o d u c t s
3 WHERE pk BETWEEN 1 AND 1 0 0 0 ;

This is due to using index in the form of primary key in the relational model which is the fastest
possible way of reaching the data represented in the relational model. Since the functionality
provided by primary key in the relational model in other models differ e.g. object id in the object
model, _id field, row key for Cassandra, id_property for Neo4j etc., in the discussed architecture
this concept will be commonly referred to as a best record id (BRI).

The choice of the document model is a consequence of a postulate from Chapter 2 (State-
ment 1) to choose the data model based on the target data nature. Here, the document store
model reflects and expresses the features of structured nature, that are considered crucial to
represent the target data, which in this case is a deeply structured metadata. Additionally, within
the metadata, the mediators embed the local native access methods used later by client for
target data retrieval.

Metamodel of Contributory View Each integrated resource would have to get its own mediator
that fit its data model. The mediator would have to be configured to connect and access the data
source. Therefore, each mediator prior to initialization needs to get configuration details for
particular data source – namely the connection details, user / password, target database, load
metrics etc. Then each mediator initiates metadata collecting procedure, that is data source
specific. For example, in the case of relational model, one can use one of the ORM solutions
– such as Hibernate – to investigate the database schema and to intercept native queries that
would be the FAMs used for getting each table content. As a result the contributory view would
have conform the schema represented in the form of regular (non-optimized) connection details
structure in Listing 3.8.

Listing 3.8: Contributory View metadata schema. Some parts omitted for readability

1 REGULARCONNECTIONDETAIL {
2 [ . . . ]
3

4 typedef enum NATIVEFASTACCESSMETHOD {
5 PK, OID , _ID , CompositeKey [ , . . . ]
6 } ;
7 NATIVEBRI {
8 NativeFastAccessMethod nFAM_f ; // f l a g f o r fam i e PK f o r

RDBMS o r OID f o r ODB
9 sequence<string> b r i ;

10 } ;
11

12 FAM {
13 sequence<NativeBRI> nBRI ;
14 string accessMethod ; // q u e r y f o r RDBMS
15 } :
16

17 OBJECTBODY {
18 [ . . . ]
19 FAM accessMethod ;
20 sequence<string> a t t r i b u t e s ;
21 } ;
22

23 DETAILS {
24 string host ;
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25 unsigned short po r t ;
26 CommunicationConf protocolSpec ;
27 ObjectBody ob jec t ;
28 [ . . . ]
29 } ;
30 } ;

Due to already mentioned similarities (discussed in section 3.2.5.1) between the topical archi-
tecture and CORBA IMR concept, all of the listings description will use the IDL-like 30 language,
which is also used by OMG to describe the CORBA standard.

The connection details – apart from some host/port networking data addressing, protocol
specification and some other communication configuration options, discussed later – contain
the ObjectBody that is responsible for storing detailed information about each conceptual
element of a contributory view metamodel. As already mentioned the architecture will be based
on concept-oriented model (COM). The concepts of entity, record, tuple, attribute etc., will be
expressed using this model right from the lowest layer of legacy data source data representation.
Therefore each concept of legacy data is described in detail, using the ObjectBody structure.
When referring to the concept of entity, the ObjectBody field contains a list of its attributes rep-
resented by a sequence of strings, and a FAM. FAM is described here with a string representation
of native query, ready to be committed towards the data source to retrieve the described entity,
and the BRI sequence of best record identifiers for the selected records out of the requested
table. Additionally, just to identify what kind of BRI is served according to the legacy data source
the NativeFastAccessMethod enumerates type used for embeding such information.

Even though Listing 3.8 does not contain complete functionality required by the architecture,
it clarifies how the requested legacy data model concepts can be represented, and how the
contributory view will store its description in the unified across the integration architecture
form.

The connection details information is formatted as described in the listing, and is further
delivered to the central-point-of-reference, integration layer by mediator in the form of contrib-
utory view.

3.3.2.2 Integration Layer

The mediation layer role is to bring data interactions to a higher logical level where the local data
source particularities do not have to be taken under consideration. The integration layer goal
however, is to provide some canonical messaging infrastructure for virtual Integration Views 31

, and a central-point-of-reference for the client data requests. The integration layer is able to
communicate with all of the registered mediators in the integrated grid. In general it has three
major tasks to complete.

• Collect and gather complete metadata about each of the mediator-registered data sources,
and store it in the form of Contributory Views – one per integrated data source

• Enable to build Integration View (a.k.a global view) out of the picked, arbitrary Contribu-
tory Views. 32

• Provide the possibility to apply transparent access optimization techniques 33 for Integra-
tion Views.

30 Some syntactical parts such as struct or module keywords have been omitted in the Listing 3.8 for the sake of
readability. One can refer to fully IDL compatible version in Appendix A.1.1

31 Which will be discussed in detail in section 3.3.3.
32 Integration Views represent the abstract schema that is available for client data requests.
33 See Chapter 4 for three examples of optimizations.
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Thus, the basic functionality of the layer is to integrate and prepare the dedicated Integration
View(s) that later will become indirectly (through Interface Layer) subjected by the client requests
towards the integration architecture. Since the integration layer has to store legacy, integrated
data source schemas (i.e. Contributory View), and virtual arbitrary global schema (i.e. Integration
View) to make them available for client calls, both real and virtual schemas might be represented
with different persistence approach. The target virtual, integration view details will be elaborated
more in the following Qboid paragraph. As for the contributory views, in the simplest case, it
would be stored in a document based model (see section 2.3.5.2) – e.g. MongoDB instance – due
to its structural nature.

Integration View – Challenging the Distribution Issues with the Qboid Since the document
model and its implementation in the form of document store proved to be suitable for handling
the Contributory Views, it is straightforward that the generic implementation – for ease of
cooperation – can employ the same model which will be well suited for the Integration View. This
is due to the fact that the Integration View stores a virtual, global schema that is primarily based
on the metadata originating from the Contributory Views. Despite the fact that the document
model tends to be a simple and clear solution for the contributory view, the integration view
has to implement and express a more complex schema, and thus requires a more extensive
approach. The complexity of Integration View originates in need for representing all distribution
particularities of the virtually integrated target data. To face such challenge, the author has
devises a solution based on a dedicated design for data representation. This design is focused
around the concept of a Qboid.

The Qboid role is to provide:

• a fastener, for faster joining integrated data sources to the global data integration view,

• platform for virtually integrating data from the underlying resources in a common manner,

• and the design concepts, and mechanisms that can handle the distribution issues and
particularities.

As an intuition of Qboid is responsible for covering the distribution issues such as fragmentation
patterns and replications, the author has discovered that those three main aspects could be easily
represented in the form of a conceptual 3D cuboidal shape. This form will become scaffolded
by organizing the fragmentation patterns and the replication in three dimensions – similarly to
how the OLAP cube is built out of data dimensions.
When we place vertical and horizontal fragmentations and replication characteristics as a three
perpendicular axis we can get the 3D frame of reference that will be used as a scaffold for existing
combinations of those three aspects of integrated data. This representation of Qboid is entity-
oriented (C_TABLE), meaning that the Qboid is essentially an emanation of data that belongs
to one virtual integration view’s entity, based on selected C_TABLEs. As described in Figure 3.6,
each part of the Qboid schema that represents a separate part of fragmentation or a replication
pattern, is represented and marked by the separate interoperable Database Object Reference
(DOR) object. The role of each DOR, is to contain all important ContactDetails regarding the
data that it represents. All data particularities, network location, connection methods, local data
privileges and different contact profiles are included within.
This way in the concept-oriented model (COM) each concept becomes represented by a multiple
DORs that would cover all particularities.
Along the Concept module, the most basic structure would be the AccessObject structure.

Listing 3.9: Remote Database Object Reference (rDOR)

1 module CONCEPT{
2

3 typedef enum INTEGRATIONV IEWCONTEXT {
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Figure 3.6: DRUM – Database Resource Universal Map

4 ENTITY , RECORD, TUPLE, ATTRIBUTE [ , . . . ]
5 } ;
6 typedef unsigned long GlobalBRI ;
7

8 struct ACCESSOBJECT {
9 string repo_ID ;

10 In tegra t ionV iewContex t iv_Ctx ;
11 sequence<GlobalBRI> gBRI ; // o n l y f o r c omp l e t e ENTITY

o r RECORD
12 sequence<Qboid : : rDOR> p r o f i l e s ;
13 sequence<AccessObject> iv_Rep l i cas ;
14 } ;
15

16 struct INTEGREATIONV IEW {
17 string i v_ ID ;
18 sequence<AccessObject> concept_AccessObject ;
19 } ;
20 } ;
21

22 module QBOID {
23

24 typedef enum SOURCEID {
25 SELF, POSTGRES, MS_SQL, MYSQL, ORACLE_11G, MONGO_DB
26 } ;
27 typedef unsigned long DOR_ID ;
28

29 struct RDOR {
30 DOR_Id dorID ;
31 boolean vert_Fragm ;
32 SourceID src_ID ;
33 sequence<Contac tDe ta i l s : : Connec t ionPro f i l e> object_Refs ;
34 } ;
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35 } ;

The access object would be storing the repo_id field which would contain the data source
repository id of the data described by particular remote DOR (rDOR). The repo_id value would
also be used to express the vertical fragmentation of the described data in the global integration
context 34 . The iv_Ctx enum, self explanatory values describes how should the target data be
considered in terms of the integration perspective. The third field is a sequence of rDORs. Each
rDOR, here refers to the nature of the DOR-described data storage method at the data source,
and how it has been configured for access. The last field of the access object stores reference to
potential replicas of the current access object.

As for the Qboid, it is mainly focused on covering the distributed and local data particularities.
Its main content is the rDOR that covers type of the data source, network profiling or integrity
check rules as well as potential vertical fragmentation and native fast access methods (FAMs).
For detailed example see Appendix A.1.1.

Two Contexts of Integration The contact details provide an entire spectrum of access and
optimization methods for each concept represented by DORs. However, to identify a concept
(or a DOR), which is unique within the Integration View (or the Qboid process), a dedicated
identification mechanism must be supported. This is due to the fact that along the integration
process we deal with two bounded contexts.
The first one is the context of Integration View focused around the virtual integration schema. It
covers each entity (table) concept and its content, in the form of collection of BRI-based record
conceptual representations. The Integration View context uses DORs to cover all issues caused
by the fragmentation and / or replication characteristics of each concept. Thus each concept
reference to a set of DORs that are thought to represent this concept. This way the concept
becomes the context’s basic work unit and is responsible for having a unique identity that is
unrelated towards the contained DOR’s ids. In other words, DORs in Integration View context
are building blocks for each concept.
The second is the Qboid technical context that is focused on representing all data that is to
be integrated within the architecture. Thus each piece of data is represented by a single DOR.
However, in the context of Qboid – where each DOR object can contain multiple DOR sub-
objects 35 – a set of DORs (even in the case of describing the same Integration View concept)
must be discriminated between each other with its own DOR id. This is due to the fact that
the Integration View context is based on the concepts of tables, records, replicas, tuples etc.,
all constructed out of DOR objects (see Figure 3.7) and identified by the BRI. Therefore, while
considering the Qboid context one has to deal with a set of DORs that are referenced between
each other, while no BRI equivalent. In other words, despite the fact that particular BRI can refer
to the DOR, the BRI is not a discriminating factor in the context of Qboid as many DORs can be
referenced by the same BRI. Thus to obtain the goal of DOR unique identification in the context
of Qboid, DOR ought to be equipped with its unique dorID.

One can relate to Qboid, as to a materialized meta-perspective (describing all of the inte-
grated data with metadata), and the Integration View as an aggregated virtual meta-perspective
(as a Qboid-based metadata view of the integrated data).

Covering Replication with Contexts One has also to discriminate between the replication
terminology semantics in terms of both contexts. Integration View consider replica to be a

34 E.g. in the case when the integrated, virtual record consists of many elements (vertical fragmentation) its
repo_id will hold VIRTUAL value that would tag the structure as a container for all record attributes or tuples.

35 For example, in context of Qboid, one can imagine two DORs representing the same record (case of replication),
or a DOR containing two sub-DORs that cover complete set of record attributes (case of record vertical fragmentation).
Those DORs can become part of Integration View context as a whole but also might participate in the Integration
View only partially with their sub-DORs.
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Figure 3.7: Integration View context uses Qboid DOR context, however both remain separate
contexts. Distinct DORs with id: 001,002,003 describe the same set of attributes while sharing
the same BRI

set of different (in terms of Qboid context – different DOR ids) DORs that describe the same
concept 36 (e.g. two DORs describing BRI_1’s, A attribute), while in terms of Qboid, replica
simply means replication of DOR that possibly is stored within different sources. This way the
Qboid replication responds more to the native, physical data replication rather than Integration
View-based replication by virtual schema definition 37 .

???

Let us now elaborate more on the ContactDetails and ConnectionDetails mentioned
in Listings 3.8,3.9. Both pieces of information become an integral part of the rDOR structure,
providing a single rDOR id key with multiple addressing details. They also provide the technical
connection details for the dedicated optimization methods that require different connection
schemes.

Listing 3.10: Contact and Connection Details of a rDOR

1 module CONTACTDETAILS {
2

3 typedef enum PROFILE ID {
4 REGULAR, OPTI_INDEX , OPTI_OrderDependency , OPTI_MODEL [ , . . . ]
5 } ;
6

36 For instance if one considers the concept of record, it has a common BRI. The records replication would thus
mean that two or more DORs describe the same attribute(s) of this record. Each flowing DOR, describing (already
described by another DOR) attribute, would be considered as a part of a new, separate replica.

37 In other words, if we integrate two data sources, one of which had been created due to replication of other one –
e.g. for recovery reasons (thus, it shares the data, scheme, etc.) – prior for the integration process, this replication will
be covered by the Qboid context. If the data is represented in two independent stores with different store models,
which can also involve different schemas, it is the Integration View that would be responsible for covering such
replication pattern.
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7 struct CONNECTIONPROFILE {
8 P r o f i l e I D p r o f i l e ;
9 sequence<binary> connect ionDeta i lData ;

10 } ;
11 } ;
12

13 module REGULARCONNECTIONDETAIL {
14 [ . . . ]
15

16 struct DETAILS {
17 string host ;
18 unsigned short po r t ;
19 CommunicationConf protocolSpec ;
20 ObjectBody ob jec t ;
21 sequence<AccessDeta i ls> objectView ;
22 } ;
23 } ;

The ConnectionProfile, within the ContactDetails, contains the serialized binary data.
This binary data is tagged by the profile field. The value of the ProfileID field will tell
the system how the connectionData should be interpreted. Depending to what value the
profile field is assigned, the connection details define the layout and the retrieval method
of the referenced data. In a regular case the connection details are limited to host / port
addressing tandem followed by networking configuration that can e.g. state the replicated DOR
instances for load-balancing or fault tolerance purposes. Such a tagged profile approach enables
the use of different contact policies defined by dedicated access optimization techniques.

Optimization Future Proofing This approach of specifying location and connection par-
ticularities provides some optimization future proofing. This is due to the fact that the first,
profile field of the ConnectionProfile, relates to a way of accessing the data represented
by the rDOR. When accessing the data in the "regular" i.e. no optimization involved way, the
ProfileID would have to store the adequate value of REGULAR and point adequate (i.e. the
regular connection detail) connection details sequence. In the case of a regular query, this would
mean a simple data retrieval, based on what retrieval FAM method is being stated within FAM
struct. On the other hand, while defining DOR that would be responsible for accessing the
data with a dedicated optimization technique 38 , one would have to extend the ProfileID
enumerated type with adequate value or use the already defined ones. Respectively, an addi-
tional new connection details definition – in the case of a new profile value – would have to be
devised. The sequence of a binary represented connectionDetailData means that each DOR
can have several sets of connection details. Each set, could later be used for accessing particular
(described by DOR) data with one of the optimized ways, or the regular one.

In each data storing model, discussed in Chapter 2, the fastest way of accessing model basic
chunk of data – regardless if it is a record, document, value, node etc. – was to use a kind of
primary index – the best record id (BRI). BRI is also going to play a significant role in the design
of Qboid and specifically the DORs. However, each BRI can not be recalled as a direct copy of
the legacy data record BRI. It has to provide and maintain data records order in the represented
virtual perspective that plays the role of the integration view context. It is also important because
BRIs from different sources are not going to be forced to share common id scheme. This way the
native BRI can be unique long value formed at one data source, while at the other it can be a set
of attribute values that states the primary key, or a document ID – depending on the local model.
To fulfil this requirement, BRI would have to be represented in a complex way, differentiating
the native BRI from the global BRI, as depict in Listing 3.11.

38 See Chapter 4 for detailed discussion on exemplary optimization techniques.
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Listing 3.11: Virtual, BRI-based data identification strategy

1 CONCEPT{
2 [ . . . ]
3 typedef unsigned long GlobalBRI ;
4 [ . . . ]
5 } ;
6

7 REGULARCONNECTIONDETAIL {
8 [ . . . ]
9 typedef enum NATIVEFASTACCESSMETHOD {

10 PK, OID , _ID , CompositeKey [ , . . . ]
11 } ;
12 NATIVEBRI {
13 NativeFastAccessMethod nFAM_f ; // f l a g f o r fam i e PK f o r

RDBMS o r OID f o r ODB
14 sequence<string> b r i ;
15 } ;
16

17 FAM {
18 sequence<NativeBRI> nBRI ;
19 string accessMethod ; // q u e r y f o r RDBMS
20 } :
21 OBJECTBODY {
22 [ . . . ]
23 FAM accessMethod ;
24 [ . . . ]
25 } ;
26

27 DETAILS {
28 [ . . . ]
29 ObjectBody ob jec t ;
30 [ . . . ]
31 } ;
32 } ;

To assure regular and unified data access, in general each connection detail should conform
to the schema described with the example of RegularConnectionDetail. For complete listing
of the metadata representing the Qboid and Integration View contexts representation see the
Listing A.4.

Layered Planar Representation of Fragmentation Patterns A straightforward way of rep-
resenting even the most complex fragmentation pattern is with a two dimensional matrix of
building blocks. Those building blocks are record groups and single records – in terms of hori-
zontal fragmentation – and the tuples and attributes in terms of vertical fragmentation. To build
the cuboidal shape first one needs to provide a 2D matrix that can become the face of the Qboid.
This matix would have to represent the complete – in terms of record definition of attributes –
entity schema (see Figure 3.8(a)). This entity will be further represented by Qboid.

While considering replications one can imagine that the fragmentation pattern of this matrix
is just one of many possible. Therefore if there would be additional replication of any of the
entities schema part (like record, tuple attribute, group of records etc.) the additional matrix
would have to be provided for representing this fact. Of course, each of the matrices can have
a different fragmentation pattern and thus might be built on a puzzle basis according to the
integration view designer intention and needs. That way a pile of matrices begins to form a
cuboidal shape – namely the Qboid.
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(a) Single complete Qboid entity definition mixed frag-
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(b) Multiple complete Qboid entity definition mixed frag-
mentation pattern.

Figure 3.8: Complete Qboid entity definition covering single and multiple mixed fragmentation
patterns.

Along this thesis each separate matrix representing the particular formula for completing
the entity definition will be referred to as the layer. At the integration level, the complete layer
representing the entity schema, is enough to answer any client call towards this entity, regardless
of what particular records are requested, as long as they are part of the entity.

Slice the Dice – Representation of Replication The vertical representation of planar layers
is responsible for covering the fragmentation patterns. However, Qboid is based on multiple
layers representing the same entity. Since all layers share common schema (i.e. the entity defini-
tion) the Qboid can have numerous layers. However, each layer consists not only of physical
fragmentation pattern elements, but conceptually it represents the concepts of the schema.
Hence one has to be able to reach not only every replication fragment but also a complete
schema element in the form of record, tuple or even a single attribute. For this purpose, as
already mentioned, a global BRI has been introduced. The global BRI plays the role of a primary
key that is however, independent of the fragmentation pattern, nor a local data particularities,
including data’s local BRI. This way one can combine corresponding records across the multiple
layers without any prior preprocessing of the data local BRI. This is especially important due
to the fact that the legacy data stores – whose data representation is partially being combined
into the Qboid representation – are not forced to comply to any global schema. Therefore in this
dissertation all records that share the common global BRI are referred to as a slice.
To visualize the intuition of the Qboid concept of a slice one should refer to Figure 3.9. This
detailed description of each plain and slice is possible due to the BRI-based key-value definitions.
The proposed model enables covering all kinds of fragmentations and replications in an arbitrary
pattern, while preserving their unambiguous identification and access methods. The access
methods are based on fast native querying methods supplied during each data source registra-
tion procedure from its mediator layer. This way every target data materialization procedure
would not require live mediation and the query could be committed with the use of the low level
database drivers.

The Integration View Context Building Blocks As mentioned in the previous section the
construction of data structures in Qboid is based on the definitions. Let us consider the scheme
for defining the data structures. The entire solution is going to be based on the key-value pairs
to identify each part of data. The key would be the unambiguous (in adequate domain) ID of the
object and the value would be varied depending on the actual type of the Qboid element. The
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Figure 3.9: Slice represents all records that share common global BRI

description of this model will proceed from the most detailed pieces of the integration schema
to the most general.

For the purpose of such solution there is a need to introduce the most basic structure repre-
senting the simplest piece of information in a global scheme – the attribute or a cell. Assuming
the key-value pair approach the cell definition would have to consist of its unambiguous ID (in
the domain of all the cells stored in the same record) and the data storing value (i.e. the way of
accessing the cell or to be precise its reference) – rDOR.

Listing 3.12: Exemplary Cell Definition

1 c e l l {
2 key : "name" ;
3 value : rDOR_John
4 }

Next, in the structural order, there would be the tuple. It consists of a key name and the value,
that is a map, containing an unlimited number of cells. In other word we could call it SuperCell.

Listing 3.13: Exemplary Tuple Definition

1 t up l e {
2 key : " emailAddress " ;
3 value : {
4 user : {key : " user " ; value : rDOR_john30 } ,
5 domain : {key : " domain " ; value : rDOR_example_com }
6 }
7 }
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To understand the reason for distinguishing between the cell and tuple we need to remember
that these resources can be fragmented vertically. Therefore accessing a tuple may represent not
only a logical entity but also a fragmentation pattern.

Following the structural design next level of complication stage would be a record.

Listing 3.14: Exemplary Record Definition

1 record {
2 key : "12" ; // g l o b a l BRI
3 value : {
4 name : {key : "name" ; value : rDOR_john ) } , // name c e l l
5 emailAddress : { // t u p l e named " em a i l A d d r e s s "
6 key : " emailAddress " ;
7 value : {
8 user : {key : " user " ; value : rDOR_john30 } ,
9 domain : {key : " domain " ; value : rDOR_example_com }

10 }
11 } ,
12 age : { key : " age " ; value : rDOR_30} // age c e l l
13 }
14 }

Record will include explicitly a very important piece of information i.e. global BRI as its key
value. The local BRI information is present in the implicit form in the DOR structure of cell or
tuple. Record could be composed of cells or tuples however, all sharing the common BRI. By
sharing the BRI, each cell/tuple would be classified as a component of the record. In this way all
the cells/tuples in each record can be addressed owing to the same BRI. The value of the record
is the sequence of cells /tuples. For less complex notation the cell/tuple names can be removed
to form a pure key/value pair and replace the rDOR notation with the simple dummy reference
providing the appropriate DOR object value for adequate BRI value (see Listing 3.15 for another
example).

Listing 3.15: Exemplary Record Definition

1 13: { // BRI v a l u e
2 name : rDOR_DB1_13_name ,
3 emailAddress : { user : rDOR_DB2_13_user , domain : rDOR_DB3_13_domain } ,
4 age : rDOR_DB1_13_age
5 }

Let us consider the exemplary DOR. The name DOR can assure the FAM for accessing all names
in e.g. DB1 using the native query. At this stage to address the appropriate record we must add
WHERE operator defining the right BRI (i.e. the primary key in this case). In consequence, the
DOR called here rDOR_DB1_13_name would include a query in the following (see also Listing
3.7) form:

Listing 3.16: SQL based FAM selection

1 SELECT name
2 FROM Emp
3 WHERE PK = 1 3 ;

The three already mentioned elements of the data model however, will be referred only as the
elements of a basic global scheme entity i.e. the layer. Layer is a view of a DB table content,
composed of the distributed resources that registered their rDORs in central-point-of-reference.
Layer is also key/value scheme dependent. As it is a container for records, it can be exemplified
in the simplified notation as follows:
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Listing 3.17: Qboid Layer

1 Users : { // l a y e r k e y
2 1 . . 1 2 : { // r e c o r d s k e y s
3 rDOR_DB1 // SELECT ∗ FROM Emp ;
4 } ,
5 13: { // v e r t i c a l l y f r a gm e n t e d

r e c o r d k e y
6 name : rDOR_DB1_13_name , //SELECT ∗ FROM Emp WHERE PK=13
7 emailAddress : { user : rDOR_DB2_13_user , domain : rDOR_DB3_13_domain } ,
8 age : rDOR_DB1_13_age
9 } ,

10 . . .
11 }

By dint of the tuple idea, it became possible to overcome the vertical record fragmentation.
However, in this way each remote cell / tuple / record from a DB server would have to be fetched
by sending a single query per each. Therefore for instance requesting for four tuples from a
remote server would cause need for sending and evaluating four simple queries one per each PK.
Sending many simple queries could lead to major inefficiency along with increasing number
of tuples per DOR. This problem could be solved by sending one query able to fetch all the
requested records from one server at a time. However, this issue must be considered at the stage
of Qboid design and should be a subject for carefull consideration by the designer.

Up to now the dedicated structures have simply considered the need for distributed hetero-
geneous integration. However, one last remaining issue has not been addressed yet in terms
of data model i.e. the replication. To overcome the problem of replication we propose the idea
of Slice. Qboid represents the definition of an entity, whereas the slice provides the definition
of its records replications (see Figure 3.9). Each Qboid has to include at least one layer. Let us
continue to exemplify the Qboid as the most general structure. Its key would be the name of
a particular distributed entity resource Integration View. The value is represented as a map of
layers. The layers, especially those representing the replications do not have to be complete in
terms of their key definitions.

Listing 3.18: Qboid replica

1 Users : { // q b o i d k e y
2 Users : { // l a y e r k e y ; l a y e r 1
3 1 . . 1 2 : { // r e c o r d k e y s a t node DB1
4 rDOR_DB1 // SELECT ∗ FROM Emp ;
5 } ,
6 13: { // v e r t i c a l l y f r a gm e n t e d row key
7 name : rDOR_DB1_13_name ,
8 emailAddress : { user : rDOR_DB2_13_user ,

domain : rDOR_DB3_13_domain } ,
9 age : rDOR_DB1_13_age

10 } ,
11 . . .
12 } ,
13 Users : { . . . // l a y e r k e y ; L a y e r 2
14 }
15 . . .
16 }

Moreover, to add the record replication information in the form of slice this structure needs to
be enhanced with the additional DORs for the replicated data. This will be possible by simply
placing a list of DORs representing particular data instead of single Database Object Reference.



138 CHAPTER 3. THE MODEL OF THE ARCHITECTURE

Therefore assuming that the first 12 BRIs from the above example have four different, but data
equivalent locations – those records can be represented as follows:

Listing 3.19: Qboid replication

1 Users : { // q o b i d k e y
2 Users : { // l a y e r k e y ; L a y e r 1
3 1 . . 1 2 : { // r e c o r d s k e y s a t node DB1
4 rDOR_DB1, rDOR_DB12, rDOR_DB7, rDOR_DB9
5 } ,
6 . . .
7 }

The selection of particular DOR can be based on numerous criteria like the first encountered,
access or load balancing rules. This way each DOR based part of a snapshot can be accessed by
using any of the DOR’s replicas.
To express the database scheme in terms of Qboid the next level of integration can be introduced
i.e. the Keyspace. The Keyspace would be then a container for Qboids representing the database
scheme just as the Qboid is a container for all of the presented building blocks.

3.3.2.3 Interface Layer

The topmost layer in the integration architecture is the interfacing layer. It is responsible for
direct client interactions. It involves client request handling by providing clients with the list
of available integration views and accepting client integration-view-based calls for target data.
Each response to client’s request is preluded by data harvesting based on FAMs embedded
within the Qboid based integration view metadata. Each metadata describing the data requested
by the client contains a FAM that is committed toward the adequate legacy data source. The
results are then being joined with use of global BRIs, also available owing to the metadata model.

In the case of unique queries this tends to be reasonable. However, in the case of queries
that require large amounts of data to be collected and BRI-joined, or while the queries tend
to repeat, the client interfacing adapter contains its local persistent cache that stores these
particular query result sets. In that case if a client requests a data with a query that the result
set has already been cached and persisted will be served with the cached result. Indeed such
behaviour is inconsistency friendly due to the fact that the cache can store data that is outdated
regarding the data from the legacy data sources. For this purpose there are two solutions.
The first is to simply commit a periodical update query that would refresh the cache content.
This would, however, bring additional overhead to the system and cause unexpected inefficiency
during the update periods, that could slow down other client calls. Additionally, it would have to
lock every client request towards the cache content that is being refreshed. Therefore another
solution has been provided.
At the stage of data modelling for the integration view each ObjectBody (a part of ContactDetails)
contains a hash value. This hash value role is to check any changes that took place towards
the data. The hash function can be custom, however, it always must consider the values of the
data. In such case the data refreshing of the cached data, would first check if the calculated
hashes of the data at the cache (Adapter) and at the local data source (Mediator) site are the
same. Therefore the cache update procedure would only be commenced while the caches do
not match. But even then, the update will deal only with the site whose hashes do not match
those stored in the cached resource. This makes the refresh procedure work only on the hash
mismatch and only for particular site data that has changed which makes it more effective and
provides less system burden.

This way the refresh procedure is going to be committed in a lazy manner, and not as an
eager periodical request.
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Employing Patterns for Interface Layer The way the Adapter is going to handle a client re-
quest is a very important part of the architecture. This is mainly due to the fact that the inte-
gration architecture goal is to serve as a central-point-of-reference for big data sources, whose
integration in the other way would be too expensive (millions and billions of dollars), or too
complex, or even dangerous due to fragile or confidential data. While the Mediator and Qboid
provide multi layered access policy, by configuring the access rights, it is also important for the
client calls to work in a close to an in-time, or even live responsive manner. Achieving these two
main aspects is considered. The first is how the data is going to be collected, which is the adapter
back-end responsibility (based on FAM joining), the second – how the client calls are handled.
Decoupling of the client request handling from adapter, is crucial due to the fact that each
architecture appliance must be carefully designed and configured. Thus employing the strategy
pattern for the front-end of the adapter allows to collect the data for client requests and respond
with the use of independent architectural patterns. In case of tens of thousands (and even more)
client requests the already mentioned patterns (see section 3.2.7) such as reactor, proactor,
access object, etc. – would have to be used carefully depending on the integration architecture
specific requirements and conditions considering the thread awareness, data retrieval duration
etc.

3.3.3 Workflow

For complete understanding of the integration architecture, let us now follow its workflow.

As already discussed, the first step for each data source to be considered by central integra-
tion instance of Qboid, is to have a dedicated mediator instance. Additionally, each mediator
prior to the function as a part of the architecture is thought to be registered. The registration
process involves not only the network addressing information delivery of a data source, but also
must equip the Qboid instance with Contributory View metadata (including FAMs). The local
data source metadata generation rules are configured as a part of the mediator initialization
procedure. The registration at Qboid site is focused around persisting the contributory view
metadata for further utilization.

Having each source providing its contributory view, the Qboid designer can further design
the global virtual integration schema – based on a set of registered contributory views – that will
later be considered as a target for client calls. This integration views schema is independent of
the legacy contributory views data and is virtually constructed only out of their parts. This way
the integration view is also transparent regarding the legacy, contributory views.

A complete workflow is depicted in Figure 3.10.

Architecture client calls are assumed to be subjected towards an interface layer dedicated
service in the form of an Adapter. The adapter service is responsible mainly for storing a full
list of available integration views 39 . Each client call would require prior knowledge of what
integration views are made available by Qboid. This way client may request particular integration
view part by simply calling the adapter service API. Next the adapter is expected to untangle
the FAM strings from the metadata information about the requested resource. Adapter then,
sends the FAMs using the most lightweight and low level drivers towards each target data source.
This way we assure that the querying process is maximally lightweight at each legacy site. The
adapter awaits for each queried site to return its queries result set, and joins them using the
global BRI acquired from the Qboid metadata prior to querying. This way the adapter stores the
entire materialized integration view that is further sent to the requesting client as a response.

A more detailed UML sequence diagram of how the client call is processed is present in Figure
3.11 This figure considers also the usage of a heterogeneous index for distributed resources, that
can be also defined using the integration view and can bring the optimization gains in pretty

39 Also indexes. This will be elaborated more in Chapter 4.
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much the same way as the regular index does to the local database, but for distributed and
heterogeneous data. This topic will be elaborated more in section 4.2.2 of the next chapter.

3.4 Faced Challenges

The process of integration distributed and heterogeneous data is a very challenging and complex
problem. Throughout this chapter the presented solution has approached the most significant
and at the same time challenging issues. The author presented an architecture that provides
schema enabling the construction of the global schema that considers the data source wrapping.
Owing to the layered mediator architecture, the architecture is also able to process the new
source metadata by mapping between the sources and global schema based on the prior design
and configuration. The communication schema based on the careful design of the monolithic
schema enables providing means for expressing limitations in the mechanisms for accessing
sources. Data extraction, cleaning, and reconciliation to the global schema can be done from
the administrative level by carefully designed global, integration schema. Due to the simple
mechanism – based on the hash function for each part of the global schema – it is possible also
to configure the architecture to handle and process updates that can be propagated from the
local to global schema. This way, a query expressed in terms of the global schema is reformulated
in terms of (a set of) queries over the sources. The complete answer is prepared according to
the partial sub-query results. The computed sub-queries are shipped to the sources, and the
collected results are then assembled into the final response. The complex query plan guarantees
completeness of the obtained responses.

The read-only nature of the proposed solution had to be assumed due to the enormous
amount of complexity dealing with potential transaction handling that is out of the scope of this
dissertation. However, the author believes that with a reasonable amount of time and resources,
the architecture might also become write-only ready.

The global schema is modelled in a way that enables to map between the sources and the
global integration view with the use of metadata. The architecture also provides a lightweight
and low level means to answer queries expressed on the global schema with the use of native
FAMs. Additionally the architecture future proofing goal was achieved by enabling a way for
optimizing query answering with the profile approach in the introduced schema.

The topical architecture has also answered the problems of global schema modelling, data
model, constraints, access limitations and provide data values representation regardless of
schema or domain mismatches.

The provided functionality, however, is not automatic and must be a subject for very careful
consideration prior to the function in an effective and desired way. As data modelling in the
aspect of data integration is an art, it must also consider some future proofing and anticipate
issues such as system load and networking and /or hardware limitations.
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4
AApppplliiccaattiioonnss

“Perfection is achieved, not when there is nothing left to add, but when there is nothing
left to remove."

— Antoine de Saint-Exupery

4.1 Integration

The topical integration architecture that is being discussed along the thesis is mainly aimed at
providing an effective scaffold schema for building universal methods for accessing and / or
gathering data from distributed and heterogeneous data sources. As it has already been discussed
in the previous chapters it is not a trivial task. To overcome even the most basic integration
issues, it is a must to concern and provide some complicated and extensive approaches and
solutions.

As already mentioned in section 2.2.4 there are numerous patterns and mechanisms that
have already emerged since the early beginning of the computer era. The mediation based, or
federated solutions are both well known solutions since 80s of the twentieth century. Some other
approaches have also emerged from the centralised to federated and distributed p2p approach.
However, all those solutions had one common feature – they were all developed for past reality of
low bandwidth internet connections and drastically smaller data. Modern, "big data-oriented"
nature of the stored information however, requires more elastic and scalable solutions such as
the architecture presented in this dissertation. Extensive possible applications for the topical
solution require some in-depth discussion.

While all the features of the integration architecture have already been discussed in the previ-
ous chapter, a compare-and-contrast to the most recent research is essential to fully understand
the current requirements and needs that other scientific teams have considered important to
work on.

In the author’s point of view, modern technologies must move forward from the 1990’s
situation – when enterprise used the data warehouses to combine polyseme stores – forward.
During the last twenty years the DW and ETL tools were used for facilitating data extraction,
transformation and loading. Customers were introduced to the data collected from multiple
data sources with the use of data warehouses. However the important – integration – part had to
involve multiple stages. Thus each execution includes:

• Extract – the parsing of the data source structure

• Transform – provide and apply transformation rules for common schema

• Clean – assure schema compliance

• Integrate – provide common schema

• De-duplicate – eliminate information redundancy

143
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In modern enterprise appliances this process is very complex and expensive but also undoubt-
edly, a must. The data that were prepared in this way – while at the time of execution containing
all requested, cleaned and extracted information – it loses many temporarily irrelevant informa-
tion that soon might become important, but at the time of this execution dropped, due to not
being requested. Therefore during each execution, much of the information is irreversibly lost,
and thus requires an entire procedure to be repeated with the additional changes that consider
new requirements in the case the dropped information occurs to be relevant in near future. For
instance, collection data about employees might consider their ID numbers and full names
while only the IDs are requested. Thus the full name information is then doped. One can easily
imagine the situation that once the ID information is used, soon the full name information
becomes the one that will be requested, but then the entire data collecting procedure must be
repeated. This generates costs and it is time consuming.

The reason for data warehouses had been popular since the early 90s of the twentieth century
is simple. Each time the data curation 1 from multiple sources is considered, almost always it
requires data extraction, transformation and cleaning. This is mainly due to the fact that the
data is completely independent and requires to be harvested for the requested information
and transformed into the unified scheme. This procedure causes the non-requested data to
be dropped. As an outcome, one obtains the clean information in the data warehouse. Later
however, there is no point to return such information into the data source that it originally
comes from, as it is already available in the data warehouse. What is more, the information
after the data transformation becomes incompatible with the data source and thus would
require reverse transformation. Finally, in most cases, cleaning and de-duplicating of the data
makes it incomplete in terms of local data sources and thus, makes it impossible for reverse
transformation.
This way the market for data warehouses is considered to be a billion dollar one, as it ties up
every client to it.

However, the author believes that this situation will change in the nearest future. This is
due to two main reasons. First of all, as already discussed in Chapter 2, the nature of the data
changes from strictly structured, to the data that also contains the semi-structured data, time
series, text data etc. In general, it is the data storing nature that must change and thus, the data
requests would also become more, and more unstructured. The structured data tends to become
the minority compared to the text, streams, JSON, etc. This is due to the fact that more aspects
of life involve data storage. This, on the other hand, often forces to work with unstructured
real time data. This is especially important in the areas of military, aviation or medicine where
not only the data is important, but also the time that it arrives. A great example of modern
application of a heterogeneous system might be the Mimic II. It was made for intensive care unit
(ICU) that requires close monitoring, and as a result, a large volume of multi-parameter data is
collected continuously [174]. There is an open access to historical data collected from the ICUs
of Beth Israel Deaconess Medical Center from 2001 to 2008 and represents 26,870 adult hospital
admissions (version 2.6). The system stores clinical data such as:

• typical structured data in the form of patients metadata like patient demographics, in-
travenous medication drip rates, and laboratory test results that were organized into a
relational database (Postgres)

• semi-structured data – containing the prescription information

• text data – medical personnel notes (Accumulo [175])

• historical waveform data – the physiological waveforms, including 125 Hz signals recorded
at bedside and corresponding to vital signs, stored in an open-source format (using SciDB
for archived time series [176] )

1 In terms of management activities required to maintain data for long-term, in a way that information becomes
available for reuse and preservation.
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• real time data – non-historical, time series from the bedside monitoring devices (S-Store
[177])

While this data is possible to fit the data warehouse solution, however as mentioned in Statement
1 there is no such thing as a universal model for all types of data, or as stated in [178] "one size
fit all" dream. It is no longer applicable to the database market. Every time the the data nature
must be confronted with the storage model that suits its storage best. Each model advantages
are only effective towards a particular type of data, and thus must be used with extra caution
considering the data nature.

This is where the integration architecture comes in. The number of data types and data stor-
age engines is extensive. Thus solutions that would store numerous types of data would require
the system administrator and users extensive knowledge of all disparate query languages. This
situation is undesirable due to the high expert knowledge requirement, as well as numerous high
error prone use cases. That is the spot where, and the reason why the architecture should replace
the human user. For this purpose, one could consider one of the existing federated databases
2 . Even though the federated DBMSs work as a middleware over legacy DBMSs and provide
effective interface for heterogeneous schemas, currently only the parallel DBMSs – which are
limited to a single DBMS with partitioned, potentially replicated tables and a single schema –
tend to be widespread in the enterprise.
This dissertation presents the third option. The proposed solution covers the best of the federa-
tions while eliminating their burden and overheads, and thus according to the author’s research
and opinion seems perfect for the job. As already elaborated in section 2.2.4 the problem with
federations is that single failure of a component can cause an issue just in the same manner as a
single point of failure in centralized architectures. What is more, the efficiency and latency of
the federation is as good as its slowest component. The p2p nature of federation additionally
brings the network connection burden and mapping processing. With dynamic mapping this
becomes even more complicated.

However, the architecture presented in this dissertation, tends to take the best from the
federated databases as the unified API, multiple kind of possible used data stores or lower client
application complexity. Additionally, the Qboid central point-of-reference architecture provides
possibilities for a single-, or multi-node distributed (e.g. Hadoop ecosystem implementation or
Apache Accumulo [175]) implementation. What is more, it does not require complex distributed
mapping sharing, as the network load is limited to schema transfer and updates while the
transferred data is limited to pure metadata. Finally, the target data is reached only in a lazy
manner which is more by native and low level usage of lightweight dedicated data sources
drivers.

The most recent research (July 2015) that accomplishes similar tasks is the Intel Science and
Technology Center for Big Data – BigDWAG project [21, 179].

4.1.1 Polystores as the Next-gen Federations vs Qboid-based Architecture for
BigData Integration

From the performance point of view it is always a better choice to pick RDBMS for the structured
data, Neo4J for highly correlated networking data, real time data into a stream processing
engine, historical archives into an array engine or text into Lucene [180] engine or JSON into
semi-structured NoSQL storages. This gives the final user the best performance-oriented grid.
However, for effective usage of such an environment an abstract communication layer must be
devised.

The introduced integration architecture goal is to provide such kind of functionality that can
serve as a single-point-of-reference towards the legacy data sources it integrates. Additionally, it

2 Such as the R*, Ingres*, Garlic, IBM’s Information Integrator, etc.
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provides the data model and location transparency. One can compare the topical architecture
of this dissertation to the BigDWAG project. BigDWAG provides the abstraction – so called
island of information – consisting of query language, data model, and that translates the global
functionalities into the local data source dialect. The same way as the introduced architecture,
the BigDWAG also assures the location transparency, and provides the same results for each
query regardless of the data location. In contrast to Qboid based architecture however, each
new local dialect requires separate island. Each data source can belong to many islands, just
the same way as multiple Qboids can utilize the same data source within completely different
integration schemas. On the other hand, the BigDWAG parses each query to AST, slices it into
subqueries and involves each subquery translation towards the target data source query dialect
(with the use of dedicated shim). Later the query execution is orchestrated along query engines
and accumulates the results. Every "live" query manipulation in a real time system brings some
overhead. In this case it brings some danger at the level of subquery generation and in the case
of real time might cause latency due to badly optimized subquery, or too complicated syntax.
The Qboid-based architecture advantage here is that each query is pre-computed and stored
awaiting for execution towards the target data source. Additional prior testing might also be
commenced in order to generate query profiling. Of course, this does not allow dynamic query
manipulation, but in the case of careful query generation at the design stage it might bring a
reliable and more efficient solution at cost of live query manipulation.

Both models allow comfortable usage of multiple query languages. Moreover, despite the
fact of postulated semantic completeness [21] 3 in BigDWAG triggers, user-defined functions, and
multiple notions of null are invariably considered system-specific and thus each island is forced
to degenerate these functionalities. This is quite a disadvantage because such design does not
permit to take full advantage of the local optimizers in the back ends query engines. Referring to
Qboid, it cover neither transactions nor local capabilities at the Qboid central level, however
this is due to the assumption that the stored queries already contain the detailed user-defined
functions, adequate notions of null etc. that are specific to the local storage engine. This way
one does not give up local DBMS functionality, while on the other hand leaving all back end
processing to the local query engine.

The Qboid base architecture query processing is straightforward and does not provide
additional "shim" processing, as in the case of BigDWAG polystores federation. Each query
stored within Qboid is ready to be used in as-is basis with its target address details. While in the
case of BigDWAG one has to provide additional casting expressing when an object should be
accessed with a given set of semantics. This means simply that a relational query result to be
joined with a NoSQL query would have to be a cast to the relational or NoSQL model. In Qboid
the only factor is the BRI and Qboid definition that makes the results set in their correct place
of the integration schema. The BigDWAG presents the syntactical approach that requires the
client to express explicitly what kind of response model is expected. For example, in the query
from Listing 4.1, client states that the query will execute in a relational scope in the federation,
regardless of the actual data store model.

Listing 4.1: BigDWAG selection

1 RELATIONAL ( SELECT ∗
2 FROM R , CAST ( A , r e l a t i o n )
3 WHERE R . v = A . v
4 ) ;

With Qboid such query would be executed as a result of a REST call procedure triggering a ready
to be used, and persisted query that can be committed towards the adequate data source. That

3 I.e. no loss of capabilities provided by underlying storage engines by adding them to architecture e.g. polystore
or qboid.
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way Qboid does not require additional syntax, nor prior user knowledge of the data storing
engine particularities, and thus provides the heterogeneity transparency.

As a conclusion one should be aware, that the Qboid is not a federated class solution and
therefore it is not forced for inter-node mappings nor shimming 4 . Moreover, it is a less com-
plicated and mature project than the BigDWAG. Qboid is only a small, one-person project that
obviously lacks the maturity and experience of Intel-supported BigDWAG project, involving
such an esteem, respectable, and the well known leading database scientists such as Association
for Computing Machinery’s (ACM) A.M. Turing Award winner Prof. Michael Stonebraker. Both
projects have been compared only on some basic functionality levels that aimed at showing the
most modern and alike approaches for data integration. The Qboid class project cannot aspire
or even be approached on even basis to BigDWAG due to their distinct nature, level of advanced
problems considerations, or sophisticated solutions.

This way Qboid tends to support trend of the future data integration solutions that have be-
come a topic for serious and extensive research from the largest enterprise parties (i.e. Intel) and
leading database scientists and designers teams from mostly pioneering research institutions
including MIT, Brown University etc.

4.2 Optimization

The traditional query optimizations are not able to support the distributed and heterogeneous
environment of Qboid-based architecture. This is mainly due to their design and nature. There
are several reasons why the classical approach will not fit this architecture. Let us mention, some
of the most significant issues:

• The cost-based optimizers – each operation model must be maintained by the planner for
the purpose of estimating the resource demand [27]. In the case of Qboid architecture it
would mean that the global optimizer would have to understand the notion of each local
operation across all integrated storage engines.

• Primitives semantics – Qboid does not provide semantics for understanding the nature of
stored native query. The metadata content is required for describing the query purpose
and nature. For instance matrix multiplications might be implemented as a grouping by
aggregation – in the relational model whereas a distributed array store would use a set of
scatter-gather operations for reaching the same goal. Accommodating such mismatch
becomes a complex and non-trivial task.

• Considering a new data store – The optimizer would have to consider new circumstances,
every time a new data store is "plugged" into the Qboid integrated architecture

The Qboid as an instance that holds only the query strings and their potential metadata might,
however, store some additional information for optimization purposes. As already discussed
in section 3.3.2.2 (namely the optimization future proofing paragraph), the Qboid metamodel
is future proofed towards optimization purposes. Local storage engines may not provide such
metadata, however, this is the part of the mediator to provide more sophisticated metadata-
based knowledge from individual local sites. More details would depend on what optimization
technique the local source data will participate in.

The local optimizer is not involved as far as the architecture is considered. It is assumed that
the local optimizer can handle local query the way better than any other outer optimizer.

Apart from integration goal Qboid has also proven to be an effective and useful tool for apply-
ing various optimization techniques. Below the author discuss three examples of heterogeneous
optimizations that are data model independent, or use the data model for optimization gains.

4 Islands are like mediators that allow spanning over multiple models with shims – i.e. model-to-model transla-
tors.
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4.2.1 Indexing Distributed and Heterogeneous Data

As already mentioned in sections 3.2.9, 3.3.2.1, 3.3.3 and also considered in Figures 3.4,3.10,
the Qboid architecture in a straightforward manner might be considered as index oriented.
As a matter of fact, the Qboid might be referenced to as a referential index for distributed,
heterogeneous data location and retrieval.

In section 3.2.9 the key-value indexing nature was elaborated however, the optimization
by indexing moves one step forward. This is mainly due to the fact that storing the BRIs, as
key values, might become useful for reaching all the specified rDORs that conform to some
projection (contain requested attribute values) or selection (acknowledge detailed selection
conditions).

Inverted Index If an index book analogy is that for each keyword we get a list of referenced
page number, then in the case of inverted index not only keywords are considered, but all words
become keys.

Since indexing is the main workhorse for search engines they tend to enable the multiple
5 index pages scans. However, with this degree of magnitude it is not affordable for queries to
compare each document in a one-by-one fashion because it would simply not scale for millions
of queries being compared against billions of documents.

Indexes, is what makes search engines fast, and inverted indexes are used by virtually every
search engine 6 . Due to high utilization of inverted index, search engines do not use RDBMS.
This is caused by their specialized data structure and many specific optimizations.

A general principle behind the regular inverted index is mapping the key values to their
location in files, documents or document collections. In the proposed architecture the idea is to
store index that would map the values to a particular set of DORs that would be responsible for
storing adequate records to the key value.

Since each concept of the integration schema can be accessed with a specified key, the key
will also represent all instances that have been referred to it during the integration schema
design stage. This is especially important when querying for data that is related to a particular
concept.

4.2.2 Indexing Projections

Let us assume a scenario that, based on the Qboid architecture, one needs to reach all values
of the salary from integrated Employee. This would have to result in a set of values for salary
originating from all registered storage engines that have been put into the global Employee’s
schema design.

After receiving client request for creating a dense index on Employee according to its salary,
a set of rDORs would be selected from the Employee’s Qboid plain. Next they will be transformed
into the index containing rDORs with the information about salary of each employee. Once the
set of Emp instances storing salary information is known, each instance is investigated (owing
to its particular FAM) for (BRI, salary) tuples. The collected information is now available as set of
triplets (rDOR, BRI, salary). These results combined into one, three-column table will constitute
an intermediary structure next transformed into the form of index.
In this particular case the index, where the salary is the key value, would have five rDOR ref-
erence values of DB2_DOR21, DB4_DOR42, DB6_DOR63, DB7_DOR74, and DB2_DPR25. There-
fore the following fragmentation pattern will be created:

5 Google scale of 20 billion of index pages
6 Effectively finding all occurrences of a word in a document was the task that made Google start the MapReduce

research.
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EmployeeEmployee

NameName AgeAge SalarySalaryBRIBRI

BD1_DOR11 DB2_DOR21

DB3_DOR32 DB4_DOR42

DB5_DOR53 DB6_DOR63

DB7_DOR74

DB1_DOR15 DB2_DOR25

(a) Single, complete Qboid entity definition mixed frag-
mentation pattern

EmployeeEmployee

NameName AgeAge SalarySalaryBRIBRI

DB2_DOR21DB1_DOR11

DB3_DOR32
DB4_DOR42

DB5_DOR53 DB6_DOR63

DB7_DOR74

DB1_DOR15 DB2_DOR25

(b) Multiple, complete Qboid entity definition mixed frag-
mentation pattern based index

Figure 4.1: Complete Qboid entity definition based index

Listing 4.2: Index on Employee’s salary

1 <"EmpIntegrationView", // IntegrationView−−ID
2 < "VIRTUAL", RECORD,
3 < 0001 >
4 < >
5 < "DB1:HR:Empl", TUPLE,
6 < 0001 >
7 < 0x0011, True, MYSQL >
8 < // DOR DETAILS
9 >

10 >
11 < "DB2:HumanResources:Empl", ATTRIBUTE,
12 < 0001 >
13 < 0x0021, True, POSTGRES >
14 < // DOR DETAILS
15 >
16 >
17 >
18 < "VIRTUAL", RECORD,
19 < 0002 >
20 < >
21 < "DB3:Workers:Empl", TUPLE,
22 < 0002 >
23 < 0x0032, True, MYSQL >
24 < // DOR DETAILS
25 >
26 >
27 < "DB4:HumanResources:Empl", ATTRIBUTE,
28 < 0002 >
29 < 0x0042, True, POSTGRES >
30 < // DOR DETAILS
31 >
32 >
33 >
34 < // third record with BRI = 3; alike record #0002
35 ...
36 >
37 < // fourth , complete record
38 ...
39 >
40 < "DB7:Pracownicy :Osoby", RECORD,
41 < 0004 >
42 < 0x0074, False, SELF,
43 // DOR DETAILS
44 >
45 >
46 < // fifth record ; alike the record #0001
47 ...
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48 >
49 >

What is left now is to group, distinct and sort those triplets by salary 7 . So the exemplary result
reverse dense index would be as depicted in Listing 4.3

Listing 4.3: Index on Employee’s salary

1 <idxEmpSalary, (
2 <1000, ( //the list of emp with salary = 1000
3 <BRI=0001, ref_to_DOR#0x0011, ref_to_DOR#0x0021 >,
4 <BRI=0005, ref_to_DOR#0x0015, ref_to_DOR#0x0025 >
5 ...
6 )>,
7 <1500, (
8 <BRI=0003, ref_to_DOR#0x0053, ref_to_DOR#0x0063 >,
9 <BRI=0004, ref_to_DOR#0x0074 >,

10 ...
11 >,
12 ...
13 )>

Having such inverted index will not only enable fast data access, but also direct access to the
target storage engines.

Referring to Figure 3.10, and especially Figure 3.11 we have already placed there the cache
instance. This is due to the fact that index, as an instance that potentially can be often used,
might get persisted at the adapter interface site. This can be done in a lightweight and fast
access NoSQL storage engine. Moreover, it can be placed as an in-memory store for faster access.
This way the materialized index view of the requested data, can be effectively retrieved by the
following index requests depending on the request and / or optimization policy-dependent
configurations.

4.2.3 Exploiting Order Dependencies Optimization Technique for Qboid-based
Integration Architecture

Qboid has also proven its usefulness for optimization techniques, that are not explicitly asso-
ciated with its architectural design, as it took place with indexing. One of the most interesting
techniques, that is being developed as a research project by IBM, Inc., on one of DB2’s closed
source experimental branches [181], is the order dependency based optimization.

4.2.3.1 Order Dependency Technique

The optimisation methods that exploit functional dependencies have already been known
for decades.These methods are based on the fact of existence of injectivity property of the
dependency function. What is important, is that if the domain of such a function is ordered, the
function itself can preserve this order (i.e. is monotonic). This dependency was discovered and
researched in [182–184].

It was noted that in the case of some specific columns – like dates – might define the
monotonic function of an artificial primary key. In [182] the authors developed a simple method
based on this observation. Its test proved an query execution increase in effectiveness of 20-50%.
The remaining [181, 183, 184] papers abstract, so-called order dependencies, and present their
proof theory similar to Armstrong’s axioms. The promising result and enterprise attempts of IBM
confirms the real value of this technique that soon might become part of master DB2 branch.

However IBM as a company focuses only on the DB2 codebase. Users of other DBMSs can
not access them. Therefore the author has implemented similar optimisation mechanisms
outside a specific database system with the use of Qboid integration architecture. We will use

7 Here a MapReduce implementation is what could be used when considering large data volumes.
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the Qboid architecture middleware mostly the same way the BigDWAG authors use theirs to
manipulate the AST trees. However, the amount of computation targeted towards the query is
minimal as it is limited only to query substitution (re-writing) based on configuration parameter
(i.e. the ProfileID type) present in the global schema.

Order Dependency by Example Let us now show the motivating optimization potential and
the value of order dependencies. We will discuss an exemplary schema depicted in Figure 4.2.
If one considers a query for all sales within a time period, it could be stated as in the following

Facts

Customers

* Fact_ID
fDate

customer_ID

product_ID

aggreg_V* Customer_ID

customer_Name

customer_Addr

Products

* Product_ID

product_Name

......

...
aggreg_Q

1 1

n

n

Figure 4.2: Exemplary database schema

Listing 4.4.

Listing 4.4: A query for sales in the indicated period

1 SELECT customer_Name , SUM ( a g g r e g _ V ) , SUM ( aggreg_Q )
2 FROM F a c t s JOIN C u s t o m e r s USING ( c u s t o m e r _ I D )
3 WHERE f D a t e BETWEEN ’ 2008−12−13 ’ AND ’ 2008−12−15 ’
4 GROUP BY c u s t o m e r _ I D , cus tomer_Name
5 ;

One assumption is that the fDate column has no index. In such case the 4.4 query will require
a full Fact table scan. Since the Fact_ID column of the Fact table is its primary key, thus all
remaining columns functionally depend on it. In the case of the f_Date column the dependency
function states as follows:

d : I N T → D AT E

Implementation of an artificial primary key might be based on a sequence generator. In this
particular scenario we can assume that the facts on sales from a particular day are recorded after
all sales from the previous day. Thus, assuring that d : I N T → D AT E is non-descending.
For the particular query from Listing 4.4 we can assume that:

xmin = min{x;d(x) = ’2008-12-13’}

xmax = max{x;d(x) = ’2008-12-15’}

and therefore, this query might become re-written to the equivalent query from Listing 4.5
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Listing 4.5: A rewritten query for sales in the indicated period

1 SELECT customer_Name , SUM ( a g g r e g _ V ) , SUM ( aggreg_Q )
2 FROM F a c t s JOIN C u s t o m e r s USING ( c u s t o m e r _ I D )
3 WHERE F a c t _ I D BETWEEN xm in AND xmax
4 GROUP BY c u s t o m e r _ I D , cus tomer_Name
5 ;

The rewriting is based on the change in the WHERE clause.
This way the query from Listing 4.5 will utilize the range index on a primary key. This simple fact
will make this query a much more time effective for execution than the pre-rewritten version.
The assured monotonicity of the d function enables efficient computation of the xmin and xmax
values, with the use of a well known binary search. The time overhead provided by the binary
search, as proven in the following section, is notably smaller than the time saved by executing
the optimized version of the example query. These observations have led to a rewrite algorithm
that implements the idea presented above.

Order Dependencies Theory Assume a table T with its primary key P and remaining attributes
{A1, . . . , An}. Since P is the primary key of T there exists functions f1, . . . , fn such that each tuple
(p, a1, ..., an) of the table T can be expressed as (p, f1(p), . . . , fn(p)). The existence of the functions
f1, . . . , fn validate the functional dependencies of the columns A1, . . . , An on the primary key P .

Assume that the domains of the columns P and Ai for a given i ∈ {1,2, . . . ,n} are linearly
ordered sets. The functional dependency between P and Ai will be called an order dependency,
if the function fi is monotonic 8.

Such dependencies were initially called monotonic dependencies [182]. However, later in-
ventors changed the name to order dependencies. The motivating example from the previous
paragraph is based on such a dependency between the primary key Fact_ID and the column
fDate.

4.2.3.2 Testing Order Dependency with Qboid Integration Architecture

The goal of the algorithm is to replace range conditions on the non-indexed columns to corre-
sponding range search on usually indexed primary key. The algorithm is aware of the schema,
and the order dependencies.

The tested solution can handle two types of queries: select-project-join, and the grouping-
aggregating queries. It means that some general scaffold of the query would look as depicted in
Listing 4.6

Listing 4.6: Query general schema

1 SELECT . . .
2 FROM T JOIN T1 ON ( T . f 1 k = T1 . pk )
3 JOIN T2 ON ( T . f 2 k = T2 . pk )
4 . . .
5 WHERE T . A i BETWEEN a1 AND a2
6 GROUP BY . . .
7 ;

The WHERE clauses can also contain equalities and inequalities. In such case they are converted
to atomic BETWEEN-based formula with the use of the same data type. The WHERE T.Ai =a
selection is being converted to WHERE T.Ai BETWEEN a AND a.

As the first step, the algorithm identifies the fact table. Next it analyses the conditions in the
JOIN ... ON clauses. The fact table connects other tables by foreign keys, while its primary key

8 fi is either increasing, non-increasing, non-decreasing, or decreasing.
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is not connected by any other foreign key. In a query from Listing 4.6 the fact table is denoted by
T .
In the cases including strings of foreign-primary key dependencies (e.g. the snowflake schema),
the algorithm will also work. However, in the case of cycled dependencies, the algorithm will
stop processing and return the original query without any further changes.

In the second step, the algorithm is required to check:

• if the WHERE clause references to a column of the identified fact table, and

• if this column has order dependency towards primary key

The third step involves pmin, pmax values search, in the case the fi is non-decreasing:

pmin= min{p; fi (p) = a1}, pmax= max{p; fi (p) = a2} (4.1)

In the cases when fi is non-increasing, analogously the algorithm will compute the pmin and
pmax values as follows:

pmin= min{p; fi (p) = a2}, pmax= max{p; fi (p) = a1} (4.2)

Finally, the algorithm concludes replacing the WHERE with:

WHERE T.P BETWEEN pmin AND pmax

As already mentioned, since the function fi is monotonic, the computation of pmin and pmax
can be computed efficiently, e.g. using the binary search.

Implementation Characteristics The algorithm uses the Qboid as a middleware thus, the
optimization takes place outside the target database system. The computation of pmin and pmax
that satisfy conditions from (4.1) and (4.2) can be done in at least two ways. Both are based on
the binary search.

In the first, a simple case is to send a series of queries in the course of the binary search.
Its advantage is its inherent simplicity and the lack of any additional database object required.
However, it causes numerous communication roundtrips with the database systems and thus,
results in the additional system overhead.

Secondly, we can install appropriate stored procedures on the database side. This scenario is
the one that has been accepted for implementing the binary search. When the optimizer on the
Qboid middleware site is informed on the order dependency between the primary key and the
column fDate, it will generate and install two stored functions. One of them shown in Listing
4.7 finds minimal Fact_ID for a given date.

Listing 4.7: PLSQL function that finds minimal Fact_ID for a given date

1 CREATE OR REPLACE FUNCTION g e t _ m i n _ f i n d _ b y _ d a t e (
2 DF DATE
3 ) RETURNS i n t e g e r AS $$
4 DECLARE
5 F INTEGER ;
6 Z INTEGER ;
7 S INTEGER ;
8 D DATE ;
9 BEGIN

10 SELECT MAX ( F a c t _ I D ) INTO Z FROM F a c t s ;
11 S = 1 ;
12 WHILE S<Z LOOP
13 S=S * 2 ;
14 END LOOP ;
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15 F=S ;
16 WHILE S>1 LOOP
17 S=S / 2 ;
18 SELECT d a t e i n t o D f rom f a c t s where F a c t _ I D = F − S ;
19 I F D>= DF THEN
20 F=F − S ;
21 END I F ;
22

23 END LOOP ;
24 RETURN F ;
25 END ;
26 $$ LANGUAGE p l p g s q l

An analogous function get_max_fid_by_date(DATE) that computes maximal Fact_ID is also
needed. For the sake of readability the author have removed error handling code from the func-
tion get..._fid_by_date(DATE). Potential errors might be caused by gaps in the numbering
stored in the column Fact_ID.

Using the function from Listing 4.7 (and its twin get_max...), the optimizer will first is-
sue queries for the corresponding margin values of Fact_ID. Then, it will put the collected
parameters as values of bind variables in the modified query.

Unified Data Access Interface As already depicted in Figures 3.10 and 3.11, the client request-
ing calls towards the Qboid-based architecture is handled by the adapter instance from the
interface, top layer. In the testing scenario the REST API has been used. The construct of the
client REST API includes non optimized and optimized version of the query.

The client request will use the REST API to define whether the query response i.e. the result
set, is going to be processed using a non optimized version of the query, or an optimized one.
The author have prepared four implementations for data access layers. Two of them - using
JdbcTemplate and SimpleJdbcCall – are Spring Framework [185] based, and the third is a
pure JDBC connection. The final method gets the pmin and pmax hard coded. This is to compare
the time of pmin and pmax retrieval and overhead that is brought by each of the three remaining
methods.

The REST API is designed as follows. To retrieve unoptimized query answer the request url
should like this:

http://localhost:8080/DIAS/rest/dbs/facts/2008-01-01:2008-01-02

Now, to request an optimized query depending on the query commuting mechanism the url
would change to:

http://localhost:8080/DIAS/rest/dbs/facts/2008-01-01:2008-01-02/opti/X

Where X stands for the query commit method number. The X values were assigned as
follows:

1. Spring simpleJdbcCall (stored functions)

2. Spring JDBCTemplate call statement (stored functions)

3. pure JDBC connection (stored functions)

4. Spring JdbcTemplate with (sub-queries rewrite)

5. hard coded pmin, pmax values

This way one can test each of the target optimization methods, in a simple and straightforward
manner. The results are presented in the folllwowing paragraph.

http://localhost:8080/DIAS/rest/dbs/facts/2008-01-01:2008-01-02
http://localhost:8080/DIAS/rest/dbs/facts/2008-01-01:2008-01-02/opti/X
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Order Dependency Tests Results with Qboid-based Architecture It is required first to intro-
duce the testing environment. The tests have been performed using the following hardware:

Table 4.1: Hardware configuration used for tests.

CPU Intel Core i7-3612QM CPU @ 2.10 GHz x 8
RAM 15,6 GiB
Disk SAMSUNG SSD PM830 2.5" 7mm 512GB
OS Ubunty 14.04 LTS
Kernel 3.13.0-30-generic
Arch. x86_64 GNU/Linux

The procedure was to measure response times for the REST client calls for optimized and
unoptimized queries. This means that the test client called REST API that has used optimized or
non-optimized query underneath, for the result set retrieval.

The tests have been performed using the software stated in Table 4.2:

Table 4.2: Software used in the testing process.

Java java version 1.7_60
Java(TM) SE Runtime Environment (build 1.7.0_60-b19)
Java HotSpot(TM) 64-Bit Server VM (build 24.60-b09, mixed mode)

REST Testing Client ApacheBench, Version 2.3
Http Server Apache Tomcat/6.0.29

Additionally, test cases assumed two optimization methods. One was to rewrite query with
substitution of the WHERE clause, with two stored function results. For comparison reasons, the
second case (fifth method) assumed replacing the stored functions with simple sub-queries to
achieve the same goal as in the first case (see Listing 4.8). Namely:

Listing 4.8: Simple rewrite with sub-queries

1 SELECT F a c t _ I D , sum ( a g g r e g _ V ) ,
2 FROM F a c t s
3 WHERE f D a t e BETWEEN ( s e l e c t min ( F a c t _ I D ) f rom F a c t s
4 where f D a t e >= x )
5 AND ( s e l e c t max ( F a c t _ I D ) f rom F a c t s
6 where f D a t e <= y )
7 GROUP BY c u s t o m e r _ I D
8 ;

All tested use cases were conducted against the same request parameters and source data. The
queried data range was between 2008-01-01 and 2008-01-02. The result size was 31,546 MB.
Each method was tested 50 times.

Measuring database response times for pmin and pmax was based on the Java’s currentTimeMilis()
method from java.lang.System 9 .

The test results are presented in Table 4.3.

The results have clearly shown that rewriting the WHERE clause boosts the target query almost
four times. This is while only modifying the WHERE clause with sub-queries enabling the primary
key in the role of index. This gives the idea of how order dependency based query can be effective.

9The detailed discussion for choosing this method has been conducted in [186]
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Table 4.3: Test results for 50 request trials.

Activity Call Method

Document

Length [MB]

31.546

Method Name simpleJdbcCall JdbcTemplate JDBC Subquery Hard Coded non-opti

Stored Functions /

Subqueries [ms]

pmin pmax pmin pmax pmin pmax pmin pmax
0

13 14 7 6 5 6 7524 15493

Avg.Time per request

[ms]

44.010 29.762 27.196 23038.530 16.431 87681.945

Both of the queries do operate on fDate column that has not even been indexed. The result
would be greatly better if only one would place an index on the fDate column. The hard coded
column values for pmin and pmax are presented to compare the time performance of the query
itself without the rewriting process.
Three remaining JDBC-based use cases for (pmin,pmax) retrieval are at worst three times slower
than the hard coded (pmin,pmax) pair.
In general, the gained speed boost range from 87.681 seconds to only 0.027 seconds, which
reduced the time of result retrieval for approx. 99,96%. Such gain for the discussed use case, is
achieved with the best – pure JDBC – method, compared to the non optimized query.

???

As a result of order dependency testing scenario, the significant role of using Qboid as a
middleware has been proven. Additionally, the usefulness of functional dependency – with a
monotonic function with respect to linear ordering of domain – for query optimization, has also
been confirmed. The proof-of-concept implementation of order dependency – that exploits
order dependency on primary key – based on Qboid middleware made the solution vendor
independent while focusing only on the query and the schema. The experimental results are
promising and prove not only that the order dependency is effective while used for dedicated
scenarios, but mainly justifies Qboid appliance as a middleware that can be used for vendor-
independent query optimization techniques.

4.2.4 Polyglot Persistence as an Optimization Technique for Integration
Architecture

Qboid, as a heterogeneous data integration and optimization placement middleware, addition-
ally provides location transparent integration. This means that in an integration environment of
heterogeneous data storage engines, Qboid can integrate data objects residing in some local
sites. Moreover, Qboid provides the data objects notion to client application, in a way that does
not require the application to cover the data object local particularities. This way the application
logic remains clear and simple. Qboid also enables the use of data object replications that are
present in the integrated storage engines grid. The main advantages of this functionality are:
load-balancing, optimization, fault detection by verifying the data state and consistency 10 and

10 At present Qboid is not responsible to assure the consistency across the replicas. This additional functionality
can be provided with some extra global communication schema development.
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storage model-driven data access. The system load shed can be assured by Qboids schema con-
figuration (i.e. the CommunicationConf) to use adequate data replica according to the system
load, request parameters, or accepted policies 11 . In the case of required complex analytical
queries the system would be more responsive if more than just one object can be used to handle
multiple queries. This is possible without the need to interfere with local DBMSs.

Optimizations can also utilize a data storage source metrics and estimators that explicitly are
responsible for expressing the storage engine hardware and / or network capabilities. The fault
or integrity check can easily be checked with hash value comparisons, as already mentioned in
section 3.3.2.3.

However, in a heterogeneous data sources environment, Qboid provides a more interesting
feature that will be focused on, in this section. This property, that is about to become a significant
Qboid’s virtue, is the ability to utilize the storage model on as-needed basis. This way it complies
to the postulate of careful fitting of the data to the storage model – as stated in Statement 1.

Nowadays in a big project devotion to a single persistence mechanism usually leads to
suboptimal architectures. However, architects of software systems are reluctant to use heteroge-
neous data sources. They are usually afraid of high cost of integrity maintenance. On the other
hand, relational database systems are still perceived as universal storage solutions. However, the
relational database model is devoted to process flat collections of business objects.

In recent years enormous proliferation (see Chapter 2) of numerous data storage engines,
with their dedicated data model has provided additional possibilities for large systems.

Due to the abundance of task-oriented database systems architects face severe dilemma.
The universality of relational databases allows modelling any application domain. However, a
decision to use such a database as the only storage can negatively impact the performance. An
interesting example of data causing such impact for relational databases is graph data.

4.2.4.1 Graph Model in Action

Querying the graph data stored in relational DBMS as been introduced to SQL with the use of
SQL:1999 standard [187, 188] 12 in terms of recursive queries.

The goal of this third optimization technique with the use of Qboid integration architecture
will be to justify its utility towards integrating data and optimizing its access with the use of
heterogeneous data storage model. Qboid will allow exploiting the advantages of task-oriented
database systems as they combine results returned by a number of databases into the form
needed by an application. The proposed technique uses the Qboid integrator that abstracts
the graph structure from a relational database and transfers it to a dedicated graph database
(in this case Neo4j). Then relational queries to the graph data are mapped to the graph queries
for appropriate identifiers of nodes. The result is then augmented with heavy relational data
(remaining table attributes).

In following section the hybrid (graph-relational) method is prototyped with the use of
Qboid framework [90, 189, 190].

The Use Case Let us assume a single table storing company employees according to the
schema shown in Figure 4.3 This way each employee becomes a part of a tree hierarchy. One
can easily imagine that each employee can have a twofold income. The first part based on the
premium of his own work (e.g. sales) and the second part would be a fraction of the profits
generated by his employees.

11 E.g. Cycle of query redirection – i.e. the first data query redirected to replica1, the second query redirected to
replica2, the third query redirected to replica3, and the fourth query again redirected to replica1 etc.

12 Implemented in [187, 188] by recursive common table expressions (CTEs) – i.e. a temporary named result set,
derived from a simple query and defined within the execution scope of a SELECT, INSERT, UPDATE, or DELETE
statement.
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Employees

* emp_id

boss_id

name

surname

...1

n

Figure 4.3: Exemplary table schema with the graph data

In terms of SQL one can generate the dependency tree graph with the use of SELF JOIN on
boss_id and emp_id columns. In a use case scenario we assume that a query for all employees
in the tree spanned by a particular employee, is often committed.
The first database management system to offer such query facilities was Oracle (since 1985). The
Oracle’s SQL dialect that would consider our use case scenario is exemplified in Listing 4.9.

Listing 4.9: A query for all employees under Smith in Oracle’s early SQL dialect

1 SELECT ∗ FROM Emp loyees
2 WHERE l e v e l > 1
3 START WITH surname = " S m i t h "
4 CONNECT BY b o s s _ i d = PRIOR emp_ id ;

However, as already mentioned, the standard committee have decided to use CTE as a temporary
named result set. The standard SQL:1999 syntax is therefore contained within Listing 4.10.

Listing 4.10: A query for all employees under Smith, according to SQL:1999 standard

1 WITH RECURSIVE emprec AS (
2 SELECT emp_id , name , surname
3 FROM Emp loyees
4 WHERE surname = " S m i t h "
5 UNION
6 SELECT e . emp_id , e . name , e . su rname
7 FROM Emp loyees e
8 JOIN emprec r
9 ON ( r . emp_ id = e . b o s s _ i d )

10 )
11

12 SELECT ∗
13 FROM emprec
14 ;

The facilities to search graphs introduced into SQL:1999 significantly enriched the graph pro-
cessing tools on the level of relational databases. An application programmer could formulate a
single query where formerly a series of queries had been unavoidable. A performance review and
comparison of existing implementations of the recursive queries in major relational database
systems can be found in [191]. In modern application architectures that use object-relational
mapping libraries the problem of querying graph data is even more complex [192–195].
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Although relational databases implement recursive queries functionality and there is ongo-
ing research on their optimization [196–198], however, relational databases only support graph
queries. They do not implement them natively. A real efficiency improvement of big graph
search is possible with the use of a dedicated graph storage engine. Neo4J [199] is one of such
engines.

The efficiency of graph tasks in the dedicated graph databases is noteworthy higher than in
the relational databases. Thus an architect is tempted to consider an implementation in which
the graph structure is also stored in a graph database. Graph search is then partitioned into two
subtasks. The first of them is the pure traversal among nodes. The second one augments the
result of traversal with mass attributes retrieved from a relational storage. Note, however, that
such a solution is notably more costly from a maintainer’s point of view.

With the use of Qboid one can provide such an architecture in a totally transparent manner.
Moreover, the Qboid middleware might be used to take care of the whole logic responsible for
synchronizing a graph database, splitting queries and merging their results13.

Testing Scenario In this section an effort will be made to prove that Qboid-based architecture
can aid a significant improvement of big graph-based searches. As its additional virtue it needs
to be noted that this process can be done transparently since a client application programmer is
not aware of the actual data structure that is to be used. The querying in this use case scenario
will focus on simple traversals among tree nodes.

Three similar testing scenarios have been devised. In all of them the Employees table schema
from Figure 4.3 will be used. The target goal for each of the scenarios is to retrieve a fixed number
of records as a result of a recursive query. Just as in the case of previous order dependencies test,
the results are being consumed by client calls to the dedicated Qboid’s adapter REST API.

To start testing a 18GB Employees table has been generated and loaded into PostgreSQL
database.

The first testing scenario considered the use of JDBCTemplate [200] as a lightweight wrap-
per for the pure JDBC driver. Then using the REST API, multiple recursive queries have been
commenced while resulting in approx. 8MB per 10 returned records.

The second scenario involved partial replication of recursive Employee table schema and
data into separate table. Along the test this new table will be referred to as the EmpBase. This new
table will contain the minimal useful set of attributes including the primary and foreign keys.
This set of attributes is enough to construct the tree structure of the self referencing recursive
hierarchy for the entire Employee table. Remaining attributes have no influence on this hierarchy.
This way the same tree hierarchy of the Employees table schema can be build only according
to the data stored in the EmpBase table schema. Calling the recursive query towards the "light",
replicated version of Employees table is assumed to build the hierarchy faster and thus simple
joining with the rest of the attributes from the Employee table should give the same result in a
shorter time.

The third test case considers a slight modification of the second scenario. This time however,
the extracted minimal recursive schema information is moved outside the Postgres. The EmpBase
in this case is being imported into a separate Neo4j graph database. Likewise the second scenario,
the non-recursive and heavyweight attributes of the Employee schema stayed in PostgreSQL in
the table Employee. To sum up, the entire schema and data is stored in PostgreSQL, and only the
specific parts of the schema that describe the recursive relation are moved to the Neo4j. Since
Neo4j implements recursive queries natively it is expected to provide additional performance
boost. The migration process from PostgreSQL to Neo4J has been commenced with regard to
official – Neo4J – recommendations [201, 202]. The parts of the Employees schema defining

13 Due to the prototypical nature of the presented implementation not all those functionalities (like synchroniza-
tion) are currently implemented. However, it will become a part of future research and extension of the Qboid based
architectural idea.
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recursive hierarchy have been presented as graph nodes’ properties. Finally, the remaining
heavy attributes left in the relational database are augmented to the data retrieved from Neo4j
by means of the Qboid mapping. As a result, the entire recurrent hierarchy structure was built
efficiently by Neo4j and then combined in Qboid with the attributes from PostgreSQL.
Qboid has provided significant functionalities. Due to the agile design, the client REST calls
were transparent. Therefore, they enabled the client to focus on the delivered data and not the
data delivering source. The client REST call tends to call for the Employee data regardless of the
actual internal implementation of data structures.

Testing Results Prior to the test results one must be familiarized with the hardware testing
architecture depicted in Table 4.4. Additionally, the used databases and framework information

Table 4.4: The hardware configuration used in the experimental evaluation

CPU Intel Core i7-3612QM CPU @ 2.10 GHz x 8
RAM 15,6 GiB
Disk SAMSUNG SSD PM830 2.5" 7mm 512GB
OS Ubuntu14.04 LTS
Kernel 3.13.0-30-generic
Arch. x86_64 GNU/Linux

are contained within Table 4.5.

Table 4.5: The software used in the experimental evaluation

Java Java version 1.7_60
Java(TM) SE Runtime Environment (build 1.7.0_60-b19)
Java HotSpot(TM) 64-Bit Server VM (build 24.60-b09, mixed mode)

REST Testing Client ApacheBench, Version 2.3
Http Server Apache Tomcat/6.0.29

The resulted response times were measured toward the REST calls in all three test scenarios.
A testing REST client called REST API that used different ways of retrieving the data from the
table Employee. Each REST call conformed to the following schema:

(...){strategy}/dbSchema/{dbEntityName}.json/limit={value1}&idoffset={value2}

The strategy variable has three possible values 1,2,3 depending on the test scenario. The
limit and offset variables represented the number of resulted records and the offset just as
SQL syntax.

The author commenced 1000 requests for each limited amount of result records. In the
first test scenario the author have limited the number of requests to one because of long times
needed to retrieve data. In two other scenarios we did not impose such a limit. The size of data
for every response of 10 records was about 8 MB. The final results are depicted in Table 4.6

The test results have confirmed the expected performance boosts. The second test scenario
has provided a noticeable performance boost compared to the clean PostgreSQL recursive query.
Moreover, the third scenario has outperformed not only the first use case but also the second
scenario occurred to be significantly slower.

???

This way Qboid can bring the best of each registered storage engine model. The testing involved
development of an automatic method to integrate Neo4j with a relational database that stores

 (...){strategy}/dbSchema/{dbEntityName}.json/limit={value1}&idoffset={value2} 
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Table 4.6: The execution times of test queries related to the used data model

Request No Result Records No Total (Time per request- mean) [ms]
EmpFull (17GB-pgsql) (recursive)

1
10 38 850,33

100 188 414,76
1 000 274 333,25

EmpBase (1GB-pgsql) + Widedata (17GB- pgsql)

1000
10 1 783,06

100 9 367,09
1 000 17 069,04

EmpBase (1GB-neo4j)(recursive) + Widedata (17GB pgsql)

1000
10 73,37

100 774,33
1 000 8 284,40

graph data. Secondly, testing concentrated on development of mapping, of recursive SQL:1999
queries onto a combination of a graph query and a simple relational query, followed by a proof-
of-concept implementation of this mapping in Qboid with full transparency for an application
programmer. On the whole, the established goal of proving the Qboid usefulness, has been
achieved in the area of task-oriented data storage matching.

4.3 Conclusions

Throughout this the chapter author has conducted reasoning supported by actual testing sce-
narios that aimed at proving universal nature of Qboid based architecture. It has been tested
that Qboid is a useful middleware framework for data integration [189] and optimization [90].
Additionally, one can consider using it while combining these both aspects.

The presented results are promising. Moreover, Qboid has provided full transparency for a
client to get arbitrary data regardless of its original data source paradigm. Qboid has enabled
fitting the data representation to the appropriate paradigm of data storage and its processing.
The method to achieve this has been tested based on both SQL and NOSQL engines. This way
Qboid tends to face SQL, NoSQL and NewSQL reality of modern data nature as a part of a wider
"Not Only SQL" trend in the database development.
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5
SSuummmmaarryy aanndd CCoonncclluussiioonnss

The assumed goals and objectives from Chapter 1 Introduction have been achieved, accom-
plished and proven. The theses presented in this Ph.D. dissertation were proved to be true.

1. Legacy data sources can be transparently integrated and interfaced with a Qboid based
virtual meta-repository, while the data could still be gathered utilizing RESTfull ser-
vice, without additional data manipulation, nor replication.

The designed and implemented global integration schema for heterogeneous data sources allows
generic and automatic metadata gathering. It enables a completely transparent integration for
an arbitrary number of integration-participating data storage engines, based on central-point-
of-reference metadata virtual (i.e. storing metadata instead of the real data) repository. The
legacy, integrated data is referred, accessed and processed independently of its origin, due to
metadata-oriented nature of the common communication and storage schema. This way each
and every data operation (e.g. retrieval, access optimization)manipulates only the metadata
instead of the target data. The metadata nature and the common schema, that the metadata
is incorporated-in, provides the transparency and flexibility for various data access methods.
The integrated data sources use the mediator-based architecture to wrap up every integrated
data source and provide its metadata description in the form of contributory views. The actual
top-level interface – that is being accessed by the integrated architecture clients – provides
manually designed and configured global integration view that transparently represents the
integrated data, based on the prior knowledge of contributory views’.

Each data source requires a dedicated – for its storage model – mediator, that will act as a
middleware between the low-level storage engine and the central Qboid integrator instance.
Mediator is responsible for supplying underlying data model schemas and native queries that
later can be used to access the target data. The assumption behind this functionality, is that the
local storage engine optimizer knows the best how to optimize its native query. This way the
postulated solution does not tend to interfere with the local storage engine mechanisms, and
takes the best out of its available optimization capabilities. Native queries are then embedded
into the metadata sent to the Qboid that later persists it as a part of a global integration view.
Those queries will then be sent by the integration architecture adapter instance directly towards
the data source – using the most low-level access method available (e.g. JDBC driver) – on the
client data request. Such design results in effective, lightweight and low-level data processing
which – due to potentially large data volumes to be integrated from numerous, distributed data
sources – was one of the major research goals.
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2. Well known optimization mechanisms and dynamic performance metrics can be im-
plemented for Qboid based architecture, enabling optimized data access without in-
terfering with the local data source potential optimization engine or its data schema.

Since each data source can be accessed with its own native query, the query or data access
algorithm can become optimized by: indexing, query manipulation techniques, or modifying
the data access – accordingly to its model nature and available replicas. This is done owing
to the flexible global integration schema that can be configured for an arbitrary optimization
technique. Currently implemented and tested solutions involved three methods.
Indexing, as the first one, is obvious and provides optimization in a well accustomed way that
does not require further explanation. The second, technique involves query rewriting. The
author has discussed query rewriting based on the order dependency example, however it obvi-
ously can be extrapolated to virtually any other query optimization mechanism that would be
based on query rewriting 1 across the integrated data source grid.
The last proposed optimization approach that leverage the Qboid-based architecture, involves
configuring data access according to its nature. As the Qboid resolves the fragmentation and
replication pattern puzzle effectively with its global integration view, one could use it for access-
ing data that can be stored in many places with different retrieval efficiency. Various retrieval
efficiency metrics can originate from hardware / network performance, but also can leverage
the data nature (e.g. recursive self relation) and use the most suitable storage model in the form
of replica. In the case of heavy queries, or intense data source overload, the global view provides
the load-balancing configuration option. However, prior to the load-balance usage, potential
redundant replicas are expected to be integrated and contained within the global view.
Additionally, the access can be dependent also on estimations, metrics and cost model based
on the configuration contained in global integration view schema. This provides the additional
means to manipulate and balance system load depending on circumstances. As a conclusion,
the outcome of the proposed solution has been proven to be reasonably effective with the use
of the three test scenarios that can be generalized by analogy to the adequate optimization
techniques accordingly.

5.1 The Limitation of Prototype and Further Works

The presented design of the Qboid-based integration architecture considers the data retrieval
scenario – i.e. the read access. The motivation was mainly due to the fact that in the case of
most big data environments, the data is supplied by the native local data applications and
mechanisms that generate and fill the local data storing schemas. At the global level, the first
desired step is to gather information for presentation. This is mainly for analytical and statistical
reasons.
Write access, in some cases is simply impossible – as some of the legacy data sources are forbid-
den, or are not considered for the third party data interference and manipulations. Therefore,
providing the additional functionality to write into local data sources from the top-level global
integration view, would extend the scope of the work a couple of times and would not allow to
focus on the dissertation theses. Hence, even though the write access functionality might be
considered in terms of Qboid, in this dissertation it is considered out of scope.

The current implementation of the prototypical testing environment has been focused on
proving the theses, and testing the optimization methods. The prototype provides heteroge-
neous data access for target data sources that played a role in testing scenarios. Since each data
storage engine requires its own mediator implementation instance further mediator implemen-
tations can be introduced.

1 In terms of global optimization one can consider SQL semantics duplicate elimination algorithms, use of the
materialized views in the form of replicas instead of complex (e.g. joins, grouping, or aggregation of data) direct
querying of the integrated data source, etc.
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The mediator functionality for schema and / or native query generation is strictly data source
dependent, however, it ought to be automatic based on dedicated low level solutions (e.g. ORMs).
The contributory and global integration schemas storage can be arbitrary. This is due to the fact
that the schema implementation is not relevant in terms of the architecture testing and theses.
Therefore it has not been extensively considered. However, due to the complex structural nature
of the schema, the data models that can handle deeply embedded structures – such as document
stores (e.g. MongoDB), or graph stores (e.g. Neo4J) (in the cases relationships become a major
aspect) – might be considered as an interesting topic for performance comparison research.
On the other hand, the global integration view, still has to be designed and implemented man-
ually according to the global schema. The potentialy improved approach should consider au-
tomatic and / or "intelligent" global schema generation. Additionally, since current schemas
consider only the entity-oriented integration, an evolutionary step might also consider extend-
ing it to support some kind of inter-entity relation handling. This seems to be fairly straight
forward, possibly by referencing between the Qboid entity instances while using a kind of Qboid
storage engine functionality (e.g. MongoDB referencing between objects, or Neo4j relationships).
However, its efficiency and tuning require further research and testing.

The schemas designed and presented in this dissertation provided some future proofing.
It involves the profile based approach for serializing / de-serializing of custom configuration
options. The proposed appliances might also involve load-balancing, fault tolerance, integrity
checking etc. It seems rather straightforward as the same mechanism has already been employed
to handle configuration of the access optimization methods. There are also no barriers to extend
those profiles with the additional, custom access configuration or optimization techniques, that
can become a target for additional, future research.

Yet another topic, that can be substantial in terms of architectures efficiency, and that is
not directly related to the basic architecture itself, is the process of combining the result sets
from distributed sources to state the final result. The most basic way of the Qboid is to join the
partial results from each site based on their best record ids. However, potentially interesting
research can be commenced on queries that involve more complicated global queries than
simple projections and selections.

5.2 Additional Mediator Functionalities

The implemented mediators have been focused on the data sources used in the testing en-
vironment. However, there is still a number of solutions, and legacy data sources that would
require a dedicated mediator to be devised in order to participate in the Qboid-based integration
architecture. One can consider mediators for the arbitrary NoSQL / NewSQL stores, or cloud
storage – that would have to be specific towards each of the sources.

Due to read-only nature of the postulated architecture the mediator functionalities are
passive towards the storage engine. However, still there is a considerable amount of issues to
be researched – e.g. considering the dynamic mediator-to-datasource interaction involving
generation of local optimization policies. This could, for example, include automatic new local
index generation based on request, or system overload.

In current implementation, the potential load-balancing is based on hard coded, manual
configuration. An interesting direction would be also to consider a live mediator-to-mediator
communication that could help to provide live system balancing functionality. What is more, it
could also consider some of the federation features in a way similar to the next-gen federation
fashion – e.g in the case of BigDWAG .

Finally, the integration architecture seems an interesting concept to become implemented in
a cloud friendly mean. Making the central integrating Qboid work in a cloud would bring some
of the could benefits. However, one has to be warned that cloud is not a panacea for any domain
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issue. Cloud is simply a tool that helps to outsource the infrastructure and make implementation
cost effective, while still the target domain issues must be resolved by the developer.
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A.1 Integration Layer

To integrate multiple models it is required that the architecture will provide a form of uni-
fied semantic for describing contributory view. The proposed approach is to create values of
C_SCHEMA and C_TABLE as stated in Figure A.1

Source Model C_SCHEMA C_TABLE

JDBC
• Database schema according to JDBC definition • Any tabular schema structures such as table, 

view, etc.

OpenOffice
• Database schema according to JDBC definition • Any tabular schema structures such as table, 

view, etc.

XML 
(SAX)

• A handle to the XML file. Always has default 
schema and virtual information schema.

• SAX: User defined XPath expression to 
concrete position in XML tree. Column, 
defining values of the rows in a C_TABLE, 
requires additional XPath for each 
C_TABLE.

XML
(DOM)

• A handle to the XML file. Always has default 
schema and virtual information schema.

• DOM: virtual representation of recurring 
combinations of XML elements. C_TABLE 
generation requires manual or automatic 
“flattening” (denormalization) of “tables” 
e.g. using XSLT

CSV
• A handle to the CSV file. If the file does not exist, 

schema will be empty. Always has default schema 
and virtual information schema.

• File structure, based on the column name 
line.

MongoDB
• A MongoDB database. • A MongoDB collection with a virtual table 

model, which represent the properties of the 
documents in the collection.

Cassandra

• Outer most grouping of the data i.e. Keyspace. • Originate from ColumnFamily as a structure
that contains a infinite number of rows 
grouped from Columns and SuperColumns

Salesforce
• A handle to the web services of Salesforce • A type of Salesforce.com SObject.

Figure A.1: Contributory schema mapping

Here is an example of an XML (SAX) query retrieval procedure.

Listing A.1: Data hierarchy expressed with XML

1 <?xml version="1.0" encoding="UTF-8"?>
2 <root>
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3 <employer type="governmental">
4 <cname>Company A</cname>
5 <employees>
6 <employee>
7 <ename>John Doe</ename>
8 <gender>M</gender>
9 </employee>

10 <employee>
11 <ename>Jane Poe</ename>
12 <gender>F</gender>
13 </employee>
14 </employees>
15 </employer>
16
17 <employer type="private">
18 <cname>Company B</cname>
19 <employees>
20 <employee>
21 <ename>Richard Roe</ename>
22 <gender>M</gender>
23 </employee>
24 <employee>
25 <ename>Mary Major</ename>
26 <gender>F</gender>
27 </employee>
28 </employees>
29 </employer>
30 </root>

If one desired to provide a contributory view as two separate C_TABLEs of Employees and
Employers this would require some XPath expressions. It would involve defining the record
scope and paths of individual values (in this context rather a column definition; see Listing A.2).

Listing A.2: XPath expressions definitions

1 < employee , " / r oo t / employer / employees / employee " //
t a b l e emp l o y e e ( i d , / ename , / g e n d e r )

2 < ename , " / r oo t / employer / employees / employee / ename" >
3 < gender , " / r oo t / employer / employees / employee / gender " >
4 >
5

6 < employer , " / r oo t / employer "
// t a b l e emp l o y e r ( i d , / cname , @type )

7 < cname , " / r oo t / employer / cname" >
8 < @type , " / r oo t / employer / @type " >
9 >

As the XML considered employer and employee to be related, an additional reference must be
introduced. This can be done by easily providing extra field XPath expression for a foreign key to
the employer id field. This way the employee definition might look as in Listing A.3

Listing A.3: XPath expressions definitions with foreign key

1 < employee , " / r oo t / employer / employees / employee " //
t a b l e emp l o y e e ( i d , / ename , / g e n d e r )

2 < ename , " / r oo t / employer / employees / employee / ename" >
3 < gender , " / r oo t / employer / employees / employee / gender " >
4 < fo re ign , " / r oo t / employer ">
5 >

This way the target employee data would look as in Figure A.2.
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ID Ename Gender Foreign
0 John Doe M 0
1 Jane Poe F 0
2 Richard Roe M 1
3 Mary Major F 1

ID Cname @type
0 Company A governmental
1 Company B private

Figure A.2: Contributory View of two tables based on XML SAX XPath expressions

A.1.1 The IDL Scheme for Integration Contexts of Qboid and the Integration View

To understand the complexity of integration schema one should refer to Listing A.4 for a complete
view. The context of Concept and Qboid has already been elaborated in section 3.3.2.2, however,
not all schema content is clear and require more detailed explanation.

Let us focus on the content of the RegularConnectionDetails module. Its main part is the
Details struct that covers the host / port network addressing but also contains three very impor-
tant fields. First of them is the CommunicationConf responsible for defining the data retrieval
behaviour in terms of its correspondence to the target data state at local data sources. In other
words, it is responsible for defining rules for refreshing of the virtual data schema (e.g. BRI, or
attribute change) according to local data changes. One can use the verify flag to force refresh if
the data represented by the Details has changed (i.e. ObjectBody’s objectValHash changed)
since its last_update timestamp. This verification is done with comparison of hash value
that is calculated based on the hash function with arguments defined by CommunicationSpec
accordingly to the data and schema described by particular RegularConnectionDetail with
ObjectBody and AccessDetails.
The hash function formula is arbitrary, but should consider arguments that would define the
data state. This way every time the function arguments (i.e. data state) change the hash value
would be different forcing the architecture to repeat the procedure for collecting metadata
information for such particular RegularConnectionDetail.

The second field type is ObjectBody. It is responsible for storing the hash value, mentioned
in the previous paragraph, the FAM and the attributes list that are covered by the FAM. FAM, as
already mentioned in section 3.3.2.1, stores enumerated type tag of NativeFastAccessMethod
within the NativeBRI struct that defines by this the local data source BRIs and additionally,
contains their actual sequence. Finally, FAM also contains the native accessMethod query string
that serves each time target data retrieval is requested.

Finally, the Details struct contains a sequence of AccessDetails. This type stores use
same tagging approach with the use of the ConfigOption self explanatory enumerate type to
cover e.g. the replication types of partial- and vertical- replica. Additionally, the sequence of
binary properties can be deserialized according to the value of the ConfigOption tag. The most
basic role of AccessObject is to represent the partial replica (P_REPLICA) – which is considered
in the cases the data described by a DOR is replicated at another site however, it does not cover
entire global BRI related record, but only the same set of attributes as the current DOR or only
its subset. On the other hand, the vertical replica (V_REPLICA) is responsible for storing a set of
references to DORs that cover the same range of attributes as current DOR that are, however,
vertically fragmented.
Apart from replicas ConfigOption can contain e.g. additional local data source login data or
connection flags. For a detailed example please refer to the example in Listing A.4.
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ConfigOptions can also be used to extend the details of the access policies. In such case,
an additional enum type element would then have to be introduced with the additional struct
type defined that can be later serialized into the AccesDetails sequence of binary properties.
As each AccessObject is a part of a sequence each of the Details can contain a reasonable set
of configuration options for a specyfic ContactDetails.

Listing A.4: Complete Scheme for Integration Contexts

1 module CONCEPT{
2

3 typedef enum INTEGRATIONV IEWCONTEXT {
4 ENTITY , RECORD, TUPLE, ATTRIBUTE [ , . . . ]
5 } ;
6 typedef unsigned long GlobalBRI ;
7

8 struct ACCESSOBJECT {
9 string repo_ID ;

10 In tegra t ionV iewContex t iv_Ctx ;
11 sequence<GlobalBRI> gBRI ; // o n l y f o r c omp l e t e ENTITY

o r RECORD
12 sequence<Qboid : : rDOR> p r o f i l e s ;
13 sequence<AccessObject> iv_Rep l i cas ;
14 } ;
15

16 struct INTEGREATIONV IEW {
17 string i v_ ID ;
18 sequence<AccessObject> concept_AccessObject ;
19 } ;
20 } ;
21

22 module QBOID {
23

24 typedef enum SOURCEID {
25 SELF, POSTGRES, MS_SQL, MYSQL, ORACLE_11G, MONGO_DB
26 } ;
27 typedef unsigned long DOR_ID ;
28

29 struct RDOR {
30 DOR_Id dorID ;
31 boolean vert_Fragm ;
32 SourceID src_ID ;
33 sequence<Contac tDe ta i l s : : Connec t ionPro f i l e> object_Refs ;
34 } ;
35 } ;
36

37 module CONTACTDETAILS {
38 [ . . . ]
39 typedef enum PROFILE ID {
40 REGULAR, OPTI_INDEX , OPTI_MODEL, OPTI_OrderDependency , [ . . . ]
41 } ;
42

43 struct CONNECTIONPROFILE {
44 P r o f i l e I D p r o f i l e ;
45 sequence<binary> connect ionDeta i lData ;
46 } ;
47 } ;
48

49 module REGULARCONNECTIONDETAIL {
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50 struct COMMUNICATIONCONF {
51 boolean customSPEC ;
52 // f a l s e − u s e some d e f a u l t s e t t i n g s f o r t h e p r o f i l e

p r o t o c o l c o n f i g u r a t i o n o p t i o n s u s e d t o l o a d b a l a n c i n g o r
i n t e g r i t y u p d a t e c h e c k

53 boolean v e r i f y ; // t r u e − c h e c k i d d a t a ha sh ha s
changed s i n c e l a s t i n t e r a c t i o n

54 date l as t_update ; // d a t e o f t h e l a s t h a sh
v e r i f i c a t i o n

55 [ . . . ]
56 } ;
57

58 typedef enum Conf igOpt ion { // v e r t i c a l / p a r t i a l r e p l i c a s , d a t a
s o u r c e , s e c u r i t y c o n f i g s e t c .

59 v_REPLICA , p_REPLICA , SOURCE_CONF[ , SECURE_CONF, " . . . " ]
60 } ;
61 typedef sequence<rDOR> VREPLICACONF ;
62

63 struct P_REPLICA {
64 sequence<string> tuple_at t r_names ;
65 VReplicaConf t up l e ;
66 } ;
67 struct SOURCECONF {
68 string tag ;
69 string value ;
70 } ;
71 struct ACCESSDETAILS {
72 Conf igOpt ion con f i g ;
73 sequence<binary> proper ty ; // / d e p e n d i n g

on c o n f i g d e s e r i a l i z e t h e b i n a r y i n t o e . g . VR e p l i c a C o n f
74 } ;
75

76 typedef enum NATIVEFASTACCESSMETHOD {
77 PK, OID , _ID , CompositeKey [ , . . . ]
78 } ;
79 struct NATIVEBRI {
80 NativeFastAccessMethod nFAM_f ; // f l a g f o r fam i e PK f o r

RDBMS o r OID f o r ODB
81 sequence<string> b r i ;
82 } ;
83

84 struct FAM {
85

86 sequence<NativeBRI> nBRI ;
87 string accessMethod ; // q u e r y f o r RDBMS
88 } :
89 struct OBJECTBODY {
90 sequence<binary> objectValHash ; // o b j e c t v a l u e ha sh ;

CORBA u s e s ’ u n s i g n e d l ong ’
91 FAM accessMethod ;
92 sequence<string> a t t r i b u t e s ;
93 } ;
94

95 struct DETAILS {
96 string host ;
97 unsigned short po r t ;
98 CommunicationConf protocolSpec ;
99 ObjectBody ob jec t ;
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100 sequence<AccessDeta i ls> objectView ;
101 } ;
102 } ;

A.1.2 The Integration Scheme in Action – Example

Let us focus on exemplary schema appliance The case scenario involves one employee Emp entity
Integration View that is fragmented and replicated and thus requires a schema for integration.
The fragmentation and replication patterns have been presented in Figure A.3 and A.4.

Layer 2

EmpIntegrationViewEmpIntegrationView

NameName AgeAge SalarySalaryBRIBRI

DB1_rDOR1

Layer 1DB1_rDOR1DB1_rDOR1

DB5_rDOR3

Layer 3DB6_rDOR4

Layer 4DB8_rDOR6DB7_rDOR5

DB4_rDOR2DB4_rDOR2

Figure A.3: Integration View of the Employee virtual schema. BRIs 1 to 100.

Listing A.5: IntegrationView Explicit Example for 1-101 BRIs

1 < "EmpIntegrationView", // IntegrationView−−ID
2 < "DB1:HR:Employees", ENTITY, // AccessObject # 1 − a set of 1 to 100 BRI records
3 < 0001..0100 > // Global BRI #1−#100 of the entity
4 < 0x0001, False, SELF, // rDOR #1
5 < REGULAR, // ConnectionProfile #1
6 < x.x.x.1, 4444, // RegularConnectionDetail :: Details − The first : Layer 1
7 < False, False, ’19.July .2014:16:30:00 ’ > // protocolSpec
8 < !@##$%_HASH1_%$##@! , // ObjectBody
9 < PK,

10 < "1−100" >,
11 "SELECT * FROM Emp WHERE PK BETWEEN 1 AND 100;"
12 > // FAM
13 < "Name", "Age", "Salary" > // attributes
14 >
15 < V_REPLICA, // AccessDetails #1 − Layer 2
16 < 0x0002, False, POSTGRES, // rDOR #2
17 < REGULAR,
18 < x.x.x.4, 4444, //DB4 see figure
19 < False, False, ’19.July .2014:16:30:00 ’ >
20 < !@##$%_HASH2_%$##@! ,
21 < PK,
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Layer 2

EmpIntegrationViewEmpIntegrationView

NameName AgeAge SalarySalaryBRIBRI

DB1_rDOR1

Layer 1DB1_rDOR1DB1_rDOR1

DB5_rDOR3

Layer 3DB6_rDOR4

Layer 4DB8_rDOR6DB7_rDOR5

DB4_rDOR2DB4_rDOR2

1-101

DB8_rDOR123
DB7_
    rDOR101

DB8_rDOR123DB8_rDOR123DB7_rDOR101DB7_rDOR101 Layer 1

101

Figure A.4: Integration View of the Employee virtual schema. Record 101.

22 < "1−100" >,
23 "SELECT name FROM Emp WHERE PK BETWEEN 1 AND 100;"
24 >
25 < "Name" >
26 >
27 <P_REPLICA,
28 < "Name" >
29 < 0x0005, False, MONGO_DB, // rDOR #5
30 < REGULAR,
31 < x.x.x.7, 4444, //DB7
32 < False, False, ’19.July .2014:16:30:00 ’ >
33 < !@##$%_HASH2_%$##@! ,
34 < "_ID",
35 < "000000000000000000000001−000000000000000000000064">,

// 12−byte hexadecimal ObjectId range
36 "db.emp. find ({
37 _id : { $lt : ObjectId ( "000000000000000000000064"),
38 $gt : ObjectId ( "000000000000000000000001") },
39 { _id : 0, e_name:1 }
40 ) "
41 >
42 < "Name" >
43 >
44 >
45 >
46 >
47 >
48
49 >
50 >
51 >
52 < 0x0003, False, MS_SQL, // rDOR #3
53 < REGULAR,
54 < x.x.x.5, 4444, //DB5
55 < False, False, ’19.July .2014:16:30:00 ’ >
56 < !@##$%_HASH3_%$##@! ,
57 < PK,



174 APPENDIX A. PROTOTYPE IMPLEMENTATION

58 < "1−100" >,
59 "SELECT age, salary FROM Emp WHERE PK BETWEEN 1 AND 100;"
60 >
61 < "Age", "Salary " >
62 >
63 <P_REPLICA,
64 < " Salary " >
65 < 0x0004, False, CASSANDRA, //rDOR #4
66 < REGULAR,
67 < True, False, ’19.July .2014:16:30:00 ’ > // true − use for

load balancing
68 < // here define load balancing configuration
69 >
70 < !@##$%_HASH4_%$##@! ,
71 < CompositeKey,
72 < " PartitionKey =6", " ClusteringKey =1−100" >,
73 "SELECT salary FROM Emp WHERE PartitionKey=6
74 AND ClusteringKey >= 1 AND ClusteringKey <= 100; "
75 >
76 < " Salary " >
77 >
78 < // no replicas in schema; the DOR#6 not considered for

load balancing purpose as DOR#4
79 >
80 >
81 >
82 >
83 <P_REPLICA,
84 <0x0006, False, ORACLE_11G, //rDOR #6
85 <REGULAR,
86 <True, False, ’19.July .2014:16:30:00 ’ > // true − use for

integrity check
87 < // here define integrity check configuration
88 >
89 < !@##$%_HASH6_%$##@! ,
90 < PK,
91 < "1−100" >,
92 "SELECT salary FROM Emp WHERE PK BETWEEN 1 AND

100;"
93 >
94 < " Salary " >
95 >
96 < // no replicas in schema; no other replica considered for

integrity check purpose
97 >
98 >
99 >

100 >
101 >
102 >
103 >
104 >
105 < P_REPLICA, // AccessDetails #2 − Layer 3
106 // the DOR #4; blue arrow
107 >
108 < P_REPLICA, // AccessDetails #3 − Layer 4
109 // the DOR #5 and $6; blue arrow
110 >
111 >
112 >
113 >
114 >
115 < "VIRTUAL", RECORD, //AccessObject #2; VIRTUAL − means vertically fragmented ctx element, here ’record’
116 < 0101 >
117 < //Empty − as a VIRTUAL this record is a container that covers vertical fragmentation of 0101

record out of attribute and a tuple >
118
119 < "DB7:HR:Empl", ATTRIBUTE, // Access Object # 3 e.g. another set of records ( entity ) , a single

record , a tuple or an attribute ; starting form gBRI 101
120 < 0101 >
121 < 0x0123, True, MYSQL > //rDOR #123; True − here means that complemented by following

AccessObject for complete record
122 < REGULAR,
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123 < x.x.x.7, 4444,
124 < False, False, ’19.July .2014:16:30:00 ’ >
125 < // no custom communication spec. >
126 < !@##$%_HASH123_%$##@! ,
127 < PK,
128 < "101" >,
129 "SELECT name FROM Emp WHERE PK = 123;"
130 >
131 < "name" >
132 >
133 < // no replicas in schema;
134 >
135 >
136 >
137
138 >
139 < "DB8:HR:Empl", TUPLE, // Access Object # 4 − compliment the Access Object #3 to complete record
140 < 0101 >
141 < 0x0234, True, neo4j > //rDOR #123
142 < REGULAR,
143 < x.x.x.8, 4444,
144 < False, False, ’19.July .2014:16:30:00 ’ >
145 < // no custom communication spec. >
146 < !@##$%_HASH243_%$##@! ,
147 < ID,
148 < "101" >,
149 " MATCH (emp) where emp.id = { 234 }
150 RETURN emp.age, emp.salary; "
151 >
152 < "Age, Salary " >
153 >
154 < // no replicas in schema;
155 >
156 >
157 >
158
159 >
160 >
161 <... // Next records
162 >
163 >





Name Focus Description

DDI Archiving and Social Science
The Data Documentation Initiative is an international effort to establish a standard for technical documentation 
describing social science data. A membership-based Alliance is developing the DDI specification, which is written in 
XML.

EBUCore
The EBUCore metadata set for 
audiovisual content

EBUCore is a set of descriptive and technical metadata based on the Dublin Core and adapted to media. EBUCore is 
the flagship metadata specification of EBU, the largest professional association of broadcasters around the world. It is 
developed and maintained by EBU's Technical Department. EBU has a long history in the definition of metadata 
solutions for broadcasters. EBUCore is registered in SMPTE. It is also available in RDF and the documentation.

EBU CCDM
The EBU Class Conceptual Data 
Model - CCDM

'The EBU Class Conceptual Data Model (CCDM) is an ontology defining a basic set of Classes and properties as a 
common vocabulary to describe programmes in their different phases of creation from commissioning to delivery. 
CCDM is a common framework and users are invited to further enrich the model with Classes and properties fitting 
more specifically their needs.

FOAF Friend of a Friend (FOAF)
The Friend of a Friend (FOAF) project is about creating a Web of machine-readable homepages describing people, the
links between them and the things they create and do.

EAD Archiving
Encoded Archival Description - a standard for encoding archival finding aids using XML in archival and manuscript 
repositories.

CDWA Arts
Categories for the Description of Works of Art is a conceptual framework for describing and accessing information 
about works of art, architecture, and other material culture.

VRA Core Arts
Visual Resources Association – the standard provides a categorical organization for the description of works of visual 
culture as well as the images that document them.

Darwin Core Biology
The Darwin Core is a metadata specification for information about the geographic occurrence of species and the 
existence of specimens in collections.

ONIX Book industry
Online Information Exchange - international standard for representing and communicating book industry product 
information in electronic form.

CWM Data warehousing
The main purpose of the Common Warehouse Metamodel is to enable easy interchange of warehouse and business 
intelligence metadata in distributed heterogeneous environments.

EML Ecology Ecological Metadata Language is a specification developed for the ecology discipline.

IEEE LOM Education Learning Objects Metadata - specifies the syntax and semantics of Learning Object Metadata.

CSDGM Geographic data Content Standard for Digital Geospatial Metadata maintained by the Federal Geographic Data Committee (FGDC).

ISO 19115 Geographic data
The ISO 19115:2003 Geographic information -- Metadata standard defines how to describe geographical information 
and associated services, including contents, spatial-temporal purchases, data quality, access and rights to use. It is 
maintained by the ISO/TC 211 committee.

e-GMS Government
The e-Government Metadata Standard (E-GMS) defines the metadata elements for information resources to ensure 
maximum consistency of metadata across public sector organizations in the UK.

GILS Government/ Organizations
The Global Information Locator Service defines an open, low-cost, and scalable standard so that governments, 
companies, or other organizations can help searchers find information.

TEI Humanities, social sciences and 
linguistics

Text Encoding Initiative - a standard for the representation of texts in digital form, chiefly in the humanities, social 
sciences and linguistics.
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NISO MIX Images
Z39.87 Data dictionary - technical metadata for digital still images (MIX) - NISO Metadata for Images in XML is an 
XML schema for a set of technical data elements required to manage digital image collections.

<indecs> Intellectual property
Indecs Content Model - Interoperability of Data in E-Commerce Systems addresses the need to put different creation 
identifiers and metadata into a framework to support the management of intellectual property rights.

MARC Librarianship
MARC - MAchine Readable Cataloging - standards for the representation and communication of bibliographic and 
related information in machine-readable form.

METS Librarianship
Metadata Encoding and Transmission Standard - an XML schema for encoding descriptive, administrative, and 
structural metadata regarding objects within a digital library.

MODS Librarianship
Metadata Object Description Schema - is a schema for a bibliographic element set that may be used for a variety of 
purposes, and particularly for library applications.

XOBIS Librarianship XML Organic Bibliographic Information Schema - a XML schema for modeling MARC data.

PBCore Media PBCore is a Metadata & Cataloging Resource for Public Broadcasters & Associated Communities

MPEG-7 Multimedia
The Multimedia Content Description Interface MPEG-7 is an ISO/IEC standard and specifies a set of descriptors to 
describe various types of multimedia information and is developed by the Moving Picture Experts Group.

MEI Music notation
Music Encoding Initiative is a community-driven effort to create a commonly accepted, digital, symbolic 
representation of music notation documents.

Dublin Core Networked resources Dublin Core - interoperable online metadata standard focused on networked resources.

DOI Networked resources
Digital Object Identifier - provides a system for the identification and hence management of information ("content") 
on digital networks, providing persistence and semantic interoperability.

ISO/IEC 
11179[8]

Organizations
ISO/IEC 11179 Standard that describes the metadata and activities needed to manage data elements in a registry to 
create a common understanding of data across organizational elements and between organizations.

ISO/IEC 
19506[9]

Software Systems

ISO/IEC 19506 Standard called Knowledge Discovery Metamodel is an ontology for describing software systems. 
The standard provides both a detailed ontology and common data format for representing granular software objects 
and their relationships enabling the extractions such as data flows, control flows, call maps, architecture, database 
schemas, business rules/terms and the derivation of business processes. Used primarily for legacy and existing 
systems security, compliance and modernization.

ISO 
23081[10]

Records management
ISO 23081 - three-part technical specification defining metadata needed to manage records. Part 1 addresses 
principles, part 2 addresses conceptual and implementation issues, and part 3 outlines a self-assessment method.

MoReq2010 Records management MoReq2010 - A specification describing the MOdel REQuirements for the management of electronic records.

DIF Scientific data sets
Directory Interchange Format - a descriptive and standardized format for exchanging information about scientific data
sets.

RDF Web resources
General method for conceptual description or modeling of information that is implemented in web resources, using a 
variety of syntax formats.

MDDL Financial market

The (Financial) Market Data Definition Language (MDDL) has been developed by the Financial Information Services
Division (FISD) of the Software and Information Industry Association (SIIA). MDDL is an extensible Markup 
Language (XML) derived specification, which facilitates the interchange of information about financial instruments 
used throughout the world financial markets. MDDL helps in mapping all market data into a common language and 
structure to ease the interchange and processing of multiple complex data sets.

NIEM Law enforcement; Social services; NIEM—the National Information Exchange Model—is a community-driven, US government-wide, standards-based 

Enterprise resource planning

approach to exchanging information. NIEM's data domains are growing standards developed and maintained by 
domain communities. These are just some sample domains included or being developed in NIEM: Justice; National 
Security Intelligence; Biometrics (for Law enforcement); Emergency Management; Security Screening; Human 
Services; Children, Youth, and Family Services; Health Services; Immigration; National Infrastructure Protection; 
Government Resources Management.

SAML

Shibboleth has been evolved by 
Internet2/MACE. It provides a method 
of distributed authentication and 
authorization for participating 
HTTP(S) based applications.

Security Assertion Markup Language is an XML-based open standard data format for exchanging authentication and 
authorization data between parties. A schema example can be found on OASIS (Advancing open standards for the 
information society)

Figure B.1: Metamodel standards
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Class Category Subcategory Examples

Language

Encoding

Ingest
Encoding
Mismatch

For example, ASCII v UTF-8

Ingest
Encoding
Lacking

Mis-recognition of tokens because not being parsed with the proper encoding

Query
Encoding
Mismatch

For example, ASCII v UTF-8 in search

Query
Encoding
Lacking

Mis-recognition of search tokens because not being parsed with the proper encoding

Languages

Script
Mismatch Variations in how parsers handle, say, stemming, white spaces or hyphens

Parsing /
Morphological
Analysis
Errors (many)

Arabic languages (right-to-left) v Romance languages (left-to-right)

Syntactical
Errors (many)

Ambiguous sentence references, such as I'm glad I'm a man, and so is Lola (Lola by Ray
Davies and the Kinks)

Semantics
Errors (many) River bank v money bank v billiards bank shot

Conceptual

Naming

Case
Sensitivity Uppercase v lower case v Camel case

Synonyms United States v USA v America v Uncle Sam v Great Satan

Acronyms United States v USA v US

Homonyms Such as when the same name refers to more than one concept, such as Name referring to a
person v Name referring to a book

Misspellings As stated

Generalization /
Specialization

When single items in one schema are related to multiple items in another schema, or vice
versa. For example, one schema may refer to "phone" but the other schema has multiple
elements such as "home phone", "work phone" and "cell phone"

Aggregation

Intra-
aggregation

When the same population is divided differently (such as, Census v Federal regions for states,
England v Great Britain v United Kingdom, or full person names v first-middle-last)

Inter-
aggregation May occur when sums or counts are included as set members

Internal Path Discrepancy Can arise from different source-target retrieval paths in two different schemas (for example,
hierarchical structures where the elements are different levels of remove)

Missing Item

Content
Discrepancy

Differences in set enumerations or including items or not (say, US territories) in a listing of
US states

Missing
Content Differences in scope coverage between two or more datasets for the same concept

Attribute List
Discrepancy Differences in attribute completeness between two or more datasets

Missing
Attribute Differences in scope coverage between two or more datasets for the same attribute

Item Equivalence

When two types (classes or sets) are asserted as being the same when the scope and reference
are not (for example, Berlin the city v Berlin the official city-state)

When two individuals are asserted as being the same when they are actually distinct (for
example, John F. Kennedy the president v John F. Kennedy the aircraft carrier)

Type Mismatch When the same item is characterized by different types, such as a person being typed as an
animal v human being v person

Constraint Mismatch When attributes referring to the same thing have different cardinalities or disjointedness
assertions

Element-value
to Element-
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Domain

Schematic
Discrepancy

label Mapping

One of four errors that may occur when attribute names (say, Hair v Fur) may refer to the
same attribute, or when same attribute names (say, Hair v Hair) may refer to different
attribute scopes (say, Hair v Fur) or where values for these attributes may be the same but
refer to different actual attributes or where values may differ but be for the same attribute and
putative value.

Many of the other semantic heterogeneities herein also contribute to schema discrepancies

Attribute-
value to
Element-label
Mapping

Element-value
to Attribute-
label Mapping

Attribute-
value to
Attribute-label
Mapping

Scale or
Units

Measurement
Type Differences, say, in the metric v English measurement systems, or currencies

Units Differences, say, in meters v centimeters v millimeters

Precision For example, a value of 4.1 inches in one dataset v 4.106 in another dataset

Data
representation

Primitive Data
Type Confusion often arises in the use of literals v URIs v object types

Data Format
Delimiting decimals by period v commas; various date formats; using exponents or aggregate
units (such as thousands or millions)

Data

Naming

Case
Sensitivity Uppercase v lower case v Camel case

Synonyms For example, centimeters v cm

Acronyms For example, currency symbols v currency names

Homonyms Such as when the same name refers to more than one attribute, such as Name referring to a
person v Name referring to a book

Misspellings As stated

ID Mismatch or Missing ID URIs can be a particular problem here, due to actual mismatches but also use of name spaces
or not and truncated URIs

Missing Data A common problem, more acute with closed world approaches than with open world ones

Element Ordering Set members can be ordered or unordered, and if ordered, the sequences of individual
members or values can differ

Figure B.2: Classification of Semantic Heterogeneity Sources (See [203])
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Listing B.1: OWL/XML Syntax for Ontology

1 <!DOCTYPE Ontology [
2 <!ENTITY xsd "http://www.w3.org/2001/XMLSchema#" >
3 <!ENTITY rdfs "http://www.w3.org/2000/01/rdf-schema#" >
4 ]>
5
6 <Ontology
7 xml:base="http://example.com/owl/families/"
8 ontologyIRI="http://example.com/owl/families"
9 xmlns="http://www.w3.org/2002/07/owl#">

10
11 <Prefix name="owl" IRI="http://www.w3.org/2002/07/owl#"/>
12 <Prefix name="otherOnt" IRI="http://example.org/otherOntologies/families/"/>
13 <Import>http://example.org/otherOntologies/families.owl</Import>
14
15 <!-- Indyviduals -->
16 <Declaration>
17 <NamedIndividual IRI="John"/>
18 </Declaration>
19 <Declaration>
20 <NamedIndividual IRI="James"/>
21 </Declaration>
22 <Declaration>
23 <NamedIndividual IRI="Jim"/>
24 </Declaration>
25 <Declaration>
26 <NamedIndividual IRI="Mary"/>
27 </Declaration>
28
29 <!--Classes -->
30 <Declaration>
31 <Class IRI="Person"/>
32 </Declaration>
33 <Declaration>
34 <Class IRI="Woman"/>
35 </Declaration>
36 <Declaration>
37 <Class IRI="Parent"/>
38 </Declaration>
39 <Declaration>
40 <Class IRI="Father"/>
41 </Declaration>
42
43 <!-- Properties -->
44 <Declaration>
45 <ObjectProperty IRI="hasWife"/>
46 </Declaration>
47 <Declaration>
48 <ObjectProperty IRI="hasChild"/>
49 </Declaration>
50
51 <Declaration>
52 <Datatype IRI="personAge"/>
53 </Declaration>
54
55 <DatatypeDefinition>
56 <Datatype IRI="personAge"/>
57 <DatatypeRestriction>
58 <Datatype IRI="&xsd;integer"/>
59 <FacetRestriction facet="&xsd;minInclusive">
60 <Literal datatypeIRI="&xsd;integer">0</Literal>
61 </FacetRestriction>
62 <FacetRestriction facet="&xsd;maxInclusive">
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63 <Literal datatypeIRI="&xsd;integer">150</Literal>
64 </FacetRestriction>
65 </DatatypeRestriction>
66 </DatatypeDefinition>
67
68 <!-- Axiom with Annotation in Class Hierarchy relationships-->
69 <SubClassOf>
70 <Annotation>
71 <AnnotationProperty IRI="&rdfs;comment"/>
72 <Literal datatypeIRI="xsd:string">"States that every man is a person."</Literal>
73 </Annotation>
74 <Class IRI="Man"/>
75 <Class IRI="Person"/>
76 </SubClassOf>
77
78 <!-- Restriction -->
79 <EquivalentClasses>
80 <Class IRI="Parent"/>
81 <ObjectSomeValuesFrom>
82 <ObjectProperty IRI="hasChild"/>
83 <Class IRI="Person"/>
84 </ObjectSomeValuesFrom>
85 </EquivalentClasses>
86
87 <DataPropertyDomain>
88 <DataProperty IRI="hasAge"/>
89 <Class IRI="Person"/>
90 </DataPropertyDomain>
91 <DataPropertyRange>
92 <DataProperty IRI="hasAge"/>
93 <Datatype IRI="http://www.w3.org/2001/XMLSchema#nonNegativeInteger"/>
94 </DataPropertyRange>
95
96 <SubClassOf>
97 <Class IRI="Father"/>
98 <ObjectIntersectionOf>
99 <Class IRI="Man"/>

100 <Class IRI="Parent"/>
101 </ObjectIntersectionOf>
102 </SubClassOf>
103
104 <SubClassOf>
105 <ObjectIntersectionOf>
106 <ObjectOneOf>
107 <NamedIndividual IRI="Mary"/>
108 <NamedIndividual IRI="Bill"/>
109 <NamedIndividual IRI="Meg"/>
110 </ObjectOneOf>
111 <Class IRI="Female"/>
112 </ObjectIntersectionOf>
113 <ObjectIntersectionOf>
114 <Class IRI="Parent"/>
115 <ObjectMaxCardinality cardinality="1">
116 <ObjectProperty IRI="hasChild"/>
117 </ObjectMaxCardinality>
118 <ObjectAllValuesFrom>
119 <ObjectProperty IRI="hasChild"/>
120 <Class IRI="Female"/>
121 </ObjectAllValuesFrom>
122 </ObjectIntersectionOf>
123 </SubClassOf>
124
125 <SameIndividual>
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126 <NamedIndividual IRI="James"/>
127 <NamedIndividual IRI="Jim"/>
128 </SameIndividual>
129
130 <!-- Object Property -->
131 <ObjectPropertyAssertion>
132 <ObjectProperty IRI="hasWife"/>
133 <NamedIndividual IRI="John"/>
134 <NamedIndividual IRI="Mary"/>
135 </ObjectPropertyAssertion>
136
137 <ClassAssertion>
138 <Class IRI="SocialRole"/>
139 <NamedIndividual IRI="Father"/>
140 </ClassAssertion>
141
142 </Ontology>
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Figure C.2: Multi user.

Figure C.3: Query throughput.

1Source: Cloudera Inc. http://blog.cloudera.com/wp-content/uploads/2014/05/single-user.png
2Source: Hortonworks Inc. http://hortonworks.com/wp-content/uploads/2013/10/Hive12deux.png
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Figure C.4: CPU

(a) Hive 0.10

(b) Hive 0.13

(c) Hive / Stinger.next

Figure C.5: Hive Stinger Evolution
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(a) Hive 0.12

(b) Hive 0.13 (c) Hive 0.14

Figure C.6: Hive Stinger Phases 2

Figure C.7: Hive versions benchmarks for Stinger Initiative results
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