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Abstract

This  thesis  proposes  a  strategy  for  semi-active  vibration  damping  in  slender,  two-

dimensional frame structures. The proposed strategy is based on dynamic reconfiguration of the

topology of  the  controlled structure,  which is  performed by instantaneous  modifications  of  the

operational characteristics of the nodes that connect beam elements. This is possible through the use

of  special  controllable  nodes,  capable of  immediate  switching of  their  operating characteristics

between a frame type and a truss type connection. Consequently, the potential energy, accumulated

in the system due to  the deformations associated with the vibrations,  can be transferred to the

eigenmodes corresponding to high vibration frequencies, where it is quickly dissipated in natural

processes  of  material  damping.  This  is  achieved  by  a  temporally  transition  from  the  frame

characteristics to the truss characteristics of the utilized nodes. Properties of the globally optimal

control were derived using the Pontryagin maximum principle.

The proposed closed-loop control algorithm has been implemented in its global, centralized

version, in which the total potential energy of the structure is used as the feedback signal, as well as

in  its  local,  decentralized  version,  in  which  the  potential  energy  of  only  a  few selected  beam

elements is used as the feedback. The advantage of the decentralized version is its relative ease of

implementation in real-world structures. Approximation of the total potential energy of a structure

is in practice a challenging task, whereas the energy of a single beam can be estimated relatively

straightforwardly using a limited number of strain gauges.

Verification of the effectiveness of the proposed damping strategy, in its both versions, was

carried out using numerical, finite element method simulations, and by experiment on a specially

built laboratory stand. Free vibration case was considered, as well as forced harmonic and random

vibrations. As a reference damping strategy in the numerical simulations, passive viscous damping

was  used  in  the  controllable  nodes  with  the  coefficient  that  minimized  a  given  performance

measure. Numerical simulations showed that the proposed control strategy performs better than the

reference passive strategy in all compared cases. Experimental studies have confirmed the vibration

damping effectiveness of the proposed control strategy in a structure of representative topology.

The  dissertation  presents  also  a  quantitative  quality  index  that  classifies  placements  of

controllable nodes in terms of the amount of the accumulated potential energy that can be dissipated

by utilizing them. The proposed index uses eigenvectors of the structure under consideration and

estimates of the potential energy accumulated in its beam elements due to their bending. The index

was assessed by comparing its indications with the actual damping effectiveness obtained in a series

of computationally expensive numerical simulations. The assessment confirmed that the proposed

index correctly classifies the considered node layouts, which makes it suitable for quick placement

optimization of controllable node even in large frame structures of a complex topology.



Streszczenie

W niniejszej  pracy  zaproponowano strategię  półaktywnego tłumienia  drgań w wiotkich,

dwuwymiarowych  konstrukcjach  ramowych.  Strategia  bazuje  na  dynamicznej  rekonfiguracji

topologii sterowanej konstrukcji poprzez chwilowe zmiany charakterystyki pracy węzłów łączących

elementy  belkowe.  Jest  to  możliwe  dzięki  zastosowaniu  specjalnych  sterowalnych  węzłów,

pozwalających na natychmiastową zmianę charakterystyki ich pracy pomiędzy połączeniami typu

ramowego oraz typu kratowego. Taka ich cecha powoduje, że energia potencjalna, zakumulowana

w układzie  na  skutek  odkształceń  związanych  z  drganiami,  może  być  przeniesiona  do  postaci

własnych odpowiadających wysokim częstościom drgań i szybko tłumiona na skutek naturalnego

tłumienia  materiałowego.  Jest  to  osiągane  poprzez  krótkotrwałe  przejście  z  charakterystyki

ramowej do charakterystyki kratowej zastosowanych węzłów. Cechy charakterystyczne sterowania

globalnie optymalnego zostały wyprowadzone z wykorzystaniem zasady maksimum Pontriagina.

Zaproponowany algorytm sterowania w pętli zamkniętej został zaimplementowany zarówno

w  wersji  globalnej,  scentralizowanej,  w  której  całkowita  energia  potencjalna  konstrukcji  jest

wykorzystywana jako sygnał sprzężenia zwrotnego, jak i w wersji  lokalnej,  zdecentralizowanej,

która  wykorzystuje  w  roli  sygnału  zwrotnego  energię  potencjalną  jedynie  niewielu  wybranych

elementów belkowych. Przewagą wersji zdecentralizowanej jest relatywna łatwość implementacji

w rzeczywistych konstrukcjach. Aproksymacja całkowitej energii potencjalnej układu jest zadaniem

trudnym w praktyce, natomiast energia pojedynczej belki może być stosunkowo prosto oszacowana

przy wykorzystaniu niewielkiej liczby czujników tensometrycznych.

Weryfikacja  skuteczności  zaproponowanej  strategii  tłumienia  drgań  w obydwu wersjach

została  przeprowadzona  z  wykorzystaniem  symulacji  numerycznych,  metodą  elementów

skończonych, oraz w drodze eksperymentu na specjalnie zbudowanym stanowisku laboratoryjnym.

Rozpatrywanymi  przypadkami  drgań  były  drgania  swobodne  oraz  drgania  wymuszane  siłą

harmoniczną  i  losową.  Jako  punkt  odniesienia  w  symulacjach  numerycznych  wykorzystano

pasywne tłumienie  wiskotyczne  w zastosowanych węzłach  sterowalnych,  którego współczynnik

został  dobrany  w  taki  sposób,  aby  minimalizować  wybrany  wskaźnik  jakości.  Symulacje

numeryczne pokazały,  że zaproponowana strategia sterowania półaktywnego jest  we wszystkich

porównywanych przypadkach lepsza niż pasywna strategia odniesienia. Przeprowadzone badania

eksperymentalne  potwierdziły  skuteczność  tłumienia  drgań  zaproponowanej  strategii  sterowania

w konstrukcji o reprezentatywnej topologii.

W rozprawie zaprezentowano także liczbowy wskaźnik jakości klasyfikujący układ węzłów

sterowalnych  pod  względem  ilości  zakumulowanej  energii  potencjalnej,  która  może  zostać

rozproszona przy ich wykorzystaniu. Wskaźnik ten wykorzystuje wektory reprezentujące wybrane

postacie własne konstrukcji oraz oszacowania energii potencjalnej zakumulowanej w elementach

belkowych na skutek ich zginania. Jego wskazania zostały porównane z rzeczywistą skutecznością

tłumienia  uzyskaną  w  szeregu  kosztownych  obliczeniowo  symulacji  dynamicznych.

Przeprowadzona  ocena  zaproponowanego  wskaźnika  wskazuje,  że  prawidłowo  klasyfikuje  on

rozpatrywane  układy,  co  pozwala  na  wykorzystanie  go  w  celu  szybkiej  optymalizacji

rozmieszczenia sterowalnych węzłów w rozbudowanych konstrukcjach ramowych.
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1. Introduction

Mechanical  vibration  is  one  of  the  most  important  areas  of  interest  for  engineers  and

researchers. They are omnipresent in the human environment and neglecting their possible impact

can  lead  to  catastrophic  consequences.  Vibrations  are  an  important  factor  that  influences  the

construction process of machines such common and important in our lives as car engines, vehicle

seats, rotating machines of all  types, bridges, masts, high-rise buildings, aircrafts, and countless

other engineering structures used by millions of people every day.

When the design procedure does not permit changes in the shape, stiffness or mass of the

structure, and its vibrations are considered dangerous, an external vibration damping system should

be  utilized  in  order  to  mitigate  their  negative  effects.  A great  variety  of  working  conditions,

influence of the external environment, inaccuracy of construction, economic considerations, and

many other factors affect the choice of the external vibration damping system, which can be crucial

for  the  effectiveness  of  vibration mitigation  and,  as  a  result,  for  the proper  functioning  of  the

considered structure.

A very high importance of vibration-related phenomena in engineering structures, as well as

the great varieties of possible ways to reduce these vibrations and types of target structures, have

caused this field of research to receive a lot of attention for several decades. This diversity is the

reason why the possibilities for developing new damping systems seem to be very extensive, and as

the  complexity  of  the  systems  possibly  subjected  to  vibration  increases,  so  does  the  level  of

complexity of the damping systems.

This  dissertation  presents  the  author’s  research  devoted  to  the  development  of  a  new

vibration damping control system, based on the idea of a semi-active control approach. The created

system employs a control algorithm based on a simple, heuristic principle. Despite its simplicity, it

allows  yet  to  achieve  very  satisfactory  results  in  terms  of  vibration  damping  in  the  types  of

structures for which it was designed, under a wide variety of operating conditions.

1.1. Aims, scope and outline of the dissertation

The main goal of the dissertation is to develop and verify a semi-active vibration control

system for applications in slender, planar frame structures. The proposed control system utilizes the

semi-active, controllable nodes which were especially designed for this purpose. The control law is

designed heuristically, based on the findings from the Pontryagin maximum principle.
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The proposed control strategy has a very simple law of operation, however it can be utilized

in  many  different  load  conditions.  Investigation  of  its  effectiveness  is  conducted  mainly  with

numerical simulations, which required building the finite element model of the controllable node

and the frame structure equipped with such a node. The validation of the numerically obtained

results is carried out through experimental studies, which utilize a laboratory demonstrator equipped

with two physical controllable nodes.

The control algorithm depends on the potential energy signal, which can be easily calculated

in numerical simulations, but is difficult to obtain in real-life measurements. This is why the signal

from strain gauges is utilized in experimental analyses being a good proxy for the potential energy

of the structure.

Two different versions of the developed control strategy are presented and compared in the

dissertation: a centralized, global version and a decentralized, local version. The centralized version,

which takes the whole potential  energy of the structure as a feedback signal,  is  very simple to

implement  in  numerical  modeling,  however  utilizing  it  in  real-life  structure  is  tremendously

challenging. An exact estimation of the strain energy of the entire structure is impossible to realize,

and attempting to achieve a good approximation of this energy would require a large number of

sensors to be mounted on the controlled structure. This is why some proxy of the total energy has to

be employed in experimental tests. The decentralized version, which utilizes only the energy of

some specific elements of the structure,  is  more complicated to implement in numerical model.

However,  estimating  the  strain  energy  of  single  beams  is  much  more  feasible  in  real-life

applications.

The  control  strategy  was  intended  to  enhance  the  application  scope  of  existing  control

strategies so that they could provide higher damping effectiveness in various load conditions and

a wider range of natural modes that could be controlled. Thus, numerical analyses and experimental

tests are performed on an exemplary structure, which is subjected to free vibration, harmonic force

excitation and random force excitation conditions. Obtained numerical results are compared to the

optimal,  passive  damping  case  in  which  the  controllable  nodes  are  calibrated  to  maintain  the

selected viscous damping coefficient during the simulation.

The  second  goal  of  the  dissertation  is  to  propose  a  quantitative  measure  of  actuator

placement,  applied  specifically  to  the  types  of  structures  and  actuators  investigated  in  this

dissertation. The proposed controllability index is based on theoretical considerations regarding the

amount of energy, related to bending, that could be possibly released by instantaneous removal of
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rotational  ties  in  frame-type  connections.  Reliability  of  the  proposed  controllability  index  is

assessed by comparing its predictions with the results of numerical simulations conducted for each

considered layout of the controllable nodes. The considerations are carried out on a ten-story frame

structure.

In summary, the aims of this dissertation can be described as:

• Development  of  a  semi-active  vibration  control  strategy  and  numerical,  as  well  as

experimental,  examination of its  effectiveness  under three different  load conditions:  free

vibration, harmonic force excitation and random force excitation.

• Development of a quantitative measure of actuator placement with respect to the possible

bending strain energy to be dissipated. The considerations are strongly related to the types of

structures and actuators for which the proposed control strategy is developed.

The scope and outline of the dissertation is as follows:

1. A literature review of vibration damping techniques with a special emphasis on semi-active

systems employed in slender frame structures (Section 1.3).

2. A literature review of optimal actuator placement methods in relation to systems applied in

slender frame structures (Section 1.4).

3. The definition of the control problem and development of the proposed vibration control

strategy (Section 2).

4. Numerical  verification  of  the  effectiveness  of  the  proposed  control  strategy  in  the

centralized and the decentralized version under different load conditions (Section 3).

5. Experimental  validation  of  the  proposed  control  strategy  on  a  laboratory  demonstrator

(Section 4).

6. Development  of  the  actuator  placement  measure  and  numerical  verification  of  its

estimations (Section 5).

7. A summary of the conducted work, obtained results and proposals for further work related to

the topic (Section 6).
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1.2. Motivation

Many of the scientific deliberations to date, which concern semi-active vibration control

systems for structures composed of beams, investigate a basic example of the first,  fundamental

vibration mode of a cantilevered or simply supported beam [1]–[4]. Despite its great educational

and illustrative value,  a  system consisting of  a single  beam can be considered as an academic

example,  rarely  seen  in  real  life1.  The  fundamental  vibration  mode  of  such  a  beam  is  also

characterized  by  a  simple  deformation  field.  These  aspects  have  led  to  the  recognition  of

a deficiency of the research regarding more complex structures or broader spectrum of vibration

modes that can be influenced with the control system. In this regard, the main motivation for the

development of the proposed semi-active vibration control  strategy was the enhancement of the

existing research agenda with a  strategy  that  could  manage to  mitigate vibrations  of  relatively

complex structures and vibration modes with more complex shapes.

The  idea,  that  inspired  and  stimulated  the  work  described  in  this  dissertation,  was  the

reduction of vibration in very light modular structures, which can generally be classified as truss or

frame systems, in specific applications and environments. The main area of interest, in terms of

working environment of the systems under consideration, were applications in space. Truss or frame

structures, utilized in space environment, are often referred to as Large Space Structures (LSS).

Their  vibration  properties  have  attracted  a  lot  of  research  interest  for  many  years  [5],  [6].

An exemplary structure,  in  which the  proposed damping system could  become very beneficial,

might be the solar array panels arm, like the one of the International Space Station, presented in

Figure 1.1.

Another possible types of structures where the proposed control strategy could prove useful

are lightweight stadiums’ rooftops, footbridges, electric pillars, and other structures where dynamic

loads play an important role.

1 They are often considered as a simplified model of bridges or other structures of similar nature. Such applications

are absolutely justified because of the great similarity between such structures.
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The  criterion  of  space  environment  has  dictated  the  employment  of  certain  structural

solutions, which are very advantageous when compared to other classical vibration control systems.

Such environment is characterized by very low temperatures, vacuum and lack of gravity, which

means that not all types of vibration damping systems can be used there. This applies in particular

to the type of actuators utilized, with fluidless solutions being strongly preferred over fluid-based

devices.  One of the best choices in  such a case are friction-based systems which proved to be

effective [7].

Space applications determine also some specific, stringent requirements. One of the most

important  among them is  the  reduction of  the  mass  of  such  structures.  Drastic  mass  reduction

usually leads to unwanted side effects, some of which, in the context of vibration damping, are very

dangerous. Reduction of structure’s mass is fundamentally associated with reduction of its stiffness.

This, in turn, entails the cutback of its natural damping capabilities. All these factors make such

structures  highly  susceptible  to  external  excitations,  such  as  instantaneous  shocks  caused  by

impacts, continuous force excitation, movement direction changes, or even heat shocks which can

become very severe in space environment.

In the course of development of the proposed vibration damping system, the issue of optimal

distribution of the utilized semi-active nodes was also raised. This has resulted in the creation of

a quantitative measure of placement of nodes in the structure under examination, thanks to which it

is possible to select their appropriate distribution in a very efficient way, depending on the layout of

the structure or the number of available nodes.

Some related research can be already found in the literature, e.g., in the works by Gaul et al.

[8]–[16], Onoda and his team [17]–[23] or Park and Kim [24]. Gaul and his colleagues have already

proposed a very simple rotational  joint,  based on frictional  interface. However,  their  works are

focused  on  local  aspects  of  energy  dissipation  directly  in  the  proposed  joint.  They  aimed  at

maximizing the force-displacement hysteresis loop in these joints, which maximized the amount of

energy  dissipated  during  one  vibration  cycle.  Onoda  and  his  team have  investigated  a  three-

dimensional truss structure equipped with longitudinal, variable-stiffness connections. The stiffness

variability  is  realized  with  piezoelectric  actuators,  placed  inside  thin-walled  beams.  They  also

considered variable-damping connections, however fluid-based solutions were utilized, which can

be  problematic  in  space  environment.  Park  and  Kim  have  utilized  a  dry  friction  damper  for

mitigating the vibrations of a slender, three-dimensional truss structure. Their considerations are

focused on the lowest, fundamental, first mode of vibration.
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Limitations of the referenced works, as well as the implementation differences with respect

to the proposed vibration control system, leave a research gap which may be successfully filled with

the proposed vibration control system.

1.3. Vibration damping in smart structures

Structures  equipped with sensors,  actuators  and microprocessor  units,  applying designed

control  strategies  which  enhance  their  capabilities,  are  commonly  known  as  so-called  smart

structures and systems [25], [26]. One of the most developed branches in smart systems is the use of

innovative  solutions  in  vibration  damping,  which  also  includes  the  vibration  damping  system

proposed in this dissertation. Review of the current scientific knowledge, presented in the following

sections, is concerned with vibration damping in smart structures and systems, with a particular

emphasis on semi-active systems in slender frame structures.

Frame structures are ubiquitous in human life, despite the fact that they may not be visible at

first  glance.  They are the elements  that  create  buildings,  cars,  airplanes,  ships,  mast  structures,

cranes and innumerable other products of human technology. Some of the listed structures, such as

buildings,  operate  primarily  in  static  conditions,  but  there are  many types  of  structures,  where

frame constructions are involved and dynamic issues play a key role. When considering skyscrapers

or earthquakes, these include also buildings.

The vibration phenomenon is usually very undesirable in operated machines and structures,

and, if not taken into account in the design process, can lead to a significant deterioration in the

comfort of their use or even their destruction. One of the possible ways to address this issue is to

redesign  the  structure  or  to  oversize  it.  The  former  can  be  very  costly  or  sometimes  even

impossible,  the  latter,  apart  from  the  waste  of  material,  may  result  in  violating  other  design

constraints. This is why a properly selected vibration damping system can be essential in many

situations and what prompted the development of many of their variations.

The most desirable properties of any vibration damping system can be listed as simplicity,

reliability and effectiveness. An ideal system would combine them all, but because of the physical

constraints,  it is  almost never  achievable.  This  is the  reason why,  from the very beginning of the

development  of  vibration  control  field  of  engineering  and  science, different  approaches  to  the

problem of vibration damping were considered.  Among the plethora of methods developed so far

any new concept can always be prescribed, by means of the vibration damping method it utilizes,

into one of the three main streams: passive, active and semi-active methodologies [14], [27]–[29].
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As depicted in Figure 1.2, each of  these vibration damping system types is capable of achieving

simultaneously two of the aforementioned desirable characteristics, but as a rule at the cost of the

third one.

These characteristics seem to be universal and to constitute well-pronounced limits for each

of the damping system types. They also provide a clear classification and enable a comparison

between the damping strategies encountered in the literature.

A brief review of the most influential and commonly known solutions and applications in

each of the three listed types of vibration damping systems is provided in the subsequent sections.

1.3.1. Passive damping systems

The passive approach assumes that the vibration energy is dissipated by means of especially

designed dissipative components. By definition, such components do not generate any additional

control forces during the operation, which means that no external power source is required in order

to mitigate the vibrations. The vibration energy is dissipated in the form of heat, which leads to the

reduction of the amplitude of structural response, or transferred into elements especially designed to

absorb the energy, such as rotational inertial discs [30]. The popularity of the passive systems is due

to the conceptual simplicity of their design and a very high reliability [31]. Such systems allow their

constructors to follow the desired fail-safe design approach, which means that even in the case of

failure of the damping system, the structure should remain stable.

Passive systems can be categorized into three general types, based on the elements utilized

for the management of vibration energy [32]:

• Energy  dissipators,  which  increase  the  energy  dissipation  ability  of  the  structure.  They

converse the mechanical vibration energy into heat. Examples of such damping elements are

viscoelastic dampers, viscous dampers or friction dampers [33].
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• Tuned dampers or dynamic vibration absorbers, which are especially designed to absorb the

vibration energy of the structure. It is recognized that the first tuned vibration absorber was

invented at the beginning of the 20th century [34]. Such devices usually consist of a mass,

a spring and a damper which typically is a viscous damper. Proper tuning of the mechanical

parameters (mass  or  stiffness)  can minimize the response of  the structure for  a  specific

natural mode of vibration or for a random earthquake excitation [35]. Two main realizations

of the tuned dampers are the tuned mass dampers (TMD) and the tuned liquid dampers

(TLD). TMDs are  most  commonly  utilized  for  mitigating  vibrations  in  very large  civil

structures under seismic response,  such as high buildings  [36],  suspension bridges  [37],

railway bridges [38], or wind turbines [39]. TLDs are based on a very similar principle as

the more popular TMDs, however the control mass, added to the structure, is not a solid

element but a container filled with liquid. The frequency of the liquid sloshing in TLDs

plays the same role as the natural  frequency of the TMD added to the structure.  TLDs,

similarly to TMDs, are most popular in seismic excitation problems [40]. A popular type of

TLDs is the so called tuned liquid column damper (TLDC) where the liquid fills a U-tube

shaped container [41]. TMDs and TLDs are calibrated for a specific natural frequency of the

structure to be damped, which is considered to be their main disadvantage. A brief review of

possible enhancements of these systems is provided in Brzeski et al. [42], where a new idea

is also proposed: an inertial device with the inertance that can be changed in a simple and

effortless way. In their another article regarding this device, they reported the experimental

results [43]. Tuned mass absorbers equipped with a physical pendulum, or some extensions

of this idea, are also being considered in some applications [44].

• Base  isolators,  used  for  the  attenuation  of  horizontal  accelerations  during  earthquakes,

which  mitigate  and  prevent  the  propagation  of  disturbances  to  the  structure  [45].  Such

devices shift the fundamental frequency of the structure in order to move it away from the

range of the dominant earthquake energy.

In some specific applications of energy dissipation systems, the investigated structure may

be  considered  in  its  entirety  as  a  passive  energy  dissipator.  It  happens  for  example  in

crashworthiness  analysis,  where  all  the vehicle  structure may be optimized for  the best  energy

absorption during the impact  [46]. However, the scenarios examined in any optimization analysis

usually correspond to the most dangerous load cases, which are usually infrequent in practice. As

a result, a passively optimized structure might respond sub-optimally to the disturbances for most of

its operational lifetime.

16



One of the ideas to enhance passive energy dissipation ability of a structure is to coat it with

a layer of viscoelastic material.  However,  such a concept is  burdened with many uncertainties,

related to the thickness of such layer, selection of the parts of the structure to be coated, and the

geometry of the coating layer, even in such simple systems as cantilevered beams or plates  [47].

Among plethora of possible new concepts, other interesting ideas include particle dampers, where

multiple small particles play a role of a dynamic response mitigator  [48], or bio-inspired passive

exoskeletons, designed to alleviate the negative effects of working with vibrating tools [49].

The great disadvantage of the passive approach is its inherent inability to adapt to structural

changes and to varying external load conditions. This means that the performance of the damping

system remains on a satisfactory level in only a narrow band of the designed work conditions. Any

significant change in the characteristics of the loading conditions can result in a drastic deterioration

of the efficiency of the damping system. This negative feature stimulated researchers to devise

other  possible  ways  to  enhance  the  damping  capabilities  of  engineering  structures,  which  has

ultimately  led  to  the  development  of  active  and  semi-active  damping  systems.  However,  the

inspiration can go both ways: sometimes active or semi-active control strategies may also inspire

scientists to develop a passive damping device [50].

1.3.2. Active damping systems

Active vibration damping systems may be considered as the opposite of the passive systems.

Performance  characteristics  of  the  structure,  equipped  with  an  active  control  system,  remain

unchanged in normal working conditions.  They can be however substantially amended by such

a system  when  the  criteria  for  its  activation  are  fulfilled.  This  change  is  usually  realized  by

providing additional external excitation forces, but it can be also realized by active modification of

selected structural parameters (stiffness). Actively generated forces are frequently very high, which

entails some difficulties in the application of such systems.

The history of active vibration control systems dates back to the 1920s  [51].  They gained

popularity in the field of controlling the vibrations of buildings under strong wind or earthquake

excitations with the first ever full-scale application dated in 1989 [52]. Currently, their development

is at the stage mature enough to have many such control systems applied in full-scale structures.

They are well-researched and known for their effectiveness, as well as for the relative simplicity of

the design process [53].
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An active control system consists of a set of sensors located in the structure, which measure

the external excitations or the response of the structure (strain, acceleration, velocity, etc.), devices

to process the gathered information and to compute the desired control forces (control system), and

the actuators that produce and apply the required forces.

When compared to passive systems, active systems offer many advantages, and the most

notable  are:  the  enhanced  effectiveness  in  motion  control,  their  relative  insensitivity  to  site

conditions  and  ground motion,  their  applicability  in  multi-hazard  mitigation  scenarios  and  the

selectivity of control objectives  [54, p. 271]. Their biggest disadvantage is that they usually need

large  power  sources,  of  order  of  tens  of  kilowatts  for  small  structures  and  up  to  hundreds  of

kilowatts for large ones, in order to generate the control forces and perform their function. This

feature makes them costly and vulnerable to power failure which drives away the civil engineering

community from using this type of systems for crucial applications, such as earthquake protection

[53, p. 487]. There exists also a problem of robustness with respect to sensor failure. High forces

generated  by  the  control  system in  the  case  of  its  malfunction  may result  in  damage or  even

destruction of the controlled structure.

It should be emphasized that an active approach to vibration control is not always better than

the passive approach and that a control system cannot compensate for a bad design. Despite the

high adaptability of such systems, they can effectively mitigate vibrations only in  some limited

frequency band, outside of which they can actually amplify external disturbances [53, p. 4].

Two basic types of active control configurations can be distinguished, which are referred to

as  open-loop control  and closed-loop control.  The open-loop control  is  realized when the data

acquisition system measures only the external excitations and the control forces are adjusted based

on these measurements. When the data acquisition system measures the mechanical response of the

structure, the control strategy is said to be realized in a closed loop.

Active control systems enhance the capabilities of TMDs by applying control forces to the

moving mass, actively counteracting the movement of the structure, which is excited with wind or

seismically. Similarly to the passive versions, active TMDs are developed mostly for high buildings

[55]–[57] and cable-stayed bridges  [58].  Control systems equipped with active tendons are also

utilized for vibration damping in buildings [59] and cable-stayed bridges [60]. Roadways on bridges

or  train  guideways  are  usually  approximated  by  simple  beams  under  moving  loads  in  such

considerations [61], [62]. There are also some innovative solutions for stabilizing several buildings

simultaneously by coupling them by means of active bridges [63].
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Applications  of  active  control  systems  in  large  space  structures  are  focused  on  truss

structures and antennas.  Jin  and Huang  [64] compare the effectiveness  of  a  classic PD control

strategy with their nonlinear  quadratic control  algorithm (NLQR),  based on linearization of the

discrete model of the structure, in a large-span spatial structure where the control is realized with

active tendons. Active tendons were also considered by Preumont et al.  [65], where piezoelectric

actuators were utilized for the purpose of force generation and the integral force feedback control

law. Chen [66] derived an approximate optimal control strategy by linearizing a long-span antenna

model.  Lu  et  al.  [67] considered  a  large  space  antenna  with  cable  actuators  and  developed

a procedure  for  optimization  of  actuator  placement,  utilizing  the  controllability  principle  and

a swarm optimization algorithm, as well as a control strategy by combining the linear quadratic

regulator (LQR) with a bang-bang type regulator.

Machine learning methods have also found their applications in active vibration damping

control  strategies.  Artificial  neural  networks  proved  their  effectiveness  in  developing  control

strategies for reduction of vibrations in seismically excited civil structures  [68], [69], or even in

such very general cases where the controlled system is unknown [70].

Some other interesting active control ideas are electrical dynamic absorbers, which utilize

piezoelectric stacks for energy dissipation  [71], electrohydraulic systems for machine tools  [72],

electric systems for oil drilling machines  [73], hydraulic actuators systems for seismic excitation

mitigation of buildings  [74], or electric servomotor systems in hard disk drives  [75]. Suspension

systems of road vehicles [76]–[79], as well as of their seats alone [80], [81] are also the subject of

many considerations.

1.3.3. Semi-active damping systems

Semi-active vibration damping systems aim to combine the best  features of passive and

active  approaches  to  the  problem  of  vibration  reduction.  Mechanical  characteristics  of  the

controlled structure are significantly affected by such a control system, but it is realized by means

of local structural reconfiguration rather than active generation of control forces. Such a mechanism

of operation allows the control system to be highly efficient without the need for a high-power

external power supply. However, the design of semi-active control systems is usually associated

with relatively high technical difficulties. One of the first papers that mentioned the semi-active

approach to vibration damping was the article [51] by Karnopp et al., in which such systems were

defined  being  based  on  the  paradigm  of  low-cost  self-adaptation.  They  proposed  an  idea  for

vibration damping in a one degree of freedom (DOF) oscillator with a control algorithm that is now
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widely known under the name “skyhook”. This seminal publication marks the beginning of nearly

half a century of the development of semi-active control systems.

Semi-active damping systems offer the reliability of passive systems while maintaining the

versatility and performance of the active systems. Appropriately implemented semi-active vibration

damping strategy performs significantly better than passive ones and can achieve the performance

comparable to active systems. Additionally, no associated large power sources are required. Semi-

active control devices are, in many implementations, essentially passive ones but with the ability to

adjust their mechanical properties, such as damping or stiffness, in real time.

Semi-active control  systems are often intended to operate in conditions where the stress

level in the structure exceeds some predefined threshold. Only then a change in the configuration of

the structure, caused by the control system, can result in achieving the desired behavior that leads to

mitigation of vibrations. It can make semi-active systems inappropriate for mitigating vibrations of

small amplitudes and stress levels.

Semi-active control device cannot inject any additional energy into the controlled structure.

Such systems require an external power source only for the data acquisition system and to power

the elements that realize the control algorithm by affecting structural properties. Consequently, the

demand for electric energy is  very small when compared to active control  systems. Many such

systems can be powered from small batteries, even in the case of damping vibrations in buildings,

which is critical during natural hazards like earthquakes and the possible loss of the main power

source  [28].  Another  very useful  feature,  related to  the lack of  energy  injection in  semi-active

control systems, is a very low potential to destabilize the structure. This makes them often fail-safe,

which stands in contrast with many active systems, and it is important in the context of any type of

control system failure.

Some of the best known semi-active damping devices are [28]:

• Variable-orifice fluid dampers with controllable, electromechanical, variable-orifice valves

that can affect the flux of fluid in conventional hydraulic or pneumatic dampers [82]. This

results  in altering the resistance to flow of such a damper and consequently its reaction

force.

• Controllable friction devices that utilize forces generated by interacting surfaces. The force

generated  at  the frictional  interface can be  adjusted by the contact  pressure in  order  to

control  the  amount  of  the  energy  dissipated  into  heat  by  the  micro-  and  macroslip
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mechanisms. One of the most commonly used energy dissipation strategies, which utilizes

the controllable friction device, is to maximize the local force-displacement hysteresis loop

in bolted joints [9] or longitudinal friction dampers [15].

• Variable-stiffness devices. Distinct types of such devices allow for stepped or continuous

changes  between  different  stiffness  states.  A possible  implementation  utilizes  variable-

orifice devices filled with hydraulic fluids, which results in on-off modes of operation (high

and low stiffness). Vibration damping effectiveness of these systems is very high, however

their implementation in real-life experimental structures is usually very complicated. Single

DOF systems  [83], [84] or single flexible beam  [85],  [86] examples are usually used to

present  the  effectiveness  of  such  control  strategies.  In  many  cases,  the  difficulties  in

achieving  variable  stiffness  directly  result  in  utilization  of  variable  damping  devices  to

effectively simulate the changes of stiffness, which is relatively easier to be achieved in

practice  [87].  One  of  the  few examples  of  successfully  achieving  variable  stiffness  in

a relatively complex structure is provided by the works of Onoda et al. [17], where a semi-

active vibration control strategy was applied to a three-dimensional slender truss structure.

• Smart  tuned  mass  dampers. They  represent  an  enhancement  and  improvement  over

conventional  tuned mass dampers, which can loose their efficiency, or even increase the

vibration of the system, when the natural frequency of the controlled structure alters with

time due to wear or other reasons  [88]. The smartness of these devices is  based on the

introduction of a variable damping coefficient  or a variable stiffness.  They can adapt to

changing environmental  conditions  by adjusting their  damping properties  or  shifting the

natural frequencies in real time. In practice, it is often achieved by integrating a variable

damping device, such as a magnetorheological damper (MR damper), with a TMD system

[89], [90]. This added adaptability makes classical  TMDs robust to stiffness or damping

changes of the main structure. Semi-actively controlled TMDs found their applications in

many fields and with many different realizations of the system. As in the case of passive and

active  TMDs,  semi-active  systems  are  most  commonly  used  in  tall  buildings  [91],

suspension bridges  [92] and wind turbines  [93], that is structures susceptible to seismic or

wind excitations.  Semi-active TMDs can adjust  their stiffness  [94], damping capabilities

[95], or both of these characteristics simultaneously [96], [97].

• Semi-active tuned liquid dampers that work on the same principle as tuned mass dampers,

but the damping device employs liquid instead of a solid body. They are usually realized in
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the form of column dampers with U-like shaped containers, filled with liquid which flows

through an orifice of a controllable size [98], [99].

• Controllable fluid dampers that make use of controllable fluids. Their main advantage is the

mechanical  simplicity which makes them very reliable. Usually the only moving part of

such a damper is the piston. The fluid employed in such a damper can be in principle either

magnetorheological (MR) or electrorheological (ER) fluid, however ER fluids are hardly

used in real engineering applications. These fluids have the ability to reversibly change the

state  from  free-flowing  to  a  semisolid  with  controllable  yield  strength  in  a  matter  of

milliseconds. The most popular, colloidal MR fluids, consist of very small, micron-sized,

magnetically polarizable particles dispersed in a medium, which can be a mineral or silicon

oil. Semi-active vibration mitigation systems equipped with MR dampers are a very popular

object of research. Such systems were applied already to adaptive landing gears of small

aircrafts  [100], [101], drive systems of rotating machines  [102], [103], vehicle suspension

systems  [104]–[107],  vehicle  seat  suspensions  [108]–[111],  or  energy  harvesting  [112].

MR dampers were considered even in such demanding applications as ground resonance of

landing helicopters for stabilizing their rotors [113].

• Inerters  with  variable  inertance,  e.g.,  controllable-inertia  flywheels  based  on  moving

masses [114]. These are the mechanical devices that convert the axial movement, induced by

the force applied at their  ends,  into the rotational  movement  of some of  their  elements

(flywheels, pinions, etc.). Induced relative acceleration of the terminals of such a device is

proportional to the applied force. The proportionality constant is called the inertance.

TMDs and the control strategies utilizing MR dampers are usually independent, however

Weber [89], [115] combined them successfully together, which has led to an increase in vibration

damping effectiveness of up to 60%, as compared to a passive TMD.

Despite the most popular MR-based devices are MR fluid dampers,  researchers consider

also MR elastomers for similar applications as MR fluids. MR elastomers were investigated in

semi-active control systems for such structures as sandwich cantilevered beams [116], [117] or for

single vibration isolators  [118]. Their application was also considered for the purpose of seismic

response reduction [119] or in vehicle seats suspension systems with variable stiffness [120].

Single beams are often utilized as a great representative model for considerations of moving

loads  which  can  represent  bridges  in  working  conditions  [121]–[125].  Some  very  innovative

solutions  of  granular,  vacuum-packed  semi-active  dampers  were  tested  utilizing  simple  beam
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structures [126]–[128], or some special cylindrical samples [129]. Sometimes even single degree of

freedom systems can be of educational value for comparing different control strategies  [130] or

changing the shape of a force-displacement hysteresis loop [131].

Seismic  protection  systems  are  a  very  popular  topic  in  vibration  control  research  field,

which stimulated Symans and Constantinou to write a comprehensive state of the art review article

[132]. Along with TMDs, base isolation systems are the most popular ones in this field [133], [134].

Due  to  relatively  large  forces  needed  in  such  applications,  hydraulic  actuators  are  especially

designated  for  such  systems  [135].  However,  friction  dampers  are  also  considered  by  some

researchers [136], [137]. Semi-active systems can be utilized for controlling vibrations of buildings

or other structures by coupling them together using friction dampers [138], [139].

Vehicle suspension and vehicle seat suspension systems are a very popular research topic in

the semi-active control community. A variety of different devices is being used for this purpose,

such as hydraulic dampers [140], hydro-pneumatic elements [141], electromagnetic dampers [142],

or  pneumatic  absorbers  [143].  There  are  also  some  some  very  innovative  ideas  of  utilizing

controllable dampers filled with granular materials [144].

Semi-active control systems are utilized for energy harvesting applications  [145]–[147] or

for  energy dissipation by connecting/disconnecting piezoelectric  stacks  under load with electric

circuits,  which  is  called  a  synchronized  switch  damping  strategy  [148].  Further  unusual  ideas

concern reduction of vibrations due to crushing ice loads for off-shore wind turbines or oil drilling

platforms [149], pneumatic inflatable structures [150], inertial dampers of sophisticated principles

of operation [151] or shape memory alloys [152]. Artificial intelligence methods have found their

applications in semi-active control systems [153], [154], similarly as in active control strategies.

Advantages over other methodologies of vibration control and a high variety of possible

approaches  to  the  topic  result  in  a  high  interest  among  researchers,  and  as  a  consequence,

a significant  number  of  scientific  works  published  in  this  field  each  consecutive  year.

A comprehensive review of the theory and applications of semi-active control systems was written

by Casciati et al. [155]. A great, even if already somewhat dated, review of semi-active and active

control  strategies  focused  on  seismic  applications  with  examples  of  real-life  applications  was

provided by Soong and Spencer in [156].
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1.4. Optimal actuator placement

The referenced active and semi-active vibration control systems make use of actuators for

active generation of forces to mitigate vibration amplitudes, as in the case of active systems, or for

changing the topology or characteristics of the controlled structure, which is the fundamental idea

behind semi-active control systems. A vast majority of research does not consider the issue of the

proper placement of these effectors in the structure in any systematic manner. Their locations are

usually selected based on intuition and without deeper considerations. In one of the later sections of

this dissertation, it is argued that proper placement of controllable nodes can have a crucial effect on

the effectiveness of the proposed control strategy. This indicates that other studies, utilizing various

control strategies for different structures such as slender trusses, masts or antennas, should also pay

close  attention  to  this  aspect  of  research.  An  issue  that  is  very  strongly  associated  with  the

distribution of actuators is the placement of sensors of the control system. Thus these two research

problems are very often considered jointly.

Although  this  issue  is  mainly  associated  with  active  or  semi-active  vibration  damping

systems, considerations related to passive, viscous systems can also be found in the literature [157]–

[159].  Passive systems research is  focused mainly on seismic and wind excitation problems, in

buildings  utilizing  viscous  dampers  [160]–[165],  tuned  mass  dampers  [166],  or  inertial  mass

dampers [167]. Some applications in large truss structures can also be found [168], [169].

In active control systems this research topic has been investigated for many years and now it

can be considered as relatively well-researched. Friswell and Mottershead summarized the methods

for locating transducers in a chapter of their book  [170, pp. 71–77]. They describe two specific

methods based on Guyan reduction  [171] and the Fisher information matrix  [172].  The Guyan

reduction method aims at reducing the number of degrees of freedom (DOFs) of a finite element

(FE) model in order to make it computationally more manageable. The process reduces the model

while  maintaining  its  characteristics  in  the  low  frequency  range.  Methods  based  on  Fisher

information matrix generally focus on selecting sensor locations that lead to linear independence of

the identified mode shapes. The assessment of chosen locations can be conducted with the modal

assurance  criterion  (MAC)  [173],  [174],  the  singular  value  decomposition  (SVD)  [175] or  the

Fisher information matrix, as mentioned earlier. Many other procedures and algorithms for optimal

sensor placement have been proposed [176], [177], but a detailed review of the field is outside the

scope of this section.
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Methods of optimal sensors placement were already applied to some very popular areas of

vibration control systems, such as space structures [178], [179], cable-stayed bridges [180], [181],

helicopters  [182] or  large  and  flexible  civil  structures  in  general  [183]–[185].  Such  optimized

sensing systems are  utilized for  general  identification of  structures  and their  damage,  which is

called  structural  health  monitoring  (SHM).  Similarly  to  other  fields  of  research,  artificial

intelligence methods are also being employed also in this area [186].

A typical difficulty in optimal actuator placement is in general the nonlinear, discrete form

of the related optimization problem  [187],  which should consider hundreds of possible actuator

locations [188]. Sensor and active actuator placement methods in smart structures are described in

a review  paper  by  Gupta  et  al.  [189],  where  six  different  criteria  are  discussed  for  optimal

placement of these devices in exemplary beam and plate structures. The same types of structures are

considered  by  Bruant  and  Proslier  [190],  where  a  methodology  is  proposed  for  optimum

distribution of actuators and sensors that takes into account the possible excitation of the residual

modes,  which  is  called  a  spillover  effect.  A specific  example  of  optimizing  the  placement  of

piezoelectric patch actuators on a flexible plate is considered by Peng et al. [191], where a genetic

optimization algorithm is utilized.

Placement of actuators in structures of a similar topology to the structures investigated in

this dissertation is considered, among others, by Onoda and Hanawa [192], Lim [188], Wirnitzer et

al.  [193],  Rao et al.  [194], Li  and Huang  [195],  and Cha et  al.  [196].  They employ relatively

complex optimization procedures, based on such ideas as modal observability and controllability

subspaces of a selected set of natural modes of the structure or multilayered discrete-continuous

optimization strategies enhanced by genetic algorithms. Lammering et al. [197] consider large truss

structures with piezoelectric based actuators and emphasize the role of their electric potential in

selecting  their  optimal  placements  for  active  control  strategies.  Less  complicated  structures,

considered in the optimal actuator placement problem, are sandwich plates  [198], simple beams

[199], [200], or systems of plates and beams [201].

In comparison to active control systems, the problem of optimal distribution of actuators for

semi-active damping systems is much less often researched. Among the works referenced so far

only these by Onoda and Hanawa, as well as by Wirnitzer et al., referred directly to semi-active

control  systems.  Takezawa  et  al.  [202] consider  a  three-dimensional  truss  structure  with

piezoelectric transducers and search for their optimal layout for effective suppression of vibrations.

Similarly  as  in  the  case  of  passive  and  active  vibration  damping  systems,  seismically  excited
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buildings  and  other  civil  structures  are  of  a  high  interest  [203],  [204].  Genetic  algorithms  are

a popular placement optimization technique for vibration damping systems with semi-active control

elements  [205], [206].  Criteria for optimal placement, besides the mentioned earlier observability

and controllability, can utilize root mean square functions of responses and control forces [207] or

control effort [208].

Some  researchers  investigate  so-called  hybrid  systems,  where  both  passive  and  active

vibration  damping  elements  are  simultaneously  employed  and  the  criterion  for  their  optimal

placements is derived based on statistical considerations [209].

1.5. Original contributions and publications

The main original contributions of this dissertation can be summarized as follows:

• Development of a heuristic semi-active control strategy, drawing on Pontryagin’s Maximum

Principle and bang-bang control type, for effective mitigation of vibration energy in slender,

planar frame structures.

• Development  of  a  computationally  effective  FEM  model  for  a  specific  semi-active

controllable node. Performing numerical analysis to prove the reliability of the model.

• Numerical verification and analysis of the proposed control  strategy using an exemplary

frame structure subjected to free, harmonic and random vibrations.

• Experimental verification of the proposed control strategy using a dedicated laboratory test

stand featuring a slender frame subjected to free, harmonic and random vibrations.

• Development  of  a  quantitative  measure  for  optimal  placement  of  semi-active  actuators

(controllability index), to be applied for the proposed control strategy.

• Numerical  analysis  and  verification  of  the  proposed  actuators  placement  measure

(controllability index) using an example ten-story slender frame.

All the contributions listed above have been described in six articles published in recognized

international scientific journals. Two of them present both numerical and experimental analyses of

the proposed control strategy: [210] (derivation and the free vibration case) and [211] (experimental

formulation and the forced vibration case). One article is focused on a comprehensive experimental

validation  [212],  and  one  contains  numerical  analyses  [213].  In  the  fifth  article,  the  proposed
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control strategy is utilized as a benchmark for another, newly proposed control strategy [214], and

the sixth published article is devoted to the problem of optimal actuator placement [215].

Eight conference reports were also published that make up the listed contributions. Five of

them present mostly different numerical findings regarding the proposed control strategy  [216]–

[220], one considers the optimal actuator placement problem  [221], and two are focused on the

experimental part of the conducted research [222], [223].
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2. Proposed semi-active vibration control strategy

The proposed vibration control strategy and its fundamental principle of energy dissipation

draw on the methodology called Prestress–Accumulation Release (PAR), originally described by

Mróz et al.  [1],  [3], [224], and intended to be applied in slender frame structures. Its aim is to

transfer the energy of the vibrating structure into high-frequency vibrations, where it is expected to

be rapidly dissipated thanks to the increased material  damping abilities in these high frequency

ranges. This energy transfer is possible by means of especially designed controllable nodes and the

structural reconfiguration principle. Such nodes allow for instantaneous removal of their rotational

ties, which converts them to truss-type connections and releases the strain energy accumulated by

bending  of  the  adjacent  beams.  Such  action  stimulates  high-frequency  vibrations,  which  most

commonly reflect a local S-shape motion of single transversal beams of the structure or longitudinal

deformations of its main beams.

2.1. General energy dissipation principle

When  a  structure  vibrates,  two  damping  sources  are  involved:  external  and  internal

damping. It  has long been known that the relative importance of these damping mechanisms is

strongly  dependent  on the application type and  the environmental  conditions.  The  existence  of

internal damping is decisive if the vibration occurs in a vacuum, such as in space environment, and

the connections in the structure are welded or designed to minimize the slippage in order to exclude

the  possibility  of  energy  dispersion  on  the  interfaces  [225].  The  external  damping  is  strongly

dependent on the density of the fluid that encloses the vibrating structure, and it can be equated with

the drag force proportional to dynamic pressure [226]. The surrounding fluid is most often the air.

However, the external damping can also arise as the effect of the support damping.

Several different models are considered for internal energy dissipation mechanisms  [227].

The  most  widely  recognized  one  by  means  of  material  damping  is  due  to  the  relaxation  by

transverse thermal currents [225], and it dominates in the frequency range from ~100 Hz to ~1 kHz

[5]. When it comes to internal damping, various types of material damping can play the role of the

dominant mechanism. However, in a structure composed of beams, the transversal thermal currents

seem to be the only one  [226].  They involve in  their definition a dependence on the vibration

frequency. At very high frequencies the cyclic heating and cooling of the material occurs at so high

rate that the process becomes adiabatic and little heat can be exchanged by means of transverse
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flows. On the other hand, at very low frequencies the temperature changes of the material are to low

to generate any heat flow and the dissipation is also very small. This induces that there exist an

optimal frequency at which the energy dissipation has its highest rate  [5], [225], [226]. There are

also arguments  that  a  higher  vibration frequency corresponds to  a  higher vibration damping in

general [228], or at least in some wide frequency bandwidth [229].

It was also found by some researchers that the material damping is likely to be the dominant

mechanism of energy dissipation in space structures, because of the elimination of the damping

resulting from the presence of the external environment (air) and joint damping [5]. In commonly

built structures these two passive energy dissipation sources are prevalent, especially the one related

to joints where macroslip and microslip, resulting from the presence of dry friction, are the major

dissipation mechanisms [8], [11], [230], [231]. In very precise structures, such as space structures,

joints are manufactured to be very tight with the smallest possible clearances and imperfections. It

affects the relative motion of the connected parts and possible impacts between them, so that the

degree of energy dissipation is decreased.

The PAR methodology draws  on  the  assumption that  there  exists  a  phenomenon of  an

increased material damping in some relatively high frequency range. It is a two-phase structural

control algorithm, which consists of (1) the phase of accumulating the strain energy of the structure

during its elastic deflection and (2) the phase of releasing the accumulated energy into high-order

vibration modes. It  is assumed that the material or internal damping mechanism is significantly

intensified in these high-frequency vibration modes, ad it is extensively utilized by this approach.

The  technique  can  be  described,  in  general  terms  of  semi-active  control  approaches,  as  an

instantaneous  local  adjustment  of  structural  parameters  with  the  accompanying  structural

deformation in  order to  introduce control  forces.  The transition between the two phases of  the

control strategy shall be as fast as possible, in order to instantly release the accumulated energy and

excite  the  desired,  high-frequency  vibration  modes,  but  also  to  maintain  the  highest  possible

stiffness of the structure during the release phase. Such an approach ensures the lowest possibility

of destabilizing the structure in the low-stiffness mode of operation.

2.2. Semi-active node

The development  of  special-purpose  joints  for  specialized  flexible structures  (e.g.,  large

space structures), directed at improving their damping capabilities, has been a subject of interest to

researchers  for  some  time.  Several  possible  types  of  connections  have  been  already  proposed,
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categorized by the control type approach: passive [232], semi-active [1], [8], [9], [232] and active

[233]. The principle of operation of such joints is predominantly inspired by the mechanism of

a hinge (revolute joint), but some other ideas, e.g., based on affecting longitudinal or bending truss

members motion, were also developed [12], [13], [16].

Application of the proposed, original technique of vibration control requires the use of some

specially designed semi-active nodes. Their outstanding feature is the ability to instantly change

their behavior between the frame- and truss-type connection. It is realized by changing their ability

to transfer bending moments from maximal to minimal value,  which is close to zero. It  can be

understood as a possibility to effectively incorporate a new rotational degree of freedom into the

structure. Used in pairs, the nodes allow specific elements of the controlled structure (for instance

single beams) to be extracted and turned into dissipative devices.

The concept of such a node was firstly described in the articles by Holnicki-Szulc [234] and

Mróz  [1],  where  the  preliminary  design  sketches  also  appeared.  Its  design  is  not  excessively

complicated. The node consists of two main elements: the core and the housing, each of which is

connected to a different beam entering the node. They interact with each other by conical surfaces

coated with high friction material, which allows to block their relative rotational movement when

clamped by an external element, for example a very stiff spring. Unclamping is realized with the

use  of  a  piezoelectric  stack  placed  in  a  special  slot  between  the  surfaces.  Achievable  linear

displacement  of  piezoelectric  stacks  is  very small  but  it  is  sufficient  for  breaking the interface

between frictional  surfaces  and  to  introduce  the possibility  of  relative slipping.  The undoubted

advantage of using piezoelectric stacks for this task is their very high responsiveness, measured in

single milliseconds, which is crucial when dealing with vibration control and not achievable with

other solutions, such as pneumatic or hydraulic ones.

The  prototype  node  was  designed  and  manufactured  by  Adaptronica  sp.  z  o.o.  [235].

A schematic  sketch  of  possible  implementation  of  the  controllable  node,  based  on  the  patent

description [235] and the earlier work by Mróz et al.  [236], as well as its real life realization, are

presented in Figure  2.1. The cross section visualizes the main idea behind the controllable node.

The spring pushes  the  frictional  interfaces  against  each other  forcing the  node to  maintain the

frame-type connection in its default state. When the control signal is sent to the piezoelectric stack,

the actuator counteracts the force generated by the spring and uncouples the frictional interfaces,

allowing for a relative rotation of the rotor and the casing. In this state the node behaves like a truss

connection, transferring only the axial and shear forces.
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The design of this node follows the most important signposts of assuring the best possible

performance, such as ensuring the maximum moment transmission capability in the power failure

situation. This means that  the structure will  remain in  its  most  rigid configuration during such

unforeseen events. Other important matter is the energy consumption of a control system. One of

the foundations of semi-active control is the very low energy demand for the realization of control

task. Piezoelectric stacks, utilized in the proposed control system, meet this requirement. When it

comes to the issue  of  device reliability,  simple design and utilization of  passive elements,  like

springs and frictional surfaces, make the node very trustworthy and fail-safe.

All described features contribute to the high application efficiency of the control strategy

and high reliability of the controllable nodes, utilized in the described vibration control strategy.

2.3. Energy dissipation mechanisms

The  proposed  vibration  mitigation  strategy  utilizes  two  interconnected  mechanisms  of

increasing the rate of energy dissipation in the controlled structure:

1. Exciting global vibration modes of high frequency.

2. Releasing the energy accumulated locally into bending vibration modes of selected beams.

Both  of  these  vibration  modes  are  supposed  to  lay  in  the  high-frequency  range  and  thus  be

efficiently damped by material damping mechanisms.

The first dissipation mechanism allows for a significant reduction of the vibration energy

when  the  structure  movement  reflects  its  fundamental  mode  of  vibration.  In  frame  or  truss
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(left – schematic sketch of possible realization, right – physical element).



structures, fixed on one side, the deformation state corresponding to the first eigenmode usually

causes some elements of the structure to be compressed, while the opposite  ones are stretched.

Thanks to such a deformation state, it is possible to induce high-order, longitudinal vibration modes

through local  reconfiguration,  performed with the use of  the controllable structural  nodes.  The

eigenmode of such shape usually corresponds to the natural frequency at the level of hundreds of

hertz, where high levels of material damping can be assumed. However, as mentioned above, the

effective  usage  of  this  mechanism  is  typically  limited  to  the  fundamental  vibration  mode.

Unfortunately, modes of vibration higher than the first one, usually introduce a complicated field of

deformation, which makes it impossible to effectively utilize such a mechanism. This means that it

is  very hard,  or  even  unachievable,  to  introduce such  a local  reconfiguration,  thanks  to  which

a high-order, global vibration mode would be sufficiently excited.

The second dissipation mechanism of the presented control strategy is associated with the

local deformations of selected beams, which in fact also reflects a certain combination of high-order

global vibration modes. Strain energy of the deflected structure, accumulated through bending of

beams, can be released locally. The adopted control system makes it possible by synchronous, semi-

actively controlled separation of rotational degrees of freedom at both ends of a controlled beam,

which makes it to behave like a truss rod, instead of its normal way of operation, for a very short

period  of  time.  This  procedure  causes  any  displacement  field  corresponding  to  the  beam type

motion (bending) to be immediately converted into local, high-frequency vibrations of single beams

which are efficiently mitigated by material damping.

2.4. Optimal control considerations

Regardless of the damping technique utilized, researchers strive to obtain the best possible

results of the proposed control solutions. The reference point is always the optimal control, which

allows to achieve the best results for a given mathematically described system. Investigation of the

optimal control characteristics for the considered frame structure, equipped with the special-purpose

controllable nodes requires building their mathematical model.

2.4.1. Mathematical model of the semi-active node 

The most important task in modeling the entire frame structure under consideration is to

choose a proper model of the controllable nodes. The main selection criteria in this case are the ease
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of  numerical  implementation  and  the  compliance  with  the  reality.  The  classical  and  intuitive

approach would dictate the choice between the two following possibilities:

1. Modeling the dry friction phenomenon.

2. Instantaneous switching between the frame and truss models of the nodes.

The greatest compliance of a mathematical description with the physical implementation of

the node would be achieved by utilizing the dry friction model, taking into account the frictional

interaction  between  the  two  interfacing  conical  surfaces  of  the  real  node  (see  Figure  2.1).

Sophisticated mathematical models, such as the LuGre friction model  [237], would allow a very

reliable representation of the mechanism of operation of the utilized controllable node. However,

the complexity of the mathematical model of the entire structure would be greatly increased in

comparison to the other possible approach, which allows the structure to remain linear during the

simulation.  The material  non-linearity  introduced into the  structural  model by utilizing the  dry

friction  would  result  in  much  longer  analysis  times,  and  what  is  much  more  important,  in

difficulties in applying the proposed control algorithm. In the first place, this would disqualify the

usage of well-known mathematical tools of optimal control, which are mostly designed for linear

systems.

The second possible mathematical implementation of the node behavior, and especially its

switching feature, would be the conversion between the truss and the frame models of the nodes at

the moment of switching, transferring the state of the structure between these two models. This

approach ensures that the structure remains linear between the switching moments, which accounts

for almost all the simulation time. It would also accurately model the ideal truss-frame behavior of

the nodes. The fundamental flaw of this approach is related to the changes in the number of DOFs

during the simulation. Switching the joints type between their default, frame model and the truss

model would alter the number of DOFs of the entire structure, hindering the simulation procedure.

Determining how to transfer the state of the structure between the analyses conducted for frame and

truss states of the controllable nodes involves some additional work, but it is feasible. What is much

more  significant,  similarly  to  the  dry  friction  case,  this  approach  excludes  the  possibility  of

applying the typical  methods of the optimal control theory for finding the best possible control

strategy.

Both  of  these  approaches  involve  significant  difficulties,  when  it  comes  to  modeling

procedure, and considerably reduce, or even exclude, the possibility of applying the established
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methods of  optimal control  theory.  This is  the reason why the third,  approximate solution was

selected. It is a concept that solves the problems mentioned above.

The 2D finite element frame model, consisting only of 6-DOF beam elements, is used for

the entire structure, but the semi-active nodes are equipped with additional rotational DOFs, the

number of which is equal to the number of the attached clutchable beams. That is, when there are

three beams connected in a node, one of which has the possibility to be unclutched, the total number

of rotational DOFs in the node is two: one for the two ordinary beams and one for the detachable

beam. Supplementary DOFs are totally independent of the other rotational DOFs in that node. They

are however coupled together by rotational, viscous dampers with controllable damping coefficient,

which can block their relative rotations. Such a solution allows the behavior of the structure to be

simulated  only  in  an  approximate  way,  however  it  brings  many benefits.  The  most  significant

advantage is that it is possible to utilize such a model for the entire analysis while maintaining its

linearity, which facilitates the application of well-known methods of optimal control theory.

A detailed description of the numerical implementation of the node model, concerning its

advantages, limitations and compliance with the pure frame model, which is very important since it

is only an approximate solution, is provided in section 3.2.3. Here only the information essential for

the optimal control study is provided.

The general equation of motion of the frame with  N additional rotational DOFs and the

rotational viscous dampers can be written in the following form:

M ẍ(t )+(C+∑
i=1

N

γ i(t)C i)ẋ(t )+K x (t )=f (t) (1)

with the initial conditions:

x(0)=x0

ẋ (0)=v0

(2)

where:

M – mass matrix of the structure,

C – damping matrix of the structure,

C i – matrices of the viscous dampers,

K – stiffness matrix of the structure,

f – vector of the external forces,
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x – vector of the displacements,

γi – damping coefficients of each viscous damper.

Structural  matrices  M,  C and  K are  assembled  taking  into  account  every  DOF  of  the

structure, including the additional DOFs in the controllable nodes. Matrix Ci couples two rotational

DOFs of the ith controllable node and

γi(t )∈[0, γi
max
] (3)

is the control function of the respective damper.

According  to  the  information  provided  in  equations  (1) and  (3),  when  the  damping

coefficient of the ith selected DOF is set to zero, the corresponding term in equation (1) vanishes and

the respective joint behaves like a truss-type connection: it does not transfer any bending moments

since its rotational DOFs are uncoupled. When the damping coefficient is set to a large value, the

respective rotational DOFs are effectively coupled, their relative rotations are frozen, and the node

behaves like a frame connection and transmits the bending moments.

It is easily visible that the control strategy can be implemented through the modifications of

the  viscous  damping  coefficients,  which  are  multiplied  by  the  matrices  representing  rotational

dampers. Such a method facilitates the numerical implementation of the model and the semi-active

control  strategy, and it  avoids the flaws of  the other considered solutions:  nonlinearity and the

volatile number of DOFs. As a result, it is possible to use the classic methods to analyze the optimal

form of the control law, such as Pontryagin’s maximum principle [238].

2.4.2. Optimal control study

The mathematical model of the structure equipped with controllable nodes, described in the

previous section, can be utilized to formulate the optimal control problem. In order to do so, the

equation of motion (1) must be rewritten in the state space form [210]:2

ż (t)=(A+∑
i=1

N

γi(t )Ai)z ( t ) (4)

with its initial conditions (2):

z (0)= z0 (5)

The components of equation (4) are defined in the matrix form as follows:

2 Nonexistence of external forces is assumed in subsequent considerations (free vibration case).
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A=[ 0 I
−M−1 K −M−1C ], Ai=[0 0

0 −M−1C i], z (t )=[x (t)ẋ (t)] (6)

and the initial conditions:

z0=[
x0

vo] (7)

If a search for the optimal solution to a dynamic problem has to be conducted, a criterion

needs to be defined to assess and quantify the effectiveness of the proposed control. For a vibration

mitigation problem, a good performance measure is the integral of the total mechanical energy:

F=∫
0

T

(Ekinetic+Epotential)d t=∫
0

T
1
2
[ ẋT

(t )M ẋ(t)+xT
(t )K x( t)]d t (8)

where the integration limits coincide with the time interval of the analysis. This measure can be

presented in the state space form as follows:

F=
1
2
∫

0

T

zT
(t )Q z (t)d t (9)

where

Q=[K 0
0 M ] (10)

Having the fundamental equations introduced, the general formulation of the optimal control

problem can be described as follows:

Minimize the objective function F (9)
with respect to the control function γi(t ) ,
subject to

equation of motion (4)
and control admissibility conditions specified in (3).

(11)

The form of the performance measure (9) – integral of the total mechanical energy over the

entire analysis time – indicates that the optimum control function is intended to be optimal in the

global, absolute sense, and not merely in a local, instantaneous one.

The  variational  analysis  of  the  stated  minimization  problem  involves  building  its

Hamiltionian:

H (z (t) , w (t ) , γ(t ))=
1
2

zT
(t)Q z (t )+wT

(t )(A+∑
i=1

N

γi(t)A i)z (t ) (12)

where w(t ) is the so-called costate vector that plays the role of the Lagrange multipliers in the well-

known mathematical optimization method of Lagrange multipliers. 
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Thereupon, a set of the necessary conditions is derived for γ*
(t ) to be the vector of optimal

control functions. The optimal solution, that is the minimum of the functional (9), can be found only

if the following conditions are met:

ż*
(t)=

∂H
∂w

(z*
(t ), w*

(t ), γ *
(t))

ẇ*
(t)=−

∂H
∂ z

(z*
( t ) , w*

( t ) , γ*
(t ))

w*
(T )=0

H (z*
(t) ,w*

(t ) , γ*
(t))≤H (z*

(t ), w*
(t ), γ (t )) for all admissible γ(t )

(13)

where γ*
(t ) is  the  vector  of  the  globally  optimal  control  functions,  and z*

(t ) and w*
(t ) are  the

corresponding state and costate vectors.

The  first  condition  in  equations  (13) states  that  the  vector z*
(t ) is  the  solution  of  the

equation of motion (4). The second and the third conditions of this set constitute a costate equation

problem where w*
(t ) is its solution:

ẇ(t )=−Q z (t )−(AT
+∑

i=1

N

γ i(t)Ai
T)w(t ) (14)

w(T )=0 (15)

The last condition, which states that the optimal control must minimize the Hamiltonian, is

called  Pontryagin’s  minimum principle  [238,  p.  232].  Substitution of  the Hamiltonian into that

inequality yields the following condition on the optimal control function γi
*
(t ) :

γi
*
(t )w*T

(t)Ai z*
(t )≤γi(t )w

*T
(t )Ai z*

( t ) (16)

which needs to be satisfied for all admissible control functions.

Taking into account the admissibility conditions for the control functions  (3), the optimal

control function is related to the corresponding state and costate vectors via a unit step function,

defined as follows: 

γi
*
(t )=γi

max 1(w*T
( t )Ai z*

(t))={ 0 if w*T
(t )Ai z*

( t )>0

γi
max if w*T

(t )Ai z*
( t )≤0

(17)

Such a form of the optimal control function indicates the bang-bang type of the optimal

control law. This means that it switches between the bounds defined by admissibility conditions (3)

and the points of switching are indicated by the zeros of the function w*T
( t)Ai z*

(t ) .
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Summarizing the above considerations, the state equation (4), costate equation (14) and their

respective  initial  and  end-point  conditions  (7) and  (15),  constitute  a  two-point  boundary  value

problem. Given the general form of the optimal control functions (17), such stated problem can be

numerically integrated in order to obtain the globally optimal control functions γi
*
(t ) . Substitution

of  (6) and  (10) into  the  costate  equation  (14),  after  appropriate  mathematical  transformations,

results  in an equation that is  almost equivalent to  the equation of motion  (1) of the considered

structure and subjected to a certain pseudo load:

M q̈(t )−(C+∑
i=1

N

γ i(t )Ci) q̇(t)+K q (t )=K x(t )−M ẍ(t) (18)

where q(t )=M−1 w2(t ) , and w2(t ) is  the  lower  half  of  the  costate  vector.  The  fundamental

difference  between  these  two  equations  is  the  opposite  sign  of  the  damping  term,  which  has

profound  consequences.  Because  of  the  negative  damping,  equation  (18) can  be  integrated

numerically in a stable way only backward in time. Original equation of motion  (1) has positive

damping  and  can  therefore  be  stably  integrated  numerically  only  forward  in  time.  These  two

features  stand  in  contrast  and  since  these  equations  are  coupled  to  each  other  via  the  control

function (17) and the right hand side of equation (18), there is no possibility to compute the optimal

control functions by numerical integration of the stated problem while maintaining the stability of

the integration process (besides some basic harmonic cases [239]).

The result of the conducted considerations might be regarded as disappointing. However, the

knowledge that the optimal control function is of the bang-bang form is very helpful and important,

as this indicates the nature of the optimal semi-active control. It determines the direction to be taken

in the search for the best possible control algorithm and specifies the boundaries within which to

operate.

2.5. Proposed control algorithm

The results obtained in the previous section set the stage for developing an effective, semi-

active control strategy.

The proposed control algorithm is of the bang-bang type, which is in accordance with the

characteristics of the optimal control function (17). It can be classified into the family of the already

described  PAR  control  algorithms.  The  especially  designed  controllable  nodes  described  in

Sections 2.2 and 2.4.1 enable the implementation of the on/off switching control strategy. However,

as discussed in the previous section, the exact specification of the optimal switching time instances
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is  not  possible.  However,  application  of  an  intuitive  concept,  consistent  with  the  fundamental

principle of the PAR strategy, allows to determine the best moments of switching the nodes in

a heuristic manner. The fundamental idea behind the PAR methodology is to accumulate the strain

energy  of  the  structure  and  release  it  into  high-frequency  vibrations  by  instantaneous

reconfiguration  of  its  topology  in  the  best  possible  moment,  which  is  recognized  as  a  local

maximum of the accumulated energy. The control strategy, presented in this dissertation, follows

exactly this assumption. Two possible approaches were considered and will  be described in  the

following sections – where the strain energy of the whole structure plays the role of the feedback

signal and where only a selected part of the structure is examined for this purpose.

A great advantage of the proposed vibration damping strategy is its versatility in terms of the

handled types of external distortions. The effectiveness of the algorithm will be verified in the free

vibration case, and for harmonically and randomly excited vibrations.

2.5.1. Strain energy to release

A quasi-static  analysis  of  the  behavior  of  a  sample  frame  structure  during  loading  is

conducted in order to estimate the amount of the accumulated energy which can be transferred into

high-order vibrations. A static analysis is justified in this case, because the time scales of the two

frequency ranges under consideration – low frequencies,  in the range of  tens of hertz,  that are

expected to be mitigated, and high frequencies, in the range of hundreds to thousands of hertz, that

are intended to be excited with the control efforts – are significantly different.

Each  controllable  node  connects  at  least  two  beams  which  are  subjected  to  elastic

deformation when the structure is deflected. The generated strains are utilized for the approximation

of the elastic energy, which can be released into high-frequency vibrations by switching the selected

node into the truss-like state. Measured strain levels are used as a feedback signal for the control

algorithm.

The classical Euler-Bernoulli beam theory implies the following relationship for a cantilever

beam, loaded perpendicularly to its axis [240, p. 125]:

d2w
d x2 =

M (x)
E I

(19)

where w is the so-called deflection line which determines the distance between a point on the axis

of the undeformed beam and the same point on the deformed beam, measured perpendicular to the

beam’s axis in its initial position.  M(x) is the bending moment along the length x of its axis,  E is
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Young’s modulus of the material and I is its cross-section moment of inertia. It has to be noted that

this relationship holds only in the small deflections case, when the higher order, quadratic terms can

be neglected.

Detailed experimental research and the theory of elasticity indicate an important fact [240,

pp. 114–115]. Namely, shear stress has a negligible effect on the relative elongation of the fibers of

a beam, loaded with a force in a direction perpendicular to its axis, when compared to the effect of

the bending moment on this elongation. This means that certain mathematical relationships, derived

with the assumption that  only pure bending state  occurs in the element  (M in  equation  (19) is

constant), are also true when the element is loaded with a transverse force. One of such relations,

utilized in further considerations, specifies the relationship between the displacement perpendicular

to the axis of the beam w and the strain  of the fibers measured parallel to the neutral axis of the

beam:

ϵ=
h
2

d2 w
d x2 (20)

where h is the height of the beam cross-section.

Combination of equations (19) and (20) allows to express the bending moment in terms of

the strain in the beam:

M=2
E I
h
ϵ (21)

If strain ϵ is related to the curvature, it can be calculated straightforwardly by measuring the strains

on the opposite faces of the beam and averaging it:

ϵ=
|ϵ bottom|+|ϵ top|

2 (22)

If other displacements boundary conditions remain constant, a quasi-static increase  ΔM in

the bending moment at one end of the beam affects the local rotation Δϕ as follows:

Δ M=η
E I
L

Δϕ (23)

where η is the coefficient which depends on the rotational boundary condition at the opposite end of

the considered beam and can take the following values:

η={3 if the opposite end of the beam is fixed (constant rotation)
2 if the opposite end of the beam is free (zero bending moment)

(24)

Let ϕij denote the jth rotational DOF that can be uncoupled from the other rotational DOFs of

the ith controllable node in the structure. Let also Bij denote the set of the beams connected to the ith

controllable node, which have the rotational DOFs of one of their ends aggregated to the global
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DOF ϕij. The total bending moment Mij in the node i from every rotational DOF j in that node can be

calculated as (see equation (21)):

M ij=2∑
b∈Bij

EI b

hb

ϵ bi (25)

Due to the fact that expressions  (23) and  (25) are linear,  the value of  the local  rotation of the

selected DOF, for which the total bending moment will vanish, can be calculated as:

Δϕij=
M ij

∑
b∈Bij

ηbi

E I b

Lb

(26)

By utilizing equations (25) and (26), the total potential energy, which can be released by uncoupling

all rotational DOFs of the ith node, can be calculated as:

Ei=∑
j

1
2

M ijΔϕij=2∑
j

(∑b∈Bij

EI b

hb

ϵbi)
2

∑
b∈Bij

ηbi

E Ib

Lb

(27)

If a larger number of controllable nodes  i ∈  Ψ is controlled simultaneously, then the total strain

energy, which can be released, is a simple sum:

EΨ=∑
i∈Ψ

Ei (28)

In  equation  (27) the  energy  is  expressed  in  terms  of  quantities  that  are  local  in  their

character: strains ϵ bi , measured locally close to the controllable node, parameters ηbi, which values

depend on the local topology, and mechanical parameters of the single beams (Young’s modulus E,

cross-section moment of inertia Ib and its height hb and length Lb). Thanks to this feature, the energy

EΨ can be calculated or measured at the local level of the selected set of nodes, without the need to

model or take into account the entire structure.

2.5.2. Control algorithm

The proposed control algorithm was developed in a heuristic manner, building on the results

obtained using Pontryagin’s minimum principle and the PAR methodology. The control law is of

closed-loop type and it utilizes the potential energy, estimated from the measured strains, as the

feedback  signal.  Each  controllable  node  can  be  operated  independently,  which  makes

a decentralized control very easily implementable. However, a centralized, synchronous control of

all nodes can be also implemented without much effort.

The algorithm imposes that the state of the controllable node is temporarily switched to the

truss-like mode of operation in appropriate moments. Attaining the local maximum of the observed
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strain energy, accumulated during the deflection phase, is considered to be the best possible moment

to switch into the truss mode and release the accumulated energy.

It  is  observed  for  slender  frames,  because of  their  modal  characteristics,  that  in  a  low-

frequency range of vibrations, the main mechanism of strain generation is bending of the beams.

This phenomenon is related to the emerging curvature of these beams and the rotations in close

proximity to the structural nodes. Switching the nodal state to truss mode results in introducing an

unbalance of the local bending moments, which results in excitation of high-frequency vibrations.

These vibrations are very efficiently damped by natural mechanisms of material damping.

It is worth emphasizing that the controllable nodes, utilized in the presented strategy, are not

dissipative devices themselves, as in other research works where similar solutions were employed.

Instead, they are rather the triggers or relays that stimulate the transfer of the strain energy into

high-frequency vibration modes.

The  control  algorithm,  proposed  in  this  dissertation  can  be  presented as  a  simple  state

machine diagram shown if Figure 2.2.

All  the  controllable  nodes  start  their  operation  in  their  default,  frame mode when their

ability to transfer bending moments is set to the highest possible value. In Figure 2.2 it is depicted

as the “Frame-like state”. The value of the feedback signal rises with the increase of the strains

during the deflection phase. The data acquisition system tracks the feedback signal and immediately

triggers a temporary switch of the nodes state into their truss mode of operation, depicted in the

diagram as the “Truss-like state”, upon detection of its local maximum. During this phase, the strain

energy accumulated through bending of the beams is released into high-frequency vibration modes

and  dissipated  in  a  short  time.  After  reaching  certain  prescribed  constraints,  imposed  on  the

feedback signal, indicating the achievement of the goal of rapid reduction of strains, the activation

signal is suppressed and the controllable nodes return to their original, frame state of operation. This
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Fig. 2.2: State machine diagram of the proposed control algorithm.



finishes the algorithm loop and the control system waits again for the maximum of the feedback

signal.

The control algorithm, described above, can also be briefly presented as the following list of

iterative steps:

1. The controllable nodes stay in the frame mode of operation as long as the feedback signal

does not attain its local maximum.

2. When the control signal attains its local maximum, the nodes switch to the truss mode of

operation and remain in this state until the coupling conditions are met.

3. After  reaching  coupling conditions,  the  controllable  nodes  switch  back  to  their  default,

frame mode of operation.

4. Go to step 1.

This  control  algorithm  is  very  intuitive  and  simple,  however,  some  simple  additional

improvements had to be introduced to ensure its robustness and effectiveness in practice. One of

them is  the condition that  the controllable nodes can be switched to the truss  state  only if  the

accumulated strain energy is above a certain threshold. It prevents continuous iterations of the loop

of the above algorithm in conditions that would not allow a sufficiently large portion of the energy

to be dissipated. Another procedure that increases the robustness of the control algorithm is filtering

the feedback signal. Preprocessing the strain signal before feeding it back to the control unit with

a FIR  filter  and  a  short-time  moving  average  helps  to  avoid  chattering  effects  related  to  the

measurement  noise,  which  is  inevitable  when  working  with  a  real  structure,  or  occurring  in

numerical simulations with a random excitation.

The time for which the controllable nodes remain in the truss state (step 2 of the control

algorithm loop) should be long enough to ensure that a sufficient amount of the strain energy is

dissipated and the induced high-frequency vibrations can decay. In numerical simulations this time

can be specified indirectly, by means of attaining a certain fraction of the energy accumulated at the

moment of switching, or explicitly by defining a specific length of the time period during which the

nodes remain in the uncoupled state. The duration of this period can be determined based on the

natural frequency which is relevant for the dissipation mechanism. It was observed in numerical

simulations that a good measure for this parameter is the period of the bending vibrations (S-type)

of  the beams equipped  with controllable nodes.  The  nodes should  remain in  the truss  state  of

operation for at least one period of such vibrations to allow for their mitigation, which provides
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a lower bound for this parameter. In the experimental study, it is limited by the maximum frequency

at which the controllable nodes can operate, and it is set arbitrarily to this value. For the sake of

structural  safety,  an upper bound should also be introduced for the length of  this  period,  since

switching the controllable  nodes to  truss state  deteriorates  the global  stiffness  of  the structure.

Staying in this state for too long may lead to reaching excessive displacement values, which could

destabilize the structure and destroy it eventually. It should be noted that the conducted numerical

analyzes indicate that the length of this period does not have a great impact on the effectiveness of

the  presented  control  algorithm,  which  tends  to  maintain  a  similar  effectiveness  of  vibration

damping in a relatively wide range of its values.

2.5.3. Centralized control version

The presented control algorithm can be very easily adapted to a global, centralized version.

The  feedback  signal,  which  was  presented  in  the  previous  sections  as  a  sum  of  local  strains

approximating  the  locally  accumulated  energy,  can  be  converted  to  the  total  strain  energy

accumulated in  the entire  structure.  This  procedure is  especially  easy in  the case  of  numerical

simulations.

During the investigations,  the global  version of  the control  algorithm emerged firstly as

a very  intuitive  case  when  using  computer  simulation  methods,  such  as  the  FEM.  The

potential/strain energy accumulated in the entire structure, which is utilized as the feedback signal,

can be easily calculated in terms of equation (1) as:

Estrain
=K x (t) (29)

Due to such a global specification, all the controllable nodes installed in the structure are

governed synchronously, excluding the possibility to respond to local states in the structure. This

significantly  simplifies  the  simulation  in  terms  of  computational  complexity,  but  may  have

a negative impact on the effectiveness of the control algorithm in this version.

Estimating the total strain energy in a real physical structure requires much more effort, and

it may even prove impossible. Depending on the complexity of the structure, it would require the

deployment of a number of sensors,  which could turn out to be uneconomically large. For this

purpose,  it  seems reasonable  to  establish  some substitute  indicator  of  the  accumulated  energy.

A study of the characteristics of the structure used in experiments revealed that the strain measured

at  one  specific  point  is  a  good  proxy  of  the  amount  of  the  accumulated  energy  in  the  entire

structure. It was selected on the basis of the strains at this point in the first two natural modes of the
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structure, because only these modes can be effectively controlled by the system. It has to be noted

that it is not a general solution and such proxy must be tailor-made for each considered individual

structure. The selected point will be indicated in the further part of the dissertation.

2.5.4. Decentralized control version

A distinguishing feature of the proposed algorithm is the fact that the feedback signal can

consist of locally measured strains only, which results in a fully decentralized local control. A beam

equipped with two controllable nodes at its ends, along with the feedback signal of the accumulated

elastic energy, plays the role of a local control system which depends only on the local state of the

investigated structure. Considerations in section 2.5.1 were in fact conducted for such a case.

The  implementation  of  this  version  of  the  control  algorithm  in  numerical  simulations

requires more effort than in the global case. It requires single beams to be selected to provide their

elastic energies to be individually used as feedback signals only for the two controllable nodes

located at the ends of the involved beams. It requires building individual stiffness matrices for each

beam i equipped with two controllable nodes for calculation of its elastic energy:

Ei
strain

=K i x (t ) (30)

The stiffness matrix  Ki is of the same size as the one built for the entire modeled structure (K in

equation  (29)),  it  is  however  almost  entirely  filled  with  zeros.  The  only  non-zero  elements

correspond to the DOFs of the finite elements that build the involved beam i.

Numerical simulations of such a system are computationally more expensive than in the

global case, where only one feedback signal is involved. However, the decentralized control can

bring many advantages. One of them is the potentially greater robustness of such a control, since

only a small fraction of the structure is controlled by one separate local system. In the event of

failure of one of them, nodes controlled by this system remain in the frame state, so that the local

characteristics of the structure around this beam remain consistent with the original frame structure,

while the other control systems operate in an unmodified manner. The vibration damping efficiency

of this version may also turn out to be higher than in the global version, since the dissipation is

triggered and performed at a more granular local level.

The great advantage of this version of the control algorithm, compared to the global version,

is the possibility of implementing it in a real structure without using any substitute measures, as is

the case with the global version. Achieving a good approximation of the strain energy for a single
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beam is not a very difficult task and it is enough to use only two strain gauges on the opposite sides

of the beam for this purpose, as indicated in section 2.5.1.

A comparison of the two described versions of the proposed control strategy suggests that it

is more desirable to utilize the developed algorithm in its local version. Higher costs of numerical

computations in the simulation and prototyping phase are a much smaller disadvantage than those

associated  with the  use of  the global  version  of  the  algorithm in real  structures.  Despite  such

conclusion, both presented versions will be tested in the following sections numerically as well as

experimentally for comparative purposes.
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3. Numerical verification

The basic tool for verifying the effectiveness of the proposed control system are numerical

simulations.  Dynamic response of the modeled structure can be reliably simulated utilizing the

Finite Element Method (FEM). This modeling methodology is distinguished by features that make

its use in the discussed problem very desirable, compared to, for example, a direct solution of the

partial differential equations of the investigated structure. The fundamental cause is the relative

complexity of the topology of the considered structure, even for the very simple case, which makes

it impossible in practice to model the structure by the differential equations directly. Another one is

the simplicity of expansion of the simulated model once the building blocks, such as the integration

algorithms or local structural matrices, are implemented. Modeling a ten-story frame structure using

the FEM is only a little more demanding, in the context of user effort, than a two-story structure.

The FEM can be used not only for simulating the dynamic behavior of the modeled structure

but also for performing modal analyses with a very small additional workload. This capability was

intensively  utilized  in  the  model  calibration  procedure  but  also  for  selecting  the  values  of  the

damping coefficient for the structural damping model.

3.1. Investigated structure

A representative CAD model of the investigated frame structure is presented in Figure 3.1. It

depicts the structure as it is physically assembled in the laboratory.
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The structure is mounted to the ground with bolted connections. It is also equipped with two

semi-active nodes and four other passive connections. All of them have their individual impact on

the resulting stiffness distribution, which is significantly lower than for the solid elements.

The created numerical  model  of  the frame structure,  presenting the effectiveness  of  the

proposed vibration damping system can be perceived as somewhat simple. However, compared to

other  academic  examples  that  are  often used  to  present  the  possibilities  of  semi-active  control

systems, the frame structure considered here can be termed complex, to some extent. The developed

control approach can be used for vibration damping in relatively complex structures, such as a ten-

story frame used in  [210],  but experimental  limitations have resulted in the use of a simplified

structure.  This  relative  simplicity  does  not  diminish  the  importance  of  the  investigations.  It  is

possible to simulate (and to easily notice the differences in the obtained results) the dynamics of the

system for both global and local versions of the developed control algorithm.

Comparing numerical and experimental results could turn out to be very cumbersome in

case of a large, complicated structure, because uncertainties and design errors increase with the size

and complexity of the examined system. The laboratory stand is also limited in the way of possible

signal channels for the data acquisition system and in the number of the available prototypes of the

controllable  nodes.  Processing  and  interpreting  a  data  set  from  a  larger  structure  would  be

a complex issue itself, in addition to comparing the results with numerical simulations.

The aspects described above have resulted in the investigated structure being a two-story

frame, equipped with two special purpose, controllable nodes, which is considered to be sufficient

for the presentation and tests of the effectiveness of the proposed control system.

3.2. Numerical model

To test and present the effectiveness of vibration damping systems on very simple structures,

such as single  cantilevered beams,  it  is  often possible  to build  and solve such boundary value

problem directly using a continuous description and partial differential equations. The analysis of

more  complex  systems  requires  approximate  methods.  One  of  the  most  popular,  robust  and

successful methods is the Finite Element Method (FEM) mentioned earlier, which is based on the

virtual  work principle.  This  method was utilized in  the  numerical  analyses,  carried out  for  the

purpose of this dissertation.

Commercial FEM systems are characterized by a very wide range of possible application

scenarios and have plenty of various special-purpose techniques already implemented in the code.
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However, an attempt to utilize their capabilities for implementing the proposed control approach

was deemed to be either very time-consuming or ultimately impossible at all. The adopted technical

solution  for  modeling  the  controllable  nodes can  be  implemented  in  most  popular  commercial

packages,  but  programming  the  control  algorithm would  be  very  troublesome.  Some nuances,

concerning  the  special  way of  aggregating  selected  degrees  of  freedom of  the  system,  and  in

particular the need to introduce the proposed control algorithm into the simulation, have led to the

decision to implement the FEM by hand in Matlab programming language. This language is very

well suited for rapid prototyping of small- to medium-scale models, and at the same time it can

perform complex matrix calculations out of the box in a very efficient way, which is important in

the context of the FEM. Such a solution facilitated implementation of the control algorithm and

analysis of the obtained results. A little effort devoted to programming, allowed simulations to be

carried  out  with  full  control  of  the  calculations  performed  and  the  results  to  be  immediately

processed and visualized. 

3.2.1. Model calibration

One  of  the  most  important  aspects  of  numerical  modeling  is  the  conformance  of  the

prepared model with the real-life test structure built in the laboratory. Adequate conformity allows

the  numerical  results  obtained  in  simulations  to  be  verified  experimentally  using  the  real

demonstrative structure. Such a step is necessary to validate a mathematical approach that can be

used in future to model much more complex systems.

Such compliance can be considered in many different dimensions, but the most important

aspects for the study being conducted is the structural geometry and dynamic characteristics. The

geometry of the structure determines the general characteristics of its mode shapes. It also indirectly

affects the natural frequencies by influencing the distribution of stiffness. Besides the geometry,

dynamic characteristics of a structure are mostly influenced by its mass and stiffness, and especially

their distribution. The information on geometry and mass distribution can be collected utilizing very

simple  measurements.  However,  even  their  ideal  replication  in  the  numerical  model  does  not

guarantee a sufficient conformance of the dynamic properties between the model and the original,

real structure,  because there is always the stiffness aspect that has a significant impact. Correct

mapping of the stiffness distribution in the system is a much more complex task. In the linear case

of an isotropic material, the most important indicator of the material stiffness is Young’s modulus

that  binds together  stress and strain  levels.  If  actual  structures  involve ground fixing or  bolted

connections, their effective stiffness may be significantly different from that resulting from the type
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of material  used for  its  construction.  All  kinds  of  joint  connections  reduce the stiffness  of  the

system, and the actual demonstrator structure built for the experimental investigation, despite its

simplicity, contains several such connections.

Mass distribution in  the real  structure was investigated by weighing all  of  its  structural

elements, labels of which are presented in Figure 3.2. Labels beginning with the letter B indicate

beam elements,  W denotes passive joints, and  WA stands for semi-active nodes. The masses are

presented in Table 3.1.

Table 3.1 Masses of the elements of the demonstrator structure

Element label Mass [g]
B1 837.92
B2 826.71
B3 280.33
B4 278.29
B5 277.27
B6 278.29
B7 281.35
B8 281.35
W1 244.65
W2 244.65
W3 247.71
W4 246.69

WA5 1859.33
WA6 1869.52
Total: 8054.03
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The concentration of mass takes place mainly in the semi-active nodes and passive joints,

which account together for almost 60% of the total mass. Such an uneven distribution, where the

mass concentration points are placed in some distance from the fixing point of the structure, results

in  a  downward  shift  of  the  natural  frequencies,  compared  to  a  structure  with  a  more  even

distribution. The measured mass distribution was taken into account in the calibration process of the

numerical model. The modeled frame structure was accordingly divided into beam parts built of

materials with different characteristics, as shown in Figure 3.3.

Material 1 represents box profiles, material 2 is associated with passive joints and material 3

corresponds  to  semi-active  nodes  (compare  with  Figure  3.1).  Characteristics  of  the  individual

materials, such as stiffness or cross-section area, can be prescribed and decided independently from

each other. In order to properly adjust the global stiffness of the structure, a fourth type of material

was  also  introduced  to  represent  the  beam  elements  in  close  proximity  to  the  supports.  As

mentioned earlier, all bolted connections impact the local stiffness of the structure and this required

an additional type of material to account for the connection of the structure to the ground.

Another argument, justifying such a division of the structure, is related to the mode shapes,

the first three of which are presented in Figure  3.4. The highest curvature in the structure for the

mode shape number 1 occurs in the area marked as Material 3 and Material 4. For the mode shape

number 2, it takes place in the area of Material 2, Material 3 and Material 4. For the mode shape

number 3, the highest curvature occurs where Material 2 and Material 3 are marked. The stiffness of

these areas plays the most important role in the structure when it comes to shifting its eigenvalues in

the spectrum of the interest, as they are subjected to the highest strain levels.
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The  described  division  allowed  for  local  variations  of  material  density,  but  also  of  its

stiffness. The starting point in the calibration process of the numerical model was the selection of

the material density in such a way that the masses of the elements were as close to the real ones as

possible, while the initial stiffness, expressed by Young’s modulus, was equal to that of steel.

It  was  assumed  in  the  calibration  procedure  that  it  is  possible  to  obtain  a  satisfactory

agreement  between  the  eigenvalues  of  the  numerical  model  and  the  demonstrator  structure  by

adjusting only the Young’s moduli of the materials. It was determined, in a trial and error procedure,

that the first eigenvalue is most sensitive to Young’s modulus of Material 4. The key role for the

second and third eigenvalues have the properties of Materials 2 and 3. A gradual adjustment of the

stiffness of each material led to an almost perfect agreement between the first two eigenvalues and

a very good fit for the third eigenvalue, as presented in Table 3.2. The relative difference between

the natural frequencies for the third natural mode is less than 2.4%.

Table 3.2 Natural frequencies of the numerical model and the demonstrator structure

1st mode [Hz] 2nd mode [Hz] 3rd mode [Hz]
Numerical model 13.6 38.8 122.4

Experimental structure 13.6 38.8 125.4

Taking into account that the physical controllable nodes in the experimental structure can be

operated  at  the  maximum  frequency  not  much  higher  than  the  third  eigenvalue,  the  obtained

compliance is considered to be sufficient for the correct numerical representation of the dynamics of

the modeled structure in the frequency spectrum of interest.
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3.2.2. Damping model

The form of the general equation of motion  (1) encodes and conveys the most  common

assumption  regarding  the  damping  mechanism:  the  so-called  viscous  damping,  where  only  the

generalized  velocity  variables  of  the  model  affect  the  generated  damping  forces,  and  that  the

dependence is linear. Such a model proved to usually properly reflect the typical characteristics of

damping in real slender steel structures, however it  is not the only one popular damping model

remaining in use [241].

Simulation of the structural response, as described by the equation of motion (1), requires

that each of the structural matrices in this equation is defined. The theory behind the construction of

both the stiffness matrix K and the mass matrix M is well-grounded in the Finite Element Method.

However, the structure of the damping matrix C is difficult to be determined exactly. It has been the

subject of many scientific investigations, which are usually associated with a detailed experimental

characterization of the structure, focused solely on this issue. In order to avoid building individual

damping  matrices,  accounting  for  physical  properties  of  real  structures,  certain  general

mathematical  damping models  have been derived  [242,  p.  19.1].  One of  the simplest  and best

known models is the proportional Rayleigh damping model. It is called “proportional” because it is

defined as a linear combination of the stiffness and mass matrices of the investigated structure:

C=α K+β M (31)
where α is called the internal or material damping coefficient and β is called the external damping

coefficient. Due to its simplicity, linearity and a high popularity in the engineering environment, it

was utilized to simulate the behavior of the structure investigated in this dissertation. An advantage

of the proportional model (31) is that the damping matrix is diagonalizable with respect to the same

set of eigenvectors as the mass and stiffness matrix. Consequently, the viscous forces do not couple

the vibration modes and the modal equations remain real and uncoupled. The damping ratio for the

individual vibration modes can be expressed using the proportionality coefficients as [242, p. 19.7]:

ξi=
1
2 (αωi+

β
ωi ) (32)

where:

ξi – damping ratio (the value of 1 corresponds to critical damping),

ωi – ith natural angular frequency of the structure [rad/s].
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The term  βM in equation  (31) models the environmental damping. It was decided to not

include it in the definition of the damping matrix C, because the environmental damping in normal

atmospheric conditions, and especially in space, is negligible. This means that β=0, and it leads to

the following relationship that determines the value of the material damping coefficient α:

α=
2 ξi
ωi

(33)

Experimental tests of real structures in small displacement range indicate that the typical

damping ratio remains below 2% for the lowest-order mode [242, p. 19.4], and that for slender steel

structures it is often even smaller. Following this guideline, the damping factor  α was selected to

correspond  to  1%  of  the  critical  damping  for  the  fundamental,  first  natural  frequency  of  the

structure.

3.2.3. Semi-active node model

The developed control strategy is intrinsically linked with the dedicated semi-active nodes

that have been especially designed for this application. As already stated in section 2.4.1, in each

controllable node, the clutchable rotational DOFs are not aggregated together. In the FEM model

they correspond to separate rows and columns in the structural matrices. Figure  3.5 presents the

symbolic representation of the actual, real-life node shown in Figure 2.1.

The schematic  of  the  numerical  realization in  Figure  3.5 presents  the  example  of  three

connected planar beams  B1,  B2 and  B3.  Beams  B1 and  B2 are connected in a standard way with

a welded connection, which means that they share the translational DOFs  x,  y  and the rotational

DOF  θ1.  Beam  B3 also creates the connection but in a slightly different  way. It  shares its  local

translational DOFs x and y with the other two beams, but its local rotational DOF is aggregated into

the independent global rotational DOF θ2. It indicates that this beam is permanently connected with

the others by a truss-like joint.  This type of connection ensures that, despite beam elements are

utilized, the bending moment is not transferred through the joint. In order to introduce the frame-
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like behavior to such a custom connection, a rotational damper is employed to couple DOFs θ1 and

θ2.  The  damping  factor c can  be  modified  arbitrarily  in  order  to  change  the  behavior  of  the

connection  on  request.  Setting  the  damping  factor  to  a  very  high  value  causes  the  damper  to

generate a force that effectively blocks the relative rotation of these two DOFs, which means that

they are coupled.

A FEM implementation of such a node is realized by a procedure in which the clutchable

rotational DOFs are not aggregated together, so that they correspond to separate rows and columns

in structural  matrices.  The simplest  mechanical  model  equipped with the described semi-active

node can be illustrated as just two connected beams. An example with explicitly marked DOFs is

presented in Figure 3.6. In the FEM model, the DOFs are numbered as shown in Figure 3.7.

A finite  element  of  a  two-dimensional  beam  has  six  DOFs:  two  translational  and  one

rotational per each of its ends. In Figure 3.6, the DOFs of the beam B1 are represented by x1, y1, θ1

and x2, y2,  θ2. In the corresponding FEM model, these DOFs are numbered as 1, 2, 3 and 4, 5, 10

(see Figure 3.7). In the same manner, DOFs  x2, y2,  γ2 and  x3, y3,  θ3 for the beam B2 in Figure  3.6

correspond to the DOFs numbered 4, 5, 6 and 7, 8, 9 in Figure 3.7.

The rotational DOFs 10 and 6 in the middle node (θ2 and γ2) are coupled with a rotational

damper, which is modeled with a simple damping matrix:

C i=LT[ 1 −1
−1 1 ]L (34)

where L is the transformation matrix from global to local coordinate system.

A graphical  representation  of  the  DOFs  aggregation  for  the  structure  in  Figure  3.7 is

presented in Figure 3.8. The DOFs of the beam B1 are aggregated in the block numbered 1-5 and 10,

and  the  DOFs  of  the  beam  B2 are  aggregated  in  the  block 4-9.  When the  damping  matrix  is

considered, it consists also of the elements of the rotational damper numbered 6 and 10.
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Fig. 3.6: An exemplary two-beam structure equipped with a semi-active node.

4, 5, 10, 61, 2, 3 7, 8, 9B1 B2

Fig. 3.7: FEM model of an exemplary two-beam system equipped with the semi-active node.

The numbering of the degrees of freedom from Figure 3.6 is shown explicitly.



This very simple model illustrates the methodology used to model the behavior of the semi-

active nodes, as utilized in the proposed vibration control system. This method results in obtaining

an  approximate  behavior  of  the  controllable  node,  but  in  the  case  of  a  dynamic  analysis  it  is

computationally  very  effective,  and  as  confirmed  in  the  following  paragraphs,  it  results  in  an

accurate representation of the transient behavior of the investigated structures.

The validation of  such an approach  was firstly  conducted  by investigating the  dynamic

behavior of a frame structure with the same topology as the one presented in section  3.2.1. The

numerical  model  was  built  in  two  versions:  one  equipped  with  controllable  nodes  located  as

indicated in Figure  3.3 and one consisting of  welded connections  only (pure frame).  The time

history of  the transverse displacement  of the frame free end, in the structure deflected initially

according to  its  first  eigenmode and  left  to  freely vibrate,  was computed for  both models and

juxtaposed in Figure  3.9 for visual  assessment of their conformity (solid and dashed lines). An

identical  procedure  was  earlier  carried  out  for  a  structure  with  a  similar  topology  to  the  one

considered here [216].

The figure presents a comparison of the transverse displacements of the free tip when both

considered models are subjected to the same initial condition: the 1st mode shape displacements of

the frame model.  It is  clearly visible that  an adequate choice of the damping coefficient  in the

rotational damper results in a very good agreement between the compared models, which confirms
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Fig. 3.8: DOF matrix of the exemplary two-beam system equipped with a semi-active node.



the validity of the chosen modeling approach. In the presented scale, the differences between the

displacements of the pure frame structure and the frame equipped with controllable nodes (with the

damping coefficients set to the maximal values) are completely unnoticeable.

Numerical  analyses  revealed  that  the  specific  value  of  the  damping  coefficient  in  the

controllable nodes is not very significant. It should be high enough to generate sufficiently high

resistance  forces,  but  not  too  high,  because  it  could  then  destabilize the  numerical  integration

procedures. In all conducted simulations it is set to the maximum value of a 32-bit unsigned integer,

which is approximately equal to 4e9. However, the maximum of a 16-bit unsigned integer is also

sufficient (approximately 65000).

A more sophisticated reliability analysis of the proposed model of the controllable nodes

was  performed  utilizing  the  concepts  of  poles  and  eigenvectors  of  the  state  space  equation  of

motion  [210]. The aim of the study was to prove that the employed model properly reflected the

dynamics of the pure frame model. Equation of motion  (1), in the case of free vibration, can be

rewritten in a state space form as follows:

ż (t)=(A+∑
i=1

N

γi(t )Ai)z ( t ) (35)

with the initial condition:

z (0)= z0 (36)

where:

z (t)=[x( t )ẋ( t )] , A=[ 0 I
−M−1 K −M−1 C] , Ai=[0 0

0 −M−1C i] , z0=[x0

v0] (37)
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Fig. 3.9: Dynamic response of the structure with and without the controllable nodes.



The analysis was performed using a ten-story, one-bay frame structure shown in Figure 3.10

in order to test the proposed node model also in applications to more complex structures.

For the purpose of this comparative analysis, two FEM models of the structure were built:

1. a standard frame structure consisting of welded connections only;

2. a structure equipped with the proposed controllable nodes in each end of the ten transverse

beams, which accounts for 20 additional rotational DOFs. The value of the control function

in each node is set to its maximal level γi(t )=γi
max .

In both cases, each beam is modeled with one beam finite element with 6 DOFs. This results in 66

DOFs for model 1 and 86 DOFs for model 2. The 6 left hand side DOFs are fixed in both models.

Given the aforementioned circumstances and not taking into considerations the 12 trivial

pairs of poles and eigenvectors, which correspond to the fixed DOFs, the determination of poles and

eigenvectors  of  the  structure  described by equation  (35) results  in  obtaining 120 of  such  pairs

(pi
(1) , z i

(1)
) for  the  model  number  1,  and  160  such  pairs (pi

(2) , z i
(2)
) for  the  model  number  2.

A comparative  analysis  of  these  sets  indicates  that  each  of  the  120  pairs  of  model  1  has  its

counterpart among the set of 160 such pairs of model 2. The other 40 excessive pairs of model 2

represent  the  modes  that  involve  high,  local  angular  distortions  or  relative  motion  of  the  two

rotational DOFs in the semi-active nodes.

The Modal Assurance Criterion (MAC) was utilized for the consistency assessment of the

aforementioned 120 pairs of the eigenvectors. Given the eigenvectors zi and zj, the MAC for these

vectors can be formulated as follows [173], [174]:

MAC( i , j )=
|z i

T z j
*
|

2

( z i
T z i

*
)(z j

T z j
*
)

(38)

where the asterisk superscript indicates the complex conjugate of a vector, which is required in this

case since  all  the eigenvectors  are  complex.  It  can be  also equivalently  expressed  in  terms  of

a Hermitian (complex conjugate transpose):
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Fig. 3.10: Exemplary ten-story, one-bay frame structure.



MAC( i , j )=
|z j

H z i|
2

( z j
H z j)(z i

H z i)
(39)

This statistical formula can be interpreted as a squared correlation coefficient and it  is considered

a good indicator of the consistency between mode shapes. It is relatively sensitive to big differences

and insensitive to small discrepancies, as in the case of the least squares method. It takes values

ranged from 0 to 1, where 0 means that the compared modes are totally inconsistent and 1 indicates

that the consistency is ideal.

The MAC values for all eigenvector pairs ( zi
(1) , zi

(2)
) were not smaller than 0.999, which can

be considered a nearly ideal level of consistency between both structural models.

The  discrepancies  between  the  poles  were  quantified  using  the  classical  relative  error

formula:

ϵ i=|pi
(1)
− pi

(2)

pi
(2) | (40)

The value of the error ϵ i for every pair of poles (pi
(1) , pi

(2)
) was not greater than 0.001.

The above procedures were conducted to investigate the quality of the proposed damping-

based model  of  the semi-active node.  They confirmed that  the dynamic  behavior  of  the  frame

structure, equipped with even a high number of such nodes, remains in a very good conformance

with the dynamics of the analogous structure with pure frame connections only.

It should be noted that the proposed modeling technique is suitable for dynamic analyses

and  dynamic  control  problems only.  The  viscous  damping  mechanism is  activated  only  in  the

presence of relative motion in the coupled DOFs. When the analysis conditions can be considered

static or quasi-static, the damper will not produce any force to oppose the relative rotations and the

semi-active nodes will behave as pure truss joints.

3.3. Optimal passive vibration damping

The  effectiveness  of  the  applied  vibration  damping  system  can  be  assessed  based  on

absolute measures, such as the rate of energy dissipation or the logarithmic decrement (in the case

of free vibration), by comparing them to a structure not equipped with any vibration mitigation

system. This approach certainly shows the effectiveness of the applied damping system, but it does

not provide any information on how the examined structure reacts to the application of any type of

damping system in general,  which can be very instructive.  Such knowledge can be acquired by
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implementing another baseline vibration damping system that could be referred to, and by treating it

as a benchmark.

It seems natural, given the topology of the structure under discussion, to consider rotational

passive  dampers,  to  be  installed  instead of  the  controllable  nodes.  An example  of  a  rotational

passive damping device can be the controllable node presented in this dissertation, however without

the possibility of uncoupling. The pressure with which the friction surfaces are pressed against each

other could be adjusted by selecting an appropriately stiff pressing spring. A similar idea used in the

active and semi-active  control  context  was  proposed  and patented  by  Gaul  [8]–[11].  However,

practical implementation of such a friction device might be unstable due to wear, while numerical

simulation would require a dry friction model to be implemented,  which would introduce non-

linearity to the model and make the simulation process significantly more difficult. In order to avoid

these problems, it was decided to utilize the viscous damping model, which maintains the linearity

of the numerical model. As indicated earlier, setting a very high damping coefficient causes the joint

to behave in a manner very similar to the joint using dry friction, where the two surfaces are firmly

pressed against each other. The behavior of a viscous damper is also more predictable and smoother

than that  of  a  device  using dry friction mechanism,  when the damping coefficient  or  coupling

pressure decreases. This facilitates the search for the optimum damping coefficient.

It should be emphasized that the viscous passive dampers are considered in this section only

to provide a theoretical baseline for the proposed semi-active control. Physical implementation of

such viscous dampers would be impractical and undesirable for the following reasons: 

1. For technological reasons, it is difficult to manufacture a linear viscous damper with precise,

desired damping characteristics that would remain constant throughout the planned lifetime

of the structure. In contrast, the on/off characteristics of the semi-active node are relatively

easy to be obtained in practice.

2. The optimal value of the viscous damping coefficient of the passive dampers depends on the

spectral content of the excitation. There is no universally optimum damping coefficient to be

selected and used once for all excitations.

3. Viscous rotational dampers decrease the effective stiffness of the structure, since under static

or  quasi-static  loads  they  behave  like  truss-like  joints.  This  is  undesirable  in  many

applications. In contrast, the default mode of operation of the proposed semi-active nodes is

frame-like, and the periods of low-stiffness operation are very short (in the range of single

milliseconds).
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Optimal  values  of  the  passive  damping  coefficient  were found for  the  first  two natural

modes. Searching for the optimum for higher frequencies is unjustified, because the third natural

frequency of the structure is already beyond the controllability limit of the experimental system,

since its period is comparable to the shortest possible switching period of the controllable nodes.

The results  obtained  numerically  would be impossible to  be verified experimentally  for  higher

vibration frequencies.

A numerical  procedure to seek the optimal passive damping was conducted for  the free

vibration and harmonic cases. It consisted of a series of analyses with the nodes operated at constant

levels of viscous damping in the range from a very low (0.01) to a very high (1000) values of

damping coefficient. Vibration mitigation effectiveness was quantified with the root mean square

(RMS) of  the total  mechanical  energy  of  the  structure,  calculated for  the time interval  chosen

appropriately for each simulation case:

ERMS
total

=√1
N ∑i=1

N

(Ei
total

)
2 (41)

where N represents the number of time steps in the entire specified time interval.

3.3.1. Free vibrations

Given the characteristics of this case, the time interval of 1 second is used for both natural

modes. A graph presenting the obtained mitigation effectiveness is shown in Figure 3.11.
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Fig. 3.11: Influence of the damping coefficient on the RMS of the normalized total mechanical energy of the structure.



According to the obtained results, the optimal damping coefficient for the first natural mode

is equal to 24. For the second mode, it is 17, which stands for almost 30% of the relative difference.

Such a large shift in optimum characteristics of the passive damping system indicates that there is

no  universally  optimum  passive  damping  coefficient,  and  that  it  might  require  tuning  to  the

characteristics of the expected excitation.

The normalized in-plane lateral displacements of the structure tip and the total mechanical

energy  of  the  structure  were  computed  for  the  optimal  values  of  the  damping  coefficient  and

presented in Figures 3.12 and 3.13. These data will serve as the benchmark for the proposed semi-

active vibration control strategy.

3.3.2. Harmonic vibrations

In the case of harmonic vibrations, two types of tests can be conducted: (1) exciting the

structure  with  a  harmonic force  of  a  constant  frequency  that  corresponds to  one  of  its  natural

frequencies or (2) exciting it with a force of a frequency that slowly increases with time, which is

called a sine-sweep excitation. Both of these tests were conducted and their results are presented in
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Fig. 3.13: Normalized total mechanical energy for the first (left) and second (right) natural modes for optimal passive

damping.



the subsequent sections. The external excitation is included in the numerical  model through the

vector f of external forces that appears on the right-hand side of the equation of motion (1).

Single frequency

A single frequency excitation is realized by applying a force with a sinusoidal amplitude

varying in time:

f (t )=A sin(ω t ) (42)

where A stands for the amplitude and ω for the angular frequency of the excitation. The harmonic

external force must be applied at a suitable location in the structure to induce vibrations of the

selected mode shape. Taking into account the shapes of the first two eigenvectors (Figure  3.4), it

was decided that the point  where the force was applied  should be located 0.3 meters from the

ground point and that the force would act perpendicular to the beam axis.

Figures 3.14 and 3.15 present for comparison purposes the normalized values of the lateral

tip displacement of the passive frame-like structure and its normalized total mechanical energy for

the excitation force frequency equal to the first and the second natural frequencies of the structure,

respectively. In these two simulations, the damping coefficients in the semi-active nodes were set to

their maximum values, so the structure acted like a frame structure.

Fig. 3.14: Normalized tip displacement (left scale) and total mechanical energy (right scale) – 1st mode, 

passive frame case.
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Fig. 3.15: Normalized tip displacement (left scale) and total mechanical energy (right scale) – 2nd mode, 

passive frame case.

The  displacement  amplitude  increases  over  time  to  reach  a  certain  level  at  which  it

stabilizes,  which is  consistent  with the theory of  damped vibrations.  In the case of  the second

natural frequency, the initial dynamic response of the structure seems unstable, but the noisy part of

the signal is mitigated after about 2 seconds. The spectral analysis of the signal (Figure 3.16) shows

that this disturbance is related to the residual response of the first natural frequency. The amplitude

corresponding to this vibration frequency is relatively low, therefore it is mitigated quite quickly by

means of material damping, and eventually the signal includes only the second natural frequency,

continuously excited by the harmonic force.

64



The simulations were then performed for various values of the nodal damping coefficients.

The resulting energy RMS values were normalized with respect to the energy RMS of the passive

frame-like structure. The results are presented in Figure 3.17. The simulation time periods used to

calculate the RMS are 5 seconds for the first and 4 seconds for the second natural frequency.

According  to  the conducted  procedure,  the  optimal  value of  the damping coefficient  in

controllable nodes is  7 for the first and 16 for the second natural frequency. The value for the

second natural frequency is very close to the one obtained in free vibration case (which was 17),

however the value for the first natural frequency is more than three times smaller than the value of

24 obtained in the free vibration case.

Similarly as in the free vibration case, the time courses of the normalized in-plane, lateral

displacements of the tip and the total mechanical energy of the structure for the optimal values of

the damping coefficients are presented in Figures  3.18 and  3.19. They are compared to the cases

where the controllable nodes remain in their frame-like state during the entire simulation.
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Fig. 3.17: Influence of the damping coefficient value on the RMS of the total mechanical energy of the structure.



In  the  first  vibration  mode,  when  the  responses  stabilize,  the  amplitude  of  the  lateral

displacement of the tip is reduced to approximately 4.1% of its counterpart for the frame state. For

the second vibration mode, the amplitude is reduced by approximately one third.

The energy level for the first natural mode is reduced to almost zero and for the second

natural mode it settles at a level slightly below 50% of its maximum value in the frame case. The

RMS of the total  energy in  the considered time periods are respectively reduced to 0.16% and

48.6% of their values in the corresponding frame-like cases.

The reduction rate is excellent for the first natural mode and very good for the second one.

However, the optimum value of the damping coefficient in the controllable nodes is very different

from its optimum value in the free vibration. This hinders any potential practical application of such

type of viscous damping system even further. Nevertheless, the obtained results set a good baseline

for the proposed semi-active control.

Sine-sweep

Sine-sweep excitation is applied to the structure in the same way as in the single frequency

case. The amplitude A of the force in equation (42) is constant. However, the angular frequency ω

is  not  constant  anymore.  It  changes  linearly  in  time,  ranging from a lower  to  an upper bound
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Fig. 3.18: Lateral tip displacements for the first (left) and second (right) natural modes for optimal passive damping.

Fig. 3.19: Total mechanical energy for the first (left) and second (right) natural modes for optimal passive damping.



specified  arbitrarily.  This  test  approach  presents  the  dynamic  behavior  of  the  structure  in

continuously changing environmental conditions.

The excitation force sweeps the frequency range from 1 Hz to 54 Hz, which includes the

first  two natural  frequencies of the investigated structure.  The increase of the frequency occurs

linearly over a period of 50 seconds. Figure 3.20 presents the normalized values of the lateral tip

displacement and the normalized total mechanical energy in the reference frame-like passive case

(the controllable nodes remain in their frame state of operation).

At about 12.5 second of simulation the frequency of the excitation force passes the first

natural frequency of the structure, resulting in a high increase in both tip displacement and total

energy. After passing this critical point, the vibrations fade and peak again at about 36th second,

when the excitation force frequency passes beyond the second natural frequency. The amplification

of the displacement and energy for the second eigenfrequency is much smaller than for the first one.

The  search  procedure  for  optimum passive  nodal  damping  was  conducted  in  a  similar

manner as for the single frequency excitation. The plot of the total mechanical energy RMS values

is presented in Figure 3.21. The results were normalized utilizing the RMS value computed for the

reference frame-like response shown in Figure 3.20.
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Fig. 3.20: Normalized tip displacement (left scale) and total mechanical energy (right scale), passive frame case.



The optimal value of the damping coefficient in controllable nodes in the passive case is 32,

according to the conducted procedure.  Values of the optimal damping coefficients in the single

frequency harmonic case (7 and 16) were different than their counterparts in the free vibration case

(24 and 17). The optimal value of 32 found for the sine-sweep case is also different than the values

calculated in the previous two cases.

Comparison of the time courses of the normalized lateral tip displacements and the total

mechanical energy of the structure in the passive state for the maximal (frame state) and optimal

value of the damping coefficients in the controllable nodes are presented in Figures 3.22 and 3.23.

68

Fig. 3.21: Influence of the damping coefficient value on the RMS of the total mechanical energy of the structure.

Fig. 3.22: Time course of the normalized lateral tip displacements of the structure.



The maximal amplitude of the displacement at the first natural frequency is reduced to about

15% of the reference value. For the second natural frequency the amplitude is reduced from 12% to

8.8% approximately. The eigenvalues are shifted in the direction of lower frequencies, when the

optimal passive damping coefficient is selected. This is related to the reduction of the stiffness of

the structure, when the controllable nodes are not in their frame state of operation.

The energy in the optimal passive damping case is reduced to almost zero in the range of the

first  natural  frequency  (1.5%) and approximately by a  half  in  the  range  of  the  second natural

frequency (from 7.25% to 4%).

Finally, the accelerance plots were computed for the frame tip and presented in Figure 3.24

to compare the dynamic characteristics of the frame structure and the structure with optimal passive

nodal damping. The accelerance is defined as the Fourier transform of the acceleration divided by

the Fourier transform of the excitation force  [243, p. 140],  [244, p. 8],  [245, p. 287]. The results

confirm the observations arising from the analysis of Figures 3.22 and 3.23. The amplitude at the

first  natural  frequency  is  mitigated  effectively  (more  than  tenfold),  while  the  reduction  of  the

amplitude at the second natural frequency reached approximately 30%. A shift of the first natural

frequency towards the lower values is also very clearly visible. This phenomenon is observable also

for the second natural frequency, however it is not so intense.
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Fig. 3.23: Time course of the normalized total mechanical energy of the structure.



3.3.3. Random vibrations

Response of the structure subjected to a random excitation is a combination of its modal

responses. The relative contributions of the modes strongly depend on the spectral content of the

excitation signal and on the specific selection of the excitation point. In the previous subsections,

the optimal values of the nodal damping coefficients were found to depend to a significant degree

on the excitation frequency and the excited modes. They can be thus expected to strongly depend

also on the specific configuration of the random excitation, which is always somewhat arbitrary.

Therefore, the utility of the results obtained in this way for the purpose of serving as an objective

baseline is questionable. To avoid arbitrary decisions that could be easily contested, the optimum

passive damping was not used as a baseline in the random excitation case. Instead, the results of the

semi-active control were compared to the passive frame-like structure with its controllable nodes in

the frame state of operation.

3.3.4. Summary

Utilization of passive nodal damping seems to be a relatively simple task, however, it  is

characterized by some significant disadvantages. A solution based on dry friction can involve high

uncertainties in the relationship of the friction force with the pressure between the interacting faces,

magnified in practice by the wear effects, which would result in a high volatility of the obtained

mitigation effectiveness. Viscous dampers can be considered a better solution when it comes to the

predictability of the results in individual  work cycles. However,  manufacturing a linear viscous
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Fig. 3.24: Accelerance calculated for the free end of the structure in frame and optimal passive damping states.



damper with precisely prescribed damping characteristics that would remain constant throughout

the planned  lifetime of  the structure is  also difficult  for  technological  reasons.  In  contrast,  the

desired simple on/off characteristics of the semi-active node are relatively easy to be obtained and

controlled in practice.

A significant  disadvantage  of  passive systems lies  in  the fundamental  principle  of  their

work.  The  passivity  of  the  solution  prevents  the  system  to  adapt  to  changing  environmental

conditions, such as variable characteristics of the external excitation. When a passive system is

properly tuned to specific conditions, it can mitigate vibrations very effectively. However, if these

conditions change,  it  is  likely that  its  capability to dissipate the energy will  also change. Such

a mechanism can be seen, for example, in Figure  3.11: when the excitation frequency shifts from

the first to the second natural frequency, the optimal value of the damping coefficient also changes

noticeably. Inability of adaptation to new conditions results in a degradation of effectiveness. An

optimization with respect to a range of scenarios can yield an intermediate value of the damping

coefficient. However, such a trade-off solution would be suboptimal in each specific scenario and

the overall effectiveness may turn out to be insufficient if an excitation of a different nature than

expected  occurs.  Almost  the  same  applies  to  passive  friction-based  systems,  which  must  be

calibrated to a certain level of potential energy targeted at tearing off the interacting surfaces by

adjusting the contact  force.  Each mode shape  concentrates the  potential  energy  in  the  form of

deformations in different regions of the structure. Therefore, adjusting the contact force to one of

the natural frequencies may result in a complete lack of effectiveness for another frequency due to

local absence or significant reduction of the deformation in a given place. 

An additional serious drawback of the passive damping solution investigated in this section

is the reduction of structural stiffness. Passive rotational dampers, incorporated into the considered

structures in the way described earlier, would negatively affect the global stiffness of the structure

in static or quasi-static work conditions. A pure viscous damping element generates a force that

opposes the relative motion of the parts of the structure that are connected to its endpoints. This

obviously happens only in dynamic response.  Otherwise, in static or quasi-static conditions, the

damper will not generate any resistive force, and it will act as truss-type connection and reduce the

stiffness.  Moreover,  even in  a dynamic scenario,  the viscous solution can degrade the dynamic

stiffness of the structure. This is clearly illustrated by the downward shift of the eigenfrequencies

visible in Figures 3.22-3.24. The effective global stiffness of the structure will be degraded also in

passive friction-based systems, if the clamping force is set too low. In contrast, the default mode of

operation of the proposed semi-active nodes is frame-like with full transmission of moments, while
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the  low-stiffness  periods  of  operation  (truss-like  mode)  are  very  short  (in  the  range  of  single

milliseconds). 

Given  the  problems  discussed  above,  utilization  of  passive  systems  to  the  considered

vibration problem can be deemed unjustified in practice, even despite the potentially good results of

vibration  energy  dissipation  for  specific  conditions.  Active  or  semi-active  solutions  are  more

desired  since  they  can  adapt  to  a  relatively  wide  range  of  environmental  conditions  while

maintaining their high damping efficiency and structural stiffness.

3.4. Global version of the control algorithm

A global  version of  the control  algorithm, despite  the drawbacks related to  its  physical

realization  discussed  in  section  2.5.3,  may  prove  to  be  highly  effective.  This  section  presents

a study of the dynamic characteristics of the exemplary structure under the proposed semi-active

control with the global energy feedback.

3.4.1. Free vibration

Free vibration is one of the most common vibration patterns. It occurs when a structure is

excited with a single impact, which is usually mechanical but can be also of a different nature (for

example thermal). Free vibration analysis is often the starting point for further studies of the system.

The  examination  of  the  efficiency  of  damping  was  performed  based  on  the  first  two

eigenmodes of the considered structure which served as the initial displacement conditions. Their

shapes are presented in Figure 3.25. The controllable nodes are depicted as black dots.
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Fig. 3.25: First two mode shapes of the investigated structure: 1st mode – top, 2nd mode – bottom.



The results obtained with the global version of the control algorithm were compared to the

optimal passive case for both mode shapes. A comparison of the time courses of the lateral  tip

displacements is presented in Figures 3.26 (for the first mode) and 3.27 (for the second mode).

RMS of the normalized total  mechanical energy for the first  mode shape in the optimal

passive case is equal to 0.1185 and for the controlled case 0.1067, which stands for approximately

10% difference in favor of the controlled case. Tip displacement amplitudes for the controlled case

are almost always below the envelope marked by their counterparts for the optimal passive case.

Minimum energy threshold, indicating the level below which the control algorithm is not activated,

causes the structure to vibrate with very small, residual amplitudes after approximately 0.3 seconds

of the simulation. These vibrations are slowly mitigated by material damping mechanism. In the

controlled case about 90% of the initial mechanical energy is dissipated within the first half of the

first vibration cycle while for the optimal passive case it is 74%.

For the second mode shape, RMS of the normalized total mechanical energy for the optimal

passive case  is  equal  to  0.1566 and for  the controlled  case 0.1519,  which  stands for  over  3%

difference in favor of the controlled case. Similarly as for the first mode shape, tip displacement

amplitudes in the controlled case are almost always smaller than their counterparts in the optimal
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Fig. 3.26: Time courses of the tip lateral displacement (left) and total mechanical energy (right, clipped to 0.25s) for

the first natural mode, optimum passive viscous dampers and global semi-active control.

Fig. 3.27: Time courses of the tip lateral displacement (left) and total mechanical energy (right, clipped to 0.25s) for

the second natural mode, optimum passive viscous dampers and global semi-active control.



passive case. Only in the second part of the first vibration cycle the amplitude in the controlled case

is comparable with the passive case. In the residual amplitudes zone, below the energy threshold,

the displacement amplitudes for the controlled case are slightly higher than for the passive case. As

for the first mode shape, the levels of the energy are very small in this zone, thus the impact of this

factor on the RMS value is  not significant.  The energy decay rate is  almost  the same for  both

damping strategies with a slightly better characteristics of the controlled case.

The results for the free vibration case show that the proposed control algorithm achieves

significantly better performance than the passive system with optimal damping coefficient for the

first  natural  mode.  The  improvement  of  performance  for  the  second  mode  shape  is  not  so

substantial,  however  the  energy  decay  rate  for  the  controlled  structure  is  noticeably  higher.

Quantitative  measures,  in  the  form  of  the  root  mean  square  of  the  total  mechanical  energy,

calculated for the entire simulation time are better in the controlled cases for both considered mode

shapes:  10% improvement for the first  mode shape and 3% improvement  for the second mode

shape.

3.4.2. Harmonic vibration

The  proposed  vibration  control  strategy  can  also  be  utilized  to  mitigate  the  vibrations

resulting from an external harmonic excitation force. Similarly to the optimal passive damping case,

excitation forces of two types are considered: (1) single frequency, equal to one of the first two

natural  frequencies  of  the structure during the entire  simulation time, and (2)  frequency sweep

through a selected range of frequencies.

Single frequency

All  environmental  conditions  in  this  excitation case  are the  same as  in  the  case  of  the

optimal passive damping search. The developed semi-active control  strategy is applied, and the

damping coefficient in the controllable nodes is switched between its default, high value (which

models a frame-type connection) and zero (which corresponds to a truss-type connection).

Figures 3.28 and 3.29 present the normalized values of the lateral tip displacements and the

total mechanical energy for the first and second natural frequency. The normalization is performed

with  respect  to  the  maximum values  of  their  equivalents  computed  for  the  frame-like  passive

structure (with the semi-active nodes in the frame-like state for the entire simulation time), that is in

the same way as in section 3.3.2.
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When the frequency of the exciting force equals the first natural frequency of the structure,

the  amplitude  of  lateral  displacements  of  the  tip  is  reduced  to  about  8% of  the  maximum tip

displacement in the passive frame case. The same indicator for the second natural frequency of the

structure is reduced to 63%. For the optimal passive case (optimized separately for each mode), the

corresponding values are 4.1% and 62% for the first and second natural frequency, respectively.

The  total  mechanical  energy  values  are  very  close  to  their  counterparts  in  the  passive

optimal case. For the first natural frequency, the normalized total energy is almost zero during the

entire simulation time. For the second natural mode, the global damping strategy allows to reduce

the total mechanical energy to about a half of the energy in the frame case. RMS of the energy for

the first eigenmode is reduced to 0.51% in comparison to the passive frame case (0.16% in the

optimal passive case),  while for the second mode the RMS is reduced to 47.7% (48.6% in the

optimal passive case). That is, for the first mode shape, the total energy of the structure is almost

entirely reduced and indistinguishable from zero. 

The damping effectiveness of the global semi-active strategy is comparable to the baseline

provided  by  the  optimal  passive  approach.  However,  to  provide  similar  results,  the  baseline

approach needs to be optimized separately for each eigenmode, as it has many limitations in terms

of adaptability to volatile environmental conditions.
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Fig. 3.28: Lateral tip displacements for the first (left) and second (right) natural modes for global semi-active control.

Fig. 3.29: Total mechanical energy for the first (left) and second (right) natural modes for global semi-active control.



Sine-sweep

Parameters of the sine-sweep are the same as in section 3.3.2 (linear sweep from 1 Hz to 54

Hz over a period of 50 seconds). Time courses of the lateral free end displacements and the total

mechanical energy are presented in Figures 3.30 and 3.31, respectively.

The maximal displacement amplitude for the first mode was reduced to approximately 14%

(in single spikes) of the reference maximal amplitude for the frame state case. The reduction ratio is

almost  the  same  as  in  the  optimal  passive  damping  case,  where  the  corresponding  maximal

amplitude was reduced to 15%. The result for the second natural frequency is also very close to the

one obtained with the optimal passive damping: in both cases the maximal amplitude was reduced

to approximately 9% of the reference value (8.8% for the optimal passive and 8.2% for the global

semi-active).

As shown in Figure 3.31, the maximal total mechanical energy of the structure was reduced

to almost zero in the range of the first natural frequency and approximately halved (from 7.5% to

3.6%) in the range of the second natural frequency, thanks to the application of the proposed global

semi-active  control  strategy.  The  measures  of  the  total  mechanical  energy  are  similar  to  these

obtained in the baseline optimal passive case. For the first natural frequency, the global semi-active

strategy reduces the amplitude to 1.8%, while in the passive optimal case it is reduced to 1.6%. For

the second natural frequency, the respective numbers are 3.6% and 4.1%, respectively. 

76

Fig. 3.30: Time course of the normalized lateral tip displacements of the structure for global semi-active control.



A comparison of the passive optimal and global semi-active control cases is presented in

Figure 3.32. It can be observed that the dynamic stiffness is reduced less in the semi-active case.

The characteristics of the loading force suggests that an assessment and comparison of the

response dynamics can be performed also in frequency domain. The lateral acceleration of the tip of

the structure was utilized for this purpose. The results are presented in Figure  3.33, and they are

consistent  with  the  results  observed in  the time-domain  analysis.  The  dynamic  stiffness  of  the

structure in the low frequency range, as manifested by the shift of the maximal vibration amplitudes

in the area of the first eigenvector towards the lower frequencies, is less reduced by the global semi-

active control than in the case of optimal passive damping. Taking into account the similar damping

effectiveness, this is an advantage of the proposed semi-active damping strategy.
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Fig. 3.31: Time course of the normalized total mechanical energy of the structure for global semi-active control.

Fig. 3.32: Time courses comparison of the normalized tip displacement (left) and normalized total mechanical energy

(right) for optimal passive damping and global semi-active control cases.



3.4.3. Random vibration

A white Gaussian noise was used as the exciting force and applied in the same point of

structure as in the previous sections. It  is a purely random stochastic process with a flat power

spectrum, which means that each frequency in the spectrum is represented with identical weight. An

exemplary time course of such a signal used in simulations and its representation in the frequency

domain are presented in Figure 3.34.

As can be seen for the presented time course, the excitation force is additionally transformed

with a window function, which is a procedure commonly conducted when a time domain signal is

supposed to be utilized in frequency domain analysis. A rapid truncation (discontinuity) of a time-

domain  signal  at  its  ends  leads  to  the  introduction  of  high-frequency  artificial  components
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Fig. 3.33: Accelerance calculated for the free end of the structure in the passive frame, optimal passive and global

semi-active control cases.

Fig. 3.34: Time course of an exemplary random excitation force (left) and the corresponding DFT amplitude (right).



(additional  noise)  in  the  signal  transformed into the  frequency  domain.  This  is  an  undesirable

phenomenon, which can be partially alleviated by using a windowing function that smooths the

transition from a high amplitude to zero. The window used here is similar to the Tukey window in

that it affects the signal only at its ends, however the function at the ends is not a cosine but logistic.

Random vibrations are inherently associated with very quick, unpredictable changes in the

sign  and  the  amplitude  of  the  excitation  force,  which  lead  to  rapid  changes  in  structural

accelerations, velocities and displacements. The elastic energy, which serves as a feedback signal

for  the control  algorithm,  calculated in  such  conditions,  contains  fast-changing,  high-frequency

components  that  can  trigger  the  control  system by  introducing  a  large  number  of  minor  local

maxima. Such quick changes in the state of the controllable nodes are similar to chattering and can

lead to a premature wear. In order to eliminate this phenomenon, as described in section 2.5.2, the

feedback signal is smoothed with a simple moving average. Numerical investigation showed that

for the considered structure a sufficient smoothing can be achieved with a moving average spanning

only 0.25 ms (25 integration steps of 1e-5 second each). Such a period corresponds to the frequency

of 4000 Hz, much above the structural frequencies of interest in this study, so that the delay caused

by smoothing is very small. Utilization of such a filter brings also the numerical model closer to the

conducted experiments, where measurements are inherently noisy, and the feedback signal has to be

accordingly preconditioned.

The stochastic nature of the excitation signal, and hence the dynamic response of the excited

system, makes the results obtained for a single load case unrepresentative. Variance of the obtained

results  can  be  reduced  by  averaging.  Averaging  several  dozen  results,  obtained  for  various

realizations of the excitation signal, cancels out the probabilistic components and results in more

reliable conclusions regarding the mean. The desire to achieve a balance between the duration of

numerical calculations and the satisfactory consistency of the obtained results was reflected in the

adoption of averaging at the level of one hundred realizations.

The results obtained in simulations are showed in Figures  3.35 and  3.36. Similarly to all

previous load cases they are presented by means of the normalized lateral displacements of the

structure tip and the total mechanical energy. The RMS of the tip displacements in the controlled

case equals 42% of the value calculated for the passive frame state. For the total mechanical energy,

the RMS is reduced to 46% of the corresponding value calculated for the passive frame structure.
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Analysis in the frequency domain can be used for a wide range assessment of the excited

natural frequencies, as well as of the possible resonance shifts introduced by the utilized damping

strategy. It is presented by means of the lateral accelerance of the structure tip in Figure 3.37.
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Fig. 3.35: Time course of the normalized lateral tip displacements of the structure for global semi-active control.

Fig. 3.36: Time course of the normalized total mechanical energy of the structure for global semi-active control.



In the presented spectrum three natural vibrations modes of the structure are excited: the

first  (13.6 Hz),  the second (38.8 Hz) and the fourth (158.6 Hz).  The third natural  mode is  not

excited  because  it  has  a  specific  shape  which cannot  be  excited  with the  force  applied in  the

specified  point,  see Figure  3.4.  The fourth  natural  frequency remains  totally  undamped by the

proposed approach, which means that in the considered configuration this mode is uncontrollable:

the global version of the proposed control strategy cannot transfer the energy from this mode to

even higher-frequency vibration modes.  The first and the second modes can be controlled with

different efficiency, which was already showed in free and harmonic vibration cases. Figure  3.38

presents the same results in the frequency range limited to the maximum of 100 hertz.
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Fig. 3.37: Accelerance calculated for the free end of the structure for global semi-active control.

Fig. 3.38: Accelerance calculated for the free end of the structure  for global semi-active control (zoomed).



The first mode shape component of the response signal is mitigated to only 11.1% of the

uncontrolled, passive frame case. The second mode shape component is reduced from 65.9% of the

maximal amplitude to 53.3%, what stands for 19.1% reduction of the maximal amplitude. The first

resonance was noticeably reduced from 13.6 Hz to approximately 12.15 Hz, which equals a 10.7%

shift. Such a shift for the second resonance is negligible.

Study of the control threshold value

The effectiveness of damping is influenced by the level of the elastic energy threshold value,

which is a parameter of the control algorithm. As described in section 2.5.2, the control action is

triggered at  local maxima of the elastic energy, but  only if  the feedback energy signal  exceeds

a specified threshold level. This helps to avoid wear effects and chattering at low vibration levels.

For random excitation of the considered structure, it is possible to find the optimal threshold value,

which results in the best mitigation of the vibration energy. It is a different behavior than what was

observed  in  the harmonic  vibration case,  where  the relationship between the threshold and the

damping efficiency can be simply described as: the lower the better, down to a certain level, below

which the control strategy effectiveness remains constant.

Comparison of the normalized total mechanical energies, obtained for vastly different levels

of the described threshold, is presented in Figure 3.39. The data has been smoothed before plotting

to increase the clarity of the chart. A similar comparison for the normalized lateral tip displacements

is  shown  in  Figure  3.40.  In  these  figures  an  increasing  level  number  corresponds  to  a  higher

threshold value. The thresholds are presented in a general form, because their specific numerical

values  will  be  different  for  different  structural  topologies,  excitation  characteristics  and

measurement setups. For the structure considered here, they are listed in Table 3.3 in terms of the

maximum elastic energy of the passive frame-like structure. The lowest energy of the controlled

structure is achieved for threshold Level 3, which in this regard can be considered to be optimal.

The same conclusion can be drawn based also on the comparison of the displacements: the lowest

average displacements are obtained for threshold Level 3 as well.
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The  activation  threshold  is  based  on  the  elastic  energy  of  the  structure,  and  it  can  be

expressed as a percentage of its maximum (averaged) elastic energy, when operating in the passive

frame-like state. These values, as well as the corresponding RMS values of the normalized total
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Fig. 3.39: Time courses of the normalized total mechanical energy for different threshold levels of the global semi-

active control.

Fig. 3.40: Time courses of the normalized lateral tip displacements for different threshold levels of the global semi-

active control.



mechanical energy of the structure and the RMS values of the normalized lateral tip displacements,

are presented in Table 3.3. RMS calculated for the passive frame state of operation equals 0.79 for

the energy and 0.33 for the displacement.

Table 3.3: Root mean square values of the normalized total mechanical energy and the normalized

lateral tip displacements for different energy threshold levels

Level Threshold [%] Energy RMS [-] Displacement RMS [-]
1 0.77 0.52 0.36
2 38.37 0.4 0.19
3 76.75 0.36 0.14

4 115.12 0.39 0.15
passive frame – 0.79 0.33

Numerical  data  in  Table  3.3 confirm  the  conclusions  derived  from  the  graphical

representation of  the obtained results  –  the  best  damping effectiveness  is  obtained for Level  3

threshold. It must be noted, that a very small threshold (Level 1), despite reducing the RMS of the

total mechanical energy, has increased the RMS of tip displacements, when compared with frame

state  of  operation.  Shares  of  individual  eigenvectors  in  the  dynamic  response  signal  can  be

presented  in  the  form  of  accelerance  plots  (Figures  3.41 and  3.42)  calculated  for  the  lateral

acceleration of the tip of the investigated structure. 
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Fig. 3.41: Tip lateral accelerance comparison for different energy threshold values.



Changes around the fourth natural mode (159 Hz) are of negligible importance because they

are very small. Amplitude changes do not exceed 5% and they are mainly related to averaged signal

irregularities. The shift towards lower frequencies also does not exceed 5% in any case. The third

natural mode of the structure (122 Hz) is not excited under the applied excitation because of its

specific shape. Figure 3.42 presents the same data zoomed to the lower frequency range to provide

insights into the signal characteristics around the first two natural frequencies of the structure.

At lower than optimal activation threshold levels (Level 1 and 2), the amplitudes of both

eigenvectors rise considerably, as compared to the optimal threshold Level 3. The deterioration of

effectiveness is especially clear for the first mode, and it is visible in the increased amplitude, as

well as in the shift of the resonance towards the lower frequency range. A threshold level higher

than optimal (Level 4) reduces the damping effectiveness to some extent, but the resonance shift

towards lower frequencies is much less pronounced, which is desirable.

Optimal level of energy threshold (Level 3), derived based on the comparison of the RMS of

the total mechanical energy, provides the best mitigation results for both natural modes. The second

resonance is shifted insignificantly (about 0.5 Hz towards lower frequencies), while the first one is

shifted  noticeably.  However,  the  control  strategy  decreases  considerably  the  amplitudes  in  the

region of the first eigenfrequency. Comparison of the presented cases indicates that the resonance

shift can be reduced by increasing the threshold, at the cost of a slight deterioration in the energy

dispersion efficiency.
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Fig. 3.42: Tip lateral accelerance comparison for different threshold values (zoomed).



A random excitation signal results in the occurrence of a large number of individual modal

components in the response. Insights from the analyses conducted so far indicate that higher-order

modes are less controllable with the proposed control strategy. For a random excitation, setting

a low value of the threshold energy implies a higher switching frequency, as the system responds to

the  high-frequency  components  of  the  signal  which  have  much  lower  amplitudes  and  shorter

periods  than  the  low-frequency  components.  This  entails  a  reduction  of  stiffness,  because  the

structure spends more time in the decoupled state of the controllable nodes, and it is visible in the

downward shift of the first and second resonances.  The focus on high frequency switching and

components  can also result  in the back-transfer of some part  of the vibration energy into low-

frequency mode shapes, which was proved to be possible [214].

Recognized behavior is an interesting phenomenon that can be potentially utilized to further

increase the effectiveness of the proposed control approaches. Such an analysis and optimization

can be potentially coupled with the positioning of the controllable nodes and its own correlation

with the effectiveness of energy dissipation.

3.4.4. Summary

The proposed control strategy in its global, centralized version proved to be very effective

for all considered load types, as compared to the original frame-like structure. The performance of

the control algorithm is comparable to that of the baseline optimal passive damping, while it avoids

several disadvantages related to the reduction of the dynamic stiffness, dependence of the optimum

on the excitation and technological, which are present in the passive baseline.

While  the  numerical  implementation  of  the  global  version  can  be  considered

straightforward,  it  is  very  cumbersome  or  even  impossible  to  implement  it  experimentally  in

physical structures with a complicated topology. This weakness was one of the main driving factors

behind the development of the local, decentralized version of the control algorithm, which can be

straightforwardly utilized in real-life structures.

3.5. Decentralized version of the control algorithm

As indicated in section  2.5.4, the decentralized version of the proposed control algorithm

can  be  relatively  straightforwardly  implementated  in  real-life  structures,  since  the  feedback

measurement signal is locally collected from single, separate beams. Consequently, the control can

be implemented using a small set of independently operated elements applied in these locations of
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the entire structure that are crucial for the effectiveness of energy dissipation. The decentralized

approach  requires  much  less  resources  in  terms  of  both  the  data  acquisition  system  and  the

computational complexity.

The effectiveness of this version of the proposed control strategy is verified using the same

testing set of load cases and the same exemplary structure as for the global version. Controllable

nodes are mounted on the ends of the same middle transverse beam, however the elastic energy

measurements are collected only locally from this specific beam, and not the entire structure. Such

a pair of controllable nodes together with the beam in-between them becomes in this way the basic

building block of the dissipation system.

3.5.1. Free vibration

The  comparison  of  the  results  obtained  for  the  global,  centralized  and  the  local,

decentralized versions of the proposed control strategy, for first natural mode of the investigated

structure, is presented in Figure 3.43. Normalized lateral displacements of the free end of the frame

are presented on the left hand side of the figure, and the normalized total mechanical energies of the

structure are shown on the right hand side.

The  decentralized  version  of  the  control  strategy  performs  better.  The  RMS  of  the

normalized total mechanical energy for the decentralized version equals 0.1015, while for the global

one it is 0.1067 (see section  3.4.1), which stands for the difference of 4.9% in favor of the local

version. Tip displacements amplitudes are also noticeably smaller for this version of the control

strategy.  The  same  pair  of  plots  for  the  second  eigenmode,  acting  as  the  initial  displacement

condition, is presented in Figure 3.44.
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Fig. 3.43: Time courses of the tip lateral displacement (left) and total mechanical energy (right, clipped to 0.25s) for

the first natural mode.



RMS of the normalized total mechanical energy for the decentralized version of the control

strategy equals 0.1368, and it is 9.9% lower than for the global version (0.1519, see section 3.4.1).

The envelopes of the energy, as well as the displacement amplitudes, are better for the decentralized

version, clearly indicating its better energy dissipation performance.

The presented results indicate that the energy mitigation effectiveness is noticeably better

for  the  local  version  of  the  control  strategy,  as  assessed  for  free  vibrations  of  the  exemplary

structure and both investigated mode shapes used in the role of the initial displacement conditions.

3.5.2. Harmonic vibration

Similarly to the previous considerations, two types of harmonic excitation are considered:

single frequency and sine-sweep.

Single frequency

The results obtained for the harmonic excitation at the first and the second natural frequency

are presented in Figures  3.45 and  3.46, respectively.  They are compared to the results  obtained

using the global version of the proposed control strategy.
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Fig. 3.44: Time courses of the tip lateral displacement (left) and total mechanical energy (right, clipped to 0.25s) for

the second natural mode.

Fig. 3.45: Time courses of lateral tip displacement (left) and total mechanical energy (right) for the first natural mode.



The displacements and energy amplitudes for the local version are more stable than for the

global one. The RMS of the energy for the local version of the control strategy equals 0.0037. This

result is comparable to the one obtained for global version (0.0038).

Improvement of the performance for the second natural mode is very clearly visible. The

normalized maximal tip displacement amplitudes are reduced by additional 17 percentage points

(see Figure 3.28 right), whereas the RMS of the normalized energy equals 0.2441, which is much

less than 0.4575 obtained for the global version of the control strategy.

Performance improvement for the first natural mode is negligible. However, in this case

even the global version of the proposed control strategy achieves excellent results. For the second

natural mode, the global version performs comparably to the optimal passive damping, while the

local version brings further significant improvements over the other two strategies.

Sine-sweep

For  the  sine-sweep  excitation,  application  of  the  decentralized  version  of  the  proposed

control algorithm results  in significant improvements in every considered aspect of the dynamic

response, compared to both the optimal passive damping case and the centralized version of the

control  strategy.  The  tip  displacement  amplitudes,  the  total  mechanical  energy,  as  well  as  the

negative shift of the eigenfrequencies are all lower than in the previously considered cases.

The time-domain results  are compared in  Figures  3.47 and  3.48.  The parameters  of  the

sweep are the same as previously: linear sweep from 1 Hz to 54 Hz over a period of 50 seconds.
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Fig. 3.46: Time courses of lateral tip displacement (left) and total mechanical energy (right) for the second natural

mode.



The displacement amplitudes are significantly limited by applying the local version of the

control algorithm. This comparison shows also that the dynamic behavior of the structure is more

stable under this control strategy when compared to the results for the centralized version.

The comparison of the total mechanical energy also clearly indicates that the best damping

performance is obtained for the local, decentralized version of the proposed control strategy. When

compared to  the passive optimal  damping, the highest  energy for  the first  natural  frequency is
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Fig. 3.47: Time courses of the normalized lateral tip displacements for the sine-sweep excitation.

Fig. 3.48: Time courses of the normalized total mechanical energy for the sine-sweep excitation.



reduced by further 0.5 percentage points (from 1.6% to 1.1%, which is a reduction by almost one

third) and for the second natural frequency by 2.1 percentage points (from 4.1% to 2%, that is

almost twice).

A comparison of the obtained results in frequency domain is presented in Figure 3.49. The

benefits of utilizing the local version of the control algorithm are clearly visible. Both the first and

the  second  natural  modes  are  mitigated  with  much greater  efficiency  than  for  the  two  earlier

damping strategies. A significant advantage, clearly visible in the figure, is also a very small impact

on the dynamic stiffness: the eigenfrequencies of the structure, under the decentralized control, are

almost the same as in the frame state of operation.

Analysis conducted for the sine-sweep force excitation shows that the performance of the

decentralized control  strategy is  much better than for  the optimal  passive damping and for  the

centralized version of the proposed control strategy in every considered aspect.

3.5.3. Random vibration

The same set of random excitation force realizations as for the passive optimal damping and

the global version of the proposed control algorithm was utilized to assess the performance of the

decentralized  version  of  the  control  algorithm.  Figure  3.50 presents  the  time  courses  of  the

normalized lateral  tip displacements of the structure when the control  strategy remains inactive
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Fig. 3.49: Accelerance calculated for the free end of the structure for the sine-sweep excitation.



during the simulation (passive frame state) and when it is activated based on local feedback signal

(semi-active damping).

Decentralized semi-active control decreases the RMS displacements to 39% of the value

calculated for  the passive frame state  of  operation.  The corresponding reduction for  the global

control was equal to 42%. The total mechanical energy of the locally controlled and passive frame

structures is compared in Figure 3.51.
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Fig. 3.50: Time course of the normalized lateral tip displacements of the structure for local semi-active control.

Fig. 3.51: Time course of the normalized total mechanical energy of the structure for local semi-active control.



Application of the control strategy results in a significant reduction of the total mechanical

energy. Unlike for the sine-sweep excitation, there is no significant improvement over the global

version of the control strategy: RMS of the normalized energy for the local control strategy equals

44% of the RMS calculated for the passive frame. For the global version of the control strategy, this

ratio was 46%. 

Study of the control threshold value

Similarly as for the global control, the effectiveness of vibration damping depends on the

threshold  energy  level  imposed on  the  level  of  the  feedback  signal.  The  optimal  value  of  the

threshold used in this section was found in the same way as for the global version of the control

strategy  in  section  3.4.3.  A graphical  comparison of  the  normalized  total  mechanical  energies,

obtained for different exemplary threshold levels, is presented in Figure 3.52.

It is clearly visible that also for the decentralized version of the control strategy the optimal

threshold value can be determined. However, the differences between the presented cases are not so

significant as for the global version (compare to Figure 3.39). Such a result must be considered as

an advantage of the local version of the control strategy: even if the selected threshold is far from

the optimum, control effectiveness will not be significantly deteriorated.

Figure 3.53 presents a comparison of the lateral normalized tip displacements for different

levels of the threshold. Unlike in the global version of the control strategy (see Figure  3.40 and
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Fig. 3.52: Time courses of the normalized total mechanical energy for different energy threshold levels.



Table 3.3), in the local version the performance is always (for all tested threshold levels) better than

in the passive frame case, as measured by the RMS of the tip displacements.

Table  3.4 presents  the  RMS  values  of  the  normalized  total  mechanical  energy  of  the

controlled  structure  and  of  its  normalized  lateral  tip  displacement.  Additionally,  in  the  second

column, each level of the energy threshold is expressed in terms of the maximum averaged elastic

energy of the passive frame structure (these values are much smaller than in Table 3.3 because they

express here the energy of a single beam instead of the entire structure). The RMS calculated for the

frame state  of  operation of  the  controllable nodes equals  0.79 for  the energy and 0.33 for  the

displacement.

Table 3.4: Root mean square values of the normalized total mechanical energy and the normalized

lateral tip displacements for different energy threshold levels

Level Threshold [%] Energy RMS [-] Displacement RMS [-]
1 0.08 0.43 0.24
2 0.77 0.4 0.21
3 5.76 0.35 0.13
4 15.35 0.38 0.14

passive frame – 0.79 0.33

For every considered threshold level, RMS values for the energy and the displacements are

reduced in  comparison to the frame state  of  operation. The data confirm that  the decentralized
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Fig. 3.53: Time courses of the normalized lateral tip displacements for different threshold levels.



version of the proposed control strategy gives better results in terms of the stability of the obtained

results,  when  compared  to  the  global  version.  The  effectiveness  of  vibration  damping  is  also

increased, but the differences in the optimal cases (Level 3) are very small: RMS energy for the

global version of the control strategy equals 0.36, while for the local version it is 0.35. RMS of the

lateral tip displacement equals 0.14 for the global version and 0.13 for the local one.

Analysis  in  the  frequency  domain  can  be  used  to  assess  the  individual  frequency

components  of  the  signal  and  to  obtain  additional  insights  into  the  control  strategy.  The

accelerances are presented in Figure  3.54 (wideband) and Figure  3.55 (zoomed to the first two

eigenvalues).

The conclusions drawn from the analysis of the accelerances are similar to those obtained

for the global version of the proposed control strategy. The wideband view shows that the natural

modes  beyond  the  second  one  are  not  significantly  affected  by  the  applied  control  strategy,

regardless of the selected energy threshold level. Plots for the controlled cases are characterized by

a higher  variance than in the passive case,  as manifested by numerous small  amplitude spikes,

which, although numerous, are insignificant in comparison to the first two resonances.
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Fig. 3.54: Tip lateral accelerance for the random excitation and different threshold levels.



The more  detailed  view of  the  results,  narrowed to  only 100  Hz,  confirms  the  smaller

differences  in  maximal  amplitudes,  obtained  for  different  threshold  levels,  than  for  the  global

version of the control strategy. Selecting the optimal threshold level leads to a noticeable shift in the

first natural frequency, however, similarly to the global version, the amplitude is decreased about

tenfold  as  compared  to  the  passive  frame  case.  Setting  the  energy  threshold  to  a  higher  level

(Level 4)  results  in  a  deterioration  of  the  damping  effectiveness  but  also  reduction  of  the

eigenfrequency shift. The energy threshold can be selected depending on the requirements.

Overall, the results show that a proper selection of the threshold is less important for the

decentralized control strategy than for the centralized one. The differences between the tested cases

are much smaller than for the global version of the control strategy. 

3.5.4. Summary

Changing  the  applied  control  strategy  from the  centralized  to  the  decentralized version

resulted in further increase of its vibration damping capabilities. This effect was however limited.

Much more important in the conducted analysis was the confirmation that the decentralized version

is  characterized  by  a  comparable  vibration  damping  effectiveness  to  the  global  version  of  the

control  strategy  while  being  enormously  simpler  to  implement  in  real-life  structures.  A proper

selection of the energy threshold level, which must be exceeded for the control algorithm to be
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Fig. 3.55: Tip lateral accelerance for random excitation and different threshold levels (zoomed).



triggered, is much less important in the decentralized version than in the centralized one, because

the value of the threshold affects the obtained results to a much lesser extent.

3.6. Study on the length of the uncoupled state of operation

Numerical analyzes are a useful scientific and engineering tool because they significantly

accelerate  and  simplify the  study of  the  investigated  phenomenon.  Created  models  are  always

a certain  idealization  of  the  reality:  they  take  into  account  the  most  important  aspects  of  the

investigated phenomena, and ignore the less important ones.

An  important  difference  between  the  constructed  laboratory  frame  structure  and  its

numerical model is related to the presence of the measurement noise and limits of the actuation

system. In numerical analyzes, the investigated system works in conditions perfectly separated from

the  environmental  factors  other  than  those  modeled.  This  yields  the  (simulated)  measurement

signals that can be adversely affected only by the numerical aspects of the utilized methods. In

experimental  conditions  the  measured signal  is  noisy,  especially  in  moments  immediately  after

switching the controllable nodes. The noise component is significant and it disturbs the signal from

the nearest strain gauges, which can make it difficult to reliably determine the energy levels of the

local beam at that time. Other significant problems, related to the control of a real-life structure, is

the speed of the actuation system. Local  vibrations of the beam equipped with the controllable

nodes occur with a very high frequency, and thus the changes of its strain energy are enormously

fast.  Tracking  and  immediately  responding  to  the  deformation  of  this  element  would  require

controllable nodes to be extremely fast, far beyond the capabilities of the physical devices at hand.

These issues could preclude the application of the condition for node recoupling that is based on

a proper decrease of the strain energy. This condition triggers a vast majority of recoupling states in

numerical simulations. For practical reasons, it is thus legitimate to analyze the effectiveness of the

control  system  that  uses  a  simpler  recoupling  condition  for  the  controllable  nodes:  they  are

recoupled just after a specified, constant time interval. Such a condition was initially intended only

as a kind of protection against remaining in the low stiffness mode of operation for too long. Since

it  turned  out  that  in  experimental  analyzes  it  might  be  the  only  condition  that  can  effectively

indicate the moment of returning to the state of full nodal stiffness, it is reasonable to analyze the

effectiveness of the proposed control system with only this condition as the recoupling trigger.

A series of numerical analyses was conducted with a variable duration of the uncoupled

state, using the decentralized version of the control strategy. Two free vibration scenarios, with the
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initial displacements equal to the first and the second mode shape of the structure, were selected for

this investigation. Taking into account the physical constraints of the laboratory demonstrator, the

time period used for the uncoupled state ranged from 0.1 to 10 ms. The performance measure (8),

with T=0.5 seconds, was calculated for each of them in order to assess the effectiveness of vibration

damping. The results are presented in Figure 3.56. They are normalized with respect to the value

calculated for the uncoupled state length of 1 ms.

For the first natural mode, the effectiveness is degraded only for too short uncoupling time

periods. Above about 1 ms, the effectiveness does not depend on this factor. For the second natural

mode, there is a range of approximately 1 to 3 ms, in which the damping effectiveness is the best.

Thereupon, the measure of effectiveness increases gradually by a factor of 2 at 10 ms. These values

can  be  compared  with  the  capabilities  of  the  available  physical  nodes:  the  shortest  possible

uncoupling time period is 3 ms. An aggregated measure of the vibration damping effectiveness, in

the form of the RMS of the two calculated indicators, is presented in Figure  3.57. The proposed

control strategy remains effective in wide range of the uncoupled state period lengths.
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Fig. 3.56: Normalized objective function values for the first (left) and the second (right) natural modes as functions of

the uncoupled state length.



As an illustrative example,  Figures  3.58 and  3.59 show the time histories  of the energy

components, calculated for the second natural mode and the lengths of the uncoupled state equal to

4 ms and 9 ms. The “local  elastic energy” denotes the potential energy of the transverse beam

equipped with controllable nodes at both its ends.

Fig. 3.58: Time courses of energy components for the uncoupled state length equal to 4 ms.
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Fig. 3.57: Aggregated measure of the vibration damping effectiveness.



Fig. 3.59: Time courses of energy components for the uncoupled state length equal to 9 ms.

If the moment of recoupling is delayed, much less strain energy can be accumulated in the

transverse  beam.  In  effect,  much  less  energy  is  transferred  into  high  vibration  modes  in  the

subsequent control cycle. In the 4 ms case, much more energy is accumulated than in the 9 ms case.

Consequently, in each control cycle, after switching the nodes into the truss-like state,  the total

energy drops are much larger in the 4 ms case, which results in a higher energy dissipation rate.

Summary

The  conducted  numerical  investigation  shows  that  the  proposed  control  strategy  stays

effective in a wide range of time periods, for which the controllable nodes remain in the uncoupled

state. This dismisses the concerns about the loss of damping effectiveness due to the operational

limits  of  the  physical  nodes,  and  allows  the  investigated  simple  recoupling  criterion  to  be

implemented in practice.
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4. Experimental investigation

Experimental tests of the proposed control algorithm are the most reliable way to verify the

correctness  of  numerical  modeling  and  the  effectiveness  of  the  proposed  solution.  Despite  the

meticulous model calibration procedure (section 3.2.1), the obtained numerical model is a certain

idealization of the reality, and in real world there are always several factors that induce uncertainty

about the obtained numerical results. One of the main differences between the physical laboratory

structure  and  its  numerical  model  is  the  absence  of  nonlinearities  in  the  latter.  The  laboratory

structure,  even  if  operated  in  the  range  of  small  displacements  and  deformations,  is  a  bolted

structure, which is characterized by the presence of slackness in the connections. The controllable

nodes  themselves  also  behave  nonlinearly,  especially  during  the  switching  moments.  Other

differences include measurement noise, signal disturbances related to the operation of the nodes,

and limitations of the controllable nodes (limited operation frequency, non-instantaneous switching

between states, etc.).

For the purpose of experimental  analysis,  a laboratory scale model of the slender frame

structure was built and equipped with a pair of controllable nodes, as described in section 3.2.1. The

global version of the proposed control algorithm was tested for free vibrations only, which was due

to the difficulties in its implementation in real-life structures and the better performance of the local

version. Instead, the test campaign focused on the decentralized version of the proposed control

algorithm, which was tested for all three considered types of excitation: free, harmonic and random.

All  the  results  presented  in  the  subsequent  sections  are  shown  in  absolute  values,  not

normalized as in the numerical simulations. The numerical models used are completely linear, so

that normalization was justified and helpful. In the case of the real structure, nonlinearities cannot

be neglected, and thus the amplitudes of all measured values are relevant to the obtained results. It

should be noted that, due to the specific bolted design of the laboratory structure and the presence

of  the  data  acquisition  system  components,  the  natural  frequencies  of  this  frame  are  slightly

unstable. Especially the second natural frequency varied during investigations in the range of a few

hertz. This can result in small shifts in the graphs of the dynamic response of the structure, when

compared to the numerical model, as well as between the different vibration cases considered in the

experimental analyzes.
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4.1. Experimental rig

The CAD model of the laboratory structure was presented in Figure  3.1 and its physical

realization was depicted in Figure 3.2. A more detailed view of the entire laboratory stand, with the

data acquisition system elements indicated as numbered points, is presented in Figures 4.1 and 4.2.

Point PF is the place where the external force is applied to the structure, and points P1–P22

indicate other representative points of the frame, such as the mounting points of the accelerometers

and strain gauges, points of fixing the frame to the ground or placement of the controllable nodes.

Thanks to the use of many measuring elements, it was possible to comprehensively investigate the

dynamic response of the structure, subjected to various loads, during the preliminary tests. The

effectiveness of the damping algorithm is assessed in terms of the signals from the representative

points P15 and P16 and reported in this dissertation. These signals include lateral accelerations,

displacements and other measures derived from these signals, such as accelerance.

Structural  beams are  steel  box  profiles  of  dimensions  15x30x2 mm.  A modal  analysis,

required  to  determine  the  eigenfrequencies  of  the  constructed  frame,  was  conducted  with  16

accelerometers of 6 kHz bandwidth. Strain gauges, configured to measure the strains induced by

bending movement of the beams (Wheatstone half-bridge configuration), are utilized for estimating

the strain energy of the structure: it is assumed that the square of the measured signal is proportional

to the strain energy. Lateral displacements of point P16 (tip of the frame) are measured utilizing

a fast  digital  camera  and  Digital  Image  Correlation  software,  resulting  in  highly  accurate

measurements.  In  the  forced  vibration  cases,  the  excitation  force  amplitude  is  measured  with

a piezoelectric force sensor, located between the frame beam and the effector of the modal shaker.

A real-time  National  Instruments  CompactRIO  (cRIO)  FPGA  controller  is  utilized  for  the

implementation  of  the  control  strategy,  which  is  fed  back  with  a  strain  signal,  treated  as  an

approximation of the elastic energy.
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Fig. 4.1: Experimental frame (top view).



The controller analyzes its  input  signal  in search for  its  extrema.  When it  is  found,  the

controller switches the state of the controllable nodes into the truss state for a short period of time

(3-4 ms). The execution time of the control algorithm loop and the piezoelectric actuators response

time, related to their inertia and the inertia of the housings of the controllable nodes, delays the

response  of  the  control  system  to  the  detected  maximum.  Execution  time  is  shifted  by

approximately 3 ms, which means that the switching moment occurs not ideally in the maximum of

the  analyzed  signal,  but  at  the  beginning  of  the  unloading  phase.  However,  this  does  not

significantly deteriorate the effectiveness of the control system. Strong signal noise, related to the

operation of the structure itself, but also to switching the state of operation of controllable nodes,

makes it necessary to apply appropriate filtering to the feedback signal. For this purpose a 5th order

low pass FIR filter is utilized with a cut-off frequency equal 1 kHz. After its differentiation, the

short-time moving average is also applied for additional smoothing.

The  maximal  frequency,  which  can  be  effectively  controlled  with  the  built  system,  is

theoretically not higher than 170 Hz, but in practice it is approximately 120 Hz. This condition

limits the set of target eigenmodes of the structure to the first two of them, since the third one

corresponds to the frequency of 125 Hz, see Table 3.2.
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Fig. 4.2: Laboratory stand.



A simplified scheme of the laboratory stand and the data acquisition system elements is

presented in Figure 4.3.

4.2. Control strategy validation

The principle of operation of the proposed control strategy assumes that the best moments of

transition from the frame-like to the truss-like state of the controllable nodes are the maxima of the

elastic energy. For the centralized version, these are the maxima of the global elastic energy, and for

the decentralized version, the elastic energy of selected elements of the structure are considered.

This section verifies experimentally the validity of this assumption.

In the case of harmonic vibrations, with constant excitation frequency, in the presence of

damping, the dynamic response of the structure is characterized by an invariant phase with respect

to the excitation signal. Knowing this, in the conducted tests, the control signal could be technically

shifted with respect to the input signal, instead of the default feedback signal (measured strain),

which provides for more stable test conditions.

The structure was subjected to harmonic loads of the frequencies close to the first and the

second eigenfrequencies of the structure. A series of experiments was conducted, in which, under

this excitation signal, the delay between the moment of reaching the maximum value of the input

signal (exciting force) and the moment of triggering the control cycle (switching to the truss-like

mode of operation and back to the frame-like mode) is increasingly shifted in time. If the assumed

mechanism of energy dissipation is correct, the greatest reduction of vibration amplitudes should be

obtained for a zero effective shift between the response and the switching time instances.

The results of the conducted analyzes are presented in Figure 4.4. These are the peak strain

amplitudes measured in point P16 (see Figure  4.1) expressed as the functions of the normalized

phase shift. The values for passive vibrations are provided as the reference.
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Fig. 4.3: Scheme of the laboratory stand equipment.



The greatest reduction of the strain amplitudes occurs for approximately 0.25 and 0.75 of

the period for both vibration modes. These values correspond to the maximums of the strain signal

in the controlled beam and therefore to the maxima of its  elastic energy. This result  proves the

validity  of  the assumption, which serves as the fundamental principle of the developed control

strategy: the optimal moment for switching the operation mode of the controllable nodes is when

the elastic energy reaches its local maximum.

Another  useful  observation,  stemming  from  the  conducted  tests,  indicates  that  the

application of the control strategy results in reduction of the strains in the entire domain of the

normalized vibration period. This means that the control strategy improves the dynamic response of

the structure in  the entire  range of  phase shifts  and that  it  is  purely dissipative in  nature.  The

conclusion is that the optimal moments for triggering the control cycle are when the strain signal

attains  its  local  maxima,  but  even  if  these  moments  are  estimated  inaccurately,  a  certain

improvement in vibration damping will be obtained anyway.

Exemplary time courses of the strain signal, acquired from the sensor placed in point P16

(see Figure 4.1), are presented in Figure 4.5. It shows the response of the structure to a harmonic

excitation in its first (upper graph) and second (lower graph) natural frequency, in both cases for the

phase  shift  that  ensures  the maximal  reduction of  the  vibration amplitude.  Each of  the  graphs

depicts the strain signal for the semi-active control case and for the passive case as a reference. The

plots show also the excitation signal and the control signal of the controllable nodes, which are the

raw electric variables expressed in volts.
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Fig. 4.4: Peak strain amplitudes for the first (left axis) and the second (right axis) natural modes.



It is visible that signals for passive and controlled cases are in phase, which is constant

throughout the experiment. Comparison of the control signal and the strain signal shows that the

optimal moment of switching the state of controllable nodes is ahead of maximum amplitudes of the

strain signal. This difference is approximately equal to 3 ms. This phenomenon can be prescribed to

physical features of the controllable nodes and the control system. When the control signal is raised,

it takes the power amplifier about 3 ms to raise the voltage applied to the piezoelectric stacks to

a level  which  results  in  their  sufficient  elongation.  This  delay  makes the controllable  nodes  to

switch their state of operation exactly at moments of reaching the maximum values of the strain

signal.

4.3. Global version of the control algorithm

For technical reasons, it is not possible to determine the total mechanical energy of the real

structure with the same accuracy as in the case of numerical simulations, even for the structure as

simple  as  the  one discussed  in  this  dissertation.  Any attempts  to  quantify  it  result  in  reaching

a certain approximation of the true value.

An  approximation  of  the  total  mechanical  energy  for  the  investigated  laboratory  frame

structure is the strain measured in point P15 (see Figure 4.1). The part of the structure in the vicinity

of the selected point is highly deformed both in the first and the second mode of vibration, and it

was thus considered as a good proxy of the total potential energy of the frame.
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Fig. 4.5: Strain signal time courses for the optimal phase shift (1st mode – upper; 2nd mode – lower).



4.3.1. Free vibration

It is not possible to utilize natural mode shapes of the structure as the initial conditions for

the experimental analysis. For this reason a lateral displacement of the frame tip was selected as the

initial condition that involves a certain mix of the first and the second modes. This was obtained by

deflecting the point P16 (see Figure 4.1) in the in-plane direction (OX axis indicated in Figure 4.1)

by 5 mm.

The  displacements  of  the  tip,  calculated  utilizing  a  fast  camera  and  the  DIC  software,

obtained for this vibration case are presented in Figure 4.6.

High effectiveness of the implemented control strategy is clearly visible. The displacement

amplitude  is  mitigated  after  the  first  3-4  control  cycles  to  almost  steady  state  with only  some

residual  vibrations.  Application  of  the  control  strategy  resulted  in  reducing  the  RMS  of  the

presented signal  to  49%. The passive case  signal  shows that  the first  two mode shapes  of  the

structure make up its final dynamic response.

Results obtained for this case are fully consistent with the results of numerical simulations.

This  confirms the high effectiveness  of  the proposed centralized,  global  version of  the control

strategy in mitigating free vibrations in slender, planar frame structures.
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Fig. 4.6: Time course of the lateral tip displacement.



4.4. Local version of the control algorithm

A local version of the control algorithm is much easier to implement in real-life structures

than the global one as it does not require the use of a large number of sensors or searching for

a proper proxy of the total elastic energy. For the considered structure, the signal from the strain

gauge  mounted  in  point  P17  (see  Figure  4.1),  is  a  very  good  indicator  of  the  elastic  energy

accumulated in the beam during the loading phase, since it  is an antinode of its S-type bending

mode. Such deformation type is predominant for this beam in the first and the second natural modes

of the structure, which are the only ones that can be controlled, due to the limitations on the highest

node  switching frequency.  The lateral  acceleration of  point  P16 (frame tip)  was chosen  as  the

reference for the assessment of the dynamic response of the structure.

4.4.1. Free vibration

In this case the initial displacement condition was imposed on the structure in the same way

as was described for the global version of the control strategy. The results are presented in time

domain and frequency domain in Figures 4.7 and 4.8, respectively.

The local version of the proposed control strategy mitigates the acceleration amplitudes very

effectively. Just the two cycles of vibration, after the first switching between the states of the nodes,

are enough to mitigate the lateral acceleration amplitude to almost zero.
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Results  presented in the frequency domain clearly  show the significant  reduction of  the

amplitude in the range of the first and the second natural frequency in the semi-active case. At the

same time, application of the control strategy increases the dynamic response amplitudes in the

frequency range above 100 Hz. It leads to the conclusion that the applied control strategy indeed

transfers  the  vibration  energy  into  the  higher  frequency  range,  which  was  its  intention.  The

amplitudes in the higher frequency range, even if increased, are still relatively low. This confirms

the expected efficient dissipation of the transferred energy by means of the natural mechanism of

material damping. The quantitative comparison of the results obtained in passive and controlled

cases is given in Table 4.1. It presents the amplitude ratio between the passive and the controlled

cases for the first four natural modes of the structure (see Figure 4.8). The data confirm that the first

two natural modes are significantly mitigated, while the third and the fourth are amplified.

Table 4.1: Amplitude ratios for the first four natural modes of the structure (passive to controlled)

Mode number 1 2 3 4
Frequency [Hz] 14.5 40.1 125.3 166.3
Amplitude ratio 19 3.54 0.13 0.72

Obtained experimental results confirm the effectiveness of the proposed control strategy in

its local, decentralized version.

4.4.2. Harmonic vibration

The tests performed in the harmonic vibration case are the same as the ones conducted in

numerical analyzes: two cases of excitation are used with the frequency equal to the first and the
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second natural mode of the structure, as well as one case of the sine-sweep in a frequency range

selected to include the first two natural frequencies of the structure. The fundamental principles of

operation of the control algorithm were validated also in this case.

Single frequency

Similarly as in the numerical analyzes, the test cases consisted of exciting the experimental

structure with a harmonic force of the frequency equal to its first and second natural frequencies.

The  local  feedback  signal  is  conditioned  with  a  FIR  filter  and  a  short-term  weighted  moving

average in order to eliminate the measurement noise. The period for which the controllable nodes

remain in truss-like mode of operation after switching equals 3 ms (switching cycle).

A visual comparison of the lateral displacements of point P16 (see Figure 4.1) is shown in

Figure 4.9. It presents the comparison between the case when the controllable nodes remain in their

frame-like  state  of  operation  during  the  experiment  and  the  case  when  the  control  strategy  is

activated and mitigates the amplitudes of the vibrations.
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Fig. 4.9: Time courses of the lateral tip displacement for the first (top) and the second (bottom) eigenfrequencies.



Activation of the control  reduces the RMS of the amplitude to 34% for the first natural

mode and to 74% for the second mode. A closer analysis of the response in the second vibration

mode shows that it includes, beside the predominant second natural frequency component, a small

portion of the first natural mode, which can be interpreted as an evidence for a small backward

transfer of the energy to lower frequency modes.

Sine-sweep

Dynamic response of the structure under the sine-sweep excitation is shown in frequency

domain in Figure 4.10. The figure compares the accelerances calculated for the lateral acceleration

of the frame tip in the frame-like state of operation of controllable nodes and in the controlled case

when the control strategy is activated.

The  amplitudes  of  the  accelerance  are  reduced  significantly  in  the  proximity  of  the

eigenfrequencies of the structure. By applying the control strategy, the amplitude was reduced to

14% for the first eigenfrequency and to 66% for the second mode. It proves the effectiveness of the

proposed control strategy, firstly presented in the numerical simulations.

4.5. Random vibration

A random noise, utilized as the excitation signal,  is limited from the top to 800 Hz. As

applied by the modal shaker, it cannot be considered a purely Gaussian white noise, but it can be

regarded  as  its  good  approximation,  especially  in  the  frequency  range  of  interest  (first  two

eigenfrequencies of the structure).

111

Fig. 4.10: Accelerance of the frame tip for sine-sweep excitation.



Lateral displacements of the structure tip under such excitation are compared in Figure 4.11

between  the  frame  state  of  operation  and  the  case  when  the  control  strategy  is  activated.

A representative sample of 10 seconds duration was selected for this comparison.

It  is  clearly  visible  that  the  application of  the  control  strategy  significantly  reduces  the

amplitudes  of  the  displacements.  Especially  high  levels  of  displacements  (in  the  range  of  3-4

seconds and around 8 second) are mitigated to the average level in the presented sample. The RMS

of the presented signal is reduced to 75% by applying the proposed control strategy. A comparison

of the results in frequency domain is presented in Figure 4.12. Similarly to all the excitation cases

considered so far, the amplitudes at the resonances were reduced very significantly: to 6% only for

the first natural mode, and to 51% for the second mode.

Results for a much broader range of frequencies (up to 320 Hz), under random excitation,

are  shown  in  Figure  4.13.  It  presents  the  comparison  of  the  power  spectral  densities  (PSD),
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Fig. 4.11: Time courses of the tip lateral displacement for random excitation.

Fig. 4.12: Accelerance of the frame tip for random excitation.



calculated for the lateral acceleration of point P16 (see Figure 4.1). In this case the frequency range

of the excitation force was limited to 100 Hz only.

It is clearly visible that the proposed control algorithm brings the intended results  of its

application. Power of the processed signal is significantly decreased in the proximity of the first two

natural frequencies (below 50 Hz) and increased beyond 170 Hz, which confirms the ability  to

transfer the vibration energy into the higher frequency range. The threshold of 170 Hz is related to

the technical limitations of the applied control system. One control cycle lasts at least 6 ms (3 ms

for the uncoupling phase and 3 ms for the coupling phase) which limits the maximum frequency of

operation to 167 Hz.

The resonance around 90 Hz seen in Figure 4.13 corresponds to an out-of-plane mode shape

and it was not accounted for in the numerical simulations since the model was built as a planar one.

The controllable nodes can switch only their in-plane characteristics and therefore cannot influence

any mode shape of an out-of-plane nature. For this reason such mode shapes have been excluded

from the considerations.

Summary

Presented experimental campaign consisted of free, harmonic and random vibration cases.

Due to the high complexity of implementation, especially for more complex structures, the global

version of the proposed control strategy was implemented only in the free vibration case. Despite

only a  rough estimation of  the total  elastic  energy  of  the  structure,  it  resulted in  a  very  good

effectiveness of vibration mitigation. A much more straightforward implementation of the control

strategy is  possible  in  the decentralized version,  which at  the same time results  in  even better

attenuation effectiveness in each of the considered load cases. The experiments have also shown
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Fig. 4.13: PSD of the frame tip acceleration for random excitation.



that application of the proposed control strategy has a negligible impact on reducing the stiffness of

the structure, as indicated by the absence of any shift of the resonances towards lower frequencies

during the operation.
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5. Optimal placement of controllable nodes

The problem of optimal placement of controllable nodes emerged as a side question to the

core subject of the conducted work:  the control  strategy.  It  is  an important  and closely related

problem, since the effectiveness of the applied control strategy can strongly depend on the position

of the controllable nodes.  This is  particularly important  when multiple potential  placements for

these  devices  can  be  selected,  as  in  the  common case  of  multiple-story  frame structures.  The

structure considered so far was a very simple, two-story frame equipped with only two controllable

nodes,  and the set of  possible  combinations  of  controllable nodes placement  was very limited.

Therefore, it could be chosen by intuition. If the topology is more complicated, for example for

a five-story frame, and more controllable nodes are available, the set of possible combinations will

quickly grow, and it will not be possible to reasonably select the best combination by hand. These

considerations  have  led  to  the  development  of  a  procedure  for  evaluating  the  placement  of

controllable nodes, which can be used to identify the best  placement from a set of all  possible

placements.

The assessment  criterion,  utilized  in  the derived procedure,  is  based  on the local  strain

energy corresponding to the selected natural mode shape of the structure. Such a measure is similar

to  the  feedback  signal  in  the decentralized  version of  the proposed  control  strategy  (when the

structure vibrates in one of its natural modes). The same type of the FEM model of the structure is

utilized as in the previous analyses (planar beam elements with longitudinal DOFs), including the

same model of controllable nodes, which employ variable viscous damping coefficient between

coincident rotational DOF, for switching the states between the frame-like and the truss-like modes

of operation.

5.1. Assessment criterion for placement of controllable nodes

The  proposed  criterion  for  actuator  placement  is  designed  specifically  for  the  types  of

structures similar to the one considered so far in this dissertation and for the same actuators. The

derivation draws from the theory presented in section 2.5.1.

The proposed criterion is based on the bending energy of the beams connected in the node.

It is assumed that the accumulated strain energy can be released into local vibrations and ultimately

dissipated by  switching  the  controllable  node  into the  truss-like  state,  that  is  by removing  the

constraint that blocks the relative rotations in the node.
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The position of the ith controllable node in the structure, which is deflected in accordance to

its kth natural mode, is evaluated on the basis of the accumulated local strain energy Eik. As shown in

section 2.5.1, it can be expressed in the following form:

Eik=2∑ j

(∑b∈Bij

EIb

hb

ϵbik)
2

∑b∈Bij

ηbi

EI b

Lb

(43)

where  j represents  the rotational  DOFs of  the  ith controllable node,  Bij is  the set  of  the  beams

aggregated to the  jth DOF of the  ith controllable node,  EIb,  hb and  Lb are the structural (Young’s

modulus) and geometric (moment of inertia, height and length) properties of the beam b, ϵbik is the

curvature-related  component  of  the  strain,  measured  near  the  ith controllable  node  when  the

structure is deflected in accordance to its  kth natural mode, and  ηbi is the parameter related to the

type of the boundary condition on the opposite end of the beam b (2 for free end rotations and 3 for

fixed end). This measure is exactly alike the one shown in equation (27).

In the previous considerations the controllable nodes were assumed to be placed at two ends

of the selected beams and operated synchronously. Under such condition, which is very reasonable,

the local elastic energy that can be released by switching the state of operation of the controllable

nodes  into  the  truss-like  mode  is  proportional  to  the  strain  energy  of  the  pure  beam  model

(accounting  only  for  bending  and  shear  strain  components)  when  the  structure  is  deflected

according to its kth natural mode:

Eik=
1
2
ϕ k

T Li K i Li
T
ϕk (44)

where i represents the beam under consideration, ϕk is the kth eigenvector of the structure, Li is the

transformation matrix and Ki is the stiffness matrix of the considered beam which consists of only

the rotational and transverse displacement DOFs of the beam (classical beam model).

Denoting the set of the considered nodes positions by  I* and the set of all natural modes

under consideration by K*, the proposed criterion of node positioning can be presented as:

E I * K *=rmsk∈K *∑i∈ I *
E ik (45)

which is the RMS, calculated with respect to the considered modes k, of sums of the elastic energy,

possible to be released for all considered placements i of the controllable nodes. The nature of the

proposed measure indicates that its higher values reflect better placements of the nodes.

116



The problem of maximization of the criterion (45) can be formulated as follows:

maximize E I *K *

subject to I *∈P *
(46)

where P* denotes the set of all possible placements of the controllable nodes in the structure.

The most costly unit operation in this procedure is the calculation of the mode shapes of the

structure  but  this  is  done  only K* times.  The  next  most  costly  operation  is  the  calculation  of

energies Eik, according to equation (44). These two operations are however the costs of the standard

modal analysis. Given the results of equation (44), the additional cost of calculating the values of

criterion (45) is linear with respect to the number of considered controllable nodes or beams, and

also  the  number  of  considered natural  modes.  This  means  that,  performed the  modal  analysis,

finding the best placement of n controllable nodes or beams out of m possible positions is done by

finding n highest values of EI*K* index, which has the time complexity not worse than O(nm).

5.2. Numerical validation

The reliability  of  the  proposed  controllability  index was  assessed in  a  set  of  numerical

simulations. Predictions of the developed placement measure were compared to the results obtained

in numerical simulations conducted for each of the considered controllable nodes layout.

5.2.1. Considered structure

Numerical tests were conducted on a ten-story planar frame structure in which possibly up

to  20  controllable  nodes  (2  on  each  transverse  beam)  can  be  mounted  (see  Figure  5.1).  The

transverse  beams  are  denoted  from  1  to  10,  counting  from  the  fixing  point,  in  subsequent

considerations.

In order to ensure an appropriate level of slenderness, the structure is made of steel beams

with  a  very  small  cross-section  of  1x1  mm.  Each  story  has  10  cm  height  and  width  which

compound to 1 meter total height of the frame. The chosen material is steel with 200 GPa Young’s

modulus and the density of 7850 kg/m3. The structure is fixed to the ground at the leftmost nodes.

Similarly as in the previous numerical analyses, the proportional damping model is utilized with 1%

117

Fig. 5.1: Ten-story slender frame, possibly equipped with twenty controllable nodes.



critical damping ratio for the first natural mode. The structure has a more complex geometry than

the structure used in previous sections of this dissertation in order to allow for a larger variety of

possible actuator placement.

The analysis is focused on the first four natural modes of the structure, which are presented

in Figure 5.2 and used as the initial displacement conditions for free vibrations. The corresponding

frequencies are 6.1, 18.7, 32.3 and 47.4 Hz and the calculated critical damping ratios are 1.0, 3.1,

5.3 and 7.7%, respectively.

As depicted in Figure 5.1, controllable nodes are mounted and operated pairwise on each of

the transverse beams,  which makes equation  (44) a  proper  measure for  the energy that  can be

released upon decoupling the joints. In the conducted test verification procedure, it was assumed

that up to 5 out of all 10 transverse beams can be equipped with the controllable nodes. This makes

the set  P* containing all 1- to 5-element subsets of the set {1, 2, …, 10}. The choice of such an

arrangement results in 637 possible positions of the controllable nodes ( C10
1
+C 10

2
+C 10

3
+C10

4
+C10

5 ,

where C means the combination).
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Fig. 5.2: First four natural modes of the considered frame structure.



5.2.2. Criterion assessment technique

The accuracy of the proposed measure was assessed by regressing the values obtained with

it on the results obtained from the numerical simulations of each of 637 sensor placement cases.

The R2 coefficient was chosen as a measure of correspondence.

Due to  the  selection  of  4  target  natural  modes,  each of  the  possible  controllable  nodes

placements required performing 8 simulations of free vibration analysis: one passive case (with all

controllable nodes remaining in their frame-like state of operation during the entire simulation),

acting as a reference, and one when the control algorithm is activated for each of the 4 considered

natural modes. Having calculated all of the required cases, the normalized effectiveness measure is

defined as follows:

ζ I * K *=rmsk∈K *

∫0

T
E I *k

controlled
(t)d t

∫0

T
EI *k

passive
(t)d t

(47)

which  is  the  RMS calculated  with  respect  to  the  set  of  target  modes  of  the  ratio  of  the  total

mechanical  energy integrals for the assessed placement  I* of controllable nodes. E I * k
controlled

( t) and

E I * k
passive

(t) indicate the time courses of the total mechanical energies (potential and kinetic) in the

controlled and passive cases. This measure, as opposed to  (45), indicates better nodes placement

with its lower values and quantifies the actual performance of the tested placement of controllable

nodes.

The  verification  procedure  consists  of  plotting  the  values  of ζ I * K * against  the  values  of

E I * K * for every considered placement of controllable nodes. The R2 coefficient in the nonlinear

regression  between  these  two  variables  is  utilized  as  a  measure  of  the  quality  of  predictions

obtained  using  the  proposed  node  placement  criterion.  Its  high  values  would  imply  that  the

proposed criterion gives reliable results.

In  order  to  verify  the reliability  of  the  proposed placement  criterion,  a  high number of

simulations  is  required  to  calculate ζ I * K * ,  which  is  very  resource-consuming.  This  shows  the

unquestionable advantage of the proposed criterion: it brings results much faster than the intuitive

procedure presented by equation (47) because it does not require any simulation of the response.

In the conducted dynamic  simulations,  the simulation period  T  equals 1 second and the

nodes switching cycle is limited to be not shorter than 2 ms, resulting in the maximum switching

frequency of 500 Hz.
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5.2.3. Criterion verification results

The tests were performed for the four different sets of considered natural modes:

K *1={1}, K *2={1,2}, K *3={1,2, 3}, K *4={1,2,3, 4} (48)

For each of the four listed sets of natural modes, a set of 637 pairs:

{(E I *K *n
,ζ I * K *n

| I *∈P*)} (49)

was calculated for the assessment analysis. The results are presented graphically in Figure 5.3 for

each of the considered sets K*n. Graphs present the scatter plots for each of the considered set. For

each set a nonlinear regression curve is also plotted, which is given by:

ζ I * K *n
∼c1+

c2

c3+E I * K *n

(50)

where ci are the parameters of the regression curve.

The regression resulted in obtaining very high values of the coefficient of determination R2.

The lowest value equal to 78.1% was obtained for the set  K3, and the highest equal to 98% was

obtained for the set K1. This means that the proposed criterion explains from 78.1% to 98% of the

variability of the actual  damping effectiveness. The dispersion of the determined values clearly

increases with the size of the target natural modes set, but the consistency between the calculated

values remains on a satisfactory level.
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Fig. 5.3: Reliability assessment of the proposed controllability measure (sets are indicated above each graph).



Obtained results confirm the reliability of the proposed criterion for the assessment of the

placement of controllable nodes in the structure.

5.2.4. Numerical examples

Due to the readability of the described cases, the considered frame structure is depicted in

this section in the form of ten symbols, each of which either “o” or “-”. These symbols are used to

denote that the corresponding transverse beam is equipped with the controllable (“o”) nodes or

not (“-”). As an example, the string of characters “O-O-------” represents the structure in which

only the transverse beams 1 and 3 are equipped with the controllable nodes.

Exemplary results obtained with the proposed criterion, employed for the ten-story frame

structure shown in Figure  5.1, are presented here for the set of the first four eigenmodes of the

structure ( ∈k  {1, 2, 3, 4}) and the set of all possible placements of up to 5 pairs of controllable

nodes in the structure ( ∈i  {1, 2, 3, …, 10}). Table  5.1 presents the three best and three worst

arrangements of controllable nodes in the structure in accordance to the measure E I * K *4
.

Table 5.1: Best and worst placements of controllable nodes in the structure for the first four natural

modes and up to five controllable beams considered in criterion (45)

Best Worst

1 beam

O--------- ---------O

-----O---- ----O-----

-------O-- --------O-

2 beams

O------O-- ----O----O

O----O---- -O-------O

O-O------- ------O--O

3 beams

O-O--O---- -O------OO

O-OO------ ----O-O--O

O----O-O-- ---O--O--O

4 beams

O----OOO-- -O--O---OO

OOO--O---- -O----O-OO

OOOO------ ----O-O-OO

5 beams

OOOO-O---- -O--O-O-OO

OOOOO----- -O-O--O-OO

O-OO-O-O-- -OO---O-OO
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Results presented in the table should be interpreted as follows: if it is possible to equip only

one transverse beam with the controllable nodes, the best damping performance, for the first four

natural modes of the structure, will be obtained when the beam next to the fixing points will be

chosen and the worst performance will be achieved if the last beam would be selected.

The case of three transverse beams equipped with controllable nodes was selected for the

graphical presentation. Exemplary lateral displacements time courses of the free end of the structure

for the first four mode shapes, acting as an initial displacement of the structure, are presented in

Figure 5.4. Each graph in the figure presents the passive case – when the control strategy is turned

off, and two controlled cases – the best placement of the controllable nodes (beams 1, 3, and 6; see

Table 5.1) and the worst placement of the controllable nodes (beams 2, 9 and 10).
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The  effectiveness  of  the  proposed  control  algorithm  is  clearly  visible.  The  benefits  of

placing the available controllable nodes in their best positions are also significant, when compared

to the case when they are placed in  their worst positions, according to the proposed placement

criterion. In all four considered cases vibration damping effectiveness is significantly higher in the

best placement case than in the worst placement case.

5.3. Summary

Presented  results  confirm  the  reliability  of  the  proposed  criterion  for  placement  of

controllable nodes in frame structures similar to the one considered in the dissertation. Taking into

account  the  time,  necessary  to  investigate  all  the  possible  placements  by  performing  transient

response simulations (see equation  (47)), it  is reasonable to use instead the proposed placement

criterion, where the main numerical cost is the standard modal analysis that needs to be performed

only once.

123



6. Conclusions

This dissertation proposes, studies and verifies a new semi-active vibration control strategy.

Its principle of operation is developed heuristically based on an analysis by Pontryagin’s maximum

principle,  and  it  draws  on  the  Prestress–Accumulation  Release  technique,  which  assumes  the

possibility  of  transferring  the  vibration  energy  from low-frequency  modes  into  high-frequency

modes by means of an instantaneous, local reconfiguration of the structure. For this purpose some

especially  designed semi-actively controlled nodes are utilized,  which can switch their  state  of

operation from their default, frame-like connection into truss-like one in a matter of milliseconds.

The  control  strategy  is  specifically  designed  to  be  utilized  in  slender,  two-dimensional  frame

structures.  Two  versions  of  the  control  law  (global,  centralized  and  local,  decentralized)  are

considered and tested numerically and experimentally.

A series  of  numerical  simulations  constituted  a  numerical  study  which  confirmed  the

effectiveness of the proposed control strategy in different load cases for an exemplary structure.

This  included  the  free  vibration  case  and  two  forced  vibration  cases:  harmonic  and  random

excitation. Free vibration and harmonic excitation test cases presented the results for the first two

natural modes of the investigated structure. Both versions of the control strategy (centralized and

decentralized)  were  investigated  numerically  in  all  of  the  described  load  cases.  Partial  results

obtained for a structure of a more complicated topology and higher vibration modes have been

described in already published article [210].

The proposed control strategy proved its effectiveness of vibration damping in numerical

simulations  in  each  of  the  considered  load  cases.  Subsequently,  it  was  successfully  verified  in

experimental tests.  Both variants of the control  strategy brought very good vibration mitigation

results, however the decentralized version provided a slightly better effectiveness. Combined with

its ease of implementation in real-life structures, the decentralized version is highly preferred.

Based on the theoretical considerations conducted during the development of the control

strategy, a numerically efficient quantitative measure (controllability index) for optimum actuator

placement  was proposed.  It  accounts  for  the  modal  energy,  accumulated  in  the beams through

bending deflection, which can be possibly released by removing the rotational constraints in the

selected nodes of the structure. A numerical simulation campaign, in which the predictions of the

proposed actuator placement measure were regressed on the results obtained from computationally

costly  transient  simulations,  proved  the  reliability  of  the  developed  controllability  index.  The
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advantage of utilizing the proposed measure lies in its very low computational complexity, when

compared to the full system transient simulations.

Possible further research

Currently  employed  controllable  nodes  are  designed  for  in-plane  operation.  A possible

important extension of the proposed vibration control strategy is to apply it to three-dimensional

structures. This would require a new type of controllable node to be developed, possibly based on

a ball joint or an axial joint similar to the one proposed originally by Onoda and his team [17].

The theoretical results obtained in this dissertation using Pontryagin’s maximum principle

served as the basis for the proposed heuristic closed-loop control. However, the main result (17),

which expresses the globally optimal control function in terms of the state and costate variables, can

be  used  to  formulate  an  optimization  problem,  including  full  sensitivity  analysis.  Such

a formulation can be then used in an attempt to find the globally optimal control function by means

of direct, gradient-based optimization procedures.

A minor but interesting extension of the presented considerations would be to investigate the

effectiveness of the proposed control in the case of a kinematic excitation type.

The results presented in this dissertation confirmed that the proposed semi-active control

transfers the vibration energy to higher order modes, where it is dissipated by standard material

damping mechanisms.  This  suggests  an idea  of  modal  control  aimed at  a  more precise  energy

transfer between specific modes.  This is an ongoing investigation and first  results were already

presented in [214].
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