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Abstract

The main thesis of the presented dissertation was to show that thanks
to the use of the wavelet decomposition of the raw ultrasonic backscattered
signals (called RF, radio frequency signals), several new markers character-
izing the soft tissue scattering microstructure can be found. In addition, it
should be emphasized that these markers were found not only from signals
backscattered from phantoms made of tissue mimicking materials and from
the signals backscattered from ex vivo tissue samples, but one of them was
determined for signals backscattered from liver tissue in vivo. It is shown
how this marker distinguished the healthy area of the liver tissue from the
tumor area.

Two different ways of using the collected RF signals for wavelet analysis
were used. The first way was based on the use of wavelet decomposition of
the signal envelopes. The new markers associated with the different num-
ber of scatterers were found in the different wavelet decomposition levels
of backscattered signals envelope statistical parameters. The studied echo
signals were obtained from tissue mimicking materials made from agar-gel
with glass microbeads. The relationship between changes in statistics of
wavelet decomposition of signal envelope and the number of scatterers has
been than used to develop a method for tracking temperature changes. So
a new method of tracking temperature increase/decrease using statistical
parameters of wavelet decomposition of the envelope of the backscattered
signals was proposed. This method significantly reduces the amount of data
processed in comparison with the analogous method using signal envelope
statistics without wavelet decomposition.

In the second way, the wavelet decomposition of the RF signals them-
selves were used. It has been shown that determining the MSS parameter
(mean scatterer spacing) from the wavelet decomposition of the RF signals
clearly improves accuracy of other MSS estimates that directly use the signals
properties. Additionally, it was shown that thanks to wavelet decomposition
of signals the introduction of a “scale index” — a novel very fine measure of
chaoticity degree of a structure — was possible. I shown that the scale index
provided to the classification based on the increasing values of the parameter
from the exact periodicity to the chaos hidden in the signal. In particular,
by using this index regular pseudo-periodic structure in healthy human liver
tissue in vivo was distinguished from the more chaotic tumor structure. It
was done by the comparing of values of this index calculated from RF sig-
nals collected by radiologists for the healthy and the cancerous liver tissue
areas. The result means, that this index treated as a new parameter in QUS



parametric maps constructions can be vitally useful in improving of cancer
diagnostics and monitoring treatment response.



Streszczenie

G lówna̧ teza̧ prezentowanej rozprawy by lo pokazanie, że dziȩki zastosowa-
niu dekompozycji falkowej ultradźwiȩkowych sygna lów RF (radio frequency)
wstecznie rozproszonych w tkance mona znaleźć nowe markery (znaczniki,
parametry) charakteryzuja̧ce mikrostrukturȩ tkanek miȩkkich. Należy pod-
kreślić, że markery te znaleziono wykorzystuja̧c sygna ly ultradźwiȩkowe roz-
proszone w fantomach wykonanych z materia lów naśladuja̧cych tkankȩ, syg-
na ly rozproszone w próbkach tkanek ex vivo, a jeden z markerów zosta l
określony dla sygna lów rozproszonych w tkance wa̧troby in vivo. W tym os-
tatnim przypadku, pokazano jak marker ten odróżnia lzdrowy obszar tkanki
wa̧troby od obszaru guza.

Zastosowano dwa różne sposoby wykorzystania zebranych sygna lów RF
do analizy falkowej. Pierwszy sposób polega lna wykorzystaniu dekompozycji
falko-wej obwiedni sygna lu. Nowe markery, czu le na liczbȩ rozpraszaczy w
badanym materiale, zosta ly znalezione z parametrów statystycznych obwiedni
sygna lu wyznaczonych dla różnych poziomów dekompozycji falkowych.

W tym przypadku, badane sygna ly echa otrzymano z materia lów naśladuja̧-
cych tkanki, wykonanych z żelu agarowego z mikro-kulkami szklanymi. Zwia̧-
zek miȩdzy zmianami w statystykach dekompozycji falkowej obwiedni sygna lu
a liczba̧ rozpraszaczy zosta lużyty do opracowania metody śledzenia zmian
temperatury. Zaproponowano nowa̧ metodȩ śledzenia wzrostu / spadku tem-
peratury za pomoca̧ parametrów statystycznych dekompozycji falkowej sygna-
 lów rozproszonych. Ta metoda znacznie zmniejsza ilość przetwarzanych danych
w porównaniu z analogiczna̧ metoda̧ wykorzystuja̧ca̧ statystyki obwiedni sygna-
 lu bez rozk ladu falkowego.

W drugim sposobie użyto dekompozycji falkowej samych sygna lów RF.
Wykazano, że dok ladność parametru MSS (mean scatterer spacing), oznacza-
ja̧cego średni odstȩp miȩdzy rozpraszaczami, wyznaczanego z sygna lów RF,
wyraźnie rośnie po zastosowaniu dekompozycji falkowej. Dodatkowo wykaza-
no, że dziȩki dekompozycji sygna lów falkowych wprowadzenie “indeksu skali”
— nowatorskiej bardzo dok ladnej miary stopnia chaotyczności struktury —
jest możliwe. Pokazano, że indeks skali opiera siȩ na rosna̧cych wartościach
parametru, od dok ladnej okresowości do chaosu ukrytego w sygnale. W
szczególności, stosuja̧c ten wskaźnik, regularna pseudo-okresowa struktura
w zdrowej ludzkiej tkance wa̧troby in vivo zosta la odróżniona od bardziej
chaotycznej struktury guza. Dokonano tego przez porównanie wartości tego
wskaźnika obliczonych z sygna lów RF zebranych aparatem USG przez radi-
ologów dla zdrowych i nowotworowych obszarów tkanki wa̧troby. Wynik oz-
nacza, że ten wskaźnik traktowany jako nowy parametr w konstrukcjach map



parametrycznych tkanki, używanych w metodach ilościowych ultradźwiȩków
QUS (quantative ultrasound), może być niezwykle przydatny w ulepszaniu
diagnostyki raka i monitorowaniu odpowiedzi na leczenie.
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Introduction

When an ultrasonic wave penetrates soft tissue, the local structure of
tissue interacts with the mechanical energy of the wave so that, the energy
absorption, reflection, and scattering appear. The energy propagated back
toward the ultrasonic transducer constitutes the ultrasonic echo signal called
the radiofrequency (RF) signal, [53]. The RF signal contains information
about ultrasound and tissue interaction and a processing method must be
used that can encode this information.

The amplitude is related to the distribution of mechanical impedance
(density, elastic characteristics) of the backscattering medium, the scatterer
concentration and the ratio between the sizes of the microstructure and the
wavelength. The phase information, related to the interference, depends on
the geometrical configuration of the tissue microstructure scatterers. These
interference and reflectivity variations are registered in the time domain of re-
ceived backscattered signals and are responsible for spectral amplitude mod-
ulation in the frequency domain. In this context, over the last thirty years
quantitative ultrasound (QUS) techniques have been developed to improve
tissue characterization for diagnostics made with the help of interpretation
of B-mode (brightness mode) images, which is popular classical ultrasonog-
raphy techniques [60]. Indeed, in order to gain further information for tissue
characterization and differentiation purposes, it is essential not only to ana-
lyze the amplitude spatial distribution but also use the information given by
the shape of the RF signal spectrum to identify the spectral parameters that
are best correlated with the investigated structures.

Parametric ultrasonic imaging allows to choose characteristic features in
echo signals dispersed backwards from different soft tissue structures, e.g.
differentiation between neoplastic changes and other changes in soft tissues.
Most of the research related to the determination of parameters for ultra-
sonic parametric imaging is based on a detailed analysis of B-mode images,
which are normally available in commercial USG apparatus used for medical
ultrasound diagnostics. The use of raw ultrasonic echo signals requires access
to the special ultrasonic research equipment that allows acquisition of these
signals in parallel with the simultaneous registration of classic, 2-dimensional
B-mode images. The parametric maps corresponding to the specific prop-
erties of soft tissue areas created by the parameter values determined from
the RF echo signal from these areas are built to improve the quality of di-
agnostics, i.e. the classification of tissue changes made by the physician.
The next goal of using the maps is to create an automatic diagnostic system
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(CAD) that eliminates human participation and at the same time improves
the speed of cancer screening. Research based on the analysis of available
RF signals collected in the Institute of Fundamental Technological Research
with cooperation of physician radiologists thanks to possessing of research
ultrasound equipment were the subject of three doctoral dissertations made
in recent years in the Department of Ultrasound in the Institute. In the thesis
of dr. inż H. Piotrzkowska-Wróblewska [56] based on RF signals recorded by
dermatologists, in examination of the patients who were diagnosed with basal
cell carcinoma and actinic keratosis, the shape parameter of K-distribution
of echo signals envelopes were determined from areas of healthy tissue and
tissue lesions. The differences in the value of this parameter were compared
with the diagnosis made by physicians. In the thesis of dr. Z. Klimonda [41]
the method of attenuation parameter determination was proposed and the
attenuation coefficient values as the parameter of tissue differentiation was
used. Tissue attenuation was estimated from backscattered echoes by track-
ing mean frequency changes with depth under assumption of linear relation
between attenuation and frequency. The experimental data used for eval-
uation of the method in the thesis was numerically generated or collected
from commercial phantoms with known material properties. In the thesis of
dr. inż M. Byra [9] the homodyned K-distribution related to the tissue scat-
tering properties was used for breast tissue characterization. The obtained
breast lesion parametric maps were segmented to extract areas exhibiting
similar scattering properties. Author showed that it was possible to improve
the breast lesion classification performance by combining scattering and mor-
phological features of areas of healthy tissue and lesions.

These three thesis, as they are available in the Internet and contain ex-
haustive number of references connected with ultrasound parametric imaging
allow us to avoid the repeating a detailed discussion of the topic of ultrasonic
parametric imaging.

Motivation of research. In the past, the author of the dissertation
successfully dealt with the determination of changes in the fetal echo sig-
nal confirming the disease state, [10], [84]. At that time, the author used
the method of wavelet analysis of collected signals and by identifying the
statistical features of various levels of wavelet approximation features that
optimally classify the fetus’s condition were found.

Main idea of the thesis. This practically important result lay at the
basis of main idea of this thesis, namely the use of wavelet analysis to look
for a relationship between the properties of the tissue scattering structure,
i.e. tissue morphology, with backscattered ultrasound echoes from this tissue.
The improvement of the previously proposed QUS methods consists in im-

3



proving the accuracy of determining the already used parameters or finding
new, hitherto unknown parameters related to the nature of the scattering of
ultrasound signals in the tissues. Both approaches have been taken up in this
thesis thanks to wavelet signal analysis application.

Calculations performed by mathematical software for engineers and scien-
tists MatLab [48], release Matlab R2016a, lisence 282639-ACADEMIC) and
by its efficient tool for wavelet analysis WaveToolbox [82].

Aims and arrangements of thesis

Basing on the two facts that

• ultrasound beams interact with scatterers in the tissue and

• backscattered signals contain information about weak diffuse subres-
olution scatterers (e.g. in liver tissue cells) and stronger non-diffuse
scatterers (e.g. pseudo-periodic structure of lobule in liver tissue)

the thesis of this dissertation is formulated as following:
Thesis. To prove that by using wavelet distributions of the ultrasonic

backscattered RF signals new markers (quantative parameters) characterizing
the soft tissue scattering microstructure can be found.

The thesis is arranged in the following way:
Chapter 1 contains a general theoretical background of ultrasound sig-

nals generated by ultrasound transducers to study tissue structure properties.
The nonlinear and linear theory of wave propagation: equation of wave prop-
agation in inhomogeneous materials modelling soft tissues, absorption and
problem of its non-classical description, formula of analytic signal, Hilbert
transform of signal etc. are given. Because the wavelet transform in QUS
methods are used rather for filtering the speckles from ultrasound images and
it is very rarely used in QUS methods, we decided to include into the thesis el-
ements of of wavelet theory, like discrete and continuous wavelet transforms,
Daubechies wavelet family, and MRA (multiresolution analysis) which are
applied in the dissertation. Simple examples of two signals containing two
combinations of sine functions, their wavelet transform for comparison of
wavelet decomposition and Fourier analysis was also added. The mathemati-
cal definition of chaoticity measure, a “scale index” based on a signal wavelet
decomposition will be introduced. This Chapter also contains several for-
mulae of statistical distributions: Gamma, K- and Nakagami, their PDF
(probability density functions) which are used in this dissertation.
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It should be remarked that Chapter 1 shows author’s point of view as
a mathematician on of the physical modelling. In particular, the chapter
1.3 about non-classical absorption contains the contribution in the form of
proposing a new general equation containing fractional Laplace operators.
This result (made with B. Gambin) ent. Viscosity and non-classical ab-
sorption of soft tissue described by fractional derivatives, was presented as
a lecture during Ultrasound Imaging 31, Warsaw April 110-13, 2011. The
theory of fractional derivatives was also the initial field of author’s research
activity ended with three published papers two in Russian journals and one
in Springer journal [16].

In Chapter 2 a method of differentiating the density of scatterers by us-
ing the statistical properties of different wavelet approximation levels and
the details coefficients of the Daubechies 6 family is used. The backscattered
signals collected from three types of tissue mimicking agar-gel phantoms with
glass beads with low density (6 items per mm3), and high density (30 balls
per mm3) are compared. The parameters of different statistical distributions
Gamma and Nakagami will be used to find the best possible way of differ-
entiation of the scatterers densities. Additionally, the mean and standard
deviation values of details coefficients of Daubechies 6th wavelet decomposi-
tion will be used to achieve the same goal.

Based on the result presented in Chapter 2 the statistical properties of the
wavelet approximation of the signal envelope will be used to measure temper-
ature changes in Chapter 3. As the temperature changes in tissues cause the
spatial scatterers distribution variation the backscattered signals collected
during heating reflect this variation. The statistical properties of backscat-
tered signal envelope amplitudes modelled by K-distribution was already
applied to track the temperature variations. The aim of wavelet approxi-
mations application to the temperature tracking is improving the method of
temperature tracking by statistical parameter changes.

Chapter 4 will be devoted to the problem of the differentiation of scat-
terers’ randomness type through numerical model of random structures. Be-
cause the inverse problem of wave propagation in random media cannot be
solved analytically, only the numerical models containing generation of ran-
dom media are the way which can be used for study the markers of scatterers
distribution character from the known randomness structure. It was used
used the MathCad software written by J. Wójcik to simulate different ran-
dom media types and to obtain the backscattered signals from these media.
The goal is to separate the randomness types of the media by the methods
due to wavelet decomposition of the numerically simulated random signals.
To this end I will use the scalograms of wavelet decompositions, simple statis-
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tics of wavelet approximations and the values of a scale index introduced in
subsection 1.4.4 for every random media type, i.e. for every scatterers distri-
butions.

In Chapter 5 It will be shown how the collected RF signals backscattered
from self-made “threads” phantom with periodic structure can be used for
validation the improvement of accuracy of MSS (mean scatterer spacing) pa-
rameter determined from a special wavelet approximation level of RF signals.
The treads are in three different environments, water, oil and the starch gel.
The RF echo signals from these phantoms will be also used to validation of
the scale index, the quantitative parameter introduced by us for the first time
to ultrasound signal chaoticity analysis in Chapter 1.

Data sets containing signals from the the human liver samples, collected
by radiologist in vivo, will be used in the analysis in Chapter 6. One dataset
consists the regions of tumor, the second dataset consists from the other
regions with the healthy tissue. The tumor area loses the regular structure
that is usual for normal liver tissue, so this loss of regularities should be
“visible” in the backscattered ultrasonic signals. It will be applied the “scale
index” to classify the tissue areas as healthy or cancerous.

The bibliography contains 86 items.
Appendix A is devoted to the introduction to integral and discrete trans-

forms and describes the procedure of multiresolution analysis.
Appendix B contains the introduction to the theory of wave propagation

in random medium, namely, its mathematical model, stationary random pro-
cess description, introduction to periodic and quasiperiodic media and waves
propagation in randomly inhomogeneous medium.

Appendix C contains the author’s list of publications and her scientific
background.
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Flowchart from Input-Information to Output-Area

of Applications of Wavelets

Raw RF signals

WT of signals
amplitudes

Wavelet approximation
Effective

scatterers number

Temperature tracking

WT of signals

Wavelet based
scale index

& MSS

in silico, in vitro,
in vivo: human liver

The following abbreviations are used:
RF — radio frequency,
WT — wavelet transform,
MSS — mean scatterer spacing.
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1 General Theoretical Background

1.1 Acoustic Waves

In the thesis we analyze ultrasound signals, backscattered from soft tis-
sues or from tissue mimicking materials (TMMs). Both of this media are
randomly heterogeneous in their nature, the tissues contain huge number of
components on different level of magnitudes, besides they contain more than
80% of water, TMMs are usually produced as a continuous matrix, e.g. agar-
gel with oil, also containing more that 80% of water, with added dispersed
different microparticles to ensure the TMM samples backscattering and other
acoustical properties similar to the soft tissues. non-linear fluid dynamics is
the starting point for the derivation of the acoustic wave equation in the
soft tissue modeling fluid. The derived from general nonlinear equation the
linearized equation of acoustic pressure waves will be further generalized to
take into account the non-classical absorption and dispersion terms. The
special mathematical notion of fractional derivative is introduced to obtain
compatibility with the specific ultrasound attenuation frequency dependent
properties characterizing tissue medium. Additionally, to describe the ultra-
sound backscattering pressure wave from the weakly inhomogeneous random
medium two main assumptions are made: propagation is a linear one and the
scattering is a “weak” scattering. We will obtain linear hyperbolic equation
with “small” variable variable coefficients, which leads to the Born approxi-
mation valid. So, the scattered pressure can be obtained as a convolution of
Green function for homogeneouse wave equation (with constant coefficients)
and of a “source term”. The source function is due to the presence of spatial
local weak fluctuations in compressibility κ and density ρ of the medium.

1.1.1 A Nonlinear Acoustic Equation

We follow [44] to derive a nonlinear acoustic equation for scalar potential
of velocity.

The fluid movement is defined as stationary movement relatively to the
unperturbed medium coordinate system x, y, z and t, velocity field u(x, y, z)
and the fields of the thermodynamic characteristics of the medium: pressure
field p(x, y, z, t), density ρ(x, y, z, t), temperature T (x, y, z, t) and entropy
s(x, y, z, t).

The system of equations of the dynamic of continuous media consist of
four equations. First of them is the balance of mass equation

∂ρ

∂t
+∇ · (ρu) = 0, (1.1)
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where · denotes the scalar product, ∇ is a gradient operator. The second is
the motion equation

ρ

(
∂u

∂t
+ (u · ∇) u

)
= −∇p+ η∆u +

(η
3

+ ξ
)
∇∇ · u, (1.2)

where η and ξ are correspondent coefficients of shear and volume viscosity.
The third one is the heat equation

ρT

(
∂s

∂t
+ u · ∇s

)
=
η

2

(
∇u + (∇u)T − 2

3
I (∇ · u)

)2

+ +ξ (∇u)2 + κ∇∇T,

(1.3)
where κ is a thermal conductivity coefficient and I denotes the unit tensor
of the second order. And the last is the equation of state which for ideal gas
has the form

p = ρRT, (1.4)

or, in terms of ρ and s it can be written as

p = ργR exp

(
s− s0

Cv

)
, (1.5)

where γ =
Cp
Cv

is the ratio of the heat capacities of constant pressure and

constant volume respectively, R = Cp − Cv is a gas constant for the mass
unit.

We will assume that the perturbations which are characterized by the

fields of the pulsations of the hydrodynamic terms are small, i.e.
ρ− ρ0

ρ0
ε,

p− p0

p0
∼ ε,

u

c0
∼ ε and ε < 1. Here ρ0, p0 and c0 are correspondent nonper-

turbated quantities.
Using the linearization method it can be shown that all the media move-

ments decay in the first-degree assumption to the three non-interacting com-
ponents, namely incompressible vortical component which is described by the
vortex field Ω(x, y, z, t) = ∇×u(x, y, z, t), the entropy component s(x, y, z, t)
and potential or acoustic component which is connected with the pulsations
of the potential part of velocity field D(x, y, z, t) = ∇u(x, y, z, t), and the
pressure pulsations p(x, y, z, t).

We take into consideration only the potential (or acoustic) motions, i.e.
that the condition ∇ × u(x, y, z, t) = 0 is true. In such a way the vortex
component and its interaction with other components are eliminated.
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Under this assumption the equation (1.2) can be rewritten in a following
form

ρ

(
∂u

∂t
+

1

2
∇u2

)
= −∇p+

(
4

3
η + ξ

)
∆u. (1.6)

This equation may be simplified by introducing a new variable δ which is
connected viscous and thermal coefficients. If we assume that all the fields
are periodic functions depending on space variables with given wave vector
k, then the linearized equations will have the dimensionless quantities δ =
k

c0ρ0

(
4

3
η + ξ

)
≡ k

c0ρ0
b1, π =

cp
κ
b1. We take into account the members ε, ε2,

δε and neglect the other. In the heat equation (1.3) we omit u∇s and all the
members which have viscous coefficients of the third order of δε2 and exclude
the temperature using (1.4). In that case the equation (1.3) has the form

∂s

∂t
=
p

κ
∆

(
p

ρ

)
(1.7)

For the small changes of the state we may have only the following terms of
the series

p− p0 = c2
0(ρ− ρ0) +

γ − 1

2ρ0
c2

0(ρ− ρ0)
2 + c2

0

ρ0

γCv
(s− s0) + · · · , (1.8)

where c0 =

√
γp0

ρ0
is the adiabatic velocity of sound. The entropy changing

has the second order of δε, as it follows from (1.7).
Now we will exclude the pressure form the formulae (1.6) and (1.7), pre-

serving only the terms of the second order of ε2 and δε.

∂u

∂t
= −1

2
∇u2 − c2

0

ρ0
∇
(

(ρ− ρ0) +
γ − 2

2ρ0
(ρ− ρ0)

2 +
ρ0

γCv
(s− s0)

)
+

1

ρ0

(
4

3
η + ξ

)
∆u,

(1.9)

∂s

∂t
=

κ(γ − 1)

ρ2
0

∆ρ. (1.10)

Differentiating the equation (1.9) by time and substituting there expres-
sion (1.10) we obtain

∂2u

∂t2
= −1

2
∇ ∂

∂t
u2 − c2

0

ρ0
∇
(
∂ρ

∂t
+
γ − 2

2ρ0

∂

∂t
(ρ− ρ0)

2+

+
κ
ρ0

(
1

Cv
− 1

Cp
∆ρ

))
+

1

ρ0

(
4

3
η + ξ

)
∂

∂t
∆u,

(1.11)
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After introducing the scalar potential u(x, y, z, t) = −∇Φ(x, y, z, t) the equa-
tion (1.11) can be derived to the form

∂2Φ

∂t2
=

1

2

∂

∂t
(∇Φ)2 +

c2
0

ρ0

∂ρ

∂t
+ c2

0

γ − 2

2ρ0

∂

∂t
(ρ− ρ0)

2+

+
c2

0κ
ρ2

0

(
1

Cv
− 1

Cp

)
∆ρ+

1

ρ0

(
4

3
η + ξ

)
∂

∂t
∆Φ.

(1.12)

Then, using equalities (1.1) and (1.2) we will obtain the equation

∂2Φ

∂t2
− c2

0∆Φ =
∂

∂t

(
b∆Φ + (∇Φ)2 + a

(
∂Φ

∂t

)2
)
, (1.13)

where a ≡ γ − 1

2c2
0

, b ≡ 1

ρ0

(
4

3
η + ξ + κ

(
1

Cv
− 1

Cp

))
.

The above equation (1.13) is called a nonlinear acoustic equation. The
examples of such equations in one-dimensional case and the forms of their
solutions are given in [44].

J. Wójcik proposed a transition to dimensionless quantities [81] by the
substitutions

t = ω0t
′, x = k0x

′, ∂t =
1

ω0
∂′t, ∇ =

1

k0
∇′,

k0 =
ω0

c0
, q =

P0

ρ0c2
0

, v =
v′

v0
,

v0 =
P0

ρ0c0
= qc0, Φ =

Φ′

Φ′nor
, Φ′nor =

P0

ρ0ω0
,

ω0 =
2π

T0
= 2πf0.

Modifying equation (1.13 ) we have

ω2
0

∂Φ

∂t2

(
P0

ρ0
ω0

)
− c2

0

ω0P0

ρ0c2
0

∆Φ =

= ω0
∂

∂t

[
b
P0

ρ0ω0

ω2
0

c2
0

∆Φ +
ω2

0

c2
0

P 2
0

ρ2
0ω

2
0

(∇Φ)2 + a
P0

ρ0
ω2

0

∂Φ

∂t

]
.

As
ω0P0

ρ0
6= 0, q =

P0

ρ0c2
0

, and aω0 =
γ − 1

2
q we obtain

∂2Φ

∂t2
−∆Φ =

∂

∂t

[
b
ω0

c2
0

∆Φ + (∇Φ)2 + q
∂Φ

∂t

]
. (1.14)
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1.1.2 Linear Acoustic Waves and Background of Ultrasound Pulse
Scattering in Tissue

The linearization of state equation of fluid and assuming that we exclude
the heating generation due to sound effects (lossless model) the equation
(1.13) can be linearized. If we assume that the inhomogeneous medium is
infinite and it is of constant compressibility and density with embedded inside
a scattering region V where the inhomogenities are concentrated, it can be
modelled by the following equation [36]

∇2p− 1

c2
0

∂2p

∂t2
=

1

c2
0

∂2p

∂t2
γ (r)) +∇ · (µ (r)∇p) , (1.15)

where γ (r) =
κ(r)− κ0

κ0
, κ(r) is variable compressibility for r ∈ V ,

κ (r) = κ0 for r 6∈ V , µ (r) =
ρ(r)− ρ0

ρ0
, ρ(r) is variable density and r ∈ V ,

ρ (r) = ρ0 for r 6∈ V , c0, κ0, ρ0 are acoustic velocity, constant compressibility

and constant density in the embedding region respectively, κ0 =
1

ρ0c2
0

, p =

p (r, t) is the pressure field, ∇ denotes gradient in a space variable, ∇2 denotes
Laplacian operator and (·) denotes full contraction.

In this section we repeat the ideas given in paper [36]. Equation (1.15)
can be written in an equivalent form of integro-differential equation with the
use of 3D Green function g(r, t), i.e. a solution to the wave equation with the
impulsive point source. If we denote by Rhs the differential operator acting
on the pressure in the right hand side of Eq. (1.15) the integro-differential
equation takes the form

p (r, t) = −
∫ ∫

g (r, t; r′, t′)Rhs (p (r′, t′)) d3r′dt′. (1.16)

Strongly reflecting surfaces are excluded from region of interest (ROI).
Besides assuming the “weak” inhomogenities, i.e. coefficients γ and µ are
both small in comparison to unity, the assumption of weak scattering, i.e.
excluding multiple scattering effects (Born approximation), is made. So, the
total pressure can be split into sum of incident and scattering field p = pi+ps,
where pi and ps denotes incident and scattered pressure, respectively. It
implies that the incident pressure may be used as a source function in the
right hand side of the integro-differential equation (1.16) which now stands
as the equation for the backscattered pressure field:
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ps (r, t) = −
∫ ∫

g (r, t; r′, t′)Rhs (pi (r
′, t′)) d3r′dt′. (1.17)

For the well known form of 3D Green function

g (r, t; r′, t′) =
δ
(
t− t′ − 1

c0
|r− r′|

)
4π|r− r′|

,

the equation (1.17) takes the form

ps (r, t) = −
∫ ∫ δ

(
t− t′ − 1

c0
|r− r′|

)
4π|r− r′|

·

·
[

1

c2
0

∂2pi(r
′, t′)

∂t′2
γ(r′) +∇ · (µ(r′)∇pi(r′, t′))

]
d3r′dt′.

(1.18)

A representation of the incident pressure pi generated by a pulse-echo ul-
trasonic scanner, for a pulse propagation with fixed shape and group velocity
v in the direction Oz using a cylindrical coordinate system (h, θ, z) located
in the origin at t = 0 is

pi (r
′, t) = a(z − vt)b(h)eik0(z−vt), (1.19)

where a describes the axial pulse shape, b(h) describes the beam profile which
is assumed to be axially symmetric, and k0 is the magnitude of the wave vector
corresponding to the carrier frequency of the pulse. A Gaussian pulse of the

form a(z) =

 a0
z

α
e
−
z

α , z > 0,

0, otherwise

, where a0 and α are constants, b(h) =

e−β
2h2, β > 0 is constant, is a good approximation for pulse emitted by a

clinical scanner.
Alternatively, it may be considered that the incident pulse is a superpo-

sition of travelling plane waves spread about the carrier wave vector k0:

pi (r
′, t) =

∫ ∫
G(k′ − k0)ei(k

′·r−ω′t)d3k′dω′. (1.20)

Using a cylindrical coordinate system with axis Oz oriented along k0 ≡
(0, 0, k0), and assuming the axial symmetry and a separable spectrum factor-
ized by two functions of scalar variables k and η

G(k− k0) = A(k − k0)B(η),
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the following correspondence may be obtained: v = c0, a(z) =
∞∫
−∞

A(k)eikzdk,

b(h) = 2π
∞∫
0

B(η)J0(ηh)dη, where J0(·) is zero-order Bessel function of the

first kind. Substitution of the expression for the incident pressure into the
scattering integral (1.18) enables to find the backscattered pressure. Next, it
is also assumed that the observation point R is distant from the scattering
region and a Fraunhofer approximation holds, so that |R − r′| ∼ R + z and

1

|R− r′|
∼

1

R
. In the further used software (see Chapter 5), the scatterers

properties differs in density and in compressibility from properties of the
host medium. If variations in compressibility of scatterers are larger than the
variation in density, what is often assumed for the real soft tissue properties,
than ignoring the second-order terms in the right-hand side of equation (1.18)
depending on the density, i.e. to take µ(h, θ, z) = 0, the integral (1.18) can
be evaluated to find a backscattered pressure

ps(R, t) =
1

4πR

∫ ∞
0

ηdη

∫ 2π

0

dφ

∫ ∞
−∞

dk

∫ ∞
0

hdh

∫ 2π

0

dθ·

∫ ∞
−∞

dzA(k − k0) ·B(η)k2γ(h, θ, z)eiηh cos(φ−θ)e2ik(R+z)−c0kt =

=
1

4πR

∫
k2dk

∫
hdh

∫
dz

∫
dθA(k − k0)b(h)γ(h, θ, z)eik(2z+2R−c0t).

By introducing the notation Γ(2k) =
∫∞
−∞

1

2π

∫
0

2πdΘ

∫ ∞
0

dh hb(h)γ(h, θ, z),

the reduced equation is obtained

ps(R, t) =
1

2R

∫ ∞
−∞

dkA(k − k0)k
2Γ(2k)eik(2R−c0t).

The Fourier transform of the backscattered wave is

Ps(R, k) =
1

2Rc0
k2A(k − k0)Γ(2k)e2ikR.

The backscattered echoes depend not only on the intrinsic properties of
the tissue itself but also on the interrogating pulse. Insight into this problem
can be gained by assuming a specific model for the compressibility fluctuation
γ(h, θ, z), and then determining what information about γ can be derived
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from the backscattered echo train ps(R, t). The model is array of N discrete

scatterers with γ(h, θ, z) =
N∑
i=1

γiδ(h− hi, θ − θi, z − zi) thus

ps(R, t) =
1

4πR

N∑
i=1

γib(hi)

∫
A(k − k0)e

iRφidk.

For tissues having a structural organization the order of ultrasonic wave-

length λ =
2π

k0
it is used the model of an isotropically semi-regular array

of point scatterers. For a regular array of scatterers with separation d, the
phase difference between two adjacent scatterer is φ = k · ∆r = 2kd. For
φ = nπ or nλ = 2d where n is an integer, there will be constructive inter-
ference where the total scattered wave will be N (the number of scatterers
per sample volume) times the wave scattered by a single inhomogenity. If
the insonification is by a pulse of ultrasonic energy, then there is no longer
a single wavelength λ0, but rather a distribution of wavelengths PΛ(λ) and a
corresponding distribution of frequencies PF (f). There will still be construc-

tive interference for λ such that λ =
2d

n
and varying amounts of constructive

and destructive interference for other wavelength. The frequency spectrum

of the backscattered signal will show peaks at frequencies f =
nc

2d
. That is,

the resulting spectrum will have periodic peaks with period ∆f =
c

2d
. We

get

Ps(R, k) =
1

2Rc0
A(k − k0)Γ(2k)e2ikR,

where Γ(2k) =
∑
i

γib(hi)e
2ikdi, and i denotes the index of the scatterers in

the volume.
This may be modelled as the superposition of peaks and nulls on the

frequency spectrum of the ultrasonic scanner system, i.e.

Ps(f) = Γ(f)Fs(f) =
∑
i

e(2πi/c)di2fγibiFs(f),

where Ps(f) is the system of frequency spectrum including the effect of over-
lying tissue and i indexes the scatterers in the sample volume.

We have not succeeded in totally separating out the system effects from
the tissue in Γ(2k) since it includes weighting from the scatterer’s position in
the beam profile but, as we will not be attempting to estimate the γi; values
but only the separations di, we can lump the γi and bi together. Periodic
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peaks in the returned spectrum can be assigned to spatial structure in tissue
since the system response is a smooth function and the effect of overlying
tissue is an exponential attenuation of the form e−αf

xR where f is frequency,
α and x are constants, and R is the distance traveled through the overlying
tissue. In the case of a regular array of scatterers it is clear that only the
magnitude of the frequency spectrum |P (f)| is required to determine the
spatial separation d from the periodic peaks in the spectrum. Autocorrelation
of |P (f)|, denoted by |P (f)| ? |P (f)| , will result in a function having a first

peak at
c

2d
, corresponding to the frequency interval of the peaks in |P (f)|.

In the case of a semiregular array of scatterers, as one would expect for
some actual tissues, there is a distribution of spacings Po(d) and a resultant
broadening of the autocorrelation peaks. In tissue, the function Po(d) may
be expected to vary spatially. As the sample volume is moved throughout the
tissue, the resulting |P (f)| ? |P (f)| will vary accordingly. As it was already
noticed the above section was rewritten from the paper [36] to give among
others the main idea how to deal with scatterer periodic organization if the
distance between scatterers is of the wave length order, we follow the idea in
section 1.4.5 Improvement of Mean Scatterer Spacing Parameter.

1.2 Non-Cassical Absorption

The phenomenon of absorption of an acoustic energy carried by the ultra-
sonic wave in living soft tissue has a different character than in inanimate
matter — solids or in liquids. Some acoustic energy, like in other viscous ma-
terials, turns into heat due to the so-called internal friction. However, some
energy is consumed in the processes of biochemical reactions continuously
present in a living organism or is converted into kinetic /electromagnetic en-
ergy of substractures. The internal structure of the tissue material is random
and extremely complicated on infinitely many levels, indeed has a fractal na-
ture. It is extremely interesting question of what part of energy is dissipated
into heat and what part is involved in biological processes. To find the answer
to the question one should know firstly, details of acoustic wave propagation
and secondly, one should evaluate the amount of heat which, in principle, can
be measured during ultrasound sonification by e.g. MR (magnetic resonance)
technique. Modelling and evaluation of thermal processes during ultrasonic
irradiation of soft tissue are studied inter alia in [23], [24], [49], [50]. Also in
Chapter 3, Temperature Changes Differentiation, one of a ultrasonic method
of temperature tracking is used.

Let us remind some biological facts of the complexity of tissue structure
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which starts from the level of a cell dimension. Cell is the jelly-like matrix,
called cytoplasm, that is bounded by the cell membrane. Cytoplasm is sur-
rounding the nucleus of a cell. The cells includes also other organelles as well
as the sugars, amino acids, and proteins that the cell uses for growth and
reproduction. Organelles have themselves internal structures, the biggest of
them is the nucleus, which is spheroidal in shape and separated from the
cytoplasm by a double-membrane structure called the nuclear envelope. The
cell membrane itself consists of a lipid bilayer with embedded proteins, etc.
On the nano level the cytoplasm appears as a three-dimensional lattice of
thin protein-rich strands known as the microtrabecular lattice (MTL), which
serves to interconnect and support the other solid structures in the cytoplasm.
Cytoplasm is also the home of the cytoskeleton, a network of cytoplasmic fil-
aments responsible for the movement of the cell and which gives the cell its
shape. The proper model for the acoustic wave propagation in such compli-
cated structure of tissue needs a special attention. Let us underline that the
wavelength of material particles movement under the action of ultrasound
of MHz frequency pressure waves is of the order of nanometers, it means
that such a mechanical “nano - movement” may be important in explaining
the beneficial effects of ultrasound on healing processes or pain treatment by
ultrasound sonication.

Absorption of acoustical energy in living tissues is due to:

1. viscosity of particles movement;

2. heat losses caused by heat conductivity;

3. conversion of energy into biochemical type.

The wave attenuation during tissue penetration loss their amplitude as a

function of the direction of propagation like A(t) = e−α(ω)z, where α(ω) =
α(ω) + b(ω). The absorption power low in soft tissue is α(ω) = α0(ω

y) ,

where α(ω) is absorption coefficient measured in Np

(
rad

s

)−y
m−1, b(ω) is a

scattering coefficient and ω is radial frequency measured in
rad

s
, 1 ≤ y ≤ 1.5.

To take into account the special absorption power law J. Wócik [81] had
introduced a new type of term by substitution in equation (1.14) the term

−bω0

c2
0

∆ by the non-local operator A and investigated the equation

∂2Φ

∂t2
−∆Φ =

∂

∂t

[
2AΦ + q (∇Φ)2 + q

γ − 1

2

(
∂Φ

∂t

)2
]
. (1.21)
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One-dimentional example from [81] reads

AΦ = −α1
1

π
∂z

∫ ∞
−∞

Φ(s, t)

s− z
ds = −α1∂zĤ[Φ], (1.22)

here Ĥ[Φ] defines a Hilbert transform. For a plane wave we get the dispersion
equation

K2
z − ω2 − i2ωα1Kzsgn(kz) = 0.

Dispersion relation can be obtained by two approaches.
The first approach. Let us define a more general form of the operator

A in equation 1.14

∂2Φ

∂t2
−∆Φ =

∂

∂t

[
DyΦ + q (∇Φ)2 + q

∂Φ

∂t

]
. (1.23)

using Liouville fractional derivatives on half-axis and whole real axis [67] of
order y introduced below:

(Dy
+ϕ) (x) =

1

Γ(1− y)

d

dx

∫ x

−∞

ϕ(x′)

(x− x′)y
dx′, −∞ < x <∞ (1.24)

(Dy
−ϕ) (x) = − 1

Γ(1− y)

d

dx

∫ ∞
x

ϕ(x′)

(x− x′)y
dx′, −∞ < x <∞ (1.25)

0 < y < 1.

(
Dy
ϕ

)
(x) =

1

Γ(1− y)

d

dx

∫ ∞
−∞

ϕ(x′)

(x− x′)y
dx′, −∞ < x <∞. (1.26)

If y ≥ 1 then we assume correspondingly

(Dy
±ϕ) (x) =

(−1)n

Γ(n− y)

dn

dxn

∫ ∞
0

x′n−y−1ϕ(x∓ x′)dx′, n = [y] + 1 (1.27)

(Dy
±ϕ) (x) =

(−1)n

Γ(n− y)

dn

dxn

∫ ∞
−∞

x′n−y−1ϕ(x∓ x′)dx′, n = [y] + 1 (1.28)

Function ϕ here belongs to the Lebesque class Lp(R1) (or to the weighted

class Lp(R1; ρ)), 1 < p <
1

y
or to the Holder class vanishing in ±∞.
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These operators (1.24) – (1.26) will be bounded acting from the space

Lp(R1) to the Lq(R1) ([67]), where 1 < p <
1

y
and q =

p

1− yp
.

We consider the linear reduced equation (1.14) in the form

∂2Φ

∂t2
−∆Φ =

∂

∂t
DyΦ. (1.29)

Only linear parts use the properties of Fourier transforms fractional deriva-
tives ([67]):

F (Dy
±ϕ) = (∓ix)y ϕ̂(x), Re y ≥ 0, (1.30)

F (Dy
∞ϕ) = (∓ix)y ϕ̂(x), Re y ≥ 0. (1.31)

We obtain the nonlinear dispersion equation

k2 − ω2 = 2iα1ω(ik)y (1.32)

or

k2
r − k2

i + 2ikrki − ω2 = 2iα1ωk
y
r

(
i+

ki
kr

)y
.

After linearization of (1.32)

k2
r − k2

i + 2ikrki − ω2 = 2iα1ωk
y
r

(
i+

ki
kr

)
.

This equation may be reduced to a system k2
r − k2

i − ω2 = −2α1ωk
y
r ,

krki = α1ωk
y
r

ki
kr
.

Thus

kr =
1

(α1ω)2−y , k
2
i = 2(α1ω)(2−y)2 + (α1ω)2(2−y) − ω2.

where kr is a real part of wave vector and ki is an imaginary part.
The second approach. Let us define a more general form of the operator

A = (−∆2)y/2 , than equation 1.14 reads

∂2Φ

∂t2
−∆Φ =

∂

∂t

[
(−∆2)y/2Φ + q (∇Φ)2 + q

∂Φ

∂t

]
. (1.33)
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Here (−∆2)y/2 is defined as a Riesz integro-differential operator [67]

(−∆)−y/2 = F−1|x|−yFϕ =

{
Iy(ϕ), Re y > 0,
D−y(ϕ), Re y < 0,

(1.34)

In one-dimensional case the operator (−∆)y/2 is written as follows

(−∆)y/2 =

=


Iy(ϕ) =

1

Γ(y)

∫ +∞

x

ϕ(x′)

(x− x′)y
dx′,−∞ < x <∞, Re y > 0,

D−y(ϕ) =
1

Γ(1− y)

d

dx
,

∫ +∞

x

ϕ(x′)

(x− x′)y
dx′,−∞ < x <∞, Re y < 0,

(1.35)
Using the following property of Fourier transform

F

((
− ∂2

∂x2

y/2
))

=
(
− (−ik)2

)y/2
= ky,

we get the dispersion relation

k2 − ω2 = 2iα1ωk
y (1.36)

or

k2
r − k2

i + 2ikrki − ω2 = 2iα1ωkr
y

(
1 + i

kr
ki

)y
.

Assuming kr >> ki and linearize it we will have

k2
r − k2

i + 2ikrki − ω2 = 2iα1ωk
y
r

(
1 + i

kr
ki

)
.

which may be reduced to a system k2
r − k2

i − ω2 + 2α1ωkr
y ki
kr

= 0,

krki = α1ωk
y
r .

ki = α1k
y−1
r ,

kr may be found from the equation

2α2
1ω

2ky−2
r − α2

1ω
2k2(y−1)
r + k2

r = ω2.
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Now, let show the other than previously presented methodology of mod-
eling the lossy medium. In the paper of [14] general form of linear wave
equation in lossy medium (lossy wave equation) was proposed

1

c0

∂2p

∂t2
= ∇2p+ τΠp. (1.37)

Here p is acoustical pressure, c0 is wave velocity, Π is differential operator
of the order y − 1 (y is exponent in the power low), τ coefficient of the
proportionality (delay time).

Different types of Π operators and in consequence different frequency
dependence were proposed, what is summarized in the paper of [14] in the
form of repeated below the table

Damped Blackstock Szabo Stokes Chen&Holm Caputo& Wismer
1985 2003 2004 1967/2006

Π
∂

∂t

∂3

∂t3
∂y+1

∂ty+1

∂

∂t
∇2 ∂

∂t

(
−∇2

)y2 ∂y−1

∂ty−1
∇2

α ω0 ω2 ωy ω0 ωy ωy

Table 1.1: Different form of non-classical operators proposed in literature

In [11], [12] there were proposed the following forms of the equations that
model different effect:

• Absorption but no dispersion:

1

c0

∂2p

∂t2
= ∇2p+ τ

∂

∂t

(
−∇2

)y
2 p, (1.38)

where τ = −2α0c
y−1
0 , k̃2 =

ω2

c2
0

+ τηk̃y+1, 1 < y < 2.

• Dispersion without absorption:

1

c0

∂2p

∂t2
= ∇2p+ τΠp. (1.39)

If Π =
(
∇2
)y+1/2

then from Kramers-Krönig relations it follows that
1

cp
=

1

c0
+ α0 tan

πy

2
ωy−1.
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• The most general equation with absorption and dispersion terms:

1

c0

∂2p

∂t2
= ∇2p+

[
τ
∂

∂t

(
−∇2

)y/2)
+ η

(
−∇2

)(y+1)/2
p

]
, (1.40)

τ = −2α0c
y−1
0 , η = 2α0c

y
0 tan

πy

2
.

At the end of this chapter it will be presented a new type of equation
modelling acoustic waves in lossy medium with non-classical dispersion and
absorption, even more general than equation (1.40). It is the equation for
the velocity potential Φ in the following form:

β∆y1Φ− ∂2Φ

∂t2
=
∂Φ

∂t

[
2∆y2Φ + q

γ − 1

2

(
∂Φ

∂t

)2

+ q(∇Φ)2

]
, (1.41)

where 1 < y1, y2 < 2. and β, q and γ are material properties.

1.3 Analytic Signal

The mathematical background of analytic signal notion given below are
repeated after the paper [68]. Many natural and man-made signals exhibit
time-varying frequencies (e.g., chirps, FM radio waves). Characterization
and analysis of such a signal u(t) is based on instantaneous amplitude a(t),
instantaneous phase φ(t), and instantaneous frequency ω(t) = φ′(t):

u(t) = a(t) cosφ(t). (1.42)

It is convenient to use a complexified version of the signal whose real
part is a given real-valued signal u(t). Given u(t) there are infinitely many
ways to define the instantaneous amplitude and phase pairs so that (1.42)
holds. This is due to the arbitrariness of the complexified version of u, i.e.,
f(t) = u(t)+iv(t), where v(t) is an arbitrary real-valued signal; yet this yields

the representation of u(t) via a(t) =
√
u2(t) + v2(t), ϕ(t) = arctan

v(t)

u(t)
. The

instantaneous frequency is defined as ω(t) =
dϕ

dt
=
u(t)v′(t)− u′(t)v(t)

u2(t) + v2(t)
.

The usage of the analytic signal f(t) as Hilbert transform of u(t) as v(t)
had been proposed by D. Gabor in 1946.

Vakman (1972) proved that v(t) must be of the Hilbert transform of u(t)
if there are imposed some apriori physical assumptions:
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• v(t) must be derived from u(t),

• amplitude is continuous, i.e a small change in u causes a small change
in a(t),

• phase is independent of scale: if cu(t), c ∈ R is arbitrary scalar, then
the phase does not change from that of u(t) and its amplitude becomes
c times that of u(t),

• harmonic correspondence: if u(t) = a0 cos(ω0t + φ0), then a(t) ≡ a0,
φ(t) ≡ ω0t+ φ0.

Let us assume for simplicity that signals are 2π-periodic in θ ∈ [−π, π].
Then we have the unit circle and unit disk D in C = R2. Signals over
R = (−∞,∞) can be treated similarly by considering the real axis and the
upper half plane of C.

The analytic signal of a given signal u(θ) ∈ R is obtained via Hilbert
transform f(θ) = u(θ) + iH(u(θ)),

H(x) =
1

π
p.v.

π∫
−π

u(τ) cot
θ − τ

2
d′τ,

where u(τ) = a0
2
∑
k≤1

(ak cos kθ + bk sin kθ), soH(u(θ)) =
∑
k≤1

(ak sin kθ − bk cos kθ) .

Furthermore,

f(θ) =
a0

2
+
∑
k≤1

(ak − ibk) eikθ.

The boundary value of an analytic function F (z) := U(z) + iŨ(z), z ∈ D
where

U(z) = U
(
reiθ
)

= Pr ? u(θ) =
1

2π

∫
1− r2

1− 2r cos(θ − τ) + r2
u(τ)dτ,

Ũ(z) = Ũ
(
reiθ
)

= Qr ? u(θ) =
1

2π

∫
2r sin(θ − τ)

1− 2r sin(θ − τ) + r2
u(τ)dτ.

The original signal u(θ) = U(eiθ) is the boundary value of the harmonic
function U on ∂D, which is constructed by the Poisson integral. Ũ and Qr(θ)
are referred to as the conjugate harmonic function and the conjugate Poisson
kernel, respectively.
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Hilbert (or RF) envelope was constructed with respect to the variable x.
Let f̃(x, y, z) = f̃y,z(x), then the Hilbert envelope represents f̃y,z(x), x ∈ X,
the absolute value of the Hilbert transform of real-valued function H(x) =

1

π
p.v.

∞∫
−∞

fy,t(x
′)

x− x′
dx′:

s̃(x, y, t) = s̃x(y, t) = |fy,t(x) + iH(x)|.

1.4 Wavelet Transform

The idea of the application of wavelet transforms in signal processing is
widely used as this method gives more information of the signal behaviour
(see e.g. [3], [7], [47]) and allows

• to figure the most characteristic features,

• to have localization in time and frequency domain simultaneously,

• to see the changes in time.

Nowadays wavelet-based technique are widely used in signal processing,
approximation, time-series analysis and predicting, computer graphics and
image processing. It is also an efficient tool for analysing the medical infor-
mation. The usage of wavelet-based methods to study USG signals or other
medical images for diagnosis are described in [62], [72]. The huge survey
on the applications of wavelet methods for cancer diagnosis in soft tissues is
given in [61] and [73].

The wavelet function ψ(x) such that

∞∫
−∞

ψ(x)dx = 0 generates the detail

coefficients. Its sense is to describe the signal. It also compose the basis by

time shift with ψ(t − b) the real parameter b and scaling
1

a
ψ

(
t

a

)
with the

positive real parameter a. The parameter b gives the wavelet position and
a is the scale parameter in time. In the frequency domain the small values
of a represent the high frequencies, the large values — the low frequencies.

Scaling function ϕ(x) such that

∞∫
−∞

ϕ(x)dx = 1 generates the approximation

coefficients.

24



1.4.1 Discrete Wavelets. Approximation and Detail Coefficients

In the case of the discrete signal the corresponding discrete wavelet trans-
form is used [27].

For the scale coefficient a it is used the dyadic discretization scale aj = 2−j,
where j ∈ Z is a scale index. The coefficient b is discretized linearly so that
bj,i = i2−j, i ∈ N.

The formula for discrete wavelets in general case may be written as follows

ψj,i(x) =
1
√
aj
ψ

(
x− bji
aj

)
(1.43)

and the discrete decomposition formula

wji =

∞∫
−∞

f(x)ψji(x)dx. (1.44)

The corresponding discrete reconstruction formula is

f(x) = C
∞∑

j=−∞

∞∑
j=−∞

wjiψji(x) +R(x). (1.45)

Here C is a constant and R(x) is a residual which depends on the choice of
wavelet [35].

This technique in general is concludes is the signal’s representation con-
sists of two parts. The fist one is rude and is called approximation, the second
is more refined, it is called detail. These process is iterative and it stops when
the required accuracy is reached. The described method supposed the usage
of two required functions ψ and ϕ for the wavelet decomposition and following
signal reconstruction [7].

The detail coefficients dji are calculated as follows:

dj =
∑
i∈Z

wjiψj,i(x), (1.46)

and the approximation coefficients aj for the fixed level j:

aj =
∑
j>J

dj. (1.47)

Thus the reconstruction formula for the signal f at the nth level is

f(x) = an +
n∑
i=1

di, (1.48)
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where an denotes the approximation at the nth level and di are the detail
coefficients for the levels from 1 up to nth. The formulae for construction
the wavelet and scaling functions and the procedure of MRA are described
in Appendix A

These coefficients allow to make the high-pass and low-pass filter for initial
signal function. The result of the high-pass filter is detailed coefficient d1

and the result of the low-pass filter is approximate coefficient a1. Later a1

is filtered again and this process is repeated until the required accuracy or
pre-defined features are reached. As an example, let us consider the 3-levels
decomposition of some signal function f(x). At first level, an original signal
is processed by the high-pass and low-pass filter [80]. The final result is
approximate coefficient a3 and the entire detail coefficient d1, d2, d3. Hence,
f(x) as reconstructed signal can be expressed in the following

f(x) = a3 + d3 + d2 + d1, (1.49)

see Fig. 1.1.

Figure 1.1: Visualization of the example signal’s decomposition into levels

The problem to decide is that is how these discrete wavelet coefficients can
reduce the noise level and reconstruct a signal without losing the essential
information. In general, an inappropriate wavelet function and decomposition
level lead to the signal defect and losing of essential information. In [80] there
was proposed a metric based on information quality ratio to determine the
best-suited wavelet function.

1.4.2 Time-Frequency Localization

Many studies using wavelet analysis have suffered from an apparent lack
of quantitative results. The wavelet transform has been regarded by many as
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an interesting diversion that produces colorful pictures, yet purely qualitative
results. This misconception is in some sense the fault of wavelet analysis itself,
as it involves a transform from a one-dimensional time series (or frequency
spectrum) to a diffuse two-dimensional timefrequency image. This diffuseness
has been exacerbated by the use of arbitrary normalizations and the lack of
statistical significance tests. The purpose of the paper [5] was to provide an
easy-to use wavelet analysis toolkit, including statistical significance testing.

We follow some part of the paper [80], where the differences between
windowed Fourier transform and wavelet transform are demonstrated.

The Windowed Fourier transform (WFT) represents one analysis tool for
extracting local-frequency information from a signal. The Fourier transform
is performed on a sliding segment of length T from a time series of time step δt

and total length Nδt, thus returning frequencies from
1

T
to

1

2δt
at each time

step. The segments can be windowed with an arbitrary function such e.g. as a
Gaussian window. The WFT represents an inaccurate and inefficient method
of timefrequency localization, as it imposes a scale or “response interval” T
into the analysis. The inaccuracy arises from the aliasing of high- and low-
frequency components that do not fall within the frequency range of the

window. The inefficiency comes from the
T

2δ
frequencies, which must be

analyzed at each time step, regardless of the window size or the dominant
frequencies present. In addition, several window lengths must usually be
analyzed to determine the most appropriate choice. For analyses where a
predetermined scaling may not be appropriate because of a wide range of
dominant frequencies, a method of time-frequency localization that is scale
independent, such as wavelet analysis, should be applied.

The wavelet transform can be used to analyze time series that contain
nonstationary power at many different frequencies. Assume that one has a
time series, xn, with equal time spacing δn = 0, . . . , N − 1. Also assume that
one has a wavelet function, ψ0(η), that depends on a nondimensional “time”
parameter η. To be admissible as a wavelet, this function must have zero
mean and be localized in both time and frequency space.

Next examples display the features of the acoustics signals that cannot be
noticed using usual Fourier analysis but may be detected be wavelet spectrum
and coefficients. The idea to study the combinations of sine-functions was
taken from the paper [7], but the calculations and comments are given by
author.

Example 1. We consider the signal of the form

s1(t) = sin
2πt

t1
+ sin

2πt

t2
, (1.50)
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having two frequencies at the same time interval.

Figure 1.2: Spectrum and spectrogram of the signal, example 1

Figure 1.2 represents on the left the absolute value of fast Fourier trans-
form and on the right the spectrogram of this signal. It is obvious that there
are two main frequencies in the examined signal but their changes in time
are not visible.

Figure 1.3: Coefficient distribution of the signal, example 1

Making the wavelet transform using MatLab Wavelet Toolbox [82] is is
possible to observe the wavelet spectrum of one-dimensional signal as 3-
dimensional surface which may be visualized as coordinate system amplitude-
frequency–time (Fig. 1.3) and the set of the amplitude and detail coefficients
of (Fig. 1.4).

The wavelet spectrum has periodically repeating fragments that are result
of convolution of the high-frequency signal’s component and wavelet functions
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of the small scale values. The lager scales are the example of noise removal,
so finally the summand of the smaller frequency is reduced and we have as in
the third graph of the Fig. 1.4. The periodical structure of signal preserves,
moreover, it is clearly visible how the energy changes in time.

Figure 1.4: Amplitude and detail coefficients of the signal, example 1

Fig. 1.4 shows the full decomposition of the signal up to the 6th level.
Here the red graph represents the signal itself, blue graphs correspond to the
amplitude coefficients aj and green correspond to the detail coefficient dj.
The evolution of aj coefficients shows how the higher frequency component
may be reduced from the signal. The detail coefficients of the lower levels
may be treated as a noise, so the procedure of noise removal means taking
off the detail coefficients from the lower levels i.e. of high frequency.

Example 2. Let us consider the signal of the form

s2(t) =


t1 sin

2πt

t1
t ∈ [−10π, 0]

t2 sin
2πt

t2
t ∈ [0, 10π]

(1.51)

that also has two main frequencies but they are located in the different regions
with respect to time variable. These frequencies are also well seen in the one-
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side spectrum’s amplitude graph (Fig. 1.5, left image) and its spectrogram
(Fig. 1.5, right image).

Figure 1.5: Spectrum and spectrogram of the signal, example 2

Performing the wavelet decomposition we may observe the periodical
changes of each part of the signal and the changes of these parts (see Fig. 1.6).

Figure 1.6: Coefficient distribution of the signal, example 2

1.4.3 Daubechies Wavelet Family

One of the problems in wavelet’s application is to select the analyzing
wavelet or family as there is no general algorithm to solve it, because different
basis would show different signal’s features. It is proposed to use the special
wavelet function if there is known about the signal’s particularities or the

30



form of the periodical patterns to find [3]. In the QUS the Daubechies wavelet
family is used rather often as these functions match the reflection impulse [39].
That is why the Daubechies 6 family had been chosen as analyzing wavelet.
The left image Fig. 1.7 presents the form of the initial impulse used in the
experiments described in the thesis, right image shows the Daubechies 6
wavelet function.

Figure 1.7: Initial impulse and Daubechies 6 wavelet function

The Daubechies wavelet family is a family of orthonormal wavelets ([27])
with compact support which are frequently used for analyzing real signals.
These wavelet and scaling functions have no analytic representation, they are
constructed recurrently by the equalities (A.7).

In our investigation the Daubechies 6 family was chosen as the analyz-
ing wavelets. The motivation of the choice was the following. The cor-
responding wavelet function ψk have compact support namely the k-level
wavelet function has support [0, 2k + 1], and they have also 6 vanishing mo-
ments. The coefficients for scaling function ψ hk are obtained from the sys-
tem of equations (A.8) – (A.12) from Appendix A and their values values
are h1 = 0.47046721, h2 = 1.14111692, h3 = 0.650365, h4 = −0.1909344,
h5 = −0.1208322, h6 = 0.0498175. Coefficients gk may be obtained from the
equality (A.9).

In Fig. 1.8 on there are shown the scaling function ϕ (left) and wavelet
function ψ for Daubechies 6 family.

The are some mathematical properties that also allow to use Daubechies
wavelets of order p for the analysis of analytic signals:

• they are orthogonal;

• have compact support;

• there is no symmetry for p > 1;
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Figure 1.8: Daubechies 6 scaling and wavelet functions

• they have p vanishing moments;

• the filter length is equal to 2p.

1.4.4 Scale Index as a Tool for Periodicity Detecting

The idea of the investigation of the periodicity of backscattered acoustic
signals comes from the dynamic systems theory [8]. Here the theorem con-
necting the wavelet decomposition level and the periodical structure of signal
is proved and there is introduced an index indsc depending on the wavelet
approximation level which allows to identify the periodical signals. As there
may arise a boundary effects, the inner part of the wavelet coefficients distri-
bution called scalogram will be used. It is underlined that usage of continuous
wavelet transform is preferable.

The general idea of this method is based on the energy of approximated
signal calculated for each scale a:

E(a) =

 ∞∫
−∞

|Wf(a, b)|2db

1/2

, (1.52)

where a is supposed to change continuously in R.
Despite of the localization properties of integral wavelet transform the

boundary effects still exist. They may be seen, for example, at the coefficients
distribution in figure (1.3) and they influence the energy distribution of E(a).
To avoid the boundary effects the set of possible values is narrowed down to
the interval [t1(a), t2(a)], which may be different for different scale.
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Ein(a) =

 t2(s)∫
t1(s)

|Wf(a, b)|2db


1/2

. (1.53)

Interval [t1(a), t2(a)] should contain all the wavelets ψa,b for all a ∈ [t1(a), t2(a)].
To compare the energy values for different scales the normalized energy is
considered

Ein
norm(a) =

Ein(a)√
t2(a)− t1(a)

. (1.54)

Figure 1.9 demonstrates the Ein
norm(a) for the numerically modelled signal

consisting of 1200 points and its central part obtained by cutting some parts of
signal from both sides. The black graph shows the Ein

norm(a) for the full signal
f(x), the blue graph corresponds to the Ein

norm(a) for f95(x) containing 95% of
f(x), the green graph corresponds to the Ein

norm(a) for f90(x) containing 90%
of f(x), the red graph corresponds to the Ein

norm(a) for f80(x) containing 80%
of f(x). As these graph do not coincide, it may be concluded that boundary
effect really takes place.

The difference of Ein
norm(a) for initial and reduced signals is shown in

Fig. 1.10, the color of curve corresponsd Fig. 1.9. It may be noticed that the
smallest difference is f(x)− f80(x).

For the detection of the periodicity there is applied a special marker called
index and proposed in [8]. In this paper it is also proved the theorem that
for complex-valued periodical function f ∈ L2([0, T ]) with period T and
compactly supported wavelet ψ the wavelet transform Wf(t, 2T ) = 0 for all
u ∈ R. That is why for compactly supported wavelet function the normalized
energy Enorm = 0 at scale a = 2T .

The energy is studied on the in scale interval [a1, a2] and the scale index
is calculated

indsc =
E(amin)

E(amax)
. (1.55)

Here E(amax) is the smallest scale in for energy maximal value [a1, a2] and
E(amin) is the minimum of energy in the interval [amax, a2].

The index coefficient indsc ∈ [0, 1]. For periodic signals it is zero and it is
equal to 1 for highly non-periodic signals (see [8]).
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Figure 1.9: Ein
norm(a) for initial and reduced signals

Figure 1.10: Difference of Ein
norm(a) for initial and reduced signals
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1.4.5 Improvement of Mean Scatterer Spacing Parameter

As RF echo signal y(t) is a result of the interaction of ultrasound pulse
with the scattering structure [86], it may be represented as the convolution
of the impulse response h(t) and the scattering function x(t)

y(t) = h(t) · x(t),

where · represents the convolution operator, and t is a time axis related to
the radial distance by the propagation of the ultrasound pulse. The impulse
response h(t) integrates the characteristics of the transducer, diffraction, and
frequency-dependent attenuation. The scattering function x(t) can be written
as

x(t) =

ND∑
m=1

αm (t− γm) +

NC∑
n=1

βn (t− νn) ,

where ND is the total number of diffuse scatterers; αm denotes the scatter-
ing function of the mth diffuse scatterer with delay γm corresponding to its
effective scattering center; NC is the total number of coherent scatterers; βn
denotes the scattering function of the nth coherent scatterer with delay νn
corresponding to its effective scattering center.

The discrete variant of the RF echo y(t) is called the A-scan y(n) is
obtained, its power spectrum of the may be calculated by Fourier transform

Y (f) = FT [y(n)] , PFT = E
[
|Y (f)|2

]
,

where E[ ] denotes the expectation operator [86].
To characterize the periodicity in tissue it is used a special parameter

called mean scatterer spacing (MSS). It shows the average periodicity in RF
signal caused by the periodical structure of scattering media. The idea of
measuring the distance of the peaks of signal’s transformation had been pro-
posed in [40]. There are several approaches in computing the MSS.

The first approach is based on the detecting the peaks in the Fourier
transform spectrum and the fact that the peaks in A-scan y(n) correspond
to the peaks in its power spectrum P (f), so they may be found. The peaks
in the time domain domain occur at 2d = ∆tc and the corresponding peaks
in the spectrum domain occur at

d =
c

2∆f
, (1.56)

where c is speed of sound, ∆t is time interval, ∆f is frequency interval, d is
MSS.If the largest peak occurs at (fp1, fp2) then ∆f = |fp1 − fp2|. The [y(n)]2

may be also used for Fourier spectrum MSS estimate.
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This method had been used, fpr example, to investigate the mean scatterer
spacing in bovine liver ex vivo samples (see [66], [28]).

The second approach suggests using the wavelet transform instead of
Fourier spectrum (see, e.g. [74], [86]) by studying modulus maxima at differ-
ent decomposing scales corresponding to the location of coherent scatterers,
so, the distance between modulus maxima is may be treated as MSS.

As wavelet decomposition may be performed into different scales, there is
a problem of choosing the best level for the wavelet transform. In this work
it will be used the formula [45]

log2

(
fs
f

)
− 1 < J < log2

(
fs
f

)
. (1.57)

Here J is a wavelet decomposition level, and fs is a sampling frequency and f
the fundamental frequency that may be obtained from formula (1.56). Thus
thw MSS may be calculated as follows:

MSS = max
i∈[1,N ]

|WJs(zi)−WJs(zi−1)|. (1.58)

where WJs(zi) is wavelet approximation of signal s at the point zi, N is
number of sampling points.

The percentage error of the MSS is obtained by the relation

e =
|MSSe −MSSr|

MSSe
· 100%, (1.59)

where MSSe and MSSr and are measured and calculated approximate values
of mean scatterers spacing correspondingly.

1.5 Statistical Distributions

1.5.1 Effective Number of Scatterers

The effect of absorption and scattering on the amplitude of the echo signal
(attenuation) received by the ultrasonic head is measured collectively as a
decrease in amplitude during propagation. Absorption in the tissue, as ex-
plained in the introduction to the section 1.1, it is not a classic absorption
and modeling this phenomenon requires the generalization of classical models
of sound propagation in liquids.

In this chapter we will present simple models of scattering in order to
show how from the information contained in the echo envelope statistics
can be used to get the numerical parameters describing scatterers number
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and their spatial distribution. Scattering is a phenomenon of reflection from
objects smaller than the wavelength. Tissue is not a homogeneous medium,
the sources of the ultrasound scattering assuming a linear propagation model
are in the changes of density and compressibility

The scattering depends on many geometrical factors, such as the size,
shape or spatial distribution of the scattering objects, and on the physical
factors such as the compressibility and density of the material from which
these objects are built. The simplest model of scattering is the discrete model,
in which the wave propagates in a homogeneous medium with inclusions
(scatterers) of others than properties of this medium. The ability of a point
object to disperse the wave it is coded with a single parameter, the scattering
cross-section. A backscatter coefficient is also introduced, which is a measure
of the power dissipated by the object in the opposite direction to the direction
of incident wave. This is implicitly the part of the scattered signal that has
to return to the source of the wave, which in the case of considered signals
used in medical imaging, means to the scanning head.The so-called point
model of the signal s(t), in which we assume point sources as scatterers can
be treated as a random walk due to the random location of the scatterers in
the resolution cells [71]:

s(t) =
N∑
n=1

αn cos (ω0t+ φn) ,

where ω0 is the mean frequency of excitation pulse and N is the number of
scatterers in the resolution cell. Ift the phases φn is modeled as uniformly
distributed in [0, 2π] and the amplitude is usually considered to be normally
distributed. The fully diffusive scattering model assumes a high number of
scatterers, so the Central Limit Theorem applies and the backscattered echo
can be expressed as

s(t) = X cos (ω0t)) + Y sin (ω0t)) ,

where X and Y are zero mean identically distributed Gaussian distributions.

1.5.2 Rayleigh and Rician Distributions

Then, the envelope of the backscattered signal echo, R =
√
X2 + Y 2 is

Rayleigh distributed [77]:

fR(r) =
r

σ2
e
−
r2

2σ2u(r), (1.60)
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where u(·) is the Heaviside step function defined as u(x) =

{
0, x < 0,
1, x ≥ 0.

Under the same as previously made assumption of a high number of effec-
tive scatterers but with the presence of resolvable structures in the resolution
cell (specular component, C), X and Y become nonzero Gaussian distribu-
tions. The envelope does no longer follow a Rayleigh distribution but a Rician
one

fRician(r) =
r

σ2
e
−
r2 + C2

2σ2 I0

(
rC

σ2

)
u(r), (1.61)

where I0(·) is the modified Bessel function of first kind [67].

1.5.3 K-distribution

When the number of scatterers decreases and the Central Limit Theorem
cannot be applied, more complicated distributions are proposed to model
the distribution of the backscattered signal envelope. Concretely, the K-
distribution models the case when the number of scatterers is a random vari-
able itself, which is modeled as a Poisson distribution whose local mean is
Gamma distributed.

The K-distribution is formed by compounding two separate probability
distributions, one representing the radar cross-section, and the other repre-
senting speckle that is a characteristic of coherent imaging. The model used
to represent the observed intensity X, involves compounding two gamma dis-
tributions. In each case a reparametrization of the usual form of the family
of gamma distributions is used, such that the parameters are: the mean of
the distribution, and the usual shape parameter.

The probability density function of the amplitude of the Hilbert envelope,
which fits K-distribution with parameters (α, b) ∈ (0,+∞)×(0,+∞) is given
by

fK(x) =
2b

Γ(α)

(
bx

2

)α
Kα−1(bx) (1.62)

for any x ∈ (0,+∞).
Here α ∈ (0,+∞), b ∈ (0,+∞), Γ is a real-valued Gamma-function, Kα−1

is a modified Bessel function of second kind of the order α− 1 [67]:

Kγ(z) =
π

2 sin γπ
[I−γ(z)− Iγ(z)] ,

Iγ(z) =
∞∑
k=0

(z/2)2k+γ

Γ(γ + k + 1) + k!
.
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The parameter α of K-distribution is a shape parameter which is proportional
to the actual density of scatterers because of its practical meaning. Parameter

b is a scaling parameter of distribution, b =

√
4α

E(x2)
where E(A2) is the

second moment of the envelope amplitude.
The normalized fourth moment r4 of the K-distribution are functions of

α. It leads to the following estimator α0 for the density of scatterers, also
called “effective number of scatterers”

α0 =
2

r4 − 2
=

2

E(x4)

(E(x2))2
− 2

, (1.63)

the corresponding formula for the scale parameter is

b0 = 2

√
4α0

E(x2)
. (1.64)

The two parameters of this distribution, namely size and scale parameters,
together provide information on the number density of scatterers, the varia-
tion in the scattering amplitudes within the range cell and mean scattering
amplitudes. In the case of a medium where the scatterers are not regularly
spaced, the resulting echo is a coherent sum of reflected waves from randomly
distributed scatterers. If the number of scatterers per resolution cell is greater
than 10, the amplitude of the envelope of the signal is Rayleigh distributed.
For densities less than 10 the envelope is modeled with a K-distribution (cf.
[2], [63], [70]).

1.5.4 Nakagami Distribution

The PDF for K-distribution has no closed expression and this limits its
use. On a completely different approach, P.M. Shankar in [71] proposed a
Nakagami distribution as a “simpler universal model for tissue characteriza-
tion”. Unlike the previously reviewed models, the Nakagami is not based on
physical arguments or on a bottom-up modeling of the scattering process.
However, it has empirically shown a better performance than the Rayleigh
and Rice distributions The Nakagami distribution is related to the gamma
distribution. In particular, given a random variable X which is Gamma dis-
tributed, than random variable Y obtained by taking square root of X, i.e.
Y =

√
X is Nakagami distributed.
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The probability density of Nakagami distribution has the form ([52])

fNak (x;µ, ω) =
2µµ

Γ (µ)ωµ
x2µ−1e

µ
ωx

2

. (1.65)

Parameter ω = E
(
X2
)

is a positive parameter controlling spread, µ =

E2
(
X2
)

D (X2)
is a shape parameter, µ >

1

2
.

1.5.5 Gamma Distribution

The power of backscattered echo from tissues is often assumed as being
Gamma-distributed, as it was assumed in the definition of Nakagami distri-
bution. The probability density function of Gamma-distribution is

f(x; a, b) = xa−1 1

baΓ (a)
e−

x
b , (1.66)

where Γ(x) is a real-valued Gamma-function Γ(x) =
−∞∫
0

tx−1e−tdt for x > 0.

Parameter a may be treated as a shape parameter and b as scale parameter.
Summing up the values of shape parameters of K-distribution and Nak-

agami distributions are directly connected with effective scatterer number, if
the values are grater the scatterers number is greater. The shape parameter
of Gamma distribution is also dependent on the scatterer density, but not in
a linear way.
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2 Scatterers’ Density Differentiation

The aim of this Chapter is to find quantitative parameters connected with
effective scatterers numbers by studying envelopes of the raw RF (radio fre-
quency) backscattered signals from agar-gel samples with different number
of scatterers. The content and the results of this Chapter were partially
repeated from published papers [19] and [43].

2.1 Experiments Description

During the performed experiment, cf. [43], three types of phantoms were
fabricated, which simulate well a soft tissue properties. The first phantom
was “pure”, it will be named further as Phantom A, the second one (called
Phantom B) has inside glass beads with density 6 items per mm3, the third
one has density 30 balls per mm3 (Phantom C). The balls were uniformly dis-
tributed and had diameter 755 µm and density 3000 kg/m3. We have the aim
of distinguishing these phantoms by the structural quantitative parameters
which can ”counting” the number of beads. The differences in the acoustical
characteristics between phantoms were discussed in [43].

For the generation and reception of ultrasonic pulses the transmitter-
receiver JSR Ultrasonics DPR 300 Pulser/Receiver was used and Imasonic
head (center frequency 6MHz, diameter 9 mm, the focal length 62 mm). The
received RF signals were recorded with oscilloscope (Agilent Technologies
type DS09104A). The collection of RF signals, obtained from sonication of
phantoms, had been registered. The number of signals was 10 in the experi-
ment 1 and of 25 signals in the experiment 2. The difference between these
experiments was in in the acoustic beam focus locations that was situated at
the mirror lying on the bottom of phantom in experiment 1 and at the center
of samples in the experiment 2.

Characteristics of the obtained phantoms represented in the table 2.1.
Fig. 2.1 displays the two types of phantoms, Phantom A (pure) on the left
and Phantom C on the right.

Phantom type A B C
Glass beads concentration [psc/mm3] 0 6 30

Glass beads volume fraction [%] 0 0.13 1.66

Table 2.1: Phantoms’ characteristics
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Figure 2.1: B-modes of phantoms without inclusions and with glass balls
inside

2.2 Calculation Algorithm

2.2.1 Pre-transformations

1. The initial dataset consisted of 10000 points (sampling points of RF
signal) for the experiment 1 and of 13000 points for the experiment 2.
In Fig. 2.2, left images shows the examples of the RF backscaterred
signals that correspond to each type of phantom: the signal on top
corresponds to Phantom A, next one — to Phantom B and the signal
at the bottom corresponds to Phantom C.

For both experiments there were determined regions of interests (ROIs)
obtained by cutting areas of the amplitude growth caused by the mirror
metal plate located on the bottom of phantoms and boundary effect on
the starting point of initial impulse. Thus signals were cut off form
the left and right hand sides. For experiment 1 the cut signal has 5200
points and for experiment 2 — 9000 points. In Fig. 2.2 images on the
right there are given the examples of cut signals.

2. The frequency filter had been applied, so all frequencies higher than
12 mHz were cut off, because of the transducer band.

3. Hilbert transform which defines a signal envelope has been calculated
and this envelope afterwards is called and is used as a “signal”: S̃ (x) =

|Sx,y (x) + iH(x)|, H(x) = p.v.
∞∫
−∞

S(x)

x− x′
dx′.

4. For experiment 2 data were normalized with respect to variable ampli-

tude x: Si(x) =
Si(x)

maxx∈X ′
{
Six
} , i = 1, 25.
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Figure 2.2: Examples of backscattered and cut RF signals

In the experiment 1, in addition to normalized signals, the raw initial data
from ROI (region of interest) here, the shortened domain of signal, was also
used.

2.2.2 Wavelet Decomposition

For further analysis a discrete wavelet transform (1.44) was performed by
using the Daubechies 6 wavelets introduced in section 1.4.3. The approxi-
mation and reconstruction (A.3) of signals was made, approximation (1.47)
and detail (1.46) coefficients were calculated. Using the raw signals in experi-
ment 1 the wavelets decomposition of signals is analyzed. The decomposition
of original signals for 12 levels is calculated. The example is shown on the
Fig. 2.3.

In the Fig. 2.3 s denotes the original signal, graphics a1 – a12 denote ap-
proximations and d1 – d12 details coefficients, respectively for levels from 1
to 12, the coefficient distribution is presented on the top right of the graph.
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Figure 2.3: Example of RF signal’s decomposition for 12 levels

Let us notice that because matrix material is the same in the three phantoms
the differences arising in analysis are due only to the different number of
scatterers. It has been observed that on the 9-level of approximation there
appear similarities between Phantom A and Phantom C, while Phantom B is
qualitatively different. This fact is even stronger on the 12th-level of approx-
imation. In the matrix material (gel) we have rather uniformly distributed
weak scatterers and the amplitude of reflected wave fluctuations are also not
high.

The comparatively large number of glass beads can be considered to be
also distributed uniformly and they dominate in the backscattered signal am-
plitude fluctuations but with higher amplitude values than in the case of pure
matrix Phantom A, giving rise to similarities in character of scattering. Con-
trary, comparatively low density of strong scatterers in Phantom B, and, at
the same time the noise coming from weak scatterers in the gel matrix, intro-
duce the “double structure” of randomness preserved in the the backscattered
signal properties. It is probably the difference visible in wavelet form of 12th
level approximation. To discover other differences in what follows we apply
wavelet analysis and analyze statistical properties of the envelopes of signals.
It should be noticed that for the experiment 1 we will perform the analysis
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without any kind of receiver–transducer and attenuation compensations.

Figure 2.4: Signal’s decompositions for three phantoms

The large number of scatterers (Phantom C) are “visible” on the two-
dimensional picture of wavelet coefficient distributions - stronger fluctuations
in the left side of pictures (the right side is less visible because we did not com-
pensate the attenuation). The tendency to differentiate between “columns”
in the pictures i.e. the same values of coefficients on successive scales, one
can also notice in the case of moderately number of scatterers (Phantom B).

Fig. 2.4 represents the coefficients distribution of three types of signals’
Hilbert envelopes from experiment 1. Red line on the top shows the envelope
and the colored graph shows the intensity of wavelet coefficients. Horizontal
axis corresponds to the time or to the shift parameter b of wavelet transform
vertical axis corresponds to the scale parameter a (1.43). The intensity of
coefficients connected with the energy are denoted by color scale, the brightest
parts are the regions with the maximal energy and the darkest areas are the
regions with minimal energy. The envelope and its coefficients on the top of
Fig. 2.5 are obtained from type A signals, in the middle — to the type B
signals and in the bottom — to type C signals.
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Figure 2.5: Examples of the coefficient distribution of signal’s envelopes
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2.2.3 Statistical Approach

Different statistical distributions may be used to estimate the RF signals
(e.g. [2], [83] and others). As a proximity measure there was chosen mean
squared error

MSE =
1

n

n∑
i=1

(S(xi)− PDF (xi))
2 , (2.1)

representing the square of distance between probability density function and
our signal. In formula 2.1 S(x) is initial signal taken in every sampling point
xi, PDF (xi) is a probability density function calculated in the same point.
Table 2.2 shows the MSE value for Gamma, K and Rayleigh PDFs calcu-
lated for 5 level of signal’s wavelet approximation for each type of phantom.
The last part of table shows the mean value for each distribution and ap-
proximation level.

Phantom Fitting Pure Level 1 Level 2 Level 3 Level 4 Level 5
to PDF signal

A
Gamma 0.152 0.131 0.102 0.116 0.132 0.14
K 0.156 0.133 0.103 0.117 0.131 0.137

Rayleigh 0.646 0.388 0.233 0.197 0.169 0.161

B
Gamma 0.182 0.134 0.112 0.119 0.123 0.127
K 0.200 0.144 0.116 0.122 0.124 0.128

Rayleigh 0.372 0.237 0.164 0.148 0.139 0.136

C
Gamma 0.135 0.090 0.102 0.084 0.105 0.097
K 0.146 0.095 0.103 0.085 0.104 0.098

Rayleigh 0.358 0.203 0.162 0.116 0.125 0.139

Mean
Gamma 0.156 0.118 0.105 0.107 0.12 0.121
K 0.167 0.124 0,107 0.108 0.12 0.121

Rayleigh 0.458 0.276 0.186 0.153 0.144 0.134

Table 2.2: MSE for fitting to PDF functions

It follows from table 2.2 than the lowest values of mean MSE for each
approximation level correspond to the PDF of Gamma distribution. That
is why these parameters were calculated for each decomposition level for
both experiments. Their dependence is shown in Fig. 2.6 for experiment 1
for approximation levels from 1st till 9th and in Fig. 2.7 for approximation
levels from 3rd till 8th. Red points correspond to the RF signals obtained
from phantom A, green points correspond to the RF signals obtained from
phantom B, and blue points correspond to the RF signals obtained from
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phantom C. On the horizontal axis there is shape parameter, on the vertical
axis there scale parameter of Gamma distribution (1.66).

Figure 2.6: Parameters dependence of Gamma distribution for 9 wavelet
approximation levels for signals of experiment 1

Figure 2.7: Parameters dependence of Gamma distribution for wavelet ap-
proximation levels from 3 to 8 for signals of experiment 2
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The dependence of the parameters of Gamma distribution (1.66) had been
used to see the difference between these phantoms. Similarities visible on the
2D plane of distribution the values of scale and shape parameters for both
experiments. It may be noticed that the area of the points for phantom
C (having the largest density of included particles) may be separated form
others for levels from 3 to 6 for experiment 1 and for levels 3 and 4 for
experiment 2. Thus, parameters location is a candidate for classification
feature.

In Fig. 2.8 it is presented the pair-wise difference of the scale parameter
a of Gamma distribution, its largest values are shown in the table. As it
follows from Fig. 2.8, the maximal value this quantity reaches at the 4th
approximation level, so it may be taken as an optimal one.

Figure 2.8: Pairwise deviation of Gamma parameter a

Maximal distance of Gamma parameter a is shown in the table 2.3.

Phantom A and B Phantom A and C Phantom B and C
0.13 0.95 0.81

Table 2.3: Maximum distance of pairwise deviation of Gamma parameter a

Similarly there were visualized the parameters dependence for spread pa-
rameter ω and shape parameter µ of Nakagami distribution (1.65) for wavelet
approximation levels from 3 till 8 for signals from experiment 2 (see fig. 2.9):
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Figure 2.9: Parameters dependence of Nakagami distribution for wavelet ap-
proximation levels from 3 to 8 for signals of experiment 2

There it should be also possible to define the area of parameters values’
separation, at least for 3th level approximation.

To summarize, the delimiting values of the shape parameters for Gamma
and Nakagami distributions are given in the table 2.4. The measured data
having the value of shape parameter that is less than the corresponding value
form table 2.4 the for the chosen wavelet approximation level may be treated
as RF signal obtained form the experiment of a phantom with the largest
number of inclusions. Otherwise it may be concluded that the RF signal is
obtained with low concentration of glass balls.

Level 3 Level 4
Experiment 1, Gamma parameter a 0.92 0.99
Experiment 2, Gamma parameter a 3.30 3.65
Experiment 2, Nakagami parameter µ 0.95 –

Table 2.4: Delimiting values for distributions’ scale parameter

Thus these parameters may be treated as a markers that allow to separate
the RF signals obtained from the phantom with the highest concentration of
scattering particles (Phantom C) from others (Phantom A and Phantom B).

2.2.4 Order Statistics

As the different technique there were also used the methods of nonpara-
metric statistics that usually may be applied to the datasets with low quality
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of data [55]. The idea of using the order statistics for detail coefficients of
wavelet discrete transform was used in [51] for determination the breast lesion
regions.

1. Each from 25 signals were decomposed into 10 levels by Daubechies 6
wavelets.

2. The detail coefficients for each decomposition level from 1 to 10 were
calculated, Djn,i =

∑
j>jn

dj,iψjn,i.

3. Detail coefficients were collected for each type of signal (i.e. A, B, C)
and for each decomposition level Djn = {Djn,i}

25
i=1.

4. The obtained datasets were normed with respect to its standard devi-

ation (square root of the variance) Djn =
Djn√

var (Djn)
.

5. The set were divided into 20 intervals to perform order statistics.

6. Quantiles for each type of signal A,B, C for the absolute value of ap-
proximation (1.47) and detail (1.46) coefficients of the decomposition
levels from 1 to 10 were calculated.

Quantiles are defined in statistics as points that divide the range of a
probability distribution areas of with equal probabilities (see, e.g. [55]).
A p-quantile zp for the given probability density function PDF (x) is
may be obtained form the equation PDF (zp) = p, where 0 < p < 1 is
fixed probability value.

Figure 2.10 shows the example of the quantiles for approximation (left im-
age) and detail coefficients (right image) 6th approximation level. Horizontal
axed denotes the probability values p, vertical axed denotes the quantiles. As
it may be noticed, for detailed coefficient the difference of the the curves may
visible only in the probability intervals for papp ∈ [0.1, 0.2] and papp ∈ [0.7, 0.9]
while for approximation coefficients this interval is pdet ∈ [0.4, 0.9]. The read
line correspond to the RF signal obtained from phantom A, the green line —
from phantom B and the blue line — from phantom C.the

On Fig. 2.11 there are presented the mean values of obtained quantiles
for each type of RF signals. Horizontal axis denotes the intervals defined at
the step 5 of the algorithm. The whole area included 20 intervals, but on the
graphs there are depicted only area with visible differences, i.e. intervals from
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Figure 2.10: Quantiles for approximation and detail coefficients for 6th ap-
proximation level

Figure 2.11: Mean values for probability intervals for approximation and
detail coefficients of 6th level

8 to 18 for approximation coefficients and from 12 to 18 for detail coefficients.
The RF signals are denoted by the same colors as in Fig. 2.10.

It may be concluded that the possibility to differ the RF signals for each
type of phantom occurs for the intervals from 8 to 16 or for quantile order
papp ∈ [0.4, 0.8] for approximation coefficients and for intervals from 16 to 18
or for quantile order pdet ∈ [0.8, 0.9] for detail coefficients. the obtained
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2.3 Results

1. Values of shape parameters of Gamma and Nakagami distribution may
be treated as the quantitative parameter, i.e. a marker which able
to separate the phantom with the largest concentration of included
particles from others:

• for 3rd approximation level:

– for experiment 1 and Gamma parameter a < 0.92,

– for experiment 2 and Gamma parameter a < 3.3,

– for experiment 2 and Nakagami parameter µ < 0.95,

• for 4th approximation level:

– for experiment 1 and Gamma parameter a < 0.99,

– for experiment 2 and Gamma parameter a < 3.65.

2. Additionally, the mean vales of quantiles for approximation and detail
coefficients for 6th level wavelet approximation are also the quantitative
markers of separating the each type of phantom, namely:

• the quantile for approximation coefficients zpapp of order papp ∈
[0.4, 0.8],

• the quantile for detail coefficients zpdet, of order pdet ∈ [0.8, 0.9].
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3 Temperature Changes Differentiation

The main idea of this chapter is to examine the temperature changes in
tissue during the heating process by the registering the changes in the ultra-
sound echo signals. The research is in area of modern ultrasonic thermometry
which is a non-invasive tool concurent to very expensive and not always pos-
sible to be used magnetic resonance temperature imaging. Ultrasound ther-
mometry will also be used in ultrasonic hyperthermia to monitor the level of
tissue heating within the patient’s body during the course of e.g. ablation of
cancerous tumors. Also the mild hyperthermia used in immunotherapy needs
the precise temperature control, made in [6], [75], [76].

During our investigation special phantom of soft tissue was fabricated to
examine the temperature changes of the backscattered acoustic signal under
the heating process [23]. We explore the fact that the changes in texture
of material during heating appear. The ultrasonic acoustic signals, being
recorded during the heating of samples (made from a soft tissue in vitro
or soft tissue phantom), should be associated with the local temperature
increase.

The aim of the chapter is to display that using wavelet transformation of
ultrasound echo signals we are able to find parameters which in a quite pre-
cise way are markers of temperature increase. The ultrasound backscattered
signal also this which is registered during heating has a statistical nature
as it is formed from the backscattering signals scattered from spatially ran-
domly distributed scatterers located inside the medium. As a result statistical
properties of a signal should be strongly connected with the variations of in
random scatterers distribution in agreement with temperature variations.

Standard clinical B-scan imaging uses the properties of envelope of RF
(radio frequency) signal rather than a signal itself, because a phase is assumed
to be uniformly distributed, for details see Chapter 1.3., so the phase does
not contain in any significant information.

In what follows we look for statistical parameters of signals envelopes
which are sensitive for temperature increase using wavelet methods. It is
already known that the statistical distribution parameters modeling the en-
velope statistics preserves information about so called “effective density of
scatterers”. The signal’s envelope values is modelled as random variable
distributed as K-distribution if the empirical histogram of the envelope sig-
nal is close to the probability distribution function of K-distribution (cf.
[57], [58]). One can to proof it by statistical testing with performing e.g.
Kolmogorov-Smirnov test [55]. The parameter proportional to the “effective
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density of scatterers” is just the size parameter of K-distribution and can
be approximated from the first four moments of random envelope signal, cf.
Section 1.5.3. It is stated the hypothesis that this parameter is sensitive for
temperature changes, so correlated with structural changes of the sample,
and hence correlated to the changes of K-distribution shape parameter. The
proof of the hypothesis will be given by performing numerical calculations
on real signals collected during experiment described below. It will be also
shown that the temperature rise can be described by changes of the size pa-
rameter of 5th level of wavelet approximation of the envelope. The resulting
relationship i.e. temperature rise curve during heating is more close to tem-
perature rise curve measured by thermocouple than the same relationship
calculated directly from the signal envelope itself.

The sample datasets were obtained from two experiments that were per-
formed independently and have the similar general technique and described
in details in papers [21] and [42]. Backscattered RF Signals registered by
Transmitter-receiver JSR Ultrasonics DPR 300 Pulser/Receiver and US head
of central frequency 6MHz, diameter 9 mm, the focal length 62 mm. The
temperature within the sample has been measured along the beam axis at
different distances from the ultrasonic head by thermocouples.

3.1 Experiment 1. PVA Phantom

3.1.1 Experiment Description and Pre-transformations

The sample which has been used in experiment was a tissue phantom made
from PVA (Polyvinyl Alcohol Cryogel). This material consisted of 10% (by
weight) aqueous solution of polyvinyl alcohol. Samples produced from PVA
are widely used in clinical ultrasound and MR (magnetic resonance) imaging,
see [57] as the acoustic properties of the material are similar to the acoustic
properties of soft tissue. The cylindrical sample of radius 40 mm, thickness of
18 mm with metal reflector at one end was immersed in a water bath, which
was kept in a thermostat whose temperature was regulated. The thermostat
was set so that within one hour the temperature of the bath increased lin-
early from T0 = 20.6◦C to T1 = 48.8◦C. Next heating was switched off and
after 2 hours temperature of water reached T3 = 25.8◦C (table 3.1). Data

Start After 1 hour of heating In 3 hours
20.6◦C 48.8◦C 25.8◦C

Table 3.1: Temperature values in experiment 1

were collected by ULTRASONIX L14-5/38 head at a frequency of 8 MHz.
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Transmitted pulse comprises 2 periods of the sine wave pulse duration of
0.25 microseconds. At the time of 1 hour and 2 hours of heating/cooling
RF (Radio Frequency) signals were recorded every half minute (361 times).
Identification of temperature scale and time scale has been performed with
data from finite element method numerical simulation using Abaqus software
(see [21]). The obtained dependence of temperature versus time is shown in
Fig. 3.1.
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Figure 3.1: Abaqus-simulated dependence of temperature on time

It may be noted from Fig. 3.1 that after switching off the heating (t = 120)
the temperature of the phantom still increases for some period.

The recorded data had frequency of signals acquisition 30 frames per
second. Data RF signal has the form of the analytical signal (complex values),
which module gives the envelope the RF signal as a matrix 1001× 501× 361.

Figure 3.2: B-mode of the phantom in 3 different temperature phases
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Figure 3.2 represents the three pictures (UGS B-modes) of the phantom
at initial moment, after first hour of heating and at the end of the experiment.
The temperature increase in not visible here.

Before performing the wavelet decomposition and its statistical analysis
the data set was modified by following transformations:

1. The experiment data array of size 1001× 501× 361 had been reduced
to the array 601×501×361 by removing 200 points from each side. We

Figure 3.3: Example of RF signal, image 160 line 250

assume the initial data as a discrete function f(x, y, t), where x ∈ X,
X = {0, · · · , 600} represent points, y ∈ Y , Y = {0, · · · , 500} represent
lines of data, t ∈ T is a time variable or a number of image, T =
{0, · · · , 360}. Fig. 3.3 represents the example of the signal function
f(x, y0, t0) for y0 = 160, t0 = 250.

2. Zero-phase digital filtering with the Butterworth filter had been per-
formed. Additionally a filter, which reduces a tendency of the changes
with depth, was used. The compensated signal will be denoted as
f̃(x, y, z). We consider the obtained signal as a function f(x, y, t) =
fy,t(x) = fy(x, t), x ∈ X, y ∈ Y , t ∈ T .

3. Hilbert (or RF) envelope was constructed with respect to the variable x.
Let f̃(x, y, z) = f̃y,z(x), then the Hilbert envelope represents f̃y,z(x), x ∈
X, the absolute value of the Hilbert transform of real-valued function
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H(x) =
1

π
p.v.

∞∫
−∞

fy,t(x
′)

x− x′
dx′:

s̃(x, y, t) = s̃x(y, t) = |fy,t(x) + iH(x)|.
The signal example together with its Hilbert envelope (red line) are

Figure 3.4: The examples of RF signal and its Hilbert envelope

shown in the Fig. 3.4.

4. The data were averaged with respect to each line

s̃av(x, ·, t0) =
s̃(x, ·, t0)

E(s̃(x, ·, t0))
, where E(s̃(x, ·, t0)) is a mean value with

respect to variable x for each t0 ∈ T .

5. In order to have enough high number of values in the statistical en-
semble the data of each line had been considered together. The 361
“long”, signals with length equal to 300969 points had been constructed:
S(x, t) = Sx(t), t ∈ T , x ∈ X ′, X ′ = {0, · · · , 300969}.

6. “Long” signals has been normalized with respect to variable x:

S(x, t) = St(x) =
St(x)

max
x∈X ′

St(x)
.

The result of the pre-transformation steps for the image t = 160 is shown
in the Fig. 3.5. These data are concerned as initial for the following wavelet
and statistical analysis.
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Figure 3.5: Signal function after pre-transformations

3.1.2 Temperature Increase Detection

As it have been stated in section 1.4.3, the Daubechies 6 family had been
chosen as the analyzing wavelets. The choice of the analyzing wavelet was
based on the shape of the impulse which was used in the described above
experiment.

There was performed a decomposition by the Daubechies 6 wavelet of
St(x), for each t ∈ T up to the 10th level, then there was obtained the
reconstructed signal and the approximation coefficients up to the 10th level.
The 5th level was chosen as the most informative one. Fig. 3.6 represents the
example of the wavelet decomposition of the signal for t = 120.

Figure 3.6: Example of Daubechies 6 wavelet decomposition and coefficients
distribution for frame t = 120

The goal of this algorithm is to separate in time the period when the
phantom was heated, when its temperature continued to arise and then it
was decreasing.
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The parameters α0, b0 of K-statistics were calculated by (1.63)–(1.64) for
the approximation of signal St(x) on the 5th level by Daubechies 6 wavelets
for each t ∈ T as well as for the reconstruction of the signal St(x) for the 5th
level by Daubechies 6 wavelets for each t ∈ T . The dependence of b0(α0) on
time and on temperature was visualized as a three-dimensional graph, the
dependence of the parameter α0 on time and temperature were build also
(see Figs. 3.7–3.8).

Figure 3.7: K-statistics parameters dependence b0(α0) on time for the 5th
level approximation and for the initial experimental data

Figure 3.8: K-statistics parameters dependence b0(α0) on temperature for
the 5th level approximation

Fig. 3.7 shows two approaches to find the dependence for K-statistics pa-
rameters b0(α0) for the considered experiment. Left image displays the b0(α0)
dependence on time for 5th approximation level, and the right image shows
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this dependence for initial data obtained in [42] without using wavelet ap-
proximation. Horizontal line corresponds to the scale parameter α0, vertical
axis corresponds to shift parameter b0 and time scale is represented by color.
It may be noticed performing the 5th level of Daubechies 6 approximation
allows to separate areas of different time intervals with the same temperature
value that marked in the Fig. 3.7 by blue and red colors.

Fig. 3.8 visualizes the dependence of the statistical parameters b0 and α0

on temperature. As in previous image, the horizontal axis corresponds to
the scale parameter α0, vertical axis corresponds to shift parameter b0. The
temperature values are indicated by color and they changes from dark blue
(corresponding to the coldest area) to dark red (corresponding to the hottest
area).

As a result the whole area of graph have been decomposed into 4 regions
corresponding to the different phases of the heating process (Fig. 3.9):

S1 = {(α0, b0) : 2.8 ≤ α0 ≤ 4, 4.5 ≤ b0 ≤ 5.5},
S2 = {(α0, b0) : 4 ≤ α0 ≤ 4.6, 4 ≤ b0 ≤ 5.5},
S3 = {(α0, b0) : 3.6 ≤ α0 ≤ 4, 4 ≤ b0 ≤ 4.5},
S4 = {(α0, b0) : 2.8 ≤ α0 ≤ 3.6, 4 ≤ b0 ≤ 4.5.}

(3.1)

Figure 3.9: Separation the regions of different temperature during the heat-
ing/cooling process

Region S1 contains 114 of 138 points corresponding to the time period
of 1 hour heating when the temperature changed from 20.6◦C to 42.37◦C
according to Fig. 7. The temperature range of 21.73◦C in this region can be
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divided into some smaller ranges. From practical point of view to investigate
the area of temperature higher then 42◦C in useless, because it is not safe for
living tissues. Thus greater resolution is not needed.

Region S2 contains 40 points corresponding to the time values from the
interval when the heating process was finished but the temperature inside
phantom was still increasing due to its physical properties. These are points
of the highest temperature from 42.37◦C till 43.16◦C that should be distin-
guished.

S3 is an intermediate region. It contains 60 points from the time period
of 1/2 hour.

Points in the region S4 correspond to the end of the experiment. The
temperature does not reach the initial value (the start temperature was equal
to the 20.6◦C, the final equal to the 25.8◦C). And this fact may be explained
by the changes of physical state of the phantom under the heating.

There are important differences between two images in Fig. 3.7 e.g. the
statistical parameters of the original signals the values of parameters (points)
with the highest temperature level are not well localized as it takes place in
area S2 on Fig. 3.9. Similarly, the other ranges of temperature have worse
“resolution” than resulting from the right image of Fig. 3.7.

The same trend may be also stated for the dependence α0-parameter of
K-statistics on time (Fig. 3.10).

Figure 3.10: Temperature-time dependence and α0-time dependence for 5th
approximation level

Left image of Fig 3.10 displays the numerically modelled temperature
dependence on time, right image shows dependence of the parameter α0(t)
on time for 5th approximation level using Daubechies 6 wavelets. Both graphs
reach a maximal value at the same point.
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3.2 Experiment 2. Tissue Sample

3.2.1 Experiment Description and Pre-transformations

The pork sample has been heated by the ultrasound beam produced by
spherical transducer with irradiation with 2 different powers: of 4W and
6W. During 10 minutes of heating and 10 minutes of cooling the tempera-
ture changes were recorded using thermocouples and registered by the USB
module-TEMP. The temperature values had been written each 5 seconds.The
shape of the obtained scanned image is a rectangle 36 mm x 16 mm. The
detailed description of the experiment is given in [21] and its parameters of
are represented in table 3.2.

Power, W 4 6
Tension, mVpp 454 588

Max temperature increase, ∆T , ◦C, 17.6 25.6
Achieved max temperature, T , ◦C, 36.6 46.6

Transducer distance, mm 25 25

Table 3.2: Parameters of the soft tissue heating experiment

Figure 3.11: B-modes of the tissue sample in 3 different temperature phases.

Examples of experimental B-modes are shown in Fig. 3.11. The left image
corresponds to the initial phase of heating process, image in center displays
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the B-mode registered after 10 minutes of heating and the last B-mode is
registered after 10 minutes of cooling.

3.2.2 Temperature Increase Detection

Initial data may be treated as three-dimensional array 1441 points (vari-
able x), 641 lines (variable y), 241 images or time moments (variable t). The
pre-processing procedure was analogous to one used for PVA phantoms in
previous section. Fig. 3.12 displays the example of prepared for wavelet and
statistics analysis signal.

Figure 3.12: Example of analysed signal

Fig. 3.13 shows the temperature distribution on α0 and time dependence
for Daubechies 6 wavelet approximation (left) and with wavelet reconstruc-
tion (right). The difference between the reconstruction of signal and the
initial signal itself are of order 10−12–10−13, so the reconstruction may be
considered as the pure signal.

Following the scheme used for the PVA phantom above there was evalu-
ated the dependence of scale parameter α of K-statistics on time (3.14).

Fig. 3.14, left, shows the simulated temperature using Abaqus 6.12 soft-
ware (DS Simulia Corp.) (see [42]). The right graph represents the depen-
dence of α0 on time. Green line corresponds to the power value of 6W and
blue — to the power of 4W. As is may be seen, the general trend preserves
and all curves reach their maximal values at the same time point.

Looking for other characterization of the temperature changes in heating-
cooling process there was also made an attempt to investigate the polynomial
approximation of 10th degree of the Fourier transform absolute value of 6th-
level Daubechies 6 approximation for different phases of experiment. The
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Figure 3.13: Temperature distribution: for wavelet approximation and for
wavelet reconstruction

Figure 3.14: Temperature-time dependence and α0(t) dependence for 5th
approximation level

result is shown in Fig. 3.2.2. The signals were taken with step of 60 images,
their accordance with the temperature value during the experiment is given
in table 3.3.

Image number 1 61 121 181 241
Temperature, oC 20 35,2 38 27.6 25.6

Table 3.3: Temperature values for several images

The right image of Fig. 3.3 shows the polynomial approximation of 10th
degree of the Fourier transform absolute value of 6th-level Daubechies 6 ap-
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Figure 3.15: Polynomial approximation of 10th degree for the6th-level ap-
proximation of absolute value of Fourier transform

proximation for image 1 (20oC), and middle time of the heating process,
Image 121 (38oC).

3.3 Results

The results of this subsection can be summarized as follows:

1. The dependence of parameters α0 and b0 of K-statistics on tome allow
to separate the regions with different temperature levels.

2. The fact that to obtain final result we have used about 13% of data
which are contained in the whole envelope but still retains the important
signal characteristics is very important for further study when we would
like to operate with much more numerable data.

3. The functional dependence on temperature of both statistical param-
eters illustrated on the 2D image with coloured points correlated to
temperature scale allow to track the direction of rising up and following
down of points (equivalently, of rising up and following down of param-
eter values) in agreement with heating process. This was not possible
in the case when the results are obtained in the analogous way by using
data from signal envelope without wavelet transformations. Summing
up, the obtained results are more close to real heating-cooling process
at least in analyzed range of temperature.

4. The process of compression is just a special low-filtering process of ini-
tial signal. The 6th and higher levels of approximation did not provide
to acceptable results.
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4 Differentiation of Scatterers’ Randomness
Type Through Numerical Model of Ran-
dom Structures

The aim of this Chapter is to study the wavelet transformation of backscat-
tered signal numerically generated from different types of scattering media.
The random scattering media are also numerically generated. I follow the
numerical program constructed by J. Wócik [85] and the calculations in this
Chapter were performed with the use of Engineering Math Software, Mathcad
14.0 (PTC Inc.).

4.1 Numerical Models of Random Media

4.1.1 Construction Medium with Random Structure

The medium which we can generate is assumed to be composed of scatter-
ers embedded in a homogeneous 3d matrix, called host medium. First, the
periodic distribution of points in three-dimensional space is generated. The
points are located in the centers of cubic cells which fills the space. The cells
form parallelogram in the Cartesian coordinate system (X, Y, Z), consisting
from 41 cells in Z direction and 11 cells in each X and Y direction. Each cube
of dimension 0.0005 m contains one spherical scatterer, which is situated in
the cell center and has the diameter of a1 = 0.00005 m. The local physical
properties of the obtained two-phase medium such as, the density and sound
velocity of the host medium and of scatterers are defined. The example of
the medium is shown in Fig. 4.1 on the left.

Figure 4.1: Examples of constructed media without random geometry and
with random geometry component

Media which are not periodic but random are constructed by adding ran-
dom fluctuations of the scatterers position in the periodic cell, scatterer’s
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size, their density and sound velocity. We define four types of the media:

1. Without random components, i.e. the periodic structure. The principle
of construction is described above.

2. With random geometry component. The numerical model of the medium
is generated by moving the scatterer from the center of the periodic cell
by the random vector defined below

δXj =

 δzj
δxj
δyj

 ,

where δzj, δxj, δyj are independent random variables, uniformly dis-
tributed in the intervals

[−0.45zj, 0.45zj], [−0.45xj, 0.45xj], [−0.45yj, 0.45yj]

correspondingly and j = 0, . . . , 4960 is index of scatterers numbering.
The one realization of such medium is presented in Fig. 4.1, on the
right.

3. With random physics component. The media s generated by the scat-
terers possessing

• the random radius arj + δarj,

• the random density qrj + δqrj,

• the random speed of sound crj + δcrj.

where j = 0, · · · , 4960. The random fluctuations are normally dis-
tributed with mean value µqrj = µcrj = µarj = 0 and standard devi-
ations σqrj = 0.05qrj, σcrj = 0.05crj, σarj = 0.025arj, where arj, qrj,
crj are initial values of scatterers’ radius, density and speed of sound
respectively.

4. With random geometry and physics component. It is a combination of
type 2 and type 3, i.e. has both randomly distributed geometrical and
physical properties.

Let us notice, that the random radius of scatterer classified here as “phys-
ical” property is not a geometrical one, because it is proportional to the scat-
terer cross-section and it is not connected with geometrical distribution of
scatterers’ centers.
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4.1.2 Backscattered Signals from the Random Media

Next step is to simulate numerically the transmission of ultrasounds waves
coming from the transducer, being scattered in all directions and propagating
through the inhomogeneous structure.

Initial impulse is formed from three sines and triangular envelope, as

follows Env(t, dur, n) = 1 − 2

(
t− 0.5dur

dur

)n
as a polynomial power n and

duration time dur with time-variable t :

Fe(t, w, dur, n) = Sign · Env(t, dur, n) sin(w(t− 0.5dur)),

where Sign is equal 1 or −1, parameter w depends on the carrier frequency

Ncar =
λ0

λcar
= 330, the duration time Tdur =

LC · 2π
Ncar

, where LC is number of

cycles of the impulse, which is supposed here to be equal to 3. The obtained
impulse (denoted by black line) and its Hilbert envelope (denoted by dotted
red) are visualized in Fig. 4.2.

Figure 4.2: The initial impulse and its Hilbert envelope

The incident wave is assumed as a plane wave, backscattered signal is
formed under the assumption of the physical quantities having the values:

• the speed of sound in host medium c0 = 1500 m/s,

• the speed of sound in the scatterers c1 = 1600 m/s,

• the density of the host medium q0 = 1000 kg/m3,

• the density of the scatterers’ material q1 = 1200 kg/m3,

• repetition in space λ0 = 0.099 m,
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• the dimensionless wave vector is K0 =
π

λ0
= 31.3.

We examine the very simple case in order to find in the backscattered sig-
nal fundamental parameters depending only on the sample properties, making
of possible to distinguish between the randomness of scatterers distribution.
It is assumed that a wave incident on a sample of “material” is a plane wave,
and backscattering signal from the sample is received by point receiver, sym-
metrically located with respect the sample cross-section. Effects of echoes
waves summation (integration) on the transducer face, which always appear
when the signals are received by the imaging linear ultrasonic transducers, or
any other transducer with finite face area are excluded. Taking into account
in the model only plane waves also the effect of beam focusing is omitted.

Such idealization of backscattered echo can be more useful under the
following interpretation. When the actual ultrasound echo signal is registered
from a certain depth, we can assume that near the focus the signal consists of
a sum of plane waves and, additionally, if the distance of the imaging tissue
to the transducer face is sufficiently large (the far field approximation), the
signal reception can be approximated by the point receiver.

Examples of backscattered signals from periodic medium and the three
randomly inhomogeneous media and the are presented in the Fig. 4.3.

Figure 4.3: Examples of signals for transmitted plane wave backscattered by
randomly inhomogeneous media
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The black line in each picture denotes the Hilbert envelope of the signal
that will be considered further as data for the spectral and wavelet analysis.
We will denote the type I signal corresponding the the 1st medium, type II
— to the 2nd medium and type III — to the 3rd medium, IV — for the 4th
medium. The image corresponds to I, II, III, IV types of media from the top
to the bottom, red line indicates the corresponding Hilbert envelope.

4.2 Differences Detecting

4.2.1 The Spectral And Wavelet Analysis

First the spectral analysis of three type of signals was performed. The
spectrograms corresponding to the I, II, III types of signals are presented
in the top row of Fig. 4.4, from left to right. There horizontal axis denotes
time, the vertical axis denotes the frequency range, and the color shows
the quantity of the Fourier coefficients. As one may notice, the are visible
difference between the medium 2, but for media 1 and 3 the spectrogram
gives no distinguishing features. Fig. 4.5 shows the spectrum lines for every
signal.

Figure 4.4: Spectrogram and scalograms for envelopes

On the horizontal axis in bottom row of Fig. 4.4, there are values of the
wavelet transform shift coefficient bk that mean time, on the verticals axes
are values of the scale coefficient ak, the colors represent the percentage of
energy from dark color to light. Coefficients ak and bk are obtained form the
reconstructed signal according to equality (A.14).

Then we start to analyse the signals were decomposed by the wavelet
analysis. The graphs which represents the distribution of signals’ energy for
each coefficients (scalograms) were obtained (see Fig. 4.6, center and right
images) that present the other method of computing frequency ranges.
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Diffusion of the frequencies in signal of type II, means that the less energy
is transported by the signals compare to the signals scattered from regular,
periodic structure of the medium 1.

Figure 4.5: One-sided spectrum of the signals and the part one-sided spec-
trum of their 5th level of wavelet approximation

The geometry component makes a small impact on the backscattered sig-
nal, that is why the results of spectral analysis on fig. 4.4 and 4.5 did not
show visible difference. But the scalogram, being the graph of the wavelet
coefficients distribution indicates that on the very right image (correspond-
ing to the backscattered signal through the type 3 media) there exists the
violation of the periodic structure of the distribution as it is seen in the
left image. It is evident that the periodic structure of the scatterers of the
medium without random geometry component is preserved in all levels of the
wavelet coefficient distribution.

Fig. 4.6 represents the signals’ Hilbert envelopes and a5 coefficient (left),
signals and coefficients distribution (center) and coefficients distribution in
more detailed mode (right). It also may be noticed that

• Type III signal has more irregular structure in comparison with type I
signal, so the geometric random components have an influence on the
periodicity of backscattered signal.

• Type II signal has more irregular structure in comparison with type I
and type III signals. Here it may be concluded that random components
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Figure 4.6: Signals’ envelopes and a5 coefficient, signals and coefficients dis-
tribution and coefficients distribution

of physics characteristics have greater influence on the periodicity of
backscattered signal.

• These differences started to be visible from the level 5th of wavelet
approximations.

4.2.2 Statistical Analysis of Simulated Signals’ Wavelet Decom-
position

For the numerical experiment there were generated 10 signals of the each
of four types of plane wave signals according to the previously stated random
characteristics of the media. The initial length of the signals was set to 1200
points, then they were cut to the 1000 points with cut 100 points at the
beginning and at the end. There was used a pre-processing procedure which
is analogous to the descried in Section 3:

• Hilbert envelopes were calculated, S̃(x) = |S(x)+jH(x)|, whereH(x) =
1

π
p.v.

∫
∞
−∞

S̃(x)

x− x′
dx and normalized S(x, t) = St(x) =

St(x)

max
x∈X ′
{St(x)}

;

• approximations by Daubechies 6 wavelet functions were performed;

• mean and standard deviation were calculated for 8 approximation levels
and visualized (fig. 4.7).

Fig. 4.7 shows the mean and standard deviation’s dependence on the
wavelet approximation level for every type of signal. In both images blue
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Figure 4.7: Mean and standard deviation for 8 levels of wavelet approximation

graphs correspond to the type I signal, red graphs — to the type II signal,
green graphs — to the type II signal and black graphs correspond to the type
IV signal. The mean graphs for signals of type II and IV almost coincide,
so the physical random component has greater influence at it was noticed
above. The most significant distance belongs to the 6th approximation level.

4.2.3 Scale Index for Periodicity Detecting

There considered problem was to answer the question does the obvious
periodicity of obtained signal preserves if there are stochastic components in
the media. To investigate the numerically generated signals there was used
the absolute values of simulated plane wave signals (see fig. 4.3). The general
procedure is described in section 1.4.4.

Inner part of calculating the energy (1.52) for each signal is from 300 till
900, the index values are obtained from (1.55) for each type of signal and is
presented in table 4.1.

The central part of fig. 4.6 shows the coefficients distribution for 8 levels
by wavelet decomposition for each type of signal, the plot on atop shows the
signal itself. As it been described above and proved in [8] values of coefficient,
i.e. the signals’ energy is equal to zero. It formulated a hypothesis of the
periodic kind of every signal.

To prove this assumption the scale index introduced in subsection 1.4.4 by
formula (1.55) was calculated. Table 4.1 represents the scales with maximum
and minimum energy values and the obtained values of scale index.

According to the table 4.1 the value of scale index for pure periodic signal
(type I, having no random components) is equal to 2.5121 · 10−6 and may be
treated as zero. The signal of type III having only random physics component
has the smaller value of the scale index, than signals of type II and IV. This

74



Signal Type amax amin index value
I 7 56 2.5121 · 10−6

II 6 64 0.0035
III 7 58 7.3322 · 10−4

IV 7 61 0.0045

Table 4.1: Scale index value for each type of signal with random characteris-
tics

signal is the most close to the periodic one, so the random physics has not
very strong influence on the structure periodicity as we reported above by
other quantitative parameters, like mean and standard deviation of wavelet
energy on all calculated levels. But it should be noticed that even it is not
strong influence the scale index value was changed of two orders of magnitude.
This means that this index is very fine tool to detect even weak random noise
in periodic signal. Signals of type II and IV have larger value of scale index
and besides, this index is ordering the degree of the randomness. Namely,
the index value is greater for signal IV where randomness is a sum of both
random physics and random geometry factors.

Figure 4.8: Bar diagrams for index value distribution for each type of signal
with random characteristics

Fig. 4.8 visualizes the values of scale index in the bar diagram. Here the
signals are ordered with the growth of values of scale index. The horizontal
axed denotes the signal types as follows: the first bar correspond to the type
I signal having the least value of scale index that is near 0 and is invisible
on the image scale; the second bar corresponds to the type III signal having
random physics component that enlarge index value but not significantly,
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because its value is still very near 0. The third bar corresponds to type
II signal scattered from the medium with random geometry. And the last,
fourth bar corresponds to the most ”unperiodic” signal in this set, containing
information of scatterer structure with random geometry and random physics
together and as we can expect it has the largest value of scale index.

But it should be noticed that the absolute numerical value of the scale
index classifies theoretically all signals as periodic, since the values are more
close to 0 than to 1. This is consistent with the made by us assumptions dur-
ing generation of the random media that the medium is weak stochastically
periodic, cf. Appendix B. Namely, we assumed, that the locations, sizes and
physical properties of the scattering objects differ weakly from their average
values. For us, however, it is important that the scale index orders the degree
of signal blurring by randomness, taking a role of a quantitative parameter
that is suited to measuring chaoticity of the scattering structure.

Summing up the scale index is a quantitative parameter of structure pe-
riodicity and randomness degree and is very fine tool which can be used to
discover qualitative differences in the random structure.

The concept of the physically and geometrically random medium is not a
new one. It was already used in the mathematical theory of composites (e.g.
[46]) in the context of effective properties of two-phase composite.

Signal Type Energy Std Total energy
I 0.3382 502.5
II 2.4588 320.8
III 0.8388 493.1
IV 2.5375 317.6

Table 4.2: Energy interval distribution for each type of signal with random
components

There was also examined energy distribution of the Daubechies 6 coeffi-
cients up to the 8th level divided by 41 intervals according to the number of
scatterer along the wave propagation axis. Fig. 4.9 represents the distribu-
tion of energy for each type of signal and table 4.2 gives the values of total
energy and its standard deviation, fig 4.10 shows the boxplots, the horizontal
axes denotes the signal’s type: 1 — type I, 2 — type II, 3 — type III, 4—
type IV. Here it may be concluded that signals having more strong random
components, namely, type II and type IV, have the lager value i.e. the larger
energy dispersion.
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Figure 4.9: Energy interval distribution for each type of signal with random
components

Figure 4.10: Boxplots for energy intervals for each type of signal with random
components
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4.3 Results

1. Mean and standard deviation for 4th level of Daubechies 6 decomposi-
tion of Hilbert envelope allow to separate the backscattered signals for
media with different random distribution of scatterers.

2. The scale index shows the strictly periodic structure for media with
regular distribution of scatterers. The larger value of scale index cor-
responds to the media with random distribution of scatterers. It also
allows to order the randomness type.

3. The larger energy dispersion indicates to the media with more strong
random components.
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5 Threads Phantoms Study

As it have been already mentioned, the soft tissue structure possess the
multi-scale anatomical inhomogeneities. There are many types of tissues,
where one can recognize at least two main scales: millimeter scale and mi-
crometer scale which are the basic scattering structures for an ultrasound
wave of the diagnostic frequency range penetrating the tissue. The mil-
limeter scale is due to the existence of quasi-periodic blocks of cells forming
semi-regular lobules e.g.in the anatomical units of the liver tissue, and the
micrometer scale is formed with many small scatterers like cell walls or large
cell nuclei. The breaking of anatomical structure is often caused by the be-
ginning of the cancer process. It is very important and unresolved problem
to find any tools to recognize this two type of scattering. Quantitative ultra-
sound (QUS) provides quantitative data in an attempt to overcome the high
subjectivity of ultrasonography. Scatterers spacings (SS) are one of the pa-
rameters investigated. The wavelet transform techniques has been considered
as the most proper way to search of signal singularities. In [45] it was dis-
cussed how to evaluate the effect of signal noise level and scatterers positions
variability (jitter) on periodicity characterization using continuous wavelet
transform (CWT). US signals were simulated with mean scatterer spacing
(MSS) values of 1.0, 0.99, 0.9, 0.8, 0.7, and 0.6 mm as well as with several
jitters. Also, in this paper ([45]), there is a comprehensive discussion of other
spectral methods applied to modelling the regularity or pseudo-regularity
of real tissue structure. Usefulness of wavelet transformation to assessment
of scattering medium characterization by RF backscattered signal analysis
was presented in [19] and [25]. But in these papers the diffusive scattering
distribution was studied alone without additional signals coming back from
periodic scatterers.

To confirm the utility of the wavelet method for structural regularity
recognition in backscattered ultrasound signals it was decided that a series
of experiments with phantoms with pre-defined periodic properties should be
performed to clarify the meaning of all applied procedures.

5.1 Materials and Methods

Experiment 1. As the first phantom there was taken the three-dimensional
thread structure in the form of 6 × 7 lattice made from nylon threads of a
thickness 0.1 mm (see Fig. 5.1, left image). The threads were placed at reg-
ular periodic structure with distances of 1 mm and the phantom had been
immersed in the water.

79



Figure 5.1: Constructed phantoms for experiments

Experiment 2. The second phantom had a linear structure with nylon
threads of 0.35 mm thickness, which were located in distances of 1.5 mm. The
phantom was immersed in water as in the previous phantom, but additionally
oil and starch gel were used to study the influence of the background medium
properties on the ultrasound backscattering signals from the same structure.

This structure was used as a model to analyze the properties of ultrasound
signal echoes registered with the use of different transducers, focusing and
plane ones:

1. The measurements were made with 20-MHz SonixTouch-Research ul-
trasound scanner (Analogic Corporation, Peabody, MA, USA) with a
20-MHz linear probe. The example of this scanner is shown in Fig. 5.2.

The measurements were made at central frequencies 6.6, 10 and 13.3 MHz
and the depth 20 mm. The initial dataset was composed of 510 lines and
1040 point, later it has been cut according to the region of phantom’s
location.

Examples of B-modes of the phantoms are presented in the Fig. 5.3.
On the left there is a B-mode of the phantom of lattice form, on the
right — the phantom with linear structure.

2. Measurements of a transmitted single ultrasound pulse by the transmit-
ter, Panametrics Computer Controlled Pulser/Receiver Model 5900PR,
were performed on 5 mm and 10 mm depths from the transducer face
with the use of a high quality hydrophone. The range of carried fre-
quencies for used transducers were of 1 MHz to 20 MHz. The following
characteristics were obtained:

(a) The measured carried frequency is 16.6 MHz at both depths can
be considered approximately equal to 17 MHz.
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Figure 5.2: SonixTouch-Research ultrasound scanner

Figure 5.3: B-modes of RF signals from constructed phantoms

(b) The frequency band, calculated for 6 dB of energy averaged from
two depths, is approximately 11–20 MHz.

(c) The wavelength for the carried frequency is c/a 0.01 mm and is
determined from the duration of 1 period equal to 60 ns and speed
of sound in the water is equal to 1500 m/sec.

(d) The pulse length is estimated as 5× 0.01 = 0.05 mm.

The summary of the experiment’s characteristics are given in table 5.1.
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Characteristics Value
Main frequency, MHz 15
Wavelength, mm 0.01
Sampling distance, mm 0.02
Depth, mm 260

Table 5.1: Characteristics of the experiment

Having measured the pulse properties and applied the wavelet analysis
to the registered signals the identification of the threads positions in
space, namely MSS (Mean Scatterer Spacing) could be calculated. The
example of the B-mode of this structure in the water in shown in the
Fig. 5.3, to the left.

Figure 5.4: Example of the initial impulse

Distance between reflector and transducer was equal to c/a 7 cm. The
precise distance can be calculated from the images of pulses registered
by the oscilloscope (Digital Storage Oscilloscope DS09104A Agilent
Technologies), Fig. 5.4.

5.2 Periodicity Detecting

5.2.1 Scale Index Determination

Following the idea of establishing a marker to identify the degree of signals
periodicity for both experiments and each transducer type there were calcu-
lated a scale indexes (1.55). Also the random component had been added
into backscattering media by replacing in the second experiment the water

82



by more noisy media, namely, oil and starch gel. From the whole dataset
obtained from the scanners there had been chosen data corresponding to the
area where threads had been located (it is noted as region of interest, ROI).
And the analyzed signal was treated as a mean for all signals from ROI.

Table 5.2 represents the values of scale index and the values for amax and
amin used in formula (1.55) corresponding to different transducers. These
values are of the same order. They are not strictly equal to 0, but very small.
So it may be concluded that the obtained backscattered signals are close to
periodic.

Transducer amax amin index value
Linear 4 32 0.0224

6F 85 256 0.0499
3.5F 58 228 0.0689
6P 22 224 0.0446

Table 5.2: Scale index for RF signal from the thread phantom measured by
different transducers

Table 5.2 represents the values of scale index according to the media of
phantom. The data was taken as a mean values from all data of chosen region
of interest. Additionally there was obtained the value for the pure starch gel
media without phantom inside it with assumption that it is the most far from
periodic-structured medium.

Media type Index value
Water 0.0312

Oil 0.0635
Starch gel 0.0855

Pure starch gel 0.3153

Table 5.3: Scale index for the RF signal from thread phantom measured with
different medium

Table 5.3 shows that the scale index value increases with each new sur-
roundings. It is also visualized in the bar diagrams (Fig. 5.5).
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Figure 5.5: Bar diagram for index values for the thread phantom

5.2.2 Mean Scatterer Spacing Estimation

Experiment 1. The whole dataset has 510 lines and 1352 sampling points.
To reduce the additional effects this dataset was cut to the 350 lines and 450
sampling points. From equality (1.57) the parameter J = 1, so we consider
the 1st wavelet approximation level as the best one. In Fig. 5.6 it is placed the
initial dataset and its first level approximation with Daubechies 6 wavelets.

Figure 5.6: Initial data and 1st level wavelet approximation for RF signal
from thread phantom

The coefficients distribution of Daubechies 6 wavelet for one chosen line,
namely 320, are shown in the Fig. 5.7. The red graph on the top indicated
the initial signal and the colored graph shows the distribution of wavelet
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coefficients.The horizontal axed corresponds to the time axis (or the wavelet
shift coefficient b), the vertical axis corresponds to the wavelet scale coefficient
a and the energy value for each coefficient b and a is indicated by color, from
blue to red.

Figure 5.7: Wavelet coefficient distribution for one line of a RF signal from
periodic structure

The concept of Mean Scaterrer Spacing (MSS) was introduced in sub-
section 1.4.5. For initial experimental data it was calculated from equation
(1.56) the mean values for all lines MSSr = 0.9 mm, from the experiment it
follows that MSSe = 1.1mm. Thus the error e would be equal to 22% (from
equality (1.59)).

To calculate the MSS for the approximation level the was preformed the
discrete wavelet transform with Daubechies 6 wavelet and then there were
taken the mean values for all lines. The obtained dataset was divided onto 6
parts of 55 points, which will be bisected for each level and using the following
equation

MSS =
1

6
· h · 2n

6∑
i=1

disti, (5.1)

where disti are the distance between the positions of neighboring points with
maximal absolute value, h is sampling distance, n is the level of wavelet
approximation. There were computed MSS values as distance between co-
ordinates of maximal absolute values equal to MSS = 1.08, e = 1.82% for
initial signal data. For the 1st wavelet approximation level these parameters
were obtained also: MSS = 1.096 and e = 0.36%. As it may be noticed the
error decreases after wavelet filtering.

Experiment 2. The scalogram structure supposed that it would be
possible to separate each scatterer (thread of the phantom). In the initial
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(0-level) to each thread correspond 480 initial points as the MSS of phantom
is equal to 1.85 mm that is 2.4 msec of wave travelling.

Figure 5.8: Wavelet coefficient distribution for RF signal from phantom with
periodic structure and impulse frequency 6MHz

Using the sampling frequency and the central frequency of Daubechies 6
wavelets f0 = 0.7273 it is possible to recalculate the scale coefficients and
sampling distance and to juxtapose the real frequencies (table 5.4).

Level 2N Frequency, MHz Sampling, ns
1 2 72.73 13.75
2 4 36.36 27.5
3 8 18.18 55
4 16 9.09 110
5 32 4.5 220
6 64 2.27 440
7 128 1.14 880
8 256 0.57 1760
9 512 0.28 3520

Table 5.4: Frequencies and sampling distance for wavelet approximation of
RF signal from phantom with periodic structure

According to the equality (1.57) the best level J = 5 that lays in the third
approximation level. So we chose j = 3 for the MSS calculations. There was
also used equality (5.1) with h = 3.9 µm. In Fig. 5.9 there is presented the
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Figure 5.9: Dividing into intervals RF signal from phantom with periodic
structure

Transducer MSS for Error for MSS for Error for
name initial data initial data chosen level chosen level

6F 1.99 7% 1.81 1.85%
3.5F 1.94 4.9% 1.77 4.2%
6P 2.1 12.7% 1.98 7.2%
1P 1.82 1.6% 1.64 12%

Table 5.5: MSS and error for RF signal from phantom with periodic structure,
different transducers

Media Type MSS for Error for MSS for Error for
initial data initial data chosen level chosen level

Water 1.88 0.14% 1.848 0.11%
Oil 2.1 13.4% 1.89 1.9%

Starch gel 1.89 2.4% 1.8480 0.11 %

Table 5.6: MSS and error for RF signal from phantom with periodic structure,
different media

signal obtained with transducer 6F and the intervals of 480 points for each
scatterer.

The obtained values for MSS and its error for signals and their approx-
imation of 3rd level with Daubechies 6 wavelet functions are placed in the
tables 5.5 and 5.6. It follows that the wavelet approximation of the initial
data improves the MSS error.
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5.3 Results

• The scale index value was increasing with increasing of environment
noise. The scales of the noises ( oil structures and starch particles)
although very different, for oil the scale of inhomogeneities was less
than micrometers and for starch-gel the scale was at least one order
greater, both had a diffusive random character. The value of the scale
index was sensitive to the environment scatterers size, and the value of
index ordered the size of environmental scatterers size.

• The application of wavelet approximation reduces the error of Mean
Scatterer Spacing (MSS) value.
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6 Liver Structure Investigation in Vivo

The World Health Organization announced that With more than 782,000
new cases diagnosed in 2012, liver cancer is the sixth most common one. It
accounts for 6% of all cancers worldwide. Cancer is the second leading cause
of death globally and is estimated to account for 9.6 million death in 2018.

As we previously repeatedly underlined the emitted ultrasound beams in-
teract with scatterers in the tissue, so particularly, backscattered signals from
liver tissue in vivo should information about weak diffuse subresolution scat-
terers in tissue cells and also about stronger pseudo-periodic lobules formed
from ordered cell groups.

The preferred imaging method for screening is ultrasonography (USG)
which is well tolerated and widely available. However, the sensitivity of
USG for the most popular primary cancer is low because small nodules can
be missed in a cirrhotic liver. Any kind of additional parametric diagnostics-
enhanced classical USG improves the diagnostic performance of USG for liver
cancer. A large number of methods for the diagnosis of liver tumors is descried
and discussed in a review paper [73].

Figure 6.1: Example of liver and lobules

Images for Fig. 6.1 are taken from the open network sources and demon-
strate the human liver (left image) and the liver lobule structure (right im-
age).

In [22] the lobule structure is described as roughly hexagonal and the
liver can be considered as composite of periodically distributed lobules, in
which the plane normal to the central vein direction can be considered as
the isotropic plane only at sufficiently long wavelengths (low frequencies) of
acoustic excitation. But the ultrasound excitation having wavelength of less
than millimeter can “see” the lobules as the periodic scatterers.

Fig. 6.2 ([22]) shows the scheme of liver (left image) and the lobule hexag-
onal structure (right image), where CV here denotes the central vine.

Our hypothesis is that the histological periodicity of liver tissue is pre-
served in the periodicity of the backscattered signal. The structure changes
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Figure 6.2: Liver lobule geometry [22]

caused be liver diseases, e.g. cancer, should break the periodicity of backscat-
tered signal.

6.1 Experiment Description

B-mode images (scans) and RF (Radio Frequency) signals have been recorded
from a patient with primary liver tumor, located in the left lobe of the liver.
The tumor was imaged in two perpendicular planes. Data were recorded
from cancerous tissue, and from healthy liver parenchyma in both the left
and right lobes.

The examination was carried out by a physician (radiologist) in the Cen-
tral Hospital Clinical Banach using Ultrasonix Sonix Touch-Research, Med-
ical Corporation, Richmond, BC, Canada and convex C5-2/60 linear trans-
ducer at a central frequency of 3.3 MHz. The example of such USG apparatus
is presented in the Fig. 5.2. The region of tumour had been also outlined by
physician, they e.g. have the size 46 × 42 × 51mm (fig. 5.2, left image, the
cancerous part is situates on the tpo of the B-mode).

The RF data were collected with sampling rate of 40 MHz and digitized
with 16-bit resolution. The width of each scan corresponded to 512 lines, the
depth of 16 cm, the focus location was situated in the middle of scan c/a
and equal to 8 cm. Each lines contained 5200 sampling points with sampling
distance h = 0.038 mm, so 1 mm contained 26 points.
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Figure 6.3: B-modes of liver experiment, samples of area with tumor and
healthy

6.2 Choosing Regions of Interest

Besides the information obtained from the B-mode image, used usually by
physician, the collection of RF signals registered during imaging procedure
contains the extra information which should be analysed and which are often
filtered before image is displayed on the screen. We constructed our own
B-mode image using raw RF signals without any preprocessing and than this
B-mode image was the base for physician to mark the region of the lesion in
liver. To determine areas there were used cut rectangular parts of the image
called regions of interest (ROI). This is the common technique in such kind
of study (see, e.g. [57], [58]).

The chosen region on interest in there the rectangular areas 500 × 50
sampling points (19.2 × 1.92 mm) taken from the same depth for each RF
signal, which is equal to 48.1 mm.

Examples of these regions is shown in figure 6.4, they are marked with
colored rectangles; examples of B-mode for fixed ROI is presented in Fig. 6.5.
The left image indicates the part with tumor and right — the environment
part healthy tissue.
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Figure 6.4: Example of B-mode with chosen ROI, samples of area with tumor
and healthy

Figure 6.5: Example ROI area, samples of area with tumor and healthy

6.3 Scale Index Determination

As lobule structure of the liver are supposed to have periodical structure,
the backscattered echo signal should also preserve this property.

Using formula (1.55) there were obtained the values of scale index for
every dataset for chosen ROI and than the mean values had been calculated.
Inner part of calculating the energy 1.52 for each signal is from 200 till 800,
the index values are obtained from (1.55), section 1.4.4 for each type of signal.

Left image of the Fig. 6.6 represents the distribution of index values, red
line here corresponds to the data from tumorous areas and the blue line
displays the scale indexes for environment area.

Table 6.1 shows the values for the first order statistics for both datasets
and in fig. 6.6 there are boxplots of scale index value for each dataset.

From table 6.1 and Fig. 6.1 and 6.7 it may be concluded that for the areas
with more periodic structure of scatterers, i.e. for the healthy environment
areas the value of scale index is less than for the areas where this periodicity
are broken by cancerous changes. Fig. 6.7 shows the values of scale index
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Figure 6.6: Mean values for tumor and environment areas and boxplots for
scale index values distribution

Tumor ROIs Environment ROIs
Min 0.0665 0.0157
Max 0.2061 0.0768
Mean 0.1087 0.0451
StD 0.0367 0.0171

Table 6.1: Values of scale index for tumorous and healthy liver areas

Figure 6.7: Bar diagram for scale index values distribution.

in the form of bar diagram. The first bar corresponds to data taken from
the healthy regions and it has the value that is less then the second bar that
corresponds to the areas of liver with tumor.
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6.4 Mean Scatterer Spacing Estimation

The mean scatterer spacing (MSS) can be used for effective evaluation of
microstructural changes of those biological tissues with semi-regular distri-
bution characteristics, such as the liver, which is divided histologically into
lobules. The lobules are the main scatterers for ultrasonic scattering, and
pathological changes of the liver can be reflected by the changes of the MSS.
Therefore, the MSS may be used as the parameter to characterize the liver
tissue having some kind of diseases that cause the infraction of its initial
periodicity [37], [45].

The inter scatter spacing of the liver supposed equal to 1 mm [74], that
is why the intervals for calculating MSS were supposed to be equal to 1 mm
too. Each interval contained 26 points. For each wavelet decomposition level
this interval decreased by half. According to formula (1.57), section 1.4.5 the
optimal level for mean scatterer spacing for liver sample is J = 2. The MSS
was computed for each ROI from the data set and then there was calculated
mean value.

The obtained result quantities for mean scatterer spacing are given in
table 6.2 and their boxplots are shown in Fig 6.8.

Figure 6.8: Boxplots for MSS for human liver tissue

Here it is obvious that the greatest value of MSS belongs to the dataset
corresponding to the tumour areas, i.e. to the tissue samples with the less
periodic structure and the error for the second approximation level is less
than for initial data.

The evaluation of the obtained results was made by comparing them with
the test made on measurements of pork liver tissue sample ex vivo. The data
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MSS for Error for MSS for Error for
initial data initial data chosen level chosen level

Tumor ROIs 0.9919 1.5% 1.01302 1.4%
Environment ROIs 0.9912 1.8% 1.009 1.14%

Table 6.2: MSS and error for human liver tissue

were collected by the ultrasound scanner SonixTouch-Research with linear
head. The optimal level for the wavelet decomposition was given by formula
(1.57), section 1.4.5, J = 1. The obtained results are presented in table 6.3
and they confirmed the previous statements.

Initial data MSS 0.9718
Error 2.8%

Chosen level MSS 0.9918
Error 0.82%

Table 6.3: MSS and error for pork liver tissue ex vivo experiment

6.5 Results

• The scale index quantifies the structure of liver as more periodic in
healthy areas than in tumor areas.

• Wavelet approximation clearly reduces the error of mean scatterer spac-
ing (MSS) value for liver tissue experiments ex vivo and in vivo.
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7 Conclusions

The thesis presents several issues in which the using of the wavelet trans-
form of the ultrasonic echo signals allowed to determine new, quantitative
parameters — in relation to the existing methods – characterizing tissue
scattering structures.

• It was shown that from the wavelet distribution of the RF signal enve-
lope, it is possible to determine the diffusive scatterers number mark-
ers. It turned out that selected levels of wavelet approximation of sig-
nals envelopes show quantitative differences in statistical parameters
of distributions such as Gamma, Nakagami and K-distribution. Non-
parametric statistics of selected level of wavelet approximation of ultra-
sound echoes measured the differences between the spatial distribution
of scatterers.

• The method of tracking temperature changes by K-distribution shape
parameter values of a wavelet level decomposition statistics was pro-
posed. This method significantly reduces the amount of processed data
in comparison with use of raw RF echo for this purpose.

• It was shown that the values of the MSS quantitative parameter (mean
scatterers spacing), often used in tissue characterization, determined on
the basis of the selected level of wavelet approximation of echo signals,
improved the parameter estimation accuracy.

• A measure of structure chaoticity (or a measure of distance from pe-
riodicity) called “scale index” defined on the base of signal wavelet
transform properties was here for the first time used in the processing
of the ultrasonic RF signals. As a result, using the scale index it was
possible to arrange the scattering structures from a strictly periodic to
completely chaotic structure. This indicator was used to distinguish in
vivo areas of healthy liver tissue from the tumour areas.

• The usefulness of the MSS parameter and the scale index for the clas-
sification of scattering structures was verified twice, analyzing echoes
collected from specially constructed phantoms and analysis of numer-
ically generated signals, describing the scattering by various types of
random structures.

Below it is given a list of publications concerning the PhD thesis. The
full list of author’s papers is given in appendix C.
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Papers in Scientific Journals

1. B. Gambin, O. Doubrovina, Statistical properties of wavelet trans-
form coefficients of backscattering signal from soft tissues and their
phantoms Hydroacoustics, 16, Gdansk, 59–66 (2013).

2. O. Doubrovina, B. Gambin, E. Kruglenko, Temperature level and
properties of wavelet approximations of backscattered ultrasound. Hy-
droacoustics, 17, 37–46 (2014).

3. O. Doubrovina, B. Gambin, J. Wòjcik, Detection of variations in
random characteristics of scattering medium by the wavelet analysis,
10th EAA International Symposium on Hydroacoustics, May 17–20,
2016, Jastrzebia Gora, Poland. Archives of Acoustic 41, No 2, p. 360
(2016).

4. B. Gambin, J. Wòjcik, O. Doubrovina, Differentiation of random
structure properties using wavelet analysis of backscattered ultrasound.
Hydroacoustics, 19, 121–128 (2016).

5. B. Gambin, M. Byra, E. Kruglenko, A. Nowicki, O. Doubrovina, Ultra-
sonic measurement of temperature rise in breast cyst and in surround-
ings regions Archives of Acoustic 41(4), 791-798 (2016).

Chapters of Books

1. B. Gambin, O. Doubrovina, Wavelet analysis for temperature in-
crease detection from acoustic backscattered signal. In: Complex Anal-
ysis and Potential Theory with Applications (T. Aliev Azerogly, A. Gol-
berg, S.V. Rogosin Eds.). Cambridge Scientific Publishers, 63–76 (2014).

2. O. Doubrovina, R. Tymkiewicz, H. Piotrzkowska-Wròblewska, B. Gam-
bin Linking of structural parameters to properties of ultrasound backscat-
tered signals by the threads phantoms study, Aktualnoci Inynierii Akusty-
cznej i Biomedycznej, Polskie Towarzystwo Akustyczne, Oddzia w Krakowie,
Red. K. Suder-Dȩbska, Krakw, 67–79 (2018).

Conference Proceedings

1. O. Doubrovina, J. Litniewski, B. Gambin Wavelet approximation and
statistical approach to random fluctuations of amplitude in backscat-
tered ultrasonic signal. Forum Acousticum, Sept. 7–12, 2014, Krakow,
2014, 205–206 (2014).
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2. B. Gambin, M. Byra, O. Doubrovina Nonparametric statistics in in-
direct temperature estimation by ultrasound imaging. Abstracts of re-
ports of the 8th international scientific seminar, 14-19 September 2015,
Minsk, Belarus, p. 25 (2015).

3. J. Wójcik, B. Gambin, O. Doubrovina, Randomness characteristics of
scattering medium by the wavelet analysis. Abstracts of the 3rd Inter-
national Workshop “Boundary Value Problems, Functional Equations
and Applications”, Rzeszow, Poland, April 20–23, 2016, p. 64 (2016).

4. O. Doubrovina, B. Gambin, H. Piotrzkowska-Wrblewska, The backscat-
tered ultrasound signal wavelet decomposition applied to recognize of
regular positioning of scatterers in a sonicated medium. Materials of
the 9th international scientific seminar, 17-21 September 2018, 64–65
(2018).
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[25] B. Gambin, J. Wòjcik, O. Doubrovina, Differentiation of random struc-
ture properties using wavelet analysis of backscattered ultrasound. Hy-
droacoustics, 19, 121–128, (2016).

[26] M.J Daniels., T. Varghese, E.L. Madsen, Zagzebski J.A. Non-invasive
ultrasound-based temperature imaging for monitoring radiofrequency
heating–phantom results. Phys. Med. Biol., 52, 4827–4843, (2007).

[27] I. Daubechies Ten Lectures on Wavelets , SIAM, Philadelphia (1993).

[28] F. Davignon, J.-F. Deprez, O. Basset, A parametric imaging approach
for the segmentation of ultrasound data, Ultrasonics, 43, 789-801,
(2005).

[29] O. Doubrovina, B. Gambin, E. Kruglenko Temperature level and prop-
erties of wavelet approximations of backscattered ultrasound. Hydroa-
coustics, 17, 37–46, (2014).
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B. Gambin Linking of structural parameters to properties of ultrasound
backscattered signals by the threads phantoms study, Aktualnoci
Inynierii Akustycznej i Biomedycznej, Polskie Towarzystwo Akustyczne,
Oddzia w Krakowie, Red. K. Suder-Dȩbska, Krakw, 67–79, (2018).

101



[32] O. Doubrovina, B. Gambin, H. Piotrzkowska-Wróblewska. The
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w tkance miȩkkiej. Praca doctorska. IPPT, Warszawa, (2013).

[42] E. Kruglenko, B. Gambin, RF signal amplitude statistics during temper-
ature changes in tissue phantoms, Hydroacoustics, 17, 115–122, (2014).

102



[43] E. Kruglenko, A. Mizera, B. Gambin, R. Tymkiewicz, B. Zienkiewicz,
J. Litniewski, Nagrzewanie ultradźwiȩkami tkanek miȩkkich in vitro
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Appendix A.
Theory of Wavelet Transforms

Integral Wavelet Transform

A function ψ(x) is called a wavelet if it obeys the following conditions:

+∞∫
−∞

|ψ(x)|2dx <∞, (A.1)

Cψ =

+∞∫
−∞

|ψ̂(ω)|2

|ω|
dω <∞, (A.2)

where ψ̂(ω) =
∞∫
−∞

ψ(t) exp−i2πωt dt is a Fourier transform of the function

ψ(x). As the condition (A.1) means that ψ ∈ L2(R) (i.e. it and its

square are integrable), it also means that ψ̂(x) exists and is called a finite
energy condition. Equation (A.2) is called and admissibility condition,
its sense is that in the wavelet function at zero frequency component
should satisfy the equality ψ̂(0) = 0 or should have zero mean value
in the other case. The constant Cψ is called wavelet admissible constant
and is often used as a normalizing coefficient for the integral and discrete
wavelet transforms.

The continuous wavelet transform for the function f(x) ∈ L2(R) can be
represented by means of wavelet function ψ(x) as follows

Wψ(a, b) =
1

Cψ

∫ ∞
−∞

f(x)ψ

(
x− b
a

)
dx, (A.3)

where a ∈ (−∞, 0)
⋃

(0,∞) is a scale parameter and b ∈ (0,∞) is a
shift parameter, ψ is a complex conjugate to the function ψ and Cψ is
the admissible constant defined in (A.2) (see e.g. [3]). Usually it is taken

Cψ =
1

a
or Cψ =

1√
a

, we will consider the second equality. In the space

L2(R) there is the inverse wavelet transform defined by equation

f(x) =
1

Cψ

+∞∫
−∞

+∞∫
0

(Wψ) (a, b)ψ

(
x− b
a

)
dadb

a2
. (A.4)
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Multiresolution Analysis

The construction of orthogonal wavelet bases is on the concept of mul-
tiresolution analysis (MRA) [27]. In this case special families of wavelets
ψji such that 〈ψji, ψlk〉 = δjlδik, where 〈·, ·〉 denotes a scalar product and
δ is the Kronecker symbol, are considered. This means that the wavelets
ψij are orthogonal with respect to their shifts by discrete steps bj and
their scaled versions by discrete steps aj. In this case the formula (A.3)
is exact with C = 1 and R(x) = 0.

The idea of the application of discrete orthogonal wavelet transform is
to consider the approximations fj of the signal f(x) at different scales j.
This allows to pass from the approximation fj to the higher resolution
approximation fj+1 and to encode the difference between the approxi-
mation into the wavelets.

The filter is constructed with the help of scaling functions which are
paired to each wavelet functions. The scaling function φ(x) is normalized,

i.e.
∞∫
−∞

φ(x)dx = 1. The set of functions ψjk consists of scaled and dilated

modifications of the function φ:

φji(t) = 2j/2φ
(
2jt− i

)
.

The basis φji ∈ L2(R) is orthonormal at a given scale j with respect to

its translations by the step
i

2j

〈φij, φjk〉 = δjk.

In general the explicit expression for the scaling function does not exist
but it may be constructed be means of the refinement equation

φj−1,i(x) =
∞∑

n=−∞
hn−2iφjn(x), (A.5)

where hi = 〈φjiφj−1,0〉.
The corresponding wavelet function ψ is a linear combination of the
scaling function φ

ψji(x) =
∞∑

n=−∞
gn−2iφjn(x)
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with coefficients gn = 〈φjnφj−1,0〉 which also may be calculated from the
filter coefficients hk be means of the relation gn = (−1)1−nh1−n, which
also may be written in the form

ψj,k = 2j/2ψ
(
2jx− k

)
. (A.6)

Then wavelet and a scaling function are connected by the following re-
lations

φ(x) =
√

2
∑
k

hkφ(2x− k),

ψ(x) =
√

2
∑
k

gkφ(2x− k),
(A.7)

the coefficients hk and gk are calculated from the following system of
equities:

• the orthogonality of the scaling functions∑
k

hkhk+2m = δ0,m, (A.8)

• the orthogonality of the scaling and wavelet functions∑
k

hkgk+2m = 0, (A.9)

• the condition which is derived from the refinement condition (A.5)
in this case ∑

k

(−1)k hk = 0, (A.10)

• the condition for M vanishing moments

gk = (−1)k h2M−k−1 (A.11)

• the normalization condition∑
k

hk =
√

2. (A.12)

For any chosen wavelet family, i.e. for the known functions φ(x) and
ψ(x), the coefficients hk and gk can be found and the approximation and
reconstruction for the given function f can be obtained.
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Let us denote f ji = 〈f, φji〉, f̃ji = 〈f, ψji〉. Then for the level N with
respect to the scale k we will obtain the approximation formula

fk(x) =
+∞∑
i=−∞

fkiφki(x) +
N∑
j=k

+∞∑
i=−∞

f̃jiψji(x). (A.13)

In discrete case any function that is integrable with its square may be
presented in a form

f(x) =
∑
k

ajnφjn,k +
∑
j≥jn

djn,kψjn,k (A.14)

with wavelet functions ψj,k and scaling functions φj,k. Amplitude co-
efficients ak and detail coefficients dk are calculated. Formula (A.14)
represents the wavelet decomposition of f(x) up to the level jn.

Signal’s decomposition at 0-level represents the signal itself, the next
levels show the approximation of the signal. The more level number gives
the less exact signal but there is the possibility of filtering, denoising and
compression [47].
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Appendix B.
Wave Propagation in Random Medium

Mathematical Model

Let (Ω,Σ, µ) be probability space, where Σ is a complete σ-algebra,
µ is the probability measure. Assume that Ω is acted on by an n-
dimensional dynamical system T (x) : Ω→ Ω, such that for each x ∈ Rn,
both T (x) and T (x)−1 are measurable, and such that:

• T (0) is the identity map on Ω and for x1, x2 ∈ Rn, T (x1 +x2) =
T (x1)T (x2);

• for each x ∈ Rn and measurable set F ∈ F , µ(T (x)−1F ) = µ(F ),
i.e., µ is an invariant measure for T ;

• for each F ∈ Σ, the set {(x, ω) ∈ Rn×Ω |T (x)ω ∈ F} is a dx×dµ
measurable subset of Rn × Ω, where dx is the Lebesgue measure
on Rn. T (x)−1 = T (−x). So we may consider dynamical system
as system with measure preserving flow.

Stationary Random Process

Random homogeneous fields, starting from the random variable f ∈
L1(Ω),

f̃(x, ω) ≡ f(T (x)ω).

where f̃ is the statistically homogeneous (i.e. stationary) random pro-
cess. Statistical homogeneity means that two geometric points of the
space are statistically indistinguishable, the statistical properties of the
medium invariant under the action of translations.

A group {U(x) : x ∈ Rn} of isometries on L2(Ω) = L2(Ω,Σ, µ) de-
fined by (U(x)f)(ω) = f(T (x)ω), x ∈ Rn, ω ∈ Ω, f ∈ L2(Ω). The
function x → U(x) continuous in the strong topology, i.e., for each
f ∈ L2(Ω), U(x)f → f strongly in L2(Ω) as x → 0. The strong
convergence holds provided that the probability space is separable. A
dynamical system is ergodic, if every invariant function, i.e. satisfying
f(T (x)ω) = f(ω), is constant almost everywhere in Ω.
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Statistically periodic media

Statistically periodic media are modelled by a probability space
(Ω′,Σ′, µ′) on which acts a measure preserving Zn is group T ′(z), z ∈ Zn,
which is a set of bijective maps from Ω into itself satisfying the group
property in Zn and the following invariance property:

∀z ∈ Zn,∀F ∈ Σ′, T ′(−z)F = {ωT ′(−z)ω ∈ F}

and µ′(T ′(z)F ) = µ′(F ), Z is the set of integers.

A statistically periodic medium is ergodic if constants are the only real
random variables such that:

∀z ∈ Zn, f ◦ T ′(z) = f a. s. (almost surely).

Statistically periodic media is a special case of statistically homoge-
neous media. Indeed, it suffices to take Ω = Ω′ × Y with Y = [0, 1)n,
Σ to be Σ′ ⊗ L(Y ), the completion with respect to µ = µ′ ⊗ dy of the
σ-algebra product of Σ′ and Borel σ-algebra on Y . Now T (x) defined
by:

∀x ∈ Rn, ∀ω′ ∈ Ω′, ∀y ∈ Y, T (x)(ω′,y) = (T ′[x+y]ω′,x+y− [x+y])

is a measure preserving flow on (Ω,Σ, µ); moreover, the medium is er-
godic if and only if T ′ is ergodic.

Periodic and quasiperiodic media

Periodic media is a special case of statistically homogeneous ergodic
media. Y is the set Y = [0, 1)n (the unit basic cell), whilst Σ and µ
are the Borel σ-algebra and Lebesgue measure on Y , respectively. Then
T (x) acts on Y as follows

∀x ∈ Rn, y ∈ Y, T (x)y = x + y − [x + y],

where [x] is the integer part of x.

In this particular case, a random variable is identified with a measur-
able map on Y , f̃ is identified with the periodic continuation of f to the
whole space whilst the expectation is identified to the volume average
on Y and dµ = dy.
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Quasiperiodic media Ω = Tm, m > n is an m-dimensional torus
endowed with the Lebesgue measure. To define the dynamical system
T (x) we fix an (m× n)-matrix Λ = (Λij) and set

T (x)ω = ω + Λx mod Zn.

The map T (x) preserves the measure µ. For T (x) to be ergodic, it
is necessary and sufficient that Λk 6= 0 for any k ∈ Zn, k 6= 0. Any
measurable function f on Ω may be identified with a unique measur-
able 1-periodic function on Rn. However, in this case we have a lot of
essentially different realizations f(ω+ Λx). Realizations of this type are
called quasiperiodic functions, if f(ω) is continuous.

Waves in randomly inhomogeneous medium

The wave propagation in randomly inhomogeneous medium is de-
scribed by the equation ?? where the spatially fluctuating coefficients
are random fields, i.e. functions µ(r, ω) and γ(r, ω) depend on ω ∈ Ω
and Ω is a probability space. If we assume that pressure has harmonic
time dependency, i.e. p(t) = peiw0t, and w0 denotes an angular frequency,
we get:

(
∇2 + k2

0

)
p+

∂

∂xi

(
ρ0

ρ
− 1

)
∂

∂xi
p+ ω̂2 ρ0

K0

(
K0

K
− 1

)
p = 0,

where k2
0 =

ω − 02ρ0

c2
0

, where c0 speed of sound in a homogeneous medium

Abbreviated notion is introduced as follows.

L ≡ L0 + Lω1 + Lω2 , and Lp = 0,

where
L0 ≡

(
∇2 + k2

0

)
Lω1 ≡ ∇ · (µω(x)∇(x)),

Lω2 ≡ γω(x)

where ω ∈ (Ω,Σ, P ) is probability space. If the incident wave pi is as-
sumed to be a plane wave and assuming that p = pi+ps, we the equation
for ps reads as (cf. equation 1.16):

ps(ω, ·) = L−1
o (Lω1 + Lω2 ) (pi(·))
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This equation relates the randomness of the medium with the random-
ness of the scattered signals. Principally if we know right hand side of
the above equation we can approximate the randomness of the scattered
field. But what it means “to know” the randomness? It is clear that
one has only some information about the random fields, there are no
explicit formulae, information is given at least by the infinite numbers
of moments. So, to find answer to the inverse problem: how the known
randomness of the scattered field is related to the randomness of random
media is even more complicated problem, cf. short introduction to this
problem given in [25]. This is our own version of explanation the decision
why there should be used the numerical methods and try to get an “ap-
proximatly answer” to the question of quantifying random properties of
the medium from scattered acoustic signals.
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