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Abstract

Living cells process informaࢢon about their internal state as well as environmental cues to
make decisions on their physiological acࢢvity or epigeneࢢc idenࢢty. Coordinated biochemi-
cal processes that enable informed cellular decision-making are (i) inherently stochasࢢc, (ii)
organized spaࢢally within the cell, (iii) based on nonlinear regulatory elements, and o[en
(iv) marked by combinatorial complexity. These immanent features of cell signaling should
be considered both separately—to gain insight through applicaࢢon of mathemaࢢcal meth-
ods—and simultaneously—to understand more realisࢢc cellular milieu. While there are nu-
merous studies in which these features are considered in isolaࢢon, construing and analyzing
models that combine them is far less common. This thesis comprises results of studies of
model cell signaling systems in which at least two of the above-menࢢoned features are con-
sidered simultaneously. The studies, published in seven research arࢢcles (listed separately),
were performed by creaࢢng computaࢢonal models and analyzing their properࢢes by means
of numerical simulaࢢons, in part with the use of an author-created so[ware tool.

Intricate relaࢢons between spaࢢal and stochasࢢc phenomenaweredemonstrated in gene-
ric biochemical systems, either monostable or bistable, where only kinase, phosphatase, and
substrate molecules were present. Results for such simpliCed systems, obtained by perform-
ing kineࢢc Monte Carlo simulaࢢons on the laࢰce, can be summarized as follows:

• In amonostable generic reacࢢon cycle themembrane, an analyࢢcal formula was found
that describes the dependence of the e@ecࢢve macroscopic reacࢢon rate coeLcients
on the microscopic rate constants and e@ecࢢve (molecular crowding-dependent) di@u-
sivity of reactants. The analyࢢcal result was conCrmed to agree with numerical results
of stochasࢢc simulaࢢons on the laࢰce for a wide range of reactant concentraࢢons and
di@usiviࢢes.

• In a bistable systemon themembrane it was demonstrated that a spontaneous onset of
acࢢvity can be radicallymore probable in subdomains characterized by slower di@usion.
A local immobilizaࢢon of reactants may lead to global acࢢvaࢢon of membrane proteins
by a mechanism that involves stochasࢢc Yuctuaࢢons followed by the propagaࢢon of
a semi-determinisࢢc traveling wave.

The so[ware tool capable of performing on-laࢰce simulaࢢons of di@using and reacࢢngmole-
cules, SPATKIN , was developed in the formof a general-purpose simulator of reacࢢon–di@usion
systems, that works at the single-molecule resoluࢢon in two spaࢢal dimensions. The tool can
account for internal chemical states of molecules (to accommodate, e.g., post-translaࢢonal
modiCcaࢢons), implemenࢢng so-called rule-based approach to modeling of biomolecular in-
teracࢢons.
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Complex dynamics arising frommulࢢple nonlineariࢢes (intertwined negaࢢve and posiࢢve
feedback loops) in conjuncࢢon with either stochasࢢcity or/and spaࢢal organizaࢢon is studied
in models of speciCc cell signaling systems: the NF-κB network controlling innate immune
responses, pƂƀ network involved in DNA damage response, and the ERK network responsi-
ble for growth factor signaling. Results for these systems, obtained mainly through Gillespie
algorithm-based simulaࢢons of Markov chain models and numerical bifurcaࢢon analyses of
their determinisࢢc approximaࢢons, demonstrate that:

• In the NF-κB system, a posiࢢve feedback arising due to the autocrine regulaࢢon via
TNFα is responsible for the existenceof limit-cycle oscillaࢢons of nucleus-localizedNF-κB
in non-sࢢmulated wild-type cells and for bistability in cells that lack an NF-κB inhibitor,
AſŽ: wild-type cells characterized by high secreࢢon of TNFα or high expression of its
receptor exhibit sustained nuclear NF-κB oscillaࢢons, which may start spontaneously
due to stochasࢢc Yuctuaࢢons, whereas AſŽ-deCcient cells exhibit long-lasࢢng NF-κB
acࢢvaࢢon in response to a short-pulsed TNFα sࢢmulaࢢon, even at low TNFα expres-
sion.

• At the condiࢢons of persistent DNA damage, the dynamical structure of the pƂƀ core
network allows for the coexistence of a stable limit cycle, associated with cell cycle ar-
rest, and a stable steady state, characterized by a high level of a pƂƀ phosphoform that
induces apoptosis. The coexistence is possible because of a Neimark–Sacker bifurca-
.onࢢ The two soluࢢons delineate disࢢnct temporal core-system responses, that can
be unambiguously interpreted by two subordinated bistable modules responsible for
controlling cell cycle arrest and apoptosis.

• Experimentally observed pulses of phosphorylated ERK, of frequency that depends on
the level of growth factor sࢢmulaࢢon, can be explained within a computaࢢonal model
that exhibits relaxaࢢon oscillaࢢons. Detailed bifurcaࢢon analysis shows that parࢢcular
regulatory roles can be associated with each considered feedback loop. Spaࢢal mod-
eling suggests that, in addiࢢon to me-scaleࢢ separaࢢon, subcellular organizaࢢon of
feedback loops can be important for the mechanism of acࢢvaࢢon of growth factor sig-
naling.

Overall, results contained in this thesis suggest that biochemical implementaࢢons of cel-
lular decision-making mechanisms may tread a Cne balance between stochasࢢc and deter-
minisࢢc phenomena. Likely, cells need to acࢢvely maintain condiࢢons that allow them to
operate at such a boundary. Computaࢢonal models of biological systems, created and ana-
lyzed from this perspecࢢve, explain how coupled nonlinear regulatory elements are capable
of biochemical informaࢢon processing in the presence of noise. Themodels are able to repro-
duce or predict the behavior of both “normal” cells and cells that are perturbed—as a result
of applicaࢢon of molecular engineering techniques or due to an oncogenic transformaࢢon.
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Streszczenie

Kinetyka układów biochemicznych
analizowana za pomocą symulacji numerycznych

Komórki organizmów żywych przetwarzają informacje dotyczące ich wewnętrznego stanu
oraz bodźce pochodzące ze środowiska zewnętrznego, dzięki czemu mogą podejmować de-
cyzje dotyczące swojej bieżącej aktywności Czjologicznej bądź, w dłuższej skali czasu, epige-
netycznej tożsamości. Skoordynowane procesy biochemiczne, które pozwalają na podejmo-
wanie takich decyzji, są: (i) stochastyczne, (ii) zorganizowane przestrzennie w komórce, (iii)
oparte na nieliniowych elementach regulacyjnych oraz często (iv) wykazują znaczną złożo-
ność kombinatoryczną. Te własności komórkowych układów sygnalizacyjnych powinny być
analizowane zarówno z osobna—umożliwiając zastosowanie metod matematycznych—jak
i razem—aby zrozumieć realistyczne uwarunkowania mechanizmów zaangażowanych w prze-
twarzanie sygnałów w komórce. Wymienionym własnościom rozważanym z osobna poświę-
conowiele prac, natomiast łączne ujęcia tychże są rzadsze. Niniejsza rozprawa zawiera wyniki
analiz modeli komórkowych układów sygnalizacyjnych, w których uwzględnione zostały co
najmniej dwie spośród wyżej wymienionych własności. Opublikowane w siedmiu artykułach
badania przeprowadzono tworząc modele obliczeniowe i badając ich własności za pomocą
symulacji numerycznych z wykorzystaniem oprogramowania skonstruowanego przez autora.

Współzależność zjawisk stochastycznych i przestrzennych została przeanalizowana w uo-
gólnionych modelach jedno- i dwustabilnych układów biochemicznych, w których dla uprosz-
czenia występują jedynie kinazy, fosfatazy oraz ich substraty. Badając takie układy z wykorzy-
staniem metody kinetycznego Monte Carlo na sieci pokazano, że:

• Dla cyklu reakcji na błonie, mającego jeden stan stabilny, można analitycznie opisać
zależność makroskopowych współczynników temp reakcji od współczynników mikro-
skopowych i efektywnych (zależnych od zatłoczenia molekularnego) współczynników
dyfuzji reagentów, a otrzymany wynik analityczny jest zgodny z wynikami symulacji dla
szerokiego zakresu stężeń i współczynników dyfuzji reagentów.

• W dwustabilnym układzie reakcji na błonie komórkowej samoczynna aktywacja jest
bardziej prawdopodobna w obszarach reaktora charakteryzujących się wolniejszą dy-
fuzją. Lokalne unieruchomienie reagentów może prowadzić do aktywacji całego reak-
tora z użyciem mechanizmu, w którym lokalna aktywacja wynikająca ze stochastycznej
Yuktuacji daje początek propagującej się semi-deterministycznie fali biegnącej.

Narzędzie numeryczne do prowadzenia symulacji dyfundujących na sieci i reagujących cząste-
czek przygotowanow postaci programu komputerowego SPATKIN pozwalającego na symulację
dowolnych układów reakcji–dyfuzji z jednocząsteczkową rozdzielczością. Narzędzie uwzględ-
nia stan wewnętrzny cząsteczek (np. modyCkacje potranslacyjne), implementując tzw. mode-
lowanie oparte na regułach (ang. rule-based modeling).
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Złożona nieliniowa dynamika regulowana działaniem wielu pętli sprzężeń zwrotnych do-
datnich i ujemnych w połączeniu ze stochastycznością i/albo przestrzenną organizacją była
przedmiotem badań prowadzonych na modelach trzech biologicznie istotnych sieci sygnali-
zacyjnych kontrolujących odpowiedź na stres: sieci kluczowego dla wrodzonej odpowiedzi
odpornościowej czynnika transkrypcyjnego NF-κB, sieci czynnika transkrypcyjnego pƂƀ zaan-
gażowanegowodpowiedź na uszkodzenie DNA, oraz kaskady kinaz aktywującej ERK podwpły-
wem czynników wzrostu. Symulacje stochastyczne w postaci łańcuchów Markowa przepro-
wadzone według algorytmu Gillespiego oraz numeryczne analizy bifurkacyjne ich determini-
stycznych przybliżeń pokazały, że:

• Sprzężenie zwrotne dodatnie wynikające z autokrynnej stymulacji poprzez TNFα jest
odpowiedzialne za oscylacje (cykl graniczny) jądrowej frakcji NF-κB w niestymulowa-
nych komórkach typu dzikiego oraz za dwustabilność w komórkach pozbawionych AſŽ
– inhibitora NF-κB. Komórki typu dzikiego o wysokim poziomie ekspresji TNFα lub jego
receptora wykazują niegasnące oscylacje jądrowej frakcji NF-κB, które mogą być zaini-
cjowane wskutek stochastycznej Yuktuacji; komórki pozbawione AſŽ w odpowiedzi na
krótką pulsową stymulację TNFα wykazują długotrwałą aktywację NF-κB, nawet gdy
poziom ekspresji TNFα jest niski.

• Wwarunkach trwałego uszkodzenia DNA dynamiczna struktura sieci regulatorowej pƂƀ
wykazuje współistnienie stabilnego cyklu granicznego, istotnego dla fosfoformy pƂƀ in-
dukującejwstrzymanie cyklu komórkowego, oraz stabilnego stanu stacjonarnego, w któ-
rym wysoki poziom osiąga fosfoforma pƂƀ indukująca apoptozę. Oba rozwiązania, któ-
rych współistnienie umożliwia bifurkacja Neimarka–Sackera, wyznaczają odmienne w
czasie odpowiedzi układu, które są jednoznacznie interpretowane przez dwa podpo-
rządkowane moduły kontrolujące wstrzymanie cyklu komórkowego i apoptozę.

• Pokazano, że eksperymentalnie obserwowane pulsy aktywności kinazy ERK, o częstotli-
wości zależnej od poziomu stymulacji czynnikiem wzrostu, można wyjaśnić w ramach
modelu wykazującego relaksacyjne oscylacje. Przeprowadzając analizę bifurkacyjną,
przypisano znaczenie dla dynamiki aktywacji ERK każdemu sprzężeniu zwrotnemu, które
zostało uwzględnione w modelu. Dodatkowo modelowanie przestrzenne wykazało, że
subkomórkowa organizacja sprzężeń może mieć znaczenie dla mechanizmu aktywacji
rozważanej ścieżki.

Uzyskane wyniki sugerują, że komórkowe mechanizmy podejmowania decyzji działają na
pograniczu zjawisk stochastycznych i deterministycznych. W komórce pogranicze to istot-
nie zależy od—i prawdopodobnie może być kontrolowane przez—określone warunki bioC-
zyczne. Osadzone w tym kontekście obliczeniowe modele układów biologicznych wyjaśniają,
jak sprzężone, nieliniowe elementy regulacyjne mogą w obecności szumu molekularnego
przetwarzać informację biochemiczną, pozwalając zrozumieć zachowanie komórek zarówno
„normalnych”, jak i zmodyCkowanych przez zastosowanie metod inżynierii molekularnej bądź
wskutek transformacji nowotworowej.
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ž Moࢢvaࢢon

The phenomenonof life eludes a simple deCniࢢon but undeniably and crucially relies onmulࢢ-

ple ghtlyࢢ coupled biochemical processes.ž These processes take place in cells—highly struc-

tured and dynamic biochemical reactors that take up resources from the environment and

cooperate in order to survive and proliferate.ſ Cells are required to properly interpret and

robustly respond to speciCc biochemical signals in Yuctuaࢢng external condiࢢons. Cellular in-

formaࢢon processing and decision making may a@ect current metabolic acࢢvity of the cell or

alter its gene expression proCle, having consequences at mulࢢple scales in meࢢ and space.ƀ

The repertoire of possible physiological responses or developmental paths appear to be

limited to a predeCned set of “programs”. The most clear examples are dichotomous survival

strategies of unicellular organismsƁ and diverse epigeneࢢc idenࢢࢢes of di@erenࢢated cells of

mulࢢcellular organisms.Ƃ In mathemaࢢcal terms, these “programs” can be associated with

a�ractors of a dynamical system. The sole dynamical structure of a system of biochemical

reacࢢons does not fully prescribe its behavior, because parࢢcular properࢢes of the intracel-

lular milieuƃ impose a strong impact on biochemical processes occurring therein: the inYu-

ence of randomness, inherent in chemical reacࢢons, is o[en ampliCed by a relaࢢvely small

number of reacࢢng molecules; di@usive transport is hindered by Cbrillar and membranous

obstacles; cooperaࢢvity and saturaࢢon, not to menࢢon feedback loops, render biochemical

kineࢢcs non-linear.

These properࢢes, described inmore detail in the Background secࢢon, have to be reYected

in mathemaࢢcal models of cellular processes. Only then can they reproduce the rich reper-

toire of, someࢢmes illusively chaoࢢc, cell behaviors that are observed in experiments. For

instance, commitment to and persistence in a given “program” may be analyzed in terms

of (noise-induced) transiࢢons between respecࢢve a�ractor basins.Ƅ Development of models

of cell signaling systems with a strong support from experimental data has been enabled by

recent progress in experimental single-cell techniques,ƅ such as digital polymerase chain reac-

,onࢢ Yuorescence-acࢢvated cell sorࢢng, microYuidic cell cultures, and, probably most impor-

tantly, Yuorescence microscopy which, when applied to live cells with Yuorescently tagged

molecules, can provide a wealth of temporal and spaࢢal data, and to a great extent capture

heterogeneity of cell populaࢢons.
žBerg J. et al., Biochemistry, ƅth ed. (Macmillan Learning, London, England, ſŽžƂ).
ſAlberts B. et al.,Molecular Biology of the Cell, ƃth ed. (Garland Science, New York, USA, ſŽžƁ).
ƀLim W. et al., Cell Signaling: Principles and Mechanisms (Garland Science, New York, USA, ſŽžƁ).
ƁPtashne M., A Geneࢡc Switch: Phage Lambda Revisited (Cold Spring Harbor Laboratory Press, USA, ſŽŽƁ).
ƂLang A. H. et al. (ſŽžƁ) PLOS Comput. Biol. žŽ, ežŽŽƀƄƀƁ.
ƃPhillips R. et al., Physical Biology of the Cell, ſnd ed. (Garland Science, New York, USA, ſŽžſ).
ƄChoi M. et al. (ſŽžſ) Sci. Signal. Ƃ, raƅƀ.
ƅLindström S. & Andersson-Svahn H., eds., Single-Cell Analysis (Humana Press, New York, USA, ſŽžſ).
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ſ Moࢡvaࢡon

Data originaࢢng from such cell-biology experiments are more and more of quanࢢtaࢢve

character, supporࢢng the stance from which biology is viewed as the “mathemaࢢcs’ new

physics.”Ɔ The mulࢢtude and diversity of biomolecules and vastness of the network of their

interacࢢons, however, rule out direct applicaࢢon of tradiࢢonal analyࢢcal approaches. Even

when, under some assumpࢢons, analyࢢcal methods are applicable, they need to be con-

fronted with results of computer simulaࢢons (that may be free of some of these assump-

.(onsࢢ Computer simulaࢢons can also uࢢlize exactly solvable microscopic models in order

to calibrate more coarse-grained simulaࢢonal approaches (similarly as quantum mechanical

calculaࢢons can be used to parameterize classical mechanical force Celds pervasive in molec-

ular dynamics simulaࢢons). A mulࢢ-resoluࢢon “computaࢢonal microscope” appears to be an

ideal tool to move across spaࢢal and temporal scales of biological organizaࢢon. Phenomeno-

logical computaࢢonal models are an indispensable and convenient vehicle to integrate and

concisely summarize the aZuence of data—to the extent that biology, if desired to be seen,

akin to physics, from a generalized, systems perspecࢢve, probably can only be computaࢢonal.

Models in systems biology are soluࢢons to inverse problems—educated guesses on the

structure and meࢢ scales of a regulatory network given its experimentally observed behavior.

Viewed as executable metaphors that propose and put to test speciCc design principles, com-

putaࢢonal models and associated numerical methods help also to understand fundamental

biophysical principles and emergent phenomena underlying the workings of the cell. Useful

models not only quanࢢtaࢢvely describe observaࢢons but also o@er predicࢢons, although the

border between the two is o[en blurred. High descripࢢve or predicࢢve power of computa-

onalࢢ models of the key regulatory networks make them relevant for understanding from

the systems perspecࢢve the roots of pathological cell malfuncࢢonžŽ and mulࢢmodal impact

of therapeuࢢc agents,žž raising hopes to contribute to strengthening the available medical

armamentarium.žſ, žƀ

ƆCohen J. E. (ſŽŽƁ) PLoS Biol. ſ, eƁƀƆ.
žŽHuang S. et al. (ſŽŽƆ) Semin. Cell Dev. Biol. ſŽ, ƅƃƆ–ƅƄƃ.
žžArrell D. K. & Terzic A. (ſŽžŽ) Clin. Pharmacol. Ther. ƅƅ, žſŽ–žſƂ.
žſIdeker T. & Sharan R. (ſŽŽƅ) Genome Res. žƅ, ƃƁƁ–ƃƂſ.
žƀWolkenhauer O. et al. (ſŽžƀ) Pediatr. Res. Ƅƀ, ƂŽſ–ƂŽƄ.

http://dx.doi.org/10.1371/journal.pbio.0020439
http://dx.doi.org/10.1016/j.semcdb.2009.07.003
http://dx.doi.org/10.1038/clpt.2010.91
http://dx.doi.org/10.1101/gr.071852.107
http://dx.doi.org/10.1038/pr.2013.4


ƀ

ſ Background

ſ.ž Molecular noise

Biochemical processes have an inextricable stochasࢢc component, referred to as the intrin-

sic noise, that results from randomness of di@usive collisions of biomolecules and from their

discreteness. When the copy numbers of biomolecules per cell are low, relaࢢve changes

of their abundance, resulࢢng from randomness in their producࢢon and degradaࢢon, can be

signiCcant. Since the copy numbers of genes are usually as low as ž or ſ, gene acࢢvaࢢon is

notoriously noisy.žƁ, žƂMessenger RNA is reported to be produced in randomburstsžƃ of vary-

ing magnitude.žƄ In populaࢢons of cells, intrinsic noise is suLcient to introduce phenotypic

heterogeneity.žƅ In the presence of nonlinear response to signal, intrinsic noise is predicted

to be able to increase system sensiࢢvity by means of stochasࢡc focusing.žƆ, ſŽ

Ambient sources of uncertainty, that a@ect cellular processes of interest in a randomman-

ner, in the form of Yuctuaࢢons of environmental condiࢢons and variability of the intracellular

state, are collecࢢvely termed extrinsic noise.ſž The extrinsic di@erences among cells result

primarily from uneven distribuࢢon of proteins, molecular machines, and organelles upon cell

division.ſſ Dual reporter studies suggest that the intrinsic and extrinsic contribuࢢons to non-

geneࢢc cell variability can be considered to a some extent independently.ſƀ, ſƁ, ſƂ

Although molecular noise imposes stringent limits on the accuracy of sensing by single

cells,ſƃ, ſƄ, ſƅ at the level of the whole cell populaࢢon the noise-generated phenotypic het-

erogeneity may turn out advantageous in the case when external condiࢢons change.ſƆ, ƀŽ

žƁNovick A. &Weiner M. (žƆƂƄ) Proc. Natl Acad. Sci. USA Ɓƀ, ƂƂƀ–Ƃƃƃ.
žƂMcAdams H. H. & Arkin A. (žƆƆƆ) Trends Genet. žƂ, ƃƂ–ƃƆ.
žƃRaj A. et al. (ſŽŽƃ) PLoS Biol. Ɓ, eƀŽƆ.
žƄSuter D. M. et al. (ſŽžž) Science ƀƀſ, ƁƄſ–ƁƄƁ.
žƅSpudich J. L. & Koshland D. E. (žƆƄƃ) Nature ſƃſ, ƁƃƄ–ƁƄž.
žƆHarton M. D. & Batchelor E. (ſŽžƄ) J. Mol. Biol. ƁſƆ, žžƁƀ–žžƂƁ.
ſŽPaulsson J. et al. (ſŽŽŽ) Proc. Natl Acad. Sci. USA ƆƄ, ƄžƁƅ–ƄžƂƀ.
ſžNewman J. R. S. et al. (ſŽŽƃ) Nature ƁƁž, ƅƁŽ–ƅƁƃ.
ſſHuh D. & Paulsson J. (ſŽžž) Nat. Genet. Ɓƀ, ƆƂ–žŽŽ.
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ſ.ſ Spaࢢal organizaࢢon of cell signaling

SpeciCcity of interacࢢng molecules is augmented by intricacies of subcellular structures that

localize and spaࢢally organize components of biochemical systems. Spaࢢal segregaࢢon or

conCnement of biomolecules is a simple mean of a�aining modularity and limiࢢng crosstalk.

Most straigh�orwardly, the cell is compartmentalized into cytoplasm and nucleus, and de-

limited by the plasma membrane. Cells have to select, preprocess and convey relevant mes-

sages—such as the presence of a cytokine or presentaࢢon of a protein on the surface of

a neighboring cell— from outside to cell interior so that a subsequent chain of events can

adjust current cell behavior or, on a longer meࢢ scale, modulate gene expression.ƀž

Signaling throughmany pathways is iniࢢated at the plasmamembraneƀſ upon ligand bind-

ing by receptors that subsequentlymulࢢmerize and self-acࢢvate by trans-autophosphorylaࢢon

or conformaࢢonal changes.ƀƀ The number of receptors per clusterƀƁ and the number of clus-

ters that need to be formed to induce a fully-Yedged cell response can be very low.ƀƂ Slow dif-

fusion ofmembrane proteins (of order of Ž.ž μmſs–ž, which is in turn at least an order ofmag-

nitude lower than in the cytosolƀƃ) and their parࢢࢢoning into semi-permeable submicron-

sized membrane regionsƀƄ cause that membrane receptors and their clusters work virtually

in isolaࢢon, enhancing noise at the iniࢢal stages of signal transducࢢon.ƀƅ Esࢢmaࢢon of the

Cdelity ofmeasuring the concentraࢢon of a chemoa�ractant by (individual)membrane recep-

tors has been the subject of a seminal žƆƄŽs paper by Berg & Purcell.ƀƆ Biochemical reacࢢons

on the plasma membrane are expected to be di@usion-limited and also strongly inYuenced

by the presence of chemically inert, but someࢢmes non-speciCcally interacࢢng, molecular

“crowders”.ƁŽ These e@ects are signiCcant due to the essenࢢally two-dimensional geometry

of the membrane and the fact that as much as nearly half of the membrane surface area is

occupied by proteins.Ɓž

To relay the signal to the cell interior, acࢢvatedmembrane receptors recruit specialized cy-

toplasmic adaptor proteins.Ɓſ These adaptors subsequently recruit cytoplasmic messengers

that get acࢢvated, usually through phosphorylaࢢon, and a[er unbinding leave di@usively

the membrane-proximal zone. Their acࢢvity can be quenched by cytosolic phosphatases,

ƀžKholodenko B. N. et al. (ſŽžŽ) Nat. Rev. Mol. Cell. Biol. žž, ƁžƁ–Ɓſƃ.
ƀſGrecco H. E. et al. (ſŽžž) Cell žƁƁ, ƅƆƄ–ƆŽƆ.
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generaࢢng a gradient of phosphorylated substrate, that extends into the cytoplasm.Ɓƀ It is

worth to remind that when a biochemical signal is propagated di@usively, its magnitude is

damped over meࢢ and its spaࢢal range scales as the square root of .meࢢ To miࢢgate both

these limitaࢢons, in the presence of a posiࢢve feedback the signal can be propagated with

a non-decreasing strength and constant velocity by means of a chemical traveling waveƁƁ

(resembling the calcium wave that is iniࢢated at the sperm entry point and spreads across

the ferࢢlized egg). Detailed spaࢢal aspects of the cell signaling mechanisms that underlie the

processes of cell moࢢlity and migraࢢon reckon the direcࢢonal character of external cues.ƁƂ

If, ulࢢmately, gene expression is to be a@ected, to enter the nucleus, transcripࢢon factors

either need to be post-translaࢢonally modiCed to undergo a conformaࢢonal rearrangement,

exposing a sequence called nuclear localizaࢢon signal (NLS), or have to be released from in-

hibitors that sequester them in the cytoplasm by covering NLS, or have to bind to a protein

that contains NLS. A[er transcripࢢon factors are imported to the nucleus and enhance or

repress expression of speciCc genes, they can be shepherded back to the cytoplasm by ex-

posing their own nuclear export signal (NES) or through complexaࢢon with an NES-endowed

partner.Ɓƃ The mechanisms of nuclear import and export are o[en coupled, giving rise to an

oscillatory nucleocytoplasmic shu�ling, readily observable in live-cell imaging experiments.ƁƄ

ſ.ƀ Combinatorial complexity in cell signaling

The state of a signaling system is encoded in protein covalent post-translaࢢonal modiCca-

ons.Ɓƅࢢ The most common modiCcaࢢons involved in signaling are phosphorylaࢢon (possible

on serine, threonine and tyrosine residues) and, to a lesser extent, ubiquitylaࢢon and acety-

laࢢon (both possible on lysine residues).ƁƆ Phosphorylaࢢon, catalyzed by kinases, is predomi-

nantly associated with acࢢvaࢢon, wheres dephosphorylaࢢon, by phosphatases, with the loss

of acࢢvity. Interesࢢngly, substrates of kinases can themselves be kinases that become acࢢ-

vated a[er phosphorylaࢢon.ƂŽ Such mulࢢ-level kinase cascades are considered to be potent

cellular signal ampliCcaࢢon devices.

Most proteins consist of mulࢢple domains, and domainsmay containmulࢢple phosphory-

latable sites.Ƃž Mulࢡsite phosphorylaࢡon can occur independently on each residue or follow

ƁƀNiethammer P. et al. (ſŽŽƁ) Science ƀŽƀ, žƅƃſ–žƅƃƃ.
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a well-deCned order.Ƃſ In some systems—when a kinase is able to confer phosphate groups

to mulࢢple residues at a single encounter—mulࢢsite phosphorylaࢢon can be processive,Ƃƀ

in others—when the residues get phosphorylated upon mulࢢple encounters—distribuࢢve;ƂƁ

the exact mode can depend on kinase concentraࢢonƂƂ as well as speciCcity and the relaࢢon

of di@usivity to the phosphorylaࢢon and dephosphorylaࢢon reacࢢon rates.Ƃƃ

For a protein withmulࢢple phosphorylaࢢon sites (say, n), the number of possible states of

phosphorylaࢢon can be very large (ſn). This combinatorial complexity is further aggravated

when such mulࢢ-site proteins form complexesƂƄ [for a dimer, the number of possible states

is (ſn)ſ]. Another layer of conceptual complexity is caused by the coexistence of isoforms

(paralogs or splice variants) whose similarity and redundancy may turn out elusive.Ƃƅ Com-

binatorial complexity cannot be avoided in characterizaࢢon of signaling networks because

speciCc pa�erns of post-translaࢢonal modiCcaࢢons may exert disࢢnct impact on protein ac-

,vityࢢ stability, intracellular localizaࢢon, and, crucially for the cell signaling networks, protein

interacࢢons and binding aLnity.ƂƆ

An established strategy to concisely represent systemsmarked by combinatorial complex-

ity is the rule-based approach,ƃŽ in which molecules are represented as objects that hold in-

ternal informaࢢon about covalent modiCcaࢢons, discrete conformaࢢonal states, and bound

partners. Reacࢢons that can occur between such objects are expressed in terms of local rules,

that specify only the parࢢal informaࢢon about reacࢢng objects that is relevant for a given re-

acࢢon or class of reacࢢons (assuming in this way that a given chemical reacࢢon or class of

reacࢢons can occur independently of the state that is not speciCed in the rule). A review by

Chylek et al. (ſŽžƁ)ƃž provides a comprehensive introducࢢon to the fundamental concepts

of rule-based modeling as well as a guide to the standards-seࢰng so[ware tool in this area,

BIONETGEN.

ſ.Ɓ Nonlinear regulatory elements

Various signaling networks appear to contain analogous elementary regulatory modules and

recurrent interacࢢon moࢢfs. It is desirable to know how they work in isolaࢢon (and in some-

what abstract terms, independent of the concrete network) to gain intuiࢢon and then be able

ƂſPosada J. & Cooper J. A. (žƆƆſ) Science ſƂƂ, ſžſ–ſžƂ.
ƂƀAoki K. et al. (ſŽžž) Proc. Natl Acad. Sci. USA žŽƅ, žſƃƄƂ–žſƃƅŽ.
ƂƁGunawardena J. (ſŽŽƄ) Biophys. J. Ɔƀ, ƀƅſƅ–ƀƅƀƁ.
ƂƂFerrell J. E. & Bha� R. R. (žƆƆƄ) J. Biol. Chem. ſƄſ, žƆŽŽƅ–žƆŽžƃ.
ƂƃDushek O. et al. (ſŽžž) Biophys. J. žŽŽ, žžƅƆ–žžƆƄ.
ƂƄHlavacek W. S. et al. (ſŽŽƀ) Biotechnol. Bioeng. ƅƁ, Ƅƅƀ–ƄƆƁ.
ƂƅDesideri E. et al. (ſŽžƂ) Cell žƃž, ƆƃƄ–ƆƄŽ.
ƂƆKuriyan J. & Cowburn D. (žƆƆƄ) Annu. Rev. Biophys. Biomol. Struct. ſƃ, ſƂƆ–ſƅƅ.
ƃŽFaeder J. R. et al. (ſŽŽƆ)Methods Mol. Biol. ƂŽŽ, žžƀ–žƃƄ.
ƃžChylek L. A. et al. (ſŽžƁ)Wiley Interdiscip. Rev. Syst. Biol. Med. ƃ, žƀ–ƀƃ.
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to understand their role in complete (and concrete) signaling networks.

To gain full enzymaࢢc acࢢvity, some kinases that parࢢcipate in kinase cascades require

bisphosphorylaࢢon.ƃſ Kinases for which monophosphorylaࢢon is not suLcient to relay the

signal allow the cascade to Clter weak signals and noise.ƃƀ Due to the requirement of dou-

ble phosphorylaࢢon across the consecuࢢve levels of the pathway and phosphorylaࢢon level-

dependent enzymaࢢc acࢢvity, kinase cascades are capable of highly nonlinear ampliCcaࢢon

of percepࢢble signals, akin to acࢢvaࢢon of a highly cooperaࢢve enzyme.ƃƁ, ƃƂ Such ultrasen-

siࢡve response can be promoted by other mechanisms such as posiࢢve feedback,ƃƃ compeࢢ-

on,ƃƄࢢ or saturaࢡon (“zero-order ultrasensiࢢvity”) that occurs when twomolecules bindwith

high aLnity and a surplus of molecules of one kind causes that nearly all molecules of the

other kind are sequestered. Freemolecules of the la�er kind appear when their overall abun-

dance surpasses the abundance of the sequestering molecules (which is o[en achieved by

a rapid degradaࢢon of the sequestering molecules).

Posiࢢve feedbacks, o[en implicated in thresholding and amplifying the input signal at the

iniࢢal steps of signaling pathways,ƃƅ may give rise to bistability, that is, coexistence of two

stable staࢢonary states.ƃƆ Bistable systems are archetypal models of binary cellular decision-

making mechanisms that assign to an input signal one of two predeCned responses (“on” or

“o@”). When the two stable steady states coexist for intermediate levels of the input signal,

the systemmayexhibit hysteresis (“reversible bistability”) for an input signal that varieswithin

its full dynamic range. When the two stable steady states coexist for small (large) signal inputs,

the systemmay be locked in the on-state (o@-state) even when the input signal becomes very

low (very large; “irreversible bistability”).ƄŽ

Spontaneous transiࢢons between the (meta)stable states of bistable systems are enabled

by noiseƄž (and, of note, some systems are observed to be e@ecࢢvely bistable only in the pres-

ence of noiseƄſ). The behavior of spaࢢal, stochasࢢc bistable systems depends on reactor di-

mensionality.ƄƀMulࢢsite phosphorylaࢢonƄƁ or posiࢢve feedbackƄƂ may give rise to ultrasen-

siࢢvity on the plasma membrane. In spaࢢally extended domains, bistable reacࢢon–di@usion

ƃſAnderson N. G. et al. (žƆƆŽ) Nature ƀƁƀ, ƃƂž–ƃƂƀ.
ƃƀHooshangi S. et al. (ſŽŽƂ) Proc. Natl Acad. Sci. USA žŽſ, ƀƂƅž–ƀƂƅƃ.
ƃƁGoldbeter A. & Koshland D. E. (žƆƅž) Proc. Natl Acad. Sci. USA Ƅƅ, ƃƅƁŽ–ƃƅƁƁ.
ƃƂHuang C. Y. & Ferrell J. E. (žƆƆƃ) Proc. Natl Acad. Sci. USA Ɔƀ, žŽŽƄƅ–žŽŽƅƀ.
ƃƃTrunnell N. B. et al. (ſŽžž)Mol. Cell Ɓž, ſƃƀ–ſƄƁ.
ƃƄKim S. Y. & Ferrell J. E. (ſŽŽƄ) Cell žſƅ, žžƀƀ–žžƁƂ.
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ƄŽXiong W. & Ferrell J. E. (ſŽŽƀ) Nature Ɓſƃ, ƁƃŽ–ƁƃƂ.
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ƄƀElf J. & Ehrenberg M. (ſŽŽƁ) Syst. Biol. ž, ſƀŽ–ſƀƃ.
ƄƁDushek O. et al. (ſŽžž) Biophys. J. žŽŽ, žžƅƆ–žžƆƄ.
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systems admit traveling wave soluࢢons.Ƅƃ Heteroclinic fronts of such chemical waves connect

regions in which disࢢnct staࢢonary states dominate, and shi[ in space leading to the spread

of one of the states, ulࢢmately homogenizing the whole reactor. It has been proposed that

in bistable kinase–phosphatase circuits, a traveling wave of phosphorylated substrates may

propagate from the cell surface to its interiorƄƄ (this should not be confused with an earlier-

menࢢoned generaࢢon of a staࢢonary gradient of phosphoproteins).

To turn o@ signaling or adapt to a constant signal, neglect Yuctuaࢢons, and maintain

general homeostasis, cellular processes are ubiquitously constrained with negaࢢve feedback

loops.Ƅƅ Acࢢvated systems that employ negaࢢve feedbacks are able to reset, and thus re-

spond in a pulse-like manner. When the negaࢢve feedback is delayed—usually due to tran-

scripࢢon and translaࢢon—with respect to the signal that does not cease, the regulatory sys-

tem may exhibit damped or sustained oscillaࢢons. Many, if not most, prokaryoࢢc transcrip-

onࢢ factors are known to (directly or indirectly) self-repress;ƄƆ, ƅŽ two best known eukaryoࢢc

transcripࢢon factors that oscillate are NF-κB (nucleocytoplasmic shu�lingƅž) and pƂƀ (pro-

tein abundance in a cellƅſ). Oscillatory responses may be sensiࢢve to input signal in terms of

either their amplitude or frequency. The e@ect depends on the type of bifurcaࢢon in which

a closed orbit in the phase space is born, the most important types being supercriࢢcal Hopf,

subcriࢢcal Hopf featured by a cyclic fold, and the saddle-node-on-invariant-circle (SNIC) bifur-

caࢢon.ƅƀ In Hopf points, limit cycles are born with zero amplitude and Cnite period, whereas

in SNIC, limit cycles have inCnite period and non-zero amplitude. SimpliCed diagrams of the

phase space near the criࢢcal parameter values can be found, e.g., in the arࢢcle by Hat et al.

(ſŽŽƆ; Cgure ž).ƅƁ

Systems with interlocked posiࢢve and negaࢢve feedback loops o[en exhibit rich nonlin-

ear dynamical behavior that depends on network connecࢢvity and characterisࢢc meࢢ scales

associated with the feedback loops. Three cases of such complex systems, relevant to the

further described regulatory networks, are depicted in Scheme ž. When a posiࢢve feedback

loop is embedded in a negaࢢve feedback loop and operates at a faster meࢢ scale than the

negaࢢve feedback loop [Scheme ž, case (i)], the system can periodically switch between two

predeCned states (acࢢve/inacࢢve) with a frequency that depends on the level of sࢢmulaࢢon.

Time proCles may consist of a fast acࢢvaࢢon phase and a phase of (o[en slow) relaxaࢢon to
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Scheme ž.
Systems with coupled posiࢢve and negaࢢve feedback loops:
(i) fast posiধve feedback loop embedded in a relaধvely slower negaধve feedback loop,
(ii) slow posiধve feedback loop counteracts a relaধvely faster negaধve feedback loop,
(iii) fast negaধve feedback loop embedded in a relaধvely slow posiধve feedback loop.
In all panels, X ‒ input, Y ‒ output.

a state in which subsequent acࢢvaࢢon is possible, resembling meࢢ proCles of a relaxaࢡon

oscillator. When a slow posiࢢve feedback loop turns o@ a relaࢢvely faster negaࢢve feedback

[Scheme ž, case (ii)], a[er an input signal appears, the system exhibits oscillatory behavior.

A short-lasࢢng input signal does not acࢢvate the slow posiࢢve feedback loop, the system gen-

erates damped oscillaࢢons and returns to an iniࢢal state; a long-lasࢢng input signal, however,

can break the negaࢢve feedback loop so the system can switch to a state other than the iniࢢal

one. When a fast negaࢢve feedback loop is embedded in a relaࢢvely slow (delayed) posiࢢve

feedback loop [Scheme ž, case (iii)], the system iniࢢally triggered by a signal can oscillate

autonomously (i.e., when the signal ceases), and may generate relaxaࢢon oscillaࢢons.

In addiࢢon to feedbacks, regulaࢢon can be implemented with feed-forward loops. In the

coherent-posiࢢve feed forward moࢢf, two parallel paths of di@erent meࢢ scales culminate in

the same target. Since temporal coincidence of acࢢvaࢢon through both branches is required

to relay the signal further, this mechanism, resembling the AND logic gate, can be used to

generate responses to signals that last for a suLciently long me.ƅƂࢢ Incoherent feed-forward

loops (moࢢfs that contain both posiࢢve and negaࢢve paths) may be used to generate a pulse-

like response and achieve adaptaࢢon to the input signal.ƅƃ ThebookbyAlon (ſŽŽƃ)ƅƄ contains

a complete classiCcaࢢon of elementary signaling moࢢfs.

ƅƂMangan S. & Alon U. (ſŽŽƀ) Proc. Natl Acad. Sci. USA žŽŽ, žžƆƅŽ–žžƆƅƂ.
ƅƃFerrell J. E. (ſŽžƃ) Cell Syst. ſ, ƃſ–ƃƄ.
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ƀ Objecࢢves

The foundaࢢonal assumpࢢon underlying the work presented in this thesis is that idealized

computaࢢonal models are instrumental in studying cellular biochemical processes. The de-

tailed research objecࢢves were as follows:

ž. Characterize the interplay between spaࢢal and stochasࢢc e@ects in a bistable reac-
onࢢ system on the membrane. Mechanisms of transiࢢons between both states of the
bistable system and esࢢmates of the associatedmean Crst-passage mesࢢ have been ex-

pected to depend on both the reactor volume and di@usion coeLcients of reactants;

these parameters jointly control the e@ecࢢve stochasࢢcity by determining the size of

subreactors, into which the membrane can be imaginably decomposed and in which

molecules are di@usively well communicated. The transiࢢons can be characterized by

means of spaࢢal stochasࢢc simulaࢢons at the single-molecule resoluࢢon, that are able

to capture both the intrinsic noise resulࢢng fromdi@usion-limitedmolecule encounters

and propagaࢢon of heteroclinic traveling fronts.

ſ. Determine the e@ecࢢve macroscopic reacࢢon rates in di@usion-limited reacࢢon cy-
cles on the membrane. Chemical kineࢢcs in a ubiquitous singling moࢢf, in which the
same phosphorylatablemolecule can be a substrate for either kinases or phosphatases

(depending on its current phosphostate), has been expected to depend in a non-trivial

way on concentraࢢons and microscopic reacࢢon rates of both the enzymes and on the

di@usion coeLcient of all the reactants. Such prototypical system on the membrane

can be simulated using the same approach as above.

ƀ. Develop a computer program for performing on-laࢰce kineࢢc Monte Carlo simula-
onsࢢ in the form of a general-purpose tool. The tool should simulate exactly the
stochasࢢc chemical kineࢢcs in the form of a conࢢnuous-ࢢme Markov chain and, by

implemenࢢng the rule-based approach, account for possible post-translaࢢonal modiC-

caࢢons and creaࢢonor disrupࢢonofmacromolecular complexes. Such tool shall enable

a user to deCne systems of biochemical reacࢢons in a straigh�orward manner akin to

convenࢢons used in wriࢢng chemical reacࢢons, and should make possible visualizaࢢon

of simulated spaࢢal trajectories.

Ɓ. Explain spontaneous oscillatory nuclear translocaࢢons of NF-κB. Transcripࢢon factor
NF-κB is a crucial player in the processes involved in innate immunity and the dynam-

ics of its nucleocytoplasmic shu�ling is known to impact gene expression pa�erns.ƅƅ

ƅƅZambrano S. et al. (ſŽžƃ) eLife Ƃ, eŽƆžŽŽ.
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Model-based analysis has been expected to explain why in cells characterized by high

secreࢢon of TNFα and its receptor, NF-κB can exhibit spontaneous oscillaࢢons (of nu-

clear locaࢢon), that can start spontaneously, i.e., without an external cell sࢢmulaࢢon.ƅƆ

Addiࢢonally, the model should provide an explanaࢢon to the fact that in cells that lack

AſŽ, an NF-κB inhibitor, even low TNFα expression can be suLcient for generaࢢng qual-

itaࢢvely di@erent, non-oscillatory and sustained, NF-κB nuclear locaࢢon in response to

a short pulse of TNFα.ƆŽ

Ƃ. Explain why cancer cells known to have diverse expression levels of phosphatases
Wipž and PTEN exhibit a broad spectrum of pƂƀ responses. Arguably, the pƂƀ net-
work is the most important pathway involved in prevenࢢng carcinogenesis. Upon DNA

damage, cellular abundance of pƂƀ exhibits oscillatory dynamicsƆž that leads to the

cell cycle arrest; if the damaged DNA turns out to be irreparable, the level of pƂƀ even-

tually rises, inducing apoptosis, controlled cell death.Ɔſ The regulatory core of the pƂƀ

network is controlled by two negaࢢve feedback loops (one of which is regulated by

Wipž) responsible for oscillaࢢons and two antagonisࢢc posiࢢve feedback loops (regu-

lated by Wipž and PTEN) responsible for bistability. The objecࢢve was to understand

from the dynamical systems point of view how switching from the limit cycle to the

“apoptoࢢc” steady state is achieved, allowing in this way for making an unanimous cell

fate decision, and how it depends on the rates of expression of Wipž and PTEN.

ƃ. Explain themechanismof growth-factor dose-dependent oscillaࢢons of the phospho-
ERK in the mammalian MAPK cascade. Upon extracellular growth-factor sࢢmulaࢢon,
the signal is transmi�ed through a mulࢢ-ࢢer cascade of mitogen-acࢢvated protein ki-

nases (MAPKs) that results in ERK phosphorylaࢢon. Phospho-ERK is able to exhibit

kinase acࢢvity and is a central acࢢvator of various regulatory proteins implicated in

proliferaࢢon and di@erenࢢaࢢon. Very recently, it has been observed that the level of

phospho-ERK in the cell can oscillate with a period that depends on the concentraࢢon

of epidermal growth factor (EGF).Ɔƀ The aim was to formulate a model of MAPK signal-

ing downstream of the EGF receptor to elucidate how interlinked feedback loops allow

for the experimentally observed amplitude-to-frequency encoding.
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Ɓ Methods

Ɓ.ž Ordinary di@erenࢢal equaࢢons

Systems of coupled autonomous ordinary di@erenࢢal equaࢢons (ODEs) serve as a standard

tool for mathemaࢢcal modeling of the kineࢢcs of regulatory networks. Each individual equa-

onࢢ describes the rate of change of the concentraࢢon of a single biochemical species. The

ODEs usually assume the form of intuiࢢve “book-keeping” equaࢢons, ds(t)/dt = s+ – s–, in

which the inYux terms (wri�en collecࢢvely as s+) and the ou�lux terms (represented by s–)

account for the appearance and loss of molecules due to the processes of mRNA or pro-

tein biosynthesis, post-translaࢢonal modiCcaࢢons, molecular complex formaࢢon or break-

up, intercompartmental translocaࢢons, or degradaࢢon (considered most o[en as a spon-

taneous process, a chemical Crst-order reacࢢon). The changes of concentraࢢons are mod-

eled as conࢢnuous processes, which is a reasonable assumpࢢon when the number of mole-

cules is large. Chemical kineࢢcs usually follows the mass-acࢢon law, that is, the assump-

onࢢ that the rate of change depends on the product of instantaneous concentraࢢon of reac-

tant(s) and a kineࢢc rate constant. Occasionally, when substrates are more abundant than

enzymes and their binding is saturable, Michaelis–Menten-type terms appear as a coarse-

graining of three events: formaࢢon of the enzyme–substrate complex, conversion of the

complexed substrate into a product, and enzyme–product complex break-up. Such terms

have the form s/(Smax/ſ + s), where Smax/ſ is the Michaelis–Menten constant, i.e., the con-

centraࢢon of substrate s for which the speed of the reacࢢon reaches its half-maximum. If,

in addiࢢon to saturaࢢon kineࢢcs, a given reacࢢon is cooperaࢢve, Hill-type terms may appear

instead, sh/(Shmax/ſ + s
h), with the Hill coeLcient h ≥ ž increasing with the strength of coop-

eraࢢvity.

All the ODE systems analyzed in this thesis were integrated within BIONETGEN that seam-

lessly embeds a state-of-the-art solver, CVODE (from the SUNDIALS suite). The solver comprises

a variable-ordermulࢢstep integrator from the family of backward di@erenࢢaࢢon formulas fea-

tured by a precondiࢢoned Krylov subspace-based method for the soluࢢon of linear systems,

the generalized minimal residual method. The scheme is appropriate for sࢢ@ systems (com-

putaࢢonal models o[en take into account processes occurring on di@erent meࢢ scales) and

its opࢢonally mulࢢ-threaded implementaࢢon in CVODE can handle relaࢢvely large systems of

equaࢢons (for example, the solver has been shown to be able to simulate kineࢢcs of a model

consisࢢng of more than žŽŽŽ ODEs generated according to the rule-based approachƆƁ).

The dynamics of the systems of ODEs depends on mulࢢple parameters that describe the

ƆƁBarua D. et al. (ſŽžſ) J. Immunol. žƅƆ, ƃƁƃ–ƃƂƅ.

http://bionetgen.org/
https://computation.llnl.gov/projects/sundials/cvode
https://computation.llnl.gov/projects/sundials
https://computation.llnl.gov/projects/sundials/cvode
http://dx.doi.org/10.4049/jimmunol.1102003
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abundance of biomolecules in a cell as well as the kineࢢc rate constants of chemical reac-

.onsࢢ It is important to characterize sensiࢢvity of these systems with respect to the key pa-

rameters—those related to an external sࢢmulaࢢon or to the presence or e@ecࢢveness of the

key regulatory molecules. Due to the o[en-nonlinear kineࢢcs of modeled networks, a slight

change of an analyzed parameter may give rise to a qualitaࢢve change of system dynamics

in criࢢcal points. I have performed all bifurcaࢢon analyses reported in this thesis (arࢢcles

E , F , G ) in MATLAB (MathWorks, Naࢢck, MA, USA) with a numerical parameter-conࢢnuaࢢon

package, MATCONT,ƆƂ that implements a pseudo-arclength predictor–corrector conࢢnuaࢢon

algorithm.Ɔƃ The package allows for the locaࢢon and conࢢnuaࢢon of equilibria, limit cycles,

and homoclinic orbits, the detecࢢon and conࢢnuaࢢon of (co-dimension ž or ſ) bifurcaࢢons,

and the analysis of eigenvalues and Floquet mulࢢpliers. Within MATCONT it is pracࢢcable to

analyze systems of up to about ƂŽ ODEs.

Ɓ.ſ Parࢢal di@erenࢢal equaࢢons

The use of ODEs is appropriate when—in addiࢢon the the large number of interacࢢng mole-

cules—the reactor of interest (the cell or a cellular compartment) is well mixed. The re-

actor can be considered well mixed when the meࢢ to reacࢢon, being the inverse of the

fastest chemical rate, is larger than the characterisࢢc meࢢ fi in which a molecule of di@u-

sivity D covers a distance comparable to the diameter of the reactor ‘, fi∝‘ſ/D. In non-well-

mixed reactors, local concentraࢢons of molecules can vary over space. This can be accounted

for with the use of the reacࢢon–di@usion parࢢal di@erenࢢal equaࢢons (PDEs) of the form

@s(x, t)/@t = D∇ſs + s+ – s–, in which the Crst term expresses di@usion of s, whereas the re-

maining part represents Yuxes resulࢢng from chemical reacࢢons (and is thus idenࢢcal to the

right-hand side of an ODE that would be appropriate in the well-mixed limit). Numerical so-

luࢢons of the systems of PDEs presented in this thesis were obtained in COMSOLMULTIPHYSICS

(Comsol Inc., Sweden) with a LU decomposiࢢon-based Cnite element method solver.

Ɓ.ƀ Kineࢢc Monte Carlo in the well-mixed limit

The conࢢnuous descripࢢon in terms of di@erenࢢal equaࢢons does not allow to account for

inherent randomness of biochemical processes. When the impact of intrinsic noise on sys-

tem dynamics is expected to be non-negligible, one can describe system kineࢢcs in terms of

a conࢢnuous-ࢢme (discrete-state) Markov chain (CTMC). The states are deCned by the abun-

dances of all possible molecular species (expressed in natural numbers). When a chemical

reacࢢon occurs, the change of a state alters the abundance(s) by a discrete amount, usually
ƆƂKuznetsov Y. A., Elements of Applied Bifurcaࢡon Theory, ƀrd ed. (Springer, New York, USA, ſŽŽƁ).
ƆƃKeller H. B., Lectures on NumericalMethods in Bifurcaࢡon Problems (Springer Verlag, New York, USA, žƆƅƄ).

https://www.comsol.com/
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just by one. In this approach, reacࢢon rates are replaced with propensiࢢes, i.e., probabili-

esࢢ that a given reacࢢon occurs per unit ;meࢢ propensiࢢes depend only on the current state

of the system. Probability densiࢢes of state transiࢢons in Markov processes saࢢsfy the Chap-

man–Kolmogorov equaࢢon, whose di@erenࢢal form, the master equaࢢon, is wri�en in terms

of propensiࢢes.ƆƄ

Despite the fact that the master equaࢢon fully characterizes meࢢ evoluࢢon of probability

densiࢢes of the states of the system, it is analyࢢcally intractable for all but simplest cases.

Realizaࢢons of CTMCs can be obtained by Monte Carlo simulaࢢons according to the Gillespie

algorithm,Ɔƅ a staple of computaࢢonal systems biology. In a single step of this iteraࢢve algo-

rithm, the meࢢ to a next event is calculated from the exponenࢢal distribuࢢon whose mean is

the inverse of the sum of propensiࢢes of all events that can happen in the simulated system.

An event is then selected with a probability that is proporࢢonal to its propensity, and realized,

moving the system to another state. Probability densiࢢes of system states can be esࢢmated

by performing mulࢢple stochasࢢc simulaࢢons.

It should be stressed that the Gillespie algorithm is inherently serial. Any algorithmic

speed-ups, consisࢢng in, e.g., taking longer leaps in meࢢ and then Cring mulࢢple reacࢢons,

lead to inexact sampling of the CTMC.ƆƆ All stochasࢢc simulaࢢons in the well-mixed limit

reported in this thesis were performed according to the (exact) Gillespie algorithm as imple-

mented in BIONETGEN.

Ɓ.Ɓ Kineࢢc Monte Carlo on the laࢰce

To account for both the inherent stochasࢢcity of biochemical reacࢢons and the spaࢢal lo-

caࢢon of molecules one can apply the kineࢢc Monte Carlo approach with explicit tracking

of spaࢢal posiࢢons of individual molecules. As an approximaࢢon, internal spaࢢal structure

of molecules may be neglected and space can be discreࢢzed using a regular laࢰce, nodes

of which can be occupied by a molecule or be empty. Such spaࢢal coarse-graining allows

for eLcient simulaࢢon of Brownian dynamics at intermediate reactant densiࢢes and greatly

simpliCes searching for neighboring molecules. This is of key importance for the method be-

cause bimolecular reacࢢons are allowed to occur only between the molecules that occupy

neighboring laࢰce nodes.

Within on-laࢰce kineࢢc Monte Carlo simulaࢢons, one can reproduce the exact state-to-

state dynamics of the underlying nuousࢢme-conࢢ Markov process: events—biochemical re-

acࢢons and di@usive hops between neighboring laࢰce nodes—are selected from a catalog of

ƆƄVan Kampen N. G., Stochasࢡc Processes in Physics & Chemistry, ƀrd ed. (North Holland, Amsterdam, ſŽŽƄ).
ƆƅGillespie D. T. (žƆƄƄ) J. Phys. Chem. ƅž, ſƀƁŽ–ſƀƃž.
ƆƆGillespie D. T. (ſŽŽž) J. Chem. Phys. žžƂ, žƄžƃ–žƄƀƀ.

http://bionetgen.org/
http://dx.doi.org/10.1021/j100540a008
http://dx.doi.org/10.1063/1.1378322
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all possible events and Cred with propensiࢢes proporࢢonal to their respecࢢve rate constants.

The catalog of possible events is always complete as, a[er simulaࢢng any event, it is updated

by considering every possible new event that may happen in the updated system. Complete

updates are feasible due to the fact that the space is discreࢢzed and updates are local on

the laࢰce. The method is rejecࢢon-free unless there are disࢢnguished regions of diminished

di@usivity deCned on the laࢰce. In the limit of inCnite di@usion, the algorithmic approach

is equivalent to the Gillespie algorithm used for simulaࢢons of well-mixed systems;žŽŽ for

fast di@usion and larger reactors, where the grain size becomes irrelevant, simulaࢢon results

correspond to that obtained with Cnite-element method-based solvers for PDEs. All kineࢢc

Monte Carlo simulaࢢons reported in arࢢcles A , B , C were performed using SPATKIN, a so[-

ware tool developed by me, described in arࢢcle D .

žŽŽStamatakis M. & Vlachos D. G. (ſŽžž) Comput. Chem. Eng. ƀƂ, ſƃŽſ–ſƃžŽ.

http://dx.doi.org/10.1016/j.compchemeng.2011.05.008
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Ƃ.ž Biochemical kineࢢcs in spaࢢal stochasࢢc systems

Ƃ.ž.ž Kineࢢcs of spaࢢally extended bistable reacࢢon systems

In arࢢcle A , I invesࢢgated the mechanisms of macroscopic state-to-state transiࢢons avail-

able to a bistable spaࢢally extended system. To this end, I developed a spaࢢal stochasࢢc

simulator, described in arࢢcle D , and used it to perform massively parallel kineࢢc Monte

Carlo simulaࢢons of a generic system of membrane-bound autophosphorylaࢢng kinases and

phosphatases. The calculaࢢons were carried out on two-dimensional triangular laࢰces in

a cluster environment, taking years of the aggregate single-CPU .meࢢ I compared these sim-

ulaࢢons with the simulaࢢons of the Markov process in the perfectly mixed reactor and with

the determinisࢢc approximaࢢon, i.e., reacࢢon–di@usion parࢢal di@erenࢢal equaࢢons.

I have demonstrated that—while in the limit of inCnite di@usion the staࢢonary probability

density (SPD) in the spaࢢal on-laࢰce kineࢢc Monte Carlo simulaࢢons converges to the SPD

obtained from Gillespie algorithm simulaࢢons of the well-mixed system—for smaller di@usiv-

iࢢes the SPD is qualitaࢢvely di@erent from the case of the well-mixed system: the bimodality

of the SPD can emerge or vanish. I have shown that the fracࢢon of the SPD concentrated

in the vicinity of the two a�racࢢng states depends on the speed of di@usion and on both

the volume and shape of the reactor. In large reactors, state-to-state transiࢢons turned out

to follow from the propagaࢢon of semi-determinisࢢc traveling waves. These waves may be

induced either stochasࢢcally due to a Yuctuaࢢon or determinisࢢcally as a result of an exter-

nally triggered state transiࢢon in a subregion of the reactor. I also demonstrated that at slow

di@usion, for some parameters, the reactor may exhibit a dynamical structure of perpetual

local acࢢvaࢢons and inacࢢvaࢢons, and refrain from assuming uniformly a single steady state

(see supplementary materials).

Importantly, it has turned out thatwhile the expected meࢢ to transiࢢon on themembrane

(mean Crst-passage (me,MFPTࢢ increases exponenࢢally with the volume of the reactor in the

well-mixed regime, it decreases as ž/volume in a structured (poorly mixed) reactor, rendering

the MFPT a non-monotonic funcࢢon of the reactor volume. I have shown that the volume

for which MFPT reaches its maximum (as well as the value of the maximum) increases with

moࢢlity.

Taken together, these results allowed me to put forward a mechanism in which the coex-

istence of stochasࢢc and determinisࢢc e@ects can give rise to global acࢢvaࢢon of membrane

proteins in response to a localized cue as subtle as a local immobilizaࢢon of a small fracࢢon

of membrane proteins.



žƅ Overview of results

Ƃ.ž.ſ E@ecࢢve reacࢢon rates in di@usion-limited reacࢢon cycles

Reacࢢon cycles, in which substrate is modiCed by antagonisࢢc enzymes, such as the phospho-

rylaࢢon–dephosphorylaࢢon cycles, are ubiquitous in cellular signal transducࢢon, allowing for

substrate reuse and signal ampliCcaࢢon. In arࢢcle B , we invesࢢgated kineࢢcs of a generic cy-

cle on the plasma membrane by means of kineࢢc Monte Carlo simulaࢢons on the triangular

laࢰce. I have set up simulaࢢons and performed associated analyses (determined spaࢢal cor-

relaࢢon funcࢢons) in the cluster environment. This allowed us to numerically establish and

explain the non-linear dependence of the e@ecࢢve macroscopic reacࢢon rate coeLcients as

well as the steady state of the phosphorylated substrate fracࢢon on the di@usion coeLcient

and concentraࢢons of opposing enzymes: kinases and phosphatases.

In arࢢcle C , starࢢng from the microscopic bimolecular reacࢢon rate constants and using

esࢢmates of the mean Crst-passage meࢢ for an enzyme–substrate encounter, we derived

di@usion-dependent e@ecࢢve macroscopic reacࢢon rate coeLcients for a generic reacࢢon

cycle. Analyࢢcal predicࢢons derived by other co-authors were veriCed using on-laࢰce kineࢢc

Monte Carlo simulaࢢons that I helped to set up and run in the cluster environment. The

proposed formulas esࢢmate the steady-state concentraࢢons and e@ecࢢve reacࢢon rates for

a wide range of microscopic reacࢢon rates and concentraࢢons of reactants.

The proposed analysis can capture the behavior of a reacࢢon cycle in which the steady

state is qualitaࢢvely controlled by di@usion. For low di@usivity, i.e., when reacࢢon kineࢢcs

is di@usion-controlled, the steady state is imposed by the more abundant enzyme, while for

high di@usivity, i.e., in the reacࢢon-controlled limit, it is imposed by the enzyme which has

higher e@ecࢢve acࢢvity. Recent studies suggest that high concentraࢢon of membrane “crow-

ders” can maintain membrane proteins close to a percolaࢢon threshold and various subcellu-

lar environments appear to exist on the verge of the sol–gel transiࢢon. One can expect that

abrupt, localized changes of e@ecࢢve di@usivity can exert impact on biochemical reacࢢon

kineࢢcs implicated in signal transducࢢon.

Ƃ.ž.ƀ SPATKIN: a simulator for spaࢢal rule-based modeling

In arࢢcle D , I described a novel computaࢢonal tool to simulate stochasࢢc reacࢢon–di@usion

kineࢢcs of biochemical systems on biological membranes at the single-molecule resoluࢢon.

In the limit of inCnite di@usion, the approach is equivalent to the Gillespie algorithm, whereas

for fast di@usion and larger reactors, simulaࢢon results are consistent with that obtained by

solving corresponding systems of parࢢal di@erenࢢal equaࢢons.

Importantly, the tool supports rule-based modeling and thus can be used to simulate

systems encompassing a potenࢢally high number of molecular states. I have implemented

a network-free approach, which does not require a complete expansion of the network of
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possible molecular states: the network of interacࢢons is computed on-the-Yy for exisࢢng

molecular species (as in, e.g., NFsimžŽž) and updated locally a[er any reacࢢon Cres. In this

way, the tool can tame combinatorial explosion of states inherent to models in which mole-

cules possess mulࢢple sites. SPATKIN is thus well-suited for modeling cell signaling processes

occurring on membranes. Models are deCned using a variant (superset of a subset) of the

BioNetGen language.žŽſ Arࢢcle D contains a concise descripࢢon of so[ware implementaࢢon

and capabiliࢢes.

With pre-release versions of SPATKIN, I analyzed spaࢢal and stochasࢢc e@ects such as spon-

taneous traveling wave iniࢢaࢢon in a bistable reacࢢon system (arࢢcle A ) and spaࢢal corre-

laࢢons in simple linear phosphorylaࢢon–dephosphorylaࢢon systems (arࢢcle B ). In addiࢢon,

the so[ware was helpful in determining macroscopic reacࢢon rate coeLcients (arࢢcle C ).

The simulator, wri�en in C++, has been embedded within a GUI. GPL-licensed source code

of SPATKIN, executable binaries, detailed user manual, and example input Cles are available

at http://pmbm.ippt.pan.pl/software/spatkin .

Ƃ.ſ Nonlinear dynamics of systems with mulࢢple feedbacks

Ƃ.ſ.ž The NF-κB network
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A20 TNFα
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both
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Scheme ſ
A simpli)ed diagram of the NF-κB
regulatory network. Dashed lines
with empty arrowheads represent
transcripধon and translaধon.

In arࢢcle E , we analyzed, mainly theoreࢢcally, the reg-

ulatory system of NF-κB, the major transcripࢢon factor

controlling innate immune responses. Its acࢢvity is ghtlyࢢ

controlled by negaࢢve feedback loops mediated by IκBα

and AſŽ proteins, see Scheme ſ. Up to our knowledge,

there were no studies on the dynamical role of the posi-

veࢢ feedback loop arising due to the TNFα autocrine reg-

ulaࢢon, which introduces an important posiࢢve feedback

loop to the regulatory system.

I performed bifurcaࢢon analysis of the determinisࢢc

approximaࢢon of the Markov chain model of the system.

Bifurcaࢢon analyzes obtained inMATCONT complemented

stochasࢢc simulaࢢons obtained in BIONETGEN, showing

that the TNFα-mediated posiࢢve feedback assures the

existence of limit-cycle oscillaࢢons in unsࢢmulated wild-

type cells and introduces bistability in AſŽ-deCcient cells

žŽžSneddon M. W. et al. (ſŽžž) Nat. Methods ƅ, žƄƄ–žƅƀ.
žŽſHarris L. A. et al. (ſŽžƃ) Bioinformaࢡcs ƀſ, ƀƀƃƃ–ƀƀƃƅ.

http://pmbm.ippt.pan.pl/software/spatkin
http://dx.doi.org/10.1038/nmeth.1546
http://dx.doi.org/10.1093/bioinformatics/btw469
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in which one of the negaࢢve feedback loops is broken. We also demonstrated that cells of

signiCcant autocrine potenࢢal, i.e., cells characterized by high expression of TNFα and its

receptor, TNFRž, may exhibit sustained cytoplasmic–nuclear NF-κB oscillaࢢons which could

start spontaneously due to stochasࢢc Yuctuaࢢons.

In AſŽ-deCcient cells, even a small TNFα expression rate qualitaࢢvely inYuences system

kineࢢcs leading to long-lasࢢng NF-κB acࢢvaࢢon in response to a short-pulsed TNFα sࢢmu-

laࢢon. As a consequence, cells with impaired AſŽ expression or increased TNFα secreࢢon

rate are expected to have elevated NF-κB acࢢvity even in the absence of sࢢmulaࢢon. This

may lead to chronic inYammaࢢon and promote cancer due to the persistent acࢢvaࢢon of

the anࢢ-apoptoࢢc genes regulated by NF-κB. There is growing evidence that AſŽ mutaࢢons

correlate with several types of lymphomas, and elevated TNFα secreࢢon is characterisࢢc of

many cancers. Interesࢢngly, AſŽ loss or dysfuncࢢon also leaves the organism vulnerable to

sepࢢc shock andmassive apoptosis triggered by the uncontrolled TNFα secreࢢon that at high

levels overcomes the anࢢ-apoptoࢢc acࢢon of NF-κB.

Ƃ.ſ.ſ The pƂƀ network

Transcripࢢon factor pƂƀ is a key node of the complex regulatory network that coordinates

important cellular processes including DNA repair, cell cycle arrest, and apoptosis, and has

been intensively studied both experimentally and theoreࢢcally over the last decades.

Scheme ƀ
A simpli)ed diagram of
the core of the p53 reg-
ulatory network. Dashed
lines with empty arrow-
heads represent transcrip-
ধon and translaধon.
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In arࢢcle F , we have invesࢢgated the topology of interconnected feedback loops of the

pƂƀ network (Scheme ƀ)with the aim to construct aMarkov chainmodel of the system, which

allows for stochasࢢc yet unambiguous cell fate decisions. The resulࢢng model consists of the

regulatory core and two slaved bistable modules responsible for cell cycle arrest and apop-

tosis. The regulatory core is controlled by two negaࢢve feedback loops (regulated by Mdmſ

and Wipž) responsible for oscillaࢢons, and two antagonisࢢc posiࢢve feedback loops (regu-

lated by Wipž and PTEN) responsible for bistability. By means of bifurcaࢢon analysis I was

able to capture the recurrent soluࢢons that shape temporal responses of the stochasࢢc sys-

tem. The direct transiࢢon from the limit-cycle oscillaࢢons to the “apoptoࢢc” steady state
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has turned out to be enabled by the existence of a subcriࢢcal Neimark–Sacker bifurcaࢢon

(occurring and studied rarely in the context of regulatory networks). By means of stochasࢢc

simulaࢢons, I have shown that the speciCc compeࢢࢢon of negaࢢve and posiࢢve feedbacks al-

lows for the unbiased and proporࢢonate cell fate decisions preceded by the oscillatory phase,

in which cell cycle is arrested and the cell has a chance to repair its DNA. I have demonstrated

that the iniࢢal level of phosphatase PTEN correlates well with the apoptoࢢc potenࢢal of cells.

Our analysis provided an explanaࢢon why cancer cell lines known to have vastly diverse

expression levels of phosphatases Wipž and PTEN can exhibit a broad spectrum of qualita-

velyࢢ di@erent responses to DNA damage. The model allows for system-level analysis of the

possible outcomes of di@erent chemo- and radiotherapies with respect to the expression lev-

els of Wipž and PTEN, and proteins or miRNAs regulaࢢng these two nodes.

Ƃ.ſ.ƀ The ERK network
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slowfast

Scheme Ɓ
A simpli)ed diagram of the MAPK
regulatory network.

Intense experimental and theoreࢢcal research on MAPK

signaling demonstrated that in a canonicalMAPKpathway

that involves SOS, RAS, RAF, MEK, and ERK, signal trans-

mission is controlled by mulࢢple negaࢢve as well as pos-

iࢢve feedback loops. How these feedbacks cooperate in

informaࢢon processing remains elusive.

In arࢢcle G , we demonstrated that the canonical

MAPK/ERK cascade (Scheme Ɓ) can transform graded in-

puts into pulses that encode informaࢢon about sࢢmu-

laࢢon dose in their duraࢢon and frequency, as recently

observed by our experimental collaborator.žŽƀ Together

with my supervisor, I have formulated a computaࢢonal

model for MAPK signaling downstream of the EGF recep-

tor to elucidate how interlinked feedback loops allow for

the experimentally observed amplitude-to-frequency en-

coding. The model has helped to unravel the origin of re-

laxaࢢon oscillaࢢons that arise because the RAS–SOS posi-

veࢢ feedback loop is nested within the negaࢢve feedback

loop that encompasses RAS and the kinases RAF, MEK,

and ERK that inhibits SOS via phosphorylaࢢon. This negaࢢve feedback operates on a longer

meࢢ scale than the posiࢢve feedback loop, and, as the bifurcaࢢon analysis that I performed

in MATCONT indicates, it changes switch-like behavior into relaxaࢢon oscillaࢢons, consistent

žŽƀAlbeck J. G. et al. (ſŽžƀ)Mol. Cell ƁƆ, ſƁƆ–ſƃž.

http://dx.doi.org/10.1016/j.molcel.2012.11.002
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with experimentally observed dose-dependent pulses. Two auxiliary negaࢢve feedback loops,

from ERK to MEK and from ERK to RAF, placed downstream of the posiࢢve feedback, shape

the temporal ERK acࢢvity proCle but are dispensable for generaࢢon of oscillaࢢons. There-

fore, we have demonstrated that the posiࢢve feedback introduces a hierarchy among nega-

veࢢ feedback loops, such that the e@ect of a negaࢢve feedback depends on its posiࢢon with

respect to the posiࢢve feedback loop.

Furthermore, I have shown that the system is capable of conversion of sࢢmulaࢢon gradi-

ents into spaࢢally organized pulses of ERK acࢢvity. By analyzing the regulatory system in the

spaࢢal context (by solving reacࢢon–di@usion PDEs in COMSOL MULTIPHYSICS), I have demon-

strated that the combinaࢢon of the posiࢢve feedback involving slow-di@using membrane

components, RAS and SOS, with negaࢢve feedbacks involving faster-di@using cytoplasmic

components, RAF, MEK, and ERK, leads to local excitaࢢon/global inhibiࢢon (LEGI) dynamics.

We propose that this mechanism allows the MAPK signaling pathway for generaࢢng direc-

onalࢢ responses to localized (paracrine) growth factor sࢢmulaࢢon.
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Stochastic transitions in a bistable
reaction system on the membrane

Marek Kochańczyk1, Joanna Jaruszewicz1 and Tomasz Lipniacki1,2

1Institute of Fundamental Technological Research, Polish Academy of Sciences, Warsaw 02106, Poland
2Department of Statistics, Rice University, Houston, 77005 TX, USA

Transitions between steady states of a multi-stable stochastic system in

the perfectly mixed chemical reactor are possible only because of stochastic

switching. In realistic cellular conditions, where diffusion is limited, tran-

sitions between steady states can also follow from the propagation of

travelling waves. Here, we study the interplay between the two modes of tran-

sition for a prototype bistable system of kinase–phosphatase interactions on

the plasma membrane. Within microscopic kinetic Monte Carlo simulations

on the hexagonal lattice, we observed that for finite diffusion the behaviour of

the spatially extended system differs qualitatively from the behaviour of the

same system in the well-mixed regime. Even when a small isolated sub-

compartment remains mostly inactive, the chemical travelling wave may

propagate, leading to the activation of a larger compartment. The activating

wave can be induced after a small subdomain is activated as a result of a sto-

chastic fluctuation. Such a spontaneous onset of activity is radically more

probable in subdomains characterized by slower diffusion. Our results show

that a local immobilization of substrates can lead to the global activation of

membrane proteins by the mechanism that involves stochastic fluctuations fol-

lowed by the propagation of a semi-deterministic travelling wave.

1. Introduction
Living cells receive stimuli and process information with a circuitry of interacting

genes and proteins. From the mathematical perspective, cell fates can be identified

with attractors of the dynamical system defined by the interaction network [1].

Accordingly, cellular decisions correspond to transitions between multiple

steady states of this dynamical system [2], allowing for phenotypical differen-

tiation of genetically uniform cells [3]. Remarkably, many key biological

regulatory and signalling modules are controlled by bistable switches, often lead-

ing to binary cellular responses of crucial importance, such as death or survival,

senescence or proliferation [4,5]. In this work, we consider state-to-state transitions

leading to the activation of proteins diffusing on the plasma membrane.

1.1. State-to-state transitions in homogeneous and
heterogeneous reactors

Transitions between steady states in the perfectly mixed chemical reactor are poss-

ible only because of stochastic switching. (The classic monographs on stochastic

processes covering material used in this study are those by van Kampen [6],

Gardiner [7] and Nicolis & Prigogine [8].) In well-mixed reactors, however,

the expected time to switch t depends exponentially on the system size,

t/ expðaVÞ, a . 0, assuming a constant concentration of molecules N/V [9].

The number of reacting molecules in the plasma membrane is of order N ¼ 103 to

105 [10,11], implying an infinitesimal rate of switching between macroscopic

states of activity and inactivity in the well-mixed approximation. In spatially

extended reactors, the characteristic size of the well-mixed subcompartment is effec-

tively controlled by diffusion. Relatively small diffusion coefficients of membrane

proteins, D � 1022 to 1021 mm2 s21 [12,13], coinciding with fast reaction rate con-

stants of order c � 1/s [14] imply a correlation length l/
ffiffiffiffiffiffiffiffiffi
D=c

p
shorter than

1 mm. The membrane can be therefore heterogeneous without any molecular

& 2013 The Author(s) Published by the Royal Society. All rights reserved.
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structure imposed by cytoskeletal corrals, protein scaffolds or

lipid rafts. In stochastic spatially extended bistable systems, the

diffusion-limited number of interacting molecules controls

the transition rates between macroscopic states. Interestingly,

even when in the deterministic approximation a system is mono-

stable, the volume of the well-mixed stochastic reactor can

serve as a ‘bifurcation parameter’ controlling the emergence of

noise-induced bimodality [15].

In deterministic spatially extended reactors, transitions

between steady states of bistable systems can result from the

propagation of heteroclinic travelling waves. (See the book by

Murray [16] for an extensive introduction.) A local state-to-

state transition can initiate the propagation of a travelling

front driving the whole system towards the ‘more stable’

steady state, in which the system would eventually persist.

Crucially, for a bistable birth–death process, the deterministi-

cally preferred steady state (global deterministic attractor)

can be different from the steady state in which the stationary

probability distribution (SPD) concentrates (global stochastic

attractor) [17,18]. For gradient systems, the macroscopic (deter-

ministic) state-coexistence line in the parameter space is

obtained for the potential which exhibits minima of equal

depth. In spatially extended systems, this coexistence line corre-

sponds to standing heteroclinic wave solutions. The stochastic

state-coexistence line results from the solution of the (stochastic)

chemical master equation, and in particular cases can be found

analytically in the limit of zero noise by the Maxwell-type con-

struction [19]. This implies that the spatially extended reactor

may remain in a stochastically preferred steady state until a

local but sufficiently large fluctuation initiates a semi-determi-

nistic transition of the whole reactor to the state preferred in

the deterministic approximation [20].

Simulations of Newtonian hard sphere dynamics provided

evidence [21] that in the bistable perfectly stirred system the

global attractor is correctly defined by the (stochastic) master

equation, while using the Fokker–Planck equation with

either linear (additive) or nonlinear (multiplicative) noise

may lead to incorrect predictions [9]. Baras et al. [21] used the

Bird’s direct simulation Monte Carlo method [22] to study

the chemical kinetics in a homogeneous Boltzmann gas by

associating the entire system volume with a single collisional

cell. The method was proposed to perform simulations of

rarified gas for which the Knudsen number is greater than 1,

which is equivalent to the assumption of perfect homogeneity.

By employing on-lattice kinetic Monte Carlo (KMC) simula-

tions, we recapitulate here this result in the infinite diffusion

limit (see [23]). We will demonstrate, however, that in reactors

characterized by finite diffusion the global attractor can be

prescribed either through the deterministic or through the

stochastic approach, depending on the diffusion coefficient.

Interestingly, the deterministic description in which the system

is modelled by means of reaction–diffusion equations predicts

the same global attractor as that obtained in the Langevin

approach based on the macroscopic (deterministic) law of

evolution into which an external additive noise term is incor-

porated. This places the discrepancy between the master

equation and the diffusion approximation in the new context.

1.2. State-to-state transitions in biological
membrane systems

The highly organized structure of cells, comprising zones

of confinement [24,25] or altered motility [26–28], should

allow signalling systems to employ intricately both transi-

tion modes, i.e. stochastic switching and semi-deterministic

travelling wave propagation. Thus far, selected aspects of

these phenomena have been investigated in the context

of membrane-proximal signalling and spontaneous cell polar-

ization. It has been shown that the self-recruitment of

cytoplasmic proteins to the cell membrane leads to the gener-

ation of a single cluster of active molecules and thus may

define a unique axis of cell polarity [29]. A local increase in

the density of molecules in the presence of positive feedback

is able to work as an activating switch [30]. In the context of

Ras nanoswitches, it has been demonstrated that at uniform

slow motility the sole positive feedback in the interaction net-

work of membrane-anchored proteins generates expanding

activity patches [31]. In excitable networks, transient clans of

activated molecules emerge and vanish spontaneously, even

without directional spatial cues [32,33]. Spatio-temporal oscil-

lations of membrane-recruited Min proteins in Escherichia coli
were demonstrated to be enabled by the inherent noise [34];

on the other hand, macroscopically stable homogeneous oscil-

lations can be abolished by local fluctuations, depending

critically on the size and dimensionality of the reactor [35]. In

stimulated thin neuronal protrusions, it has been observed

that slowly diffusing autocatalytic CaMKII kinases exhibit

pulsatile compartmentalized activity [36]; a spatially extended

bistable system can spontaneously generate subregions, where

different steady states dominate [37]. Self-organized foci of

activity can generate activating travelling waves [38]. Propa-

gation of waves can give rise to long-lasting cell polarity

when the fast-diffusing inhibitor accumulates proportionally

to the amount of slow-diffusing activated molecules so that

the wavefront can be stalled. This mechanism, known as

wave pinning, has been investigated for bistable systems

[39,40]. When the diffusion coefficient of the inhibitor is very

large (in principle, infinite), the mechanism of polarization is

known as the local excitation, global inhibition [41,42].

1.3. Overview of results
In order to provide a comprehensive view and to be able to recog-

nize new mechanisms of macroscopic state-to-state transitions

available in spatially extended systems, we study a generic

bistable system of membrane-bound autophosphorylating

kinases and phosphatases by means of KMC simulations on

the hexagonal lattice. These simulations are compared with the

simulations of the Markov process in the perfectly mixed reactor

and with the deterministic approximation, i.e. reaction–diffusion

partial differential equations (PDEs).

In the limit of infinite diffusion, unsurprisingly, the

SPD in the spatial on-lattice KMC simulations converges

to the SPD obtained from Gillespie algorithm simulations

of the well-mixed system. For slower diffusion, however,

we observe that the SPD is qualitatively different from the

case of the perfectly mixed system; specifically, the bimo-

dality can emerge or vanish. We demonstrate that the

probability mass fraction concentrated in the stochastically

and deterministically preferred steady states depends on

the speed of diffusion and properties of the reactor, such as

volume and shape. We show that the state-to-state transitions

in large reactors can follow from the propagation of semi-

deterministic travelling waves. These waves can be induced

deterministically by the externally triggered state transition

in a sub-volume of the spatially extended reactor; they can
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also arise spontaneously as a result of local stochastic fluctua-

tions. We found that the expected time to transition on the

membrane grows exponentially with diffusivity. For a given

diffusion coefficient, the expected time to transition increases

exponentially with the volume of the reactor V as long as the

reactor is perfectly mixed, and then it decreases as 1/V. At

slow diffusion, for some parameters, the reactor may exhibit

a dynamical structure of perpetual local activations and inac-

tivations, and refrain from assuming uniformly a single

steady state. Finally, we identify a novel mechanism in

which the coexistence of stochastic and deterministic effects

can give rise to the global activation of membrane proteins

in response to a localized cue.

2. Material and methods
2.1. Model
The analysed system of reactions involves two molecular species:

kinases and phosphatases. Each kinase molecule contains two indis-

tinguishable phosphorylation sites, hence it can assume three states:

dephosphorylated, monophosphorylated or bisphosphorylated.

The (auto)phosphorylation activity of a kinase increases with its

phosphorylation level. Phosphatases are explicitly present in the

system although they are not modified in any process.

The interaction network comprises the variant of the two-

step phosphorylation–dephosphorylation motif, where kinases

autophosphorylate one another and are dephosphorylated by

phosphatases, which act non-specifically with respect to the

level of phosphorylation of a substrate kinase [15,43]. The system

encompasses the simplest case of the ubiquitous multi-site phos-

phorylation and exhibits bistability [44,45]. Since it consists of

eight reactions, it may be viewed as far from minimal [46]; however,

in contrast to other small bistable systems [47,48], all its reactions

are bimolecular and elementary (i.e. only one of two reacting

molecules changes its state), rendering the system appropriate

for microscopic lattice-based simulations of diffusion-influenced

reaction kinetics.

2.2. Reaction – diffusion system: kinetic Monte Carlo on
the lattice

The spatial and stochastic simulations of the system are per-

formed using the on-lattice KMC at the single molecule

resolution. Molecules are allowed to hop between adjacent sites

of a hexagonal lattice with propensity proportional to the dif-

fusion coefficient. It is assumed that two molecules cannot

occupy the same lattice site. Kinases K and phosphatases

P can react only when in adjacent sites according to the

following rules:

Phosphorylation by a dephosphorylated kinase:

KþK �2cL
1! KþKp, ð2:1aÞ

KþKp �
cL

1! KþKpp: ð2:1bÞ

Phosphorylation by a monophosphorylated kinase:

Kp þK �2cL
2! Kp þKp, ð2:2aÞ

Kp þKp �
cL

2! Kp þKpp: ð2:2bÞ

Phosphorylation by a bisphosphorylated kinase:

Kpp þK �2cL
3! Kpp þKp, ð2:3aÞ

Kpp þKp �
cL

3! Kpp þKpp: ð2:3bÞ

Dephosphorylation (by a phosphatase):

P þKp �
cL

0! P þK, ð2:4aÞ

P þKpp �
2cL

0! P þKp: ð2:4bÞ

The relative activity of a kinase increases strongly with its phos-

phorylation level: c1 , c2 , c3 (parameter values are given in the

electronic supplementary material, table S1). Two molecules can

diffuse away without reacting; on the other hand, a series of reac-

tions involving two molecules is allowed, and such consecutive

events are more probable at small diffusion coefficients when

contacts last longer. The total numbers of kinases NK and phos-

phatases NP are constant in a simulation and their fractional

surface concentrations (i.e. the fraction of lattice sites occupied

by a species) are assumed to be rK ¼ 0:4 and rP ¼ 0:1, respect-

ively. For the sake of simplicity, we assume the same motility

M of kinases and phosphatases; the propensity of hopping to a

neighbouring empty site of a hexagonal lattice is M/6. We will

consider both spatially uniform and non-uniform motility to

account for subdomains of slower diffusion, e.g. large lipid

rafts [27]. In a two-dimensional reactor, the macroscopic diffu-

sion coefficient D depends on the total fractional concentration

of membrane molecules r ¼ rK þ rP and the lattice constant ‘,

D ¼ ð1� rÞ‘2M
4

: ð2:5Þ

The lattice constant is equal to the characteristic mean centre-to-

centre spacing between neighbouring membrane proteins, which

is of order ‘ ¼ 10 nm [49].

2.3. Spatially homogeneous Markov process:
Gillespie algorithm

The Gillespie algorithm for KMC was employed for stochastic

simulations in the limit of the perfectly mixed chemical reactor

[50]. To provide a basis for the comparison of well-mixed

Gillespie (superscript G) with on-lattice (superscript L) KMC

simulations, kinetic rate constants cL
1 ; c

L
2 ; c

L
3 ; c

L
0 have to be rescaled

according to the general rule

cG
i ¼

nc

V
cL

i ; ð2:6Þ

which reflects the fact that the propensity of each reaction in the

perfectly mixed reactor is inversely proportional to the volume

(or, here, surface) of the reactor V and is proportional to the

number of possible contacts (nc ¼ 6 for the hexagonal lattice).

The scaling ensures that in the limit of M!1 the SPD obtained

in on-lattice KMC simulations converges to that obtained with

Gillespie KMC simulations (see the electronic supplementary

material, figure S1c) [23].

2.4. Spatially extended deterministic approximation:
partial differential equations

We will also consider the deterministic limit of the on-lattice

KMC described by a system of PDEs. For this approximation,

kinetic rate constants cL
1 ; c

L
2 ; c

L
3 ; c

L
0 are scaled according to the fol-

lowing rules:

ci ¼ 6rKcL
i ¼: VKcL

i for i [ f1; 2; 3g, ð2:7aÞ
c0 ¼ 6rPcL

0 ¼: VPcL
0 : ð2:7bÞ

These coefficients are used to parametrize dimensionless reaction–

diffusion PDEs. Since we assume that the diffusion coefficient of

kinase molecules is independent of their phosphorylation level,

we may introduce fractional concentrations of dephosphorylated,

monophosphorylated and bisphosphorylated kinases denoted by
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k, kp and kpp (k þ kp þ kpp ¼ 1). The fraction of phosphorylated

kinases, kp þ kpp, will be considered as a measure of activity of

the system. The resulting PDEs read as follows:

@k
@t
¼ Dr2k þ c0kp � 2ðc1k þ c2kp þ c3kppÞk; ð2:8aÞ

@kp

@t
¼ Dr2kp þ 2ðc1k þ c2kp þ c3kppÞk þ 2c0kpp

� ðc1k þ c2kp þ c3kppÞkp � c0kp; ð2:8bÞ
@kpp

@t
¼ Dr2kpp þ ðc1k þ c2kp þ c3kppÞkp � 2c0kpp: ð2:8cÞ

Evolution of the above system was simulated using the finite-

element method implemented in COMSOL MULTIPHYSICS (Comsol

Inc., Sweden).

For a certain range of parameters, equations (2.8a–c) exhibit

bistability (figure 1). The stable steady state corresponding to a

high and a low value of kp þ kpp will be referred to as the active

and the inactive state, respectively. For default parameters:

c0 ¼ 1, c1 ¼ 0.02, c3 ¼ 4 (see the electronic supplementary material,

table S1) and c2 ¼ 0.2, in the active state kp þ kpp ¼ 0.86 and in the

inactive state kp þ kpp ¼ 0.07 (see the electronic supplementary

material, figure S1b).

2.5. Estimation of the stationary probability distribution
for rarely switching systems

An important characteristic of (homogeneous or heterogeneous)

stochastic bistable systems is the expected time to switch from

one to the other steady state, or the mean first-passage time

(MFPT). Numerical estimates of the MFPT for activation ton

and deactivation toff can be obtained from running multiple

(parallel) simulations with initial conditions in both basins of

attraction. When switches are too rare to provide a reliable esti-

mation of the SPD from a single trajectory, MFPTs allow one to

quantify relative probabilities of finding a system in the basin

of attraction of the active steady state pon ¼ toff/(ton þ toff ) and

inactive steady state poff ¼ 1 2 pon.

If n independent simulations of the initially inactive system

were running until finite times T1�i�n; it could happen that

spontaneous activations were observed only in a fraction of

trajectories at times ti � Ti. Then one can use the maximum-

likelihood estimate for ton,

ton ¼
Xn

i¼1

minðti;TiÞ
non

; ð2:9Þ

where non is the number of observed on switches [51]; toff can be

estimated analogously.

3. Results
3.1. General considerations
We are interested primarily in macroscopic state-to-state

transitions of a bistable reaction–diffusion Markov process

on the membrane. Depending on the chemical reaction rate

parameters, diffusion coefficients of molecules and the size

of the domain, the process can be approximated by means of

the perfectly mixed stochastic system, perfectly mixed deter-

ministic system or the spatially extended deterministic system:

— The reactor can be considered as perfectly mixed when its

diameter L is smaller than the characteristic distance l tra-

velled by a molecule in the characteristic time tr between

two subsequent reactions. In estimations of l and tr, we

employ the rate constant c0, because the dephosphorylation

reaction is both relatively fast and density-independent

(rP is constant, while densities of kinases at a particular

phosphorylation level evolve in time). We assign tr ¼ 1/c0

and obtain l ¼ 2
ffiffiffiffiffiffiffiffi
Dtr

p
¼ 2

ffiffiffiffiffiffiffiffiffiffi
D=c0

p
[6,52]. When l . L, the

positions of a molecule subjected to subsequent reaction

events can be regarded as uncorrelated.

— The process in the well-mixed reactor can be considered in the

deterministic approximation when MFPTs of macroscopic

state-to-state transitions are longer than the duration of

other processes modifying the system; for instance, the dur-

ation of the cell cycle T. The characteristic MFPT t grows

exponentially with the size of the well-mixed reactor [9],

t ¼ 1

c0

� �
expðrPVÞ: ð3:1Þ

When t� T; the process can be considered as deterministic,

in the sense that the chance for a stochastic transition in the

considered time interval T is negligible.

— In the non-mixed reactor, the volume of the mixed

subcompartment in two dimensions can be defined as

V0 ¼ D/c0. The characteristic transition time for such a

sub-volume is

t0 ¼
1

c0

� �
expðrPV0Þ: ð3:2Þ

As we will see, a stochastic transition in any subcompart-

ment, depending on parameters, may trigger travelling

waves leading to the macroscopic state-to-state transition

of the whole reactor. In large reactors for which V0 , V,

the MFPT for such locally induced transition t� is given

as the waiting time of V/V0 concurrent processes,

t� ¼ V0

V

� �
1

c0

� �
expðrPV0Þ ¼

V0

V

� �
t0: ð3:3Þ

It is assumed here that the expected time to switch is

much longer than the time of the wavefront propagation

over the whole reactor, and that every local ignition can

effectively give rise to a propagating front. When

t� � T; the process can be considered deterministic: the

0

0.4
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0.2
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0.02 0.04 0.06 0.08 0.10

deterministically
monostable

deterministically
bistable

deterministic standing wave   M,• •

c
1

c
2

stochastic bimodality for  N 

Figure 1. Bistability region of equations (2.8a – c) in the parameter space of
(c1,c2); remaining parameters are fixed: c3 ¼ 4 and c0 ¼ 1. The region is divided
into two lines: the deterministic coexistence line (dashed), obtained numerically
in COMSOL, and the stochastic coexistence line (dotted), obtained numerically as an
approximate limit of curves determined for increasing numbers of molecules in
the perfectly mixed regime. Above and below these lines global deterministic and
stochastic attractors converge in the active and inactive steady state, respectively.
Between these lines, the well-mixed stochastic system is preferentially inactive,
while activating travelling waves may propagate.
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chance for a stochastic state-to-state transition is negligible

at the considered time scale.

Although in the above considerations we used D, in the

further analysis of the on-lattice system the speed of diffusion

will be expressed in terms of the motility M. According to

equation (2.5), for default parameters in non-dimensionalized

units M ¼ 8D.

3.2. Different preferred steady states of the stochastic
system and its deterministic approximation

The bistability domain of equations (2.8a–c) in the (c1, c2) par-

ameter space for fixed c3 ¼ 4 and c0 ¼ 1 is shown in figure 1.

The domain is divided by the c2(c1) line (dashed) on which

the standing wave solutions exist. These heteroclinic sol-

utions connect the active and inactive stable steady states.

For parameters from above the dashed line, travelling

waves propagate from the active to the inactive state. This

can be interpreted as the domination of the active steady

state. For parameters below the line, the travelling waves pro-

pagate in the opposite direction, i.e. the inactive state is

dominant. This deterministic separatrix (dashed line) can be

compared with the separatrix for the stochastic perfectly

mixed system (dotted line). For parameters from the latter

line the SPD of the perfectly mixed process described by reac-

tions (2.1a–2.4b) remains bimodal in the limit of the infinite

reactor volume. In the same limit, for parameters above

(below) the line, the SPD converges to the Dirac delta in the

active (inactive) steady state [17]. Interestingly, these two

separatrices do not overlap and they delineate a region

where the system of PDEs prefers the active state, while the

stochastic perfectly mixed system in the limit of the infinite

reactor volume is inactive. The divergence of these separa-

trices suggests that for realistic reactors characterized by a

finite diffusion the choice between the active and the inactive

state depends on the speed of diffusion and the size or even

shape of the reactor [20].

3.3. Diffusion and size of the reactor control
system activity

Here, we analyse the expected activityof the kinase–phosphatase

system by means of the SPD obtained in on-lattice KMC

simulations, as a function of the compartment volume (surface)

V and reactants motility coefficient M. First, let us remember

that when M!1 the SPD from on-lattice KMC simulations

converges to that obtained from Gillespie KMC simula-

tions (M ¼1). For M ¼ 3000, the difference is still discernible

(last two columns in figure 2) but the agreement becomes

nearly perfect for M ¼ 10 000 (see the electronic supplementary

material, figure S1c). In figure 2, we consider the case of

(c1 ¼ 0.02, c2 ¼ 0.2), for which the stochastic system and its

deterministic approximation are preferentially in the active

state. As shown, the probability of the active state increases

with V for finite M as well as in the limit of the perfectly

mixed reactor (M ¼1, last column in figure 2). For large

motility (M � 300), the active state probability increases from

nearly 0 to almost 1 as the compartment volume increases

from V ¼ 10 � 10 to V ¼ 30 � 30. It demonstrates that the rela-

tive stability of steady states is controlled by the volume of the

reactor. For perfectly mixed systems, this effect has been

reported previously by Zheng et al. [53].

In figure 3, we consider a more interesting case of (c1 ¼ 0.02,

c2 ¼ 0.15), for which the stochastic perfectly mixed system is

preferentially in the inactive state, but its deterministic approxi-

mation is preferentially active. In this case, in addition to

the compartment volume, the activity of the system is con-

trolled by the substrate motility M. For chosen parameters,

the system is preferentially in the active state for small motility

(M ¼ 30) and in the inactive state for large motility (M � 1000).

For intermediate values (100 �M � 300), the choice of the

dominant state is controlled by the volume of the reactor.

The tendency of the system to inactivate as M! 1 is visible

also in figure 2, although it is pronounced only for small

system volumes, for which the perfectly mixed system remains

prevalently in the inactive state.
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Figure 2. SPDs for different motility coefficients and square domains of different sizes. The lattice-based KMC simulations were performed on toroidal domains (i.e.
square domains with periodic boundary conditions) for (c1 ¼ 0.02, c2 ¼ 0.2) and the remaining parameters with their default values: c3 ¼ 4, c0 ¼ 1. In the last
column, SPDs were obtained using (spatially homogeneous) Gillespie algorithm simulations. The MFPTs ton and toff are shown in each panel. A small number in
square brackets reports the number of observed switches non or noff if smaller than 20. The SPD is marked as ‘undetermined’ when no switches were observed
during simulations. (Online version in colour.)
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In the subsequent analysis, we employ the mean first-

passage time of the transition from the inactive to active

steady state ton and the time for the reverse transition toff. At

large substrate motility (M � 1000), MFPTs (given in each

panel of figures 2 and 3) increase dramatically with the

volume of the compartment. It is known that in a perfectly

mixed reactor MFPTs increase exponentially with its volume

[9]. In the case of finite motility, the situation is more compli-

cated. Let us consider the case of a fixed motility for which

one can determine a characteristic distance l and the well-

mixed sub-volume V0. When the reactor diameter exceeds l,

it should be considered as a composition of multiple (�V/V0)

well-mixed sub-reactors. In such a structured reactor, the tran-

sition to the active steady state can result from a stochastic

switch occurring in any of these sub-reactors, followed by the

propagation of the activating wave, as discussed in §3.4. In

this regime, ton decreases with the number of well-mixed sub-

compartments (�V/V0), and thus it is inversely proportional

to the volume of the reactor, ton / 1=V. These diverging limit-

ing behaviours jointly result in the non-monotonic dependence

of ton on the volume of the reactor (figure 4a): ton increases

exponentially until the volume of the reactor V exceeds the

volume of the well-mixed compartment V0, and then decreases

with the reactor volume as ton / 1=V. Since larger motility

implies larger perfectly mixed sub-volumes, the volume of

the reactor for which the MFPT reaches its maximum increases

with motility. The activation and inactivation processes are not

symmetric, because for given parameters either activating or

inactivating travelling waves may propagate. For the parameters

considered in figure 4a, the activating travelling waves propagate.

As a result, after a local inactivation, the activity is promptly

recovered by waves from surrounding subcompartments, and

thus the only possible mode of transition towards inactivity

requires simultaneous inactivation of the whole reactor. Conse-

quently, while ton decreases for small motility (V . V0 regime)

and increases for large motility (V , V0 regime), toff grows

exponentially with V in both regimes (figures 2 and 3).

Irrespective of the volume of the reactor and for both con-

sidered values of c2, one can observe that for sufficiently low

motility the active state is preferred. There are two properties

of the system that give rise to such behaviour at decreased moti-

lity: (i) in addition to the less effective distributive mechanism,

the more effective processive phosphorylation reactions are

more likely to happen (when two kinase molecules stay in

contact longer, it is more probable that the substrate kinase

will be phosphorylated twice by the same catalytic kinase;

also, once the substrate kinase is phosphorylated it becomes

more amenable to ‘fire back’ and to activate the first kinase)

and (ii) the catalytic capacity of less abundant phosphatase

molecules becomes dampened after they saturate their
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Figure 3. SPDs for different motility coefficients and square domains of different sizes. The simulations are in the same set-up as for figure 2 but with kinase
activity coefficient c2 ¼ 0.15 (instead of c2 ¼ 0.2). (Online version in colour.)
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M
p
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� expðMÞ.
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neighbourhoods (a phosphatase molecule can dephosphorylate

all kinases in its vicinity, rendering itself idle).

3.4. Propagation of waves of kinase activity on
cylindrical domains

In this section, we consider travelling wave propagation on long

cylindrical domains. Elongated thin membrane protrusions

constitute, for example, pseudopodia of motile cells and dendri-

tic spines of neurons. First, we focus on parameters (c1 ¼ 0.02,

c2 ¼ 0.15) lying in the range in which the preferred steady

states for well-mixed and spatially extended reactors diverge

(figure 1). For these parameters and large motility, M ¼ 3000,

the 30 � 30 reactor is principally inactive (figure 3). However,

in a semi-one-dimensional array of a large number of such reac-

tors the activating travelling waves can propagate as predicted

by the deterministic approximation, equations (2.8a–c). In

figure 5a, we show snapshots from on-lattice KMC simula-

tions of the stochastic travelling wave in the cylindrical

domain 30 � 1100 (top–bottom boundary conditions are peri-

odic, left–right reflecting). At t ¼ 0, the left 30 � 100 area

(‘seed’) is assigned to be in the active steady state and the rest

of the cylinder, 30� 1000, is set to the inactive state. At the

very beginning of the simulation, the transition between the

active and the inactive region becomes smooth and a wave pro-

file is formed, which then propagates so that eventually the

whole reactor adopts the active steady state (figure 5a,b). This

surprising divergence of system behaviours in a small 30 � 30

and in a long 30� 1100 reactor is due to the fact that motility

M ¼ 3000 renders the small reactor mixed, but it is by far too

small to mix the longer reactor: 30=2 , l	 1100, where 30/2

is the effective diameter of the 30� 30 reactor in periodic

boundary conditions, and l ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
M=ð2c0Þ

p
. Therefore, in the

long reactor, the system converges to the attractor preferred

by the deterministic approximation. Moreover, since the

number of molecules on the wavefront (the width of which

grows /
ffiffiffiffiffiffiffiffiffiffiffi
M=c0

p
) is quite large, the stochastic wave profile

resembles the deterministic profile obtained from PDEs

(figure 5c,d).

For parameters (c1,c2) below the deterministic standing wave

line (figure 1), the travelling wave can propagate in the opposite

direction such that the whole system becomes inactive, provided

that the diffusion is sufficiently fast, as discussed in §3.5 (see the

electronic supplementary material, figure S6).

With increasing motility, the velocity of the wave in on-

lattice KMC simulations approaches the velocity in PDEs,

which is /
ffiffiffiffiffiffiffiffiffi
Mc0

p
(see the electronic supplementary material,

figure S3). The number of molecules on the length of the wave-

front increases with motility and, as a consequence of the

reduced noise, at higher motilities the activating front propagates

more steadily. The size of the activating seed also increases with

motility and at higher motilities seeds are more likely to be swept

away (see the electronic supplementary material, figure S2). Con-

sequently, as we will see in §3.5, at large motility the stochastic

wave initiations are much less frequent: they need the creation

of a larger seed, and thus the initiating stochastic fluctuation

must involve a larger number of molecules.

3.5. Spontaneous wave activation
The two already discussed transition modes, the stochastic

switching in a well-mixed system and semi-deterministic tra-

velling wave propagation in a spatially extended system, can

work in conjunction. The initially inactive system can be

excited owing to a local fluctuation, which could in turn

initiate an activating travelling wave. We investigate this

mechanism in the system with (c1 ¼ 0.02, c2 ¼ 0.15) and

M ¼ 1000 in the semi-one-dimensional reactor of V ¼ 20 �
1000 (figure 6). A spontaneous local activation, occurring in
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Figure 5. Kinase activity wave propagation on the cylindrical domain 30 � 1100 for parameters (c1 ¼ 0.02, c2 ¼ 0.15) and M ¼ 3000. At t ¼ 0, a fragment of
the cylinder (30 � 100) is in the active state. (a) Three snapshots from an on-lattice KMC simulation. (b) Time profile of the kinase activity profile integrated over
the whole domain. (c) Kinase activity profile across the domain at time t ¼ 150, averaged using the sliding window of width w ¼ 11. (d ) Kinase activity profile
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a random place of the reactor, gives rise to two fronts, which

propagate in opposite directions, driving the whole reactor

to the active state. The average time to switch on was esti-

mated as t20�1000
on ¼ 596 (from non ¼ 16 switches). Based on

the analysis in §§3.3 and 3.4, the activation mechanism can

be understood as follows: the 20 � 1000 reactor can be con-

sidered as an array of 50 smaller 20 � 20 sub-reactors.

These small sub-reactors switch on and off with switching

times t20�20
on ¼ 3:52� 104, t20�20

off ¼ 2:02� 103 (figure 3).

Thus, the expected time to switch on in the whole reactor

can be estimated as ton ¼ t20�20
on =50 ¼ 700, which agrees

(unexpectedly well) with the measured t20�1000
on ¼ 596.

The same reasoning fails for a two-dimensional reactor of

V ¼ 200 � 200. For the same parameters, a spontaneous acti-

vation was not observed in long simulations (with total

simulation time � 2 � 104). In the two-dimensional case, the

spontaneously appearing seeds of activity are extinguished

by the inactive neighbourhood more easily than in the reactor

of cylindrical geometry. The spontaneous activation was

observed only after reducing motility to M ¼ 300 (figure 7).

Increasing motility increases the number of communicated

molecules and thus reduces the switch rate: ton grows exponen-

tially with the motility in the case of the two-dimensional

reactor (figure 4b). One could expect that ton(M) for the one-

dimensional reactor grows / expð
ffiffiffiffiffi
M
p
Þ. However, such

dependence does not fit well to obtained data points, although

it yields a better fit than ton / expðMÞ. The divergence from

the ‘/ expð
ffiffiffiffiffi
M
p
Þ’ prediction can be due to the fact that in the

cylindrical reactor ton(M) spans the large range of motilities

involving the change of the stochastically preferred steady

state (figure 3).

The observation that the reduced motility increases the

probability of system activation suggests that regions of reduced

diffusivity can serve as ignition points for the activation of the

whole reactor. We verified this hypothesis by performing simu-

lations of the 200 � 200 domain with a spatially varying

diffusion coefficient. The overall motility was set to M ¼ 1000,

while in a circular region of r¼ 14 motility was reduced 10

times to Mpatch¼ 100. In order to minimize possible

peculiarities caused by the sharp jump on the brink of the

patch, the motility in its vicinity was increasing linearly, concen-

trically until reaching the outer circle of radius r0 ¼ rþ 10;

beyond which M ¼ 1000. Within this set-up, we observed that

the patch of lowered diffusivity acts as an ignition centre: sto-

chastic activation switches are much more probable in this

region, and the local activation, with some probability, again,

can start the semi-deterministic travelling wave (figure 8). As

one can expect, ton decreases sharply with the radius of the

patch (see the electronic supplementary material, figure S7).

For completeness, it should be noted that, when the sto-

chastic and deterministic global attractors coincide in the

active state (which happens for parameters c1 and c2 above

the stochastic bimodality curve in figure 1), the initially inac-

tive system is more likely to be activated by local stochastic

fluctuations: for small diffusion, the activating seeds plausi-

bly appear in several places simultaneously, giving rise to

several travelling fronts (see the electronic supplementary

material, figure S4).

In the already considered case of (c1 ¼ 0.02, c2 ¼ 0.06)

depicted in the electronic supplementary material, figure S6,

the stochastic and deterministic global attractors coincide

in the inactive state. In this case, simultaneous local inactivations

can occur probably in various places of the compartment. To

avoid spontaneous switching and illustrate the possibility

of the propagation of the inactivating wave, we considered

M ¼ 10 000 in the wider 50 � 1100 reactor, where stochastic

switches are rare.

Interestingly, in the 30 � 1000 toroidal domain at

M ¼ 300, the reactor is able to maintain a fractional activity

(see the electronic supplementary material, figure S5). Since

in the parameter space the point (c1 ¼ 0.02, c2 ¼ 0.06) is

closer to the curve of the deterministic standing wave

than point (c1 ¼ 0.02, c2 ¼ 0.2), it can be expected that for

(c1 ¼ 0.02, c2 ¼ 0.06) inactivating travelling waves are not

formed as easily as activating waves for (c1 ¼ 0.02, c2 ¼ 0.2).

Hence, scattered local on or off switches do not propagate;

they render the reactor dynamically yet persistently spatially

structured. As a consequence, most of the probability mass is

contained between stable steady states of the deterministic

system, in contrast to all previously analysed cases.

4. Discussion
In this study, in order to understand the principal mecha-

nisms of biochemical information processing and cellular

t = 15 t = 20

(a) (b)

t
0

1

100 200 300 400 500

fr
ac

tio
n 

of
 p

ho
sp

ho
ry

la
te

d 
ki

na
se

st = 25

t = 30 t = 35 t = 40

Figure 7. Spontaneous initiation of the activity wave on the square domain 200 � 200 for parameters (c1 ¼ 0.02, c2 ¼ 0.15) and M ¼ 300. For larger motility
M ¼ 1000, activity waves were not self-initiated. Snapshots in (a) correspond to the trajectory represented by the solid black line in (b). (Online version in colour.)
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decision-making, we systematically investigated transition

modes available to a generic bistable reaction system in the

spatially extended reactor. We used primarily microscopic

simulations on the two-dimensional lattice complemented

by the analysis of approximations neglecting either stochasti-

city or spatial resolution. In the well-mixed compartment (the

size of which is determined by the diffusion coefficient),

the transition rates between macroscopic steady states of the

system decrease exponentially with the number of reacting

molecules or the size of the compartment. In larger, non-

mixed compartments, transition rates are controlled by the

number of diffusively communicated molecules, which is typi-

cally much smaller than the total number of molecules. We

demonstrated that the local stochastic state-to-state transitions

occasionally initiate travelling waves, which expand in the

semi-deterministic manner leading to the (in)activation of

the whole reactor: either a local activation or inactivation can

be amplified spatially, depending on the reaction rate

constants. At increasing diffusivity, more molecules become

communicated and local transitions become less probable.

On the other hand, travelling waves can propagate only

when the diffusion is sufficiently fast. At large diffusion coeffi-

cients, the wavefronts are thicker, contain more molecules

and thus are less affected by fluctuations. As a result, in the

limit of large diffusion, the velocity of a wavefront in the dis-

crete stochastic system converges to that of its deterministic

approximation modelled by PDEs.

Importantly, there exists a range of parameters for which the

macroscopic, stochastically preferred steady state (or global sto-

chastic attractor, i.e. the state which is prevalently occupied in a

perfectly mixed regime) is different from the steady state pre-

ferred deterministically (or global deterministic attractor, i.e.

the state which expands as a result of the propagation of travel-

ling waves) [17,20]. We demonstrated that in this range of

parameters, even when a small compartment is predominantly

inactive, a travelling wave may spread the active state over the

larger reactor. If parameters are such that global stochastic

and deterministic attractors converge (in either the active or

inactive state), the system is effectively monostable, i.e. the

escapes from the ‘less stable’ macroscopic steady state can

arise spontaneously with a high probability. Consequently,

the reactor settles in the more stable steady state or remains

spatially heterogeneous with its regions flipping between

steady states, giving rise to transient clans of activated mol-

ecules [37]. Our macroscopic analysis thus implies that the

well-known mechanism of state-to-state transitions arising in

bistable reaction–diffusion systems is restricted only to the sub-

domain of the bistability domain in the parameter space. Only

these bistable systems which exploit in the parameter space

the region of diverging stochastic and deterministic attractors

are expected to be both resistant to spontaneous autoactiva-

tion (caused by stochastic switching) and sensitive to external

stimuli (allowing for deterministic activation by means of the

propagation of travelling waves). This physiologically rele-

vant region in the parameter space (delineated by two

separatrices in figure 1) grows with the increasing differences

between reaction rate constants, c1 , c2 , c3. We note that the

catalytic activity of a kinase can grow with its phosphorylation

level even stronger than is assumed in the analysed system, i.e.

kinetic rate constants can span several orders of magnitude:

c1 	 c2 	 c3 [54].

In living cells, travelling waves may be induced by an

external stimulus; for example, upon binding of a specific

extracellular ligand (antigen and chemoattractant) by

membrane receptors. We demonstrated that partial immobil-

ization of a tiny fraction of kinases on the membrane may

lead to the global activation of the system. Since the locally

constrained motility does not lead to a locally increased sur-

face concentration of molecules, this activation mechanism

is different from the recently proposed density-dependent

switch [30]. In the mechanism introduced here, there is an

inherent threshold number of activated clustered molecules

required for triggering a travelling wave with a sufficiently

high probability. It has been proposed theoretically and

recently investigated numerically that a tiny fraction of

membrane receptors clustered upon binding of antigens are

capable of initiating immunogenic responses in B cells (see

[55] and references therein). In other cases, proteins can

become co-sequestered in lipid microdomains after the acti-

vation. Such confinement reduces their lateral diffusion and

presumably facilitates subsequent signalling events [56].

We analysed exhaustively the SPD with respect to the dif-

fusion coefficient and size of the reactor. In the context of the

recruitment of cytoplasmic proteins to the membrane milieu,
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Figure 8. Activity wave initiation in the domain 200 � 200 owing to the locally reduced motility coefficient (M ¼ 100 in the inner circle, M ¼ 1000 outside the
outer circle, and gradually increasing M in between circles) for parameters (c1 ¼ 0.02, c2 ¼ 0.15). Snapshots in (a) correspond to the trajectory represented by the
solid black line in (b). (Online version in colour.)
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Abel et al. [57] showed that decreasing motility or altering

the depth of a submembrane layer promotes or suppresses

SPD bimodality, depending on the topology of the interac-

tion network. In their case, the unimodal distribution arises

from averaging over the reactor and peaks between two

steady states. In the system analysed in this study, the

unimodality results from the preference of one of two

steady states of the deterministic approximation. We

showed that the SPD is controlled by both the motility of

molecules and the volume of the reaction chamber. In our

case, a single reaction rate parameter dictates the state to

which the system converges at the increasing diffusivity.

We found that, despite the system being bistable, the SPDs

may be bimodal only in small well-mixed compartments.

Large compartments have, generically, unimodal SPDs

analogously to the perfectly mixed systems of large numbers

of molecules [20,58].

In a spatially extended system, which in the case of slow

diffusion can be considered as a composition of multiple

well-mixed reactors, the expected time to activation has

been shown to shorten with increasing volume, which is in

stark contrast to a perfectly mixed reactor, for which the

time increases exponentially with the volume. Furthermore,

spatially extended reactors of similar volumes but different

geometries can have vastly different expected times to acti-

vation. In a two-dimensional reactor, the minimal size of

the ‘nucleation centre’ required for the initiation of a wave is

larger than in a semi-one-dimensional reactor, and thus the

expected time to the stochastic activation is longer. Propagation

of waves is also dependent on the reactor geometry. In a semi-

one-dimensional reactor, the front curvature is negligible,

while in a two-dimensional reactor the curvature reduces the

velocity of the travelling front, and may prohibit spreading of

the wave when the initial cluster is too small [55].

Our work provides further evidence that biochemical

reactions on the membrane can be reproduced only with

spatial stochastic simulations. In addition to the discussed

phenomena, in which local stochastic fluctuations lead to

global state-to-state transitions not captured by deterministic

reaction–diffusion equations, we found that in the discrete

system the effective reaction rates are controlled by the

diffusion. It can be observed that, in the case of slow

diffusion, the more effective processive phosphorylation

mode prevails over the less efficient distributive mechanism,

boosting the system’s activity [59,60]. Additionally, molecular

crowding (and self-crowding), which is reflected explicitly in

our lattice-based simulations and is expected to be significant

at assumed surface densities of reacting molecules, facilitates

consecutive phosphorylation events [61,62]. In the well-

mixed approximation, kinases are dephosphorylated at the

rate proportional to the product of phosphatase activity

and the number of phosphatases. Phosphatases, which

are modelled explicitly in spatial simulations, can become

unemployed after dephosphorylating all their neighbouring

kinases, resulting in the reduction of their effective enzymatic

activity [63].

The applied method of on-lattice KMC simulates the

master equation in continuous time and discretized space

at the single event and single molecule resolution. For large

systems, such simulations are inevitably computationally

demanding, but provide accurate estimations of MFPTs,

which are crucial for the performed analysis. Spatially or tem-

porally coarse-grained algorithms have lower computational

cost but also lower, in fact unknown, accuracy. The results pre-

sented in this paper consumed years of aggregate CPU time of

a computer cluster, but in the hope that they could be used to

calibrate faster approximate algorithms.

In summary, transitions in a bistable system on the

membrane employ both stochastic and deterministic effects.

Transitions between macroscopic steady states of spatially

extended systems are qualitatively different from transi-

tions available in well-mixed compartments. These transitions

employ travelling waves that can be initiated spontaneously

as a result of stochastic fluctuations. We demonstrated that

the SPD and MFPTs depend strongly on the diffusion coeffi-

cient, size and shape of the reactor. These factors (in addition

to reaction rates) decide the activity (or inactivity) of a spatially

extended bistable system.

This study was supported by the Foundation for Polish Science grant
TEAM/2009-3/6 and Polish Ministry of Science and Higher
Education grant no. N N501 13 29 36. Numerical simulations of
on-lattice KMC were carried out at the Zeus computer cluster at
the ACK Cyfronet AGH in Kraków and at the Grafen computer clus-
ter of the Ochota Biocentre in Warsaw.
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ELECTRONIC SUPPLEMENTARY MATERIAL

Stochastic transitions in a bistable reaction system

on the membrane

Marek Kochańczyk, Joanna Jaruszewicz, and Tomasz Lipniacki

This material features the article published in the Journal of the Royal Society Interface, 2013.

Supplementary table

Parameters of the analysed system used in simulations

Parameter
Dimensionless values Dimensional

values for
c0 = 10/s,
ℓ = 0.01 μm

On-lattice KMC Gillespie KMC PDEs On-lattice KMC

c0 1.667 10/V 1 10/s

c1 0.008333 0.05/V 0.02 0.05/s

c2 {0.025,
0.0625,
0.08333}

{0.15/V ,
0.375/V ,
0.5/V }

{0.06,
0.15,
0.2}

{0.15/s,
0.375/s,
0.5/s}

c3 1.667 10/V 4 10/s

M 18 to 6000 ∞ 18 to 6000 300 to 10 000/s

D 2.25 to 750 ∞ 2.25 to 750 3.75×10−3 to
1.25 μm2/s

l 1 — 1 0.01 μm

ρK 0.4 — — 4619/μm2

ρP 0.1 — — 1155/μm2

Table S1: Parameters of the analysed system. Parameters are described in the main text.
Only c2 and M (and D) vary between simulations; other parameters, referred to as default
parameters in the main text, are the same in all simulations.
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Physiological relevance of parameter values used in simulations:

• Rate constants of reactions on the membrane can be as fast as 100/s [S1]; the relation
c1 < c2 < c3 reflects the strong boost to the catalytic activity of a kinase resulting from
the increase in the number of its phosphorylated sites [S2].

• Diffusion coefficients of membrane proteins lie in the range of 10−2 to 10−1 μm2/s (which
is at least an order of magnitude lower than in the cytoplasm) [S3, S4].

• The lattice constant ℓ is assumed to correspond exactly to the average centre-to-centre
spacing of neighbouring membrane proteins [S5]. At ℓ = 10 nm compartment volumes
analysed in simulations correspond well to sizes of plasma membrane confinement zones,
which e.g. in NRK cells have the mean diameter of about 230 nm as revealed by single-
particle tracking experiments [S6]; on the other hand, as we consider isolated chambers,
transient trapping of proteins in zones of confinement is not reflected in simulations.

• A significant fraction of the membrane surface can be covered by proteins [S7]. The
surface density of membrane proteins is of order of 100/μm2, but in some cases can be
even as high as 10 000/μm2 [S8]. (The calculation of dimensional densities of molecules

involves the formula for the surface of a hexagon: A =
√
3
2
ℓ2.)

Supplementary references:

S1 Faeder, J. R., Hlavacek, W. S., Reischl, I., Blinov, M. L., Metzger, H., Redondo, A., Wofsy, C.
& Goldstein, B. 2003 Investigation of early events in FcεRI-mediated signaling using a detailed
mathematical model. J. Immunol. 170, 3769–3781.

S2 Alessi, D. R., Saito, Y., Campbell, D. G., Cohen, P., Sithanandam, G., Rapp, U., Ashworth, A.,
Marshall, C. J. & Cowley, S. 1994 Identification of the sites in MAP kinase kinase-1 phosphorylated
by p74raf-1. EMBO J. 13, 1610–1619.

S3 Elowitz, M. B., Surette, M. G., Wolf, P. E., Stock, J. B. & Leibler, S. 1999 Protein mobility in the
cytoplasm of Escherichia coli. J. Bacteriol. 181, 197–203.

S4 Ramadurai, S., Holt, A., Krasnikov, V., van den Bogaart, G., Killian, J. A. & Poolman, B.
2009 Lateral diffusion of membrane proteins. J. Am. Chem. Soc. 131, 12650–12656. (doi:10.1021/
ja902853g)

S5 Phillips, R., Ursell, T., Wiggins, P. & Sens, P. 2009 Emerging roles for lipids in shaping membrane-
protein function. Nature 459, 379–385. (doi:10.1038/nature08147)

S6 Kusumi, A., Nakada, C., Ritchie, K., Murase, K., Suzuki, K., Murakoshi, H., Kasai, R. S.,
Kondo, J. & Fujiwara, T. 2005 Paradigm shift of the plasma membrane concept from the two-
dimensional continuum fluid to the partitioned fluid: high-speed single-molecule tracking of
membrane molecules. Annu. Rev. Biophys. Biomol. Struct. 34, 351–378. (doi:10.1146/annurev.
biophys.34.040204.144637)

S7 Zhou, H.-X. 2009 Crowding effects of membrane proteins. J. Phys. Chem. B 113, 7995–8005.
(doi:10.1021/jp8107446)

S8 Kalay, Z., Fujiwara, T. K. & Kusumi, A. 2012 Confining domains lead to reaction bursts: reaction
kinetics in the plasma membrane. PLoS One 7, e32948. (doi:10.1371/journal.pone.0032948)
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Supplementary figures

Gillespie algorithm versus on-lattice KMC for large motility

(a) Inactive state Transition Active state

Gillespie KMC simulation (M = ∞) On-lattice KMC simulation (M =      )
(b)

(c)
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Figure S1: Comparison of KMC on the lattice simulations for large motility coefficient

M = 104 and the corresponding spatially homogeneous Markov process simulated with Gillespie

algorithm. Domain size: 20 × 20, periodic boundary conditions; parameters: (c1 = 0.02,
c2 = 0.2). (a) Three snapshots from on-lattice KMC simulations (dephosphorylated kinases
– orange, monophosphorylated – red, bisphosphorylated – brown; phosphatases – pale green,
marked with a dot). (b) Trajectories of the fraction of phosphorylated kinases kp + kpp from
the Gillespie algorithm and on-lattice KMC simulations. (c) Bimodal stationary probability
distribution of kp + kpp calculated from long on-lattice (boxes) and Gillespie algorithm (thick
black overlay) KMC simulations. MFPTs τon and τoff are shown for both methods.
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Propagation of induced travelling waves in the semi-1-D reactor
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Figure S2: Fraction of phosphorylated kinases kp + kpp averaged over the whole reactor 30 ×
1100 during the induced wave propagation. Travelling wave velocities shown in figure S3 were
estimated from linear fits to these trajectories. When the “seed” had become deactivated, so
that the travelling wave did not form, the corresponding trajectory was not taken into account
in fitting (dashed pale lines). At higher diffusivities the probability that the initially active
area (“seed”) is swept away and cannot induce the wave is larger.
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Figure S3: Travelling wave velocity as a function of motility.
Velocities were calculated from simulations of PDEs and estimated
in on-lattice KMC simulations for (c1 = 0.02, c2 = 0.15) (figure S2).
Error bars – SD.
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Coinciding stochastically and deterministically preferred steady states
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Figure S4: Simultaneous spontaneous activation on the long toroidal domain 30 × 1000.
Parameters: (c1 = 0.02, c2 = 0.2) and M = 300. (a) Snapshots from the on-lattice KMC
simulation, (b) five example time profiles of phosphorylated kinases kp + kpp. Snapshots in (a)
correspond to the trajectory represented by the solid black line in (b).
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Figure S5: Self-sustaining transient patches of activity in a toroidal domain 30 × 1000.
Parameters: (c1 = 0.02, c2 = 0.06) and M = 300. (a) Snapshots from the on-lattice KMC
simulation, (b) time profiles of 10 + 10 trajectories starting from the spatially homogeneous
active and inactive steady states (horizontal dashed lines). Snapshots in (a) correspond to the
trajectory represented by the solid black line in (b).
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Figure S6: Kinase inactivity wave propagation on the cylindrical

domain 50 × 1000 for very large motility M = 10 000. Three snapshots
from an on-lattice KMC simulation. Parameters: (c1 = 0.02, c2 = 0.06).
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Activation due to a locally reduced motility
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Figure S7: Dependence of the expected time to activation τon

on the radius of the patch of lowered motility Mpatch = 100 with

the overall motility M = 1000 obtained from on-lattice KMC

simulations. Parameters: (c1 = 0.02, c2 = 0.06) as in figure 8 in
the main text. The expected τon is estimated based on non observed
switches given in square brackets.

Supplementary movies

✬

✫

✩

✪

Movies are available on-line at:

http://pmbm.ippt.gov.pl/publications/supplementary/

Kochanczyk-2013-JRSocInterface-Movies.zip

Movie S1: Activity wave initiation on the square domain due to the

locally reduced motility coefficient. System parameters as in figure 8
in the main text.

Movie S2: Self-sustaining transient patches of activity in a toroidal

domain. All parameters as in figure S5.
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We investigate the kinetics of the ubiquitous phosphorylation-dephosphorylation cycle on biological
membranes by means of kinetic Monte Carlo simulations on the triangular lattice. We establish the dependence
of effective macroscopic reaction rate coefficients as well as the steady-state phosphorylated substrate fraction
on the diffusion coefficient and concentrations of opposing enzymes: kinases and phosphatases. In the limits
of zero and infinite diffusion, the numerical results agree with analytical predictions; these two limits give
the lower and the upper bound for the macroscopic rate coefficients, respectively. In the zero-diffusion limit,
which is important in the analysis of dense systems, phosphorylation and dephosphorylation reactions can
convert only these substrates which remain in contact with opposing enzymes. In the most studied regime
of nonzero but small diffusion, a contribution linearly proportional to the diffusion coefficient appears in the
reaction rate. In this regime, the presence of opposing enzymes creates inhomogeneities in the (de)phosphorylated
substrate distributions: The spatial correlation function shows that enzymes are surrounded by clouds of converted
substrates. This effect becomes important at low enzyme concentrations, substantially lowering effective reaction
rates. Effective reaction rates decrease with decreasing diffusion and this dependence is more pronounced for
the less-abundant enzyme. Consequently, the steady-state fraction of phosphorylated substrates can increase or
decrease with diffusion, depending on relative concentrations of both enzymes. Additionally, steady states are
controlled by molecular crowders which, mostly by lowering the effective diffusion of reactants, favor the more
abundant enzyme.

DOI: 10.1103/PhysRevE.91.022702 PACS number(s): 87.10.Hk, 82.20.Pm, 87.10.Rt, 87.15.A−

I. INTRODUCTION

Cellular information is transmitted and processed by com-
plex networks of coupled biochemical reactions. Dynamics
of these networks is governed by reaction rates, which are
strongly influenced by diffusivity of reactants [1], their subcel-
lular localization, and nonspecific molecular crowding [2–4].

The aim of our study is to analyze the dependence of
effective macroscopic reaction rate coefficients on diffusion
in cycles of coupled antagonistic reactions. Such cycles,
exemplified by the phosphorylation-dephosphorylation cycle
or the GTPase cycle (Fig. 1), are crucial for cellular signal
transduction. In the ubiquitous motif of the phosphorylation-
dephosphorylation cycle, substrate molecules are phospho-
rylated and dephosphorylated by kinases and phosphatases,
respectively. For example, in the GTPase cycle [5], GTPases
such as Ras exist in either of two signaling states: GTP-bound
Ras is active (as it can recruit Raf and trigger MAPK kinase
cascade signaling), while GDP-bound Ras is inactive. GTPase-
activating proteins (GAPs) assist in the transition from the

*These authors contributed equally.
†tlipnia@ippt.pan.pl

GTP-bound to GDP-bound forms, while guanine nucleotide-
exchange factors (GEFs) facilitate GDP dissociation followed
by reloading of Ras with GTP. Overall, reversible regulatory
motifs allow for substrate reuse and signal amplification, thus
enabling rapid transmission of extracellular signals to effector
proteins such as transcription factors.

In this study we focus on chemical kinetics in two-
dimensional systems such as biological membranes. The
two-dimensional (2D) systems have their own peculiarities and
significantly differ from 3D systems but are very important for
signal transduction. Signal transduction in numerous pathways
is initiated by cytokine binding to membrane receptors,
which transmit signal to secondary messengers, often by
phosphorylation. Plasma membrane is a very crowded and
nonhomogenous environment where reactions are expected to
be diffusion controlled. This distinguishes plasma membrane
from the cytoplasm, which is characterized by at least one order
of magnitude faster diffusion and in which the characteristic
reaction time scale is longer.

Since the seminal work of von Smoluchowski on kinetics
of diffusion-limited association [6], there have been numerous
attempts to derive effective macroscopic reaction rate coef-
ficients (EMRRCs) that govern processes in a macroscale
chemical reactor. These derivations were based mostly on
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FIG. 1. (Color online) (a) A simple phosphorylation-
dephosphorylation cycle; Su, dephosphorylated substrate; Sp ,
phosphorylated substrate. (b) Ras GTPase cycle; GEF, guanine
nucleotide-exchange factor; GAP, GTP-ase activating protein.

microscopic models having a single-molecule resolution, con-
tinuous in space and time. Halfway between, the system can
be described by means of a reaction-diffusion master equation,
referred to as mesoscopic, as it averages out the kinetics over
the microscopic length and time scales [7,8]. We will approach
the microscopic limit by means of on-lattice kinetic Monte
Carlo simulations, assuming that each lattice site can be either
occupied by one molecule or empty. This approach, in contrast
to mesoscopic description-based simulation methods, provides
us with the single-molecule and single-reaction resolution, but
simplifies the continuous space to a discretized lattice.

Reaction schemes studied thus far can be divided into
reversible and irreversible. For the reversible case, even in
equilibrium, reactions still take place and the steady state may
be nontrivial. For the irreversible case, the system converges in
most cases to a well-defined state in which all reactions cease;
but the determination of time-dependent behavior still remains
a challenging problem.

Irreversible reaction systems are as follows:
A + B → C: Collins and Kimball [1] determined the

time-dependent reaction rate in the case when only a fraction of
collisions leads to dimer formation (extending the study of von
Somoluchowski [6]) and analyzed two limits corresponding
to diffusion control and reaction (activation energy) control.
Further works by Naqvi [9], Emais and Fehder [10], and Tor-
ney and McConnel [11] showed essential differences between
two- and three-dimensional systems. In three dimensions, the
reaction rate “quickly” stabilizes at some positive value, while
in two dimensions it decreases to zero as 1/ ln(t) [11]. A very
similar reaction, A + B → ∅, was considered by Toussaint and
Wilczek in the context of particle-antiparticle annihilation [12]
(see also Ref. [13]).

A + B → A + C and A + B → AB → A + C: Szabo
considered this unidirectional reaction in the context of
fluorescent quenching, where A is a quencher and B (C)
are in excited (relaxed) states [14]. By employing various
approaches, including that of von Smoluchowski, mean-field,
mean first-passage time, he calculated the reaction rate to find
that the agreement between these approaches is satisfactory
only in the limit of small concentration and fast diffusion.
For the Michaelis-Menten scheme, A + B � AB → A + C,
Kim et al. found that the long-time asymptotic relaxation of
the deviation of the bound enzyme concentration from the
steady-state value shows the power-law behavior ∝ (Dt)−1/2,
where D is the diffusion coefficient [15]. The same scheme

has been analyzed by Park and Agmon [16,17]. In the latter
work, Park and Agmon determined substrate concentration
profiles developing near a static enzyme molecule. Also Zhou
developed theoretical approaches and performed simulations
to quantify the diffusion influence on binding and unbinding
rates [18].

Reversible reaction systems are as follows:
A + B � C: Classical mass-action theory in the limit

of infinite diffusion predicts exponential relaxation to the
steady state. For diffusion-influenced kinetics, Zel’dovich
and Ovchinnikov showed that the system follows power-law
relaxation ∝ (Dt)−3/2 in 3D [19]. Then Berg calculated the
diffusion-controlled dissociation constant [20], and, later,
Agmon and Szabo determined the time-dependent kinetics for
the fraction of dissociated A and B molecules for various
initial and boundary conditions [21,22]. Szabo discussed
three different approaches to the relaxation kinetics of the
reversible association reactions that lead to nonexponential
relaxation in the diffusion-limited case [22]. Sung and Lee
provided an accurate theory of the diffusion-influenced re-
versible association reactions [23] which is in agreement with
numerical results of Edelstein and Agmon [24] and correctly
reduces to the von Smoluchowski’s result in the irreversible
limit. Takahashi et al. [25] considered a more complex
double phosphorylation-dephosphorylation cycle based on this
simple reaction scheme. They found that substrate rebindings,
which arise more likely for slow diffusion, turn a distributive
phosphorylation mechanism into a processive one leading to
the loss of ultrasensitivity in the MAPK cascade. Processive
phosphorylation is the mechanism of double phosphorylation
happening at a single enzyme-substrate encounter. This phos-
phorylation mode is favored in the case of slow diffusion. In
the distributive phosphorylation mechanism, occurring more
likely for faster diffusions, the subsequent phosphorylations
happen at different enzyme-substrate collisions and may be
performed by different enzyme molecules. Recently, substrate
rebinding was considered by van Zon et al., who found that
repressor-promoter rebindings slow down gene switching and
therefore increase gene expression noise [26]. In the context
of T-cell receptor (TCR) activation it was found that fast
TCR-pMHC rebindings of shortly bound ligands can allow
for kinetic proofreading-based TCR activation similar to that
induced by ligands which bind for longer times [27].

A + B � C + D: In a series of papers, Agmon and
colleagues obtained analytical solutions for the Green function
and survival probabilities of the reversible reaction. They
found that the asymptotic state (in three dimensions) is reached
as (Dt)−1/2, as in the irreversible case [28–30]. Recently, for
the reversible Michaelis-Menten scheme, A + B � AB �
A + C, Szabo and Zhou calculated the steady-state reaction
rates in the case when substrate and product concentrations
are effectively fixed, so bimolecular reactions can be treated
as pseudo first order [31]. They found that, similarly to the
irreversible Michaelis-Menten kinetics, the relaxation of free-
and bound-enzyme concentrations to steady state follows the
power law ∝ (Dt)−1/2.

The molecular crowding effect was studied and discussed
in a considerable number of papers and reviews [2–4]. To-date
results state that crowding, acting through volume exclusion,
influences the reactions rates differently in different regimes.
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In the diffusion-controlled regime it decreases the effective
rate coefficients, whereas it increases them in the reaction-
controlled regime. Also, it creates microdomains that can
transiently cage substrates or enzymes [3,32–34]. In particular,
it was shown experimentally and analyzed theoretically that
substrate caging can change the distributive phosphorylation
mode into the processive one [35]. Recently, it was shown
by Weiss that molecular crowding renders fluids viscoelastic,
which in turn leads to subdiffusion of tracer particles [36].

In this work we investigate the phosphorylation-
dephosphorylation cycle consisting of two opposing reactions:
K + Su → K + Sp and P + Sp → P + Su, and analyze how
EMRRCs and steady states depend on the diffusion and con-
centrations of enzymes (kinases, K , and phosphatases, P ). In
the considered model, the nonuniformity in spatial distribution
of phosphorylated and dephosphorylated substrates is inherent
to the system. At small densities of enzymes, each enzyme
molecule is surrounded by a cloud of converted substrates.
Since the scale of nonuniformity is controlled simultaneously
by both enzymes, the effective phosphorylation and dephos-
phorylation rate coefficients are expected to be coupled.

The paper is organized as follows: In Sec. II we define our
models and outline the methods used for numerical analysis;
in Sec. III we provide analytical solutions for limiting cases;
and in Sec. IV we present numerical results and highlight
interesting effects. Discussion follows in Sec. V.

The paper is supplemented with four appendices: In
Appendix A we show that EMRRCs are independent of the
lattice size for sufficiently large lattices; in Appendix B we
analyze the dependence of macroscopic diffusion on motility
and density of molecules; in Appendix C we analyze nonequi-
librium dynamics of the system of two opposing reactions (i.e.,
the basic model) and the system without the dephosphorylation
reaction; and in Appendix D we consider a model variant
in which phosphorylation and dephosphorylation proceed via
formation of a transient enzyme-substrate complex.

II. MODELS AND METHODS

A. Numerical methods

All of the considered models introduced hereafter are
analyzed by means of spatial kinetic Monte Carlo (KMC)
simulations [37,38]. Molecules are placed on discrete sites
of a two-dimensional triangular lattice which forms a square
domain with periodic boundary conditions. The molecules
diffuse freely by hopping to adjacent empty lattice sites. Their
state can be modified due to chemical reactions, either uni-
molecular or bimolecular (involving two molecules occupying
adjacent lattice sites). Diffusion and reaction events occur at
defined rates called motilities and (microscopic) reaction rate
constants, respectively. Motilities, m, are assumed to be equal
for molecules of all types (unless otherwise specified). The
propensity of hopping to a neighboring empty site on the
triangular lattice is m/6. All allowed chemical reactions are
defined together with their respective reaction rate constants.

At each step of the KMC simulation, a list of all events
possible on the lattice is available. Time step is drawn
at random from the exponential distribution with the rate
parameter equal to the sum of the rates of all possible events. A

diffusion or reaction event is selected from the complete events
list at random, with probability proportional to its rate. This
approach is equivalent to a stochastic simulation according
to the Gillespie algorithm [39] extended to account for
additional diffusive events. Such construction allows for direct
comparison of motility with reaction rate constants. After
every event, the list of all events is updated. However, since
the change in the system configuration after every simulation
step is local, only a partial update of the list is necessary.
By drawing events from the always-complete list, there is
no need to simulate trial events that would be subsequently
rejected, rendering the method efficient. The overall algorithm
is essentially equivalent to the Bortz-Kalos-Lebowitz method
applied previously to, e.g., studying dynamics of Ising spin
glasses [40].

Initial distribution of molecules on the lattice is uniformly
random. Simulations were performed on the 100 × 100 lattice
to estimate EMRRCs in equilibrium; in the nonequilibrium
case, the 300 × 300 lattice was used in order to obtain
better statistics, while the spatial correlation functions were
determined based on simulations performed on the 500 × 500
lattice. As shown in Appendix A, simulations performed on
lattices of sizes equal or larger than 30 × 30 with a number of
molecules of each type exceeding 50, give the EMRRCs esti-
mates independent of the lattice size. EMRRCs in equilibrium
were determined by averaging over 10 independent, long-run
simulations of the system in equilibrium (assessed by invari-
ance of nontrivial radial distribution functions or correlation
length-based considerations [41]). Unless stated otherwise,
the simulations were preceded by equilibration phase of 1000
and lasted at least 1000 each. In the nonequilibrium case we
performed 1000 independent simulations to obtain satisfactory
statistics (see Appendix C for further details).

Numerical results are supplemented by analytical expres-
sions obtained in two extreme cases of zero and infinite
motility. We also analyze how the steady states and effective
motilities are influenced by nonspecific molecular crowders of
varying motilities.

B. Phosphorylation-dephosphorylation cycle

We consider a phosphorylation-dephosphorylation cycle
assuming that these processes are unidirectional reactions,
occurring at their respective rates; the free energy expenditure
featuring reaction cycles is neglected. Substrates are phospho-
rylated and dephosphorylated by kinases and phosphatases
according to the following set of reactions:

K + Su
c−→ K + Sp, (1a)

P + Sp
d−→ P + Su, (1b)

where Su and Sp stand for dephosphorylated and phospho-
rylated substrates, respectively, and K represents the kinase
and P the phosphatase. The symbols ρK , ρP , ρSu

, and ρSp

will denote surface densities, i.e., the fractions of lattice sites
occupied by respective molecules. Coefficients c and d are the
microscopic rate constants of phosphorylation and dephos-
phorylation reactions catalyzed by adjacent enzymes. In other
words, c and d are propensities of respective reactions when
an enzyme molecule is in contact with a substrate molecule.
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Equations (1) should not be read as exact chemical balance
equations; instead, they conform to an approximation in which
the concentration and diffusion coefficient of ATP (phosphate
donor) are sufficient to assume that ATP accessibility does
not limit the phosphorylation reaction rate. Also the inorganic
phosphate molecules produced in dephosphorylation reactions
are not taken into account.

As a reference to the basic model defined by Eqs. (1) we
also consider a model variant in which dephosphorylation is a
first-order reaction, i.e.,

Sp

d0−→ Su, (2)

whereas phosphorylation still occurs via Eq. (1a). The first-
order dephosphorylation (FOD) reaction is a simplification but
it serves as an approximation when a particular phosphatase or
its level are unknown. In order to compare FOD approximation
with the basic model, we set d0 = 6ρP d, which assures equal
dephosphorylation efficiencies in the limit of infinite motility,
as will be shown later.

The basic model does not account explicitly for the
formation of the enzymatic encounter complex: Both the
phosphorylation and dephosphorylation are considered to be
single-step reactions. In reality, these reactions are multistep
processes (enzyme-substrate binding, catalytic reaction, and
enzyme-product dissociation). As shown in the Appendix D,
this simplification does not significantly affect our key find-
ings, at least when the enzyme sequestration is weak.

C. Macroscopic description and effective reaction
rate coefficients

Time evolution of systems of reacting molecules is usually
described by chemical mass-action kinetics equations, i.e.,
systems of ordinary differential equations for densities of
substrates and products. Here we take into account the spatial
and discrete nature of biochemical reactions and simulate
numerically processes involving individual molecules. Our
aim is to determine—based on the microscopic rate constants
c and d—the effective reaction rate coefficients, which can be
then used in the macroscopic description of the system.

We define the effective macroscopic phosphorylation rate
coefficient ceff and effective macroscopic dephosphorylation
rate coefficient deff accordingly:

ceff = n

ρSu
ρKV �t

, (3a)

deff = n

ρSp
ρP V �t

, (3b)

and refer to them collectively as to EMRRCs. In Eqs. (3), n is
the number of (de)phosphorylation reactions that fired during
a time interval �t and V is the lattice surface area (i.e., total
number of lattice sites). The densities of kinases, phosphatases,
and substrates are denoted by ρ with a respective subscript:
ρK , ρP , ρSu

, and ρSp
.

For the most part in our study, we will focus on the
steady-state analysis where EMRRCs can be estimated based
on long-run simulations, in which the number of reactions is
determined over a satisfactorily long time interval �t . Only in
Appendix C will we perform simulations for the system which

is initially far from equilibrium to show that for the reversible
phosphorylation-dephosphorylation cycle EMRRCs converge
to their steady states. In this case, we will estimate EMRRCs
within short time intervals by averaging over 1000 independent
KMC simulations.

When the number of molecules present in the system is
large we can write the following system of ordinary differential
equations:

d

dt
ρSu

= −ceffρKρSu
+ deffρP ρSp

, (4a)

d

dt
ρSp

= ceffρKρSu
− deffρP ρSp

. (4b)

These two equations are complementary, since their solutions
satisfy ρSu

(t) + ρSp
(t) = ρS = const. The steady-state solu-

tion of Eqs. (4) reads:

ρSu
= deffρP

ceffρK + deffρP

ρS, (5a)

ρSp
= ceffρK

ceffρK + deffρP

ρS. (5b)

In the next section we will analyze the dependence of the
steady-state solutions and EMRRCs on motility. EMRRCs
provide more information than steady states alone; for exam-
ple, they give the ATP turnover which can be measured by
radioactively labeled ATP (γ -32P-ATP). First, we will provide
analytical results in the limits of zero and infinite motility.
Then we will analyze numerically our model for finite, nonzero
motilities.

III. ANALYTICAL RESULTS

A. Infinite-motility limit

We assume that in the infinite-motility limit the probability
of finding a given molecule is uniform on the lattice. Thus, at
any time the density of enzyme-substrate pairs is given by the
product of densities multiplied by the number of potential
neighbors, e.g., the kinase-dephosphorylated substrate pair
density is equal to 6ρKρSu

. Therefore, the phosphorylation
rate, i.e., the number of phosphorylation reactions per reactor
volume per time, is equal to 6cρKρSu

, which in light of Eq. (4)
gives c∞

eff = 6c. The limit of infinite motility will be compared
later with simulations performed for high motilities.

B. Zero-motility limit

The zero-motility limit is a singular limit, since without
mixing the whole process is determined by initial positions
of enzymes and substrates. For an arbitrarily small motility,
however, the system relaxes after a sufficiently long time.

The zero-motility limit approximates the behavior of dense
systems, in which diffusion is substantially reduced, but
reactions still occur for substrates in the close vicinity of
opposing enzymes. Increased density, together with reduced
diffusion, features receptor clusterization, necessary, for ex-
ample, for the initiation of B-cell receptor signaling [42–
45] and TLR4-CD14 cluster formation preceding receptor
internalization [46]. Formation of dense ordered patterns of
proteins and other molecules has been intensively modeled in
recent years (see Ref. [47] and references therein).
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We start the analysis of this limit by calculating the
steady-state densities of phosphorylated and dephosphorylated
substrates, ρSp

and ρSu
:

ρSp
= p+ · ρS, ρSu

= ρS − ρSp
, (6)

where p+ is the probability that a substrate molecule is in the
phosphorylated state.

When the motility is zero, the probability that a given
substrate molecule is phosphorylated depends solely on the
number of neighboring kinases, i, and the number of neigh-
boring phosphatases, j , and is equal to

p+
ij = ic

ic + jd
. (7)

The probability of having exactly i kinase and j phosphatase
neighbors is

pij =
(

6

i

)
ρi

K

(
6 − i

j

)
ρ

j

P (1 − ρK − ρP )6−i−j ,

i,j ∈ {0,1, . . . ,6}, 1 � i + j � 6 (8)

and the probability that the substrate is in the phosphorylated
state without contact with any enzyme molecule is equal to
the probability that the substrate is in the phosphorylated
state while in contact with at least one enzyme molecule.
The Eq. (8) is exact only on infinite domains with infinite
number of kinases and phosphatases; however, it serves as
a good approximation when the number of enzymes of each
type is much larger than 1. The infinitely small but nonzero
motility means that substrates equilibrated in contact with the
enzyme diffuse away maintaining their phosphorylation status
which cannot change without a subsequent contact with an
appropriate enzyme molecule.

Therefore, the probability p+ is given by the conditional
probability that a substrate molecule is phosphorylated when
in contact with at least one enzyme molecule,

p+ =
∑

1�i+j�6

pijp
+
ij

/ ∑
1�i+j�6

pij , (9)

where the sum runs over all substrate molecules having contact
with at least one enzyme molecule.

Now we will calculate EMRRCs in the steady state.
Let us notice that in the zero-motility limit reactions occur
only for the substrate molecules which have neighbors of
different types (i.e., at least one kinase and one phosphatase).
Let us recall that the probability that the substrate which
has i neighboring kinases and j neighboring phosphatases
is dephosphorylated is jd/(ic + jd). The phosphorylation
propensity is ic for the unphosphorylated substrate, while it is
0 for the phosphorylated substrate. Thus the effective phospho-
rylation propensity is ic jd/(ic + jd). In the stationary state
the number of the phosphorylation and dephosphorylation
reactions per reactor volume per time must be equal, and thus
the reaction rates are equal to ρS

∑
i,j�1,i+j�6 pij (ic jd)/(ic +

jd) and, correspondingly, the effective phosphorylation and

dephosphorylation rate coefficients are equal to

c0
eff = ρS

ρKρSu

∑
i,j � 1

i + j � 6

pij

ic jd

ic + jd
, (10a)

d0
eff = ρS

ρP ρSp

∑
i,j � 1

i + j � 6

pij

ic jd

ic + jd
, (10b)

where ρS/ρSu
= 1/(1 − p+) and ρS/ρSp = 1/p+, with p+

given by Eq. (9).
One should keep in mind that rate coefficients c0

eff and d0
eff

were derived under the steady-state assumption and, therefore,
far from equilibrium their values can be substantially different.
The phosphorylation and dephosphorylation rate coefficients
obtained in the limit of zero motility give the lower bounds
for EMRRCs. In the limit of ρK → 0 and ρP → 0, Eq. (8)
implies pij ≈ p11 = 30ρKρP (the probability of having more
than one enzyme of each kind is negligibly small, so pij = 0
for i,j > 1) and therefore in this limit c0

eff and d0
eff are

c0
eff = 30

1 − p+ ρP

cd

c + d
, (11a)

d0
eff = 30

p+ ρK

cd

c + d
. (11b)

Constants c0
eff and d0

eff can be large in systems characterized
by high densities of both kinases and phosphatases; however,
according to Eqs. (11), they decrease to zero with the density
of the opposing enzyme decreasing to zero.

C. Finite motility

We have analyzed two extreme cases of zero and infinite
motility. In the infinite motility limit, also known as the
reaction-controlled limit, the EMRRCs are proportional to the
microscopic reaction propensities (for molecules in contact).
In this limit, since m � c and m � d, the probability that
an enzyme reacts with a substrate at a single encounter is
negligibly small and proportional to the microscopic rate
constants c and d.

The small motility limit arises when the microscopic
reaction rate constants c and d are fast when compared to
motility. Processes characterized by low motility and large
reaction propensities are called diffusion limited. For such
processes the probability that an allowed reaction fires at
every collision of molecules is close to 1. Therefore, for such
processes EMRRCs are proportional to the collision frequency,
which in turn is proportional to the motility m. Here the
situation is more complex since even in the limit of zero
motility the reaction rates are nonzero, as discussed in the
previous section. Accordingly, one could expect the following
macroscopic equation:

d

dt
ρSp

= (
λm + c0

eff

)
ρK ρSu

− (
λm + d0

eff

)
ρP ρSp

, (12)

where λ is some coefficient. In fact, the considered case
is even more complicated, since, especially at low enzyme
densities, the spatial distribution of the phosphorylated and
dephosphorylated substrates is nonuniform. That is, the
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FIG. 2. (Color online) (a) Fractional density of phosphorylated substrates, ρSp
/ρS , as a function of the enzymes density ratio for different

values of motility, m. Analytically computed limits of zero and infinite motility are marked with dashed and dotted lines. Parameters are:
ρS = 0.3, ρK = 0.1, c = 1/6ρK , and d = 1/6ρP . In this series of simulations, the density of kinases was kept constant, while the density of
phosphatases was varied from ρP = ρK/0.25 = 0.4 to ρP = ρK/12 ≈ 0.008. By setting d = 1/6ρP , the change of phosphatases density was
compensated by the proportional change of the microscopic dephosphorylation rate constant. (b) Fractional density of phosphorylated substrates
as a function of m, in the case when the more abundant enzyme (kinase) has much lower catalytic activity. Simulations were performed for
ρS = 0.3, ρK = 0.1, ρP = 0.01, c = 1, and d = 100. (c) Fractional density of phosphorylated substrate as a function of m for different values
of phosphatase density ρP as well as for the first-order dephosphorylation model marked as FOD, with d0 = 1. Simulations were performed
for ρS = 0.2, ρK = 0.1, c = 1/6ρK , and d = 1/6ρP .

phosphorylated substrate molecules are more likely to be
present in the vicinity of a kinase, while the dephosphorylated
substrate molecules are more likely to be present in the vicinity
of a phosphatase. As a result, even in the symmetric case
of c = d and ρK = ρP , in which the overall probability that
a substrate is phosphorylated is 1

2 , kinase molecules collide
much more often with phosphorylated substrates, which re-
duces the effective phosphorylation rate. Intuitively, this effect
increases with decreasing density of enzymes which causes
that each phosphatase molecule is surrounded by a cloud of
dephospshorylated substrates and each kinase molecule by a
cloud of phosphorylated substrates. We will analyze this effect
in Sec. IVB by means of spatial correlation function.

As we will show below, in the general case of finite motility,
EMRRCs are controlled simultaneously by the motility, both
contact reaction propensities, and densities of both enzymes.
Therefore, analytical determination of these rate coefficients
is a challenging problem.

IV. NUMERICAL RESULTS

A. Steady-state dependence on enzyme density and motility

In this section we analyze numerically the dependence of
the steady-state density of phosphorylated and dephospory-
lated substrates and EMRRCs on motility and densities of
the opposing enzymes. The convergence of EMRRCs to their
steady state in the phosphorylation-dephosphorylation cycle
is demonstrated in Appendix C. In the same appendix the
nonreversible dynamics of phosphorylation in the absence of
phosphatase is considered.

Let us recall that in the infinite-motility limit the effec-
tive macroscopic phosphorylation and dephosphorylation rate
coefficients are c∞

eff = 6c and d∞
eff = 6d and, correspondingly

[due to Eq. (5)], the density of phosphorylated substrates is

ρSp
= cρK

cρK + dρP

ρS. (13)

To keep the steady-state densities of phosphorylated and
dephosphorylated substrates equal to 1

2 in the limit of the
infinite motility, we keep cρK = const and dρP = const, that
is, we set c = 1/6ρK and d = 1/6ρP . We found that for
finite motilities the phosphorylated substrate fraction increases
with ρK/ρP (in the analysis we keep ρK = 0.1 and vary
ρP ), and we show that the smaller the motility is, the more
pronounced this effect is, see Fig. 2(a). The dashed line for
m = 0 tends to 1 with ρK/ρP tending to infinity. For low
motility, m = 1, the numerically estimated ρSp

matches closely
the zero-motility limit. Similarly, for large motilities, ρSp

is
close to the infinite-motility limit. Because of the symmetry,
for ρK = ρP the phosphorylated substrate fraction is equal to
1
2 for all motilities.

In Fig. 2(b) we show that when kinases are more abundant
than phosphatases, but at the same time have much lower
catalytic activity, the dependence of ρSp

/ρS on motility is
strongly pronounced. At low motilities, substrates remain
mostly in the phosphorylated state, ρSp

/ρS ≈ 0.9, while at high
motilities they are mostly dephosphorylated, ρSp

/ρS ≈ 0.1.
The above shows that, generically, in the regime of low
motilities (diffusion limited) it is the density of enzymes
that decides about the state of the system and for large
motilities (reaction-controlled limit) crucial is the product of
the microscopic reaction rate constants and densities.

In Fig. 2(c) we show that the density of phosphorylated sub-
strate can either decrease or increase with motility depending
on the enzyme densities ratio. For a fixed density of kinases
(ρK = 0.1) we analyze the dependence of ρSp

on motility
for four values of phosphatase densities, as well as for the
FOD model. Since, as in Fig. 2(a), phosphatase microscopic
reaction rate constant is set d = 1/6ρP , for increasing motility,
ρSp

/ρS tends to 1
2 , regardless of the phosphatase density.

However, for small motilities ρSp
/ρS depends strongly on the

phosphatase density and, in general, differs from that for the
FOD model. Only for a very high density (ρP = 0.3) does
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FIG. 3. (Color online) Three simulation snapshots of the 300 × 300 lattice showing spatial inhomogeneities of the distribution of the
phosphorylated (red) and dephosphorylated (blue) substrates. For all panels c = d = 100, ρS = 0.1, and ρK = ρP = 0.001.

the fraction ρSp
/ρS closely match the FOD model prediction

with d0 = 1. This is due to the fact that for ρP = 0.3 the
probability that a given substrate molecule is in contact with at
least one phosphatase is high [equal to 1 − (0.7)6 = 0.88] and
therefore the dephosphorylation is effectively of first order.
This demonstrates that the FOD model cannot serve as a good
approximation across a broad range of motilities.

B. Spatial correlation functions

The results shown in Fig. 2 can be explained as follows:
for a decreased phosphatase density (compensated by a
proportionally increased dephosphorylation rate constant d),
phosphatases are surrounded by dephosphorylated substrates
and therefore the effective dephosphorylation rate coefficient
decreases. Intuitively, this effect becomes stronger for low
motilities, for which substrates have a higher chance to be
dephosphorylated after a single encounter with a phosphatase
and vanishes in the limit of infinite motility, when the
probability that a substrate molecule is in the phosphorylated
state does not depend on its position.

It is well known that the rate of diffusion controls the
steady state of the system in the case when opposing enzymes
are spatially separated. As shown and discussed by Brown

and Kholodenko, when substrate phosphorylation occurs at
the plasma membrane and dephosphorylation occurs in the
cytoplasm, gradients of phosphorylated substrates arise, and
the effectiveness of the phosphorylation process depends
on diffusion [48,49]. Later, van Albada and ten Wolde
demonstrated that the sharpness of the response decreases
with the spatial separation of opposing enzymes [50]. It was
also found that although clustering reduces signal for linear
reaction kinetics, it can dramatically increase signal strength
in the cases when substrates require double modification [51]
or there exists a positive feedback between enzymes and
substrates [42,52].

Here the spatial separation of enzymes is not imposed but
results from the discreteness of the matter. Park and Agmon
found time-dependent concentration profiles of unconverted
substrate around a solitary nonmoving enzyme molecule for
the Michaelis-Menten scheme [17]. The effect of formation
of inhomogeneities is visualized in Fig. 3 for three different
motilities, m ∈ {10,1000,10 000}. For small motilities clouds
of phosphorylated and dephosphorylated substrates are clearly
visible, whereas for larger motilities the spatial distribution
of phosphorylated and dephosphorylated substrates is nearly
uniform. This effect is quantified in Fig. 4 where the
normalized spatial correlation functions between kinases

FIG. 4. (Color online) Spatial correlation functions. (a) Spatial correlation function between kinases and phosphorylated substrates
fK,Sp

(r)/ρS for motility m = 100 and three enzyme densities. (b) fK,Sp
(r)/ρS for fixed enzyme densities ρK = ρP = 0.001 and six motilities

m. (c) Spatial autocorrelation function for phosphorylated substrates fSp,Sp
(r)/ρS . For all panels c = d = 100 and ρS = 0.1. Results shown

come from averaging over 250 snapshots from independent numerical simulations on the 500 × 500 lattice.
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and phosphorylated substrates, fK,Sp
(r)/ρS , and between

phosphorylated substrates, fSp,Sp
(r)/ρS , are plotted (r being

the distance). Function fK,Sp
(r)/ρS is calculated based on

250 snapshots from independent numerical simulations on
the 500 × 500 lattice, long enough to reach the equilibrium
distribution. From each snapshot, fK,Sp

(r) is calculated as
1

NK

∑
K NSp

(r)/N (r), where NK is the number of kinase
molecules on the lattice, NSp

(r) is the number of phospho-
rylated substrates at the distance between r and r + �r from
a given kinase, and N (r) is the number of lattice sites at the
distance between r and r + �r . Then fK,Sp

(r) is averaged over
all snapshots. Function fSp,Sp

(r)/ρS is calculated analogously
(i.e., the sum is over all pairs of phosphorylated substrate
molecules).

As one could expect, the correlation length as well as
the amplitude of the correlation function fK,Sp

increase with
decreasing enzyme density, Fig. 4(a). Correlation length is of
the order of the average distance between enzymes 1/

√
ρK =

1/
√

ρP . For small motilities fK,Sp
(1)/ρS ≈ 1, i.e., substrates

adjacent to kinase are phosphorylated with probability close to
1. The fSp,Sp

(r) correlation function is smaller but the correla-
tion length is longer. The fSp,Sp

(r)/ρS function may not reach
1 even for the smallest m, since phosphorylated substrates
that are at the borders of clouds are in the close vicinity
of dephosphorylated ones. The larger correlation length of
fSp,Sp

(r) can result from fluctuations in kinase distribution.
They can cause formation of transient, large “superclouds”
of phosphorylated substrates surrounding several kinases.
These clouds contribute to long-range correlation between
phosphorylated substrates.

C. Effective macroscopic reaction rate coefficients

In this section we estimate EMRRCs on the basis of
long-run numerical simulations. As was already discussed
under Models and Methods, ceff can be estimated according
to Eq. (3). In Fig. 5 we show ceff/c

∞
eff for three values of

dephosphorylation rate constant d, as well as for the FOD
model with d0 = 1.

Effective macroscopic phosphorylation rate coefficient, ceff ,
increases with reagents’ motility and this effect is more visible
for small dephosphorylation reaction rate constant d. This
shows that the phosphorylation kinetics is strongly coupled
with the dephosphorylation kinetics and therefore the effective
macroscopic phosphorylation and dephosphorylation reaction
rate coefficients cannot be estimated separately. Figure 5 shows
that ceff is a function of ρK , ρP , c, d, and m. The dependence
of ceff on motility is the strongest at the smallest considered
enzyme densities, ρK = ρP = 0.01, see Fig. 5(c), and the
weakest for the highest considered densities, ρK = ρP = 0.2,
see Fig. 5(a), where c0

eff/c
∞
eff is large. This, consistently with

Fig. 2, is due to the fact that at high enzyme densities, substrates
are constantly in contact with both kinases and phosphatases,
and thus the phosphorylation and dephosphorylation reactions
can occur almost independently of the diffusion. As shown
for ρK = ρP = 0.2 and ρK = ρP = 0.05, Figs. 5(a) and 5(b),
numerically estimated ceff for m = 0.1 matches well the
analytically calculated limit of c0

eff ; for ρK = ρP = 0.01,
Fig. 5(c), the agreement is worse since the convergence of
ceff(m) to c0

eff is slower.

FIG. 5. (Color online) Scaled effective macroscopic phosphory-
lation rate coefficient ceff/c

∞
eff as a function of motility m. Densities

of enzymes are ρK = ρP = 0.2 in (a), ρK = ρP = 0.05 in (b), and
ρK = ρP = 0.01 in (c). First-order dephosphorylation model marked
as FOD, with d0 = 6ρP , which corresponds to d = 1 in the basic
model. Analytically calculated c0

eff are marked by respective arrows
next to the vertical axis. For all panels ρS = 0.3, c = 1.

We will now analyze these effects in the limit when phos-
phorylation is a diffusion-driven process. As discussed above,
such a limit can be achieved when diffusion-independent
reactions are very infrequent compared to those driven by
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diffusion, i.e., when

c0
eff 
 λm, d0

eff 
 λm. (14)

Simultaneously, the microscopic reaction rate constants, c and
d, should be much larger than motility, so the probability of a
reaction firing at a collision is close to 1,

c � m, d � m. (15)

These conditions are difficult to satisfy in numerical simula-
tions, therefore to estimate the diffusion-limited contribution,
λm, we subtract the analytically calculated zero-motility
rate constant c0

eff from the numerically estimated ceff . We
will here assume high reaction propensities, c = d = 1000,
and consider motilities m ∈ [0,1000] and enzyme densities
ρE ∈ [0.0001,0.1]. The EMRRC is estimated, as previously,
from long-run numerical simulations on the 100 × 100 lattice,
based on Eq. (3).

First we investigate the symmetric case of ρK = ρP =: ρE .
In Fig. 6(a) we show the dependence of ceff/c

∞
eff on enzyme

densities in a log-log scale for seven values of motility. The
numerical predictions for small motilities, m = 1 and m = 3,
lie close the theoretical prediction of the zero-motility limit
(dashed line). It shows that for relatively small motilities
and large enzyme densities the zero-motility contribution is a
substantial part of the overall effective rate. The theoretically
predicted c0

eff is the lower bound for the effective rate
coefficient. The zero-motility contribution is proportional to
the enzyme density and thus for intermediate motilities, m ∈
{10,30}, it becomes dominant as enzyme density increases.

In order to eliminate the zero-motility contribution from the
effective rate coefficient, we show (ceff − c0

eff)/c
∞
eff with respect

to enzyme densities [Fig. 6(b)] and with respect to motility
[Fig. 6(c)]. In light of Eq. (12) we would expect ceff − c0

eff =
λm and therefore (ceff − c0

eff)/c
∞
eff to be proportional to m for

fixed densities of enzymes, which is confirmed in Fig. 6(c). The
average of gradients of lines on the log-log plot is equal to 0.99.
We therefore numerically confirmed our heuristic prediction
that in the small motility limit:

ceff = c0
eff + λ(ρE)m. (16)

Figure 6(b) confirms that the coefficient λ decreases
(weakly) with decreasing enzyme density. As discussed in
Sec. IVB, this dependence follows from the fact that, at
low enzyme densities, enzymes are surrounded by clouds of
converted substrates. This effect is quantified in Fig. 4(a)
showing that spatial correlation function between kinase
and phosphorylated substrate increases (in both amplitude
and correlation length) with decreasing density of enzymes.
The effective reaction rate is proportional to the density of
unconverted substrates in lattice sites adjacent to the enzyme
site. Therefore, it decreases to zero when the correlation
function tends to 1 in r = 1 (adjacent sites).

D. Molecular crowding: Steady-state dependence
on crowders’ motility

Here we investigate the molecular crowding effect, i.e., we
analyze how the densities of active substrates in the stationary
state change due to the presence of additional molecules,

FIG. 6. (Color online) (a) Scaled effective macroscopic phospho-
rylation rate coefficient ceff/c

∞
eff as a function of enzyme density

ρK = ρP . (b) Scaled effective macroscopic phosphorylation rate
constant with subtracted zero-motility contribution: (ceff − c0

eff )/c
∞
eff

with respect to enzyme density. (c) (ceff − c0
eff )/c

∞
eff with respect to

motility. For all panels c = d = 1000.

crowding agents, which do not react but occupy space and
diffuse with a given motility mC , not necessarily equal to m.

As shown in Fig. 9 in Appendix B, the presence of
crowding agents leads to the decrease of effective motility of
reacting molecules and this decrease is more pronounced for
small motilities of crowding molecules and large motilities of
reacting molecules [Fig. 9(b) versus Fig. 9(a)]. The reduction
of the effective substrate motility either increases the fraction
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FIG. 7. (Color online) Phosphorylated substrate fractional den-
sity with respect to the density of crowding agents ρC . Reagents
motility mR = 100 in (a), mR = 1000 in (b), and for four values of
crowding agents motility mC. Dashed lines refer to the simulations
without crowding agents, with scaled reagents motility m̃, see
Eq. (17). Other parameters are ρS = 0.2, ρK = 0.09, ρP = 0.01,
c = 1/6ρK , and d = 1/6ρP .

of phosphorylated substrates in the stationary state, provided
that ρK > ρP , or, because of the symmetry of the model,
decreases this fraction for ρP > ρK . As shown in Fig. 7(b),
the effect of crowding agents can be almost fully reproduced
by the appropriate scaling of reagents motility,

m̃R := mR

meff(ρR,ρC,mR,mC)

meff(ρR,mR)
, (17)

where ρR = ρS − ρK − ρP is the fractional density of all
reacting molecules assumed to have the same motility mR .
In the numerator of Eq. (17) there is the effective motility
of reacting molecules of density ρR and motility mR in the
presence of crowding agents of density ρC and motility mC ,
estimated in numerical simulations and given in Fig. 9(b).
In the denominator of Eq. (17) there is the effective motility
of reacting molecules of density ρR and motility mR in the
absence of additional molecules, given by the approximate
Eq. (B5). This shows that the presence of chemically inert
molecules can substantially change the balance between
opposing reactions.

V. DISCUSSION

We investigated the correspondence between microscopic
and macroscopic reaction rate coefficients in the model of
the phosphorylation-dephosphorylation cycle with respect to
diffusion (motility). The biological membrane is simplified
to a two-dimensional triangular lattice where molecules are
allowed to move with given motilities and react when in
adjacent lattice sites with given propensities: microscopic
reaction rate constants. Based on numerical simulations we
estimated the steady state of the system (fraction of phospho-
rylated substrates) as well as EMRRCs as functions of reaction
propensities, fractional densities of substrates, and motility.
There are two opposing limits of infinite and zero motility, for
which the EMRRC steady states were calculated analytically
and confirmed numerically.

In the infinite motility limit, the positions of molecules
are independent and therefore the macroscopic reaction rate

is proportional to the product of enzyme and substrate
densities and reaction propensities. This implies that the
macroscopic reaction rate coefficients are equal to the mi-
croscopic propensities multiplied by the number of potential
neighbors (which is 6 in our case of the triangular lattice). In
this limit of infinite motility, the probability that a reaction
fires at a substrate-enzyme collision is (infinitely) small and
proportional to reaction propensity, and therefore the process
can be considered as reaction limited.

In the limit of zero motility, reactions can occur only for the
substrates which remain in contact with the opposing enzymes
and therefore the zero-motility reaction rate coefficients
decrease to zero with enzyme densities decreasing to zero, but
can be significant for dense systems. In realistic conditions the
limit of zero motility can be approached in very dense systems
in which the effective diffusion is very low due to molecular
crowding, and the probability that a substrate is trapped in
contact with the opposing enzymes is high. This limit gives
the lower bound for the effective reaction rate coefficients for
nonzero motility.

For finite (small, but nonzero) motility we have shown
the emergence of the contribution (proportional to molecules’
motility) stemming from diffusion-limited reactions. In this
regime (almost) all enzyme-substrate collisions lead to re-
actions. The most challenging is the regime of intermediate
motilities, in which we found (based on numerical simulations)
that the EMRRCs (and steady states of the system) depend
in a nontrivial way on all microscopic reaction propensities
and fractional densities of substrates. Precisely, the effective
phosphorylation rate coefficient depends not only on the mi-
croscopic phosphorylation rate constant and kinase density but
also on the dephosphorylation rate constant and phosphatase
density. The parameters describing the activity and density of
opposing enzymes influence the spatial distribution of phos-
phorylated substrate and, consequently, the probability that,
e.g., a kinase molecule will collide with a dephosphorylated
substrate. Generally, small enzyme densities give rise to clouds
of phosphorylated and dephosphorylated substrates surround-
ing respective enzymes. However, the analytical estimation
of macroscopic parameters for intermediate motility requires,
and in our opinion deserves, more effort.

The analysis of the influence of molecular crowding on the
steady state of the system showed that the presence of crowding
molecules can be accounted for by modifying effective motility
of reagents. Quite surprisingly, a system without crowding
molecules but with appropriately reduced reagents motility
predicts almost the same steady state as the system with
crowding molecules. We have quantified the influence of
molecular crowding on the effective motility of reagents and
provided a semianalytical formula for the mentioned scaling.

The phosphorylation-dephosphorylation cycle was ana-
lyzed under the simplifying assumption in which the phos-
phorylation and dephosphorylation are treated as single-step
reactions. In reality these processes involve at least three
steps and require formation of a transient enzyme-substrate
complex. In Appendix D we consider a model in which an
enzyme and substrate can form a transient complex; we show
that while enzyme-substrate binding is relatively short and,
correspondingly, the enzyme sequestration is low, this more
detailed model predicts almost the same steady states as the

022702-10

Arࢢcle B



EFFECTIVE REACTION RATES IN DIFFUSION-LIMITED . . . PHYSICAL REVIEW E 91, 022702 (2015)

original, more coarse-grained, model. In the case of more
stable enzyme-substrate binding, we found that the level of
enzyme (and substrate) sequestration substantially increases
with motility and that, consequently, the sequestration modifies
(quantitatively) steady-state dependence on motility. Analysis
of this case requires further study.

In summary, our analysis is a step towards the determination
of effective macroscopic reaction rate coefficients and steady
states for ubiquitous cycles of opposing reactions with respect
to the motility of substrates and enzymes and their densities.
The presence of two antagonistic enzymes and discrete-
ness of reacting substances lead to inhomogeneities in the
phosphorylated and dephosphorylated substrate distribution.
These inhomogeneities are large for slow diffusion and
small enzyme densities, as indicated by spatial correlation
functions. As a result, the effective catalytic activities depend
on the diffusivity and enzymes densities: In the example
presented in Fig. 2(b) kinases “win” at low motility, while
at high motility phosphatases dominate, rendering most of the
substrate dephosphorylated.
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APPENDIX A: DEPENDENCE OF EMRRCS
ON THE LATTICE SIZE

Here we analyze the influence of the lattice size on the esti-
mated EMRRCs (see Fig. 8). The simulations were performed
on lattices 300 × 300, 100 × 100, 30 × 30, and 10 × 10. For
each lattice size and each parameter set [corresponding to
parameters chosen for Fig. 5(b)] we performed 10 independent
simulations with simulation times t = 103, t = 9 × 103, t =
100 × 103, t = 900 × 103, i.e., inversely proportional to the
lattice size, which assured that more than 5 × 104 reactions
fired in each simulation. Each simulation was preceded by an
equilibration phase lasting for 1000. We calculated the scaled
effective macroscopic phosphorylation rate coefficient ceff/c

∞
eff

independently for each simulation, and then, based on the set of
10 simulations (for each lattice size and each parameter set),

FIG. 8. (Color online) Scaled effective macroscopic phosphory-
lation rate coefficient ceff/c

∞
eff , estimated in simulations performed

on lattices of different sizes. For all simulations ρS = 0.3, c = 1,
m = 1, and ρK = ρP = 0.05. In the first-order dephosphorylation,
model marked as FOD, d0 = 6ρP , which corresponds to d = 1 in
the basic model. The difference between the 10 × 10 lattice and the
remaining lattices is statistically significant, the differences between
larger lattices are of order of the statistical error.

we calculated the mean value of ceff/c
∞
eff and the error of the

mean. In each case the error of the mean was found smaller
than 10−3. In conclusion, we found that for assumed densities
of molecules the differences between the 10 × 10 lattice and
the remaining lattices are significant, while the differences
between larger latices are of the order of the statistical error.
One could expect that the dependence of EMRRCs on the
lattice size can be stronger for systems of smaller molecule
densities. In the analyzed system there are 45 phosphatases,
45 kinases, and 300 substrates on the 30 × 30 lattice.

APPENDIX B: MACROSCOPIC DIFFUSION
COEFFICIENT AS A FUNCTION OF MOTILITY

AND MOLECULES DENSITY

Here, in order to study the impact of molecular crowding on
the phosphorylation-dephosphorylation kinetics, we analyze
the impact of crowding agents on effective diffusion coeffi-
cient. The macroscopic diffusion coefficient, D, of a single
tracer molecule having motility m depends on the total density
of the crowding molecules ρC (i.e., the fraction of lattice sites
occupied by molecules), their motility mC = m/γ , and the
lattice constant �:

D = f (ρC,γ )(1 − ρC)�2m/4, (B1)

where f is the correlation function that can be approximated
by the following formula [53,54]:

f (ρC,γ ) =
{
[(1 − γ )(1 − ρC)f0 + ρC]2 + 4γ (1 − ρC)f 2

0

}1/2 − [(1 − γ )(1 − ρC)f0 + ρC]

2γ (1 − ρC)f0
, (B2)

where

f0 = (1 − α)/[1 + α(2γ − 1)]. (B3)

The coefficient α depends on the lattice type; for the triangular
lattice (considered here) α = 0.282, for the square lattice
α = 1 − 2/π , and for the honeycomb (or hexagonal) lattice
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PAULINA SZYMAŃSKA et al. PHYSICAL REVIEW E 91, 022702 (2015)

FIG. 9. (Color online) Scaled effective motility meff/m as a
function of density of crowding molecules ρC and motility mC =
m/γ . (a) Effective motility of a tracer molecule in the presence
of crowding molecules. Lines correspond to the theoretical result
given by Eq. (B1), and circles mark results of corresponding nu-
merical simulations. (b) Scaled effective motility meff/m of reacting
molecules with fractional density ρR = 0.3 and motility m = 1000
in the presence of crowders. This result is used in simulations shown
in Fig. 7(b).

α = 1/2 [55]. The parameter meff = f (ρC,γ )(1 − ρC)m will
be considered as the effective motility of the tracer molecule in
the presence of crowding molecules of density ρC and motility
mC .

The correlation function f satisfies 0 < f < 1 for 0 <

γ < ∞. In the limit of γ → 0, i.e., when crowding
molecules move infinitely fast and a tracer molecule does
not sense their positions, f → 1; in the limit of γ = ∞, i.e.,
when crowding molecules do not move, the expression for

f reads:

f (ρC) = max

{
0,

(1 − α) − ρC(1 + α)

(1 − ρC)(1 − α)

}
. (B4)

According to the equation above, the diffusion coefficient
of a tracer molecule drops to zero when the fractional density
of immobile obstacles equals ρcrit = (1 − α)/(1 + α) = 0.56,
which agrees reasonably well with the percolation threshold
of 1/2 for the triangular lattice. In the case most interesting to
us, i.e., when all molecules have the same motility (γ = 1),
Eq. (B1) simplifies to

D(ρC,1) =
√

ρ2
C + 4(1 − ρC)

(
1−α
1+α

)2 − ρC

2
(

1−α
1+α

) �2m/4. (B5)

The approximate Eq. (B1) agrees well with our simulation
results presented in Fig. 9(a). In these simulations we esti-
mated the effective motility of the tracer molecule meff :=
〈Dist2〉/�t , based on the mean-square distance 〈Dist2〉 covered
by the tracer molecule in time �t . To obtain reasonable
statistics at a modest computational cost we performed
simulations in which the number of tracer molecules was
larger than 1 but always smaller than 1% of the number of
crowding molecules. Finally, in order to analyze the influence
of crowding molecules with a given motility on the effective
motility of reacting molecules, we performed simulations in
which the density of reacting molecules was 30%, while
different densities and motilities of crowding molecules were
considered, see Fig. 9(b). These results are used in Sec. IV
D to interpret the effect of molecular crowding on the steady
state of the reacting system.

FIG. 10. (Color online) Scaled effective macroscopic phosphorylation rate coefficient ceff/c
∞
eff and fractional density of phosphorylated

substrates ρSp
/ρS as a function of time with initial density of phosphorylated substrate set zero. Simulations were performed for ρK = 0.001,

ρS = 0.3, m = 1, c = 1, and d = 1. Two cases are considered: nonreversible phosphorylation (a) with ρP = 0 and a reversible phosphorylation-
dephosphorylation cycle (b) and (c) with ρP = ρK and ρP = 3ρK . The curves in panels (a), (b), and (c) result from averaging over 1000
independent simulations performed on the 300 × 300 lattice. In the nonreversible case, the fraction of dephosphorylated substrate drops to
0.5% at the end of simulations, leading to substantial fluctuations in the effective macroscopic phosphorylation rate coefficient. Coefficients of
the fitting function in (a) are a = 5.044 and b = 1.586. In panels (d), (e), and (f) we compare ceff (t)/c∞

eff estimates based on 1000 simulations
(black line) with the estimates based on 333 simulations (three red lines). The trajectories for t > 1000 are shown in the insets.
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FIG. 11. (Color online) (a) Fractional density of phosphorylated substrates as a function of the enzyme ratio for different values of motility
m. We compare the model variant in which the formation of a transient enzyme-substrate complex is explicitly included [the case of weak
enzyme sequestration, Eqs. (D2); dotted lines] with the original model prediction shown in Fig. 2(a) (solid lines). The parameters used in the
simulations of the basic (original) model: ρS = 0.3, ρK = 0.1, c = 1/6ρK , d = 1/6ρP ; the parameters for the model variant considered are
defined by Eqs. (D2). In the calculation of the phosphorylated substrate fraction only free (unbound) substrates are considered. (b) Fractional
density of phosphorylated substrates as a function of m. We compare the original model prediction shown in Fig. 2(b) (black line) with the model
variant in which the formation of a transient enzyme-substrate complex is explicitly included; two cases are considered: weak sequestration,
Eqs. (D2), and moderate enzyme sequestration, Eqs. (D3). The parameters used in simulations are ρS = 0.3, ρK = 0.1, ρP = 0.01, c = 1, and
d = 100. (c) Fraction of sequestered reactants for the weak and moderate sequestration cases as a function of m in simulations performed
for (b). (d) Steady-state densities of all reactants and complexes in the case of moderate sequestration, Eqs. (D3), for three motilities: m = 1,
m = 1000, and m = ∞. Values for finite motility come from simulations performed for (b). Values for infinite motility are given by the steady
state of the corresponding system of ODEs.

APPENDIX C: SYSTEM EQUILIBRATION

In this appendix we numerically analyze system relaxation
to the steady state. Within the framework of our main model we
consider irreversible and reversible dynamics with the initial
condition in which all substrates are dephosphorylated. In the
irreversible case, Fig. 10(a), we assume that phosphatases
are absent, while in the reversible case we assume that the
density of phosphatases is either equal to, or 3 times higher
than, the density of kinases, Figs. 10(b) and 10(c). In both
cases, since at t = 0 all substrates are dephosphorylated,
there is no correlation between the position of a substrate
molecule and its phosphorylation status. Therefore, in the limit
of t → 0, the scaled effective macroscopic phosphorylation
rate coefficient ceff/c

∞
eff → 1; however, on the time scale

of 1/c (when substrates being in contact with kinases are
phosphorylated) it decreases to lower values.

In the irreversible case, Fig. 10(a), ρSp
/ρS → 0, while

the effective macroscopic phosphorylation rate coefficient
decreases slowly with time. Torney and McConnel [11]
showed theoretically that in two dimensions (in contrast
to three dimensions) the reaction rate coefficient of the
irreversible reaction A + B → ∅ decreases logarithmically
in time. The fit shown in Fig. 10(a) suggests that also for
our reaction, K + Su → K + Sp, the reaction rate coefficient

decreases logarithmically as a/ ln(bt), where a = 5.044 and
b = 1.586.

In the reversible case considered in this study [see
Figs. 10(b) and 10(c)], we observe that the effective macro-
scopic phosphorylation rate coefficient, as well as the density
of phosphorylated substrate ρSp

/ρS , converge to the (positive)
steady-state values. Interestingly, the convergence of the
effective macroscopic phosphorylation rate coefficient is about
one order of magnitude faster than the convergence of ρSp

/ρS ,
which shows that the steady-state values of EMRRCs can serve
as a good approximation also when the system is far from its
steady state.

The effective macroscopic phosphorylation rate coefficient
shown in Figs. 10(a), 10(b), and 10(c) was calculated based
on Eq. (3a) by averaging over 1000 independent simulations
on the 300 × 300 lattice. The time interval �t was adjusted
in such a way that the cumulative number of reactions (in
1000 simulations) is not smaller than 50 000. Therefore, in the
reversible case, �t is of order of 1 during the whole simulation,
while in the irreversible case (in which the frequency of
phosphorylation events decreases substantially) �t increases
from 1 to about 200 at the end of simulation time. Since the
time derivative of ceff(t)/c∞

eff also decreases, the increase of �t

does not contribute substantially to the error.

022702-13
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To demonstrate the accuracy of our ceff(t)/c∞
eff numerical

estimates, in Figs. 10(d), 10(e), and 10(f), we compared the
estimates based on 1000 simulations with three estimates, each
based on 333 simulations. The difference between estimates
based on 1000 and 333 simulations is visible only in the close-
ups (insets).

APPENDIX D: ANALYSIS OF THE MODEL WITH
TRANSIENT ENZYME–SUBSTRATE COMPLEXES

The phosphorylation-dephosphorylation cycle was ana-
lyzed under the simplifying assumption in which the phospho-
rylation and dephosphorylation are treated as single-step reac-
tions. In reality, these processes involve at least three steps and
require formation of a transient enzyme-substrate complex. It
is therefore important to verify whether the analyzed effects are
preserved when the more accurate description is considered.
In the more detailed model, reactions (1) are replaced by

K + Su

c1�
c2

{K · Su} c3−→ {K · Sp} c4−→ K + Sp, (D1a)

P + Sp

d1�
d2

{P · Sp} d3−→ {P · Su} d4−→ P + Su, (D1b)

where curly brackets denote substrate complex.
We consider two sets of reaction rate constants correspond-

ing to the short or longer enzyme-substrate binding, implying,
respectively, either weak or stronger but still moderate enzyme
sequestration. The constants for the two cases are

weak sequestration:

c1 = 2c, c2 = 10c, c3 = 10c, c4 = 100c, (D2a)

d1 = 2d, d2 = 10d, d3 = 10d, d4 = 100d; (D2b)

moderate sequestration:

c1 = 10c, c2 = 9c, c3 = c, c4 = 100c, (D3a)

d1 = 10d, d2 = 9d, d3 = d, d4 = 100d. (D3b)

For these two sets of constants a substrate being initially
in contact with an enzyme molecule is modified with almost
the same probability as in the original model. For this model
variant we performed an analysis analogous to that shown in
Fig. 2 (see Fig. 11). In the case of weak sequestration, we
obtained the quantitatively similar dependence of fraction of
phosphorylated substrate on enzyme density and on motility
[Figs. 11(a) and 11(b)] as in the original model.

For stronger sequestration, for which the fraction of
sequestered kinase exceeds 60% (for large motilities), the
agreement with the original model [Fig. 11(b)] is only
qualitative. Importantly, the fraction of sequestered enzymes
and substrates significantly grows with motility. This is due
to the fact that the increase of motility implies more enzyme-
substrate encounters, and therefore increases their binding rate,
not influencing the dissociation rate.

Overall, the analysis of the above model variant shows
that the reported dependence of steady state on motility
is independent of the details of the phosphorylation and
dephosphorylation processes, as long as the fractions of
sequestered enzymes and substrate are small, and results from
the presence of opposing enzymes in the reaction network.
However, for stronger enzyme-substrate binding, the fraction
of sequestered reactants is higher (and dependent on their
motility), and therefore the quantitative dependence of the
phosphorylated substrate fraction on motility can differ and
requires further study.
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Biological signals in cells are transmitted with the use of reaction cycles, such as the phosphorylation-
dephosphorylation cycle, in which substrate is modified by antagonistic enzymes. An appreciable
share of such reactions takes place in crowded environments of two-dimensional structures, such
as plasma membrane or intracellular membranes, and is expected to be diffusion-controlled. In this
work, starting from the microscopic bimolecular reaction rate constants and using estimates of the
mean first-passage time for an enzyme–substrate encounter, we derive diffusion-dependent effective
macroscopic reaction rate coefficients (EMRRC) for a generic reaction cycle. Each EMRRC was
found to be half of the harmonic average of the microscopic rate constant (phosphorylation c or
dephosphorylation d), and the effective (crowding-dependent) motility divided by a slowly decreasing
logarithmic function of the sum of the enzyme concentrations. This implies that when c and d differ,
the two EMRRCs scale differently with the motility, rendering the steady-state fraction of phos-
phorylated substrate molecules diffusion-dependent. Analytical predictions are verified using kinetic
Monte Carlo simulations on the two-dimensional triangular lattice at the single-molecule resolution.
It is demonstrated that the proposed formulas estimate the steady-state concentrations and effective
reaction rates for different sets of microscopic reaction rates and concentrations of reactants, including
a non-trivial example where with increasing diffusivity the fraction of phosphorylated substrate mole-
cules changes from 10% to 90%. C 2015 AIP Publishing LLC. [http://dx.doi.org/10.1063/1.4936131]

I. INTRODUCTION

In numerous cellular information-processing pathways,
signaling is initiated on the plasma membrane. Upon ligand
binding, membrane receptors are modified chemically, which
enables them to transfer the extracellular signal to the
secondary, intracellular messengers. Due to the presence
of membrane-anchored enzymes of antagonistic catalytic
activity, the activating modifications are reversible.1 The
membrane of mammalian cells of a diameter of order of 10 µm
is considered to be a crowded environment, characterized by
low diffusivity of order of 0.1–0.01 µm2/s. Consequently,
biochemical reactions on the plasma membrane are expected
to be diffusion-controlled.2

The aim of this study is to derive the diffusion-
controlled effective macroscopic reaction rate coefficients,
EMRRCs, in the cycle of antagonistic reactions. Such cy-
cles, exemplified by the phosphorylation–dephosphorylation
cycle, ubiquitination–deubiquitination cycle, acetylation–
deacetylation cycle, or the GTPase cycle, allow for fast
substrate reuse and are of fundamental importance in
cellular signal transduction and amplification, enabling rapid
transmission of extracellular signals to effector proteins such
as transcription factors.

a)Electronic mail: tlipnia@ippt.pan.pl

There have been numerous attempts to derive diffusion-
dependent EMRRCs that govern processes in a macroscale
chemical reactor. Most of the existing results, discussed in
more detail in the introduction to our previous study,3 involved
relatively simple reaction schemes. In short, the irreversible
reaction schemes included the following:

• A + B → C or A + B → ∅ considered initially by von
Smoluchowski4 and later by, i.a., Collins and Kimball,5

Naqvi,6 Emais and Fehder,7 Torney and McConnel,8

and Toussaint and Wilczek;9,10

• A + B → A + C and A + B → AB → A + C studied by
Szabo,11 Zhou,12 Kim et al.,13 and Park and Agmon.14,15

There were also many studies on reversible reaction schemes
such as the following:

• A + B 
 C considered by Zel’dovich and Ovchin-
nikov,16 Berg,17 Edelstein, Gopich, Agmon, and
Szabo.18–21 Takahashi et al.22 studied a more com-
plex, double phosphorylation–dephosphorylation cycle
based on this simple reaction scheme, and Dushek
et al.23 studied even longer chains of such cycles in
membrane proteins. More recently, substrate rebinding
was studied by van Zon et al.24 and Govern et al.;25

• A + B 
 C + D studied by Agmon and col-
leagues,26–28 and by Szabo and Zhou.29

0021-9606/2015/143(21)/215102/12/$30.00 143, 215102-1 © 2015 AIP Publishing LLC
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In this theoretical work following our recent numer-
ical study,3 we will investigate a phosphorylation–
dephosphorylation cycle, which consists of two reactions:
K + Su → K + Sp, P + Sp → P + Su. In this scheme, substrate
molecules (S) assume either the phosphorylated (Sp)
or unphosphorylated (Su) state upon reactions with two
antagonistic enzymes: kinase (K) and phosphatase (P). We
will derive the EMRRCs and steady states as functions of the
coefficient of diffusion and concentrations of the enzymes.
The differences between single-reaction schemes and the
cycle of two antagonistic reactions are caused by the fact
that in the case of limited diffusion the antagonistic enzymes
introduce heterogeneity in concentrations of phosphorylated
and unphosphorylated substrate molecules. Because the
EMRRCs depend both on diffusivity and microscopic
reaction rate constants in the case when phosphorylation and
dephosphorylation rate constants are different, the steady-state
phosphorylated substrate fraction depends on diffusion. This
is in contrast to a single-reaction scheme, such as reversible
dimerization, in which the steady-state fraction of dimerized
enzymes does not depend on diffusion (see, e.g., Ref. 21).

We will approach the microscopic limit by analyzing on-
lattice Monte Carlo kinetics of diffusing molecules undergoing
coupled reactions. In the previous study,3 we assumed that
each lattice site can be either empty or occupied by a single
molecule, and that phosphorylation and dephosphorylation
reactions occur when substrate and enzyme molecules occupy
adjacent lattice sites. Here, in contrast, we assume that
substrate and enzyme molecules may enter the same lattice
sites, and are required to be in the same lattice site in
order to react. By the assumption that the substrate and
enzyme molecules react only when present in the same
lattice site, the reactions cease in the zero-diffusion limit.
In the previous model, the substrate molecules having both a
kinase molecule and a phosphatase molecule at adjacent sites
were repeatedly converted between the phosphorylated and
the unphosphorylated states, which resulted in (sometimes
significant) zero-diffusion contribution to the macroscopic
reaction rate coefficients. In the present model, there are no
reactions firing in the zero-diffusion limit.

The paper is organized as follows: In Sec. II, we introduce
the model and numerical methods, and discuss simulations
performed to verify theoretical predictions. Sec. III is divided
into four subsections in which we: (1) express the steady-
state EMRRCs via the mean first-passage time, MFPT, in
which a substrate molecule after changing its state upon the
reaction with a given enzyme reaches an antagonistic enzyme
molecule; (2) estimate this MFPT by the average number of
steps, w(ρ), until trapping a random walker in the system
of randomly distributed traps with a given concentration, ρ;
(3) give final estimates for the steady-state EMRRCs and
compare them with numerical results; (4) compare these
results with those of our previous study.3 Finally, in Sec. IV
we summarize and discuss the obtained results. The paper
is supplemented by three appendices: In Appendix A, we
give estimates of effective motility which due to crowding
is a function of the concentration of diffusing molecules. In
Appendix B, the average number of steps until trapping, w(ρ),
is estimated numerically. In Appendix C, we consider the

reversible dimerization problem A + B 
 C to show that for
this classic example our on-lattice numerical simulations and
theory agree with the steady-state analytical solution obtained
in the Brownian dynamics scheme.

II. METHODS

A. Model

We consider a generic phosphorylation–
dephosphorylation cycle in which two enzymes act
antagonistically on the substrate, S, which upon interaction
with the kinase, K, or the phosphatase, P, may assume either
the phosphorylated state, Sp, or unphosphorylated state, Su,
respectively. The interacting molecules are confined to the
two-dimensional membrane represented by the triangular
lattice (in which each site has six neighbors) with periodic
boundary conditions. Diffusion of molecules is modeled with
stochastic hops to adjacent lattice sites. Possible events, which
are diffusive hops and enzymatic reactions (phosphorylations
and dephosphorylations), occur with propensities defined by
motility, m, and microscopic reaction rate constants, c and
d, respectively. The propensity of hopping to a neighboring
allowed lattice site is m/6. We assume that neither two enzyme
nor two substrate molecules can enter the same lattice site.
The enzyme and the substrate molecules, however, may enter
the same lattice site and have to be in the same lattice site to
react according to the following reaction scheme:

K + Su
c−→ K + Sp, (1a)

P + Sp
d−→ P + Su. (1b)

The molecules remain in the same lattice site after reacting,
and then can leave the site independently with propensities
defined by their motility. Microscopic phosphorylation and
dephosphorylation rate constants, c and d, motility, m,
and concentrations of the substrate, ρS, kinase, ρK, and
phosphatase, ρP, as well as the volume of the reactor
(i.e., the total number of lattice sites), V , define the model.
Concentrations ρ are defined as numbers of molecules per
reactor volume, i.e., fractions of lattice sites occupied by
molecules of a given type. Concentrations of phosphorylated
and unphosphorylated substrate are denoted by ρSp and ρSu.

In the proposed approach, the enzymatic reactions are
modeled without considering explicitly the enzyme–substrate
complex formation which allowed us to obtain analytical
results. This assumption can be questionable in the case
of high enzyme sequestration, however, in the case of the
weak and moderate sequestrations, the explicit inclusion of
the enzyme–substrate complexation does not qualitatively
influence the phosphorylated substrate fraction in equilibrium,
as we demonstrated in our previous numerical study.3

Our aim is to analytically derive formulas for the
EMRRCs, ceff and deff, as functions of microscopic reaction
rates c and d and the remaining parameters of the model. The
EMRRCs are defined as

ceff =
np

ρSuρKV∆t
, (2a)

deff =
nu

ρSpρPV∆t
, (2b)
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where np and nu are the numbers of phosphorylation and
dephosphorylation reactions, respectively, that fired during a
short time interval, ∆t. We restrict our study to the steady-state
values of EMRRCs, which can be determined by averaging
over long time intervals.

When the number of molecules present in the system
is large, EMRRCs govern the system of ordinary differential
equations for ρSu and ρSp,

d
dt ρSu = −ceffρKρSu + deffρPρSp, (3a)
d
dt ρSp = ceffρKρSu − deffρPρSp. (3b)

These two equations are complementary, since their solutions
satisfy ρSu(t) + ρSp(t) = ρS = const. The steady-state solution
of Eq. (3) is

ρSu =
deffρP

ceffρK + deffρP
ρS, (4a)

ρSp =
ceffρK

ceffρK + deffρP
ρS. (4b)

B. Numerical simulations

To verify the accuracy of the analytically derived
formulas, the model will be analyzed by means of spatial
kinetic Monte Carlo (KMC) simulations employing the
software we described and used previously.3,30,31 Before each
step of the KMC simulation, a list of all possible events on
the lattice is available. Time-step is drawn at random from
the exponential distribution with the propensity parameter
equal to the sum of the propensities of all possible events. A
displacement or reaction event is selected from the complete
list of events at random, with probability proportional to its
propensity, and is executed. Then, before the next step, the
list of all possible events is updated. Since the change in the
system configuration after every simulation step is local, only
a partial update of the list is necessary. By drawing events
from the list which is always complete, there is no need to
simulate trial events that would be subsequently rejected; this
renders the method efficient. Such approach is equivalent to
a stochastic simulation according to the Gillespie algorithm32

applied to a spatially extended problem.
The EMRRCs were numerically estimated based on

Eq. (2) using long-run simulations performed on the 300 × 300
lattice (except for simulations shown in Fig. 1, which were
performed on smaller lattices as indicated in the figure caption,
and simulations for Fig. 2(c), which were performed on the
1000 × 1000 lattice to estimate the dependence of accuracy
of simulation-based estimates on the lattice size). For each
analyzed set of parameters, we performed 3 independent
simulations which were long enough to allow for at least
3 × 104 reaction firings; only for simulations shown in Fig. 1
we performed 9 independent simulations, with at least 5 × 103

reactions each. This allowed us to determine the EMRRCs
numerically with the relative error smaller than 1%.

We used the same simulation code to estimate the average
number of steps made by a single random walker until trapping
by one of the randomly distributed immobile traps (see
Appendix B). To analyze a broad range of trap concentrations,

FIG. 1. Single enzyme pair model, analytical expression in Eq. (21) versus
numerical estimates. (a) Normalized effective phosphorylation rate coefficient
ceff/c as a function of m/c for a reactor of size 16×16. (b) Relative
percentage error of ceff for four reactor volumes V : 8×8, 16×16, 32×32,
and 64×64. For both panels c = d and ρK= ρP= 1/V .

ρ ∈ [0.0001; 0.1], simulations were performed on 1000
× 1000 lattices. The concentration of walkers was set to 0.001,
which is a reasonable trade-off between the requirement of
satisfactory statistics in a modest computational time and the
requirement of a negligible number of collisions between
walkers. After reaching a trap, a walker was immediately
degraded. Since traps are immobile, the computational cost is
proportional to the number of remaining walkers, and thus the
simulations speed up with time, which allowed us to perform
simulations until all walkers were trapped. For each set of
parameters, the simulations were performed 1000 times, so
the calculation of the average number of steps before trapping
was based on averaging over 106 walkers. Finally, the average
number of steps was calculated as w = m × τdeg, where τdeg is
the average time to walker degradation. To verify the accuracy
of our method, we performed analogous simulations in the
case when analytical expression for w is known, i.e., when
traps are distributed periodically.33

The on-lattice numerical simulations have the obvious
limitations resulting from space discretization. It is therefore
important to verify whether the proposed approach leads to
correct results, at least for the classic reverse dimerization
problem, A + B 
 A · B

k
↼−−⇁
q

C, for which the analytical

relation between the steady-state densities of A, B, and C
molecules, ρC = (k/q)ρAρB, is known for the Brownian-type
dynamics. In Appendix C, we show that the same relation
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FIG. 2. Comparison of analytical expressions in Eq. (22) with numerical estimates in the fully symmetric case of c = d, ρK= ρP. (a) Normalized effective
phosphorylation rate coefficient ceff/c for ρK= ρP= 0.003 and substrate concentration ρS= 0.01. (b)–(e) Relative error of ceff, i.e., (simulation value −
analytical value)/analytical value, for seven values of ρK= ρP ∈ {0.0001;0.1}. The substrate concentrations are ρS= 0.001 in panels (b) and (c), ρS= 0.01
in panel (d), and ρS= 0.1 in panel (e). Simulations for panel (c) were performed on the 1000×1000 lattice while remaining simulations were performed on
300×300 lattice. Please notice the difference between the relative errors of ceff for the lowest enzyme densities (black dots) obtained in simulations performed
on 300×300 and 1000×1000 lattices.

can be derived based on the on-lattice approach, in which
dimers C arise from the geminate substrate pairs A · B that
are formed when A and B molecules enter the same lattice
site. We also demonstrate that this relation is satisfied by our
numerical simulations to a good accuracy.

III. RESULTS

In the infinite-motility limit, the probability of finding
a given molecule is uniform on the lattice. Thus, at
any time the concentration of enzyme–substrate pairs
is given by the product of their concentrations: the
kinase–unphosphorylated substrate pair concentration equals
ρKρSu, and the phosphatase–phosphorylated substrate pair
concentration equals ρPρSp. The numbers of phosphorylation
and dephosphorylation reactions that fired during a time
interval ∆t in a reactor of volume V are c ρKρSuV∆t and
d ρPρSpV∆t, and thus from definitions in Eq. (2) the EMRRCs

in the infinite-motility limit are equal to

c∞eff = c, d∞eff = d. (5)

In the case of finite motility, the concentration of
enzyme–substrate pairs is smaller than the product of their
concentrations so ceff < c and deff < d. This results from
the spatiotemporal correlations: a substrate molecule located
in the same lattice site as a kinase molecule has an
increased chance of being in the phosphorylated state and,
symmetrically, a substrate molecule located in the same lattice
site as a phosphatase molecule has an increased chance of
being in the unphosphorylated state.

A. Relation between MFPTs and EMRRCs

The steady-state fractions of unphosphorylated and
phosphorylated substrate, ρSu/ρS and ρSp/ρS, can be expressed
in terms of the average time intervals during which a substrate
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molecule remains unphosphorylated, τu, and phosphory-
lated, τp,

ρSu

ρS
=

τu

τu + τp
,

ρSp

ρS
=

τp

τu + τp
. (6)

Now, using Eq. (4) we can express ceff and deff through τu
and τp,

ceff =
1

τuρK
, deff =

1
τpρP

. (7)

To calculate time intervals τu and τp, we split them into

τu = τu1 + τu2, τp = τp1 + τp2, (8)

where τu1 (τp1) is the MFPT in which a substrate molecule after
being modified by a phosphatase (kinase) molecule meets a
kinase (phosphatase) molecule for a first time, and τu2 (τp2) is
the average time after which a substrate molecule occupying
initially the same lattice site as a kinase (phosphatase)
molecule becomes phosphorylated (unphosphorylated).

Time intervals τu and τp depend on the effective motilities
of enzyme and substrate molecules, m̃E and m̃S. The effective
motilities are lower than the nominal motility of all molecules,
m, due to molecular crowding, and when ρE , ρS, then m̃E
and m̃S differ because enzyme and substrate molecules are
crowding agents only for themselves. The effective relative
motility of enzyme and substrate molecules is M̃ = m̃E + m̃S.
The time between encounters of enzyme and substrate
molecules scales inversely with M̃ . Following the original
paper by van Beijeren and Kutner34 and our previous
study,3 we provide approximate formulas for m̃E and m̃S
in Appendix A.

We first calculate τu2. When an unphosphorylated
substrate molecule and a kinase molecule meet in the same
lattice site, two exclusive events are possible: either the
substrate molecule gets phosphorylated or the molecules move
apart before the reaction fires. The expected time for which an
unphosphorylated substrate molecule and a kinase molecule
remain in the same lattice site, τshort, is inversely proportional
to the sum of rates of these two events, τshort = 1/(c + M̃).
With the probability of the phosphorylation event, which is
c/(c + M̃), τu2 will be equal to τshort, and with the probability
of the separation event, which is M̃/(c + M̃), τu2 will be equal
to τlong, which is the expected time for substrate molecule
phosphorylation in the case when it moves away from the
kinase molecule. Taken together, τu2 can be expressed as

τu2 =
c

c + M̃
τshort +

M̃
c + M̃

τlong, (9)

where

τlong = τfind + τshort + τu2. (10)

Here, τfind is the average time for the substrate molecule
to meet a kinase molecule (the same or another) under the
condition that it is in a site adjacent to a site occupied by
a kinase molecule. When the substrate molecule meets a
kinase molecule, the initially considered situation reoccurs
and therefore the third term is τu2.

To calculate τfind let us notice that since the fraction of
lattice sites occupied by kinase molecules is equal to ρK,

on average every 1/ρK steps the substrate molecule meets a
kinase molecule. This is, when a substrate molecule and a
kinase molecule occupy the same lattice site, the expected
number of steps after which the substrate molecule meets the
same or another kinase molecule is 1/ρK. Therefore, if these
two molecules are located in adjacent lattice sites, i.e., when
one step toward next meeting has already been done, the
expected number of steps is 1/ρK − 1. Thus,

τfind =
1/ρK − 1

M̃
. (11)

Finally, Eqs. (9)–(11) together yield

τu2 =
c

c + M̃
1

c + M̃

+
M̃

c + M̃

(
1/ρK − 1

M̃
+

1
c + M̃

+ τu2

)
, (12)

from which we obtain a simple expression for τu2 and an
analogous expression for τp2,

τu2 =
1

c ρK
, τp2 =

1
d ρP

. (13)

To complete calculations of τu and τp, we need to estimate
τu1 and τp1. These two MFPTs can be expressed as

τu1 =
w(ρP, ρK)

M̃
, τp1 =

w(ρK, ρP)
M̃

, (14)

where w(ρP, ρK) and w(ρK, ρP) are the expected numbers of
steps needed for a substrate molecule to reach a kinase and
phosphatase molecule, respectively, after being converted by
a phosphatase (kinase) molecule. Eventually, we arrive at the
following formulas:

ceff =
1

(τu1 + τu2)ρK
=

(
1
c
+

ρK w(ρP, ρK)
M̃

)−1

, (15a)

deff =
1

(τp1 + τp2)ρP
=

(
1
d
+

ρP w(ρK, ρP)
M̃

)−1

. (15b)

B. Estimation of MFPTs

The MFPTs τu1 and τp1, Eq. (14), are simple functions of
w(ρP, ρK) and w(ρK, ρP) which need to be estimated.

Under the assumption that the search for enzyme
molecules of an appropriate type starts from a random position,
functions w(ρP, ρK) and w(ρK, ρP) can be simplified to

w(ρP, ρK) = w(ρK), w(ρK, ρP) = w(ρP). (16)

To understand when the above simplifying assumption is valid,
let us consider the case when on the lattice there is only one
kinase molecule and a large number of phosphatase molecules.
In such a case, a substrate molecule phosphorylated on the
kinase molecule will be dephosphorylated in its vicinity by
one of the numerous phosphatase molecules, and therefore
the next search for the single kinase molecule will start not
from a random position with respect to the kinase molecule
but more likely from its vicinity. Thus, in the considered case,
the assumption is not valid for the phosphorylation reaction;
however, since there is only one kinase molecule and thus
the expected time to phosphorylation is relatively long, the

Arࢢcle C
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abundant phosphatase molecules change significantly their
positions between two dephosphorylation reactions, so that
one can assume that the search for a phosphatase molecule
starts from a random position with respect to positions of
phosphatase molecules.

Now, let us consider the system of N different enzyme
molecules, Ei, i = 1, . . . ,N , and assume that each enzyme
molecule Ei converts substrate molecules to the distinct state
Si with reaction rate q. Let us assume that N ≫ 1 and let
ρE denote the total concentration of all enzyme molecules.
In light of the observation made in the previous paragraph,
substrate molecules converted by Ei (i.e., in state Si) will
start their search for the remaining N − 1 enzyme molecules
at a position that can be considered random (with respect to
remaining enzyme molecules). Thus, the average time τ for
which the substrate molecules will remain in each of states Si
is (by analogy to Eq. (8), with Eqs. (13) and (14), and since
the concentration of N − 1 enzyme molecules is ≈ρE)

τ =
1

q ρE
+

w(ρE)
M̃

. (17)

The number of reactions per substrate molecule, per time,
is equal to r = 1/τ. Let us assume that one part of these
enzyme molecules is kinase molecules and the rest are
phosphatase molecules, so that ρK + ρP = ρE. Therefore, the
probability that an unphosphorylated substrate molecule will
be converted in the next reaction to the phosphorylated state
is ρK/ρE, while with the probability of ρP/ρE it will be
converted to another unphosphorylated state (such pseudo-
conversions are possible because we assumed that each
enzyme molecule converts the substrate to a distinct state). The
number of real phosphorylation reactions (i.e., conversions
from the unphosphorylated to the phosphorylated state) per
unphosphorylated substrate molecule is rp = r × ρK/ρE, and
therefore the average time spent by a substrate molecule in
the unphosphorylated state is τu = 1/rp = τ × ρE/ρK.

From ceff = 1/(τuρK), Eq. (7), we obtain

ceff =

(
1
q
+

1
M̃

ρE w(ρE)
)−1

. (18)

To derive the above equation, we had to assume that
all substrate states, Si, are equiprobable, which requires
c = d = q. In the case when c , d, we propose to replace
q by c or d, appropriately, which leads to the following
approximations for EMRRCs:

ceff =


1
c
+

1
M̃

(ρK + ρP) w(ρK + ρP)
−1

, (19a)

deff =


1
d
+

1
M̃

(ρK + ρP) w(ρK + ρP)
−1

, (19b)

where, recall, w(ρ) is the average number of steps until
trapping a random walker in a system of randomly distributed
traps of concentration ρ.

C. Final formulas and their numerical verification

As shown in Appendix B, w(ρ) = w(1/V ), where V is the
volume of a reactor containing a single trap or a trap-specific

volume in a reactor with traps of concentration ρ, can be
approximated by the following asymptotic formula:33

w(1/V ) = αV log V + βV + O(1). (20)

For the triangular lattice and a square-shaped reactor with
periodic distribution of traps (or, equivalently, on finite
lattices of volume V = 1/ρ with periodic boundary conditions
containing a single trap), coefficients were calculated by
Montroll33 and are as follows: α =

√
3/(2π), β ≈ 0.235. When

traps are distributed randomly, coefficients α′ and β′ were
estimated numerically. After assuming α′ = α, we obtained a
good fit for β′ = 1.00 (see Appendix B).

One can use Eq. (20) with coefficients α, β to estimate
the effective reaction rate coefficients in idealized systems
which in volume V contain a single pair of antagonistic
enzyme molecules. In this case we return to Eq. (15) and,
because in this case the substrate molecule searches always
for a single enzyme molecule (kinase or phosphatase), we set
w(ρK, ρP) = w(ρP, ρK) = w(1/V ). In this way, we obtain the
following expressions for ceff and deff:

ceff =

(
1
c
+
α log V + β

M̃

)−1

, (21a)

deff =

(
1
d
+
α log V + β

M̃

)−1

. (21b)

In Fig. 1, we study the fully symmetric case (c = d) for a
single pair of enzyme molecules and show that the formulas
in Eq. (21) agree satisfactorily with results of numerical
simulations. In panel (a), we plot the dependence of ceff on the
speed of diffusion for an example reactor of size 16 × 16. In
panel (b), we show the relative error of our approximation for
different sizes of the reactor, with always one kinase molecule,
one phosphatase molecule, and one substrate molecule present
in the reactor. We observe that for reactors of size 16 × 16
or larger, the discrepancy between formulas in Eq. (21) and
results of numerical simulations is lower than 2%.

To obtain the EMRRCs in the limit of large reactor
volume, with multiple enzyme molecules, we use our estimates
of w(ρ) = w(1/V ) in the case when traps are randomly
distributed (Appendix B). After setting 1/V = ρK + ρP from
Eq. (19), we obtain

ceff =


1
c
+

1
M̃

(
α′ log

1
ρK + ρP

+ β′
)−1

, (22a)

deff =


1
d
+

1
M̃

(
α′ log

1
ρK + ρP

+ β′
)−1

, (22b)

with α′ = α =
√

3/(2π), β′ = 1.00. The steady-state concen-
trations of phosphorylated and unphosphorylated substrate
fractions are given by Eq. (4).

In the next four figures we compare the EMRRCs given
by Eq. (22) with numerical estimates. First, in Fig. 2,
we consider the fully symmetric case in which c = d
and ρK = ρP. For substrate density ρS 6 0.1 and enzyme
densities ρK, ρP 6 0.03 the relative error of ceff, (simulation
value − analytical value)/analytical value, remains below
5% and decreases with the enzyme density. This is visible
in Fig. 2(c), for which simulations were performed on
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FIG. 3. Comparison of analytical expressions in Eqs. (22) and (23) versus numerical estimates. (a) Error of ρSp/ρS. (b) and (c) Relative error of ceff and
deff. Three pairs of ρK and ρP were assumed: ρK= 0.001, ρP= 0.003 (pink squares); ρK= 0.01, ρP= 0.001 (green circles); and ρK= 0.01, ρP= 0.003 (violet
diamonds). In all panels, the substrate concentration is ρS= 0.01 and c = d.

the 1000 × 1000 lattice. The remaining simulations were
performed (for technical limitations) on the smaller 300 × 300
lattice, for which at the lowest enzyme concentration,
ρK = ρP = 10−4, the number of kinases (and phosphatases)
is N = 9, and therefore the condition N ≫ 1 is not satisfied.

The comparison of the results obtained in the simulation
performed on the 300 × 300 and 1000 × 1000 lattices suggests
that at least part of the discrepancy between the theory
and simulations is introduced by the small size of the
lattice.

FIG. 4. Comparison of analytical expressions in Eqs. (4) and (22) versus numerical estimates. First row (panels (a)–(c)) shows phosphorylated substrate
fraction ρSp/ρS, second row (panels (d)–(f)) shows error of ρSp/ρS, i.e., (simulation value − analytical value), third row (panels (g)–(i)) shows relative error
of ceff. In the first column (panels (a), (d) and (g)), c = 10d and in the second column (panels (b), (e) and (h)) c = 100d; in the first and the second columns
ρK= ρP= 0.01. In the third column (panels (c), (f) and (i)), c = 100d with ρK= 0.001, ρP= 0.01. Substrate concentration is ρS= 0.01 for all panels.
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In Fig. 3 we consider the case in which c = d, but ρK , ρP.
Let us notice that Eq. (22) together with Eq. (4) implies that
when c = d,

ρSp

ρS
=

ρK

ρK + ρP
. (23)

Figure 3(a) shows a perfect agreement, with error less than
0.002, of Eq. (23) and the numerical estimate; Figures 3(b)
and 3(c) show that EMRRCs are predicted with the accuracy
of about 5%.

In Fig. 4 we consider asymmetric cases in which c = 10d
(first column) or c = 100d (second column). In the third
column we show results for the fully asymmetric case in which
c = 100d and ρK = 0.1ρP. In this case, in the limit of infinite
diffusion, i.e., when ceff = c and deff = d, phosphorylation
proceeds at the effective rate ∝ c × ρK that is ten times
greater than the effective dephosphorylation rate ∝ d × ρP.
Consequently, the fraction of phosphorylated substrate is close
to 0.9. In the opposite, diffusion-controlled limit, ceff ≈ deff
and therefore since phosphatase molecules are ten times more
abundant, dephosphorylation proceeds ten times faster than
phosphorylation, and as a result the phosphorylated substrate
fraction is close to 0.1. This example demonstrates that the
speed of diffusion can qualitatively influence the steady state
of the system.

Finally, in Fig. 5 we consider the case when the
phosphatase activity is 10 times higher than the kinase activity,
d = 10c, and calculate the fraction of the phosphorylated
substrate as a function of enzyme ratio. Four different motility
values are considered. The results obtained for m/c = 0.1 lie
close to those for the zero-diffusion limit, m/c → 0, for which
ρSp/ρS = ρK/(ρK + ρP); the results obtained for m/c = 100
lie close to those for the limit of infinite diffusion, m/c → ∞,
for which ρSp/ρS = cρK/(cρK + dρP).

FIG. 5. Fraction of phosphorylated substrate ρSp/ρS as a function of enzyme
ratio ρK/ρE in the case when the phosphatase activity is 10 times higher
than the kinase activity, d = 10c. Concentrations: ρE= ρK+ρP= 0.006 and
ρS= 0.01.

D. Comparison with the previous study

As mentioned in the Introduction, this study follows our
previous numerical study3 in which the same reaction scheme
was considered under the assumption that each lattice site
can be occupied by no more than one molecule, and that
an enzyme molecule reacts with a substrate molecule when
located in adjacent lattice sites. Here, in contrast, we assumed
that enzyme and substrate molecules are allowed to enter the
same lattice site, and have to be in the same lattice site in
order to react. This assumption substantially simplifies the
problem and allowed us to obtain the (approximate) analytical
results.

FIG. 6. Comparison of the current model with the model by Szymańska et al.3 Solid lines present theoretical predictions of the current model. (a) Normalized
effective phosphorylation rate coefficient, ceff/c

∞
eff, in the fully symmetric case: c = d, ρK= ρP with ρK equal to 0.03 or 0.003. (b) Normalized effective

phosphorylation rate coefficient, ceff/c
∞
eff, in the asymmetric case c = 10d, with ρP= 0.03 and ρK equal to 0.03 or 0.003. (c) Fraction of the phosphorylated

substrate, ρSp/ρS, for c = 10d, ρP= 0.03, and ρK equal to 0.03, 0.01, or 0.003.
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Let us compare predictions of these two models. The
assumption in the former model3 implies a larger interaction
radius and causes that there are on average six times more
enzyme–substrate pairs than in the current model, thus in
the infinite-diffusion limit the EMRRC was equal c∞eff = 6c
(not just c as in the current model). Therefore, to compare
the two models (Fig. 6), in the simulations according to
the former model we divide microscopic constants c and
d by 6, and normalize ceff with respect to c∞eff for both
models. The increase of the reaction radius caused that the
effective distances between enzymes shortened, which for
finite motility increased the EMRRCs with respect to the
current model, Figs. 6(a) and 6(b). Additionally, because of the
larger reaction radius the substrate molecules could have two
antagonistic enzymes in their reaction volumes (consisting
of six neighboring sites). Substrates having (at least) two
antagonistic neighbors were sequentially phosphorylated and
dephosphorylated, which led to nonzero ceff in the zero-
motility limit. The zero-motility EMRRCs are significant
when the probability of having two antagonistic enzymes is
large, i.e., for dense systems, Fig. 6(a). In reality, however,
the sequential substrate modifications by the neighboring
enzymes require the substrate molecule to expose its modified
residue to the antagonistic enzyme. One can thus expect that
in the case when both translational and rotational diffusions
cease, the reactions are suppressed and therefore the EMRRCs
should converge to zero in the limit of zero (translational and
rotational) diffusion (as implicated by the current model).

Fig. 6(c) shows the discrepancy between steady-state
phosphorylated substrate fractions predicted by two models,
which arises when c , d (for c = d, both models predict that
ρSp/ρS = ρK/(ρK + ρP) independently of motility).

We expect that in the parameter region in which the
discrepancy between these two models is significant (i.e., for
very small motility and high enzyme concentration), the
discrete lattice-based approach breaks, and the analysis
should be based on the rigid body Brownian dynamics. The
simulations should account for refractory times of enzyme
molecules, ATP exchange kinetics, and for orientation of
substrate and enzyme molecules.

IV. CONCLUSIONS

We derived formulas for the diffusion-controlled effective
macroscopic reaction rate coefficients in a cycle of two
reactions in which two antagonistic enzymes (here: kinase
and phosphatase) modify the state of a substrate. Such cycles
are ubiquitously utilized in biochemical signal transduction
because they allow for rapid information transmission:
substrate molecules are reused instead of being degraded
and resynthesized.

We focused on two-dimensional reactors, which have
their own peculiarities and are substantially different from
three-dimensional reactors, but play an important role in
regulatory pathways. Initial stages of signaling employ
numerous types of membrane receptors that transmit
signals by means of phosphorylation (and sometimes other
modifications) of membrane-bound components. A large

share of signal transduction takes place on membranes of
various intracellular organelles. Biological membranes are
considered crowded environment of relatively low diffusivity
(at least an order of magnitude lower than in cytosol), and
therefore reactions on membranes are expected to be diffusion-
controlled. Importantly, effective diffusion coefficients of
various substrates can be modified by transient binding to
buffering proteins,35 by the presence of crowding molecules,
or through changes of viscoelastic properties of the membrane.

In this study, biochemical reactions on two-dimensional
membranes are analyzed by means of Monte Carlo kinetic
model on the square-shaped, triangular lattice. For this model,
we propose a derivation in which the EMRRCs are expressed
as the average time, τu (or τp), a substrate molecule spends
between antagonistic reactions. This time, in turn, is the sum
of time to find the antagonistic enzyme molecule, τu1 (or τp1),
and time to react after the first encounter with the enzyme
molecule, τu2 (or τp2). As the time τu2 (or τp2) was found to be
simply τu2 = 1/(c ρK) (or τp2 = 1/(d ρP)), the main difficulty is
in calculating time to find the antagonistic enzyme molecule,
τu1 (or τp1).

In solving this problem, we first noticed that phosphory-
lation and dephosphorylation reactions are correlated in space
and time. Intuitively, it is clear when one enzyme, e.g., kinase,
is much more abundant than the other enzyme. Then one
may expect that after phosphorylation the search for the
phosphatase molecules starts from one of the kinase molecules
located in the vicinity of the phosphatase molecule which had
previously dephosphorylated the substrate molecule, rather
than from a random place with respect to the locations of
phosphatase molecules. As a result, τu1 (or τp1) depends on
concentrations of both enzymes. After noticing this fact, we
estimated τu1 and τp1 using the formula of Montroll,33 which
gives the average number of steps before trapping the random
walker in a field of traps of concentration ρ. Coefficients of
this formula were calculated by Montroll33 for the case of
periodically distributed traps; here, for the case of randomly
distributed traps, we assumed that the first, leading-order
coefficient has the same value as in the Montroll formula, and
fits the value of the second coefficient using the results of
numerical simulations.

The resulting macroscopic phosphorylation reaction rate
coefficient ceff has an intuitive form: it is half of the harmonic
average of the microscopic phosphorylation rate constant, c,
and the effective motility, M̃ , divided by a slowly decreasing
logarithmic function of enzyme concentration, ρE = ρK + ρP,

ceff =

(
1
c
+

1
M̃

f (ρE)
)−1

. (24)

In the case when c ≪ M̃ , i.e., in the reaction-controlled
limit, we have ceff ≈ c, while in the opposite, diffusion-
controlled limit, c ≫ M̃ , ceff ≈ M̃/ f (ρE). In the last limit
the logarithmic dependence of ceff on enzyme concentration,
f (ρE) ∝ log(1/ρE), follows from the fact that the expected
number of steps w(ρ) till trapping in a system of randomly
distributed traps with density ρ scales as w(ρ) ∝ ρ−1 log(ρ−1)
in the limit of ρ → 0, when starting from a random position.
In our case, the search for a kinase molecule starts after
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dephosphorylation, which takes place in an approximately
random position with respect to the kinases. In the case
when search starts from a site neighboring a trap, the
expected number of steps scales as w̃(ρ) ∝ ρ−1. Therefore, for
example, in the classic reversible dimerization problem, an A
molecule after the A · B dimer dissociation needs on average
w̃(ρB) = ρ−1

B steps to find the same or another B molecule.
This constitutes the main difference between reactions
involving two antagonistic enzymes and simple reversible
reactions.

Equation (24) together with analogous equation for
d implies that when microscopic phosphorylation and
dephosphorylation rate constants c and d differ, ceff and
deff scale differently with the motility. As a result, the
steady-state phosphorylated substrate fraction can depend
on the diffusivity. This is in contrast to single-reaction
processes such as the reversible dimerization reaction

A + B 
 A · B
k
↼−−⇁
q

C (considered in Appendix C) where the

steady-state concentration of C does not depend on the
diffusion coefficient.

The derived EMRRCs and the steady-state value of the
phosphorylated substrate fraction agree with the numerical
estimates with reasonable accuracy. Based on analytical
considerations and results of numerical simulations, we may
conclude that in the range of parameters,

m ∈ (0,∞), ρK ∈ (0,0.03),
ρP ∈ (0,0.03), ρS ∈ (0,0.1), (25)

the analytical estimates of EMRRCs and the phosphorylated
substrate fraction ρSp/ρS satisfy the following:

• for c = d: [EMRRC relative error] < 5% and [ρSp/ρS]
is exact;

• for c , d with c/d ∈ (0.01,100): [EMRRC relative
error] < 20% and [ρSp/ρS error]< 0.05.

Still, one should be aware of limitations of the on-lattice
model, discussed in Sec. III D. These limitations can
render our approximation non-satisfactory for dense systems
characterized by a very small diffusivity.

In summary, the proposed analysis is able to capture the
behavior of the system in which the steady state is qualitatively
controlled by diffusion. For low diffusivity, i.e., when reaction
kinetics is diffusion-controlled, the steady state is imposed
by the more abundant enzyme, while for high diffusivity,
i.e., in the reaction-controlled limit, it is imposed by the
enzyme which has higher effective activity. More work
and a more detailed description is needed in the case of
high concentration of enzymes and membrane crowders that
can maintain membrane proteins close to the percolation
threshold.36 In this limit, various subcellular environments
exist on the verge of the sol–gel transition,37 and one can
expect the existence of localized, temporal abrupt changes of
effective diffusivity which can impact biochemical reaction
kinetics implicated in signal transduction.38
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APPENDIX A: EFFECTIVE MOTILITY

Here, we briefly summarize the influence of molecular
crowding on the effective motility, m̃. As discussed before,3

the effective motility of a molecule having motility m depends
on both the concentration of crowding molecules, ρC, and
their motility, mC. By the crowding molecules, we understand
those whose presence in a lattice site prevents the considered
molecule from moving to that lattice site. The expression for
m̃ reads

m̃ = m f (ρC, g) (1 − ρC), (A1)

where f is the correlation function that can be approximated
by the following formula:34,39

f (ρC, g) =
{[(1 − g)(1 − ρC) f0 + ρC]2 + 4g(1 − ρC) f 2

0}1/2

2g(1 − ρC) f0

− [(1 − g)(1 − ρC) f0 + ρC]
2g(1 − ρC) f0

, (A2)

where

f0 = (1 − a)/[1 + a(2g − 1)] (A3)

and g is the ratio of m/mC. The coefficient a used in
Eq. (A3) depends on the lattice type; for triangular lattice
(considered here) a = 0.282, for square lattice a = 1 − 2/π,
and for honeycomb (or hexagonal) lattice a = 1/2.40 Since
we consider only the case when all molecules have the same
motility (g = 1), Eq. (A1) simplifies to

m̃(m, ρC,1) = m


ρ2

C + 4(1 − ρC)� 1−a
1+a

�2 − ρC

2
� 1−a

1+a

� . (A4)

Recall that in the present model we assume that neither
two enzyme molecules nor two substrate molecules can enter
the same lattice site. This means that enzyme as well as
substrate molecules play the role of crowding agents only for
themselves. Accordingly, m̃X for X ∈ {S,K,P} is given by

m̃X =



m̃(mX, ρS,1) for X = S,
m̃(mX, ρK + ρP,1) for X ∈ {K,P}. (A5)

APPENDIX B: ESTIMATION OF w (ρ)
Assuming that a walker has the same probability of

starting from any non-trapping site, Montroll33 obtained an
analytical asymptotic formula for the average number of
steps of a random walker, for walks on lattices with periodic
distributions of traps, of concentration ρ, or, equivalently,
on finite lattices of volume V = 1/ρ with periodic boundary
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conditions containing a single trap. The approximate formula
reads

wP(1/V ) = αV log V + βV + γ + O(1/V ), (B1)

where α is constant for a particular lattice structure (α = 1/π
for square lattice, α =

√
3/(2π) for triangular lattice), whereas

β and γ depend also on the shape of the reactor. For a
triangular lattice and a square-shaped reactor, their values are
β ≈ 0.235 and γ ≈ −0.251. We restricted ourselves to two
first terms of the right-hand side of Eq. (B1). As discussed by
Montroll,33 the formula in Eq. (B1) agrees almost perfectly
(with the error smaller than 0.1% for lattices of V ≥ 16) with
exact values.

To obtain the EMRRCs for large lattices with multiple
enzyme molecules, we need to estimate w(ρ) = w(1/V ) in
the case when traps are randomly distributed. Up to our
best knowledge, despite several theoretical, e.g., Ref. 41,
and numerical attempts, e.g., Refs. 42 and 43, this problem
remains unsolved, i.e., precise estimates for w(ρ) are not
known.44,45 Thus, we estimate w(ρ) in numerical simulations
(as described in Sec. II) and then fit the formula analogous to
that obtained by Montroll33 (cf. Eq. (2.16) in Ref. 41), i.e.,

wR(ρ) = α′ρ−1 log(ρ−1) + β′ρ−1, (B2)

assuming that α′ = α. Through fitting we obtained β′ = 1.00.
Use of α′ and β′ which were fitted simultaneously does not
decrease the error.

We verified the accuracy of our approach by performing
analogous simulations for periodic distribution of traps, i.e., in
the case when analytical results are known. The small
discrepancy between our numerical estimates and the formula
derived by Montroll33 (Fig. 7) justifies our numerical approach
and suggests a reasonable accuracy of the fitted coefficient β′

when traps are distributed randomly.

APPENDIX C: REVERSIBLE DIMERIZATION PROBLEM

We consider the classical reversible dimerization reaction
A + B 
 A · B

k
↼−−⇁
q

C, where A · B denotes the geminate A,B

pair that occupies a single lattice site, while C denotes A,B
heterodimer. Let ρC denote concentration of heterodimers
and let ρA, ρB denote concentrations of A and B molecules
that are free or in a geminate pair. This is ρA = ρAtot − ρC
and ρB = ρBtot − ρC, where ρAtot and ρBtot are the total
concentrations of A and B molecules.

Since the molecules A and B are allowed to enter the
same site, their positions are independent. Therefore, the
geminate pair concentration will be given by ρA ·B = ρAρB.
In the steady state, geminate pairs A · B are in equilibrium
with heterodimers C, i.e., 0 = dρC/dt = k ρA ·B − q ρC, which
implies

ρC =
k
q
ρA ρB. (C1)

This agrees with the classic formula obtained in the Brownian
dynamics model (see, e.g., Ref. 21). The formula implies
that steady state concentrations are independent of diffusion,
which is in contrast to the more complex reaction scheme

FIG. 7. Average number of steps of a random walker before trapping in
periodically and randomly distributed traps. (a) Numerical estimates of
wR(ρ) (random traps) and wP(ρ) (periodic traps) versus best fit (with α′=α
=
√

3/(2π), with fitted β = 1.00) or the Montroll formula33 (α =
√

3/(2π)
and β = 0.235). (b) The relative error between numerical estimate and fit,
(simulation − fit)/fit, and between numerical estimate and Montroll formula,
(simulation − Montroll)/Montroll, see Ref. 33. The fit was obtained for
trap concentrations ρ ∈ [0.000 03;0.03], i.e., when the concentration of traps
is low enough so the asymptotic formula can hold but simultaneously the
number of traps is not smaller than 30.

studied in this paper. We use this classic formula to check the
accuracy of our numerical approach. In Fig. 8, we numerically
calculate q ρC/(k ρA ρB) as a function of motility, showing that

FIG. 8. Reversible dimerization problem: comparison of the numerically cal-
culated steady-state concentrations with the analytical expression, Eq. (C1).
Value of the expression q ρC/(k ρA ρB) is plotted as a function of scaled
motility, m/k . Four combinations of parameters ρAtot, ρBtot, k , and q are
considered.
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the error introduced by our numerical scheme is comparable
to the statistical error of order of 1% for scaled motilities:
m/k ∈ (0.01,100).
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√
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however, its accuracy is not better than that of formula (B2) and it produces
more complex expressions for ceff and deff.
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Abstract

Summary: Rule-based modeling is a powerful approach for studying biomolecular site dynamics.

Here, we present SPATKIN, a general-purpose simulator for rule-based modeling in two spatial di-

mensions. The simulation algorithm is a lattice-based method that tracks Brownian motion of indi-

vidual molecules and the stochastic firing of rule-defined reaction events. Because rules are used

as event generators, the algorithm is network-free, meaning that it does not require to generate the

complete reaction network implied by rules prior to simulation. In a simulation, each molecule (or

complex of molecules) is taken to occupy a single lattice site that cannot be shared with another

molecule (or complex). SPATKIN is capable of simulating a wide array of membrane-associated

processes, including adsorption, desorption and crowding. Models are specified using an exten-

sion of the BioNetGen language, which allows to account for spatial features of the simulated

process.

Availability and implementation: The Cþþ source code for SPATKIN is distributed freely under the

terms of the GNU GPLv3 license. The source code can be compiled for execution on popular plat-

forms (Windows, Mac and Linux). An installer for 64-bit Windows and a macOS app are available.

The source code and precompiled binaries are available at the SPATKIN Web site (http://pmbm.

ippt.pan.pl/software/spatkin).

Contact: spatkin.simulator@gmail.com

Supplementary information: Supplementary data are available at Bioinformatics online.

1 Introduction

In living cells, information processing is enabled by networks of

interacting biomolecules that typically have multiple modification

and binding sites. Tracking the time- and condition-dependent states

of these sites in a model is challenging because of the high or even in-

finite number of potentially populated chemical species. This chal-

lenge is overcome with rule-based modeling approaches, in which

models are formulated in terms of rules for biomolecular inter-

actions. With a rule-based approach, a large reaction network can

be concisely represented by a relatively small set of rules, with each

rule characterizing an interaction and an associated class of reac-

tions (Chylek et al., 2014). A complete list of reactions implied by

rules can be generated before a numerical simulation, as with

BioNetGen (Harris et al., 2016), or the rules may be used as event

generators in a stochastic simulation algorithm, as with NFsim

(Sneddon et al., 2011). The latter approach enables one to analyze

models consisting of rules that imply reaction networks too large to

be generated.

There are many software packages that enable rule-based model-

ing but only a handful of them support spatial modeling. Tools that

enable spatial rule-based modeling include MCell-R (Tapia

Valenzuela, 2016), Simmune (Angermann et al., 2012), Smoldyn

(Andrews, 2017), SK (Sorokina et al., 2013), SRsim (Gruenert et al.,

2010), SSC (Lis et al., 2009) and VCell (Schaff et al., 2016).

Simmune, SSC and VCell depend on network generation, meaning

that a list of possible reactions must be derived from rules before a

VC The Author 2017. Published by Oxford University Press. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com 1
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simulation is performed. The remaining three simulators have the

advantage of not relying on network generation.

Here, we present SPATKIN, which offers stochastic rule-based

modeling capabilities that do not rely on prior network generation.

The simulator tracks positions of individual molecules (not accounting

for their internal spatial structure) in a two-dimensional space discre-

tized using a triangular lattice. A comparison of SPATKIN with the

most similar of the above-mentioned tools is provided in Section 4.

Early-development-stage versions of SPATKIN have been used to

study how diffusion and the intrinsic noise of biochemical reactions af-

fect the initiation of traveling waves (Kocha�nczyk et al., 2013; Zuk

et al., 2012). The software has been validated by comparing simulation

results obtained for very fast diffusion (rendering the simulated reactor

well-mixed) with the results obtained with (non-spatial) BioNetGen.

For finite diffusivity, it was shown that the effective macroscopic rate

constants determined using SPATKIN agree with analytical estimates

for these rate constants (Nałecz-Jawecki et al., 2015; Szyma�nska et al.,

2015) and that the traveling wave velocity agrees with that obtained in

finite element-based simulations of analogous partial differential

equations-defined systems (Kocha�nczyk et al., 2013).

2 Approach

SPATKIN implements two-dimensional lattice-based Brownian dy-

namics (BD) and is designed for simulations of reaction–diffusion proc-

esses occurring on surfaces, such as the plasma membrane of a cell.

Models and simulation protocols are specified using an extension of

the BioNetGen language (BNGL), or to precise, a superset of a subset

of BNGL. The extended language is referred to as SptBNGL. A com-

plete, formal definition of SptBNGL, along with its comparison with

BNGL, are provided in the User Manual. SptBNGL allows for the spe-

cification of boundary conditions, the diffusion properties of biomol-

ecules and biomolecular complexes, and other information necessary

to initialize SPATKIN simulations (e.g. starting positions of molecules).

SPATKIN does not rely on network generation. Rather, rules are

directly used to generate reaction events. The event-generation pro-

cedure is a generalization of that used to generate reaction events in

a conventional BD simulation, with use of a list of reactions being

replaced by use of a list of rules. Immediately after simulation of a

reaction or diffusion event, lists of possible events consistent with

model rules are updated locally, which is efficient due to the hybrid

use of hierarchical space-partitioning trees and hash tables. The

Monte Carlo method is rejection-free unless there are lattice subdo-

mains of diminished diffusivity, which can be introduced to model

traps or membrane heterogeneity (Kocha�nczyk et al., 2013). As with

other rule-based modeling software tools, the biomolecules and bio-

molecular complexes considered in a SPATKIN simulation are asso-

ciated with graphs, with nodes representing functional components

of biomolecules and edges representing bonds between components.

The nodes may have textual attributes that represent internal states

of biomolecular sites. Thus, SPATKIN differs from conventional BD

simulators in that the molecular substructures of chemical species

are explicitly tracked. However, the internal graph data structures

of SPATKIN are not used to represent spatial configurations of com-

plexes. Molecules and complexes are each taken to occupy a single

lattice site, to the exclusion of other unconnected molecules.

There are two kinds of chemical entities: molecules, which repre-

sent membrane-tethered proteins and occupy hexagonal cells of a

lattice, and binders, which can occupy the sites of a dual lattice (see

Fig. 1). The main difference between these two types of entities is

that regular molecules can assume different internal states and are

capable of binding other molecules, whereas binders have no in-

ternal state and can only bind regular molecules. The concept of

binders, which are always taken to be immobile, was introduced

into SPATKIN to model immunogenic ligands that induce receptor

clustering and immobilization. A single lattice node may contain no

molecules, or a single (whole) molecule, or an (entire) complex of

several (connected) molecules. Because of the constraints of a tri-

angular lattice, any molecule can have up to six other molecules and

six binders as neighbors, and any binder can be adjacent to a max-

imum of three molecules (see Fig. 1). The temporal evolution of a

simulated system can be viewed as analogous to that of a cellular au-

tomaton in which a single event occurs in each time step.

We recommend using SPATKIN in conjunction with

BioNetGen. As the latter tool implements an efficient version of

Gillespie’s direct method for well-mixed systems, it can be used to

determine behavior in the infinite-diffusion limit and find starting

parameter estimates for more expensive SPATKIN simulation stud-

ies. A model formulated in BNGL can be easily recast as a spatial

model defined using SptBNGL. From this point, SPATKIN can be

applied to investigate spatial effects, such as the possible conse-

quences of diffusion-limited reaction rates or spatially varying

diffusivity.

3 Implementation

SPATKIN comprises a simulator equipped with a parser for inter-

preting plain-text input files, which define models and simulation

settings using the conventions of SptBNGL, and a tool for visualiz-

ing snapshots of system configurations. Both tools can be invoked

from the command line or used within a GUI, which facilitates cre-

ation, editing and debugging of input files, and visualization of

simulation results in the form of X–Y plots and lattice snapshots

(see Fig. 2). The source code is written in Cþþ; the build process is

managed by CMake. The Spirit Parser Framework was used to de-

velop the SptBNGL parser. The Cairo programming library was

used to develop SPATKIN’s visualization capabilities. The Qt frame-

work was used to build the GUI. The GUI provides a multiple docu-

ment interface (MDI), which enables running multiple stochastic

simulations in parallel.

Supplementary Material online contains commented example input

files. A detailed User Manual is available at the SPATKIN Web site.

Fig. 1. Lattice confinement of (regular) molecules and binders. Top left: A

molecule (orange) in a site of a triangular lattice can hop to one of unoccupied

adjacent lattice sites. Top right: A molecule can jump to an occupied adjacent

lattice site (red arrow) only when a complex formation reaction is allowed

(and such an event has been selected). Bottom: Movements of a molecule

bound to an (immobile) binder (blue), which is placed in a node of a dual lat-

tice, are constrained so that the bond is not broken

2 M.Kocha�nczyk et al.
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4 Comparison to similar tools

Among the three spatial and network-free rule-based modeling tools

mentioned in Introduction, SK has the coarsest spatial resolution

and SRSim has the finest spatial resolution. SK implements a next-

subvolume method, in which reaction compartments are divided

into subvolumes that are taken to be locally well mixed; transloca-

tions between subvolumes are treated as reactions. MCell-R inte-

grates NFsim and MCell, providing a tool for off-lattice stochastic

simulations of BD and diffusion-controlled reactions defined by

rules specified in BNGL. Biomolecules and biomolecular complexes

are treated as point particles in both SK and MCell-R. SRSim ac-

counts for the space occupied by biomolecules (i.e. excluded-volume

effects) and thus requires specification of the coarse structures of

biomolecules, as well as geometric constraints on interactions.

SRSim performs molecular dynamics simulations, requiring the user

to specify a force field that governs biomolecular interactions.

In comparison to SK, SPATKIN offers greater spatial resolution,

with the disadvantage of higher simulation cost. In contrast to

MCell-R, SPATKIN is specialized to 2-D reaction systems. In com-

parison to SRSim, which performs force field-based simulations,

SPATKIN, in which simulations are based on excluded-volume BD

and chemical kinetics, allows for easier comparison of results

against those produced by commonly used non-spatial simulators,

making it possible to unambiguously identify diffusion effects.

There are two recently developed simulators, not mentioned thus

far, that also consider excluded-volume effects: ReaDDy (Schöneberg

and Noé, 2013) and SpringSaLaD (Michalski and Loew, 2016).

These tools treat molecules as collections of beads. In ReaDDy, a

force field governs diffusive bead movements. In SpringSaLaD, links

between beads, modeled as springs, impose constraints on the relative

positions of beads. These tools are distinct from SPATKIN, SK,

MCell-R and SRSim in that they do not enable model formulation in

terms of rules for interactions using a formal language.
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This Supplementary Material features the article

“SPATKIN: A simulator for rule-based modeling of biomolecular site dynamics on surfaces”

by Kochańczyk et al., Bioinformatics, 2017

This document is intended as a practical introduction to SPATKIN, that demonstrates its capabilities

by providing 10 annotated tutorial “μmodels”:

Tutorial μmodel 1: Heterogeneous initial location of molecules . . . . . . . . . . . . page 2

Tutorial μmodel 2: Diffusion-limited aggregation . . . . . . . . . . . . . . . . . . . . . page 4

Tutorial μmodel 3: State-dependent removal from the membrane . . . . . . . . . . . page 6

Tutorial μmodel 4: Rule-based capabilities (1) . . . . . . . . . . . . . . . . . . . . . . page 8

Tutorial μmodel 5: Rule-based capabilities (2) . . . . . . . . . . . . . . . . . . . . . .page 11

Tutorial μmodel 6: Gradient formation . . . . . . . . . . . . . . . . . . . . . . . . . . .page 14

Tutorial μmodel 7: Steady state controlled by diffusion . . . . . . . . . . . . . . . . .page 16

Tutorial μmodel 8: Ligand-induced receptor dimerization . . . . . . . . . . . . . . . .page 18

Tutorial μmodel 9: Crowding-facilitated switch in a bistable system . . . . . . . . . .page 21

Tutorial μmodel 10: Traveling wave . . . . . . . . . . . . . . . . . . . . . . . . . . . .page 24

All “μmodels” are shown in the form of complete, runnable inputs, and are included as separate files in

the source code distribution of SPATKIN (in the directory doc/examples). An archive containing these

files can be also downloaded directly from the software Web site. Additional SPATKIN documentation

can be found in the User Manual.

1
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Tutorial μmodel 1: Heterogeneous initial location of molecules

This example (see Listing 1) shows how user-defined regions can be used to place molecules in a non-

homogeneous manner on the lattice. One region is used to constrain the initial placement of molecules

A(x∼U,y∼U) (drawn grey), at time=0; other regions are filled with molecules B (red) and C (blue) in

the course of simulation according to a temporally constrained emergence rule. Molecules B modify

molecules A(x∼U,y∼U) into A(x∼P,y∼U) – green. Molecules C modify molecules A(x∼U,y∼U) into

A(x∼U,y∼P) – yellow. Molecules A and B degrade slowly. Simulation shows how polarization can be

introduced to the system and how it vanishes due to diffusion.

begin parameters

m 3

m2 10 k 0.1 # This is a free-format text, meaning that line breaks

r 10 q 0.01 # do not matter.

end

begin world

topology plane size 200 200

end

begin regions

# Two basic primitives for defining regions are circles and rectangles.

CircRgn circle 100 100 50 # centerX centerY radius

RectRgn rectangle 100 150 200 100 # centerX centerY width height

# Typical constructive geometry operations are supported:

RgnX !CircRgn # !a =: complement of set a

RgnY (CircRgn * RectRgn) # (a * b) =: intersection of a and b

RgnZ (CircRgn - RectRgn) # (a - b) =: subtraction of b from a

end

begin molecule types

A(x,y) B() C()

end

begin seed species # Number of molecules or frac-

A(x∼U,y∼U) occupancy 0.1 in region RgnX # tional (region) occupancy
end # should be given here.
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begin event rules

# Diffusion, molecule emergence and degradation rules have prefix syntax.

>> A() m # |

>> B() m2 # >- diffusion

>> C() m2 # |

# Following 2 rules for molecule insertion are both spatially and

# temporally constrained; effective rate of insertion is proportional

# to the number of unoccupied lattice nodes (here, in a region):

++ B() k in region RgnY since 5 until 8

++ C() k in region RgnZ since 5 until 8

B() + A(x∼U,y∼U) -> B() + A(x∼P,y∼U) r
C() + A(x∼U,y∼U) -> C() + A(x∼U,y∼P) r

-- B() q -- C() q # Molecules B, C are degraded with rate q.

end

begin observables

A A(x∼U,y∼U) color lightgrey # All observables that

Ax A(x∼P,y∼U) color green # have assigned colors

Ay A(x∼U,y∼P) color gold # are recorded in the

B B() color red # trajectory file.

C C() color blue #

end

begin simulation

time end 300 # Total duration (in simulation time units).

observer intervals 100 # No. time points at which logging occurs.

end

Listing 1: Tutorial input file 1 (doc/examples/tutorial/01-regions.spatkin).
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Tutorial μmodel 2: Diffusion-limited aggregation

This example (Listing 2) demonstrates diffusion-limited aggregation in just 3 (effectively 2) rules (rules

of zero rate are omitted).

begin parameters

m 10

kfast 10000

end

begin world

topology plane size 120 120

end

begin regions

Seeds cells 20,30; 70,20; 82,82 # Region consists of single lattice nodes.

end

begin molecule types

Particle(mobile)

end

begin seed species

Particle(mobile∼U) occupancy 1.0 in region Seeds # confined to a region
Particle(mobile∼P) occupancy 0.2 # distributed uniformly

end

begin event rules

"Gogogo!":

>> Particle(mobile∼P) m # A named rule for diffusion.

>> Particle(mobile∼U) 0 # Anonymous rule (referred to as rule "2").

# According to the above rules, molecule diffusivity depends on its state.

Particle(mobile∼P) + Particle(mobile∼U) ->
Particle(mobile∼U) + Particle(mobile∼U) kfast
end
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begin observables

frost Particle(mobile∼P) color lightgreen # An array of observables colors
snow Particle(mobile∼U) color orangered # has been predefined for user’s
end # convenience (see user manual).

begin simulation

time end 100 # If there are no more events, a warning will be issued.

observer intervals 200

end

Listing 2: Tutorial input file 2 (doc/examples/tutorial/02-aggregation.spatkin).
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Tutorial μmodel 3: State-dependent removal from the membrane

This example (Listing 3) is inspired by the fact that lipid modification, such as palmitoylation or farnesy-

lation, can affect membrane attachment of proteins; for example, G protein α subunit is depalmitoylated

upon stimulation and then translocates to cytosol.

begin parameters

m1 10

b 1

d 10

u 10

x 0.1

end

begin world

topology plane size 100 100

end

begin regions (* none *) end

begin molecule types # By defining relative molecular weights in

Thioesterase(a) weight 1 # this manner, we assure that Thioesterase,

AlphaS(palmito) weight 0 # which is assumed immobile, does not move

end # upon binding/unbinding AlphaS.

begin seed species

AlphaS(palmito∼P) 1000 # site ‘palmito’ defined explicitly as unbound

Thioesterase(a) 10 # site ‘a’ defined explicitly as unbound

end

begin event rules

>> Thioesterase(a) 0 # assumed immobile

>> AlphaS(palmito) m1 # assumed mobile

Thioesterase(a) + AlphaS(palmito∼P) ->Thioesterase(a!1).AlphaS(palmito∼P!1) b
Thioesterase(a!1).AlphaS(palmito∼P!1)->Thioesterase(a!1).AlphaS(palmito∼U!1) d
Thioesterase(a!1).AlphaS(palmito∼U!1)->Thioesterase(a) + AlphaS(palmito∼U) u

-- AlphaS(palmito∼U) x # removal of depalmitoylated AlphaS from membrane

end
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begin observables

A_palmi AlphaS(palmito∼P!?) color lightpink # ’?!’ means that the status of
A_depalmi AlphaS(palmito∼U!?) color red # binding is irrelevant here

T Thioesterase() color darkblue

end

begin simulation

description "Depalmitoylation v0.1" # Descriptions are copied into results.

duration 300 # Bimolecular complexes are occasionally

observer intervals 100 # seen in trajectory as split hexagons.

end

Listing 3: Tutorial input file 3 (doc/examples/tutorial/03-depalmitoylation.spatkin).
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Tutorial μmodel 4: Rule-based capabilities (1)

This example (Listing 4) demonstrates rule-based capabilities.

Each molecule S (“substrate”) can be independently phosphorylated on 10 residues, meaning that S

may assume one of 210 = 1024 phosphorylation states. Residues A, B, C, D, E can be phosphorylated

by kinase K1 which is recruited and remains tethered in the circular region RgnL; residues F, G, H,

I, J can be phosphorylated by kinase K2 that is recruited and remains tethered in the circular region

RgnR (in this way, occurrence of several second-order reactions is constrained spatially). To become

phosphorylated on all residues (dark red observable), S must visit both regions.

In the absence of phosphatase activity (parameter ku = 0), all S are ultimately phosphorylated but

even a weak activity of uniformly distributed phosphatases (parameter ku = 0.01) prevents simultaneous

phosphorylation of S on all residues.

begin parameters

m 10. # diffusivity

kadd 0.1 # insertion rate

kp 10. # kinase activity

ku 0.0 # phosphatase activity <-- CHOOSE: ku=0 or ku=0.01

occuS 0.1 # substrate occupancy

occuP 0.03 # phosphatase ocupancy

end

begin world

topology plane size 200 100

end

begin regions

RgnL circle 50 50 30

RgnR circle 150 50 30

end

begin molecule types

S(A,B,C,D,E,F,G,H,I,J) # a multi-site substrate

K1() # a kinase

K2() # another kinase

P() # a phosphatase

end
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begin seed species

S(A∼U,B∼U,C∼U,D∼U,E∼U,F∼U,G∼U,H∼U,I∼U,J∼U) occupancy occuS
P() occupancy occuP

end

begin event rules

>> S() m # By omitting diffusive rules for K1 and K2, they are

>> P() m # made immobile.

K1() + S(A∼U) -> K1() + S(A∼P) kp
P() + S(A∼P) -> P() + S(A∼U) ku

K1() + S(B∼U) -> K1() + S(B∼P) kp
P() + S(B∼P) -> P() + S(B∼U) ku

K1() + S(C∼U) -> K1() + S(C∼P) kp
P() + S(C∼P) -> P() + S(C∼U) ku

K1() + S(D∼U) -> K1() + S(D∼P) kp
P() + S(D∼P) -> P() + S(D∼U) ku

K1() + S(E∼U) -> K1() + S(E∼P) kp
P() + S(E∼P) -> P() + S(E∼U) ku

K2() + S(F∼U) -> K2() + S(F∼P) kp
P() + S(F∼P) -> P() + S(F∼U) ku

K2() + S(G∼U) -> K2() + S(G∼P) kp
P() + S(G∼P) -> P() + S(G∼U) ku

K2() + S(H∼U) -> K2() + S(H∼P) kp
P() + S(H∼P) -> P() + S(H∼U) ku

K2() + S(I∼U) -> K2() + S(I∼P) kp
P() + S(I∼P) -> P() + S(I∼U) ku
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K2() + S(J∼U) -> K2() + S(J∼P) kp
P() + S(J∼P) -> P() + S(J∼U) ku

++ K1() kadd in region RgnL since 1.0 until 3.0

++ K2() kadd in region RgnR since 5.0 until 7.0

end

begin observables

S_10u S(A∼U,B∼U,C∼U,D∼U,E∼U,F∼U,G∼U,H∼U,I∼U,J∼U) color blue
S_5pNterm S(A∼P,B∼P,C∼P,D∼P,E∼P,F∼U,G∼U,H∼U,I∼U,J∼U) color gold
S_5pCterm S(A∼U,B∼U,C∼U,D∼U,E∼U,F∼P,G∼P,H∼P,I∼P,J∼P) color pink
S_10p S(A∼P,B∼P,C∼P,D∼P,E∼P,F∼P,G∼P,H∼P,I∼P,J∼P) color darkred
K1 K1() color black

K2 K2() color dimgrey

P P() color green

end

begin simulation

time end 500

observer intervals 100

end

Listing 4: Tutorial input file 4 (doc/examples/tutorial/04-rule based 1.spatkin).
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Tutorial μmodel 5: Rule-based capabilities (2)

This example (Listing 5) is a further demonstration of rule-based capabilities and extends the previous

example. Additionally here, independently of their phosphostate, molecules S can form homodimers,

so there are (210)2/2 ' over half a million potential homodimer species (more than molecules in the

simulation). Dimers in which one protomer is phosphorylated on A, B, C, D, E and the other is

phosphorylated on F, G, H, I, J are stabilized (not allowed to dissociate).

begin parameters

m 10. # diffusivity

kadd 0.1 # insertion rate

kp 10. # kinase activity

ku 0.0 # phosphatase activity <-- CHOOSE: ku=0 or ku=0.01

occuS 0.1 # S occupancy

occuP 0.03 # phosphatase ocupancy

b 1 # S homodimerization

d 1 # S-S un-dimerization

stb 100 # S-S homodimer stabilization

end

begin world

topology plane size 200 100

end

begin regions

RgnL circle 50 50 30

RgnR circle 150 50 30

end

begin molecule types

S(A,B,C,D,E,F,G,H,I,J,dim,stable)

K1() K2() P()

end

begin seed species

S(A∼U,B∼U,C∼U,D∼U,E∼U,F∼U,G∼U,H∼U,I∼U,J∼U,dim,stable∼U) occupancy occuS
P() occupancy occuP

end
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begin event rules

>> S() m

>> S(dim!1).S(dim!1) m # diffusion of S-S dimer

>> P() m

K1() + S(A∼U) -> K1() + S(A∼P) kp
P() + S(A∼P) -> P() + S(A∼U) ku

K1() + S(B∼U) -> K1() + S(B∼P) kp
P() + S(B∼P) -> P() + S(B∼U) ku

K1() + S(C∼U) -> K1() + S(C∼P) kp
P() + S(C∼P) -> P() + S(C∼U) ku

K1() + S(D∼U) -> K1() + S(D∼P) kp
P() + S(D∼P) -> P() + S(D∼U) ku

K1() + S(E∼U) -> K1() + S(E∼P) kp
P() + S(E∼P) -> P() + S(E∼U) ku

K2() + S(F∼U) -> K2() + S(F∼P) kp
P() + S(F∼P) -> P() + S(F∼U) ku

K2() + S(G∼U) -> K2() + S(G∼P) kp
P() + S(G∼P) -> P() + S(G∼U) ku

K2() + S(H∼U) -> K2() + S(H∼P) kp
P() + S(H∼P) -> P() + S(H∼U) ku

K2() + S(I∼U) -> K2() + S(I∼P) kp
P() + S(I∼P) -> P() + S(I∼U) ku

K2() + S(J∼U) -> K2() + S(J∼P) kp
P() + S(J∼P) -> P() + S(J∼U) ku

S(dim) + S(dim) -> S(dim!1).S(dim!1) b
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S(A∼P,B∼P,C∼P,D∼P,E∼P,dim!1,stable∼U).S(F∼P,G∼P,H∼P,I∼P,J∼P,dim!1,stable∼U)
->

S(A∼P,B∼P,C∼P,D∼P,E∼P,dim!1,stable∼U).S(F∼P,G∼P,H∼P,I∼P,J∼P,dim!1,stable∼P)
stb

S(dim!1,stable∼U).S(dim!1,stable∼U) -> S(dim,stable∼U) + S(dim,stable∼U) d

++ K1() kadd in region RgnL since 1.0 until 3.0

++ K2() kadd in region RgnR since 5.0 until 7.0

end

begin observables

S_10u S(A∼U,B∼U,C∼U,D∼U,E∼U,F∼U,G∼U,H∼U,I∼U,J∼U) color blue
S_5pNterm S(A∼P,B∼P,C∼P,D∼P,E∼P,F∼U,G∼U,H∼U,I∼U,J∼U) color gold
S_5pCterm S(A∼U,B∼U,C∼U,D∼U,E∼U,F∼P,G∼P,H∼P,I∼P,J∼P) color pink
S_10p S(A∼P,B∼P,C∼P,D∼P,E∼P,F∼P,G∼P,H∼P,I∼P,J∼P) color darkred
SS_dim_stable S(dim!+,stable∼P) color red # observing S-S dimer
K1 K1() color black

K2 K2() color dimgrey

P P() color green

end

begin simulation

time end 500

observer intervals 100

end

Listing 5: Tutorial input file 5 (doc/examples/tutorial/05-rule based 2.spatkin).
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Tutorial μmodel 6: Gradient formation

This example (Listing 6) shows how a gradient of phosphorylated substrate can be formed between

enzymes tethered to different “compartments” of the reactor.

begin parameters

W 200 # Arithmetic expressions and previously defined parameters

H W/3 # can be used to define parameters (evaluations are always

A 8 # performed in double floating-point precision).

m 3

p 100

q p

end

begin world

topology planar size W H

end

begin regions

reservoirK rectangle W*( 1)/(2*A) H/2 W/A H # in-place arithmetics

reservoirP rectangle W*(2*A-1)/(2*A) H/2 W/A H #

end

begin molecule types K() S(s) P() (* kinase, substrate, phosphatase *) end

begin seed species

S(s∼P) occupancy 1/8 # not inserting: S(s∼U), S(s∼PP)
K() occupancy 1/32 in region reservoirK

P() occupancy 1/32 in region reservoirP

end

begin event rules

>> S() m # K(), P() are immobile

K() + S(s∼U) -> K() + S(s∼P) 2*p
K() + S(s∼P) -> K() + S(s∼PP) p

P() + S(s∼PP)-> P() + S(s∼P) 2*q
P() + S(s∼P) -> P() + S(s∼U) q

end
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begin observables

K K() color darkmagenta

S_u S(s∼U) color yellow group S # Grouping observables may aid

S_p S(s∼P) color orange group S # trajectory visualization;

S_pp S(s∼PP) color red group S # group "all" is always created.

P P() color green

end

begin simulation

duration 10000

observer intervals 100

end

Listing 6: Tutorial input file 6 (doc/examples/tutorial/06-gradient formation.spatkin).
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Tutorial μmodel 7: Steady state controlled by diffusion

In this example (Listing 7), lattice is divided into two regions; molecules located in one of them have

significantly reduced diffusivity. By visual inspection of the trajectory it can be observed that diffusion

controls the steady state (i.e., the fraction of phosphorylated S molecules – black). This case has been

analyzed by Szymańska et al. [see Figure 2(b) in Phys. Rev. E, 2015, 91, 022702].

begin parameters

a 120 # -- geometric parameter

rhoK 0.1 # \

rhoP rhoK/10 # -> parameters used to set up initial conditions

rhoS 0.25 # /

end

begin world

topology plane size 2*a a # width==2*height

end

begin regions

Left rectangle a/2 a/2 a a diffusivity 0.01

end

begin molecule types

K() P() S(s) # kinase, phosphatase, and their substrate

end

begin seed species

K() occupancy rhoK

P() occupancy rhoP

S(s∼U) occupancy rhoS
end

begin event rules

>> K() m >> P() m >> S() 100

K() + S(s∼U) -> K() + S(s∼P) 1

P() + S(s∼P) -> P() + S(s∼U) 100
end
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begin observables

K K() color yellow

P P() color red

Su S(s∼U) color lightgrey
Sp S(s∼P) color black
end

begin settings

time end 20

observer intervals 200

end

Listing 7: Tutorial input file 7 (doc/examples/tutorial/07-diffusion controlled steady state.spatkin).
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Tutorial μmodel 8: Ligand-induced receptor dimerization

This is an example (Listing 8) of excitable system where introduction of trivalent ligands that collocalize

bivalent receptors facilitates their activatory autotransphosphorylation. This activity is further enhanced

by recruitment and activation of autotransphosphorylating kinases and opposed by phosphatases which

bind to and act on both activated receptors and kinases. This example is inspired by early events in B

cell receptor signaling.

(*

* This is a stochastic simulation of an excitable system, which means

* that the system occasionally can get activated spontaneously (due to

* a fluctuation). In such case, one can change random generator seed(s)

* and re-run the simulation.

*)

begin parameters

m 10.

occuR 0.03 # receptor occupancy

occuK 0.1 # kinase ocupancy

occuP 0.05 # phosphatase ocupancy

end

begin world

topology plane size 64 64

random seed 12345 # This seed influences initial locations of molecules.

end

begin regions

patch circle 32 32 10

end

begin molecule types

K(P,K,R,A) # kinase

P(R,K) # phosphatase

Ag[3] # extracellular antigen, trivalent

R(P,K,A)[2] # bivalent receptor with 2 additional sites for binding K, P

end
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begin seed species

R(P,K,A∼U)[@,@] occupancy occuR # Molecules are inserted unbound.
P(R,K) occupancy occuP

K(P,K,R,A∼U) occupancy occuK

end

begin event rules

>> R() m >> P() m >> K() m

# Immobile binders appear unbound in a lattice dual to the regular lattice.

"Antigen appearance":

++ Ag[@,@,@] 0.01 in region patch since 200 until 220

"Receptor-ligand binding", "Receptor-ligand unbinding":

+-! R() & Ag[] 10, 0.01

# Receptors activation in trans:

R() + R(A∼U) -> R() + R(A∼P) 0.01
R() + R(A∼P) -> R() + R(A∼PP) 0.01
R(A∼P) + R(A∼U) -> R(A∼P) + R(A∼P) 0.02
R(A∼P) + R(A∼P) -> R(A∼P) + R(A∼PP) 0.02
R(A∼PP)+ R(A∼U) -> R(A∼PP) + R(A∼P) 0.05
R(A∼PP)+ R(A∼P) -> R(A∼PP) + R(A∼PP) 0.05

R(P,K,A∼PP) + K(P,K,R,A∼U) -> R(P,K!1,A∼PP).K(P,K,R!1,A∼U) 1

R(K!1,A∼PP).K(P,K,R!1,A∼U) -> R(K!1,A∼PP).K(P,K,R!1,A∼P) 10

R(K!1).K(R!1) -> R(K) + K(R) 1

K(P,K,R,A∼P) + K(P,K,R,A∼U) -> K(P,K!1,R,A∼P).K(P,K!1,R,A∼U) 1
K(P,K!1,R,A∼P).K(P,K!1,R,A∼U)-> K(P,K!1,R,A∼P).K(P,K!1,R,A∼P) 10
K(K!1).K(K!1) -> K(K) + K(K) 1

P(R,K) + R(P,K,A∼PP) -> P(R!1,K).R(P!1,K,A∼PP) 3

P(R,K) + R(P,K,A∼P) -> P(R!1,K).R(P!1,K,A∼P) 3

P(R!1,K).R(P!1,K,A∼PP) -> P(R!1,K).R(P!1,K,A∼P) 10

P(R!1,K).R(P!1,K,A∼P) -> P(R!1,K).R(P!1,K,A∼U) 10

P(R!1).R(P!1) -> P(R) + R(P) 1
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P(R,K) + K(P,K,R,A∼P) -> P(R,K!1).K(P!1,K,R,A∼P) 1

P(R,K!1).K(P!1,K,R,A∼P) -> P(R,K!1).K(P!1,K,R,A∼U) 10

P(K!1).K(P!1) -> P(K) + K(P) 1

end

begin observables

Ag_tot Ag[@!?,@!?,@!?] color black

Receptor_U R(A∼U) color lightgrey
Receptor_P R(A∼P) color grey
Receptor_PP R(A∼PP) color brown
Kinase_inactive K(A∼U) color gold
Kinase_active K(A∼P) color red
Phosphatase P() color green

end

begin simulation

time end 500

observer intervals 1000

snapshots on # If you do not want snapshots, write: snapshots off

random seed 12345 # This seed influences the order of events.

end

Listing 8: Tutorial input file 8 (doc/examples/tutorial/08-receptors and ligands.spatkin).
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Tutorial μmodel 9: Crowding-facilitated switch in a bistable system

In this example (Listing 9), kinetics of a bistable system is simulated. In a defined instant, chemically

inert molecules (“crowders”) are introduced which leads to reduction of reactants’ diffusivity. In this

system, the presence of crowders favors processive rather than distributive phosphorylation, and in this

way favors the steady state of a high amount of doubly phosphorylated kinases. Initially the system is

in the steady state of a low amount of phosphorylated kinases; upon recruitment of crowders to the

membrane, a transition to the other steady state is observed.

The effect of the presence of crowding molecules and their diffusivity on the effective diffusivity of

(other) molecules on the lattice has been analyzed by Szymańska et al. [see Figure 9 in Phys. Rev. E,

2015, 91, 022702].

(*

* This is a stochastic simulation of a bistable system, which means that

* the system may occasionally switch to another state (though it is very

* implausible). In such case, one can change random generator seed(s) and

* re-run the simulation.

*)

begin parameters

rhoK 0.4

rhoP 0.1

d 1 / (6 * rhoP)

c1 0.02 / (6 * rhoK)

c2 0.15 / (6 * rhoK)

c3 4 / (6 * rhoK)

m 300

end

begin world

topology planar

size 50 50

random seed 123

end

begin regions

end
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begin molecule types

K(a) # self-activating kinase

P() # phosphatase acting on the kinase

C() # crowder

end

begin seed species

P() occupancy rhoP

K(a∼U) occupancy rhoK
end

begin event rules

## Rules for reactants:

#

>> K() m >> P() m

K(a∼U) + K(a∼U) -> K(a∼U) + K(a∼P) 2*c1

K(a∼U) + K(a∼P) -> K(a∼U) + K(a∼PP) c1

K(a∼P) + K(a∼U) -> K(a∼P) + K(a∼P) 2*c2

K(a∼P) + K(a∼P) -> K(a∼P) + K(a∼PP) c2

K(a∼PP) + K(a∼U) -> K(a∼PP) + K(a∼P) 2*c3
K(a∼PP) + K(a∼P) -> K(a∼PP) + K(a∼PP) c3

P() + K(a∼P) -> P() + K(a∼U) d
P() + K(a∼PP) -> P() + K(a∼P) 2*d

## Rules for crowders:

#

++ C() 0.15 since 36 until 40

>> C() m/10

end

begin observables

K K(a∼U) color yellow
K_p K(a∼P) color orange
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K_pp K(a∼PP) color red
P P() color lime

C C() color dimgray # crowder

end

begin simulation

duration 100

observer intervals 1000

random seed 123

snapshots on

end

Listing 9: Tutorial input file 9 (doc/examples/tutorial/09-crowding facilitated switch.spatkin).
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Tutorial μmodel 10: Traveling wave

The considered system contains phosphatases and auto-phosphorylating kinases reacting in a long

cylindrical domain. This prototypical bistable system is the subject of the analysis described by Zuk et

al. [Phys. Biol., 2012, 5, 055002] and Kochańczyk et al. [J. R. Soc. Interface, 2013, 10, 20130151],

where the concordance of particle-based simulations in SPATKIN and finite-element method-based

simulations of a corresponding partial differential equation system is demonstrated.

(*

* Please note that the simulation can take about two hours. Occasionally,

* the stochastic traveling wave may fail to propagate or spontaneous self-

* activation may occur in another part of the lattice -- in such case one

* can change random number generator seed(s) and re-run the simulation.

*)

begin parameters

n_stat_K 183 # |

n_stat_Kp 571 # > high-phospholevel steady state (calculated from ODEs)

n_stat_Kpp 439 # |

rhoK 0.4

rhoP 0.1

d 1 / (6 * rhoP)

c1 0.02 / (6 * rhoK)

c2 0.18 / (6 * rhoK)

c3 4 / (6 * rhoK)

m 1000

end

begin world

topology planar size 404 30 random seed 123456789

end

begin regions

Barrier rectangle 402 15 4 30 diffusivity 0 # reflective boundary

Ignition rectangle 50 15 100 30

Rest rectangle 250 15 300 30

end

begin molecule types K(a) P() end
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begin seed species

P() occupancy rhoP in region Ignition

K(a∼U) n_stat_K in region Ignition

K(a∼P) n_stat_Kp in region Ignition

K(a∼PP) n_stat_Kpp in region Ignition

P() occupancy rhoP in region Rest

K(a∼U) occupancy rhoK in region Rest

end

begin event rules

K(a∼U) + K(a∼U) -> K(a∼U) + K(a∼P) 2*c1

K(a∼U) + K(a∼P) -> K(a∼U) + K(a∼PP) c1

K(a∼P) + K(a∼U) -> K(a∼P) + K(a∼P) 2*c2

K(a∼P) + K(a∼P) -> K(a∼P) + K(a∼PP) c2

K(a∼PP) + K(a∼U) -> K(a∼PP) + K(a∼P) 2*c3

K(a∼PP) + K(a∼P) -> K(a∼PP) + K(a∼PP) c3

P() + K(a∼P) -> P() + K(a∼U) d

P() + K(a∼PP) -> P() + K(a∼P) 2*d
>> K() m

>> P() m

end

begin observables

K K(a∼U) color yellow

K_p K(a∼P) color orange

K_pp K(a∼PP) color red
P P() color lime

end

begin simulation

description "Induced chemical travelling wave"

duration 100 observer intervals 200

random seed 987654321

end

Listing 10: Tutorial input file 10 (doc/examples/tutorial/10-traveling wave.spatkin).
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Abstract

NF-kB is a key transcription factor that regulates innate immune response. Its activity is tightly controlled by numerous
feedback loops, including two negative loops mediated by NF-kB inducible inhibitors, IkBa and A20, which assure
oscillatory responses, and by positive feedback loops arising due to the paracrine and autocrine regulation via TNFa, IL-1
and other cytokines. We study the NF-kB system of interlinked negative and positive feedback loops, combining bifurcation
analysis of the deterministic approximation with stochastic numerical modeling. Positive feedback assures the existence of
limit cycle oscillations in unstimulated wild-type cells and introduces bistability in A20-deficient cells. We demonstrated that
cells of significant autocrine potential, i.e., cells characterized by high secretion of TNFa and its receptor TNFR1, may exhibit
sustained cytoplasmic–nuclear NF-kB oscillations which start spontaneously due to stochastic fluctuations. In A20-deficient
cells even a small TNFa expression rate qualitatively influences system kinetics, leading to long-lasting NF-kB activation in
response to a short-pulsed TNFa stimulation. As a consequence, cells with impaired A20 expression or increased TNFa
secretion rate are expected to have elevated NF-kB activity even in the absence of stimulation. This may lead to chronic
inflammation and promote cancer due to the persistent activation of antiapoptotic genes induced by NF-kB. There is
growing evidence that A20 mutations correlate with several types of lymphomas and elevated TNFa secretion is
characteristic of many cancers. Interestingly, A20 loss or dysfunction also leaves the organism vulnerable to septic shock and
massive apoptosis triggered by the uncontrolled TNFa secretion, which at high levels overcomes the antiapoptotic action of
NF-kB. It is thus tempting to speculate that some cancers of deregulated NF-kB signaling may be prone to the pathogen-
induced apoptosis.
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Copyright: � 2013 Pękalski et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits
unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.

Funding: Foundation for Polish Science grant # Team 2009-3/6; Polish National Science Centre grant # 2011/03/B/NZ2/00281; Swiss National Science
Foundation grant # 205321_141299. The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript.

Competing Interests: The authors have declared that no competing interests exist.

* E-mail: tlipnia@ippt.gov.pl

Introduction

NF-kB Regulatory System
Innate immunity forms the first line of defense against

pathogens. In the first phase, cells detect pathogens with their

membrane and cytoplasmic receptors. This leads to the activation

of transcription factors from the NF-kB, IRF and AP-1 families.

These factors jointly regulate the activity of several hundred genes

responsible for inflammation, antiviral protection, proliferation

and apoptosis. In particular, they induce the production of pro-

inflammatory cytokines like IL-1, TNFa, as well as IFN-a and

IFN-ß. Secretion of these cytokines leads to the second phase of

the cellular innate immune response in cells that have not yet

encountered the pathogen. The cytokine-activated cells may

themselves produce and secrete the same cytokines leading to

the spread of paracrine signaling [1,2] or to augmenting and

stabilizing signaling in the secreting cells via autocrine regulation

[3,4]. In the current study, the focus is on the analysis of TNFa
autocrine regulation in the NF-kB pathway.

NF-kB regulates numerous genes important for pathogen- or

cytokine-induced inflammation, immune response, cell prolifera-

tion and survival (reviewed in [5,6]). Nuclear activity of NF-kB is

tightly controlled by negative feedback loops mediated by NF-kB-

responsive proteins: IkBa [7–9], IkBE [8,10,11] and A20 [12–14].

These negative feedback loops lead to oscillatory responses, in

which NF-kB circulates between the cytoplasm and nucleus with

the period of about 100 min [8]. The primary inhibitors, IkBa
and IkB, directly bind to NF-kB, inhibit its transcriptional activity

and transport it back to the cytoplasm. Interestingly, expression of

IkBE is delayed with respect to IkBa [11], which increases

desynchronization of cells and leads to damping of oscillations

observed at the population level, resulting in robust tissue

responses [15]. A20 mediates the outer negative feedback loop

by attenuating the catalytic activity of the IKK complex (consisting

of IKKc, also called NEMO, IKKa and IKKß). In A20-deficient

cells the IKK activity remains at a high level preventing the

accumulation of inhibitors IkBa and IkBE [14]. This leads, in turn,

to the elevated NF-kB transcriptional activity and causes chronic

inflammation. There are at least two levels of A20-mediated
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regulation of IKK complex activity: (1) A20 directly interacts with

the IKK complex reducing its catalytic activity [16–18] and (2)

A20 primes TNF receptor interacting protein (RIP) for degrada-

tion, and thus attenuates TNF receptor downstream signaling

[19].

Regarding the direct regulation mode, A20 binds to IKKc and

speeds up further phosphorylation of active IKKß kinase into the

inactive form [16,20]. (IKKß activation proceeds via phosphor-

ylation at Ser-177 and Ser-181, but further phosphorylation at the

C-terminal serine cluster inhibits its catalytic activity [20].) Later,

it was found that A20 and ABIN-1 bind to the IKK complex, and

A20 inhibits activation of NF-kB by de-ubiquitination of IKKc
[17], reviewed recently in [21]. (Lys-63-linked ubiquitination of

IKKc is an important step for the activation of IKK and NF-kB

following various stimuli, including TNFa [22].) Interestingly, A20

itself is a putative substrate of IKKß, which phosphorylates A20 on

Ser-381, thereby increasing its ability to downregulate NF-kB in

response to multiple stimuli [23]. Recently, Skaug et al. reported a

direct non-catalytic mechanism of IKK inhibition by A20 showing

that overexpressed A20 impaired IKK activation without reducing

RIP1 ubiquitination [18].

Regarding the indirect IKK regulation mode, A20 acts as a

ubiquitin editing protein: it removes Lys-63-linked ubiquitin

chains from RIP and then functions as a ubiquitin ligase by

polyubiquitinating RIP with Lys-48-linked ubiquitin chains,

thereby targeting RIP for proteasomal degradation, and thus

attenuating TNFR1 receptor signaling [19], reviewed in [24,25].

The modeling studies showed distinctive roles of these two, direct

and indirect, modes of regulation [26,27]. The direct mode allows

for the termination (or strong reduction) of IKK activity after A20

is synthesized (which takes about 1 hour) [26], while the second

mode renders cells less sensitive to subsequent pulses of TNFa, if

these pulses are separated by a short timespan [27].

Later studies showed that the role of A20 goes beyond the

control of NF-kB and that A20 is a general inhibitor in innate

immune signaling; it protects cells from chronic inflammation,

endotoxic shock and plays a role of tumor suppressor [28,29]. In

particular, A20 inhibits IRF3/IRF7 signaling [30,31]. Similarly as

for the NF-kB pathway, it acts upstream of the TBK1–IKKE–
IKKc complex regulating negatively retinoic acid-inducible gene I

protein (RIG-I) [32], and potentially may act at the level of this

complex by binding to IKKc [31].

As said, the negative feedback loops involving IkBa and A20

lead to oscillatory responses. These oscillations appear damped

when analyzed at the population level, but single cell experiments

by Nelson et al. on SK-N-AS cells and Tay et al. on 3T3 cells

demonstrated that oscillations persist at least up to 10 hours

[33,34]. Discrepancy between population- and single cell-based

observations can be explained by the progressing desynchroniza-

tion of cells in the population [35,36], although the controversy

about reconciling single cell and population data still exists [37].

The major objection towards single cell experiments is that the

additional gene copies coding for fluorescently tagged NF-kB may

alter dynamics of the whole system. However, both experimental

[38] and modeling studies [39] show that the number of NF-kB

gene copies or its expression level influences only the amplitude

but not the period of oscillations. Moreover, in our recent

experiment [34], the expression of NF-kB remained practically

unchanged due to the knockout of endogenous RelA, yet the

oscillatory pattern was still clearly visible for 10 ng/ml TNFa dose.

TNFa Autocrine and Paracrine Signaling
TNFa affects growth, differentiation and function of cells of

many types, and is a major mediator of inflammatory immune

responses [40,41]. It is considered as a key mediator of the septic

shock syndrome induced by either LPS or bacterial superantigens

[42,43]. The potent activating abilities of TNFa are transmitted by

2 distinct cell-surface receptors: TNFR1 and TNFR2; the first one

binds TNFa molecules with higher affinity [44] and is considered

responsible for the most of TNFa-induced signaling [45]. It is

established that binding of TNFa initiates protein–protein

interactions between TNFR1 and the TNFR-associated death

domain protein (TRADD). TRADD in turn recruits receptor-

interacting protein (RIP) and TRAF2 for NF-kB and survival

signals [46,47].

The TNFa autocrine and paracrine signaling arises since

TNFa-inducible NF-kB serve itself as a primary transcription

factor for TNFa. Over twenty years ago Collart et al. showed that

TNFa promoter contains four kB motifs that can bind constitutive

and inducible forms of NF-kB [48]. Further analysis of kB motives

in TNFa promoter revealed that two sites, kB2 and kB2a, play a

primary role in TNFa regulation by NF-kB in response to LPS

stimulation in human monocytes [49].

The autocrine regulation was observed in various cell lines and

tissues: first, Wu et al. showed that TNFa functions as autocrine

and paracrine growth factor in ovarian cancer [50]. Coward et al.

and Guergnon et al. demonstrated that TNFa induces TNFa
synthesis via NF-kB activation in human lung mast cells and B

cells [51,52]; Nadeau and Rivest found that in vivo TNFa injection

induced TNFa mRNA expression in microglia and astrocytes

[53], and later Kuno et al. showed that the activation of microglia

by LPS is partially mediated by microglia-derived TNFa,

confirming the existence of a positive feedback loop [54]. Hu

et al. demonstrated that autocrine TNFa signalling (via NF-kB)

mediates endoplasmic reticulum stress-induced cell death [55].

Recently, Rushworth et al. reported the autocrine TNF signaling

(via NF-kB) in monocytes: TNF stimulation leads to sustained

production of TNF mRNA for 48 hours; the NF-kB inhibition

suppresses the TNF autocrine regulation [56]. Although observed

in many cell lines, strength of the autocrine and paracrine TNFa
signaling is cell line-specific. Cells can be characterized by their

autocrine potential based on their ability to secrete TNFa and by

their sensitivity to TNFa stimulation controlled primarily by the

TNFR1 level.

Autocrine TNFa signaling may start spontaneously or in

response to numerous stimuli, including TNFa itself, other

cytokines, or LPS. The spontaneous activation of the NF-kB

signaling pathway was observed in isolated normal glomeruli [57].

The data suggested that NF-kB was spontaneously activated in

explanted glomeruli via autocrine/paracrine factors including

TNFa.

Although NF-kB serves itself as a primary transcription factor

for TNFa, there are other factors and mechanisms which control

TNFa mRNA synthesis, transcript stability, translation and TNFa
protein secretion. TNFa gene regulation in activated T cells

involves AP-1 transcription factors ATF-2 and c-Jun which

cooperate with NFATp [58]. In macrophages, c-Jun and C/

EBPß transcriptionally activate TNFa, however regulation by NF-

kB was found stronger and independent of these factors [59].

Covert and colleagues [3,4] proposed that the LPS-induced TNFa
secretion is mediated by TRIF-dependent activation of IRF3.

Stability of TNFa mRNA is signal-dependent; Deleault et al.

demonstrated that simultaneous activation of both ERK and p38

inhibit tristetraprolin and stabilize TNFa mRNA [60]. Massive

TNFa protein production requires ERK and p38 atop of NF-kB

in mice with constitutively active IKKß [61]. In LPS-stimulated

murine dendritic cells, MK2, effector kinase of p38 promotes

TNFa translation [62]. Interestingly, in articular chondrocytes and
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skeletal muscles, TNFa stimulates the activation of three subclasses

of MAPKs: ERKs, p38, and JNKs [63,64]. This opens the

possibility that in some cells TNFa autocrine regulation involves

both NF-kB-induced TNFa transcription and MAPK pathway-

driven TNFa translation.

Majority of mechanisms which increase TNFa mRNA stability

and translation, discussed above, are induced by the LPS

stimulation, which strongly activates MAPK pathways as well as

NF-kB via MyD88 (early phase) and TRIF-dependent pathways

(late phase), reviewed in [65,66]. Xaus et al. showed that LPS

induces apoptosis in macrophages via autocrine TNFa produc-

tion, and this mechanism is suppressed in TNFR1-deficient mice

[42]. Hao and Baltimore found that TNFa mRNA degradation is

several-fold lower when TNFa is produced in response to LPS

when compared to TNFa stimulation [67]. This explains why the

LPS stimulation leads to the massive secretion of TNFa, which in

turn may trigger autocrine signaling, leading to prolonged

oscillations of NF-kB, observed recently in a fraction of LPS-

stimulated cells [68].

Finally, we should mention that there exist other cytokines, in

particular IL-1, which are NF-kB-responsive [69], and which in

turn may activate NF-kB [70]. For the sake of simplicity and

clarity, we neglect this positive feedback loop in the current study.

Methods

The modeling studies of NF-kB system started in 2002, by the

study of oscillations of NF-kB–IkBa feedback loop (damped by the

presence of IkBE and IkBß isoforms) by Hoffmann, Levchenko

and colleagues [8], followed by Lipniacki et al. study introducing

A20 regulatory loop [26], reviewed in [36,71]. The considered

model is based on our earlier studies [27,34]. The key modification

is the inclusion of autocrine regulation via TNFa which leads to

the positive feedback loop and qualitatively changes dynamics of

cells characterized by sizable TNFa synthesis. For completeness of

the current study, we briefly review the structure of the model.

The detailed description of the mathematical methods and the

model, including the list of reactions and corresponding ordinary

differential equations (ODEs), can be found in Text S1. The model

involves seven proteins: NF-kB, its inducible inhibitors IkBa and

A20, signal transduction kinases IKK and IKKK, cytokine TNFa
and its receptor TNFR1 (Fig. 1). The model is two-compartmental

and the translocations of NF-kB, IkBa and their complex between

the cytoplasmic and nuclear compartments are considered.

However, in contrast to recent studies by Terry and Chaplain

[72], we do not account for spatial gradients (leading to the

diffusion and transport terms) within these two compartments.

Total levels of NF-kB, IKK and IKKK are assumed constant,

without accounting for their production and degradation explic-

itly. In the case of IkBa, A20 and TNFa, the processes of mRNA

transcription and protein translation are explicitly present in the

model. The activation of corresponding genes follows NF-kB

binding, while gene inactivation follows the NF-kB removal via

IkBa binding.

A20 and IkBa Negative Feedback Loops
Nuclear NF-kB activity is controlled by two interlinked negative

feedback loops, one mediated by IkB proteins: IkBa and IkBE, the

other mediated by A20 (Fig. 1). The inhibitors IkBa and IkBE bind

NF-kB and sequester it in the cytoplasm. Upon the signal

mediated by the kinases IKKK and IKK, IkBa is phosphorylated

and rapidly degraded. IkBE is also phosphorylated and degraded,

although its degradation (and further resynthesis) is delayed by

about 45 min with respect to IkBa. Free NF-kB translocates to the

nucleus and triggers transcription of its inhibitors, IkBa, IkBE and

A20. Synthesized IkBa and IkBE translocate to the nucleus, bind

NF-kB and convey it back to the cytoplasm. IkBE is several fold

less abundant than the primary inhibitor IkBa, and as demon-

strated by experimental and computational studies the main

impact of IkBE on the system dynamic is in desynchronizing cells

[15]. Although individual cell trajectories are very similar for IkBE-
deficient and wild-type cells, the latter are less synchronized, and

therefore oscillations appear damped when averaged over

population [15,35]. In the current study, we focus on TNFa
autocrine regulation and neglect the regulatory differences

between IkBE and IkBa and replace these two proteins by a

more abundant IkBa. The (NF-kB:IkBa) complexes may circulate

between the nucleus and cytoplasm, however since they mostly

accumulate in cytoplasm, which is visible in unstimulated cells (for

which majority of NF-kB is bound to IkBa and other isoforms)

[33,34,73], we neglect the nuclear import term for (NF-kB:IkBa).

Accumulation of IkBa protein is enabled by A20 which attenuates

the strength of the extracellular signal (discussed in Introduction).

First, A20 attenuates the activity of TNFR1 receptors (which is the

consequence of A20-induced degradation of RIP – the key

component of the receptor complex). Second, it enhances

conversion of catalytically active IKK (IKKa), into catalytically

inactive form (IKKi). Inactive kinase IKKi spontaneously converts

back to the neutral form IKKn through the intermediate form

IKKii. It is worth noticing here, that Ashall et al. [73] in their

model variant assumed that A20 inhibits conversion of IKKi to

neutral form IKKn, rather than it enhances conversion of IKKa to

IKKi.

Autocrine TNFa Regulation
TNFa is one of NF-kB-responsive genes, and its expression level

is cell type-dependent. 3T3 cells, which we studied experimentally

in this work, exhibit a relatively low TNFa expression, reaching 20

mRNA molecules (on average) per cell at the highest TNFa
stimulation dose, Fig. 2A. However, expression levels calculated

per activated cell were independent of the TNFa dose showing

digital responses similar to that of early genes we analyzed earlier

[34]. The dynamic gene expression measurements show that the

TNFa synthesis has a distinct peak at t = 1 hour regardless of the

TNFa dose, and shows a low plateau which extends to beyond 10

hours.

Interestingly, we found that a small fraction (about 3%) of 3T3

cells secrete TNFa without any stimulation as shown by ELISpot

assay, Fig. 2B. The fraction of secreting cells was found to be

larger (about 10%) for RAW 264.7 (mouse leukaemic monocyte

macrophage) cells, Fig. 2C. These measurements add to the

evidence that TNFa production and secretion can be triggered

spontaneously, and that probability of such spontaneous activa-

tions is cell line-dependent. Motivated by this observation, and

earlier experimental studies demonstrating that TNFa induces

TNFa synthesis via NF-kB activation ([51,52] as discussed in

Introduction), we expanded our earlier model to include the

TNFa autocrine regulation. Accordingly, we consider NF-kB-

inducible TNFa mRNA synthesis, followed by TNFa protein

translation and secretion. We assume that some fraction of

secreted TNFa molecules may bind to receptors on the same cell,

and that the fraction of captured TNFa molecules increases with

the number of TNFR1 receptors according to the Hill function.

The fraction of secreted TNFa which is not bound by receptors of

the secreting cell is neglected in the considerations, but could be

accounted for by modifying the extracellular TNFa concentration.

We analyze the evolution of the NF-kB system in the absence of

any stimulation as well as its responses to the imposed
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concentrations of TNFa, considering both tonic and pulsed

stimulation. In the whole analysis we account for intracellular and

extracellular TNFa degradation, with degradation half-time ^
1 h (degradation rate of 2|10{4=s), consistent with our earlier

estimations [34].

Deterministic and Stochastic Modeling
We and others predicted and demonstrated that responses of the

NF-kB system to low TNFa doses, as well as low LPS doses, are

highly stochastic, and only a fraction of cells exhibit measurable

NF-kB activation [27,34,74,75]. Our ELISpot data on 3T3 cells

and macrophages show that only a small fraction of cells secrete

TNFa. Therefore, in order to analyze the autocrine TNFa
regulation we will combine deterministic and stochastic modeling.

In the deterministic approximation, the system of 25 ODEs is

derived from the list of chemical reactions. The equations are then

solved using MATLAB and BIONETGEN (Materials S1 and S2). The

deterministic approximation is used to analyze the dynamical

Figure 1. Schematic of the NF-kB model. Solid arrow-headed lines denote transitions; dashed lines denote influence: positive for circle-headed
lines, negative for hammer-headed lines.
doi:10.1371/journal.pone.0078887.g001
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structure of the regulatory system, which is needed to properly

interpret more complex stochastic trajectories. Based on the

bifurcation analysis performed using MATCONT continuation

software (see Text S1 and Material S3), we will show that

unstimulated wild-type (WT) cells may have, depending on the

strength of the autocrine regulation, two stable recurrent solutions:

steady state and limit cycle, the latter corresponding to the

cytoplasmic–nuclear NF-kB oscillations. In contrast, A20-deficient

cells may simultaneously have two stable steady state solutions,

corresponding to the active and inactive cells.

In the stochastic approach, chemical reactions are simulated

using the direct Stochastic Simulation Algorithm [76] implement-

ed in BIONETGEN. BIONETGEN is a rule-based specification

language and environment [77]. In BIONETGEN language, models

are constructed by specifying rules that describe allowed protein–

protein interactions, processes, and covalent modifications. Based

on the rules, the reaction network is automatically generated along

with the system of ODEs. The advantage of this approach is that it

allows for concise definitions of models with large numbers of

interactions and protein states [78]. Here, the model is relatively

small, and the BIONETGEN software is used because of its very

efficient implementation of the Stochastic Simulation Algorithm

(direct method). Trajectories obtained in stochastic simulations are

interpreted as single cell trajectories. These trajectories, as we will

see, may switch between the attractors of the deterministic

approximation or may exhibit the excitatory behavior. Stochastic

simulations will be used to determine the fraction of responding

cells as a function of the TNFa dose. Averages over a large

number of stochastic trajectories will be used to fit the model to the

population data. As demonstrated before, in non-linear systems,

the average over a large number of stochastic trajectories may

qualitatively differ from the trajectory obtained in the determin-

istic approximation, and thus the deterministic approximation of

the process may not satisfactorily reproduce population data [79].

In the stochastic model two types of noise are considered:

Extrinsic noise. The analysis performed in our previous

study [34] indicated for a broad distribution of TNFR1 receptor

number across the cell population. The heterogeneity of NF-kB

expression is of smaller importance, and will be neglected here for

the sake of simplicity. Following [34] we assume that the number

of receptors is log-normally distributed with probability density

f (x,m,s) (see also Fig. S1 in Text S1),

f (x,m,s)~
1

xs
ffiffiffiffiffiffi

2p
p e

{
( ln x{m)2

2s2 , xw0 ð1Þ

with m~ ln 7000 and s2~0:7. Such distribution is characterized

by median M0~7|103, mean ^104 and variance ^108. In the

deterministic approximation, if not otherwise specified, we

assumed that the number of receptors R is equal to median M0.

Intrinsic noise. Intrinsic noise in the system results mainly

from the discrete regulation of TNFR1 receptors activity and

activation of A20, IkBa, and TNFa genes, see [36,80]. We found,

however, that at low or zero dose stimulation, when the number of

A20, IkBa, and TNFa mRNA molecules is very low, the

transcriptional noise is also important. Accordingly, in contrast

to our earlier studies [27,34,35] that relied on Haseltine and

Rawlings algorithm [81], in the current study we perform all

stochastic simulations using the direct method of Gillespie [76].

Results

Analysis of the Deterministic Model
Wild-type cells. The presence of the negative feedback loop

together with the delay introduced by the mRNA transcription,

protein translation and cytoplasmic to nuclear transport induces

oscillatory responses to tonic TNFa stimulation. One can thus

expect that cells which produce and secrete TNFa can exhibit

tonic oscillations even without any external stimulation, being

constantly activated by TNFa they secrete. In the bifurcation

analysis (Fig. 3; see also Text S1, Fig. S3 for a 3-D plot), we

consider the system without any external stimulation, i.e. assuming

that the extracellular TNFa concentration equals zero. As a

bifurcation parameter we choose TNFa mRNA synthesis rate l,

i.e., mRNA synthesis from a single active TNFa gene copy. The

analysis shows that until the TNFa synthesis rate remains low,

lvl1, the system may not exhibit persistent (limit cycle)

oscillations. The only recurrent solution is the stable steady state

in which the nuclear NF-kB fraction is low (below 0.01). At

l~l1^0:045 mRNA/s, the stable limit cycle arises in the cyclic

fold bifurcation, and for intermediate TNFa synthesis rates,

l[(l1,l2), the oscillatory solution coexist with the stable steady

state solution. The further growth of the TNFa synthesis rate

causes that the stable steady state solution loses its stability in

bifurcation at l~l2^0:093 mRNA/s, and in a broad range of

Figure 2. Evidence of TNFa synthesis and secretion in 3T3 cells
and RAW cells. (A) Time-course of population averaged expression of
TNFa mRNA in mouse 3T3 fibroblast cells stimulated with various doses
of TNFa; color lines from dark blue to yellow correspond to TNFa doses
of 10, 1, 0.1 0.05, 0.025 and 0.01 ng/ml. Cells were treated with different
doses of TNFa, and TNFa mRNA was quantified at different times using
microfluidic qPCR. Microfluidic digital-PCR was used to calibrate
expression levels to mRNA counts. (B, C) Representative ELISpot assays
showing TNFa secretion by (B) unstimulated 3T3 and (C) RAW cells.
doi:10.1371/journal.pone.0078887.g002
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l[(l2,l3) the stable limit cycle is the only stable recurrent solution.

A scrupulous analysis of the bifurcation at l2 showed that in the

very close vicinity of l2 there are in fact two bifurcations:

supercritical Hopf at l~0:09281 and cyclic fold at l~0:09290
(see Text S1, Fig. S2). These two bifurcations in coarse-grained

view are equivalent to the single subcritical Hopf bifurcation and

in further discussion will be considered as such. Finally, at

l~l3^0:34 mRNA/s the limit cycle oscillations are replaced by

a single stable steady state. We should notice, however, that

l~l3^0:34 mRNA/s exceeds the physiological maximum tran-

scriptional rate estimated as lphys^0:1 mRNA/s, assumed in the

model for A20 and IkBa, known for very rapid mRNA synthesis

(see [35]). In summary, we found that within the deterministic

approximation, in the absence of stimulation, WT cells remain in

the inactive state when TNFa synthesis rate is low (lvl1), or

exhibit limit cycle oscillations for the high TNFa synthesis rate

(lwl2). For intermediate TNFa synthesis rates l[(l1,l2) cells may

either remain in the inactive state or exhibit limit cycle oscillations.

The values of bifurcation points, in particular l1 at which limit cycle

oscillations arise, decrease (almost linearly for small TNFR1

numbers) with cell sensitivity which is proportional to the assumed

level of TNFR1 receptors, Fig. 3F.

A20-deficient cells. In A20{={ cells the negative feedback is

disturbed. Since A20 promotes transformation from active IKK

(IKKa) to inactive IKK (IKKi), lack of A20 results in the

prolonged IKK activity. This in turn prevents the accumulation of

IkBa protein and results in the persistent nuclear NF-kB

occupancy. As a result, in response to the tonic TNFa stimulation,

A20-deficient cells do not exhibit limit cycle oscillation, but reach

the active steady state, characterized by a high IKK activity, a

high level of nuclear NF-kB and correspondingly high level of

IkBa transcript, but low level of IkBa protein, which is constantly

degraded due to the high IKK activity. One can thus expect that

A20{={ cells which synthesize and secrete TNFa may remain in

the active state, without external stimulation. In fact, the

bifurcation analysis (Fig. 4) demonstrated that there exists a broad

range of TNFa mRNA synthesis rate l, l[(l1,l2), in which the

system is bistable, i.e., it can remain either in the active state (with

high nuclear NF-kB level) or the inactive state (with low nuclear

NF-kB level). The value of parameter l1^0:0037 mRNA/s in

which the active steady state appears (in saddle-node bifurcation) is

very low, more than 10 times lower than the value of bifurcation

parameter in which limit cycle oscillations arise in WT cells. The

value of the second saddle-node bifurcation, l2, in which the

inactive steady state vanishes, is much larger, l2^0:050 mRNA/s.

As a result, one may expect that A20-deficient cells will remain

inactive without any stimulation, but even transient TNFa
stimulation will drive them to the active state, in which they can

remain for a long time (formally, infinitely long time).

The bifurcation analysis of the deterministic model demon-

strated that due to the positive feedback regulation, even in the

absence of any external stimulation, WT cells exhibit limit cycle

oscillations while A20-deficient cells exhibit persistent activation,

provided that TNFa mRNA synthesis rate is sufficiently large. The

A20{={ cells were found to be much more sensitive, i.e., they can

remain active for 10 times lower TNFa synthesis rate than needed

for WT cells activation. In addition, we found that both A20{={

and WT cells exhibit bistability: in WT cells it is manifested by the

coexistence of the stable limit cycle and the stable steady state.

One can thus expect that real (noisy) cells will exhibit transitions

between the basins of attraction of recurrent solutions found in the

deterministic analysis.

Stochastic Switching in the Absence of TNFa Stimulation
In Fig. 5 we compare deterministic and stochastic trajectories

projected onto the (‘Nuclear NF-kB’, ‘Total IkBa’) plane. For

l~0:050 mRNA/s (Fig. 5A) the system in the deterministic

approximation has the stable steady state and the stable limit cycle.

As expected, the stochastic trajectory switches between limit cycle

oscillations and small fluctuations in the vicinity of the inactive

steady state. The large magnitude of noise causes large departures

from the stable orbit of the deterministic approximation. For the

twice smaller value of l~0:025 mRNA/s (Fig. 5B), the inactive

steady state is the only recurrent solution of the deterministic

system. The deterministic trajectory (red line), after the large

departure from this unique stable steady state in response to the 5-

min 1 ng/ml TNFa pulse, exhibits a series of four oscillations

before returning to the close vicinity of the steady state. In

contrast, a stochastic trajectory may exhibit longer series of semi-

periodic oscillations, without any TNFa stimulation (black line).

The phenomenon of noise-induced oscillations is quite common in

dynamical systems; here, the oscillations are additionally stabilized

by the ‘‘ghost’’ of the limit cycle.

In Fig. 6 we analyze stochastic switching of WT and A20{={

cells. WT cells are analyzed for two TNFa transcription

coefficients l~0:05 mRNA/s (Fig. 6A) and l~0:025 mRNA/s

(Fig. 6B). In the first case, 3000-hour-long simulation reveals

irregular jumps between the inactive and the oscillatory phases

(Fig. 6A). In the inactive phase (Fig. 6C), the nuclear NF-kB

fluctuations are irregular and their amplitude is of order of 103

molecules. In contrast, in the oscillatory phase, the oscillations are

semiperiodic with the average amplitude of 3|104 molecules

(Fig. 6D), more than an order of magnitude larger than in the

inactive phase. For l~0:05 the stochastic transitions between the

inactive and the oscillatory phases occur on average every 70 h,

and the fraction of time spent in each phase is almost equal. For

smaller l~0:025 mRNA/s, for which the deterministic system is

monostable, transitions to the oscillatory phase are still possible,

but the characteristic number of oscillations in a series is smaller.

As one could expect, the probability that a cell is in the oscillatory

phase grows with l (Fig. 6E). A bit surprisingly, even when the

deterministic approximation is monostable (lv0:045 mRNA/s),

the oscillatory phase probability is nonzero, and, similarly, when

the deterministic systems has only limit cycle oscillations (lw0:093
mRNA/s), the oscillatory phase probability may still be smaller

than 1.

As already said, A20-deficient cells are more sensitive to TNFa,

and they are activated at a much smaller TNFa transcription

coefficient l. This property is even more evident when the

stochastic system is analyzed. For l~0:004 the transitions to the

active state are very infrequent (Fig. 6G), but for larger l~0:006
cells spend more than half of time in the active state. Despite the

deterministic system is bistable for l[(0:0037,0:050), it appears

that the stochastic system is persistently active for lw0:01 (Fig. 6E

and Text S1, Fig. S4C).

Individual Cell Responses to Different TNFa Doses
Wild-type cells. Turner et al. [75] found that about 20% of

unstimulated SK-N-AS cells exhibit NF-kB oscillations without

any stimulation. In light of our model, this finding suggests that

these cell express TNFa, and that the TNFa transcription

coefficient, l, is about 0:025 mRNA/s (or, more precisely, that

effectiveness of TNFa transcription, translation and secretion

process is such as in the model for l~0:025 mRNA/s). As shown

in Fig. 6E for this l, the probability to find a cell in the oscillatory

phase is about 20%. More precisely, the fitted value of l, as well as
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the cyclic fold bifurcation parameter l1, depend on the assumed

level of TNFR1 receptors (Fig. 3F). Keeping the experiment of

Turner et al. as a reference for SK-N-AS cells, we set l~0:025
mRNA/s [75]. As shown in Fig. 3E for l~0:025 the oscillation

period (of spontaneous oscillation) is about 110 min in agreement

with experimental data, and then decreases with the value of l.

Accordingly, for l~0:025 we simulate cell responses to four

TNFa doses. In simulations the level of TNFa is increased

abruptly in t~1 h from 0 to respectively 1 ng/ml, 100 pg/ml,

30 pg/ml, 3 pg/ml, and then decreases exponentially with half-

time of ,1 h due to protein degradation (Fig. 7).

The single cell trajectories obtained in numerical simulations

(Fig. 7) are in plausible agreement with the experiment of Turner

et al. [75]. In particular, both experiment and simulation showed

that the amplitude of the first pulse decreases with dose, but the

amplitudes of subsequent peaks are higher for the low than for the

high dose.

The low dose (#30 pg/ml) responses have a purely stochastic

nature. They are not observed in the deterministic simulations

(thick red line), and are invisible at the population level due to the

asynchrony of individual cells. The average activation time and its

variance increases with decreasing TNFa dose, which suggests that

the first activation has a stochastic character. As predicted and

demonstrated recently, massive NF-kB translocation may follow

binding of single TNFa molecules to TNFR1 receptors [27,34].

However, even at low doses the first peak is frequently followed by

Figure 3. Bifurcation diagrams for WT cells. Recurrent solutions in a function of TNFa mRNA transcription coefficient l. (A–D) Nuclear NF-kB,
free cytoplasmic IkBa, A20, intracellular TNFa. There are three bifurcations: cyclic fold (CF) at l1 , subcritical Hopf at l2 (see Text S1 and Fig. S3 therein
for details) and supercritical Hopf at l3. (E) Oscillation period of stochastic and deterministic trajectories as a function of l. (F) Cyclic fold bifurcation
parameter l1 as a function of TNFR1 receptor number. Bifurcations diagrams shown in (A–D) where obtained for receptor number R~7000 (equal to
the median receptor number assumed for stochastic simulations).
doi:10.1371/journal.pone.0078887.g003
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subsequent ones, which according to the model is due to (1)

autoactivation via autocrine TNFa regulation and (2) broad

distribution of the level of receptors. Responding cells likely have

higher receptor number so they are more prone for subsequent

activation [34].

As found by Turner et al., the fraction of activated cells in first

300 minutes decreases with TNFa dose, but even for zero doses

the activated cell fraction is about 20% [75]. This phenomenon is

clearly visible in our simulation (Fig. 8). Following Turner et al.,

we analyze two cases: tonic TNFa stimulation, and 5-min TNFa

pulse [75]. As expected, for the same dose, tonic stimulation yield

higher fraction of responding cells. The model predictions are in

reasonable agreement with experiment, with the main difference

being observed for the tonic stimulation. For 3 pg/ml the model

predicts lower fraction of responding cells than that observed

experimentally. This can be attributed to the paracrine activation

of neighboring cells, which is not taken into account in the model.

Paracrine signaling can be also responsible for huge error bars for

3 pg/ml dose: one can imagine that the denser arrays of cells are

more prone to activation.

Figure 4. Bifurcation diagrams for A20-deficient cells. Stable recurrent solutions in a function of TNFa mRNA transcription coefficient l. (A–D)
Nuclear NF-kB, free cytoplasmic IkBa, active IKK, intracellular TNFa. There are two saddle-node bifurcations at l1 and l2.
doi:10.1371/journal.pone.0078887.g004

Figure 5. Stochastic versus deterministic solutions for WT cells. (A) l~0:05; thick red line and red dot – stable limit cycle and stable steady
state for the deterministic approximation; blue line – example stochastic trajectory (total simulation time: 70 h). (B) l~0:025; red line – deterministic
damped oscillations in response to 5-min pulsed 1 ng/ml TNFa; blue line – example stochastic trajectory (total simulation time: 70 h) in the absence
of TNFa stimulation.
doi:10.1371/journal.pone.0078887.g005
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A20-deficient cells. In their seminal work, Lee et al.

observed that A20{={ MEFs (in contrast to WT cells) do not

exhibit oscillations to the tonic TNFa stimulation [14]. More

surprisingly, Werner et al. (2005 and 2008) observed that in

A20{={ MEFs even a short 5-min pulse of TNFa stimulation

leads to at least 3-hour-long nuclear NF-kB activity [82,83]. As

already found in the deterministic model analysis, A20{={ cells

producing even small amounts of TNFa are bistable, and thus may

be ‘‘persistently’’ activated by a short pulse of TNFa.

In Fig. 9 we compare WT and A20{={ cell responses to 5-, 15-

and 45-min TNFa stimulation. We assume TNFa mRNA

synthesis rate l~0:004, much smaller than the value for SK-N-

AS cells. This is in accordance with the observation that 3T3 cells

do not exhibit spontaneous activation. WT cells respond with a

single pulse of IKK activity, which leads in most cases to a single

pulse of nuclear NF-kB. In contrast, A20{={ cells show a high tail

of IKK activity, which results in the prolonged nuclear NF-kB

occupancy. In the deterministic model (thick red line), 5- and 15-

min pulses are not sufficient to drive cells into the active state; only

after the 45-min pulse cells became persistently activated. In

contrast, most of single cell stochastic trajectories exhibit a high

level of nuclear NF-kB even after the 5-min pulse. As a result, the

population average trajectory shows single NF-kB pulse followed

by a very high tail. The IKK and NF-kB activity profiles for WT

and A20{={ are in plausible agreement with experiments of

Werner et al. [82,83].

Figure 6. Long run stochastic trajectories in the absence of external stimulation. (A, B) WT cells for l = 0.05 and l = 0.025, respectively, and
TNFR1 receptors number R = 7000. (C, D) Zoomed fragments of trajectory showing (C) small stochastic fluctuations in the vicinity of the stable steady

state and (D) large amplitude oscillations in the basin of attraction of the stable limit cycle. (E) Fraction of oscillating WT and A20{={ cells as a

function of l. (F, G) A20{={ cells trajectories for l = 0.006 and l = 0.004.
doi:10.1371/journal.pone.0078887.g006
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Discussion

We investigated theoretically and computationally the effect of

autocrine TNFa signaling on NF-kB regulation. NF-kB activity is

regulated by two interlinked negative feedback loops. The first

loop involves NF-kB responsive inhibitors: IkBa and IkBE, which

directly bind to NF-kB and sequester it in the cytoplasm. The

second loop is mediated by another NF-kB strongly responsive

protein, A20, which attenuates the IKK activity. Without A20

expression, IKK retains its activity, which leads to the rapid

degradation of the newly synthesized IkBa and destroys the

NF-kB–IkBa feedback loop. The autocrine positive feedback loop

arises in cell lines that are characterized by a sufficiently high

TNFR1 expression and TNFa secretion. As demonstrated in this

study, the positive feedback qualitatively changes the system

dynamics. It may lead to long-lasting NF-kB oscillations in WT

cells and persistent NF-kB activity in A20-deficient cells, which

were found to be very prone to activation. The approach proposed

in this study combined deterministic and stochastic modeling.

Bifurcation analysis was performed for WT and A20-deficient

cells. In both cases, TNFa mRNA synthesis rate was chosen as a

bifurcation parameter l. Analysis of WT cells shown in Fig. 3

Figure 7. Simulated responses of WT cells (with l = 0.025) to tonic TNFa stimulation beginning at t = 1 h. (A–D): TNFa doses: 1 ng/ml,
100 pg/ml, 30 pg/ml, 3 pg/ml. Red thick line – deterministic simulation; thin colored lines – single cell stochastic simulations; black thick line –
population average. In (A) and (B), 3 individual representative cells trajectories are shown (in each panel). In (C) and (D), respectively 5 and 10
individual cell trajectories are shown, but only 3 trajectories (in each panel) exhibit visible oscillations.
doi:10.1371/journal.pone.0078887.g007

Figure 8. Fraction of responding cells versus TNFa dose. (A) Tonic stimulation. (B) 5-min pulsed stimulation. Color bars: model prediction for
l = 0.025– fraction of cells responding within the given time period. Error bars show fractions of cells responding during the first 300-min in the
experiment of Turner et al. [75] on SK-N-AS cells, see the main text.
doi:10.1371/journal.pone.0078887.g008
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revealed that at some value of l~l1 the limit cycle oscillations

appear. These oscillations coexist with steady state (characterized

by low level of nuclear NF-kB), which loses stability for l~l2wl1.

That is, in range of bifurcation parameter l [(l1,l2) the system

has two stable recurrent solutions, steady state and limit cycle. In

contrast to WT cells, A20-deficient cells (considered in the

deterministic approximation) do not exhibit oscillations. Instead,

in a broad range of bifurcation parameter they exhibit bistability

characterized by the coexistence of states of the low and high level

of nuclear NF-kB. The A20 deficiency dramatically increases cell

sensitivity: the critical value of TNFa synthesis at which cells may

be activated due to autocrine signaling was found more than 10

times lower for A20{={ cells than for WT cells, ,0.0037 mRNA/

s (for A20{={) versus ,0.045 mRNA/s (for WT).

By analyzing the stochastic model we demonstrated that noise,

arising mostly at the level of gene regulation, enables switching

between the stable steady state and limit cycle in WT cells, and

between inactive and active steady state in A20-deficient cells

(Fig. 6). Interestingly, in WT cells the semiperiodic oscillations

can be driven by noise even for lvl1, i.e., in the absence of the

limit cycle (Fig. 6E). This can be interpreted as stochastic resonance,

which in the broad definition refers to the case when noise has a

positive role in the signal-processing context [84]. The transition

from the inactive to the oscillatory state can be also induced by

an external TNFa stimulation, and the probability of such

transition increases with the stimulation dose (Figs. 7 and 8).

Based on our analysis, one should also expect that the LPS

stimulation leading to the activation of NF-kB (which controls

TNFa transcription) and MAPK pathways (effector kinases

which stabilize TNFa transcript and enhance TNFa translation),

which together results in massive secretion of TNFa, can also

trigger long-lasting NF-kB oscillations in cells with high autocrine

potential [4,68].

Introduction of positive feedback enabled us to reproduce the

noise-triggered oscillations observed by Turner et al. in unstimu-

lated cells, as well as earlier experiments by Werner et al.

showing prolonged NF-kB activation in response to the pulsed

TNFa stimulation in A20-deficient MEFs [75,82,83]. Since the

sensitivity to the autocrine-driven activation of A20-deficient cells

is much higher than that of WT cells, even a weak stimulus can

drive these cells to the state of persistent NF-kB activation

characterized by massive secretion of TNFa and other inflam-

matory cytokines such as IL-8 and IL-6. This explains why the

loss of A20 or its dysfunction disturbs regulation of immune

system and renders the organism vulnerable to the septic shock

resulting from the uncontrolled secretion of inflammatory

cytokines [85]. Mice lacking A20 are hypersensitive to the

TNFa-induced cell death, which suggests that positive auto- and

paracrine signaling upregulate the TNFa expression so strongly

that it overcomes the antiapoptotic action of NF-kB [14]. Boone

et al. demonstrated that A20 is critical for the regulation of

macrophage responses in vivo and protects mice against the

septic shock [28].

There is a bulk of evidence that the loss or dysfunction of A20 as

well as the other inhibitory DUBase, named Cyld, promote

inflammatory diseases and cancer (reviewed in [24,86]). It was

found recently that A20 functions as a tumor suppressor in several

subtypes of non-Hodgkin as well as Hodgkin lymphomas, and its

silencing results in the constitutive activation of NF-kB [29,87].

Kato et al. found that when re-expressed in a lymphoma-derived

cell line with no functional A20 alleles, wild-type A20, but not

mutant A20, resulted in the suppression of cell growth and

induction of apoptosis, accompanied by downregulation of NF-kB

activation [87]. Somatic mutations of A20 are associated with

constitutive activation of NF-kB and poor overall survival in

diffuse large B-cell lymphoma [88]. Huang et al. observed that the

loss of A20 expression accompanies the oncogenic transformation

of MEFs [89]. The above findings indicate that constitutive NF-kB

activation, resulting form A20 dysfunction or increased TNFa
autocrine potential (due to elevated TNFa and/or TNFR1

expression), in general promote cancer [90,91]. In correspondence

to our considerations, Bian et al. found that constitutively active

NF-kB is required for the survival of S-type neuroblastic SH-EP1

and SK-N-AS cell lines [92].

Figure 9. Simulated responses of WT and A20{={ cells to
pulsed stimulation with 1 ng/ml TNFa for l = 0.004. (A) 5-min
pulse. (B) 15-min pulse. (C) 45-min pulse. Red thick line – deterministic
simulation; thin colored lines – single cell stochastic simulations; black
thick line – population average.
doi:10.1371/journal.pone.0078887.g009
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As already said, particular cell lines are characterized by the

high TNFa autocrine potential. Macrophages are generally

considered as major TNFa producers, and are also highly

TNFa-responsive. There is a growing evidence that macrophages

require autocrine TNFa regulation for survival and differentia-

tion [93–95]. In monocytes, sustained Nrf2 activation that

protects cells from oxidative damage involves TNFa autocrine

signaling [56].

In summary, the proposed model explains the mechanism of

spontaneous or signal-dependent activation of NF-kB in cells with

high autocrine potential. The cells prone to autocrine activation

are characterized by high level of TNFa and TNFR1 synthesis or

loss of functional A20. A20 dysfunction may promote inflamma-

tion and cancer, and also render the organism vulnerable to septic

shock. In some cell lines, however, the self-sustained NF-kB

activation can be required for performing their functions or

undergo differentiation.
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1 Parameters and reactions
Table — Notation guide

Symbol Description

TNFRi inactive TNFR1 receptors
TNFRa active TNFR1 receptors
IKKKn neutral form of IKKK
IKKKa active form of IKKK
IKKi inactive form of IKK
IKKii inactive intermediate form of IKK
IKKn neutral form of IKK kinase
IKKa active form of IKK
A20 mRNA A20 transcript
A20 cytoplasmic A20
IκBαmRNA IκBa transcript
IκBα cytoplasmic IκBa
IκBαn nuclear IκBa
IκBαp phosphorylated cytoplasmic IκBa
NFκB cytoplasmic NF-κB
NFκBn nuclear NF-κB
(NFκB :IκBα) cytoplasmic NF-κB:IκBa complexes
(NFκBn :IκBαn) nuclear NF-κB:IκBa complexes
(NFκB :IκBαp) phosphorylated cytoplasmic IκBa complexed to NF-κB
TNFmRNA TNFa transcript
TNF intracellular TNFa
TNFext extracellular TNFa
Gi

IκB state of the ith IκBa gene copy, discrete random variable: Gi
IκB ∈ {0, 1}

Gi
A20 state of the ith A20 gene copy, discrete random variable: Gi

A20 ∈ {0, 1}
Gi

TNF state of the ith TNFa gene copy, discrete random variable: Gi
TNF ∈ {0, 1}

GIκB GIκB
..= ∑

iG
i
IκB

GA20 GA20
..= ∑

iG
i
A20

GTNF GTNF
..= ∑

iG
i
TNF

1
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Table — The cell parameters

Parameter Symbol Value Remarks References

(N:C ratio)−1 = Volume of the cytoplasm
Volume of the nucleus kv 5 — [2]

Number of IκBa gene copies NI 2 — [1]

Number of A20 gene copies NA 2 — [1]

Number of TNFa gene copies NT 2 — this study

Median number of receptors M0 7× 103 (see also Figure S1, page 7) this study

Mean number of receptors — ' 104 mean = M0 eM
2
1 /2,M1 =

√
0.7 this study

Variance of the number of receptors — ' 108 variance = M2
0 (eM2

1 − 1) eM2
1 this study

Number of receptors R M0 R = TNFRa(t) + TNFRi(t) this study

Number of IKKK molecules KN 105 KN = IKKKn(t) + IKKKa(t) [1]

Number of IKK molecules KNN 2× 105 KNN = IKKn(t) + IKKa(t)+
[2]IKKi(t) + IKKii(t)

Number of NF-κB molecules NFκBtot 105
NFκBtot = NFκB(t)+

[2]NFκBn(t) + (NFκB :IκBα)(t)+
(NFκBn :IκBαn)(t) + (NFκB :IκBαp)(t)

(For references, see page 6.)

Table — List of reactions

(See on the next page.)

2
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Reaction Rate Coefficients Value References

TNFR1 activation and signal transduction cascade
TNFext → ∅ cdeg cdeg 2× 10−4 s−1 [1]

TNFRi → TNFRa kb · TNFext kb 1.2× 10−5 s−1(ng/ml)−1 [1]

TNFRi + TNF → TNFRa
csec

TNFRi + cb

csec 10−5 s−1 this study
cb 104 this study

TNFRa → TNFRi kf kf 1.2× 10−3 s−1 [1]

IKKKn → IKKKa
ka · kA20

kA20 + A20 · TNFRa
ka 10−5 s−1 this study
kA20 105 [1]

IKKKa → IKKKn ki ki 10−2 s−1 [1]
IKKn → IKKa k1 · IKKK2

a k1 6× 10−10 s−1 [1]

IKKa → IKKi
k3

k2
· (k2 + A20 ) k2 104 s−1 [2]

k3 2× 10−3 s−1 [1]
IKKi → IKKii , IKKii → IKKn k4 k4 10−3 s−1 [1]

IκBα, A20 and TNFα gene expression
(GiA20 = 0)→ (GiA20 = 1)

q1 ·NFκBn q1 4× 10−7 s−1 [1](GiIκBa = 0)→ (GiIκBa = 1)
(GiA20 = 1)→ (GiA20 = 0)

q2 · IκBαn q2 10−6 s−1 [2](GiIκBa = 1)→ (GiIκBa = 0)
(GiTNF = 0)→ (GiTNF = 1) q1t ·NFκBn q1t 4× 10−8 s−1 this study
(GiTNF = 1)→ (GiTNF = 0) q2t · IκBαn q2t 10−6 s−1 this study
(GiTNF = 1)→ (GiTNF = 0) q2tt q2tt 2× 10−3 s−1 this study

∅→ TNFmRNA λ ·GiTNF λ variable this study
∅→ A20 mRNA c1 ·GiA20 c1 0.1 s−1 [2]
A20 mRNA → ∅ c3 c3 7.5× 10−4 s−1 [2]

∅→ A20 c4 ·A20 mRNA c4 0.5 s−1 [2]
∅→ IκBαmRNA c1 ·GiIκBa c1 0.1 s−1 [2]
IκBαmRNA → ∅ c3 c3 7.5× 10−4 s−1 [2]

∅→ IκBα c4 · IκBαmRNA c4 0.5 s−1 [2]
TNFmRNA → ∅ c3t c3t 7.5× 10−4 s−1 this study

∅→ TNF c4t · TNFmRNA c4t 0.05 s−1 this study

Protein interactions and lifetime
NFκB + IκBα→ (NFκB :IκBα) a1 a1 5× 10−7 s−1 [2]

NFκBn + IκBαn → (NFκBn :IκBαn) a1 · kv kv 5 [2]
IκBα→ IκBαp a2 · IKKa a2 10−7 s−1 [2]

(NFκB :IκBα)→ (NFκB :IκBαp) a3 · IKKa a3 5× 10−7 s−1 [2]
A20→ ∅ c5 c5 5× 10−4 s−1 [2]
IκBαp → ∅

tp tp 10−2 s−1 [2](NFκB :IκBαp)→ NFκB

IκBα→ ∅ c5a c5a 10−4 s−1 [2]

TNF → ∅ csec + c5t
csec 10−5 s−1 this study
c5t 2× 10−4 s−1 this study

(NFκB :IκBα)→ NFκB c6a c6a 2× 10−5 s−1 [2]

Transport
NFκB → NFκBn i1 i1 10−2 s−1 [2]

(NFκBn :IκBαn)→ (NFκB :IκBα) e2a e2a 5× 10−2 s−1 [2]
IκBα→ IκBαn i1a i1a 2× 10−3 s−1 [2]
IκBαn → IκBα e1a e1a 5× 10−3 s−1 [2]

3
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2 Differential equations

d
dtTNFRa(t) = TNF (t) · csec

TNFRi(t)
TNFRi(t)+cb

+ kb · TNFext(t) · TNFRi(t)− kf · TNFRa(t) (1)
d
dtIKKKa(t) = ka · kA20

kA20+A20 (t) · TNFRa(t) · IKKKn(t)− ki · IKKKa(t) (2)
d
dtIKKa(t) = k1 · IKKKa(t)2 · IKKn(t)− IKKa(t) · k3

k2
(k2 + A20(t)) (3)

d
dtIKKn(t) = −k1 · IKKKa(t)2 · IKKn(t) + k4 · IKKii(t) (4)
d
dtIKKi(t) = IKKa(t) · k3

k2
(k2 + A20 (t))− k4 · IKKi(t) (5)

d
dtA20 mRNA(t) = c1 ·GA20(t)− c3 · A20 mRNA(t) (6)

d
dtA20 (t) = c4 · A20 mRNA(t)− c5 · A20 (t) (7)

d
dtIκBαmRNA(t) = c1 ·GIκBa(t)− c3 · IκBαmRNA(t) (8)

d
dtIκBα(t) = −a2 · IKKa(t) · IκBα(t)− a1 · IκBα(t) ·NFκB(t) + c4 · IκBαmRNA(t)

−c5a · IκBα(t)− i1a · IκBα(t) + e1a · IκBαn(t) (9)
d
dtIκBαn(t) = −a1 · kv · IκBn(t) ·NFκBn(t) + i1a · IκBα(t)− e1a · IκBαn(t) (10)
d
dtIκBαp(t) = a2 · IKKa(t) · IκBα(t)− tp · IκBαp(t) (11)
d
dtNFκB(t) = c6a · (NFκB :IκBα)(t)− a1 ·NFκB(t) · IκBα(t)

+tp · (NFκB :IκBαp)(t)− i1 ·NFκB(t) (12)
d
dtNFκBn(t) = i1 ·NFκB(t)− a1 · kv · IκBαn(t) ·NFκBn(t) (13)

d
dt(NFκB :IκBα)(t) = a1 · IκBα(t) ·NFκB(t)− c6a · (NFκB :IκBα)(t)

+e2a · (NFκBn :IκBαn)(t)− a3 · IKKa · (NFκB :IκBα)(t) (14)
d
dt(NFκB :IκBαp)(t) = a3 · IKKa(t) · (NFκB :IκBα)(t)− tp · (NFκB :IκBαp)(t) (15)

d
dtTNFmRNA(t) = λ ·GTNF(t)− c3t · TNFmRNA(t) (16)

d
dtTNF (t) = c4t · TNFmRNA(t)− c5t · TNF (t)− csec · TNF (17)

d
dtTNFext(t) = −cdeg · TNFext (18)

d
dtGA20(t) = q1 ·NFκBn(t) · (NA −GA20(t))− q2 · IκBαn(t) ·GA20(t) (19)
d
dtGIκBa(t) = q1 ·NFκBn(t) · (NI −GIκBa(t))− q2 · IκBαn(t) ·GIκBa(t) (20)
d
dtGTNF(t) = q1t ·NFκBn(t) · (NT −GTNF(t))− (q2tt + q2t · IκBαn(t)) ·GTNF(t) (21)

· · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · ·
d
dtTNFRi(t) = −TNF (t) · csec

TNFRi(t)
TNFRi(t)+cb

− kb · TNFext(t) · TNFRi(t) + kf · TNFRa(t) (22)
d
dtIKKKn(t) = −ka · kA20

kA20+A20 (t) · TNFRa(t) · IKKKn(t) + ki · IKKKa(t) (23)
d
dtIKKii(t) = k4 · IKKi(t)− k4 · IKKii(t) (24)

d
dt(NFκBn :IκBαn)(t) = a1 · kv · IκBαn(t) ·NFκBn(t)− e2a · (NFκBn :IκBαn)(t) (25)

4

Supplement of Arࢢcle E



The last four variables from equations (22–25) can be determined equivalently by the following
conservation laws:

TNFRi(t) = R− TNFRa(t) (26)

IKKKn(t) = KN − IKKKa(t) (27)

IKKii(t) = KNN − IKKa(t)− IKKi(t)− IKKn(t) (28)

(NFκBn :IκBαn)(t) = NFκBtot −NFκB(t)−NFκBn(t)− (NFκB :IκBα)(t)− (NFκB :IκBαp)(t)(29)

The complete system (1–25) is however more convenient for further development of the model.

3 Methods and protocols of numerical simulations

Deterministic model
The model was coded both in Matlab and BioNetGen. BioNetGen is a language and software
intended for defining and simulating regulatory networks of high combinatorial complexity [3], and is
capable of performing deterministic as well as stochastic simulations. BioNetGen allows for rule-
based specification of the model; the rules are then used to build a list of reactions or ODEs which
are solved by an integrated CVODE solver or simulated according to the Gillespie direct Stochastic
Simulation Algorithm [4]. The model was originally written in Matlab and then rewritten to
BioNetGen only to enable efficient stochastic simulations. Since the BioNetGen code results
from the exact translation of the original Matlab code, the number of rules is equal to the number
of reactions.

The bifurcation diagrams with TNFa transcription rate λ as the bifurcation parameter (Figs. 3
and 4 in the main text and Supplementary Figs. S2 and S3) were obtained using the MatCont
continuation software. In order to perform the analysis, we used ODEs (1–21) in which variables
TNFRi, IKKKn, IKKii and (NFκBn :IκBαn) were defined by algebraic equations (26–29).

The simulations of WT and A20−/− cells showed in Figs. 5, 7 and 9 (in the main text) were started
from the steady state corresponding to the extracellular TNFa concentration equal zero. A20−/−

cells were modeled by setting the number of A20 gene copies equal to zero. Numerical integration
was performed using the Matlab’s implementation of the TR-BDF2 method (solver ode23tb).

Stochastic model
The stochastic simulations were performed using the Gillespie direct Stochastic Simulation Algorithm
[4]. The direct method of stochastic simulation as implemented in BioNetGen allows for expressing
reaction rates through functions of the system state, i.e. current number of molecules of given species.
At every time step between consecutive reaction events, reaction propensities calculated using such
functions remain constant. This enables exact simulation in accordance with the underlying Chemical
Master Equation and at the same time allows for defining propensities not necessarily following the
mass action kinetics.

5
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To ensure random initial conditions at time t = 0, each stochastic simulation was started at time
t = −300 h. The population average (Figs. 7 and 9 in the main text) was obtained based on 100
simulations. The fraction of responding cells (Fig. 6 in the main text) for each value of TNFα dose
was obtained based on 500 simulations. For the purpose of analysis presented in Fig. 8 (in the main
text), cells were considered activated when the fraction of nuclear NF-κB increased above 0.15, which
allows for almost maximum expression of IκBa and A20 genes.

4 Experimental protocols
Gene expression analysis was performed on mouse 3T3 fibroblast cells using high-throughput mi-
crofluidic qPCR and digital-PCR. Cells grown on regular culture wells at equal density (80% conflu-
ence) were stimulated with various doses of TNFa at the beginning of experiments (10, 1, 0.1, 0.05,
0.025 and 0.01 ng/ml). At the end of each experiment (t = 0.25, 0.5, 2, 4, 6, 8, 10 and 12 hours),
cells were lysed and cDNA was synthesized using standard protocols from Invitrogen (CellsDirect
One-Step RT-PCR). Real-time qPCR was performed using the Invitrogen TaqMan probe for TNFa
using the 48×48 Dynamic Array microfluidic chips and the Biomark System, both from Fluidigm.
Each time and dose condition was repeated four times and the median value was used in Figure 2A
(in the main text), resulting in a total of 192 qPCR measurements.

ELISpot experiments were carried out in a 96-well format according to manufacturer’s instructions
(R&D Systems ELISpot Kit EL410). NIH 3T3 fibroblast and 264.7 RAW macrophage cells were
seeded onto plates at ≈ 2 × 105 cells/ml. The total number of cells added into each well was
established via cell counting during seeding. After incubating cells for five hours, the assay was
completed. Spots were manually counted from images taken with a Nikon SMZ 1500 microscope,
without regard to intensity level of the spot. This allows for quantifying the percentage of cells which
have secreted the cytokine over the course of the experiment.

Supplementary references
[1] Tay S, Hughey J, Lee T, Lipniacki T, Covert M, Quake M (2010) Single-cell NF-κB dynamics reveal

digital activation and analogue information processing. Nature 466:267–271.

[2] Lipniacki T, Puszynski T, Paszek P, Brasier AR, Kimmel M (2007) Single TNFα trimers mediating
NF-κB activation: Stochastic robustness of NF-κB signaling. BMC Bioinformatics 8:376.

[3] Faeder JR, Blinov ML, Hlavacek WS (2009) Rule-based modeling of biochemical systems with BioNet-
Gen. Methods Mol. Biol. 500:113–167.

[4] Gillespie DT (1977) Exact stochastic simulations of coupled chemical reactions. J. Phys. Chem.
81:2340–2361.

6

Supplement of Arࢢcle E



5 Supplementary figures
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Abstract
The p53 transcription factor is a regulator of key cellular processes including DNA repair,

cell cycle arrest, and apoptosis. In this theoretical study, we investigate how the complex cir-

cuitry of the p53 network allows for stochastic yet unambiguous cell fate decision-making.

The proposed Markov chain model consists of the regulatory core and two subordinated

bistable modules responsible for cell cycle arrest and apoptosis. The regulatory core is con-

trolled by two negative feedback loops (regulated by Mdm2 andWip1) responsible for oscil-

lations, and two antagonistic positive feedback loops (regulated by phosphatases Wip1 and

PTEN) responsible for bistability. By means of bifurcation analysis of the deterministic

approximation we capture the recurrent solutions (i.e., steady states and limit cycles) that

delineate temporal responses of the stochastic system. Direct switching from the limit-cycle

oscillations to the “apoptotic” steady state is enabled by the existence of a subcritical Nei-

mark—Sacker bifurcation in which the limit cycle loses its stability by merging with an unsta-

ble invariant torus. Our analysis provides an explanation why cancer cell lines known to

have vastly diverse expression levels of Wip1 and PTEN exhibit a broad spectrum of

responses to DNA damage: from a fast transition to a high level of p53 killer (a p53 phos-

phoform which promotes commitment to apoptosis) in cells characterized by high PTEN

and lowWip1 levels to long-lasting p53 level oscillations in cells having PTEN promoter

methylated (as in, e.g., MCF-7 cell line).

Author Summary

Cancers are diseases of signaling networks. Transcription factor p53 is a pivotal node of a
network that integrates a variety of stress signals and governs critical processes of DNA
repair, cell cycle arrest, and apoptosis. Somewhat paradoxically, despite the fact that carci-
nogenesis is prevalently caused by p53 network malfunction, most of our knowledge about
p53 signaling is based on cancer or immortalized cell lines. In this paper, we construct a
mathematical model of intact p53 network to understand dynamics of non-cancerous cells
and then dynamics of cancerous cells by introducing perturbations to the regulatory sys-
tem. Cell fate decisions are enabled by the presence of interlinked feedback loops which
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give rise to a rich repertoire of behaviors. We explain and analyze by means of numerical
simulations how the dynamical structure of the regulatory system allows for generating
unambiguous single-cell fate decisions, also in the case when the cell population splits into
an apoptotic and a surviving subpopulation. Perturbation analysis provides an explanation
why cancer cell lines known to have vastly diverse expression levels of p53 regulators can
exhibit a broad spectrum of responses to DNA damage.

Introduction
The tumor suppressor p53 plays a pivotal role in cell growth control, DNA repair, cell cycle
suppression and eventually in the initiation of apoptosis [1–4]. It serves as a node of a complex
and extensive gene regulatory network that integrates a variety of stress signals. One of the
most important ways of p53 activation is through DNA damage, which can be caused by, i.a.,
ionizing radiation (IR), UV radiation, hypoxia, heat shock, viral infection, or nutrient depriva-
tion [1,5,6]. Exposure to IR inflicts DNA double strand breaks (DSBs), the most critical DNA
lesions, which when unrepaired can lead to genomic instability resulting in either cell death or
DNAmutations that can propagate to subsequent cell generations [7–9]. The p53 regulatory
network provides mechanisms that suppress cell cycle until DNA is repaired or trigger apopto-
sis when DNA damage is too extensive to be repaired [4,7,10].

Unsurprisingly, mutations of the p53 gene (TP53) turn out to be the most frequent genetic
changes in human cancers [11]. About half of all human cancer cells carry a mutation in TP53.
In many other cancers, the genes which encode components of the p53 regulatory pathway are
mutated [12,13]. The lack of functional p53 protein decreases the efficiency of DNA repair and
allows mutated cells to evade apoptosis leading to the propagation of mutations and eventually
to cancer development and progression [13,14]. Various malfunctions of the p53 regulatory
pathway are determinants of tumor aggressiveness and p53 pathway components have become
targets in anticancer therapies [14,15].

The primary molecular function of p53 is the regulation of transcription [16,17]. It controls
expression of numerous genes which encode proteins of contradictory roles: pro-survival, cell
cycle-suppressing, or pro-apoptotic [17]. Its ability to regulate expression of distinct sets of
genes is controlled by posttranslational modifications [5]. In particular, p53 can assume two
different phosphorylation states: p53ARRESTER (when it is phosphorylated at Ser15 and Ser20
[5,18,19]) and p53KILLER (when it is additionally phosphorylated at Ser46 [20,21]). In the
arrester state, p53 triggers transcription of its main inhibitor, E3 ubiquitin ligase Mdm2 [22],
cell cycle-suppressing protein p21 [23], and pro-survival phosphatase Wip1 [24,25]. In the
killer state, p53 triggers transcription of pro-apoptotic phosphatase PTEN [26] and another
pro-apoptotic protein, Bax [27].

In unstressed cells p53 remains inactive and is kept at a low level through constant protea-
some-mediated degradation, regulated by Mdm2 [28–30]. p53 is activated by kinase ATM,
which is rapidly phosphorylated in response to DNA damage [31,32]. The DNA damage detec-
tion system is sensitive; a handful of DSBs is sufficient for ATM and p53 activation; 1 Gy of
irradiation induces about 35–40 DSBs [8,33]. ATM phosphorylates p53 at several residues,
including Ser15 and Ser20, leading to its stabilization and activation as a transcription factor
[19,34,35]. ATM phosphorylates also p53 inhibitor, Mdm2, promoting its degradation [36]. As
a result, p53 concentration increases 3–10-fold within an hour after DNA damage [34]. Activ-
ity of p53 can be suppressed by growth factor stimulation leading to the activation of PI3 kinase
(PI3K), which phosphorylates phosphatidylinositol bisphosphate (PIP2) into trisphosphate
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(PIP3) [37–40]. PIP3 allows for Akt recruitment to the plasma membrane where it can be acti-
vated via phosphorylation [41,42] by several kinases. Activated Akt phosphorylates Mdm2 at
Ser166 and Ser186, allowing for its translocation to the nucleus where Mdm2 ubiquitinates p53
priming it for degradation [29,43].

The p53-regulated proteins comprise a complex regulatory network governed by multiple
intertwined feedback loops spanning diverse time scales [44]. In addition to the primary p53
inhibitor, Mdm2, other key regulatory players in the network are two phosphatases: pro-
survival Wip1 [24] and pro-apoptotic PTEN [26]. Wip1 attenuates signaling by dephosphory-
lating ATM [45] and inhibits apoptosis by facilitating dephosphorylation of p53KILLER to the
p53ARRESTER form [46]. When DNA repair is accomplished, Wip1 enables the return to the
pre-stress state [24,47]. PTEN mediates a positive feedback loop by inhibiting Akt and Mdm2,
and by allowing p53KILLER to rise to a high level and initiate apoptosis [48].

Dysregulation of the p53 pathway can occur as a consequence of gene amplification, gene
loss, promoter methylation, or mutations which alter protein function. Gene amplification or
inhibition are the major mechanisms which enhance expression of genes involved in cancer
development and progression [49]. In particular, Wip1 amplification and overexpression
have been found in multiple human cancers, predominantly in those that retain functional p53
[50–53] such as breast, lung, pancreas, bladder, and liver cancer, and in neuroblastomas
[50,52,54,55]. Conversely, Wip1-knockout mice are partially resistant to oncogene-induced
cancer development, indicating that the inhibition of Wip1 activity may be potentially benefi-
cial for cancer therapy [45,52,56,57]. Decreased PTEN expression has been found in prostate,
kidney, breast, bladder cancers, and in glioblastoma [58–60]. Cell lines with defective PTEN
have alterations in the cell cycle regulation and a defective apoptotic response, which places
PTEN among the tumor suppressors most commonly lost in human cancers. In contrast, over-
expression of wild-type PTEN in cancer cells induces apoptosis and blocks cell-cycle progres-
sion [61,62]. Another dysregulated protein observed in many cancers is PI3K. The
amplification of PI3K gene have been found in colorectal, gastric, hepatocellular, thyroid,
breast, lung, and ovarian cancer, and in glioblastoma and acute leukemia [63–70].

The clinical data shows that differences between cancer cells can be partially explained by
different expression levels of PTEN, Wip1, and PI3K. The majority of breast cancers reveals
amplification of Wip1 and reduced level of PTEN, which appear to correlate with poor progno-
sis as well as increased resistance to γ radiation-based therapy and apoptosis [55,58].

A number of computational models have been constructed to investigate the regulatory
mechanisms of the p53 pathway. Earlier models were focused on explaining the origin of oscil-
lations of p53 and Mdm2 levels in response to IR [71–76], which were first observed in the cell
population experiment on MCF-7 cells by Bar-Or et al. [71] and later in single-cell experiments
by Lahav et al. [77] and Geva-Zatorsky et al. [73]. Recently, the effort has been shifted to con-
necting p53 dynamics with cell fate decisions [75,78–85]. For the sake of conciseness of the
Introduction, an overview of p53 modeling results cited in this paragraph is provided in S1
Text.

In this study, we focus on the p53 regulatory core to demonstrate that the structure of the
p53 regulatory network is such that for a broad range of parameters at persistent DNA damage
the limit cycle oscillations of p53ARRESTER (as well as p53KILLER) coexist with the steady state
characterized by a high level of p53KILLER. The detailed bifurcation analysis shows that the
direct switch between oscillations and high steady state is enabled by the existence of a Nei-
mark—Sacker bifurcation. These two recurrent solutions delineate temporal responses of the
system, which can be interpreted unambiguously by two slaved modules which control cell
cycle arrest and apoptosis. This is confirmed by stochastic simulations of the model dynamics,
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showing clear separation of cells into surviving and apoptotic subpopulations about 30 hours
after DNA damage.

Results

Overview of the model structure
The proposed model consists of three modules: the core module, the cell cycle arrest module,
and the apoptotic module. In Fig 1 we show a simplified scheme which summarizes the key
feedback loops present in the core module. The detailed scheme with all model components is
provided in S1 Fig. The regulatory pathway considered consists of 42 species (see Tables A and
B in S1 Text), coupled by 74 reactions parametrized by 97 reaction rate coefficients (see
Table C in S1 Text). The stochastic model is equivalent to a Markov process while its determin-
istic approximation is represented by ODEs. The levels of all substrates in stochastic as well as
in deterministic simulations are expressed in the numbers of molecules per cell (mlcs/cell).

Core module. We consider the p53 system responses to DNA damage introduced by IR.
DNA damage leads to the activation of ATM. Active ATM phosphorylates p53 inhibitor,
Mdm2, priming it for faster degradation. It also stabilizes and activates p53 by phosphorylating
it to one of its active phosphoforms, p53ARRESTER. This phosphoform can be further phosphor-
ylated (at Ser46) to the p53KILLER form. p53ARRESTER induces synthesis of Mdm2 and Wip1, a
phosphatase which dephosphorylates ATM as well as p53KILLER to the p53ARRESTER form.

p53KILLER activates expression of another phosphatase, PTEN, which mediates the slow pos-
itive feedback loop which stabilizes the level of p53. PTEN indirectly suppresses Akt catalytic

Fig 1. Simplified scheme of the model. Arrow-headed dashed lines indicate positive transcriptional
regulation, arrow-headed solid lines—protein transformation, circle-headed solid lines—positive influence or
activation, hammer-headed solid lines—inhibitory regulation. Pro-survival and cell cycle-promoting proteins
are represented with blue boxes, pro-apoptotic proteins with yellow boxes, proteins involved in cell cycle
arrest with green boxes. Details of the cell cycle arrest module and the apoptotic module are shown in Figs 2
and 3 respectively.

doi:10.1371/journal.pcbi.1004787.g001
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activity, which is required to phosphorylate Mdm2 in order to enable its nuclear import. As a
result, accumulation of PTEN leads to the accumulation of Mdm2 in cytoplasm and therefore
physically disconnects nuclear p53 from its inhibitor, leading to the stabilization of p53KILLER
and p53ARRESTER at high levels. PTEN action is opposed by the growth and survival factors
which lead to Akt activation.

Cell cycle arrest module is controlled by p53ARRESTER. This phosphoform activates tran-
scription of p21 which suppresses cell cycle by inhibiting cyclin E (CycE). The apoptotic mod-
ule is controlled by p53KILLER, which activates transcription of pro-apoptotic protein Bax, and
by Akt, which suppresses the apoptosis by phosphorylation of 14-3-3 protein.

Among more than ten feedbacks present in the system the following four are of key func-
tional importance:

• F1 Negative feedback p53ARRESTER !Mdm2 –| p53: p53ARRESTER activates transcription of
Mdm2 which ubiquitinates p53 inducing its rapid degradation. This feedback maintains
homoeostasis in unstimulated cells and enables oscillations of p53 level upon DNA damage.

• F2 Negative feedback ATM! p53ARRESTER !Wip1 –| ATM: ATM activates p53 to the
p53ARRESTER form which activates transcription of Wip1, which in turn deactivates ATM.
This feedback leads to recurrent ATM inhibition and initiation upon DNA damage enabling
persistent oscillations of the p53 level.

• F3 Positive feedback p53ARRESTER !Wip1! p53ARRESTER: p53ARRESTER activates transcrip-
tion of Wip1, which dephosphorylates p53KILLER to p53ARRESTER. This feedback stabilizes
p53 in the arrester state and attenuates accumulation of p53KILLER preventing/postponing
apoptosis.

• F4 Positive feedback p53KILLER ! PTEN –| Akt!Mdm2 –| p53KILLER: p53KILLER activates
transcription of PTEN which (indirectly) deactivates Akt; Akt phosphorylates Mdm2 allow-
ing for its import to the nucleus where Mdm2 ubiquitinates p53 inducing its rapid degrada-
tion. This feedback stabilizes the state of a high p53KILLER and low Akt activity, and thus
induces apoptosis.

Two negative feedback loops, F1 and F2, associated with time delays introduced by the
mRNA transcription, protein translation, and nuclear import, induce oscillatory responses
upon DNA damage. As shown experimentally in [82] and demonstrated in analysis in S2 Fig
the system without the negative feedback to ATM does not exhibit oscillations. The two posi-
tive feedbacks, F3 and F4, introduce bistability. These two feedbacks, mediated by Wip1 and
PTEN phosphatases, act antagonistically. The Wip1-mediated loop (F3) prevents p53KILLER
accumulation (by dephosphorylating p53KILLER to p53ARRESTER) while the PTEN-mediated
loop (F4) “supports” p53KILLER accumulation (by indirect inhibition of Mdm2). The PTEN
loop results from double negation and involves several intermediates (PTEN, PIP2/PIP3, Akt,
Mdm2), therefore its dynamics is slower. As a result, even in cells with extensive DNA damage,
p53KILLER accumulation (and thus apoptosis) is postponed, granting the cell time which can be
used for DNA repair. When DNA repair is accomplished before signal passes through the
PTEN loop, the cell survives. However, when the DNA damage is severe so that its repair takes
longer time, the PTEN-mediated feedback takes over and the cell commits to apoptosis.

Cell cycle arrest module. p53ARRESTER induces expression of p21, a protein which sup-
presses cell cycle progression to allow for DNA repair (Fig 2A). p21 directly binds and sup-
presses CycE which plays a critical role in the transition from G1 to S phase, and is considered
a marker of cell cycle progression in the model [23]. CycE, synthesis of which is positively regu-
lated by E2F1 (and several other transcription factors from the E2F family), can inactivate Rb1
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protein by inducing its phosphorylation at Ser780. Phosphorylated Rb1 can no longer inhibit
E2F1. This creates a positive feedback loop (based on double negation) in which CycE sup-
presses the inhibitor of its own transcription factor. This mode of regulation introduces bist-
ability and allows for switch-like exit from and return to the cell cycle progression. Cell cycle
progresses at a low level of p21 (i.e., when most of CycE is free). As p21 level increases the frac-
tion of free CycE decreases, leading to dephosphorylation of Rb1 and inhibition of E2F1. At
some level of p21 the system rapidly transits to the state in which most of E2F1 is inhibited and
the level of CycE is close to zero (Fig 2B).

The analysis of the cell cycle arrest module shows that this subsystem exhibits bistability for
a range of p53ARRESTER levels (Fig 2B). The low level of p53ARRESTER corresponds to a high
level of CycE at which the cell cycle can progress. As the level of p53ARRESTER increases, the
level of CycE decreases until the stable state loses its stability in the bifurcation point SN1 and
the system switches to the lower stable steady state in which the cell cycle is suppressed. When
p53ARRESTER decreases from a high level, the system undergoes SN2 bifurcation and the cell
cycle may progress again.

Apoptotic module. The detailed description and analysis of the apoptotic module is con-
tained in our recent paper by Bogdał et al. [86]. In this module (Fig 3A) we consider two inputs:
pro-survival input, strength of which increases with the level of phosphorylated Akt (Aktp),
and pro-apoptotic, strength of which increases with the level of p53KILLER. Non-apoptotic cells
are characterized by a relatively high level of Aktp and the lack or a very low level of p53KILLER.
The following two signals promote apoptosis: (1) suppression of pro-survival Akt, i.e., decrease
of the Aktp level, and (2) increase of the p53KILLER level.

In non-apoptotic cells the apoptosis is suppressed since the apoptotic effector, Bax, is neu-
tralized through sequestration by pro-survival Bcl-xL. This is possible because the other pro-
apoptotic protein, Bad, that can bind Bcl-xL, remains phosphorylated by Aktp and sequestered
by pro-survival protein 14-3-3. Dephosphorylation of Akt (which is considered here as pro-
apoptotic signal) leads to the dephosphorylation of Bad and its release from the complex with
14-3-3. Subsequently, Bad binds to Bcl-xL displacing Bax, which accumulates in the mitochon-
drial membrane, leading eventually to the release of cytochrome c, which initiates caspase acti-
vation (active both initiator and executioner caspases are collectively denoted as Casp). In the
model, the step of cytochrome c release is omitted; instead, we assume that Bax activates Casp

Fig 2. Scheme and the bifurcation diagram for the cell cycle arrest module. (A) Scheme: cell cycle-arresting proteins are represented with green boxes,
proteins promoting cell cycle with blue boxes, other proteins or complexes with gray boxes. Bold ‘P’ denotes a phosphorylated protein residue. The arrow
notation is same as in Fig 1. (B) Bifurcation diagram of CycE vs. p53ARRESTER (bifurcation parameter). The stable and unstable steady states are indicated by
solid and dashed lines, respectively. SN1 and SN2 denote saddle-node bifurcations. The number of eigenvalues with positive real parts is either one (1+) for
the unstable steady state or zero (0+) for stable steady states.

doi:10.1371/journal.pcbi.1004787.g002
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directly. The other pro-apoptotic signal comes from p53KILLER, accumulation of which triggers
Bax transcription and Bax protein accumulation.

In Fig 3B we analyze how cell fate decisions depend on the levels of p53KILLER and Aktp. In
the (p53KILLER, Aktp)-plane the saddle—node bifurcations line separates the region where sur-
vival coexists with apoptosis from the apoptotic region. The transition from survival to apopto-
sis requires crossing the saddle—node line, that is possible only when the level of p53KILLER
increases and, simultaneously, a fraction of phosphorylated Akt (Aktp) drops. Therefore, the
apoptotic module integrates information about Aktp and p53KILLER levels in the way similar to
the AND logic gate (meaning that simultaneous dephosphorylation of Akt and build-up of
p53KILLER are needed to trigger apoptosis). In our previous study [86], we demonstrated that
the system can behave digitally, either as the logic gate AND, or as the logic gate OR, depending
on the levels of Bad and Bcl-xL. Gate AND arises for high levels of Bcl-xL and low levels of Bad.
The OR gate (when apoptosis may be initiated by one of the two apoptotic signals) arises for
high Bad and low Bcl-xL levels.

In Fig 3C and 3D we show bifurcation diagrams of the apoptotic switch with p53KILLER (Fig
3C) and Aktp (Fig 3D) considered bifurcation parameters. The model predicts that for Aktp = 0
and p53KILLER < 105 the cell can exist either in the apoptotic or in surviving steady state,

Fig 3. Scheme and the bifurcation diagrams for the apoptotic module. (A) Scheme: pro-survival proteins are in blue boxes, pro-apoptotic proteins are in
yellow boxes, other proteins or protein complexes are in gray boxes. The arrow notation is same as in Fig 1. (B) Saddle—node bifurcations line in the
(p53KILLER, Aktp)-plane (2-D bifurcation diagram) separates the region of parameters for which apoptotic and survival states coexist from the region for which
only the apoptotic state exists. (C) Bifurcation diagram for Casp vs. p53KILLER (bifurcation parameter) for Aktp; the saddle-node bifurcation point SN is
(p53KILLER, Caspbif)ffi (0.95×105, 1.5×103). (D) Bifurcation diagram for Casp vs. Aktp (bifurcation parameter) for p53KILLERffi 5×105; the saddle-node
bifurcation point SN is (Aktp, Caspbif)ffi (4.4×104, 1.5×103). The solid and dashed lines correspond respectively to the stable and unstable steady states. The
number of eigenvalues with positive real parts is either one (1+) for the unstable steady state or zero (0+) for stable steady states. Notice the logarithmic scale
on vertical axes in (C) and (D).

doi:10.1371/journal.pcbi.1004787.g003
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characterized by a high and a low Casp levels, respectively (Fig 3C). At p53KILLER � 105 the sys-
tem undergoes the saddle—node bifurcation (in which Casp� 1.5 × 103) in which the surviv-
ing state vanishes. In Fig 3D we show that for a high level of p53KILLER (i.e., p53KILLER �
5 × 105) the system exhibits bistability for Aktp > 4.5 × 104. At Aktp � 4.5 × 104 the system
undergoes the saddle—node bifurcation, and for Aktp < 4.5 × 104 only the apoptotic state
exists. The bifurcation diagrams shown in Fig 3C and 3D imply that the caspase activation
switch (in contrast to the cell cycle arrest switch) is irreversible, i.e., there is no possibility to
return from the apoptotic to the surviving state (even after p53KILLER drops to zero or Aktp
grows to its maximal value). The structure of the bifurcation diagram of Casp vs. p53KILLER
resembles qualitatively the bifurcation diagram of Casp vs. Bax analyzed in our earlier work
[86].

Bifurcation analysis of the p53 core module. In this section we focus on the discrimina-
tion of possible responses to DNA damage. In the bifurcation analysis we assume that the num-
ber of DSBs remains constant and equal to 100, which is considered as severe DNA damage.
Bifurcation analysis allows us to determine the recurrent solutions (i.e., steady states and limit
cycles) that delineate time-dependent responses to DNA damage. Since the two positive feed-
back loops are controlled by phosphatases Wip1 and PTEN, expression levels of which are var-
ied substantially among cancer cells, we choose Wip1 and PTEN synthesis rates as bifurcation
parameters. Additionally, PTEN has slow dynamics with respect to the other components and
its gradual accumulation after DNA damage controls the behavior of the whole system. As a
result, the system behavior can be predicted by bifurcation analysis in which PTEN is a bifurca-
tion parameter.

In Fig 4 we show the two-dimensional bifurcation diagram in the (s1, s2)-plane, where s1
and s2 are Wip1 and PTEN synthesis rates, respectively. As shown, the system involves three
types of bifurcations: Hopf, saddle-node, and Neimark—Sacker. In the 2-D diagram, Neimark-
—Sacker bifurcations line arises at one zero—Hopf point (s1, s2)� (0.1, 0.012) and vanishes at
another zero—Hopf point (s1, s2)� (0.3, 0.053). Between these points the Hopf bifurcations
are supercritical, while outside them they are subcritical. The supercritical Hopfs line lies
between the saddle—node line and the Neimark—Sacker bifurcations line. The saddle—node
lines arise in a cusp point (s1, s2)� (0.02, 0.001). The bifurcation lines divide the (s1, s2)-plane
into subregions in which the system exhibits different behaviors. In short, the system is oscil-
latory in the parameter subdomain to the right of the Hopf bifurcations line, i.e., oscillations
can arise due either increase of Wip1 synthesis or decrease of PTEN synthesis. The bistability
(understood here as either the coexistence of two stable steady states or coexistence of one sta-
ble steady state and one stable limit cycle) can arise between two saddle—node lines.

The bifurcation lines divide the (s1, s2)-plane into seven subdomains characterized by differ-
ent recurrent solutions:

D1: monostability (one stable steady state),
D2: oscillatory (stable limit cycle and one unstable steady state),
D3: typical bistability (two stable steady states and one unstable steady state),
D4: typical bistability (two stable steady states and one unstable steady state),
D5: atypical bistability (the stable limit cycle coexists with one stable steady state and two

unstable steady states),
D6: monostability (one stable steady state, two unstable steady states and one unstable limit

cycle),
D7 (the tiny region between supercritical Hopf line and upper saddle—node line): mono-

stability (one stable steady state and two unstable steady states).
We chose (s1, s2) = (0.1, 0.03) as nominal model values for the Wip1 and PTEN mRNA syn-

thesis rates. According to Fig 4, (s1, s2) = (0.1, 0.03) lies in domain D1, in which the system with
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persistent DNA damage has only one solution, the stable steady state. As we will see, this state
is characterized by the level of p53KILLER high enough to trigger apoptosis.

In Fig 5 we show bifurcation diagrams of p53KILLER as a function of the PTEN synthesis
rate, s2. We consider two values of s1, s1 = 0.2 and s1 = 0.4. The character of the bifurcation dia-
gram for s1 = 0.2 is qualitatively similar to that for nominal s1 = 0.1, however it is visually
clearer since the distance between Neimark—Sacker, Hopf, and saddle—node bifurcations
is larger. For s1 = 0.4 (Fig 5B) the bifurcation diagram is qualitatively different from that for
s1 = 0.1 and s1 = 0.2 (Fig 5A).

As shown in Fig 4, with s2 increasing (for fixed s1 = 0.2) the system proceeds sequentially
through five subdomains in the (s1, s2)-plane: D2, D5, D6, D7, and D1. Fig 5A visualizes details
of recurrent solutions along this line. In the description below we focus on stable steady states
and limit cycles because these solutions shape time-dependent responses. For s2 < sSN1, i.e., in
subdomain D2, the system has a single stable limit cycle. This solution is characterized by oscil-
lations of the levels of p53KILLER and p53ARRESTER. Amplitude of p53ARRESTER oscillations is

Fig 4. Two-dimensional bifurcation diagram showing various types of bifurcation lines and points in
the (Wip1 synthesis rate, PTEN synthesis rate)-plane. The black dot indicates nominal values of
parameters s1 and s2. The bifurcation lines divide the parameter domain into seven subdomains D1,. . .,D7.
The recurrent solutions in each of these domains are given in main text. Bifurcation diagrams in Fig 5A and
5B show the recurrent solutions obtained for s1 = 0.2 and s1 = 0.4, as indicated by black arrows, and varied
s2.

doi:10.1371/journal.pcbi.1004787.g004
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high enough to suppress the cell cycle, but the level of p53KILLER remains below the apoptotic
threshold.

At s2 = sSN1 the first saddle—node bifurcation arises, and for s2 2 (sSN1; sN−S), i.e., in D5 sub-
domain, the system exhibits atypical bistability in which the stable limit cycle coexists with the
stable steady state. This steady state is characterized by the p53KILLER level high enough to trig-
ger apoptosis. Therefore, in this parameter range the apoptotic state and cell cycle arrest state
coexist. At s2 = sN−S the subcritical Neimark—Sacker bifurcation arises, in which the stable
limit cycle loses its stability merging with an unstable invariant torus, and for s2 > sN−S the
only stable recurrent solution is the stable steady state associated with apoptosis. Therefore, as
parameter s2 increases (which is associated with the increase of the PTEN level), the cell with
damaged DNA at s2 = sN−S switches abruptly to apoptosis.

This biologically plausible behavior, allowing for unambiguous cell fate decisions, is associ-
ated with the specific bifurcation structure involving the subcritical Neimark—Sacker bifurca-
tion. Then the cycle vanishes at s2 ¼ sHsuper

in the supercritical Hopf bifurcation (see the Fig 5A

insert). Subsequently, two remaining unstable steady states (one with 3 eigenvalues of positive
real parts), and the other (with 2 eigenvalues of positive real parts) “annihilate” in s2 = sSN2. Let
us notice that unstable steady states in the analyzed diagram have at most 3 eigenvalues with
positive real parts and the unstable cycle has 2 Floquet multipliers of moduli larger than 1. This
implies that despite the system has complex structure which involves numerous feedback
loops, its dynamics is essentially 3-dimensional, meaning that locally there exists a 3-dimen-
sional attracting manifold.

A qualitatively different is the bifurcation diagram depicting the recurrent solutions along
line s1 = 0.4 with increasing s2 (Fig 5B), i.e., when the system proceeds sequentially through
D2, D5, D4, and D1 subdomains (shown in Fig 4). Similarly to the previous case for s2 < sSN1,
the system has the stable limit cycle (cell cycle arrest state). Then, at s2 = sSN1, the first saddle—

Fig 5. Bifurcation diagram of p53KILLER vs. PTENmRNA synthesis rate (s2). (A) Wip1 synthesis rate s1 = 0.2, (B) s1 = 0.4. The stable and unstable
steady states are indicated by solid and dashed lines, respectively. Ranges of stable and unstable limit cycles are indicated by dark and light blue lines,
respectively; dots and open circles are the maxima and minima of the stable and unstable limit cycles, respectively. Green vertical line in (A) shows
Neimark—Sacker bifurcation (N—S). Red dots mark saddle-node bifurcations (SN1, SN2), orange dots mark supercritical Hopf (Hsuper) and subcritical Hopf
(Hsub) bifurcations. The numbers in format n+ adjacent to the steady state lines denote the number of eigenvalues with the positive real parts. Notice the
logarithmic scale on vertical axes.

doi:10.1371/journal.pcbi.1004787.g005
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node bifurcation arises, and for s2 � ðsSN1; sHsub
Þ the stable limit cycle coexists with the stable

steady state (apoptotic state). However, in contrast to bifurcation diagram shown in Fig 5A, the
stable limit cycle does not lose its stability, but it is replaced by a steady state at s2 ¼ sHsub

through the subcritical Hopf bifurcation. In this steady state, p53KILLER does not exceed the
apoptotic threshold. This steady state annihilates with an unstable steady state at s2 = sSN2 in
the second saddle—node bifurcation. As in the previous case, for s2> sSN2 the system has a sin-
gle recurrent solution, the stable steady state associated with apoptosis.

We think that the bifurcation structure in Fig 5A reflects the experimental observations bet-
ter than that of Fig 5B, suggesting that upon DNA damage the level of p53 either oscillates at a
relatively low amplitude, or builds up to the high level in which apoptosis is triggered. There-
fore, for further analysis we assume s1 = 0.1, resulting in a bifurcation diagram as in Fig 5A.
The bifurcation diagrams corresponding to s1 = 0.1 (or qualitatively equivalent s1 = 0.2) calcu-
lated with respect to Wip1, PI3K, and the number of DSBs are shown in S3 Fig. Qualitatively,
diagrams with respect to Wip1 and PI3K are mirror images of the bifurcation diagram with
respect to PTEN (Fig 5A), confirming the antagonistic action of Wip1 and PTEN. The antago-
nism of PI3K and PTEN is straightforward because PI3K phosphorylates PIP2 to PIP3, while
PTEN dephosphorylated PIP3 to PIP2. The bifurcation diagram with respect to DNA damage
(assumed, for this diagram, to be persistent) is similar to the bifurcation diagram with respect
to PTEN, but the limit cycle oscillations start at a non-zero value of the bifurcation parameter.

Time-dependent dynamics
In this section we analyze time-dependent dynamics in response to DNA damage. First, we
consider the case in which DNA repair is suppressed; then, we consider the nominal model in
which DNA repair mechanism is active; finally, we analyze how cell fate depends on the expres-
sion levels of Wip1 and PTEN.

Dynamics of the system with suppressed DNA repair. In Fig 6 we analyze the system
responses to the stimulation dose of 2 Gy, for nominal Wip1 and PTEN mRNA synthesis rates,
i.e., s1 = 0.1, s2 = 0.03 (Fig 6A), as well as modified rates (Fig 6B and 6C). According to the
bifurcation diagram (Fig 4) for the nominal parameters values, upon persistent DNA damage
the system possesses the unique stable steady state. This state is reached after transient oscilla-
tions of p53ARRESTER and p53KILLER levels. Such response can be expected based on the bifurca-
tion diagram shown in Fig 5A, indicating that the system generates oscillations for a
sufficiently small PTEN synthesis rate, s2; here, the PTEN rate is larger but due to the slow
accumulation of PTEN the system initially exhibits oscillations. Shortly after DNA is damaged,
in the oscillatory phase, the level of p53ARRESTER exceeds the cell cycle arrest threshold (see
bifurcation point SN1 in Fig 2) leading to a rapid decrease of the free CycE level and suppres-
sion of the cell cycle. During this phase the p53ARRESTER level remains below the apoptotic
threshold (see the saddle—node bifurcations line in Fig 3B). After two oscillations the p53 killer
grows to the high level, the apoptotic bifurcation line is surpassed and at about 25th hour since
the DNA damage the cell is directed to apoptosis, a state characterized in the model by a high
level of active caspases. Formally, within the model even in the apoptotic state the trajectory
can still be calculated, but obviously initiation of apoptosis limits the validity of the model, and
therefore after the apoptosis is initiated trajectories are drawn using faded lines.

In Fig 6B we analyze the response of the perturbed system in which PTEN synthesis rate, s2,
is equal 0.005, i.e., is 6-fold lower than the nominal value, while Wip1 synthesis rate is at its
nominal value (s1 = 0.1). For these parameters, as shown in the two-dimensional bifurcation
diagram in Fig 4, the system possesses a unique stable recurrent solution, the limit cycle.
Accordingly, as we see in Fig 6B, p53ARRESTER and p53KILLER exhibit sustained oscillations of
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period of about 6 hours. In these oscillations the level of p53ARRESTER is high enough to sup-
press the cell cycle, while the amplitude of p53KILLER oscillations does not exceed the apoptotic
threshold. The observed behavior is similar to that exhibited by MCF-7 cells in the experiment
of Geva-Zatorski et al. [73], in which irradiated cells showed quasiperiodic oscillation for 72
hours after irradiation. In these cells, the PTEN promoter is methylated and PTEN expression
is not regulated by p53, and remains at a very low level.

In Fig 6C we analyze the response of the system with PTEN synthesis rate s2 = 0.005 and no
Wip1 synthesis (s1 = 0). According to the two-dimensional bifurcation diagram in Fig 4 the
system has the unique stable steady state. As shown in Fig 6C the level of p53KILLER switches to
the high level triggering apoptosis. In contrast to the case of nominal parameter values, the
oscillatory phase is absent and the apoptosis is initiated considerably faster, about 15 h after
DNA damage. The direct passage to the apoptotic state can be also deduced from Fig 4 showing
that oscillations are not possible for s1 = 0, regardless of s2.

Responses of the intact system—dependence on the irradiation dose. In Fig 7 we con-
sider the model with nominal parameters and analyze the responses to two irradiation doses of
2 Gy and 10 Gy. As demonstrated in Fig 6A, in cells with suppressed DNA repair, the 2 Gy
dose leads to apoptosis in about 25 hours since DNA damage. Here, the process is more com-
plex as the repair of DNAmay rescue cells from apoptosis. In this case the cell fate depends on
the irradiation dose, and is decided through the competition between two processes: DNA
repair and accumulation of PTEN which controls positive feedback-regulating levels of active
Akt and p53KILLER. As shown in Fig 7A, small DNA damage resulting from 2-Gy irradiation
can be almost fully repaired in about 20 hours, thus the apoptosis is not initiated. In contrast,
the repair of extensive damage resulting from 10-Gy irradiation can be not accomplished suffi-
ciently fast and the cell undergoes apoptosis. The time delay associated with PTEN accumula-
tion serves as a clock, giving about 24 hours for DNA repair, and then directing cells with
unrepaired DNA to apoptosis.

In Fig 7A we show trajectories of key model components after 2-Gy irradiation. DNA dam-
age leads to a rapid ATM phosphorylation and activation. Activated ATM phosphorylates p53
at Ser15 and Ser20 to the p53ARRESTER form, which accumulates and induces synthesis of p53
inhibitor, Mdm2, and phosphatase Wip1 which dephosphorylates ATM. These two negative

Fig 6. Deterministic simulation trajectories of the systemwith the suppressed DNA repair and either nominal or perturbedmRNA synthesis
rates in response to 2-Gy irradiation. (A) Nominal Wip1 and PTENmRNA synthesis rates (s1 = 0.1, s2 = 0.03). (B) Decreased PTENmRNA synthesis rate
(s2 = 0.005). (C) Decreased PTENmRNA synthesis rate (s2 = 0.005) and zero Wip1 synthesis rate (s1 = 0). The simulation started at Time = 0 h from the
steady state corresponding to the resting (unstimulated) cell. At Time = 10 h the irradiation phase started and lasted for 10 min. The faded line visualizes the
trajectory after the initiation of apoptosis, and thus must be interpreted with caution.

doi:10.1371/journal.pcbi.1004787.g006
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feedback loops (mediated by Mdm2 and Wip1) lead to oscillations of the level of p53ARRESTER
and levels of p53ARRESTER-regulated proteins, including p21. Increased level of p21 leads to the
inhibition of CycE and transient cell cycle arrest, during which DNA can be repaired.

p53ARRESTER can be subsequently phosphorylated at Ser46 to the p53KILLER form by HIPK2
(a kinase which accumulates in response to DNA damage; see detailed scheme of the model in
S1 Fig). This process is opposed by Wip1 which converts p53KILLER back to the p53ARRESTER
form. As a result, the level of p53KILLER oscillates not surpassing the apoptotic threshold. After,
about 20 h, when DNA repair is accomplished, ATM is deactivated and oscillations of
p53KILLER and p53ARRESTER are terminated. Subsequently, the level of p21 drops below the
threshold (bifurcation point SN2, Fig 2B), CycE returns to its initial level, and cell cycle pro-
gression is resumed.

In the case of extensive DNA damage caused by 10-Gy irradiation (Fig 7B) DNA repair
requires more time. Although initial regulatory events are similar to those at 2-Gy irradiation,
prolonged p53KILLER activity induces accumulation of PTEN to a higher level, such that PTEN-
mediated positive feedback loop terminates oscillations by sequestering Mdm2 in the cyto-
plasm, which separates it from its substrate, nuclear p53. Namely, accumulation of PTEN leads
to dephosphorylation of Akt (see S1 Fig for details) and subsequent dephosphorylation of
Mdm2 at Ser166 and Ser186, which blocks its nuclear entry and physically separates it from its
target, p53. Of note, the positive feedback loop mediated by Wip1 (which stabilizes
p53ARRESTER) and the one mediated by PTEN (which stabilizes p53KILLER) act antagonistically.

Fig 7. Deterministic simulation trajectories of the intact system in response to 2-Gy and 10-Gy irradiation. (A) 2-Gy irradiation is insufficient to trigger
apoptosis and after several oscillations system recovers to the survival steady state. (B) 10-Gy irradiation is sufficient to trigger apoptosis: after two
oscillations p53KILLER stabilizes at a high level triggering apoptosis.

doi:10.1371/journal.pcbi.1004787.g007
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In the case of extensive DNA damage, the slow PTEN-mediated positive feedback can ulti-
mately take over, causing the surge of the level of p53KILLER which ultimately surpasses the apo-
ptosis-inducing threshold. Importantly, since early hours after DNA damage till (and
throughout) apoptosis, the cell cycle remains suspended, preventing proliferation of cells
which have lost their genomic integrity.

In summary, small DNA damage leads to a temporal cell cycle arrest during which DNA is
repaired, while extensive DNA damage leads to the cell cycle arrest followed by apoptosis. Reg-
ulation of the core p53 module (see the bifurcation diagram in Fig 5) is such that in the oscil-
latory phase the level of p53ARRESTER is high enough to suppress cell cycle but the level of
p53KILLER does not exceed the apoptotic threshold. Only in the “high” steady state levels of
phosphorylated Akt and p53KILLER exceed the apoptotic threshold. This type of regulation
assures that the cell fate decision is unanimous.

Impact of Wip1 and PTEN expression levels on the sensitivity to irradiation. As shown
in the previous subsection, in response to irradiation the cell can either undergo apoptosis or
repair its DNA and survive. Cell fate decision depends on the irradiation dose as well as expres-
sion levels of regulatory proteins in the p53 pathway. Here, we analyze howWip1 and PTEN
mRNA synthesis rates s1 and s2, and the level of active PI3K influence the critical irradiation
dose. Level of active PI3K depends on the total level of PI3K which is cell line-dependent and
can increase in response to various stimuli including growth factors. Gene copy amplification
and overexpression of PI3K have been found in several types of cancer, including gastric
(SNU1), prostate (LNCaP), head and neck squamous cell carcinoma (HNSCC), ovarian
(OVCAR4) and breast (MCF-12A, MB157) [63,64,66–68]. Wip1 and PTEN mRNA synthesis
rates are also cell line-specific. In the lung (NCI-H522), breast (MCF-7, BT474, KPL-1,
MDA-MB361), prostate (DU-145), colon (HCT15) and ovarian (OVCAR4) cancers, and in
melanoma (UACC-257) and lymphoma (MOLT4), Wip1 expression is frequently elevated due
to gene copy amplification (32); PTEN expression is decreased due to gene loss in colon
(HCT116) and lung (NCI-H1299) cancers [87,88] or due to methylation of PTEN promoter in
breast (MCF-7, BT-549) and non-small cell lung (A549) cancers [87,89].

For nominal values of Wip1 and PTEN mRNA synthesis rates s1 and s2 assumed in the
model and a nominal value of active PI3K the critical irradiation dose turns out to be 4.05 Gy.
In Fig 8 we show the apoptotic and survival regions in the (s1, s2) parameter plane for four irra-
diation doses: 1 Gy, 2 Gy, 5 Gy, 10 Gy, as well as the persistent (irreparable) DNA damage
(equal 100 DSBs). We consider three levels of active PI3K: nominal, twofold decreased, and
twofold increased. For each level of active PI3K the apoptotic region (above separatrix)
increases and the survival region (below separatrix) shrinks with the irradiation dose. Interest-
ingly, even for irreparable DNA damage cells can survive provided that the ratio s2/s1 (PTEN
to Wip1) is sufficiently low, as in the case analyzed in Fig 6B. The critical irradiation dose
increases with increasing Wip1 and decreases with increasing PTEN. The ratio s2/s1 (PTEN to
Wip1 mRNA synthesis rate) is roughly constant on each of survival/apoptosis separatrices
(and increases with the irradiation dose) conforming the antagonistic relationship between
Wip1 and PTEN.

One may notice that the ratio s2/s1 for each of the separatrices increases with the PI3K level
(compare Fig 8A, 8B and 8C). This is, for a given Wip1 mRNA synthesis rate an increase of
PTEN synthesis rate can be compensated by an increase of active PI3K. This relationship fol-
lows from the fact that PTEN and PI3K has directly opposing roles in the pathway.

Overall, our analysis indicates that cellular proclivity for irradiation-induced apoptosis
increases with PTEN to Wip1 expression ratio, and decreases with the level of active PI3K.
This confirms the pro-survival role of Wip1 and PI3K, and the pro-apoptotic role of PTEN.
Since cancer cell lines have diverse expression levels of Wip1, PTEN and PI3K, they are
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expected to exhibit divergent responses to irradiation; therefore, different cancers may have
widely varying sensitivity to radiotherapy. In particular, the performed analysis explains high
survival rates of irradiated MCF-7 cells for which the expression of Wip1 is significantly
increased while PTEN expression is reduced. This cell line (studied by Geva-Zatorski et al.
[73]) respond to high irradiation dose by long-lasting oscillations, showing that even the persis-
tent DNA damage does not induce apoptosis.

The role of stochasticity
In order to analyze the cell-to-cell variability we performed stochastic simulations according to
the Gillespie algorithm [90] implemented in BIONETGEN [91]. In Fig 9 we compare trajectories
obtained in single-cell stochastic simulations with the deterministic trajectory as well as the
population trajectory, i.e., trajectory obtained by averaging over 1000 single-cell stochastic tra-
jectories. In the figure we show trajectories of p53ARRESTER and p53KILLER in response to three
irradiation doses: small of 2 Gy, intermediate of 4 Gy (which is just below the critical dose for
the deterministic approximation) and large of 8 Gy. As one can observe, the stochastic trajecto-
ries follow closely the deterministic trajectory for the low and high doses, and in these two
cases the population trajectory almost matches the deterministic one. This is in contrast to the
intermediate dose of 4 Gy, for which the deterministic trajectory after a few oscillations (during
which DNA is repaired) returns to the initial state characterized by low levels of p53ARRESTER
and p53KILLER, while the stochastic trajectories separate into two groups corresponding to the
apoptotic cells (of high p53 levels) and surviving cells (of low p53 levels). As a result, for 4 Gy
the deterministic trajectory is much different from the population-averaged trajectory. Such
discrepancy between deterministic and stochastic solutions has been demonstrated earlier for
various, even very simple, nonlinear or multistable systems [92–97]. It is especially pronounced
in the cases of bistable (or multistable) systems when the deterministic trajectory converges to
one of steady states, while the stochastic trajectories split into two (or more) groups. In this
case the population average (observed in population experiments by Western blotting or PCR)
does not correspond to any single-cell trajectory.

The fraction of apoptotic cells increases with the irradiation dose (see Fig 10, where 5000
single-cell stochastic simulations were performed for each of 14 different doses from the 0–8
Gy range). For the critical (deterministic) dose equal 4.05 Gy, the fraction of apoptotic cells
was found to be close to 50%. The fraction of apoptotic cells increases from about 10% to about

Fig 8. Critical irradiation doses as a function of Wip1 (s1) and PTEN (s2) mRNA synthesis rates. (A) Active PI3K level is decreased 2-fold from the
nominal value. (B) The nominal value of active PI3K. (C) Active PI3K level is twice the nominal value. Color lines show the critical irradiation doses in the
(s1, s2)-parameter space. Dashed line corresponds to the persistent (irreparable) DNA damage equal 100 DSBs. For each dose, the line separates the
apoptotic region (above the line) and the survival region (below the line) in the (s1, s2)-parameter space. The black dot in (B) corresponds to nominal values of
Wip1 and PTENmRNA synthesis rates.

doi:10.1371/journal.pcbi.1004787.g008

Cell Fate Decisions in the p53 System

PLOS Computational Biology | DOI:10.1371/journal.pcbi.1004787 February 29, 2016 15 / 28

Arࢢcle F



90% as the irradiation dose increases from 2.5 Gy to 6 Gy. In order to determine how gene
switching noise contributes to the heterogeneity in cell fate decisions we performed simulations
in a model variant in which gene activity was assumed to be a deterministic function of the
level of p53 (in a gene-specific phosphoform). As expected, after removing one source of sto-
chasticity the individual cell responses has become less heterogeneous (see also S4 Fig), which
is manifested by the steeper sigmoid of the fraction of apoptotic cells (violet vs. pink line). Sur-
prisingly, the difference between these two cases is not very large, which indicates that tran-
scriptional and translational noises significantly contribute to the overall stochasticity.

Fig 9. Stochastic vs. deterministic simulation trajectories in the response to low (2 Gy), intermediate
(4 Gy) and high (8 Gy) irradiation doses. Single-cell stochastic trajectories—thin color lines; average over
1000 stochastic trajectories—bold black line; deterministic approximation—bold red line.

doi:10.1371/journal.pcbi.1004787.g009

Fig 10. Fraction of apoptotic cells as a function of irradiation dose for two types of stochastic
simulations. For each of analyzed doses the fraction and corresponding error was calculated based on 5000
stochastic single-cell simulations. The state of the cell was checked at 72. hour after irradiation which, as
shown in Fig 11, is sufficient for unanimous cell fate decision.

doi:10.1371/journal.pcbi.1004787.g010
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As showed above for the intermediate doses, the cell population splits into apoptotic and
surviving subpopulations. In Fig 11 we analyze how the cell fate decision after 4-Gy irradiation
is reached in time. In Fig 11A we show trajectories of PTEN, which is a key protein mediating
slow positive feedback loop and thus its level was found to be a good predictor of the ultimate
cell fate decision. As shown, the trajectories of surviving cells (blue) are almost fully separated
from trajectories of apoptotic cells (red) after about 36 hours. The separation between apopto-
tic and surviving trajectories progresses in time, as shown in Fig 11B where temporal evolution
of the Kolmogorov—Smirnov statistic between 6 distributions of different variables character-
izing apoptotic and surviving cells is calculated. This figure confirms that the cell fate decision
is reached after about 36 hours, as for this time Kolmogorov—Smirnov statistics (for all vari-
ables) reaches 1, which indicates that distributions corresponding to apoptotic and surviving
cells fully separate. The number of DSBs that arise during the irradiation phase (which, due to
the stochasticity, can be different for cells irradiated with the same dose) is the fastest predictor.
PTEN and Aktu (levels of which can be different prior to the irradiation due to stochastic fluc-
tuations in resting cells) are also fast predictors and, moreover, the Kolmogorov—Smirnov sta-
tistics corresponding to their distributions grow monotonically. This is in contrast to
p53KILLER, p53ARRESTER, and Wip1 levels, which exhibit pronounced oscillations after irradia-
tion, and for which the Kolmogorov—Smirnov statistics reach 1 non-monotonously.

Fig 11. Analysis of the cell fate decision-making process. (A) PTEN levels in subpopulations of surviving
(blue) and apoptotic (red) cells after 4-Gy irradiation. 10 000 cells are simulated in total. (B) Kolmogorov—
Smirnov statistics between distributions of six variables which characterize surviving and apoptotic cells.

doi:10.1371/journal.pcbi.1004787.g011
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Discussion
p53 is thoroughly studied as a pivotal signaling node that integrates and transforms diverse
stress signals into downstream responses including cell cycle arrest and apoptosis to limit pro-
liferation of cells with the damaged genetic material. Based on the experimental knowledge
about feedbacks and interactions within the p53 network, we proposed a modular model of
p53 signaling pathway, in which the dynamics of the core p53 module controls downstream
modules that govern cell cycle arrest and apoptosis. The model has the purposeful bifurcation
structure that delineates plausible temporal responses and allows for, we think, the most unam-
biguous cell death, cycle arrest, or survival decisions.

The stochastic, yet unambiguous, processing of analog irradiation signals to reach a digital
cell fate outcome is assured by the bistability of cell cycle arrest and apoptotic modules, but pri-
marily by a specific-type bistability of the core p53 module. As demonstrated by the two-
parameter bifurcation analysis of the core module, in a relatively broad range of parameters the
limit cycle oscillations (of p53ARRESTER and p53KILLER levels) coexist with the stable steady
state in which the p53KILLER level is very high, while the level of phosphorylated Akt is very
low. The limit cycle oscillations of p53ARRESTER induce cell cycle arrest, while the high
p53KILLER level and low level of phosphorylated Akt induce apoptosis. The key difference
between dynamics of the cycle arrest module and the apoptotic module is that the former is
based on reversible bistability and involves one input signal, p53ARRESTER, which suppresses
cell cycle when above the threshold and releases the cell cycle arrest when below the lower
threshold. In turn, apoptosis induction requires two signals (increase of p53KILLER and decrease
of phosphorylated Akt) simultaneously, and is an irreversible process.

The bifurcation structure delineates temporal responses to DNA damage. Small DNA dam-
age results in temporal cell cycle arrest, followed by DNA repair and return to the resting cell
state, while high DNA damage results in the cell cycle arrest and subsequent apoptosis (without
returning to cell cycle). The direct jump between limit cycle oscillations and the stable steady
state is enabled by the presence of a subcritical Neimark—Sacker bifurcation in which the limit
cycle loses its stability merging with an unstable invariant torus. Interestingly, this type of
bifurcation, rarely analyzed in the context of molecular regulatory networks, can exist in at
least three-dimensional systems. Although the core module is 18-dimensional, the stability
analysis of the steady state showed that at most three eigenvalues have positive real parts which
implies that locally the system could be reduced to a three-dimensional one. It remains an
open question whether such reduction is possible globally.

We propose that in the process of cell fate decision-making the p53 system can exhibit the
most robust transitions when the only stable recurrent solutions are a stable limit cycle and a
stable steady state (out of this limit cycle), provided there exists a parameter region for which
these recurrent solutions coexist. Such structure allows cells to switch to the cell cycle arrest
(associated in the model with limit-cycle oscillations of the levels of p53 phosphoforms) and
then to direct transition to either apoptosis or recovery. Interestingly, there exists an even sim-
pler bifurcation structure, shown in S5 Fig, that allows for such transitions. In this hypothetical
case, as the bifurcation parameter s2 increases the limit cycle simply vanishes in the saddle—
loop bifurcation. The most pronounced dynamical difference between the modeled and the
hypothetical scenario is that the period of oscillations diverges to infinity as the bifurcation
parameter approaches the saddle—loop bifurcation point. This would imply that in a heteroge-
neous cellular population some cells would exhibit much longer oscillation periods, which is
not observed in experiments [73]. As discussed by us earlier [76], we thus expect that oscilla-
tions in the p53 system (as well as in the NF-κB system) do not arise or vanish through a
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saddle—loop bifurcation or a saddle—node on invariant cycle bifurcation (also called SNIPER)
in which limit cycle arises from orbit homoclinic to the saddle.

Biochemical signal processing depends on the topology and time scales of feedback loops.
Regulatory networks with negative feedback(s) can produce oscillatory or pulsed responses to
tonic stimuli, and allow for adaptation to the change in the level of stimulation. The existence
of positive feedbacks, in turn, can give rise to bistability [98] (or multistability [99]) that can be
harnessed for cell fate decisions. Combinations of positive and negative feedbacks allow for
more complex behaviors. At least three qualitatively different type of responses leading to dis-
tinct regulatory outcomes are possible. (1) In the case when a positive feedback loop acts on a
short time scale and is embedded in a longer negative feedback loop, the system can switch
periodically between two predefined states (e.g., the autophagy/translation switch [100]). (2) In
the case when a positive feedback loops encompasses the negative one, the system can exhibit
autonomous oscillations (e.g., oscillations in the TNF—NF-κB autocrine system [101]). (3) In
the case when a slow positive feedback loop can turn off a negative feedback, the system can
exhibit biphasic responses in which after an oscillatory phase it either returns to the initial state
(more likely when the signal is short-lasting) or it switches to another steady state (more likely
when the signal is persistent or lasts sufficiently long [102]). The last case (which is a simplifi-
cation of the p53 regulatory core organization discussed in this study) seems to be a good can-
didate for the unbiased and proportionate process of cell fate decisions. The oscillatory phase
provides a time interval to collect and integrate various signals, and estimate the severity of
stress, before a (potentially irreversible) switch to another committed state is done.

Stochastic simulations of the model allowed to analyze how the death-or-life decision is
achieved in time, and what are the best or earliest indicators of apoptosis. By calculating time-
dependent Kolmogorov—Smirnov statistic between distributions of protein levels correspond-
ing to two populations of cells with apoptotic and surviving fates, we found that the clear sepa-
ration between these two populations is reached at about 30 hours after irradiation. PTEN, the
p53-induced phosphatase that mediates slow positive feedback loop, was found to be the most
robust and fast apoptosis predictor. Interestingly, the Kolmogorov—Smirnov statistics for
Wip1, p53ARRESTER and p53KILLER are non-monotonous in time, what possibly follows from
the pronounced oscillations of these components and indicates that at some time-points of the
response the elevated or decreased levels of pro- or anti-apoptotic proteins may not correlate
with the ultimate cell fate decision.

Most of experimental data were gathered for cancer (or immortalized) cell lines, which
became cancerous as a result of malfunctions in the p53 network. Much less is known about
regulation of normal, i.e., non-cancer, non-immortalized cells. Nevertheless, we expect that the
plausible responses of normal cells should consist of the cell cycle suppression phase (which
can be associated with p53 oscillations), followed by either apoptosis or recovery, depending
on the extent of the DNA damage. Accordingly, in contrast to the majority of previous studies
focused on modeling of cancer cell lines, we aimed at constructing the model that reflects
behavior of normal cells after γ irradiation. Within this model, the responses of different cancer
cell lines can be analyzed by adjusting the appropriate parameters such as mRNA synthesis
rates or steady-state levels of proteins that are assumed to be not regulated in the model. In this
way one can simulate cancer cell lines that are known to have elevated expression of Wip1 such
as MCF-7, BT474 (breast cancers), OVCAR4 (ovarian cancer), MOLT4 (lymphoma), U2OS
(osteosarcoma) [50–52,54,103], lines of decreased PTEN expression such as MCF-7 (breast
cancer), H1299, H322, Calu1 (lung cancers) [58–60], or with amplification of PI3K gene, such
as MKN1, SNU1 (gastric cancers), OVCAR4, A2780 (ovarian cancers) [63–70].

The life-or-death decision is reached in the interplay of two antagonistic phosphatases Wip1
and PTEN. Our analysis shows that sensitivity to apoptosis increases with PTEN expression
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and decreases with Wip1 or PI3K expression, which confirms the pro-survival functions of
Wip1 and PI3K, and pro-apoptotic functions of PTEN. The other key regulatory pro-apoptotic
protein present in network is kinase HIPK2 that converts p53ARRESTER to the p53KILLER phos-
phoform [104]. The model shows that undamped oscillations of p53ARRESTER and p53KILLER
levels observed in MCF-7 cells can result from the low expression of PTEN. Analogously, our
analysis indicates that cell lines with Wip1 overexpression (resulting from, e.g., gene amplifica-
tion) can exhibit persistent oscillations and resistance to apoptosis. Strong dependence of the
critical irradiation dose on PTEN, Wip1, and PI3K expression may suggest that pretreatment of
cancer cells (with intact p53) with drugs that act temporally to elevate the expression of PTEN
or to repress the expression of Wip1 or PI3K can enhance the effectiveness of radiotherapy.

Very recently, Puszyński et al. [105] have modified his earlier model [80] to study the
responses of the p53 network to nutlins, promising antitumor chemical agents which bind to a
p53-binding pocket of Mdm2 and thus hinder Mdm2 from ubiquitinating p53. Puszyński et al.
demonstrated in silico that dose-splitting can be ineffective at low doses but effective at high
doses, which can be attributed to nonlinear behavior of the regulatory system, manifested by
the fact that a certain p53 threshold has to be exceeded to induce apoptosis. We propose that
the current model can be used to study combination therapies involving agents which reduce
the expression or inhibit the activity of Wip1, Mdm2, PI3K, together with ionizing radiation.
In Fig 12 we survey over agents known to inhibit the selected nodes of the p53 pathway as well
as DNA-damaging compounds that can be used in place of irradiation [106,107]. The proposed
model provides the opportunity to investigate responses of particular cancer types, for which
the anomalies in expression of p53 inhibitors are characterized. The aim is to propose a treat-
ment that would reduce the levels or activity of Wip1, Mdm2, PI3K in cancer cells to make
them more sensitive to radiotherapy, and to devise optimal drug and irradiation protocols that
would leverage the impact of inhibitors by synchronizing their administration with the induced
DNA damage.

The regulatory proteins Wip1, PTEN, PI3K, and HIPK2 present in the model are them-
selves important nodes of a larger regulatory network thus their levels and activity can be mod-
ulated by numerous other proteins or stimuli. For example, Wip1 expression is upregulated by
not only p53 but also c-Jun, nuclear factor κB (NF-κB), cyclic adenosine monophosphate
response element-binding protein (CREB), E2F transcription factor 1 (E2F1), Estrogen Recep-
tor-alpha (ERα) [108–112]. PTEN expression is upregulated by early growth-response protein
1 (EGR1), or downregulated by Proto-Oncogene Polycomb Ring Finger (BMI1), NF-κB, c-Jun,
Snail Family Zinc Finger 1 (SNAI1), oncogenic factor inhibitor of DNA binding 1 (ID1), eco-
tropic virus integration site 1 protein (EVI1) [113–116]. Neurogenic locus notch homolog pro-
tein 1 (NOTCH1) can either upregulate PTEN through CBF1 (C-repeat binding factor 1) or
downregulate it through V-Myc Avian Myelocytomatosis Viral Oncogene Homolog (Myc)
[115]. PI3K is activated by various growth and survival factors, including fibroblast growth fac-
tor (FGF), vascular endothelial cell growth factor (VEGF), human growth factor (HGF), angio-
poietin I (Ang1), insulin, receptor tyrosine kinases (RTKs), G-protein-coupled receptors
(GPCRs) [40,117]. These and other existing connections allow to expand the in silico drug
impact analysis onto a larger network, and dissect possible dynamical consequences of inhibi-
tion of proteins more distant from p53 in the network.

Materials and Methods

Stochastic and deterministic model representations
The ordinary differential equations were integrated numerically in MATLAB. Stochastic simula-
tions were performed using the Gillespie algorithm implemented in BIONETGEN. Bifurcation
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diagrams were obtained with MATCONT. The MATLAB code (full model, core module, cell cycle
arrest module, apoptotic module), BIONETGEN code (full model) and MATLAB/MATCONT files
(core module, cell cycle arrest module, apoptotic module) are provided as S1, S2 and S3 Codes.

Stochastic simulations
To account for initial heterogeneity in protein levels in cell population the 10-min long irradia-
tion phase was preceded by a 100-hour long simulation of resting cells, except for S4 Fig, where
the resting phase lasted for 300 hours. Average protein levels in Fig 9 were obtained by averag-
ing over 1000 independent stochastic simulations; the fraction of apoptotic cells with respect to
the dose was determined based on 5000 stochastic simulations; the (time-dependent) two-sam-
ple Kolmogorov—Smirnov statistic between apoptotic and surviving cell subpopulations was
calculated based on 10 000 stochastic simulations, Fig 11.

The stratification into surviving and apoptotic cells was based on the level of active caspases
at 72. hour after the irradiation phase; cells with the level of active caspases higher (lower) than
the threshold defined as the value of active caspases at the saddle-node bifurcation point (SN in

Fig 12. Chemotherapeutic agents targeting the p53 regulatory core. A selection of chemical compounds,
both clinically approved chemotherapeutic drugs and newly discovered inhibitors, are shown. Some agents
have pleiotropic effects (gemcitabine, 5-fluoroacil); several p53 inhibitors may be effective only towards a
mutated, conformationally disrupted p53 (PRIMA-1 and similar not shown); tenovins have activating influence
on p53 because they inhibit p53 inhibitor, sirtuin. Nutlins, MIs and RITA inhibit Mdm2 and p53 interaction.

doi:10.1371/journal.pcbi.1004787.g012
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Fig 3C) were considered apoptotic (surviving). The Kolmogorov—Smirnov statistic is defined
as Da,s(t) = supx|Fa(x,t) − Fs(x,t)| where Fa and Fs are time-dependent cumulative distributions
for the surviving and apoptotic subpopulations, calculated numerically, and sup is the supre-
mum function.

Supporting Information
S1 Text. This supplementary document includes: overview of mathematical models of the
p53 system, detailed description of the model, three tables containing the notation guide,
list of parameters, and list of reactions.
(PDF)

S1 Fig. Detailed representation of the full model. Arrow-headed dashed lines indicate tran-
scriptional regulation, arrow-headed solid lines—protein transformation, circle-headed solid
lines—positive influence, hammer-headed dotted lines—ubiquitination by Mdm2 leading to
protein degradation. The subscripts n or c denote either nuclear or cytoplasmic localization of
Mdm2. Bold ‘P’ and non-bold ‘U’ denote phosphorylated and unphosphorylated states of
given residues, respectively. Pro-survival and cycle-promoting proteins are represented with
blue boxes, pro-apoptotic proteins with yellow boxes, proteins involved in cell cycle arrest with
green boxes, while the remaining proteins and protein complexes are left in grey boxes.
(PDF)

S2 Fig. The negative feedback mediated by Wip1 is required for generating oscillations.
Trajectories for p53 and Mdm2 were simulated using the model variant in which there is no
Wip1-mediated dephosphorylation of ATM. Simulations were performed for four different
pairs of Wip1 (s1) and PTEN (s2) synthesis rates, with IR dose equal 3 Gy. Black line corre-
sponds to nominal values of s1 and s2.
(PDF)

S3 Fig. Recurrent solutions for p53KILLER as a function of Wip1 synthesis rate, active
PI3K level and DNA damage level. PTEN mRNA synthesis rate is equal to the nominal
value s2 = 0.03; Wip1 synthesis rate is equal s1 = 0.2 in (B) and s1 = 0.1 in (C). The number of
DSBs is equal 100 for (A) and (B). The stable and unstable steady states are indicated by solid
and dashed lines, respectively. Dots and open circles show the maxima and minima of the sta-
ble and unstable limit cycles, respectively. Green vertical line shows the Neimark—Sacker
bifurcation (N—S). Red dots mark saddle—node bifurcations (SN1, SN2), yellow dots mark
the supercritical Hopf (Hsuper) and the subcritical Hopf (Hsub) bifurcation. Note the log-scale
on the vertical axis. The bifurcation diagrams with respect to Wip1 and PI3K resemble the
mirror image of the bifurcation diagram with respect to PTEN (see main text Fig 5A). The
bifurcation diagram with respect to DNA damage is similar to the bifurcation diagram with
respect to PTEN, but the limit cycle oscillations start at non-zero value of the bifurcation
parameter.
(PDF)

S4 Fig. Influence of the gene switching rates on the single-cell stochastic trajectories for
p53tot and Mdm2tot. (A) and (B): nominal gene switching rates. (C) and (D): 10-fold increased
gene switching rates. The irradiation phase started at Time = 300 h and lasted for 10 min, the
irradiation dose was 4 Gy. The dynamics of the p53tot and Mdm2tot weakly depends on the
gene switching rate, although its increase leads to some decrease of the amplitude of fluctua-
tions in unstimulated cells. Notice the logarithmic scale on vertical axes.
(PDF)
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S5 Fig. A hypothetical alternative bifurcation structure for the core module. The stable
limit cycle (of envelope marked by pairs of blue points) coexists with a high-level stable steady
state and disappears through the saddle—loop bifurcation (SL). The stable and unstable steady
states are indicated by solid and dashed lines, respectively; red dots labeled SN mark saddle—
node bifurcations.
(PDF)

S1 Code. ZIP-archived directory containing Matlab scripts and a ReadMe file.
(ZIP)

S2 Code. ZIP-archived directory containing a BioNetGen model file and a ReadMe file.
(ZIP)

S3 Code. ZIP-archived directory containing Matlab scripts calling Matcont functions, and
a ReadMe file.
(ZIP)
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Overview of mathematical models of the p53 system 

Generation of oscillations 

Bar-Or et al. [S1] found that oscillations arise due to the existence of the negative feedback loop 

coupling p53 with its inhibitor Mdm2 and proposed a three-component model with a hypothetical 

intermediate which introduces time delay between accumulation of p53 and accumulation of its 

inhibitor Mdm2, explaining the observed damped oscillations. Later, when Lahav et al. [S2] and 

Geva-Zatorski et al. [S3] demonstrated experimentally that single cells can exhibit undamped 

oscillations of p53 and Mdm2 levels, Ma et al. [S4] attributed time delays to the processes of Mdm2 

transcription and translation, which resulted in the model featuring limit cycle oscillations. Later, 

Batchelor et al. [S5] demonstrated experimentally that oscillations require recurrent initiation of ATM 

pulses by Wip1 and proposed a model based on two negative feedback loops: one coupling p53 with 

Mdm2, the other involving p53, ATM, Chk2, and Wip1. 

In the theoretical study from Tyson group, Ciliberto et al. [S6] introduced a positive feedback (in 

which p53 inhibits indirectly nuclear translocation of Mdm2, while Mdm2 degrades p53 in the 

nucleus) and demonstrated that it leads to more robust oscillations arising with non-zero amplitude 

either in the saddle–node–loop (SNL, also known as saddle node on invariant circle, SNIC) or in the 

cyclic fold bifurcation accompanying the subcritical Hopf bifurcation. However, the problem with 

SNL bifurcation is that in this bifurcation oscillations arise with infinite period while the period of 

oscillations in cells seems to be similar and roughly conserved, see Hat et al. [S7] for discussion. 
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p53 and cell fate decisions 

Wee and Aguda (2006) [S8] demonstrated that the presence of the positive feedback following the 

scheme p53 → PTEN –| Pip3 → Akt → Mdm2 –| p53 introduces bistability that can be harnessed to 

control cell fate decisions. 

Tyson group, extending their previous work [S6], proposed a small three-component model in 

which the positive feedback arises from the assumption that p53 synthesis is positively regulated by 

cytoplasmic Mdm2 [S9]. This model exhibits limit cycle oscillation between two cyclic fold 

bifurcations associated with subcritical Hopf bifurcations. The model was combined with the 

apoptotic/cell cycle arrest model in which three forms of p53 where introduced: p53-killer (that 

activates apoptotic genes like PUMA, p53DINP1 and p53AIP1), p53-helper (that induces p21 and 

Wip1 production, blocks CDK activity) and p53-lurker (that induces p21 production). In the resulting 

model, pulses of p53 lead to cell cycle arrest and, if sustained, to cell death.  

Later, we (Puszynski et al. 2008 [S10]) proposed a more complex model of p53 regulation, 

exhibiting both oscillations and bistability. We found that the intact p53 system can exhibit 

oscillations in response to DNA damage, which can be either terminated when DNA is repaired, or 

the system may switch to the apoptotic state of a high p53 level when DNA repair is not accomplished 

in sufficiently short time. The positive feedback loop considered earlier by Wee and Aguda (2006) 

[S8] allows for switching to the apoptotic state and works as a clock. The cell can return to 

homeostasis if DNA repair is accomplished before the signal is relayed through the PTEN-controlled 

loop which inhibits Mdm2. We demonstrated that PTEN-deficient cells (such as MCF-7 line cells) 

exhibit sustained oscillations without triggering apoptosis. The idea was explored later by Wee et al. 

(2009) [S11], who augmented the p53 regulatory core with an apoptotic module involving Bax, Bad, 

Bcl-2, and Bcl-xL.  

Dynamics very similar to that of [S10] was achieved in an elaborate model proposed by Zhang et 

al. (2011) [S12]. The important modification introduced by the group of Zhang (see also Zhang et al. 

(2009) [S13] and Zhang et al. (2010) [S14]) was the inclusion of distinct phosphorylation states of 

p53: p53ARRESTER and p53KILLER which regulate different groups of genes. The model of Zhang et al. 

[S12] encompasses also the negative feedback loop mediated by Wip1, introduced earlier by 

Batchelor et al. [S5]. This allowed to analyze the competition between the p53/PTEN/Akt/Mdm2 and 

the ATM/p53/Wip1 feedbacks during DNA repair, and attribute pro- and anti-apoptotic roles to 

PTEN and Wip1, respectively. 
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The model 

The proposed model of the p53 regulatory network consists of three modules: p53 core, cell cycle 

arrest module and apoptotic module. The cell cycle arrest and apoptotic modules have been described 

in detail in the main text. The detailed scheme of the core module is presented in Figure S1. Here, we 

describe briefly considered interactions and provide references to the literature.  

DNA damage leads to the activation of ATM by phosphorylation at Ser1981 [S15,S16]. Activated 

ATM phosphorylates p53 at Ser15 and Ser20 to the p53ARRESTER form leading to its transcriptional 

activation and stabilization (reduction of the degradation rate) [S17–S23]. Simultaneously, ATM 

phosphorylates p53 inhibitor Mdm2 at Ser395 leading to its inactivation and destabilization (increase 

of the degradation rate) [S24]. Additionally, ATM phosphorylates SIAH1 at Ser19 leading to 

disruption of the HIPK2–SIAH1 complex resulting in HIPK2 accumulation [S25]. Kinase HIPK2 

phosphorylates p53ARRESTER at Ser46 to the p53KILLER form [S26–S29]. p53ARRESTER and p53KILLER 

have different target genes. p53ARRESTER induces synthesis of p53 inhibitor Mdm2 [S30,S31], anti-

apoptotic phosphatase Wip1 [S32] and cell cycle suppressor p21 [S33]. In turn, p53KILLER induces 

synthesis of pro-apoptotic protein Bax [S34] and pro-apoptotic phosphatase PTEN [S35]. 

Wip1 has 3 targets in the model; It dephosphorylates: ATM at Ser1981 [S36], Mdm2 at Ser395 

(leading to its stabilization) [S37], and p53KILLER at Ser46 to p53ARRESTER. PTEN mediates long 

positive feedback loop that stabilizes p53: it dephosphorylates PIP3 to PIP2 while PIP3 enables 

membrane localization of pro-survival kinase Akt, allowing its activation via phosphorylation at 

Thr308 [S38–S40]. Activated Akt phosphorylates Mdm2 at Ser166 and Ser186 enabling its 

translocation to the nucleus [S41], where it ubiquitinates all forms of p53 promoting their degradation 

by the proteasome [S42,S43]. This way PTEN accumulation leads to inhibition of Akt [S39], which 

itself is the activator of p53 inhibitor Mdm2 [S43]. Action of PTEN is opposed by growth factor 

stimulation leading to activation of kinase PI3K that phosphorylates PIP2 to PIP3 [S44,S45].  

There are three outcomes from the core module, p21, Bax, and phosphorylated Akt. p21 regulates 

cell cycle arrest module in such a way that increase of p21 above some threshold leads suppression 

of cell cycle, while decrease of p21 below some lower threshold allows cell to return to the cycle. 

Bax and Akt regulate apoptotic module, in such a way that simultaneous increase of Bax level and 

decrease of phosphorylated Akt level lead to the irreversible apoptosis.  
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Supporting Tables 

Table A. Notation guide. 

Symbol Description 

Core module 
DNADSB DNA damage due to IR: double strand breaks (DSBs) 

ATM kinase ATM  

ATMp ATM phosphorylated at Ser1981 (upon DNA DSBs) 

Wip1gene state of the Wip1 gene: active/inactive 

Wip1mRNA Wip1 transcript 

Wip1 phosphatase Wip1 

SIAH1u unphosphorylated SIAH1 

SIAH1p SIAH1 phosphorylated at Ser19 

HIPK2 kinase HIPK2 

p530p unphosphorylated p53 

p53ARRESTER p53 phosphorylated at Ser15, Ser20 

p53KILLER p53 phosphorylated at Ser15, Ser20 and additionally at Ser46 

p53s46 p53 phosphorylated at Ser46 only 

Mdm2gene state of the Mdm2 gene: active/inactive 

Mdm2mRNA Mdm2 transcript 

Mdm2cyt_0p cytoplasmic, unphosphorylated Mdm2 

Mdm2cyt_2p cytoplasmic Mdm2 phosphorylated at Ser166 and Ser186 

Mdm2nuc_2p nuclear Mdm2 phosphorylated at Ser166 and Ser186 

Mdm2nuc_3p nuclear Mdm2 phosphorylated at Ser166, 186 and additionally at Ser395 

PI3K kinase PI3K 

PTENgene state of the PTEN gene: active/inactive 

PTENmRNA PTEN transcript 

PIP2 bi-phosphatidylinositol 

PIP3 tri-phosphatidylinositol 

Aktu unphosphorylated AKT 

Aktp Akt phosphorylated at Thr308 

Apoptotic module 
Baxgene state of the Bax gene: active/inactive 

BaxmRNA Bax transcript 

Bax unbound form of Bax 

BclxL unbound form of Bcl-xL 

Bax : BclxL complex of Bax and Bcl-xL 

Badu unbound, unphosphorylated Bad 

Badp Bad: unbound, phosphorylated at Ser75 and Ser99 

BclxL : Badu complex of Bcl-xL and Badu 

14-3-3 unbound adapter protein 14-3-3 

Badp : 14-3-3 complex of Badp and 14-3-3 

proCasp inactive caspase 

Casp active caspase 

Cell cycle arrest module 

p21gene state of the p21 gene: active/inactive 

p21mRNA p21 transcript 

p21 unbound p21 

CycE unbound Cyclin E 

p21: CycE complex of p21 and Cyclin E 

Rb1u Rb1: unbound, unphosphorylated at Ser780 

Rb1p Rb1: unbound, phosphorylated at Ser780 

Rb1u : E2F1 complex of unphosphorylated Rb1 and E2F1 
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Table B. List of parameters. 

Parameter  Symbol   Value Remarks Ref. 

Duration of the IR phase IRT 600 [s] — 
this 

study 

IR dose IRGy 1,2,3,4,10 [Gy] — 
this 

study 

Number of DSBs per 1Gy of IR DSBGy 10 — [S4]* 

Maximal number of DSBs  DSBmax 106 — [S4] 

Number of repair complexes DSBrep 20 — [S4] 

Total amount of Rb1  Rb1tot 3 × 105 [mlcs/cell] 
𝑅𝑏1tot = 𝑅𝑏1p(𝑡) + 𝑅𝑏1u(𝑡)

+ 𝑅𝑏1u: 𝐸2𝐹1(𝑡) 

this 

study 

Total amount of E2F1  E2F1tot 2 × 105 [mlcs/cell] 
𝐸2𝐹1tot = 𝐸2𝐹1(𝑡)

+ 𝑅𝑏1u: 𝐸2𝐹1(𝑡) 

this 

study 

Total amount of Akt  Akttot 105 [mlcs/cell] 𝐴𝑘𝑡tot = 𝐴𝑘𝑡u(𝑡) + 𝐴𝑘𝑡p(𝑡) 
this 

study 

Total amount of PIP3 and PIP2  PIPtot 105 [mlcs/cell] 𝑃𝐼𝑃tot = 𝑃𝐼𝑃2(𝑡) + 𝑃𝐼𝑃3(𝑡) 
this 

study 

*We consider only DSBs that undergo slow repair. 

 

 

 

Table C. List of reactions. 

 

Reaction Rate Coeff(s) Value 

Core module 

Ø  
IR
→ DNADSB 

 

Ø 
Casp
→   DNADSB 

ℎ1 ·
𝐷𝑆𝐵Gy · 𝐼𝑅Gy

𝐼𝑅T
∙ (𝐷𝑆𝐵max − 𝐷𝑁𝐴DSB) 

 

ℎ2 · 𝐶𝑎𝑠𝑝 ∙ (𝐷𝑆𝐵max − 𝐷𝑁𝐴DSB) 

ℎ1 

𝐷𝑆𝐵Gy 

𝐼𝑅Gy 

𝐼𝑅𝑇 

𝐷𝑆𝐵max 

ℎ2 

10−6 

10 

1, 2, 3, 4, 10 

600 

106 

10−13 

DNADSB → Ø 
𝑟𝑒𝑝

𝐷𝑁𝐴DSB + 𝐷𝑆𝐵rep
 

𝑟𝑒𝑝 

𝐷𝑆𝐵rep 
10−3 

20 

ATM
DNADSB

→    ATMp 𝑝1 ·
𝐷𝑁𝐴DSB

ℎ

𝑀1
ℎ + 𝐷𝑁𝐴DSB

ℎ  

𝑝1 

ℎ 

𝑀1 

3 × 10−4 

2 

5 

ATM
Wip1
←  ATMp  𝑑1 ∙ 𝑊𝑖𝑝1 𝑑1 10−8 

SIAH-1 
ATMp
→    SIAH-1p 𝑝2 ∙ 𝐴𝑇𝑀p 𝑝2  10−8 

SIAH-1 ← SIAH-1p 𝑑2 𝑑2 3 × 10−5 
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Ø → HIPK2 𝑠8 𝑠8 3 × 10−5 

HIPK2 
Mdm2nuc_2p,   SIAH1
→                Ø 𝑔7 ∙ (𝑆𝐼𝐴𝐻1u +𝑀𝑑𝑚2nuc_2p)

2 𝑔7 3 × 10−5 

Ø 
p53KILLER
→       Wip1mRNA 𝑠1 ·

𝑞0_Wip1 + 𝑞1_Wip1 ∙ 𝑝53KILLER
ℎ

𝑞2 + 𝑞0_Wip1 + 𝑞1_Wip1 ∙ 𝑝53KILLER
ℎ

 

𝑠1 

𝑞0_Wip1 

𝑞1_Wip1 

ℎ 

𝑞2 

0.1 

10−5 

3 × 10−13 

2 

3 × 10−3 

Wip1mRNA→ Ø 𝑔1 𝑔1 3 × 10−4 

Ø → Wip1 𝑡1 ∙ 𝑊𝑖𝑝1mRNA 𝑡1 3 × 10−5 
Wip1 → Ø 𝑔8 𝑔8 3 × 10−13 
Ø → p530p 𝑠6 𝑠6 300 

p530p → Ø 𝑔101 𝑔101 0.1 × 10−13 

p530p
Mdm2nuc_2p
→         Ø 𝑔11 ∙ 𝑀𝑑𝑚2nuc_2p

2  𝑔11 100 × 10−13 

p53ARRESTER
Mdm2nuc_2p
→          Ø 

p53KILLER
Mdm2nuc_2p
→          Ø 

p53s46
Mdm2nuc_2p
→          Ø 

𝑔12 ∙ 𝑀𝑑𝑚2nuc_2p
2  𝑔12 10−13 

p530p
ATMp
→   p53ARRESTER 𝑝3 ∙ 𝐴𝑇𝑀p 𝑝3 3 × 10−8 

p530p ← p53ARRESTER 𝑑3 𝑑3 10−4 

p530p
HIPK2
→    p53s46 𝑝4 ∙ 𝐻𝐼𝑃𝐾2 𝑝4 10−10 

p530p ← p53s46 𝑑4 ∙ 𝑊𝑖𝑝1 𝑑4 10−10 

Ø 
p53ARRESTER
→         Mdm2mRNA 𝑠3 ·

𝑞0_Mdm2 + 𝑞1_Mdm2 ∙ 𝑝53ARRESTER
ℎ

𝑞2 + 𝑞0_Mdm2 + 𝑞1_Mdm2 ∙ 𝑝53ARRESTER
ℎ  

𝑠3 

𝑞0_Mdm2 

𝑞1_Mdm2 

ℎ 

𝑞2 

0.1 

10−4 

3 × 10−13 

2 

3 × 10−3 
Mdm2mRNA→ Ø 𝑔1 𝑔1 3 × 10−4 

Mdm2mRNA → Mdm2cyt_0p 𝑡3 ∙ 𝑀𝑑𝑚2mRNA 𝑡3 0.1 

Mdm2cyt_0p
AKTp
→   Mdm2cyt_2p 𝑝5 ∙ 𝐴𝑘𝑡p 𝑝5 10−8 

Mdm2cyt_0p ← Mdm2cyt_2p 𝑑5 𝑑5 10−4 

Mdm2cyt_2p → Mdm2nuc_2p 𝑖1 𝑖1 10−3 

Mdm2nuc_2p
ATMp
→   Mdm2nuc_3p 𝑝6 ∙ 𝐴𝑇𝑀p 𝑝6 10−8 

Mdm2nuc_2p
Wip1
←   Mdm2nuc_3p 𝑑6 ∙ 𝑊𝑖𝑝1 𝑑6 10−10 

Mdm2cyt_0p → Ø 𝑔14 𝑔14 10−13 

Mdm2cyt_2p → Ø 

Mdm2nuc_2p → Ø 
𝑔15 𝑔15 3 × 10−14 

Mdm2nuc_3p → Ø 𝑔16 𝑔16 10−13 

Ø 
p53KILLER
→       PTENmRNA 𝑠2 ·

𝑞0_PTEN + 𝑞1_PTEN ∙ 𝑝53KILLER
ℎ

𝑞2 + 𝑞0_PTEN + 𝑞1_PTEN ∙ 𝑝53KILLER
ℎ  

𝑠2 

𝑞0_PTEN 

𝑞1_PTEN 

ℎ 

𝑞2 

0.03 

10−5 

3 × 10−13 

2 

3 × 10−3 
PTENmRNA → Ø 𝑔2 𝑔2 3 × 10−4 

Ø → PTEN 𝑡2 ∙ 𝑃𝑇𝐸𝑁mRNA 𝑡2 0.1 

PTEN → Ø 𝑔6 𝑔6 10−13 

PIP2
PI3K
→  PIP3 𝑝8 ∙ 𝑃𝐼3𝐾 𝑝8 3 × 10−9 

PIP2
PTEN
←   PIP3 𝑑7 ∙ 𝑃𝑇𝐸𝑁 𝑑7 3 × 10−7 

Akt
PIP3
→  Aktp 𝑝12 ∙ 𝑃𝐼𝑃3 𝑝12 10−9 

Akt ← Aktp 𝑑8 𝑑8 10−4 
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Apoptotic module 

Ø 
p53KILLER
→       BaxmRNA 𝑠4 ·

𝑞0_Bax + 𝑞1_Bax ∙ 𝑝53KILLER
ℎ

𝑞2 + 𝑞0_Bax + 𝑞1_Bax ∙ 𝑝53KILLLER
ℎ  

𝑠4 

𝑞0_Bax 

𝑞1_Bax 

ℎ 

𝑞2 

0.03 

10−5 

3 × 10−13 

2 

3 × 10−3 

BaxmRNA → Ø 𝑔4 𝑔4 3 × 10−4 

Ø → Bax 𝑡4 ∙ 𝐵𝑎𝑥mRNA 𝑡4 0.1 

Bax → Ø 𝑔9 𝑔9 10−13 

Bax → BclxL 𝑏1 𝑏1 3 × 10−5 

Bax ← BclxL 𝑢1 𝑢1 10−3 

Bax: BclxL → BclxL 𝑔16 𝑔16 10−13 

BclxL + Badu → BclxL: Badu 𝑏2 𝑏2 3 × 10−3 

BclxL + Badu ← BclxL: Badu 𝑢2 𝑢2 10−3 

BclxL: Badu
Aktp
→  BclxL 𝑝7 ∙ 𝐴𝑘𝑡p 𝑝7 3 × 10−9 

Badu
AKTp
→   Badp 𝑝7 ∙ 𝐴𝑘𝑡p 𝑝7 3 × 10−9 

Badu ← Badp 𝑑9 𝑑9 3 × 10−5 

Badp + 14-3-3 → Badp: 14-3-3 𝑏3 𝑏3 3 × 10−3 

Badp + 14-3-3 ← Badp: 14-3-3 𝑢3 𝑢3 10−3 

Badp: 14-3-3 → Badu + 14-3-3 𝑑9 𝑑9 3 × 10−5 

Ø → proCasp 𝑠7 𝑠7 30 

proCasp
Bax,   Casp
→       Casp 𝑎1 ∙ 𝐵𝑎𝑥 + 𝑎2 ∙ 𝐶𝑎𝑠𝑝

2 
𝑎1 

𝑎2 

3 × 10−10 

10−12 

proCasp → Ø 
𝑔17 𝑔17 3 × 10−13 

Casp → Ø 

Cell cycle arrest module 

Ø 
p53ARRESTER
→         p21mRNA 𝑠5 ·

𝑞0_𝑝21 + 𝑞1_𝑝21 ∙ 𝑝53ARRESTER
ℎ

𝑞2 + 𝑞0_𝑝21 + 𝑞1_𝑝21 ∙ 𝑝53ARRESTER
ℎ  

𝑠5 

𝑞0_p21 

𝑞1_p21 

ℎ 

𝑞2 

0.1 

10−5 

10−13 

2 

3 × 10−3 

p21mRNA→ Ø 𝑔5 𝑔5 3 × 10−4 

Ø → p21 𝑡5 ∙ 𝑝21mRNA 𝑡5 0.1 

p21 → Ø 𝑔19 𝑔19 3 × 10−13 

p21 + CycE → p21: CycE 𝑏5 𝑏5 10−5 

p21 + CycE ← p21: CycE 𝑢6 𝑢6 10−14 

p21: CycE → Ø 𝑔20 𝑔20 10−13 

Rb1
CycE
→  Rb1p 𝑝9 ∙ 𝐶𝑦𝑐𝐸 𝑝9 3 × 10−6 

Rb1 ← Rb1p 
𝑑12

𝑀2 + 𝑅𝑏1p
 

𝑑12 

𝑀2 

104 

105 

Rb1u + E2F1 → Rb1u: E2F1 𝑏4 𝑏4 10−5 

Rb1u + E2F1 ← Rb1u: E2F1 𝑢5 𝑢5 10−14 

Rb1u: E2F1 
CycE
→  Rb1p + E2F1 𝑝10 ∙ 𝐶𝑦𝑐𝐸 𝑝10 3 × 10−6 
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Relaxation oscillations and 
hierarchy of feedbacks in  
MAPK signaling
Marek Kochańczyk1, Paweł Kocieniewski1, Emilia Kozłowska2,†, Joanna Jaruszewicz-Błońska1, 
Breanne Sparta3, Michael Pargett3, John G. Albeck3, William S. Hlavacek4 & Tomasz Lipniacki1

We formulated a computational model for a MAPK signaling cascade downstream of the EGF receptor 
to investigate how interlinked positive and negative feedback loops process EGF signals into ERK 
pulses of constant amplitude but dose-dependent duration and frequency. A positive feedback loop 
involving RAS and SOS, which leads to bistability and allows for switch-like responses to inputs, is 
nested within a negative feedback loop that encompasses RAS and RAF, MEK, and ERK that inhibits 
SOS via phosphorylation. This negative feedback, operating on a longer time scale, changes switch-like 
behavior into oscillations having a period of 1 hour or longer. Two auxiliary negative feedback loops, 
from ERK to MEK and RAF, placed downstream of the positive feedback, shape the temporal ERK 
activity profile but are dispensable for oscillations. Thus, the positive feedback introduces a hierarchy 
among negative feedback loops, such that the effect of a negative feedback depends on its position 
with respect to the positive feedback loop. Furthermore, a combination of the fast positive feedback 
involving slow-diffusing membrane components with slower negative feedbacks involving faster 
diffusing cytoplasmic components leads to local excitation/global inhibition dynamics, which allows the 
MAPK cascade to transmit paracrine EGF signals into spatially non-uniform ERK activity pulses.

A canonical mitogen-activated protein kinase (MAPK) pathway responsible for transducing signals from 
growth factors consists of three tiers of sequentially activated protein kinases: RAF, MEK, and ERK1. Activated 
ERK, considered the output of the cascade, phosphorylates more than 100 substrates including several tran-
scription factors2 and elicits a variety of cellular responses including growth, proliferation, and differentiation3,4. 
Unsurprisingly, dysregulated MAPK signaling underlies many cancers5. There is growing evidence that the cell 
fate decisions are regulated by temporal6–8 or even spatiotemporal profiles of ERK and RAF9–15. It is thus impor-
tant to understand how information about the level and gradient of an extracellular stimulus is encoded and 
transmitted to intracellular downstream effectors.

In the last two decades, numerous positive and negative feedback loops regulating the MAPK network have 
been discovered and characterized16,17. A positive feedback from RAS to SOS allows for signal amplification in the 
vicinity of the receptor and has been proposed to introduce bistability18, which enables the system to respond to 
inputs in a switch-like (digital) fashion19. Negative feedbacks emanating from ERK have been associated mainly 
with response attenuation20, but negative feedbacks in general may be harnessed to ensure perfect adaptation21,22 
or give rise to oscillations23–26. System-level mechanisms of controlling information processing in MAPK are still 
not fully understood, partially due to the fact that systems involving interlocked positive and negative feedback 
loops may exhibit rich nonlinear dynamical behavior. Dynamics assumed by such complex systems depends 
on the characteristic time scales involved and network connectivity/topology, i.e., where the feedbacks act and 
how they relate to each other. For example, sustained oscillations may arise when a negative feedback loop is 
embedded within a relatively slow positive feedback loop27 or when a positive feedback loop is embedded within 
a relatively slow negative feedback loop28. In the latter case, the time profiles may be similar to those produced by 
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a relaxation oscillator, i.e., consisting of a fast activation phase and a phase of (usually slow) relaxation to a state 
in which subsequent activation is possible29. In recent work30, we observed similar pulses using a sensor based on 
phosphorylation-regulated Förster resonance energy transfer (FRET) to monitor EGF-stimulated ERK activity 
in single MCF10A cells. These pulses differ from constant-frequency quasisinusoidal oscillations in ERK nuclear 
translocation observed in other studies26 and are characterized by an EGF dose-independent amplitude and an 
EGF dose-dependent period.

In this study, we construct a computational model for MAPK/ERK signaling downstream of EGFR with 
three aims: (i) to verify whether the combination of the positive and negative feedbacks considered in the model 
leads to observed relaxation oscillations, (ii) to characterize the functional roles of the different feedback loops 
depending on their position in the network, and (iii) to analyze the consequences of proteins participating in the 
feedback loops being localized to distinct subcellular compartments (the plasma membrane or the cytosol) for 
spatiotemporal profiles of the response. We restrict our analysis to four feedbacks: one positive and three negative 
(shown in Fig. 1 and discussed in Supplementary Text S1). The proposed model is corroborated by experimen-
tal analysis of single-cell responses to a broad range of EGF doses using a fast sensor of ERK activity based on 
phosphorylation-dependent regulation of nucleocytoplasmic shuttling31,32.

Results
Model. We constructed a model for EGFR-mediated activation of ERK that captures the feedback loops illus-
trated in Fig. 1. In addition to well-known negative feedbacks from ERK to its upstream signaling partners, MEK, 
RAF, and SOS, which have been considered in earlier experimental and modeling studies, our model includes a 
positive feedback loop involving SOS and RAS. This relatively recently discovered feedback loop, labeled PF1 in 
Fig. 1, is upstream of negative feedback from ERK to RAF (labeled NF2 in Fig. 1), as well as negative feedback 
from ERK to MEK (labeled NF3 in Fig. 1), and it is encompassed within the negative feedback loop involving 
ERK and SOS (labeled NF1 in Fig. 1). It is known that interlocked positive and negative feedback loops can give 
rise to excitatory behavior, which we have observed in a recent study of single-cell ERK dynamics30. Our model 
was built and analyzed to determine whether positive feedback between plasma membrane-associated signaling 
proteins could potentially be responsible for the observed behavior, which includes apparent relaxation oscilla-
tions in ERK activity.

We formulated the model as a system of coupled ordinary differential equations (ODEs) for the mass-action 
kinetics of the reaction scheme shown in Fig. 2. Although this scheme provides a simplified representation of the 
MAPK signaling network downstream of EGFR, it preserves the dynamical structure of the network, meaning 
that it includes the essential processes responsible for the feedbacks connecting the main signaling proteins of the 
network (cf. Figs 1 and 2). Importantly, with this model, we can assign values to parameters that determine the 
relative time scales of activating and inhibiting processes. As we will discuss later, we considered two extensions 
of the model. One is a Markov chain that includes the same processes as those considered in the ODE model 
but adds stochastic processes that affect the level of EGFR expression on the surface of a single cell. This model 

Figure 1. Feedback loops in the MAPK/ERK pathway. Loops captured in the model are shown with 
solid lines. The arrow labeled PF1 represents positive feedback. This feedback loop has been implicated in 
mediating bistable switching. The arrows labeled NF1–NF3 represent negative feedbacks. The NF1 feedback 
loop encompasses the positive feedback loop. The NF2 and NF3 feedback loops are placed out of the positive 
feedback loop. Dotted lines indicate feedbacks not included in the model.
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extension is intended to account for extrinsic noise and the heterogeneity of cell populations (see Materials and 
Methods). The second extended model consists of a set of partial differential equations (PDEs). These equations 
incorporate the right-hand side terms of the ODE model. Reaction–diffusion processes in the extracellular space, 
on the plasma membrane, and in the cytosol are coupled through Robin-type boundary conditions. This model 
extension was formulated to study the subcellular spatial heterogeneity of responses to paracrine signaling, mod-
eled as secretion of EGF at random times and random extracellular locations (see Materials and Methods).

An executable specification of the ODE model and the extended stochastic version of the model are 
provided in Supplementary Data 1. Default parameter settings for the ODE model are summarized in 
Supplementary Table S1. Supplementary Text S2 and Supplementary Table S2 contain non-dimensional model 
equations and parameters, respectively. Code for bifurcation analysis are provided in Supplementary Data 2. 
The stochastic extension of the ODE model has unique parameters that describe the dynamics of EGFR surface 
expression (Supplementary Table S3) and is provided in Supplementary Data 3. An executable specification of the 
PDE model is provided in Supplementary Data 4. This model has unique parameters that describe diffusion pro-
cesses and paracrine signaling (Supplementary Table S4). Parameters were assigned default values as described 
in Materials and Methods. Simulations and bifurcation analyses were performed as described in Materials and 
Methods.

Positive feedback and bistability. According to the model with the default parameter settings of 
Supplementary Table S1, in the absence of negative feedbacks, the system exhibits bistability, i.e., bistable switch-
ing behavior (also known as hysteretic switching). As illustrated in Fig. 3, bistability depends on parameters gov-
erning positive feedback between SOS and RAS (Fig. 3A), as well as parameters governing saturation of RasGAP 
(Fig. 3B).

The results of Fig. 3A are consistent with earlier work, which has implicated positive feedback from SOS 
to RAS in hysteretic switching33. Positive feedback arises because the product of SOS’s GEF activity, which is 
RAS-GTP, binds to SOS at SOS’s REM domain, which is non-overlapping with SOS’s GEF domain (also known 
as the Cdc25 homology domain). The outcome of RAS-GTP binding to SOS is an increase in the GEF activity of 
SOS. RAS-GDP binding to SOS also increases SOS’s GEF activity, but to a lesser extent. The parameter values of 
Supplementary Table S1 were selected so that positive feedback from SOS to RAS generates hysteretic switching 
in the absence of negative feedbacks. The parameter values characterizing SOS GEF activity (k2C, k2B, and k2A) are 
such that SOS’s GEF activity is zero when its REM domain is not bound to RAS (i.e., k2C =  0), and its GEF activity 
when SOS’s REM domain is bound to RAS-GDP is an order of magnitude lower than when SOS’s REM domain 

Figure 2. Model for MAPK signaling.  Reactions considered in the model are represented by lines with 
arrowheads. Multiple arrowheads denote reactions with multiple steps (e.g., multi-site phosphorylation of SOS 
by ERK). Positive influences (e.g., ERK-catalyzed phosphorylation of SOS) are indicated by lines attached to 
small circles, with the circles identifying the reactions affected. The reactions and influences responsible for 
various feedback mechanisms are highlighted with shading: RAS-to-SOS positive feedback (red shading), ERK-
to-SOS negative feedback (purple shading), ERK-to-MEK negative feedback (green shading), and ERK-to-RAF 
negative feedback (blue shading). Tripartite arrows, labeled with both binding and unbinding rate constants, are 
used to represent association and dissociation reactions.
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is bound to RAS-GTP (i.e., k2B =  0.1 ×  k2A). As shown in Fig. 3A, bistability requires both parameters, k2B and k2C, 
to be sufficiently small with respect to k2A.

Bistability is enabled by constraints on parameters related to SOS’s GEF activity (mentioned above) or by 
saturability of RasGAP (Fig. 3B). Saturation of RasGAP may occur during a response to EGF if the abundance of 
RasGAP is sufficiently lower than that of RAS, or if RasGAP-RAS complexes are sufficiently long lived. We have 
set parameter values such that RasGAP is saturable (Supplementary Table S1). Different parameter settings used 
in an independent modeling study34 are also consistent with saturability of RasGAP (Fig. 3B). In the steady state, 
the outcome of the pathway depends on the level of EGF-activated and SOS-bound receptors. In the bifurcation 
diagram of Fig. 3C, the level of EGFRa–SOSu complexes serves as a bifurcation parameter. Here, we use the 
notation “EGFRa–SOSu” to refer to activated EGFR in complex with SOS, which can bind EGFR only when not 
phosphorylated. Bistability arises for a certain range of EGFRa–SOSu abundance; below this range the system is 
monostable inactive (i.e., a low fraction of ERK is active), whereas above it, the system is monostable active (i.e., 
a high fraction of ERK is active).

Negative feedbacks and oscillations. Analysis of the bifurcation diagram in Fig. 3C suggests that the 
slow negative feedback mediated by ERK, which reduces the number of EGFRa–SOSu complexes (by phosphoryl-
ation of SOS to the state in which it cannot bind EGFR), may lead to relaxation oscillations. The mechanism may 
be explained as follows. In unstimulated cells the level of EGFRa–SOSu complexes is below the level correspond-
ing to the saddle node bifurcation point SN1 in Fig. 3C, and thus ERK is inactive. EGF stimulation activates recep-
tors, with formation of EGFRa–SOSu complexes. When the level of EGFRa–SOSu exceeds the level corresponding 
to the saddle node bifurcation point SN2, ERK is activated. Subsequently, ERK phosphorylates SOS, reducing the 
level of EGFRa–SOSu complexes. When this level drops below SN1, ERK activity is terminated. After ERK activity 
is terminated, SOS is dephosphorylated and the system resets; therefore, with persistent EGF stimulation, ERK 
activity pulses can be recurrent. The cycle is shown in parametric plot in Fig. 3D.

The full system (with all three negative feedbacks illustrated in Fig. 1 and parameterization according to 
Supplementary Table S1) can exhibit oscillations (Fig. 4). The amplitude of these oscillations very weakly depends 
on the strength of EGF stimulation, in contrast to the period and pulse width. These properties, indicating that 
the system switches between on and off states corresponding to the steady states of the system when only the pos-
itive feedback is present (Fig. 3C), are characteristic of relaxation oscillations. At a low level of EGF stimulation, 
ERK activity is pulsatile (Fig. 4A). In contrast, at a high level of EGF stimulation, pulse width is wide and off time 
is short, such that ERK activity is high most of the time (Fig. 4C). As a consequence, the ERK activity integrated 
over a population of (unsynchronized) cells would be expected to increase gradually with the EGF dose.

In the analyzed MAPK relaxation oscillator, period of oscillations is controlled by the speed of the inhibi-
tion and relaxation processes: inhibition relies on the phosphorylation of SOS by phosphorylated ERK (ERKpp), 

Figure 3. Conditions for bistability and the emergence of relaxation oscillations. With all negative feedbacks 
removed, the system exhibits either bistable switching or graded responses to EGF stimulation depending on 
parameter values. (A) Range of parameters governing positive feedback for which the system exhibits bistability 
(for some EGF concentrations higher than 0.1 pg/ml). The parameters are ratios of rate constants, which 
characterize the relative nucleotide exchange activity of SOS when the REM domain in SOS is not bound to 
RAS or bound to RAS-GDP compared to the activity when the REM domain is bound to RAS-GTP (k2C/k2A and 
k2B/k2A). We vary these ratios with k2A fixed at the value given in Supplementary Table S1. (B) Range of  
parameters governing saturation of RasGAP for which the system exhibits bistability (for some EGF 
concentrations higher than 0.1 pg/ml). The parameters considered in this diagram characterize RasGAP 
activity: the ratio of enzyme (RasGAPtot) to substrate (RAStot) and the rate constant for dissociation of the 
enzyme-product complex (u3). We vary the ratio RasGAPtot/RAStot by varying RasGAPtot while keeping the 
value of the product b3 ×  RasGAPtot constant. This product governs the rate of formation of the enzyme-
substrate complex. For more information about parameters, see Supplementary Table S1. In both panels, 
a solid dot marks the location in parameter space that corresponds to the values of parameters given in 
Supplementary Table S1. In panel B, an open dot marks the location in parameter space that corresponds to 
the values of parameters in the model of Stites et al. (Ref. 34). (C) Bifurcation diagram showing the active ERK 
fraction vs. the level of EGFRa–SOSu complexes in the system without all three negative feedbacks. Solid lines 
show two stable steady states; dashed line shows unstable steady state. (D) Analysis of the system with the 
negative feedback from ERK to SOS present and other two negative feedbacks absent. Parametric plot shows a 
projection of the limit cycle on the (active ERK fraction)—(EGFRa–SOSu complexes) plane.
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whereas relaxation relies on the resurgence of dephosphorylated SOS (SOSu) that can form complex with active 
EGFR (EGFRa) – see Fig. 4, violet dashed line. In the model we assume that SOS phosphorylation and dephos-
phorylation are possible only when SOS is not bound to EGFR. At a low stimulation dose (Fig. 4a) the resurgence 
phase is long, because SOSu has to recover to a high level (higher than in the case of a high stimulation dose) in 
order initiate a next pulse; at a high stimulation dose (Fig. 4c) the inhibition phase is long because SOSu has to 
drop to a low level (lower than for low stimulation dose) in order to terminate pathway activation.

The prediction of relaxation oscillations (Fig. 4) is consistent with observations of periodic ERK activity made 
using two different ERK activity reporters, EKAR3 and ERKTR32. The ERKTR reporter indicates bursts of ERK 
activity separated by distinct periods of essentially no activity. The EKAR3 reporter indicates similar oscillatory 
dynamics, but the off periods are less pronounced (see Fig. 5B in ref. 32). To determine if these features can be 
explained by the different kinetics of ERK interaction with the two reporters on the top of the model of Fig. 2 we 
explicitly included ERK activity reporters (see Materials and Methods). As shown in Supplementary Figure S3, the 
shape of predicted oscillations in the level of reporter phosphorylation depends on the kinetics of ERK-reporter 
interaction. With slower interaction kinetics, the off periods become shorter.

To investigate the parameter dependence of oscillatory behavior, we performed a bifurcation analysis (Fig. 5). 
Two-dimensional bifurcation diagrams (Fig. 5A and B) illustrate how qualitative behavior depends on the 
strength of EGF stimulation and the strengths of three negative feedbacks. As indicated in Fig. 5B, four regimes 
of behavior are possible: monostable on and off states, bistability (wherein the steady state occupied depends on 
history), and oscillations. These regimes are separated by bifurcations of different types, which are indicated by 
the labeling of boundaries. Figure 5C–E are one-dimensional bifurcation diagrams (with the strength of EGF 
stimulation chosen as a bifurcation parameter) corresponding to different cross-sections of the parameter space 
of Fig. 5B. The cross-section in Fig. 5D corresponds to the default parameter values of Supplementary Table S1. 
This diagram shows that the system is off (on) at low (high) levels of EGF stimulation and exhibits oscillations 
over a ~100-fold intermediate range of EGF stimulation strength. Over this range, the period of oscillations in 
ERK activity first decreases and then increases with EGF dose. The default parameters, which were chosen for 
consistency with observed system behaviors30, allow for a rich repertoire of behaviors. Moreover, the relatively 
modest modification of these parameters can change the system behavior from bistable to oscillatory, which is in 
line with the conjecture that complex systems are poised at criticality35.

Oscillatory behavior depends on feedback strengths (Fig. 5A–D), and bistability is only realized when negative 
feedback from ERK to SOS is weak or absent (Fig. 5B and E). As can be seen by inspecting Fig. 5B and also by 
comparing Fig. 5C and D, the range of oscillatory behavior increases with the strength of negative feedback from 
ERK to SOS. Conversely, the range of oscillatory behavior shrinks with stronger feedbacks from ERK to MEK 
and RAF (Fig. 5A). Generally, for a system with a single negative feedback, increasing the strength of negative 
feedback tends to switch off the response of the system to a signal. Here, somewhat paradoxically, increasing the 
strength of the negative feedbacks from ERK to MEK and from ERK to RAF can push the system from oscillatory 
behavior to a persistent on state if EGF stimulation is sufficiently strong (Fig. 5A). This behavior arises because 

Figure 4. Simulated trajectories for three EGF stimulation doses. The active ERK fraction (left column) 
together with levels of EGFRa–SOSu complexes, EGFRa–SOSu–RAS-GTP complexes, RAFa and MEKpp 
normalized to their maxima (right column) are shown as a function of time after stimulation by (A) low,  
(B) intermediate, and (C) high doses of EGF.
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negative feedbacks from ERK to MEK and from ERK to RAF weaken ERK activity, such that the ERK-to-SOS 
negative feedback cannot be engaged to induce oscillations.

We note that oscillatory behavior requires not only a sufficiently strong negative feedback from ERK to SOS 
(Fig. 5) but also multi-site phosphorylation of SOS (Supplementary Figure S2). In the model, the effect of (dis-
tributive) multi-site phosphorylation is to introduce a delay in reactivation of SOS after deactivation of ERK. The 
delay arises from the time required for phosphatases to act and an assumption that phosphorylation of a single 
site in SOS by ERK is sufficient to suppress SOS activity. The model accounts for four SOS residues that can be 
phosphorylated by ERK. If the number of such residues is reduced to three, oscillatory behavior is observed over 
a much narrower range of EGF concentrations and oscillations are not observed for less than three phosphoryl-
atable residues in SOS (Supplementary Figure S2).

The shape of ERK activity pulses is controlled by the strengths of negative feedbacks from ERK to MEK and 
from ERK to RAF (Fig. 6). As illustrated in Fig. 6A and B, for a given strength of negative feedback from ERK to 
SOS, increasing the strengths of negative feedbacks from ERK to MEK and from ERK to RAF changes the wave-
form of system response from a square wave to a long-tail pulse. Although the ERK-to-MEK and ERK-to-RAF 
feedbacks are somewhat redundant, both being downstream of positive feedback from RAS to SOS, the 
ERK-to-RAF feedback is more far ranged and therefore more strongly impacts pulse shape (Fig. 6C and D). Note 
that we have taken the ERK-to-MEK and ERK-to-RAF feedbacks to be equally strong (Supplementary Table S1). 
Additional phase space analysis in Supplementary Figure S4 shows in parametric plots that cycle trajectories with 
two feedback strengths in common group together in tight clusters whereas trajectories with only one feedback 
strength in common group together in looser clusters.

Figure 5. Bifurcation diagrams. Each plot indicates the recurrent solutions for the fraction of activated ERK 
(ERKpp/ERKtotal) as a function of either one or two bifurcation parameters. EGF dose (or stimulation level) 
is a bifurcation parameter in each plot. In the two-dimensional bifurcation diagrams, the second bifurcation 
parameter characterizes the strength of the negative feedbacks from ERK to RAF and MEK (A) and the strength 
of the negative feedback from ERK to SOS (B). Areas are colored to indicate distinct qualitative behaviors: 
oscillatory, monostable with low or high ERK activity, and bistable. The boundaries are labeled to indicate the 
bifurcation types that separate the different regimes of behavior. The one-dimensional bifurcation diagrams 
correspond to different strengths of the negative feedback from ERK to SOS (i.e., they correspond to different 
cross-sections of the parameter space of panel B): twice the default strength (C), the default strength (D), and 
absent (E). Solid green lines indicate stable steady states; dashed green lines indicate unstable steady states. 
Yellow dots indicate the upper and lower envelopes of stable limit cycles. Purple lines indicate the periods of 
oscillations. Cyclic fold (CF) bifurcations in panels C and D are accompanied by subcritical Hopf bifurcation 
points (not marked). In a tiny parameter region between the two bifurcation points there coexist a stable limit 
cycle, an unstable limit cycle, and a stable steady state. In panel D, supercritical Hopf bifurcation lies close to a 
series of complex bifurcations (seen as the period discontinuity) which effects in a junction of limit cycles.
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Noisy oscillatory excitation of ERK. In earlier work30, using the EKAR-EV reporter, we observed bursts 
of ERK activity at low EGF doses, regular pulses of ERK activity at intermediate EGF doses, and sustained ERK 
activity with short, intermittent off periods at high EGF doses. These behaviors have been confirmed using the 
ERKTR reporter (Ref. 32, Fig. 7), which because of its faster kinetics is able to better resolve oscillatory dynamics 
(Supplementary Figure S3).

As discussed above, the model of Fig. 2 predicts that oscillations, when they appear, will have an EGF 
dose-dependent frequency and dose-independent amplitude (Fig. 4). These features of predicted oscillatory 
behavior in single cells are similar to the oscillations in ERK activity that we observe in single cells (Ref. 30 and 
Fig. 7). However, the experimentally observed oscillations are noisy, with irregularity both within individual 
cells and across cells in the population monitored in experiments. To investigate how these irregularities could 
potentially arise (and whether they are consistent with the model), we extended the model of Fig. 2 to account 
for extrinsic noise. For simplicity, we considered only a single extrinsic noise source, which we took to be sto-
chastic, time-varying cell-specific surface expression of EGFR. This extension is consistent with heterogeneity in 
protein expression levels across cell populations, which has been extensively studied and linked to bursts of gene 
expression36,37.

Thus, the extended model was obtained by recasting the original model as a Markov chain and by adding 
processes for stochastic generation and clearance of EGFR. Parameters introduced with these extensions are 
summarized in Supplementary Table S3. Parameter values are such that EGFR surface expression changes on a 
time scale of hours (Fig. 8A). The influence of extrinsic noise characteristics on active ERK dynamics is analyzed 
in Supplementary Figure S5. Separate influences of the intrinsic and extrinsic noise on ERK dynamics are demon-
strated in Supplementary Figure S6 and Supplementary Figure S7.

Figure 8 shows time courses obtained from the extended, stochastic model for a collection of 20 individ-
ual cells responding to different doses of EGF. As can be seen, the extended model predicts irregular EGF 
dose-dependent excitations of ERK, suggesting that the similar irregularities observed in experiments (Fig. 7) 
can be attributed to extrinsic noise, which may arise partly from cell-specific time-varying stochastic EGFR sur-
face expression. For the lowest dose considered, 2 pg/ml, ERK is excited in bursts, which tend to be separated 
by relatively long periods of inactivity (Fig. 8B). According to the deterministic model, this dose lies outside the 
oscillatory range (Fig. 5D). Indeed, this dose places the system’s steady state in the monostable, inactive regime. 
The stochastic model predicts bursts of ERK activity arising due to fluctuations of EGFR that allow the level of 
activated EGFR to exceed a threshold required for ERK activation. We note that inhibition of EGFR (with the 
kinase inhibitor gefitinib) immediately eliminates pulsatile ERK activity (Fig. 7), indicating that ERK activity 
pulses require uninhibited EGFR level being above a threshold. Additional analyses of 10-day-long trajectories is 
provided in Supplementary Figure S8.

Excitation of ERK by transient EGFR signaling. Positive feedback mediated by SOS influences system 
behavior, such that transient EGF stimulation is expected to produce responses having certain experimentally 

Figure 6. Negative feedback from ERK to MEK and RAF shape the time profile of response to EGF 
stimulation at 10 pg/ml. Each time course illustrates an oscillatory response to EGF stimulation. In the top 
panels, the strength of ERK-to-SOS negative feedback is set at the default level (A) or twice the default level (B). 
In these panels, different dash patterns correspond to different strengths of feedback from ERK to MEK and 
RAF, as indicated in the legends. The ERK-to-MEK and ERK-to-RAF feedback strengths are taken to be equal. 
In the bottom panels, the ERK-to-MEK and ERK-to-RAF feedback strengths are varied separately, as indicated 
in the legends.
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detectable features. In Fig. 9, we consider predicted responses of the system to different transient doses of EGF. 
The smallest dose considered, 3 pg/ml, induces a pulse of high ERK activity only for the longest period of EGF 
stimulation, 20 min (Fig. 9A). In contrast, for a relatively high EGF dose of 60 pg/ml, even the shortest period of 
EGF stimulation, 30s, induces a pulse of high ERK activity (Fig. 9D). The stimulation time required to induce 
high ERK activity decreases with increasing EGF dose, which follows from the fact that there exists a threshold 
level of EGFR that must be activated to trigger downstream signaling. For short EGF stimulation times, active 
EGFR level increases linearly with time, with a rate proportional to the EGF stimulation dose. Therefore, in this 
regime, ERK is activated when the product of stimulation time and EGF dose exceeds some threshold. For longer 
stimulation times, the level of active EGFR saturates; in this limit, the critical dose for long stimulation converges 
to the critical dose for sustained stimulation, 2.5 pg/ml (cf. Figs 5D and 9E). Figure 9B–D show that for short, 
transient EGF stimulation periods, ERK activity starts to rise after EGF stimulation stops, which shows that after 
the level of active EGFR exceeds a threshold, signal propagates independently of further EGF stimulation.

Figure 7. Kinetics of ERK activity as reported by ERKTR at four different doses of EGF. EGFR inhibition 
by gefitinib is sufficient for elimination of ERK pulses. The time points are spaced by 3 minutes. A smaller set of 
data from the same experiment was published previously32.
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Recently, we observed a similar effect in which the integral of stimulus (i.e., time ×  amplitude) determines the 
fraction of activated cells in a population in the case of LPS stimulation38. As in the case of growth factor signa-
ling, the immunogenic signal is integrated at the membrane and after surpassing a threshold activates a down-
stream pathway. This property results from ultrasensitivity or positive feedback operating at the membrane level.

ERK responses to localized secretion of EGF. A notable feature of the feedback mechanisms involved in 
MAPK signaling is their ability to propagate signals through space. Positive feedback requires interactions on the 
plasma membrane (Fig. 2). In contrast, negative feedback signals are relayed by faster diffusing cytosolic proteins 
(Fig. 2). Such a combination of feedbacks can potentially give rise to local excitation/global inhibition (LEGI) 

Figure 8. Single-cell temporal EGFR surface expression and ERK activity profiles obtained from stochastic 
simulations with fluctuating EGFR levels. We considered the effect of extrinsic noise on oscillations in ERK 
activity. As illustrated in panel (A), which shows representative single-cell simulations, we took EGFR surface 
expression dynamics to be stochastic and marked by bursts of synthesis/expression of variable size (total 
amount of EGFR added to the plasma membrane) and duration, with bursts being separated by intervals of 
variable duration. The bottom four panels show heat maps that indicate single-cell responses (ERK activity as 
a function of time) to different levels of EGF stimulation: (B) 2 pg/ml, (C) 10 pg/ml, (D) 50 pg/ml, and 200 pg/ml  
(E). Each row in a heat map corresponds to an individual cell characterized by a unique set of parameters for 
EGFR surface expression dynamics. The cells considered are otherwise identical. To demonstrate and isolate 
the effect of EGF dose, we have taken the temporal EGFR expression profile to be the same across panels for 
each cell (i.e., each row in each heat map corresponds to a common profile). Supplementary Table S3 provides 
information about the parameters that are unique for the stochastic simulations shown here.
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dynamics. In LEGI-type regulation, the membrane components are activated due to propagation of a heteroclinic 
traveling wave (enabled by bistability introduced by a positive feedback). Activation of membrane components 
is followed by more uniform activation of cytoplasmic components and then global inhibition of membrane 
components via negative feedback. LEGI can generate spatial essential for proper cellular responses to direc-
tional cues, such as chemotactic movement of ameboid cells toward a higher concentration of a chemokine39–42. 
Detection of directional cues may be an important function of the EGFR signaling network. EGF gradient sensing 
or ERK heterogeneities have been implicated in mechanotransduction, cell polarization, and motility12–14.

To investigate spatial heterogeneities in MAPK signaling, we extended the ODE model of Fig. 2 to obtain 
a reaction–diffusion PDE-based model. This extended model accounts for both the spatiotemporal kinetics 
of the signaling network components within the cell and extracellular randomized release of (paracrine) EGF.  
A more detailed description of this model extension is provided in the Materials and Methods section; parameters 
introduced with this extension are summarized in Supplementary Table S4. We used the PDE model to predict 
responses to localized (paracrine) EGF stimulation (Fig. 10). A sequence of simulation snapshots is shown in 
Fig. 10, which are taken from Supplementary Video 1. This sequence illustrates how non-uniform EGF stimula-
tion, which is visualized in the top row of images, can trigger a traveling wave of activated RAS that spreads over 
the plasma membrane (Supplementary Video 1) and that produces a transient gradient of ERK activity within the 
cell, which is visualized in the bottom row of images. This spatiotemporal behavior is in accordance with LEGI 
dynamics.

Figure 9. Predicted responses to pulsed EGF stimulations of various doses and durations. Each curve is 
obtained from a simulation of an experiment wherein EGFR signaling is stimulated by a low (A), intermediate 
(B,C) or high (D) dose of ligand (EGF) for the duration indicated in the legend. EGF stimulation pulse starts at 
time =  0. After this pulse of stimulation free ligand is removed. (E) Dependence of critical EGF stimulation dose 
on stimulation duration.

Figure 10. Spatiotemporal dynamics of EGF, RAS activity (RAS-GTP/RAStotal), and ERK activity (ERKpp/
ERKtotal) for a cell responding to localized EGF secretion. Shown are sequential snapshots taken from 
Supplementary Video 1 in the Supporting Information that illustrate the response of a cell to a wave of EGF, 
which is produced by point sources releasing EGF at random times and locations in a shell surrounding the 
cell. At each time point, the spatial distribution of EGF at the cell surface is shown in the top row, fraction 
of activated RAS is shown in the middle row, and the spatial distribution of activated ERK inside the cell is 
shown in the bottom row (on a cross-section passing through the cell center). Supplementary Table S4 provides 
information about the parameters that are unique for the spatiotemporal simulations shown here.
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Interestingly, ERK may be activated even when the average surface concentration of EGF is below the thresh-
old concentration required for activation in the well-mixed limit (i.e., below the level corresponding to the saddle 
node bifurcation point SN2 in Fig. 5E). This behavior, which can be seen at approximately 20 hr in Supplementary 
Video 1, occurs because the local concentration of EGF exceeds the average concentration, as well as SN2, the 
threshold required to trigger a traveling wave of RAS activation. Once the heteroclinic wave is initiated on the 
membrane, its propagation requires only that the concentration of EGF remains above the lower limit of the 
bistability range, i.e., above the level of EGF corresponding to the saddle node bifurcation point SN1 in Fig. 5E.

Discussion
The MAPK signaling cascade transmits signals that control diverse cell functions such as proliferation, differ-
entiation, motility, and apoptosis3. The mechanisms allowing the pathway to achieve specificity are still elusive. 
There is growing evidence that diverse cellular functions are coordinated through multiple posttranslational 
modifications of RAF. These modifications allow RAF isoforms to propagate signals into diverse downstream 
pathways43,44. Another mode of cell fate control is associated with the temporal profiles of RAF, MEK, and ERK 
activity. Recently, Ryu et al. demonstrated in PC‐12 cells that the choice between proliferation and differentia-
tion depends on the frequency of ERK activity oscillations8. Here, we constructed and analyzed a computational 
model of MAPK signaling to clarify how such oscillations can be generated in response to persistent stimuli, and 
how their frequency and time profile (i.e., pulse shape) are controlled.

Within the MAPK/ERK signaling cascade, ERK mediates apparently redundant negative feedback loops that 
inhibit signal propagation at multiple upstream points. In our modeling study, we focused on the positive feed-
back loop that involves the small GTPase RAS and its guanine nucleotide exchange factor SOS. In the absence 
of negative feedbacks, this positive feedback loop leads to bistable switching. However, when this loop is nested 
within the negative feedback loop from ERK to SOS, the system produces relaxation oscillations, which match 
experimental time courses. The two other negative feedbacks, from ERK to MEK and RAF, play only auxiliary 
roles in the generation of oscillations, principally modulating the shape of ERK activity pulses. The presence of 
these two loops, however, allow for controlling activity of RAF, which has numerous targets in addition to MEK45. 
The positive feedback introduces a hierarchy between negative feedbacks, such that the ERK to SOS feedback is 
responsible for generating oscillations and the other two feedbacks considered in our analysis are responsible for 
shaping the waveform of oscillations.

In addition to the feedbacks discussed above, there are at least two other positive feedbacks that are nested 
within the ERK–SOS negative feedback loop: the ERK/MEK hidden feedback, in which bistability may arise 
in the double phosphorylation/dephosphorylation cycle due to distributive phosphorylation and saturability in 
dephosphorylation reaction46, and the RAS–GAB1–PI3K feedback47. Both feedbacks fit into the discussed topol-
ogy that can give rise to relaxation oscillations, but, importantly, only the RAS–GAB–PI3K feedback (in addition 
to the RAS–SOS feedback) can act as an initial signal amplifier, because it is upstream of the RAF/MEK/ERK 
cascade.

Overall, the feedbacks considered here encode a graded input into constant-amplitude pulses, such that the 
level of a stimulus is translated to the frequency of oscillation and pulse duration. We speculate that, in compari-
son with amplitude-to-amplitude coding, amplitude-to-frequency coding may decrease ambiguity in signal inter-
pretation by downstream effectors and increase information channel capacity. The NF-κ B signaling system, which 
is characterized by a constant period of oscillations and thus appears to employ the former scheme48, was found 
to transmit only ~1 bit of information49,50. Interestingly, in the MAPK pathway, Aoki et al. found that frequency, 
but not amplitude, of ERK activity pulses is correlated with cell proliferation rates51.

The ERK pathway can modulate cell adhesion and promote cell migration by activation of actin polymeriza-
tion52 or vimentin filament remodeling53. To respond properly to extracellular, directional cues14,54, the pathway 
should be organized spatially55. By analyzing the MAPK/ERK network as a reaction–diffusion system we found 
that when a cell is exposed to localized bursts of EGF, ERK activation exhibits local excitation/global inhibition 
(LEGI) dynamics56. LEGI dynamics arise because of the existence of a fast positive feedback involving slowly 
diffusing membrane-bound proteins. Under these conditions, localized EGFR excitation can trigger RAS activa-
tion that spreads over the membrane as a traveling wave, which induces a non-uniform surge of RAF, MEK and 
ERK activity in the cytosol. Ultimately, ERK-mediated phosphorylation of SOS globally inhibits pathway activity 
because cytosolic proteins diffuse faster than membrane proteins, by at least one order of magnitude. Such a 
mechanism allows cells to encode information about concentration gradients of extracellular ligand into spatially 
structured pulses of cytosolic proteins activity. It has been suggested that ERK-controlled EGF shedding can 
maintain an intrinsic cell spatial polarity15 which may be exploited to induce directed cell migration.

In our spatial model, RAS kinetics is simplified: we consider only a membrane pool of RAS and we neglect 
the existence of membrane microdomains that can be enriched in RAS. We are however aware that the het-
erogeneity in RAS distribution combined with the positive feedback between RAS and SOS can substantially 
influence signaling. In our earlier modelling efforts on B-cell activation57 we demonstrate that clusterization of 
membrane components can itself lead to a local activation, which can then spread over the membrane by means 
of a traveling wave. Also, EGFR and RAS trafficking between plasma membrane and subcellular compartments, 
and trafficking-dependent signaling from inside the cell (in addition to signaling from the plasma membrane) 
would influence spatiotemporal activity profiles of downstream components, RAF, MEK, and ERK.

In summary, we have shown that the presence of the short positive feedback coupling RAS and SOS introduces 
bistability into the system and that this bistability, when frustrated by the negative feedback loop from ERK to 
SOS, introduces relaxation oscillations which can explain pulsatile time courses of active ERK observed in exper-
iments. This regulatory circuitry allows for translation of graded inputs into constant-amplitude oscillations that 
have a period and pulse duration determined by signal strength. Because the positive feedback operates on a short 
time scale and involves slow-diffusing membrane components while the negative feedback operates on a longer 
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time scale but involves faster-diffusing cytoplasmic components, in response to localized EGF stimulation, the 
system exhibits local activation/global inhibition dynamics. This allows for translation of spatially-graded stimuli 
to spatially oriented pulses of RAF, MEK and ERK activity, which could be used to direct cell migration or induce 
polarity.

Materials and Methods
Setting parameters. It is challenging to identify parameter values even when abundant experimental data 
are available to guide parameter estimation58. Here, we selected parameter values so as to obtain certain qualita-
tive system behaviors and to allow for qualitative behavior to change in response to variation in the strength of 
EGF stimulation. This approach is consistent with the hypothesis that cellular regulatory systems operate close 
to bifurcation points35,59. First, we considered the system with only the positive feedback loop from RAS to SOS. 
We set parameter values so that there is a regime of bistability at low EGF stimulation levels. We then adjusted 
parameter values so that the time required for information to flow from RAS to ERK yields ERK activation 
kinetics in accord with experimental observations. Then, we considered negative feedback from ERK to SOS. We 
set parameters influencing this feedback such that SOS inhibition lasts long enough to allow for nearly complete 
deactivation of RAF, MEK and ERK. Finally, we considered negative feedbacks from ERK to MEK and RAF and 
set parameter values governing these feedbacks such that the time profiles of ERK activity are sensitive to the 
feedback strengths.

Active ERK reporters. The ODE-based model was supplemented with two ERK activity reporters, EKAR3 
and ERKTR. Their activation and deactivation reaction rate constants (Supplementary Table S1) have been tuned 
to be reproduce experimentally measured reporter kinetics32.

Numerical integration of ODEs. The deterministic model is based on an assumption of well-mixed reac-
tion compartments. It was written in terms of reaction rules using the BioNetGen language (BNGL)60. The rules, 
which are provided in Supplementary Data 1, can be processed by BioNetGen60 to obtain a reaction network and 
a corresponding system of coupled ordinary differential equations (ODEs) for the mass-action kinetics of the 
reaction network. The ODEs were numerically integrated using CVODE61, which is an integral component of 
BioNetGen. We used BioNetGen’s default settings for CVODE parameters, which are appropriate for stiff systems.

Construction of bifurcation diagrams. Bifurcation diagrams were obtained using Matlab/Matcont62. 
Supplementary Data 2 contains scripts which can be used to obtain the bifurcation diagrams shown in Supplementary  
Figure S1.

Modeling stochastic EGFR surface expression dynamics. To investigate how ERK response dynamics 
are influenced by stochasticity, we introduced a source of extrinsic noise by allowing the EGFR level to change 
over time and in this way to modulate cellular sensitivity to EGF stimulation. In the stochastic model, EGFR is 
expressed in bursts and has a predefined half-life, τEGFR (Supplementary Table S3). Bursts occur at random time 
points, distributed exponentially with a mean waiting time of λ interburst

−1, and have durations that are drawn from 
an exponential distribution with mean burst duration of λ burst

−1. The rate of EGFR production in each burst is 
cell-dependent and is computed as the product of a common intensity factor, Aburst, and a cell-specific factor,  
α cell, which is drawn from a log-normal distribution having mean of 1. The simulations are performed using an 
efficient variation of Gillespie’s direct method63 as implemented in BioNetGen60. A BioNetGen input file corre-
sponding to the simulations shown for cell 8 in Fig. 8B is provided in Supplementary Data 3.

PDE simulations. A single cell is considered. It is represented as a sphere of radius Rcell with volume Vcell. 
Values of these and others parameters specific to this model extension are summarized in Supplementary Table S4. 
Membrane and cytosolic proteins diffuse with diffusivities Dmem and Dcyt, respectively, with Dcyt =  10 ×  Dmem. 
Reaction–diffusion equations on the membrane and in the cytosol are coupled via Robin-type boundary 
conditions64. We assume that the flux Φ  of active RAF at the membrane results from its phosphorylation by 
membrane-tethered RAS-GTP:

Φ = = ∇
=

ˆa RAS RAF D n RAF ,
(1)r R2 GTP i cyt a

cell

where n̂ is an outer unit vector normal to the cell surface. The rate of SOS phosphorylation is taken to be propor-
tional to the boundary value of active cytoplasmic ERK. The point sources of EGF appear at random positions in 
the cell-concentric shell of outer radius REGF_shell_out at random time points throughout the simulation, on average 
every fEGF_sources

−1. EGF releases each have a duration drawn from an exponential distribution with mean duration 
of λ EGF_source

−1, and a time-independent intensity AEGF, which is drawn from a log-normal distribution. Released 
EGF diffuses with diffusivity DEGF in the extracellular 3-D space, which is assumed to be unbounded and devoid 
of obstacles. EGF undergoes degradation with rate constant γ EGF according to the diffusion–degradation 
equation:
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where r is the distance from the point source localized at r =  0.
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PDE-based simulations were performed using Comsol Multiphysics (see Supplementary Data 4). The spatio-
temporal evolution of EGF concentration was evaluated as described above, while reaction–diffusion equations 
for the cell surface and within the cytosol were solved numerically using a finite element method. For simplicity, 
a nuclear compartment or other intracellular obstacles were not considered.

Materials and experimental protocols. Time-lapse imaging of ERK reporter activity was performed 
as previously described32. Briefly, MCF-10A cells stably expressing EKAR3-nes (containing a nuclear export 
sequence to maintain cytosolic localization) and ERKTR-mCherry were plated on #1.5 glass-bottom multi-well 
plates coated with type I collagen (BD Biosciences). During imaging, cells were cultured in customized 
low-fluorescence DMEM/F-12 medium in absence of serum and insulin and the presence of the indicated con-
centrations of recombinant EGF (PeproTech). At the indicated times, 1 μ M gefitinib (Selleck) was added to the 
medium. Images were collected at 6-minute intervals, and custom MATLAB-based algorithms were used to seg-
ment images based on the cytosolic localization of EKAR3 in the YFP channel and extract fluorescence intensi-
ties; u-track65 was used for cell tracking. ERKTR activity is shown as the ratio of cytosolic to nuclear fluorescence 
in the mCherry channel.
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Supplementary Text S1. Molecular basis of feedbacks relevant to the model. 

Positive feedbacks. SOS1, and presumably SOS2 as well, is a target of positive feedback from RAS [1–3]. 

Somewhat like a classical effector of RAS, such as RAF, SOS1 contains a binding site that preferentially 

recognizes GTP-loaded (vs. GDP-loaded) RAS. This site, which has been called the allosteric site, is a pocket 

formed partly by the Ras exchange motif (REM) domain in SOS [1]. It is distinct from the RAS binding site in 

SOS1’s RasGEF domain, which is involved in promoting GDP/GTP exchange [4]. When the allosteric site is 

occupied by GTP-loaded RAS, SOS1’s GEF activity is enhanced relative to the case where the allosteric site is 

empty or occupied by GDP-loaded RAS [5]. This allosteric enhancement of SOS1’s GEF activity represents a 

positive feedback because GTP-loaded (active) RAS is the product of SOS1’s GEF activity. Active RAS and 

SOS can also participate in a positive feedback mediated by PI3K which promotes membrane recruitment of 

GAB1, a scaffold for SOS1 and RAS [6]. Another positive feedback arises from the interplay between the CRAF 

isoform and its substrate MEK. A physical interaction with MEK has been reported to allosterically enhance the 

kinase activity of CRAF [7]. Furthermore, MEK can increase RAF catalytic activity by contributing to 

phosphorylation of the N-terminal acidic region of CRAF enabling it to function as an activator in RAF dimers 

[8]. RAF dimerization may also represent a positive feedback mechanism when RAF dimers stabilize RAS 

dimers, higher-order oligomers, or RAS nanoclusters [9]. Importantly, all positive feedbacks are of short range: 

each involves only two proteins, which likely interact with each other at the plasma membrane. Of note, in the 

ERK/MEK module, a “hidden” positive feedback may arise in the double phosphorylation/dephosphorylation 

cycle due to distributive phosphorylation and saturability in the dephosphorylation reaction [10]. 

The vast majority of negative feedbacks in the MAPK/ERK cascade emanate from activated ERK [11], which 

may be important for ensuring that signals reach ERK before becoming inhibited. These negative feedback loops 

can be grouped into two categories depending on their position with respect to the positive feedback loops 

discussed above.  

Negative feedback loops downstream of positive feedback loops. There are two well-characterized negative 

feedback loops that involve ERK-mediated inhibition of MEK and RAF. ERK-mediated phosphorylation of the 

MEK1 isoform of MEK leads to inhibition of the kinase activities of both MEK1 and MEK2, provided that 

MEK2 is in complex with MEK1 [18]. As far as RAF is concerned, all its isoforms are hyperphosphorylated by 

ERK, which has the effect of inhibiting RAF dimerization and disrupting its interaction with RAS, which is an 

important step in RAF inactivation [19,20]. 

Negative feedbacks encompassing positive feedbacks. There are two, largely overlapping, feedback loops that 

involve inhibitory phosphorylation of SOS, mediated either directly by ERK or indirectly by ERK-activated 

kinase RSK [12]. Phosphorylation of SOS in a C-terminal proline-rich region containing one or more binding 

sites for Src homology 3 (SH3) domains prevents SOS from interacting with SH3 domain-containing adaptor 
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proteins, such as GRB2, a binding partner of EGFR [13]. GRB2 also interacts with phosphorylated SHC1 [14], 

another binding partner of EGFR, and thus GRB2 associates with EGFR both directly and indirectly. Disruption 

of SOS–GRB2 interaction prevents recruitment of SOS to EGFR via direct and indirect interaction of GRB2 

with EGFR. SOS1 contains at least four residues phosphorylated by ERK [15], whereas SOS2 contains only one 

[16]. This difference suggests that the two isoforms may have different sensitivities to ERK-mediated negative 

feedbacks. The specificities of ERK and RSK with respect to SOS overlap. Thus, negative feedback to SOS is 

mediated by a network motif of a feed-forward loop (FFL), a coherent type 3 FFL in the classification scheme of 

Mangan and Alon [17]. Based on their analysis [17], this FFL can be expected to generate a delay in relief of 

SOS inhibition upon deactivation of ERK. 
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Supplementary Text S2. Non-dimensional model equations 

Model equations can be non-dimensionalized by expressing reaction rates in units in which dephosphorylation 

rate of inhibitory phosphosites in SOS, ݍ, equals 1. There are two general types of equations in the model: 

 Association–dissociation processes: 
d
dݐ

ܻܺ = ܾ ×  ܺ ×  ܻ − × ݑ   ܻܺ 

where ܾ is binding rate, ݑ is unbinding rate, and multiplication is denoted by cross (×). Let ധܺ be a total 

number of X molecules per cell. We can convert amounts ܺ, ܻ, ܻܺ to, respectively, ݔ = ܺ/ ധܺ, ݕ = ܻ/ ധܺ, 

ݕݔ = ܻܺ/ ധܺ and rates ܾ and ݑ to, respectively, ߚ = ܾ × ധܺ/ݍ and ߭ =  If the above equation for .ݍ/ݑ

(d/dݐ)ܻܺ is satisfied, then the following equation is satisfied as well: 
d
dݐ

ݕݔ = × ߚ × ݔ  − ݕ   ߭ ×  ݕݔ 

 Activation–deactivation processes: 
d
dݐ

ܵact = ܽ ×  ܴ ×  iܵnact  −  ݀ ×  ܵact 

Let ധܴ and ܵ̿ be total numbers of R (“activator”) and S molecules per cell, respectively. We convert 

molecule numbers ݎ = ܴ/ ധܴ,  ݏact = ܵact/ ܵ̿ ,  ݏinact = iܵnact/ ܵ̿, and rates ߙ = ܽ × ധܴ/ߜ  ,ݍ =  to ݍ/݀

obtain a non-dimensionalized equation: 
d
dݐ

actݏ = × ߙ × ݎ  inactݏ   − × ߜ   actݏ 

Therefore, our chemical equations are converted into non-dimensional ones by dividing all reaction rate 
coefficients by ݍ and by introducing new variables: 

o erkx = ERKx/ERKtot where ERKx stands for any ERK specie, 

o mekx = MEKx/ MEKtot where MEKx stands for any MEK specie, 

o rafx = RAFx/RAFtot where RAFx stands for any RAF specie, 

o var = VAR/SOStot where VAR stands for any other variable (i.e., EGFR, RAS, SOS, RasGAP, and 
their phosphoforms and complexes); molecules represented by these variables can form 
complexes and therefore  should be rescaled by a common factor, SOStot. 

Supplementary Table S2 contains numerical values of rescaled molecule numbers and rate parameters.
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• A •B denotes the amount of complex of A and B (multiplication is written using ×).

• Parameters named fA 7→B denote the strength of a feedback from A to B.

Equations:
d
dt egfra = α1×EGF×

(
egfrtot− (egfra + egfri •sosu + egfra·sosu + egfri •sosu •rasGTP

+egfri •sosu •rasGDP + egfra •sosu •rasGTP + egfra •sosu •rasGDP)
)
−δ1× egfra

−β1× egfra×
(
sostot− (sosp + sospp + sosppp + sospppp + egfri •sosu

+egfra •sosu + egfri •sosu •rasGDP + egfri •sosu •rasGTP + egfra •sosu •rasGDP

+egfra •sosu •rasGTP)
)
+υ1A× egfra •sosu

d
dt sosp = −3×ρ3× f ERKpp 7→SOS1× erkpp× sosp +4×ρ3× f ERKpp 7→SOS1× erkpp×

(
sostot

−(sosp + sospp + sosppp + sospppp + egfri •sosu + egfra •sosu + egfri •sosu •rasGDP

+egfri •sosu •rasGTP + egfra •sosu •rasGDP + egfra •sosu •rasGTP)
)
− sosp +2× sospp

d
dt sospp = 3×ρ3× f ERKpp 7→SOS1× erkpp× sosp +3× sosppp−2× sospp

−2×ρ3× fERKpp 7→SOS1× erkpp× sospp

d
dt sosppp = 2×ρ3× f ERKpp 7→SOS1× erkpp× sospp +4× sospppp−3× sosppp

−ρ3× fERKpp 7→SOS1× erkpp× sosppp

d
dt sospppp = ρ3× fERKpp 7→SOS1× erkpp× sosppp−4× sospppp

d
dt egfri •sosu = υ2B× egfri •sosu •rasGDP−α1×EGF× egfri •sosu−υ1B× egfri •sosu

+δ1× egfra •sosu−β2B× egfri •sosu×
(
rastot− (rasGTP + rasGTP •rasgap

+rasGDP •rasfap+ egfri •sosu •rasGDP + egfri •sosu •rasGTP + egfra •sosu •rasGDP

+egfra •sosu •rasGTP)
)
+υ2A× egfri •sosu •rasGTP−β2A× egfri •sosu× rasGTP

d
dt egfra •sosu = β1× egfra× (sostot− (sosp + sospp + sosppp + sospppp

+egfri •sosu + egfra •sosu + egfri •sosu •rasGDP

+egfri •sosu •rasGTP + egfra •sosu •rasGDP + egfra •sosu •rasGTP)
)

−β2B× egfra •sosu×
(
rastot− (rasGTP + rasGTP •rassgap+ rasGDP •rasgap

+egfri •sosu •rasGDP + egfri •sosu •rasGTP + egfra •sosu •rasGDP

+egfra •sosu •rasGTP)
)
−υ1A× egfra •sosu +υ2A× egfra •sosu •rasGTP

+υ2B× egfra •sosu •rasGDP +α1×EGF× egfri •sosu

−β2A× egfra •sosu× rasGTP−δ1× egfra •sosu

6
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Kochańczyk et al.: Relaxation oscillations and hierarchy of feedbacks in MAPK signaling – SUPPORTING INFORMATION

d
dt rasGTP = κ2B× egfri •sosu •rasGDP×

(
rastot− (rasGTP + rasGTP •rasgap+ rasGDP •rasgap

+egfri •sosu •rasGDP + egfri •sosu •rasGTP + egfra •sosu •rasGDP

+egfra •sosu •rasGTP)
)
+υ2A× egfri •sosu •rasGTP−β2A× egfra •sosu× rasGTP

+κ2B× egfra •sosu •rasGDP×
(
rastot− (rasGTP + rasGTP •rasgap+ rasGDP •rasgap

+egfri •sosu •rasGDP + egfri •sosu •rasGTP + egfra •sosu •rasSGDP

+egfra •sosu •rasGTP)
)
+κ2A× egfri •sosu •rasGTP×

(
rastot− (rasGTP

+rasGTP •rasgap+ rasGDP •rasgap+ egfri •sosu •rasGDP + egfri •sosu •rasGTP

+egfra •sosu •rasGDP + egfra •sosu •rasGTP)
)
+υ2A× egfra •sosu •rasGTP

−β2A× egfri •sosu× rasGTP)+κ2A× egfra •sosu •rasGTP×
(
rastot− (rasGTP

+rasGTP •rasgap+ rasGDP •rasfap+ egfri •sosu •rasGDP + egfri •sosu •rasGTP

+egfra •sosu •rasGDP + egfra •sosu •rasGTP)
)
−β3×

(
rasgaptot− (rasGTP •rasgap

+rasGDP •rasgap)
)
× rasGTP

d
dt egfri •sosu •rasGDP = −υ2B× egfri •sosu •rasGDP +δ1× egfra •sosu •rasGDP

−α1×EGF× egfri •sosu •rasGDP +β2B× egfri •sosu

×
(
rastot− (rasGTP + rasGTP •rasgap+ rasGDP •rasgap+ egfri •sosu •rasGDP

+egfri •sosu •rasGTP + egfra •sosu •rasGDP + egfra •sosu •rasGTP)
)

d
dt egfri •sosu •rasGTP = β2A× egfri •sosu× rasGTP−α1×EGF× egfri •sosu •rasGTP

−υ2A× egfri •sosu •rasGTP +δ1× egfra •sosu •rasGTP

d
dt egfra •sosu •rasGDP = β2B× egfra •sosu×

(
rastot− (rasGTP + rasGTP •rasgap+ rasGDP •rasgap

+egfri •sosu •rasGDP + egfri •sosu •rasGTP + egfra •sosu •rasGDP

+egfra •sosu •rasGTP)
)
−δ1× egfra •sosu •rasGDP

+α1×EGF× egfri •sosu •rasGDP−υ2B× egfra •sosu •rasGDP

d
dt egfra •sosu •rasGTP = α1×EGF× egfri •sosu •rasGTP +β2A× egfra •sosu× rasGTP

−υ2A× egfra •sosu •rasGTP−δ1× egfra •sosu× rasGTP

d
dt rasGDP •rasgap = −υ3× rasGDP •rasgap+κ3× rasGTP •rasgap

d
dt rasGTP •rasgap = −κ3× rasGTP •rasgap+β3×

(
rasgaptot− (rasGTP •rasgap+ rasGDP •rasgap)

)
× rasGTP
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d
dt raf a = −ρ6× fERKpp 7→RAF× erkpp× raf a−δ2× raf a +α2× rasGTP×

(
raf tot− (raf a + raf p)

)
d
dt raf p = ρ6× fERKpp 7→RAF× erkpp× raf a +ρ6× fERKpp 7→RAF× erkpp×

(
raf tot− (raf a + raf p)

)
− raf p

d
dt meku,T292p = −meku,T292p +ρ4× fERKpp 7→MEK1× erkpp×

(
mektot− (meku,T292p +mekp,T292u

+mekp,T292p +mekpp,T292u +mekpp,T292p)
)
+σ1×mekp,T292p +σ5×mekp,T292p

−2×ρ1×mekp,T292p× raf a

d
dt mekp,T292u = mekp,T292p−σ1×mekp,T292u +2×q1×mekpp,T292u−σ1×mekp,T292u× raf a

+2×ρ1×
(
mektot− (meku,T292p +mekp,T292u +mekp,T292p +mekpp,T292u

+mekpp,T292p)
)
× raf a−ρ4× fERKpp 7→MEK1× erkpp×mekp,T292u

d
dt mekp,T292p = ρ4× fERKpp 7→MEK1× erkpp×mekp,T292u−σ1×mekp,T292p−ρ1×mekp,T292p× raf a

−mekp,T292p−σ5×mekp,T292p +2×σ5×mekpp,T292p +2×σ1×mekpp,T292p

+2×ρ1×meku,T292p× raf a

d
dt mekpp,T292u = −ρ4× fERKpp 7→MEK1× erkpp×mekpp,T292u−2×σ1×mekpp,T292u +ρ1×mekp,T292u× raf a

+mekpp,T292p

d
dt mekpp,T292p = ρ1×mekp,T292p× raf a +ρ4× fERKpp 7→MEK1× erkpp×mekpp,T292u−mekpp,T292p

−2×σ1×mekpp,T292p−2×σ5×mekpp,T292p

d
dt erkp = 2×σ2× erkpp +2×ρ2×mekpp,T292u×

(
erktot− (erkp + erkpp)

)
−σ2× erkp

−ρ2×mekpp,T292u× erkp +2×ρ2×mekpp,T292p×
(
erktot− (erkp + erkpp)

)
−ρ2×mekpp,T292p× erkp

d
dt erkpp = ρ2×mekpp,T292p× erkp−2×σ2× erkpp +ρ2×mekpp,T292u× erkp

8
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Supplementary Tables 

 

Supplementary Table S1. Parameter values. 

Parameter Description (see also Fig. 2 in the main text) 

Concentrations (protein copy number per cell) 

EGFRtot = 3×105 Total number of EGFR molecules (as reported for MCF10A cells [21,22]) 

RAStot = 6×104 Total number of RAS molecules 

SOStot = 105 Total number of SOS molecules 

RasGAPtot = 6×103 Total number of RasGAP molecules 

RAFtot = 5×105 Total number of RAF molecules 

MEKtot = 2×105 Total number of MEK molecules 

ERKtot = 3×106 Total number of ERK molecules 

Rate constant for fast processes (s−1) 

kfast = 100 
As a simplification, three (pseudo) first-order processes considered in the 

model are assumed to be fast. 

Rate constants for activation processes [(molecules/cell)−1 s−1 except (pg/ml)−1 s−1 for a1] 

a1 = 5×10−5 EGF-mediated activation of EGFR 

a2 = 10−7  Activation of RAF by RAS-GTP 

b1 = 10−5 Binding of EGF-activated EGFR and dephosphorylated SOS 

p1 = 10−7 Phosphorylation of MEK’s activation sites by RAF 

p2 = 3×10−6 Phosphorylation of ERK’s activation sites by MEK 

Rate constants for deactivation processes (s−1) 

d1 = d = 0.01 Deactivation of EGFR 

d2 = d  Deactivation of RAF (spontaneous) 

u1A = d  Dissociation of active EGFR–SOS complex  
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q1 = d  Dephosphorylation of MEK’s activation sites 

q2 = d  Dephosphorylation of ERK’s activation sites 

Rate constants for SOS association reactions [(molecules/cell)−1 s−1] and dissociation reactions (s−1) 

b2A = 10−6 Association of SOS and RAS-GTP 

b2B = 0.1 × b2A Association of SOS and RAS-GDP 

u1B = kfast Dissociation of inactive EGFR–SOS complex 

u2A = u2B = 1 Dissociation of SOS–RAS-GTP complex and SOS–RAS-GDP complex 

Rate constants associated with SOS-to-RAS positive feedback [(molecules/cell)−1 s−1 except s−1 for k3 

and u3] 

k2A = 10−4 
SOS’s nucleotide-exchange activity when RAS-GTP is bound to its REM 

domain 

k2B = 0.1 × k2A 
SOS’s nucleotide-exchange activity when RAS-GDP is bound to its REM 

domain 

k2C = 0 
SOS’s nucleotide-exchange activity when no RAS is bound to its REM 

domain 

b3 = 10−5 Association of RasGAP and RAS-GTP 

k3 = kfast  RasGAP-facilitated RAS-GTP→RAS-GDP hydrolysis 

u3 = 0.01 Dissociation of RasGAP from RAS-GDP after hydrolysis of GTP 

Rate constants associated with ERK-mediated negative feedbacks [(molecules/cell)−1 s−1] 

p3 = 3×10−9 Phosphorylation of unbound SOS by active ERK 

p4 = p6 = p = 6×10−10 Phosphorylation of MEK (T292 in MEK1) and RAF by active ERK 

Rate constants for (spontaneous) dephosphorylation reactions (s−1) 

q3 = q4 = q6 = q = 

3×10−4 

Dephosphorylation of inhibitory phosphosites in SOS, MEK (T292 in 

MEK1), RAF 

q5 = kfast 
Dephosphorylation of MEK’s activation sites when T292 (in MEK1) is 

phosphorylated 
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ERK activity reporters – concentrations (protein copy number per cell)  

EKAR3tot = ERKTRtot = 106
 Total number of EKAR3 and ERKTR molecules 

ERK activity reporters – rate constants for activation reactions [(molecules/cell)−1 s−1] 

aEKAR3 = 3×10−9 EKAR3 activation rate by active ERK 

aERKTR = 10−9 ERKTR activation rate by active ERK 

ERK activity reporters – rate constants for deactivation reactions (s−1) 

dEKAR3 = 10−3 EKAR3 deactivation rate 

dERKTR = 2×10−3 ERKTR deactivation rate 
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Supplementary Table S2. Non-dimensional parameter values. 

Non-dimensional 

parameter 
Description 

Concentrations 

egfrtot = 3 Total number of EGFR molecules 

rastot = 0.6 Total number of RAS molecules 

sostot = 1 Total number of SOS molecules 

rasgaptot = 0.06  Total number of RasGAP molecules 

raftot = 1 Total number of RAF molecules 

mektot = 1 Total number of MEK molecules 

erktot = 1 Total number of ERK molecules 

Rate constant for fast processes 

κfast = 1
3

×106 
As a simplification, three (pseudo) first-order processes considered in the model 

are assumed to be fast. 

Rate constants for activation processes 

α1 = 1
6
 EGF-mediated activation of EGFR 

α2 = 1
3

×102 Activation of RAF by RAS-GTP 

β1 = 1
3

×104 Binding of EGF-activated EGFR and dephosphorylated SOS 

ρ1 = 166 2
3
 Phosphorylation of MEK’s activation sites by RAF 

ρ2 = 2×103 Phosphorylation of ERK’s activation sites by MEK 

Rate constants for deactivation processes 

δ1 = δ = 1
3

×102 Deactivation of EGFR 

δ2 = δ  Deactivation of RAF (spontaneous) 

υ1A = δ  Dissociation of active EGFR–SOS complex 

Supplement of Arࢢcle G



Kochańczyk et al.: Relaxation oscillations and hierarchy of feedbacks in MAPK signaling – SUPPORTING INFORMATION 

 

13 

 

σ1 = δ  Dephosphorylation of MEK’s activation sites 

σ2 = δ  Dephosphorylation of ERK’s activation sites 

Rate constants for SOS association reactions 

β2A = 1
3

×103 Association of SOS and RAS-GTP 

β2B = 0.1 × β2A Association of SOS and RAS-GDP 

υ1B = κfast Dissociation of inactive EGFR–SOS complex 

υ2A = υ2B = 1
3

×104 Dissociation of SOS–RAS-GTP complex and SOS–RAS-GDP complex 

Rate constants associated with SOS-to-RAS positive feedback 

κ2A = 1
3

×105 
SOS’s nucleotide-exchange activity when RAS-GTP is bound to its REM 

domain 

κ2B = 0.1 × κ2A 
SOS’s nucleotide-exchange activity when RAS-GDP is bound to its REM 

domain 

κ2C = 0 SOS’s nucleotide-exchange activity when no RAS is bound to its REM domain 

β3 = 1
3

×104 Association of RasGAP and RAS-GTP 

κ3 = κfast RasGAP-facilitated RAS-GTP→RAS-GDP hydrolysis 

υ3 = 1
3

×102 Dissociation of RasGAP from RAS-GDP after hydrolysis of GTP 

Rate constants associated with ERK-mediated negative feedbacks 

ρ3 = 30 Phosphorylation of unbound SOS by active ERK 

ρ4 = ρ6 = ρ = 6 Phosphorylation of MEK (T292 in MEK1) and RAF by active ERK 

Rate constants for (spontaneous) dephosphorylation reactions 

1 (time scale) 
Dephosphorylation of inhibitory phosphosites in SOS, MEK (T292 in MEK1), 

RAF 

σ5 = κfast 
Dephosphorylation of MEK’s activation sites when T292 (in MEK1) is 

phosphorylated 
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Supplementary Table S3. Parameters of the stochastic model accounting for cell-to-cell variability in 

EGFR expression dynamics. These parameters, together with parameters in Supplementary Table S1, were 

used to perform simulations shown in Fig. 8 in the main text. 

 

Parameter Description 

μEGFR = –0.03125, σEGFR = 0.25 

 

Aburst = 60 s–1 

Intensity of EGFR production within each burst in a cell is 

computed as Aburst × αcell, where αcell has the log-normal 

distribution lnN(μEGFR, σEGFR) with mean of 1.0 and variance of 

about 0.0645. 

λinterburst = 1/6 h–1 Waiting times between EGFR bursts are distributed 

exponentially with a mean waiting time of λinterburst
–1. 

λburst = 1 h–1 Durations of EGFR bursts are distributed exponentially with 

mean burst duration of λburst
–1. 

τEGFR = 12 h EGFR half-life. 
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Supplementary Table S4. Parameters of the spatial model accounting for extracellular, localized stochastic 

releases of EGF. These parameters, together with parameters in Supplementary Table S1, were used to perform 

simulations shown in Fig. 10 and Supplementary Video 1. 

 

Parameter Description 

Vcell = 2000 μm3 Volume and radius of the (spherical) cell 

Rcell ≈ 7.8 μm 

Dmem = 10–2 μm2/s Diffusion coefficient of membrane proteins: EGFR, SOS, RAS, and 

RasGAP, and their complexes 

Dcyt = 10×Dmem = 10–1 μm2/s Diffusion coefficient of cytosolic proteins: RAF, MEK, ERK 

REGF_shell_in = Rcell ≈ 7.8 μm Inner and outer radii: point sources of EGF randomly appear 

uniformly within a concentric shell around a cell 
REGF_shell_out = 10×Rcell ≈ 78 μm 

μEGF = –1.25, σEGF = 0.5 EGF source intensity, AEGF, is drawn from a log-normal distribution 

lnN(μEGF, σEGF) with mean 3.25×10–1 and variance 2.99×10–2 

DEGF = 10×Dcyt = 1 μm2/s Diffusion coefficient of EGF 

γEGF = 8.33×10–4 s–1 EGF degradation rate constant 

λEGF_source = 8.33×10–4 s–1 EGF-releasing point source durations are drawn from an 

exponential distribution with mean λEGF_source
–1 = 20 min 

fEGF_sources = 1.11×10–3  s–1 EGF sources appear at random time points during the simulation, 

on average every 15 min 
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Supplementary Figures 
 
 

 
 

Supplementary Figure S1. Two-dimensional bifurcation diagrams. These diagrams complement Figs. 3A (A) 

and 3B (B) in the main text. In each panel, the x- and y-axes indicate the values of bifurcation parameters, as in 

Figs. 3A and 3B. The z-axis indicates the values of recurrent solutions (i.e., steady states and limit cycles) for 

activated ERK. Yellow dots mark the envelopes (i.e., the upper and lower bounds) of limit cycles. As in Fig. 5, 

black dots indicate supercritical Hopf bifurcation points. 
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Supplementary Figure S2. Effect of multi-site phosphorylation of SOS on oscillatory behavior. Ablation of 

a single ERK substrate in SOS decreases the range of EGF stimulation for which oscillations in ERK activity are 

observed. When SOS contains only one or two ERK substrates, the oscillatory regime vanishes. 

 

 

 

 

 
 

Supplementary Figure S3. Time profiles of active ERK (ERKpp) and its two reporters, EKAR3 and 

ERKTR. Trajectories were obtained for an EGF dose of 5 pg/ml. Activation and deactivation rates of both 

reporters are given in Table 1 in the main text. 
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Supplementary Figure S4. Phase space analysis of sensitivity of oscillatory behavior to negative feedback 

strengths. Each diagram illustrates eight limit cycles in a different planar projection of phase space. As indicated 

in the legend at top by line style, each trajectory is associated with a unique set of strengths for the ERK-to-SOS, 

ERK-to-MEK, and ERK-to-RAF feedbacks. Blue curves indicate trajectories corresponding to the default strength 

of negative feedback from ERK to SOS; red curves indicate trajectories corresponding to a 2-fold higher strength. 

(A) Trajectories in the ERKpp/ERKtotal–RAFp projection plane. (B) Trajectories in the ERKpp/ERKtotal–MEKpT292 

projection plane. (C) Trajectories in the ERKpp/ERKtotal–SOSu projection plane. These parametric plots indicate 

that trajectories cluster together depending on their associated feedback strengths. Tight clusters (involving 

trajectories having two feedback strengths in common) are decorated with small rings. Looser clusters (involving 

trajectories having a single feedback strength in common) are decorated with large rings. Importantly, clustering 

depends on projection plane. 
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Supplementary Figure S5. Influence of extrinsic noise features on the oscillatory behavior. Each panel shows the results of 20 stochastic simulations 

of single-cell behavior for different values of two extrinsic noise parameters, which control the median and coefficient of variation (CV) of the EGFR 

surface expression burst size. Frequency of ERK activity pulses varies with the level of EGFR. In all simulations, oscillatory behavior is induced by an 

EGF dose of 10 pg/ml. Note that the central panel is for the same parameters as Fig. 8C (in the main text).  
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Supplementary Figure S6. Effect of intrinsic noise on system trajectories. At the 

assumed protein copy numbers per cell, the influence of intrinsic noise on system 

behavior is very weak; in panel C it can be visible as fine ripples. The simulations 

were performed using the Gillespie algorithm for default system parameters 

(Supplementary Table S1). This figure corresponds to Fig. 4 in the main text. 
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Supplementary Figure S7. Effect of extrinsic noise on system trajectories. The trajectories were obtained by 

piece-wise ODE integration. As can be seen by comparing this figure with Fig. 8 in the main text, the visible 

variability in cellular trajectories is predominantly due to the extrinsic noise. 
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Supplementary Figure S8. Distributions of active ERK and its frequency spectrum. (A) Histograms of active 

ERK fractions at 10th min of EGF stimulation in simulations of 20 cells shown in panels of Fig. 8 in the main text. 

(B) Distributions of active ERK fractions over 10-day-long simulations of 20 cells. (C) Frequency spectrum of 

active ERK calculated from 10-day-long simulations of 20 cells. 
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Video. Animation of COMSOL output. This video is provided as a separate MOV file. Activation of EGF 

receptors and RAS on the membrane, and activation of ERK in the cytoplasm (a cross-section is shown) in 

response to extracellular EGF bursts in the spatially extended, PDE-based model variant. Corresponding model 

source files are contained within Supplementary Dataset 4 
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