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Abstract

In the past few decades, despite many efforts, researchers have not found a cure for
neurodegenerative diseases such as Alzheimer's disease and Parkinson's disease. The reason for
these failures is probably because we do not understand the nature of these diseases. According
to the amyloid hypothesis, neurodegenerative diseases are associated with the accumulation of
proteins or peptides in the brain leading to neuronal death. For example, Alzheimer's disease can
be caused by the aggregation of amyloid beta (AP) peptides between cells, while Parkinson's
disease is caused by the aggregation of alpha-synuclein protein. If the amyloid hypothesis is
correct, it will be important to find the factors that control the accumulation of insoluble fibrils.
In addition, understanding the mechanisms that break down fibrils is useful work that can help us
find ways to treat the disease. In this dissertation, we studied the role of beta content of a
monomer and surface roughness in fibril formation of proteins. To study the Kinetics of
temperature-induced degradation of fibrils, a new phenomenological theory was developed and
supplemented by simulations.

Previous studies showed that the environment properties (pH, protein concentration, salts,
temperature ...) and intrinsic properties of proteins (hydrophobicity, electrical charge, propensity
to fibrillate in the monomer state, etc) are factors that control the fibril formation rate of proteins.
Experimentally resolved fibrillar structure of the protein consists of crossed [-sheets, which
suggests that monomers with high B content are expected to fibrillate faster than monomers with
a lower B composition. Therefore, studying the monomner structure can help infer information
on the kinetics of the fibril formation process, but this relationship has not been clearly
demonstrated. In this thesis, we collected the fibril formation rate from previous experimental
works and calculated the B content in the monomer state for the AP42 wild type and its 19
mutations using replica exchange molecular dynamics (REMD) all-atom simulations with
implicit water. The high correlation between the experimental aggregation rate and the B content
allows confirming that the B structure in the monomer state is an important factor that controls
the fibrillation rate of AB42. The higher the B content, the faster the fibril formation process and
the dependence of the fibrillation rate on the B content can be described by an exponential
function. Currently, the calculation of the fibril formation time of proteins using all-atom
simulations is prohibited due to the large gap between the real time (days) and the computation
time (ms). From this point of view, our result is very useful, as it opens up a new way to estimate
the rate of fibril formation using [-content, which can be easily obtained using REMD
simulations.

Protein aggregation can occur both in solution and on surfaces, for example, in the case of cell
membranes. Self-assembly of proteins on various surfaces has been the subject of many
experimental and theoretical studies, but the effect of surface roughness on the kinetics of this
process has not been theoretically studied. Here, we have developed a simple lattice model that
allows us to explore this problem in depth due to its low computational cost. For both
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hydrophobic and hydrophilic smooth surfaces our model predicts that aggregation time increases
with protein-surface interactions in weak (entropy-driven) and strong (energy-driven) interaction
regimes. However, in the intermediate regime of interaction, aggregation is accelerated with
increasing protein-surface interaction due to the competition between entropy and energy factors.
It was shown that, in agreement with the experiment, a rough surface retards the fibril formation
of polypeptide chains, and at high roughness this process is inhibited. One of the most interesting
predictions followed from our model is that a weakly rough surface enhances the fibril formation
rather than delaying it. This effect is possible when the protein-surface interaction is moderate
and results from the trade-off of entropy and energy.

Protein aggregates or fibrils can degrade for various reasons such as the binding of other
molecules, the presence of chemical denaturants, temperature increase, etc. Since the degradation
of these complexes is one of the possible treatments for neurodegenerative diseases,
understanding the molecular mechanisms underlying this process, is of great importance.
Traditionally, ThT fluorescence assay has been used to study heat-induced degradation, and the
decay of fibril content, proportional to the fluorescence signal, can be described by a bi-
exponential function of time. Recently, tryptophan fluorescence has been used to control the
amount of monomers belonging to the dominant cluster. Moreover, the engineered ZAB3W
protein was used to sequester the AB monomer, i.e. preventing it from rejoining the parent
cluster. This scenario can be called degradation without recycling, which differs from the
standard scenario, when the monomer released from the parent cluster can be re-associated with
it. It was experimentally shown that without monomer recycling a single-exponential function
can be used to fit the time dependence of the number of monomers of the dominant cluster
provided that the proportion of bound monomers becomes less than a certain threshold. We
developed a phenomenological theory and showed that the dependence of the number of
monomers of the dominant cluster obeys a logistic function for both recycling and non-recycling
cases. Above a certain threshold, this function becomes a single exponential, and this agrees with
experiment. We performed lattice and all-atom simulations for 10 AB37-42 truncated peptides,
which confirmed our theory.
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Chapter 1: Introduction

1.1 Motivation

It is assumed that many neurodegenerative diseases, such as Alzheimer's, Parkinson's,
Huntington's, and others, are associated with protein aggregation, which, under suitable
environmental conditions, can lead to the formation of amyloid fibrils [1-3]. Due to the urgent
need to find effective treatments for these diseases, a huge amount of research has been carried
out on the factors that control the kinetics of protein self-assembly, which is associated with
neurotoxicity [4-6]. These factors can be divided into two groups: external factors and intrinsic
(internal) ones. The first group includes environmental conditions such as protein concentration,
pH, temperature, ionic strength, and presence of membranes, foreign surfaces or crowders.
Intrinsic factors are the internal properties of proteins, including their sequences, charge,
aromatic interaction, hydrophobicity, the population of fibril-prone structure in the monomer
state, etc.

Since there is still no cure for neurodegenerative diseases, the discovery of new factors affecting
protein aggregation has implications not only for basic research but also for applications. In this
thesis, using all-atom simulation with implicit water and experimental results on the rate of fibril
formation, we have proved that the fibril formation rate depends on the beta structure of the
monomer state exponentially; the higher the beta content, the faster the fibrillation.

Another external factor of interest to us is how roughness of the foreign surface affects protein
aggregation. This issue is important because biological processes occur in cells with different
types of surfaces such as lipid bilayers and have been investigated experimentally but
theoretically remain open. With today's computer capabilities, it is not possible to calculate
fibrillization rates based on all-atom models, so to investigate this issue thoroughly we have
developed a lattice model in the presence of the surface. Our model is an extension of the model
developed by the group of Prof. M. S. Li and Prof. D. Thirumalai to study the protein
aggregation in solution [7,8]. Using our model we performed Monte Carlo simulations and
demonstrated that in general surface roughness impedes protein fibrillation and when the
roughness is large enough this process is completely inhibited, which is consistent with
experiment [9]. However, we predict that if the protein-surface interaction is moderate, the weak
roughness might promote fibrillation rather than hinder it.

Since neurodegenerative diseases involve the formation of protein plaques/oligomers, disrupting
these plaques is also one of the possible treatment options. One of the ways to break up
aggregates is to increase the temperature, also known as heat-induced dissociation. Although this
approach may not work because at high temperatures proteins will be inactivated, understanding
the molecular mechanism underlying heat-induced dissociation is significant for basic research.
It is well known that due to thermal fluctuations the content of fibril mass measured by ThT
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fluorescence assay decays with time and the corresponding time dependence is described by a bi-
exponential function [10]. In recent experiments, tryptophan fluorescence has been used to
control the proportion of monomers belonging to the main cluster. Interestingly, it was found that
the decay of this fraction over time obeys a single exponential rather than a bi-exponential
function. To elucidate this issue, we have developed a phenomenological theory and showed that
the time dependence of the number of monomers belonging to the main cluster is described by
the logistic function. Above a certain threshold this function becomes a single exponential
function and this is in agreement with the experiment. Our theory is applicable to both cases
when the released monomer is allowed to return to the parent cluster or not allowed to return
thanks to protein capture technique. We have also carried out both lattice and all-atom
simulations to support our theory.

This thesis contains 5 chapters. A brief Introduction with motivation is given in Chapter 1.
Chapter 2 is devoted to literature review, where we  presented the Kinetics of protein
aggregation, the typical amyloid fibril structures, and their relation to various neurodegenerative
diseases. The biological functions and potential applications of amyloid fibrils in materials
science have been discussed. This chapter has also reviewed the main factors that control the
aggregation process, as well as popular computational models used in studying the process of
fibril formation. Chapter 3 describes the main computational methods used in this dissertation.
Chapter 4 summarizes the results of three publications presented in this dissertation: the
influence of foreign surfaces on protein aggregation with an emphasis on surface roughness [11],
the correlation between beta content in the monomeric state and the rate of protein aggregation
[12] , and the kinetics of thermal degradation of fibrils [13]. Conclusions and a plan for future
work are presented in Chapter 5.

1.2 Other important information

My thesis is organized as follows:

Chapter 1: Introduction

Chapter 2: Literature review on protein aggregation, their association with diseases, main factors
governing the fibril formation; computational models applied to study aggregation
process.

Chapter 3: Computational techniques used in this thesis.

Chapter 4: Summary of publications
4.1 Effect of Surface Roughness on aggregation of polypeptide chains: A Monte Carlo
Study
4.2 Aggregation rate of amyloid beta peptide is controlled by beta-content in
monomeric state
4.3 Heat-induced degradation of fibrils: Exponential vs. logistic kinetics

Chapter 5: Conclusions and future work.
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Chapter 2: Literature Review

2.1 Protein self-assembly kinetics

Proteins are biomolecules that compose of amino acids (residues) connected by polypeptide
bonds. They perform many important functions in organisms, such as building material for
tissues, carrying out information transfer within the body, balancing the PH level, replicating
DNA, etc. A protein functions correctly if it can adopt a specific compact and energetically
favorable three-dimensional structure called a folded structure or native state. The path of
protein evolution from the initial configuration, when the protein is synthesized in the ribosome,
to its folded state in solution, passes through extremely complex intermediate states. In general,
it is counterintuitive if a protein must sample all possible configurations to reach the native state,
because in this case the required folding time can be astronomical. In reality, proteins reach their
native states in milliseconds to seconds and this confliction was known as Levinthal’s paradox
[14]. One of the widely accepted scenarios for the protein folding kinetics has been proposed by
Wolynes, Onuchic and Dill, which is called the funnel theory [15,16]. According to this theory,
protein folding occurs along some pathways rather an exhaustive configuration sampling.

Although, the folding process is under the strict regulation of the cell quality control system
under some environmental conditions, the protein cannot fold to its native state leading to
misfolding and aggregation. Figure 1 shows the free energy landscape of both protein folding
(purple funnel) and protein aggregation (pink) processes, in which protein folding and protein
self-assembly are controlled by intra-molecular and inter-molecular contacts, respectively. The
wide area at the top of the funnel means that when stretched or unfolded, the protein can adopt a
large number of different high-entropy configurations. Folding intermediates and partially folded
states correspond to local minima of the folding free energy landscape. While the folding funnel
(purple) reflects interactions within a monomer, the aggregation funnel (pink) captures not only
intrachain interactions but also interchain interactions, where misfolded proteins form diverse
aggregates, including oligomers, amorphous aggregates or amyloids fibrils, depending on
sequences and external conditions [17].

As briefly mentioned in the introduction, the association between fibril formation or, more
broadly, protein aggregation, and many chronic neurodegenerative diseases such as Alzheimer's,
Parkinson's, and Huntington's has catalyzed a vast amount of research aimed at unraveling the
underlying mechanism and discovering effective treatments [2,3]. Furthermore, the diversity of
amyloid morphologies [18-20], the high percent of hydrogen bonds in their structure, and their
biocompatible properties indicate potential applications of amyloid fibrils in nanotechnologies
and many other areas [21,22].
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Figure 1: Presentation of protein folding, aggregation pathways and the free energy landscape
[23]. The purple and pink colors correspond to the folding and aggregation funnels, respectively.
More information can be visually obtained from the figure.

In the experiment, the concentration of fibrils in solution or fibril mass was controlled by the
fluorescence intensity of binding dyes, for instance, Thioflavin-T (ThT), Congo red (CR). The
time dependence of the fibril mass can be described as a sigmoidal curve with three typical
phases (Figure 2). The lag phase corresponds to the early stage when self-assembly of proteins is
thermodynamically unfavorable until the formation of critical nuclei, from which proliferation
occurs. During the lag phase, the critical nucleus is created following one-step (1SN) or two-step
(2SN) kinetics [24,25]. 1SN refers to a process in which two monomers with a high binding
propensity are combined into a dimer with a high B-content, which plays the role of a critical
nucleus and a growing template. Meanwhile, 2SN is a process in which many monomers
combine into unstructured stable particles and then rearrange into a -rich nucleus. The duration
of the lag phase is characterized by the lag time, tj,g, which can be experimentally estimated by
observing a decrease in the monomer concentration or the mass of aggregates [24]. The growth
phase is recognized by the rapid increase in fibril mass. due to the incorporation of peptides into
this template, which is regulated by many possible mechanisms, such as the dock-lock
mechanism [26], secondary nucleation [27,28], fibril fragmentation [29], fibril elongation.

According to the dock-lock mechanism, fibril formation is a two-stage process has: proteins dock
to a preformed template, which corresponds to the dock phase, then the nascent chain is
rearranged to reach an optimal stable position on the template and this process is called the lock-
phase. The dock-lock mechanism leads to the steady growth of protofibril, fibril as well as other
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aggregated products [26]. In the mechanism of secondary nucleation, the appearance of various
templates results in increasing number of surfaces that catalyze the formation of new oligomers,
on which new self-assembly process possibly occur. This accelerates the formation of fibrils.
Finally, the process gets saturation when the concentration of monomers reaches an equilibrium
state, and the predominant product in solution mainly comprises of mature fibrils.

Mature fibril

! 'l

Fibril elongation
Dock-lock mechanism

.\
m -
0
[+ -
E Protofibril Fibril extension
— L X
= ] . 4
) Primary nucleation 00
o — Fibril fragmentation
(' .Small Disordered g s
oligomers nucleus or joining
Monomer ' /\
2sn @ - @ g . h
Secondary nucleation
1SN @ — ' —- ' b
High beta-prone Rich beta Ordered
monomer dimer nucleus
Lag phase Growth phase Saturation phase
< ) L >
Time

Figure 2: Typical sigmoidal shape of kinetics of protein aggregation [30].The blue and orange
colors refer to poor and rich beta-content species, respectively. More information can be
obtained directly from the picture

Structure of amyloid fibrils

X-Ray diffraction (XRD) [31], solid-state nuclear magnetic resonance (ss-NMR)[32] and cryo-
EM (Cryogenic Electron Microscopy)[33] are the three most common experimental methods for
determining the amyloid fibril structures. Generally, amyloid fibrils have been experimentally
observed as thread-line structures with approximate micron and 7-13 nm in length and diameter,
respectively. They may consist of a single filament or a set of protofibrils twisted together in an
ordered manner. Structurally, the protein arrangement in a fibril mainly takes form of cross-$
structures, in which B-strands (the extended conformation of the polypeptide chain according to
its backbone) are oriented perpendicularly to the fibril axis [1,3].
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Stacking of B-strands leads to the formation of B-sheets, a process mainly governed by hydrogen
bonds between protein backbones. B-sheets can interact and organize to create protofibrils or
protofilaments ,which in turn continue assemble to higher order amyloid fibril structures. Due to
the diversification of fibril formation pathways amyloid fibrils are polymorphic, which depends
not only on specific amyloidogenic sequences, but also experimental conditions, as well as the
fibril formation kinetics. Figure 3 shows various amyloid fibril structures of different AB-
peptides. The most dominant sequences of this class are the Ap40 and AP42 variants, which are
supposed to be closely associated with Alzheimer’s disease [1].

Figure 3: Different fibril morphologies of p-amyloid peptides [34]. U-shaped AP40
2M4] [35] (a) ; fibril structures of AB9-40: (PDB code 2LMP) [36] (b) and (c) 2LMO [36];
S-shaped 2NAO [37] (d), LS-shaped 50QV [38] (e) fibril structures and out-of-register
model fibril [39] (f) of Ap42.

Diseases related to amyloid-like deposit

The aggregation of protein into an amyloid-like structure is thought to be associated with many
diseases in humans. Most of the 37 proteins associated with human amyloid-associated diseases
are rather short polypeptide chains containing less than 400 residues compared to the average
length of human genome protein length of about 500 residues. These 37 proteins include 13
intrinsically disordered proteins, 9 proteins with unknown structure, 14 proteins with a well-
defined native structure, and one with both disordered and globular domains in its structure.

Neurodegenerative diseases are associated with 7 proteins whose amyloid aggregates are located
in the central nervous system, while the non-neuropathic disorder is associated with the
remaining 30 proteins, of which 15 are deposited in multi-organs such as the liver, spleen, heart,
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and the remaining 15 amyloid deposits in one of the specific tissues, causing various localized
human pathologies [1]. One of the most common neurodegenerative diseases is Alzheimer's
disease associated with the assembly of AB40, AB42 peptides and their variants into amyloid
plaques with crossed B-structure [40]. Parkinson's disease is believed to be associated with ao-
synuclein (aS) deposition [41], and prion protein (PrP) aggregation leads to Creutzfeldt-Jakob
disease [42]. Deposition of B2-microglobulin (f2-m), lysozyme (LYS), gelsolin fragments are
associated with systemic dialysis amyloidosis [43], systemic lysozyme amyloidosis [44], and
systemic familial amyloidosis [45], respectively. Localized disorders include type Il diabetes
induced by islet amyloid polypeptide deposition (IAPP) [46], medial aortic amyloidosis is closely
associated with medin amyloid formation [47] or injectable localized amyloidosis associated with
enfuvirtide peptide aggregation [1,48].

Non-amyloid deposits can also cause human diseases. Aggregation of the 2355-residue proteins
Fibronectin (FN) is associated with FN glomerulopathy [49,50]; Hemoglobin misfolding leads to
sickle cell anemia or Heinz body anemia [1,51]; deposition of cellular tumor antigens p53 may
indicate cancer development [52,53].

Amyloid fibrils have received much attention due to their potential association with many
serious illnesses, however, in nature, there is a class of amyloids involved in a wide range of
functions in mammals, bacteria, fungi and insects called functional amyloids [17]. For example,
amyloid of hormone signaling peptides stores, sorts or releases hormones in mammals [54]; Curli
amyloid contributes to the construction of extracellular matrix [55]; the HIV virus exploits the
amyloid deposition of prostatic acid phosphatase fragment and semenogelin for its infection [56].

Another positive aspect of amyloids is artificial amyloids created in vitro from non-toxic
proteins. Artificial amyloids retain the typical beneficial characteristics of natural amyloid fibrils,
including their extreme aspect ratio, surface chemistry coated with functional amino acids, or
high quality tensile modulus elasticity, so they are used in many fields [17]. Artificial amyloids
can serve as templates for fabricating new materials, devices, and nanotechnologies [20].
Decorating gold, silver, and palladium nanoparticles with amyloid fibrils improves the delivery
of such particles to a living organism [57]. Cheetham et al. created drug-peptides whose
nanofibrils and nanotubes acted as drug loading agents [58]. Artificial amyloids are also used for
the synthesis of gels used in cell culture and growth [59], and are used as materials for the
manufacture of optical devices such as organic/polymer light emitting diodes (OLED/PLED)
[60], or for the creation of membranes based on amyloid for water purification [61].

2.2 Factors control the aggregation process

Proteins are divided into two classes: native or ordered and intrinsically disordered proteins
(IDPs) [62]. Ordered proteins usually fold into their native state in which they function. By
themselves, IDPs do not take a well-defined shape, but they can fold in the presence of other
proteins. Under certain conditions, proteins misfold into off-pathway intermediates and
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aggregate. Misfolding of proteins does not necessarily lead to aggregation, although in many
cases the two processes are linked. Here we will review the main factors that affect protein
aggregation. They are grouped into two categories: internal or intrinsic factors related to protein
properties and external factors related to the environment.

2.2.1 External factors
Temperature

Assembling of monomers to higher-ordered structures is strongly influenced by temperature [63-
65]. The aggregation rate of B-Lactoglobulin sharply increased as the temperature changed from
30°C to 50°C [66]. The acceleration of nucleation [67] and the elongation phase [68] for self-
assembly of AP peptides was observed in the temperature range of 29-45° C and 4-40° C,
respectively. Furthermore, some proteins exhibit cold-denaturation, in which their native
structure loses stability at low temperatures that catalyzes condensation [69,70]. Ribosomal
protein L9 exhibited a higher aggregated mass at 4°C (76%) than at 25°C (35%) [70], lowering
the temperature from 37°C to 5°C, which promoted the oligomerization of some monoclonal
antibodies [71]. In a narrow temperature range, the temperature-dependent rate of aggregation of
some proteins follows the traditional Arrhenius law [72-74]. However, over a wider temperature
range, proteins may not obey this rule [5,65,75-77]. All direct or indirect effects of temperature on
proteins complicatedly influent the whole self-assembly process. However, in general, the
temperature dependence of aggregation time on temperature has a form of U-shape [78]. This is
due to the competition between entropy and energy, since at high temperatures (entropy-driven
regime) the system spends a lot of time reaching the fibril state among a huge number of states,
and at low temperatures (energy-driven regime) thermal energy is not enough to escape local
energy traps. Thus, in both regimes, the fibril formation time is long. Rapid aggregation occurs at
the bottom of the U-curve when there is a trade-off between energy and entropy.

Protein concentration

Concentration of proteins is one of the most important factors affecting their self-assemble
ability because increasing the protein concentration reduces the distance between proteins,
enhances their interaction, and thereby improves their self-association[79,80]. Protein aggregation
can occur above a concentration threshold that depends on proteins. The threshold of AB42,
AP40 peptides is around pM [81,82] or even nM ranges [83], while PolyQ, B-Ovalbumin, and a-
synuclein self-assemble at the concentration around 3uM [84], 7uM [85] and 0.7 puM [86],
respectively. Increasing monomer concentration reduces the lag time and aggregation time in
typical sigmoidal nucleus-dependent on-pathway aggregation due to the promotion of monomers
collision [86]. However, in some cases [87,88], the aggregation slows down when adding more
monomers to the solution due to the competition between the formation of clusters which do not
contribute to the aggregation pathway (off-path way species) and the on-pathway species [89].
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In protein aggregation that follows the primary nucleation mechanism, the dependence of any
characteristic time (t¢) such as lag time, or half time, on the monomer concentration (C) is given
by 7= = C "Y' [90], where nc is the size of the critical nucleus of the aggregate. Different
concentration dependence was observed for the secondary nucleation case [91].

Pressure

High hydrostatic pressure (HHP) [92-94] impacts on protein conformations, protein-protein
interaction and further on their oligomeric or aggregated forms through volume changes [95].
Many studies [53,95] showed that, under high-pressure conditions, the change in volume due to
expulsion of water from interior cavities of proteins [96], hydration of hydrophobic surfaces [97],
dissociation, and breakage of associated ion-pair [98] are the cause of pressure-induced
unfolding, and hence the aggregation rate and pathways [99-101].

pH

The pH level of the solution modulates the charge density of the protein surface. Environment
with extreme pH leads to a high density of like charges on the surface of proteins leading to their
strong repulsion, and reducing self-assembly. For example, self-assembly of AB42 peptide is
inhibited at pH>9.5 due to electrical neutralization of the residue Ly28, which prevents the
formation of a salt bridge between Ly28 and Asp23, which plays a key role in aggregation [102].
Generally, pH value around protein isoelectric point of a protein enhances protein aggregation
[103].

lonic strength

Just like pH, ionic strength of surrounding environment strongly influences the kinetics of
protein self-assembly as well as aggregate morphology. Hover et al. observed various structures
of a-synuclein deposits in NaCl and MgCl, solutions [104]; the presence of SO4%, CI', I', ClO4
affected the amyloid formation of B2-microglobulin [105]. The effect of ionic strength on the
aggregation propensity of B-lactoglobulin protein [106], islet amyloid polypeptide (IAPP) [107],
AP40 [108] or AB42 [109] have been investigated.

Salts

Salts dissolve in solution to cations and anions.These ions can bind unpaired charged residues or
protein backbones leading to the change in protein conformations, solubility as well as inter-
protein interactions, which affect the aggregation rate [110-112]. For example, rhGCSF self-
assembly was enhanced in present of NaCl, but the addition of NaCl retarded aggregation of
recombinant factor VIII SQ. Goto et. al. showed that modulation of NaCl concentration resulted
in the competition between fibril formation and amorphous aggregates of 2-microglobulin [113];
Adding guanidinium hydrochloride (GdmCI) and CaCl; to solution of bovine serum albumin
alters their aggregation behavior from a downhill to nucleated-dependent mechanism [114]; HCA
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Il aggregation kinetics changed from monophasic to biphasic kinetics at 328K under the effect of
salt ions [115].

Crowding and confinement

Proteins can misfold and aggregate when surrounded by various objects called crowders. In
living organisms, crowders include proteins, sugar, lipid membranes, chaperons, DNA, RNA
collagen, etc. which occupy up to 40% of a living solution [116-118]. In vitro, crowders can be
artificial materials inserted to solution, such as nano particles [119] or other polymers [120].
Crowders can accelerate the protein self-assembly because their volume exclusion restricts
accessible space of the protein reducing the protein entropic cost [121-125]. However, retardation
of the aggregation process occurs in a crowding milieus of sufficiently small particles, where
crowders limit the peptide diffusion [119,126,127] or deform proteins from their aggregation-prone
state [128].

Crowding and confinement are often discussed together because of their close relationship.
While crowders refer to molecules surrounding proteins which aggregate, confinement describes
the boundary of rigid or fixed structures including chaperon, ribosome exit tunnel or
cytoskeleton [129]. Typically, dependence of the protein aggregation rate on the confined volume
(or size) can be described as a U-shape curve which results from the competition between the
entropy and energy of proteins. A narrow confined space limits the conformational entropy of
proteins, preventing them from assessing to an optimal energy state; therefore, the aggregation
time rapidly increases. The protein conformational entropy sharply expands with an increase in
the confinement volume, which leads to slowdown in the aggregation rate [126].

Foreign surfaces

Protein is not only aggregate in solution but also in environment of various surfaces. We can
consider foreign surfaces as crowders; however, not the same as crowding concept defined as the
effect of the whole medium impacts on the protein self-assembly, the role of foreign surfaces on
the process is being investigated more details because of their wide range applications including
drug discovery, novel materials as well as polymer science [130-132]. Surfaces possibly accelerate
the aggregation process such as many lipid membranes catalyze the fibril growth [133-135], mica
and glass surfaces were reported to accelerate a-synuclein [136] and AB18-22 [137] fibrillations.
By contrast, the presence of foreign surfaces can also restrict assembly of amyloid fibril; the
misfolding of IAPP and AB42 to their fibril-like structures were restricted by appearance of the
polymeric nanoparticles coverage [119] and the protein-coated surfaces of graphen oxide [138],
respectively. Furthermore, the impact of surfaces can change the fibrillar morphologies [139,140]
or even if completely alter them [141].

Protein aggregation also depends on the topologies [142] as well as roughness of surfaces [9,11].
Further discussion about effect of surfaces on protein self-assembly will be mentioned in section
4.2 of this thesis.
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Other factors such as oxidative stress, organic solvent, ligands, freezing, thawing, metal ions, UV
illumination, drying, pumping, surfactants, biopolymers, and mechanical-force-mediated
amyloid formation have been studied [5,63,143].

The main external factors discussed above are in vitro factors. There are also in vivo factors
affecting protein aggregation such as aging, over expression, oxidative stress, pathogenic
mutations, impaired autophagy and proteasome impairment [143].

2.2.2 Protein intrinsic factors
Mutations

The aggregation ability of proteins strongly depends on their sequence. Therefore, it is natural
that mutations that change the order and type of amino acids in the protein sequence have a huge
impact not only on the kinetics, rate, but also on the morphology of the aggregated products of
the self-assembly process [3,144]. For AP, mutations E22Q (Dutch mutation) and D23N showed a
higher propensity to aggregate than its wild type [145-147], while substitutions HGR, D7N, K16N,
E22A [148,149] alter fibrillar pathways, enhancing the formation toxic oligomers. Three mutations
AS3T, A30P and E46K in a-synuclein associated with Parkinson's disease slightly changed the
structure of the monomer; A53T and E46K promote the kinetics of fibril formation, while A30P
catalyzes the formation of oligomers [150-152]. In the case of the tau protein associated with
Alzheimer's disease, some mutations interfere with the ability of tau to bind to microtubules or
accelerate tau self-assembly, which reveals potentially pathology [153-155].

Charge

A high net charge enhances peptides the solubility due to its effect on promoting the repulsion
between peptides, which slows down monomer aggregation [156,157]. Therefore, mutations that
reduce the protein net charge can improve self-assembly. Otzen et.al [158] observed the tetramer
formation of the non-amyloidogenic protein S6 from Thermusthermophilus after being replaced
its 4 charge residues with non-polar neutral residues. The fibril formation rate of Ap peptides
rapidly increased as their net charge is reduced from -3e to -2e due to English [159] and Tottori
mutations [160].However, in some cases, increasing protein local net charge was required for
amyloid formation [8,161]

Aromaticity and hydrophobicity

In their study with different short amyloidogenic peptides, Gazit et. al. observed the = stacking
interaction in aromatic residues which plays an important role in the arrangement, orientation
and stabilization of amyloid structures [162]. Another example: under physical pH condition, the
diphenylalanine peptide FF strongly favors self-assembly into stable nanotubes [163].However,
the assumption that aromatic residues play a main role in the early stages of the aggregation
process was challenged, because some observations showed that non-aromatic peptides derived
by replacing aromatic side-chains by hydrophobic ones still retained their self-assemble ability
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[164]. Although, this also indirectly indicated the catalyzing effect of hydrophobic residues on the
process, the investigation of various truncated fragments such as AB16-22 suggested that the
combination of aromatic, hydrophobic and even steric arrangement can promote fibril formation
[165].

Propensity of fibril-prone conformation in monomeric state

The fibril-prone structure N* of the monomer is the structure of that monomer in its fibril state.
The probability that a monomer is in the N* state is defined as the population of fibril-prone state
Pn+. Many studies [8,166] have shown that the higher the Py~ value, the faster the aggregation.
Constraint of the D23-K28 salt bridge of AB40, which stabilized the fibril-prone state of the
monomer, dramatically increases the rate of their aggregation compared to its wild type [167].
Self-assembly of AB40 peptides into a pB-sheet fibril is much slower than that of AB42 due to a
higher B-content of AB42 monomer than AB40 monomer [168,169]. Important simulation work by
Li el. al. with a lattice model showed an exponential dependence of fibril formation time on Py«

[8].
Mechanical stability of the fibril state

Kinetics stability Gy, of a fibril state is defined through probability to achieve fibril state Py (EQ.
1) by Kouza et al. [34]. Through simulation, they found that the fibril formation time z5;, did not
correlate with either the fibril state energy Esip or the free energy F, but exhibited an exponential
dependence on the Kkinetic stability G, (Eq. 2). Such a relationship between G, and zi, can be
restated that the higher the kinetic stability of the fibril state, the faster the process of fibril
formation.

Based on a natural inference, it was hypothesized that fibrillar structures readily accessible over
long simulation times can optimize the arrangement of their peptides to resist degradation by
external mechanical forces, i.e., are more stable in terms of mechanical stability [34].

Ggp = —kgTInPgy, (1)

Tp = expla * Ggp) (2)

Therefore, the kinetic stability of the fibril state can be related to its mechanical stability in such
a way that the higher the kinetic stability, the higher the mechanical stability. Since the stability
of the kinetics is associated with both mechanical stability and the rate of aggregation (Figure.
4), they conclude that the higher the mechanical stability, the faster the aggregation.

Because mechanical stability of a fibril can be accessed by Steer Molecular Dynamics (SMD)
simulation, this result opens a new way to estimate the aggregate rate by using SMD instead of
conventional MD that is much more expensive. The hypothesis about the relationship between
the mechanical stability and fibril formation time was successfully confirmed for short peptides
KLVFF and FVFLM, as well as for AB40 (2M4J) and AB42 (2NAO) [34]. For example, AB42 is
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mechanically more stable than AB40 [34] and aggregates faster than APB40, which is consistent
with the presented here hypothesis.

ol Ty

Fast aggregation <=—> High kinetic stability <==—> High mechanical stability

Figure 4: The relationship between the aggregation rate, Kkinetic stability and mechanical
stability

Beta content of the monomeric state

Thu et al. have shown that the beta content of the monomer controls the propensity of a protein
to aggregation [12]. This factor will be discussed in detail below as one of the main results of the
thesis.

2.3 Computational models for studying protein aggregation

Many computational models have been developed to investigate the protein folding and
aggregation. They range from low resolution models such as lattice and simple coarse-grained
models to higher resolution models including systematic coarse-grained and especially all-atom
models. Because of the limitation of computational resources the combination of different
models has contributed to the understanding of protein self-assembly in many aspects [25,170].

O
L
All-atom Coarse-grained Lattice

~uUs ~ms ~S

Figure 5: (Left) All-atom model for proteins, where all atoms are taken into account and the
simulation time scale is of order of 1 us on standard computers but one can perform simulations
up to ms on special-purpose computers such as Anton designed and built by D. E. Shaw
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Research. (Middle) Off-lattice coarse-grained model, which reduces the number of atoms for
each amino acid and the simulation time scale, is on the order of 1 ms. (Right) Lattice model, in
which each amino acid is replaced by a single bead and the simulation time scale ~ 1 s.

2.3.1 All-atom models
In this thesis we restrict ourselves to classical all-atom models used to study proteins, where each
atom is considered as a particle without the internal structure (electrons and nucleus) and all
atoms are taken into account (Figure 5). The interaction energy of atoms (force field) is given by
the following equation

U(r) = Ustretch + Ubend + Udihedral + Uelectrostatic + UVdW! (3)

Where Upend, Ustretch, Udinedral @are bonded potentials, while electrostatic Ugectrostatic and van der
Walls (vdW) term U,q, represent non-bonded potentials. The detail information about each term
is showed in Figure 6.

ky(b — bg)? kg (6 — 6,)? %kd[l + cos (ng — ;)]
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Figure 6: Ugtetch = kb(b-bo)z, where ky - bond stretching force constant, b - bond length, b - bond
length in equilibrium. Upeng =Ko(6-60)°, ko - angle bending force constant, & - bending angle, &, -
reference angle obtained in equilibrium. Ugihegrat = %2 Kg[1+c0S(ng-¢s)], Kq - dihedral angle force
constant, ¢ - dihedral angle, ¢s - phase shift, n =1, 2, 3 is a symmetry coefficient. U-
electrostatic=0i0j/€7ij, O, Qj - charge of atoms i and j, rjj - distance between atom i and j, & - the
electrical permittivity of medium. Uyaw = (Aj/rii)-(Ci/ri®), Ay, Cy are coefficients of the
Lennard-Jones potential, rj: distance between atom i and j.

Different groups have developed different force fields (FFs) and the most frequently used FFs for
studying proteins include Amber [171], CHARMM [172], GROMOS [173], and OPLS [174]. They
are used with various explicit water models such as TIP3P [175], OPC [176], SPC [175] or implicit
water models including the Generalized Born model (GB) [177], Poisson — Boltzmann (PB)
model [178]. In addition, some FFs have been developed or modified to capture the behavior of
IDPs , which are a99SB-disp [179], ff99SBnmr2 [180], CHARMMS36IDPSFF [181] force fields.
More information can be found in recent reviews [25,30,182].
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Today, all-atom model are implemented in many convenient software, such as Gromacs [183],
Amber [184], Charmm [172] or NAMD [185], which are widely used in scientific community.
Concerning applications of all-atom models to study protein aggregation, we recommend recent
reviews [25,182].

2.3.2 Coarse-grained models

Coarse-grained models are based on a reduction in the number of particles or degrees of
freedom, which speeds up simulation and improves sampling (Figure 5). However, the use of
such simplified models can lead to biased observations, which requires an appropriate choice of
model for a given problem. Coarse-grained models are classified as off-lattice models and on-
lattice models, in which particle motion is limited only by lattice nodes [30].

Off-lattice coarse-grained models

Several off-lattice coarse-grained force fields have been developed for biomolecules such as
Martini [186,187], OPEP [188,189], UNRES [190,191], AWSEM [192]. AWSEM FF was used to
build AWSEM Amylometer, a powerful tool to predict amyloidogenic proteins [193] and
investigated the nucleus formation of Tau fibril formation process relating to Pick’s and
Alzheimer’s diseases [194]. The OPEP force field was used to investigate the correlation between
the B-sheet content and pH environments [195], the important role of B-barrel structure in early
stage of NHVTLSQ oligomerization [196,197] and observed the presence of the pore and brand
structures during aggregation of 1000 truncated AB16-22 [198].The dock-lock growth mechanism
[199], role of a-to-P transition in the formation fibril structure [200] and morphologies of small
oligomers [201] of truncated AP peptides have been explored by using UNRES FF.

Other more simplified off-lattice models also had the significant contribution to many aspects of
the protein aggregation. Two-state model of Vacha and Frenkel considered monomers as patchy
sphero-cylinder’s shape. This model successfully captured two-filament amyloid-like
configuration [202] and the nucleation-dependence mechanism of peptide aggregation [203,204],
and explained the effect of foreign surfaces on protein aggregation [132], as well as provided
much insight on dynamic of oligomer population [205]. A different patchy protein particle model
designed to study self-assembly was built by Briels and his colleagues [206]. By conducting
Brownian dynamics simulation, they reported that a-synuclein aggregation can occur according
to a nucleation-dependent or two-step mechanism, the presence of a preform template increases
the rate of transformation of disorder oligomers into fibril-like structures [206]. They also
released a higher resolution version of this model, which allowed them to evaluate the process of
adding a peptide at the fibril end [207]. Barz and Urbanc obtained various morphologies of
aggregates in simulation with their homemade tetrahedron model, in which a monomer was
constructed by 2 attractive and 2 repulsive beads forming a tetrahedron [208]. By modulating the
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relationship between attraction and repulsion interactions, they assessed the fibril rupture
propensity of various amyloidogenic protein sequences [194].

In the tube model developed by Hoang et.al., each polypeptide chain is defined as a self-avoiding
flexible tube of identical Ca atoms [209]. The applications of this model include the investigation
of nucleation and growth kinetics of the self-assembly process [210], studying the mechanism of
formation of protofilaments from unstructured clusters [211] or observing the catalytic effect of a
template formed by highly fibril-prone sequences on aggregation of poorly amyloidogenic
sequences [212]. Another one-bead-per-residue Ca model constructed by Cieplak and
Mioduszewski [213] showed the existence of a liquid-gas coexistence curve, as well as a novel
amyloid-glass phase of polyglutamine chains at room temperature and at low temperature,
respectively [214].

Pellarin and Caflish introduced a two-state model of ten-bead amphipathic peptide (4 beads for
the protein back-bone and the remaining 6 for its side chain). The peptide can rotate around its
internal dihedral and trigger the conversion between amyloid-competent and amyloid-protected
states. A higher conversion rate implies a higher amyloidogenicity of the peptide [215].
Application of the model has been focused on considering how the fibril-prone propensity of
peptides influences their self-assembly kinetics as well as aggregate morphologies [216] under
different conditions such as various concentrations [215,217], the presence of membrane [218],
crowders [123] or surfactants [219]. Shea et al. developed a middle resolution protein model in
which each amino acid consists of one-bead side chain and two other beads representing two
interaction centers along the backbone. They divided side chains into 4 types: hydrophobic,
polar, positively and negatively charged. Similar to the Pellarin model, Shea’s model has been
used to solve many aggregation problems, for example fibril formation kinetics in bulk [220,221],
on surface [222], on lipid bilayer membrane [134].

On-lattice coarse-grained models

Lattice models are highly simplified coarse-grained models that greatly improve sampling and
reduce simulation time (Figure 5). However, in such models, all molecules are limited in their
movement on the lattice network, which means that they can only be suitable for studying the
general properties of the protein aggregation process. One of the simplest lattice models
developed by Irback et al., called the stick model, where the monomer has the form of a stick
located at a lattice site. When performing MC simulations for 105 sticks, it was reported that the
stick model reflects the sigmoid kinetics of the fibril formation process and the interaction
between the lateral and longitudinal growth of fibril-like structures during their formation [223].
The peptide can be considered as a cuboidal unit cells in the lattice model of Zhang and
Muthukumar, which showed that the self-assembly kinetic of cuboidal monomers follows a
nucleation-dependent mechanism [224].
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The most complex lattice model is the multi-bead lattice model developed by Frenkel et al. In
this model, each residue consists of one bead and a side chain vector, and the surrounding water
molecules are assumed to be vacant lattice sites. The integrated MC algorithm allows peptides to
move and controls their self-assembly [225]. The model has been used to study the interplay
between peptide folding and aggregation [226]. Recently, Tran et al. implemented the OPEP force
field in this lattice model and applied it to determine the critical nucleus of self-assembly of
truncated AB42 peptide [227]. Li et al. developed a model in which each chain contains 8 beads
and applied it to study many problems such as evaluating the correlation between fibril formation
time s, and charge, hydrophobicity as well as the population of fibril prone state N* of
monomer [8]. This model has been also employed to investigate the role of a preformed template
[228] and crowding environment [78] in protein aggregation. It has been useful in developing a
new method to determine size of the critical nucleus [229], as well as in revealing the relationship
between the mechanical stability and the fibril formation rate. CABS model [230] was used to
predict fibril-prone fragments of proteins [231].

Because the model developed by Li et al [7] is widely used in works presented in this thesis, we
will refer to as Li-Klimov-Straub-Thirumalai model and describe it in detail in the Methods.
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Chapter 3: Computational Methods

3.1 Monte Carlo simulation

Monte Carlo simulation (MC simulation) [232] , uses repeated random sampling to explore the
phase space and calculate physical quantities of interest. To move from one configuration to
another configuration of a polypeptide chain, stochastic random walks , which include 3 local
moves (corner flip, tail rotations and crankshaft) (Figure 6 [7]) are trialed. To speed up
aggregation we have also implemented global moves, which allow translating or rotating the
entire chain. The acceptance of a MC move is decided by using the Metropolis algorithm [232].

* Terminal move o—i

* Corner Flip

* Crankshaft

Nl Lo
®---9

Figure 7: 3 types of local moves in our lattice model.

Metropolis algorithm

Suppose the local energy of the old conformation is Eyqg and the local energy of the new
conformation obtained after application of a MC move is Epew. Then, according to the Metropolis
algorithm, which is also named as Metropolis—Hastings algorithm [232], the acceptance rate for
the MC move is
1: Enew < Eold
kaccept =1 ZFoia~Enew) (4)
e kBT ’ Enew > Eold

Note that the Metropolis algorithm holds for a system in the canonical ensemble (NVT) with
energy obeying the Boltzmann distribution.
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3.2 Li-Klimov-Straub-Thirumalai lattice model for protein aggregation:

Li et al. were built a simple lattice model [7] for studying aggregation of polypeptide chains. In
this model a chain has 8 beads denoted by +HHPPHH- where +,-, H, P (Figure 8) stand for
positive, negative, hydrophobic and hydrophilic amino acids. Chain movement is enabled by 3
local MC moves including tail rotation, corner flip and crankshaft rotation and two global moves
(translational and rotational moves). The translational move allows a peptide to be translated by
a lattice spacing a in random direction while in the rotational move, the peptide is rotated by 90
degrees around a random chosen axis. Polypeptide chains perform random moves in a simulation
box with periodic boundary conditions applied. The energy of N peptides is given by the
following Equation:

N M N M
E= Z esiysi(d(ryy — a) + Z Z esiysi(d(rij=a) » (5)

I=1i<j m<l ij

Where rj; is the distance between residues i and j, a is a lattice spacing, sm(i) indicates the type of
residue i from m-th peptide, and 6(0) = 1 and zero, otherwise. The first and second terms in Eq. 5
represent intra-peptide and inter-peptide interactions, respectively. A pair of beads interacts only
if they form a contact, i.e. the distance between them rjjis equal to the lattice spacing a and |i-j| >
3. Our toy force field (Table 1) with interaction energies between different pairs of amino acids
is roughly based on the statistical potentials obtained by Betancourt and Thirumalai [233]. The
native state of the monomer is compact (Figure 8), while the fibril-like structure has the form of
anti-parallel structure.

Beads H P + -
H €HH 0.2 0.2 0.2
P 0.2 -0.2 -0.2 -0.2
+ 0.2 -0.2 Ett E4-
- 0.2 -0.2 €+ e

Table 1: Energy of interaction between beads in the lattice model. H, P, +, - stand for
hydrophobic, hydrophilic, positively charged and negatively charged beads, respectively. epy &++,
€... &+ are the interaction energies between hydrophobic, positively charged, negatively charged
and positively-negatively charged pairs, respectively
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Figure 8: First row, from left to right: a random configuration of monomer constituted by the -
HHPPHH+ sequence, monomer native state and fibril prone state N*. Second row: the fibril
structures of N=6 and N=12 chains.

Fibril and fibril-like structures

MC simulation starts from initial random configurations of peptides to more ordered structures
including the fibrillary and fibril-like structures. Figure 8 shows the fibril structures of N=6 and
N=12 chains in which the monomers are arranged in anti-parallel motif and achieve the lowest
energy. Inter- and intra-chain contacts in the fibril state are called fibril contacts. We defined an
order cluster as a fibril-like structure if each monomer in the cluster has at least one inter-chain
contact and the total number of fibril contacts exceeds 80% of the fibril contacts of the fibril
structure.

Lattice model for smooth and rough surface

To investigate the effect of foreign surfaces on protein self-assembly, we introduced surfaces
into our lattice model. A smooth surface is defined as a square flat surface perpendicular to the z-
axis at the origin. Single balls, double balls, or both single and double balls (the numbers of
single balls and double balls are the same) are randomly distributed on a smooth surface, which
creates a rough S-surface, D-surface or DS-surface, respectively (Figure 9) [11].
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Figure 9: Aggregation of 6 peptides system on (A) S-surface (B) DS-surface (C) D-surface
Fibril formation time and time of formation of the fibril-like structure

Fibril formation time (zsip) and time of formation of the fibril-like structure (zagg) are measured in
the number of Monte Carlo steps (MCS). They are defined as the first passage times needed to
reach the fibril and fibril-like structure. Note that z,gq has been used to study aggregation on a
rough surface, when the acquisition of the fibril structure is prohibited.

3.3 Molecular dynamics

MD simulation is a computational method for studying molecular systems using computer [234].
In MD, trajectories of atoms are obtained from the numerical solution of the Langevin equation
(Eq.5) with a given force field and water model.

Langevin equation

Stochastic differential Langevin equation is a Newton equation but the friction and noise terms
are added:

d%#

m the mass of atom, y the friction coefficient, and . = VU , where potential U is given by Eg. 3.
Random force /' related to random interactions between atoms of the biomolecule and
environment is a white noise

<r(t)>=0,
<T@rt") >=2ykgTs(t —t') (6)

Where ks is a Boltzmann’s constant, T temperature and J(t - #/) the Dirac delta function.
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The motion Equation 5 was solved using the leap-frog [235] algorithm with a time step At=2 fs.
The length of all bonds associated with hydrogen atoms was constrained by the SHAKE
algorithm [236]. The temperature was maintained through the Langevin thermostat [237] with a
collision frequency of 2 ps*. A cutoff of 1.4 nm was chosen for the calculation of the vdw
force, and the particle mesh Ewald method [238] was used to compute the long-range electrostatic
interactions. The simulations boxes were chosen large enough to avoid interaction with the
periodic images and size effects were minimized by applying periodic boundary conditions.
Counter ions were added to neutralize the system.

3.4 Steered molecular dynamics

Steer molecular dynamic (SMD) [239] is a simulation method designed to capture single-
molecule force spectroscopy experiments including AFM [240], laser optical tweezers [241] and
magnetic tweezers [242]. These single-molecule force techniques shed light on many
biomolecular phenomena ranging from the folding, unfolding [243] to aggregation [244]of
proteins. In SMD simulations [239,245,246] an external force is applied to a dummy moving with
constant speed v in pulling direction (Figure 10). This dummy atom is connected with the pulled
atom of the studied system through a spring with a spring constant k. If we define x as the
displacement of the pulled atoms from its initial position, then the force experienced by the
system F is determined by formula: F=k(vt-x). A typical force-displacement/time has the
maximum or rupture force Fnax (Figure 10), which can be used to characterize the mechanical
stability of the complex.

Fibril Fimax

T

! 1

r ¥

! 1

! 1

! |

' . X 0y 4T
H H pulling direction
.

D 4

! 1

|

Figure 10: (Left) SMD set up for pulling the monomer from the fibril; k and v are the spring
stiffness and pulling speed, respectively; the orange circle refers to the dummy atom. (Right)
force profile plots the pulling force F as a function of the displacement x of the monomer from
its original position; the maximum pulling force Fmnax, Which can also be called a rupture force
since the rupture event occurs at that point.
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3.5 Analysis tools
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Free energy landscape

Free energy landscape depending on the reaction coordinate V is determined by the following
formula:

F(V) = —kgTInP(V) , (7)
P(V) is the probability distribution extracted from the simulated data.
Contacts

In the lattice model, a contact between two unbonded beads is established if the distance between
them is equal to the lattice spacing, which was often chosen to be 1. Intra-chain and inter-chain
contacts refer to contacts between two beads in the same peptide and different peptides,
respectively. In full-atomic models, if the distance between the centers of mass of the side chains
of two non-bonded amino acids is less than 6.5 A, then a contact is formed between them. A
fibril contact is a contact that occurs in the fibril structure.

Secondary structures
Secondary structure were calculated using the STRIDE algorithm [247]
Software

We used VMD [246] to visualize the simulated systems, Grace [248] and Inkscape [249] to make
plots.
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Chapter 4: Summary of Publications

4.1 Effect of surface roughness on aggregation of polypeptide chains: a Monte
Carlo study

Smooth surface
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Figure 11: A snapshot of the aggregate of six peptides on the S-surface (A), dependence of the
aggregation time on the interaction energy between protein and the smooth surfaces (B),
correlation between aggregation time and surface roughness in the case of weak or strong
particle-surface interaction (C) and of moderate particle-surface interaction (D).

Foreign surfaces such as lipid membranes, etc. in the environment have a strong influence on the
mechanism of protein aggregation [130,131]. Different types of surfaces can have different effects
including acceleration [250-252], slowdown [253,254], or even a change in the morphology of
product aggregates [255,256]. The studies in this article examined the effect of rough surfaces on
the self-assembly kinetics of polypeptide chains using an upgraded lattice model because the
calculation of the fibril formation time is impractical in off-lattice models.
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To create a rough surface, we randomly place balls on a smooth surface consisting of balls
regularly located at the nodes of a two-dimensional lattice perpendicular to the z axis (Figure 10
A). We considered hydrophobic and hydrophilic surfaces and controlled their hydrophobicity
and hydrophilicity by adjusting parameters characterizing the interaction between protein and
surfaces. The particle-surface interaction energy 1§ denoted by €.
Applying the lattice model, we performed simulations for systems consisting of N=6 and N=12
chains in the presence of the different smooth surfaces. We found that dependence of the
aggregation time z,gq 0N € followed different scenarios. Weakly absorbing surfaces (small values
of €) reduce the concentration of proteins in bulk but cannot serve as a good template to catalyze
the association of peptides. Therefore, they retarded the aggregation process With 7agg
proportional to ¢ (Figure 10B). This regime is driven by entropy as it dominates the weak
particle-surface interaction. Medium absorbing surfaces (medium values of &) can trap peptides
and restrict the protein conformational space by effectively reducing 3 dimensions in bulk to 2
dimensions on the surface. So, the chains have a higher probability to associate leading to
acceleration of the fibrillization, i.e. z,gq decreases with . The decrease in the aggregation time
with the protein-surface interaction occurs due to a trade-off between energy and entropy (Figure
10B). For strongly absorbing surfaces (big values of ¢), increasing ¢ resulted in the retardation of
the aggregation process (increasing zagg) because very strong interaction between peptides and
the surface restricts peptides diffusion and limits their association (energy-driven regime, Figure
10B). Noteworthy, all the above scenarios holds not only for the systems of N=6 and N=12
chains but also for both hydrophobic and hydrophilic surfaces. The results agreed well with
simulations and experimental work of Vacha et.al. [132] .

Random distribution of hydrophobic and hydrophilic balls on the smooth surfaces creates rough
hydrophobic and rough hydrophilic surfaces, respectively. Two types of balls including single
ball (S-ball) and double ball (D-ball) have been used to construct the rough surfaces (Figure 10
A). Rough S-surface and D-surface consisting of only S-balls and D-balls, respectively represent
homogeneous rough surfaces, while the combination of S-balls and D-balls forms SD-surface
considered as inhomogeneous rough surface. Roughness degrees ® and the percent of distributed
balls Q are defined as follows:

1< _
0= EZ(hi—h) (10)

Q—Nb 11
= @y

N

Simulations of the dependence of z,4g 0N roughness degree ® for system N=6 and N=12 chains
interacting with hydrophobic and hydrophilic surfaces of S, D and SD types showed different
scenarios that can be qualitatively explained by the compromise between the energy and entropy
of the system. In the case of weakly absorbing surfaces, the high surface roughness reduces the
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phase space of monomers resulting in the decrease of the aggregation rate. Since the surface-
protein interaction is weak this process is entropy-driven (Figure 10C). Combination of the
strong surface-protein interaction and the surface roughness creates a lot of kinetics traps which
are energetically more favorable for monomers than the aggregate state. Therefore, strongly
absorbing rough surfaces reduce the mobility of monomers leading to rapid increase in zagg and
even blocking the process at the high roughness (Figure 10C). This energy-driven process is in
line with the study of Shezad et.al [9]. The most interesting result was obtained for the case of
medium absorbing surfaces (Figure 10D). For weak roughness, the surface becomes effectively
wider than the smooth surface or the template for assembly becomes larger, which promotes
protein association instead of hindering them. For a medium attractive surface, a slight surface
roughness enhances the monomer adhesion to the surface, and this can not only increase the like
hood of critical nucleus but also tend to narrow the peptide phase space to two dimensions.
Furthermore, low enough roughness and medium attractive particle-surface interaction still allow
the peptides to diffuse and form a fibril-like structure. However, the higher roughness can
remarkably reduce the peptides flexibility, which slows the self-assembly process. Thus, for the
medium particle-surface interaction, the dependence of 74 on ® displayed a U-shape form
(Figure 10D). It would be interesting to experimentally test this U-shape behavior.
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Abstract

The self-assembly of amyloidogenic peptides and proteins into fibrillar structures has
been intensively studied for several decades, because it seems to be associated with a number of
neurodegenerative diseases, such as Alzheimer’s and Parkinson’s disease. Therefore,
understanding the molecular mechanisms of this phenomenon is important for identifying an
effective therapy for the corresponding diseases. Protein aggregation in living organisms very
often takes place on surfaces like membranes and the impact of a surface on this process depends
not only on the surface chemistry but also on its topology. Our goal was to develop a simple
lattice model for studying the role of surface roughness in the aggregation kinetics of polypeptide
chains and the morphology of aggregates. We showed that, consistent with the experiment, an
increase in roughness slows down the fibril formation, and this process becomes inhibited at a
very highly level of roughness. We predicted a subtle catalytic effect that a slightly rough surface
promotes the self-assembly of polypeptide chains but does not delay it. This effect occurs when
the interaction between the surface and polypeptide chains is moderate and can be explained by
taking into account the competition between energy and entropy factors.

doi.org/10.3390/biom11040596

Publication source: https://www.mdpi.com/2218-273X/11/4/596#abstractc
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Abstract: The self-assembly of amyloidogenic peptides and proteins into fibrillar structures has
been intensively studied for several decades, because it seems to be associated with a number of
neurodegenerative diseases, such as Alzheimer’s and Parkinson’s disease. Therefore, understanding
the molecular mechanisms of this phenomenon is important for identifying an effective therapy
for the corresponding diseases. Protein aggregation in living organisms very often takes place on
surfaces like membranes and the impact of a surface on this process depends not only on the surface
chemistry but also on its topology. Our goal was to develop a simple lattice model for studying
the role of surface roughness in the aggregation kinetics of polypeptide chains and the morphology
of aggregates. We showed that, consistent with the experiment, an increase in roughness slows
down the fibril formation, and this process becomes inhibited at a very highly level of roughness.
We predicted a subtle catalytic effect that a slightly rough surface promotes the self-assembly of
polypeptide chains but does not delay it. This effect occurs when the interaction between the surface
and polypeptide chains is moderate and can be explained by taking into account the competition
between energy and entropy factors.

Keywords: protein aggregation; aggregation of polypeptide chains; fibril formation; neurodegenerative
diseases; surface roughness; lattice model

1. Introduction

The self-assembly of proteins into aggregates of various morphologies is probably one
of the main causes of chronic neurodegenerative diseases such as Alzheimer’s, Parkinson’s
and Huntington'’s disease [1-3]. Therefore, understanding the mechanisms of protein ag-
gregation plays an important role in discovering effective therapies to treat these diseases.
Protein aggregation can occur in solution as well as in complex environments, including
various surrounding objects such as cell membranes, DNA, sugars, other biological com-
pounds and industrial artificial surfaces which require the careful study of the effect of
different surfaces on the process [4-8]. In general, the impact of foreign surfaces on the
protein aggregation process displays complicated behaviors which depend on the type
of surfaces, proteins and experiment conditions [9-12]. Lipid membranes were reported
to play the role of a template to accelerate the aggregation of different amyloidogenic
peptides [13-16]. Mica and glass facilitated the fibril formation of the fragment AR 152, [17]
and «-synuclein [18] on their surfaces, respectively. However, the surfaces of polymeric
nanoparticles slow the self-assembly of IAPP [19], while the protein-coated surfaces of
graphene oxide showed a strong inhibition effect for the fibrillogenesis of peptide A4, [20].
Carbon nanotubes [21,22] and nanoparticles [23,24] can either accelerate or slow down
aggregation depending on the experimental conditions and aggregation agents. Further-
more, the fibril structure of amyloid peptide GAV-9 favors a “stand up” motif on the
hydrophilic mica surface, but greatly prefers the “lie down” position on a hydrophobic
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HOPG (highly oriented pyrolytic graphite) plain [25,26]. Surfaces can also control the pep-
tide aggregation kinetics as well as their morphologies through surface topologies [27,28]
or surface roughness [29,30]. Furthermore, many computational investigations have been
conducted to explore the role of smooth surfaces and membrane on protein aggregation
using coarse-grained [31,32] and all-atom models [33].

Combining a two-state peptide model [34] and experiment on the self-assembly of
APy and o-synuclein in the presence of different types of surfaces, Vacha et al. [35]
have shown that weakly absorbing surfaces retard proteins aggregation, while strongly
absorbing surfaces enhance the process. This implies that the aggregation is modulated by
interactions between polypeptide chains and foreign surfaces. When proteins are absorbed
on the surface, their movement becomes more limited compared to the three-dimensional
case, and this can lead to an increase or decrease in the fibril formation rate depending on
the experimental conditions [36]. A weakly absorbing surface reduces the concentration
of proteins in the bulk, which reduces the probability of the formation of critical nuclei
there [35]. On the other hand, the interactions between surface and polypeptide chains are
not strong enough to maintain a sufficient number of chains on the surface to accelerate
the aggregation process. Competition between these factors leads to a decrease in the
overall rate of protein aggregation on weakly absorbing surfaces [37]. For highly absorbent
surfaces, a large amount of proteins is absorbed on the surface, catalyzing the formation of
critical nuclei, which accelerates the fibril formation [17]. However, very strong absorption
will impede the process due to the hindrance of diffusion and sampling of peptides on the
plain [36].

Combining polymer coating, argon plasma treatment and thermal annealing tech-
niques, Shezad et al. [29] were successful in the production of polystyrene surfaces with
roughness of varying degrees. They showed that the aggregation rate of AB42 (beta amy-
loid peptide of 42 residues) decreases with increasing surface roughness, and very rough
surfaces even block fibril growth. Using various experimental methods, it was shown that
a the rough surface restricts the two-dimensional diffusion of peptides, which slows down
the surface-mediated formation of fibrillar species [29].

To our best knowledge, theoretical studies of the impact of surface roughness on pro-
tein aggregation have not been conducted. In this paper, we develop simple lattice models
in which rough surfaces were created by randomly distributed balls on smooth planes and
performed Monte Carlo simulations to explain the experimentally observed phenomena.
More importantly, we predicted that for moderate particle-surface interactions, slightly
rough surfaces can accelerate the fibril formation rather than slow it down.

2. Materials and Methods
2.1. Lattice Models in Bulk

Since the fibril formation time of proteins varies from hours to months, its assessment
using all-atom or even off-lattice coarse-grained models is not possible within the existing
computational capabilities. The problem becomes harder in the presence of rough surfaces
that slow down this process. Therefore, we developed simple lattice models that allowed
us to estimate the fibril formation rate with a reasonable amount of computational time
(our models are simpler than other coarse-grained models [38—41]). These models are
an extension of lattice models that were successfully used by our group to simulate the
kinetics of fibril formation of polypeptide chains in the absence of surfaces [42]. Despite
their simplicity the lattice models correctly captured the dependence of fibril formation
time on the hydrophobicity, charge and population of the so called fibril prone state N* in
monomeric state [19]. They were also useful in studying the mechanism of heat-induced
amyloid fibril degradation [43], the role of crowders in fibrillation [6] and assessing the
size of critical nuclei [44].

In our model, polypeptide chains, which are confined to a discrete cubic lattice, consist
of M = 8 beads, designated as + HHPPHH—, respectively (Figure 1, left), where +, —
represent positively and negatively charged residues, and H and P stand for hydrophobic
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and polar residues, respectively. Interactions include interactions of beads in the same
chain (intra-contact) and interactions of beads from different chains (inter-contact). The
intra-chain interaction between two beads is counted if they are not successive in sequence
and the distance between them is equal to the lattice spacing a. We take into account
only the nearest neighbor inter-chain interaction, which occurs when the distance between
two interacting beads is equal to a. Then, the total energy of the system consisting of N
polypeptide chains, E, is determined by the first two terms of the following expression:

M N M N M Ns

L es(iysi(j)0(rij —a) + L _Ejesl(i)sm(j)‘s(rij —a)+ L X ¥ k(i) d(rik —a) . (e9]

i< m<l i, m=i=1k=1

m
Il
Tt=

L

where r;; is the distance between amino acids i and j, in simulations « is assigned Equal
(1), sm (i) denotes the amino acid it" in the m!h peptide chain. The delta-function §(x)
is 1 at x = 0 and 0 otherwise. The first and second terms in Equation (1) describe the
intra- and inter-chain interactions, respectively. The pair interactions between beads (or
“force field”) e;; are given in Table 1. The third term describes the interaction between
polypeptide chains and surface (see below). In our models, 20 amino acids were divided
into hydrophobic, hydrophilic, negatively charged and positively charged groups. As
in our previous works [42,45], their interaction energies shown in Tables 1 and 2 were
basically selected based on the statistical potentials that were obtained by Betancourt and
Thirumalai [46].

N=1 N=6 N=12

+ -
’

H H

H H

P P

Figure 1. (Left) Single peptide of 8 beads that are +HHPPHH- in N* conformation. Red, green, yellow and blue refer to
amino acids —, H, P, +, respectively. Native structure of 1 peptide chain is showed next to N*. Fibril structure of the systems
of N = 6 and N = 12 chains in the lattice model.

Table 1. Interaction energies between two beads of polypeptide chains ¢;; in the lattice model. The
energy is measured in ¢jy, where ¢y is the hydrogen bond energy.

Beads H P + -
H -1.0 0.2 0.2 0.2
P 0.2 —-02 -0.2 -0.2
+ 0.2 -0.2 0.35 -0.7
- 0.2 -0.2 -0.7 0.35

Table 2. Interaction energies between the polypeptide chain (H, P, +, and —) and beads of hydrophilic
(Ps) and hydrophobic (Hs) surfaces. eP* and €hs can be tuned in simulation.

Beads/Balls H P + —
Ps 0.2 —ePS -0.2 -0.2
Hs —ghs 0.2 0.2 0.2
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By Monte Carlo simulations [19,42] (see also below) we obtained the fibril structures
for the systems with N = 6 and 12 peptides (Figure 1).

2.2. Lattice Models with Surfaces
2.2.1. Smooth Surface

We modeled a smooth surface as a systems of beads regularly located at points of a
two-dimensional square lattice. The lattice spacing of the surface is the same as in bulk. The
surface beads are kept fixed during the simulation, and the interaction between them is not
taken into account. The chemical properties of surfaces are characterized by their interaction
with polypeptide chains. We examined two types of surfaces: hydrophilic and hydrophobic
surfaces, which consist of hydrophobic and hydrophilic beads, respectively. Surface beads
are designated as Ps and Hs for the hydrophilic and hydrophobic surfaces, respectively.

Denoting the interaction energy between the bead i of a polypeptide chain and the
surface bead j as €¥%;; (v can be p for hydrophilic surface and h for hydrophobic surface),
the interaction energy between the polypeptide chains and the surface is given by the third
term in Equation (1). Here, N’ is the total number of sites of the surface area. The ¢"%;;
values are shown in Table 2. Here, we chose the interaction between surface beads and
polypeptide beads to be the same as the interaction between the beads of polypeptide
chains. However, in order to explore the dependence of fibril formation kinetics on the
strength of interaction with surfaces, we varied the interaction between the hydrophobic
beads of the polypeptide chains and the surface e and the interaction between hydrophilic
beads of polypeptide chains and surface eP.

Depending on the surface, fibrils may have different morphologies. In our model,
for N = 6 and 12 chains, the fibril structure on the hydrophilic surface has the same shape
(Figure 2C,F) as in bulk (Figure 2A,D), but on the hydrophobic surface all the chains adopt
the monomer native structure (Figure 1) in the fibril state due to strong hydrophobic
interactions between the chains and the surface and the short peptides in our model
(Figure 2B,E). In other words, the fibril-prone conformation N* coincides with the compact
native conformation. Thus, even in the simple model, we showed that the surface can
change the morphology of fibrils.

Figure 2. Fibril structure of six polypeptide chains in bulk (A), on hydrophobic surface (B) and hydrophilic surface (C).
Fibril structure of 12 polypeptide chains in bulk (D), on hydrophobic surface (E) and hydrophilic surface (F).
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2.2.2. Rough Surfaces

To build a rough surface, we randomly placed identical balls on a smooth surface.
These balls should be hydrophobic and hydrophilic for rough hydrophobic and hydrophilic
surfaces, respectively. Each ball has the same size and occupies one lattice site similar as the
chain’s beads; however, in order to facilitate the visualization, we exhibited them in larger
size (Figures 2 and 3). The roughness depends not only on the concentration of randomly
distributed balls, but also on how they are arranged. In this paper, we considered 3 types of
arrangement: single balls (S-point), double balls (D-point) and the equal mix of S-point and
D-point called DS-point (Figure 3); therefore, we have S-surface, D-surface and DS-surface.
In the first case, at each position, only one ball was positioned at a distance of the grid
pitch a from the surface (Figure 3A). In the case of a D-surface, two rigidly connected balls
were placed perpendicular to the surface and the distance between the higher ball and the
surface is equal to 2a (Figure 3C). Finally, the DS-surface comprises an equal number of
S-ball and D-ball randomly distributed on a smooth surface (Figure 3B).

Figure 3. Typical fibril-like structures for the system of N = 6 chains on rough hydrophilic surfaces with single balls
(S-surface) (A), the combination of single and double balls (DS-surface) (B), and double balls (D-surface) (C). The fibril-like
configuration of 12 chains on the hydrophilic DS- surface (D), and hydrophobic DS-surface (E).

2.3. Definition of Surface Roughness

We define the distance (or height) from the ball i to the surface as ;. Then, h; takes the
values 1, 2 and both values for the S-, D- and DS-surface, respectively. For surface point j,
without ball, i; = 0. The average distance between the surface and randomly distributed
balls, 1, is determined by the following formula:

h= =L )
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where Nj is the number of points of the surface. Then, the degree of surface roughness (or
roughness) is the standard deviation of / and is defined as follows:

®)

Defining () as the percentage of points at which single and double balls are placed to
create surface roughness, we have:
Ny

QNS

)
where N, is the number of points with balls.

2.4. Monte Carlo Simulation

The concentration of chains that were enclosed in a cubic simulation box was brought
to about 6 uM (about 10 times higher than the experimental concentration) for all simulated
systems. Although the lattice model is simple, calculating the aggregation time of many
polypeptide chains requires an enormous amount of computational resources, especially
in the presence of rough surfaces. Therefore, we used a high concentration of peptides
to accelerate the aggregation process. We applied the periodic boundary conditions to
minimize finite size effects. The Monte Carlo (MC) algorithm was utilized to determine the
dynamics of peptide chains. MC moves involved local and global moves. The local move
may be tail rotation, corner flip, or crankshaft. The global move is either the rotation of a
peptide at a 90-degree angle around a randomly selected coordinate axis, or the translation
of a peptide on a in a random direction [19,42]. The probability ratio between global and
local moves was chosen as 1:9. The combination of the local move and global move is the
Monte Carlo step (MCS), which is a time unit in the lattice model. Although the equivalence
between real time and MCS remains controversial, lattice models have been helpful in
understanding the mechanisms of protein aggregation in the bulk [19,43,45] and crowded
environment [6]. Note that the fibril structures with the lowest energy obtained using MC
simulations are shown in Figures 1-3.

It should be noted that we used our homemade programs written to study the self-
assembly of polypeptide chains in lattice models. They have been used and developed
for different problems since 2008 [42]. We use Fortran 90 and Monte Carlo dynamics. Our
code is not parallel and it took about 48 h of CPU on an Intel Xeon E5-2680v3 2.50 GHz, for
example, to simulate a trajectory of 12 chains that aggregate on a surface with a roughness
of @ = 0.1. For each data point, we have to average over 150 MC trajectories, which takes a
lot of computational time. Therefore, we have to run on the supercomputer TASK located
in Gdansk, Poland.

2.5. Aggregation Tinme Tygq and Fibril Formation Time T,

The fibril formation time T, is the number of MCS required to reach the fibril structure
from random initial configurations of the peptide chains. In a simulation with many MC
trajectories, g, is defined as the average value of the first passage times. In the case of
smooth surfaces, where the fibril formation is relatively fast, we can estimate T, from
many MC trajectories. However, for rough surfaces, the fibril formation is so slow that even
in simple lattice models, it is not feasible to obtain T, within a reasonable amount of time.
Therefore, instead of g, we introduced the aggregation Tagg, which is the first passage
time for acquiring a structure that has 80% fibril contacts. For each roughness degree, we
generated 10-15 random surface profiles and conducted 15-20 MC runs per profile. Thus,
for a given roughness, Tagg was obtained by averaging over 150 (10 x 15) trajectories.
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3. Results and Discussion
3.1. Effect of Smooth Surface on Aggregation Time Tygq
3.1.1. Hydrophilic Surfaces

We first examined the effect of smooth surfaces on the aggregation process of system
N = 6 polypeptide chains at various temperatures. To estimate Tagg, MC simulations were
conducted for systems of N = 6, initially random peptides in the cubic box. The number of
MC steps to achieve a structure that has 80% fibril contacts was defined as the first passage
time. For each parameter set, 100 MC runs were performed and T,g; was the average value
of the 100 first passage times.

For a hydrophilic smooth surface of simulation, we varied the interaction between
hydrophilic beads of peptides and the surface ¢P® in the range (0-2.4). The dependence
of Tagg on €P* is not monotonic (Figure 4A). At T = 0.54, in the weak peptide-surface
interaction regime with €P* varying from 0.1 to 1.0, aggregation is slowed by the surface.
This is due to the fact that a weakly adsorbing surface cannot serve as a good template
for the initiation of aggregation, and interplay between the formation of an aggregate in
the bulk and on the surface slows down self-assembly. As the peptide—surface interaction
increases (1.0 < eP* < 1.4), the surface becomes a good catalytic center for nucleation, which
accelerates aggregation (Figure 4A). Our results are consistent with Vacha et al. [35] who
reported that weakly absorbing surfaces increase the aggregation time, while strongly
absorbing surfaces catalyze the process.

A further increase in the peptide-surface interaction (eP* > 1.4) again slows down
aggregation again (InTagg increases from 14.74 to 16.16), but the process remains faster
than in the bulk. This increase was not studied by other groups previously and this can be
explained by the fact that a strong binding to the interface reduces conformational entropy,
which complicates the fibril formation. In other words, strong absorption significantly
restricts the mobility monomers on the surface leading to retarded aggregation. As evident
from Figure 4A, smooth hydrophilic surfaces have obstacle aggregation for ¢P* > 1.4.
However, with a very strong peptide-surface interaction, aggregation occurs more slowly
than in bulk, as we can see in Figure 4C for T = 0.49 and T = 0.52.
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Figure 4. Cont.
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Figure 4. Dependence of InT,gg on the interaction of the systems consisting of N = 6 polypeptide chains for hydrophilic
(A,C) and hydrophobic (B,D) smooth surfaces. The upper row exhibits the simulation at T = 0.54, the values ePsl =10,
P52 = 1.4, ¢hs! = 0.8 and €2 = 1.2 (black dashed lines) separate the three interaction regions corresponding to the three
types of surfaces. Between e%s ! shape = 0-9 and 5552 hape = 125 (blue dashed lines), we observed the U-shape dependence
—shape —shape
of InTagg on the roughness degrees © for an S-point hydrophilic surface. A similar behavior occurs for a hydrophobic
surface between e{‘j} e 0.7 and s{‘jz dkiape 0.95 (blue dashed lines). The notations “ps” and “hs” refers to a hydrophilic
and hydrophobic surface, respectively. The bottom row also shows correlation of InTagg and interaction parameters eP° of
hydrophilic (C) and ghs hydrophobic (D) smooth surfaces for various temperatures and wider ranges of the interaction
values. The bottom row shows the dependence of InTagg on the interaction parameter eP* of hydrophilic (C) and hs of

hydrophobic (D) smooth surfaces for various temperatures. Error bars are lower than data symbols.

Higher temperatures enhance the flexibility of peptides, leading to a slower self-
assembly in the bulk and on the surface (Figure 4C). On the other hand, they can prevent
trapping of polypeptide chains on a strongly absorbing surface, which explains why at
ePS> 1.8 aggregation is accelerated at higher temperatures (Figure 4C). A similar effect was
seen for hydrophobic surfaces with €™ > 1.4 (Figure 4D).

3.1.2. Hydrophobic Surfaces

For T = 0.54, a similar dependence of the aggregation time on the interaction of
polypeptide chains with a smooth hydrophobic interface was obtained for €", which varies
in (0; 1.4) interval (Figure 4B). On a weakly absorbing hydrophobic surface (0.1 < ehs < 0.8),
peptide self-assembly was attenuated with InT,gg increasing from 17.42 to 18.43. For €M in
the [0.8;1.2] range, aggregation became enhanced with an increase in the peptide—surface
interaction and InTagg decreased from 18.43 to 15.88. Finally, InTagg leveled from 15.88 to
16.22 as £M changed from 1.2 to 1.4.

As in the case of hydrophilic surfaces, the dependence of the aggregation rate on
€hs can be rationalized by the interplay between the peptide-surface interaction and the
entropy loss due to the reduction in spatial dimensionality from 3 in bulk to 2 on surface. For
a weakly absorbing surface, aggregation takes place mainly in bulk, whereas in the opposite
case, self-assembly predominately occurs on the surface. Extended calculations for different
temperatures and a wider range of " have been shown in Figure 4D. Higher temperatures
can support the aggregation process on very strongly absorbing surfaces (' > 1.4) by
promoting peptides’ mobility (Figure 4D). Overall, the three modes of dependence of InTagg
on €M remain unchanged for other temperatures including T = 0.52 and T = 0.56.

Aggregation in the presence of weakly absorbing surfaces happen dominantly in
bulk, therefore the variation of InT,gg in the simulation time was revealed to be rather
similar for both hydrophilic (InTagg change from 17.49 to 18.23) and hydrophobic cases
(InT,gg varies in range of [18.47 to 18.42]). For stronger attractive surfaces, the catalyzing
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(" > 0.8) and retardation effects (' > 1.2) of hydrophobic surfaces happened earlier
compared with hydrophilic surfaces (¢P° > 1 and €M > 1.4 for catalyzing and retardation
effects, respectively). It is not clear whether this observation is always true or sequence
dependent. One of the possible reasons for the difference is that the studied sequence has
four hydrophobic residues, while the number of polar residues is two.

3.1.3. Three Classes of Surfaces

Based on the aggregation time and the peptide—surface interaction characterized by
either the parameter €P° or ¢S we divided the surfaces into three classes: weakly, medium
and strongly absorbing surfaces. The weakly absorbing surface should have ¢P* < P! or
ehs < ehsl where ePsland eM! are the values below which the aggregation time increases
with the increasing peptide-surface interaction (Figure 4A,B). For medium absorbing
interfaces, eP*! < ePS< ¢ P52 for hydrophilic surfaces and eM! < " < €2 for hydrophobic
surfaces, where ¢P52 and hs? correspond to the minimum in Figure 4A,B. If the interaction
exceeds the minimum values, ¢P%2 and ehsz, the corresponding surfaces are classified as
strongly absorbing surfaces. In the weakly absorbing surface case, the peptide-surface
interaction is weak and the aggregation kinetics is, therefore, driven by entropy. In the
opposite case of strongly absorbing surfaces, the self-assembly is an energy-driven process.

The values of eP$2 and eM*!? that divide the surfaces into three classes depend not
only the on chemical properties of surfaces, but also on sequences and the number of
polypeptide chains. For N = 6, ePs! = 0.8 and eP*? = 1.4 for the hydrophilic surfaces and
ehsl = 0.8 and eM2 = 1.2 for the hydrophobic surfaces (Figure 4).

In our model, the interaction between absorbing particles and the surface is controlled
by the parameters eP* and " for hydrophilic and hydrophobic surfaces, respectively. In
general, by varying these parameters, we can qualitatively capture aggregation on different
surfaces including membrane surfaces with different lipid compositions and carbon nan-
otubes (see also Introduction). Namely, depending on eP* and ", aggregation can be either
accelerated or slowed down as has been observed experimentally for various systems. For
example, Cabaleiro-Lago et al. reported that hydrophobic single-walled carbon nanotubes
slow down the fibril formation of AB40 peptide [23], which is consistent with all-atom
simulations for the truncated variant AB16.22 [47]. This experimental observation also
agrees with our results obtained for &M < ¢"! and eM® > eh52, where the interaction with
the surface retards the aggregation.

3.2. Effect of Surface Roughness on Fibril Formation: S-Surface

As mentioned above, the chemical properties of surfaces control the fibrillar growth
of polypeptide chains in various scenarios. Therefore, in order to understand the role
of surface roughness in protein self-assembly, we must systematically study this process
in the presence of foreign surfaces not only of varying degrees of roughness but also of
different peptide-surface interactions.

3.2.1. Weakly Absorbing Surfaces: Monotonic Dependence of the Aggregation Time on the
Surface Roughness

After generating random particles with a given chemical property on a smooth surface,
we obtained tunable rough surfaces corresponding to the chosen chemical properties. For
weakly attractive surfaces, we chose P = 0.8 and €M = 0.6 (Figure 5A,D). Clearly, the
higher the degree of roughness, the slower the peptide aggregation process. As can be
seen from Figure 5A, where the value of €P° was set to 0.8 which corresponds to weakly
attractive smooth hydrophilic surfaces, as the roughness degrees ©s changes from 0 to
0432, InT,gg increases from 17.75 to 18.87.
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Figure 5. Impact of S-surface roughness on the aggregation of N = 6 peptides at temperature T = 0.54. All graphs on the
left column (circular data points) display the dependence of the aggregation time Int,gg on the rough degree of different
hydrophilic surfaces at various values of ¢P* = 0.8 (A), eP* = 1.2 (C) and ¢P*® = 1.4 (E). Similarly, the dependence oftagg on
s for various hydrophobic surfaces is shown on the right graphs (square data points), ehs = 0.6 (B), ¢hs = 0.8 (D), and

ehs = 1.2 (F).

A similar result was obtained for a hydrophobic surface (Figure 5D), where £ = 0.6,
an increase in @s from 0 to 0.458 led to an increase in InTagg from 17.80 to 18.84.

In the corresponding peptide-surface interaction ranges, the kinetics of aggregation
on the rough hydrophilic surfaces is similar to the kinetics on the hydrophobic surfaces
(Figures 4 and 5), hinting that there are some emphasized physical principles that govern
these phenomena. For weakly attractive surfaces, there is interplay between the peptide
assembly in the bulk and on the surface; an increase in roughness improves the ability of
the peptides to adhere to the surface, increasing the phase space of the peptides in the bulk,
which leads to a decreased aggregation rate (Figure 5A,D). We can call this regime entropy
driven. We found that the monotonic increase in Tagg with roughness was observed for

Y pe =09and ™ <efly =07 (blue dashed lines in Figure 4A,B)

3.2.2. Medium Absorbing Surfaces: U-Shape Behavior

In order to study the medium absorbing surfaces, we set ¢P* = 1.2 and ehs = 0.8 and
observed a U-shape dependence, namely, that a slightly rough surface accelerates the
fibril formation, while a higher roughness degree slows down the peptide self-association
(Figure 5B,E). With a sufficiently low roughness, the roughness increases the probability of
monomers aggregating on the surface and the attractive force still allows the proteins to
diffuse and associate on the surface, forming fibrillar species, which correspond to the accel-
eration phase in the U-shape effect. However, as the surface roughness exceeds a threshold
point at which the combination of the roughness and absorption restricts the mobility of
polypeptide chains, a retardation phase of self-assembly occurs. Thus, the U-shape comes
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from the competition between energy and entropy. We found that this behavior occurred

psl s < P52 - hs1 hs _ chs2 o i
for €U—shape < eP¥g €U shape = 1.25and €0 shape <€ < EU—shape = 0.95 (blue dashed lines

in Figure 4A,B), for the hydrophilic and hydrophobic surfaces, respectively.

3.2.3. Strongly Absorbing Surfaces: Monotonic Dependence of the Aggregation Time on
the Surface Roughness

To investigate this case, we calculated the dependence of the aggregation on the
roughness for the parameters eP¥ = 1.4 and €M = 1.2, which can characterize strongly
absorbing hydrophilic and hydrophobic surfaces (Figure 4). In this case, the surface tends
to confine the movement of polypeptide chains in two-dimensional space, reducing their
mobility. As a result, on very attractive surfaces, there was no acceleration phase at low
roughness and the aggregation time rapidly increased with the increasing roughness
(Figure 5C,F). The fibril formation becomes practically inhibited for roughness ®g > 0.356
and 0.323 for hydrophilic (Figure 5C) and hydrophobic (Figure 5F) surfaces, respectively.
This result is in qualitative agreement with the experimental result of Shezal et al. [29]
for a highly attractive rough surface, as their experiment was conducted at a protein
concentration lower than CMC in order to prevent protein aggregation only in bulk.

We can show that the monotonic increase in Figure 5C,F is possible for eP* > efff shape = 1.25
and ¢hs > e}[‘lszshape = 0.95 (blue dashed lines in Figure 4A,B), for the hydrophilic and

hydrophobic surfaces, respectively. This behavior appears in the energy-driven regime due
to the strong peptide-surface interaction.

3.3. Effect of Surface Roughness on Fibril Formation: D-Surface and DS-Surface Do Not
Qualitatively Change the Results Obtained for S-Surfaces

Thus far, we considered S-surfaces with a single ball roughness (Figure 3A). In this
section, we explore two other cases: a D-surface, where a rough surface is created by
randomly placed double balls on a smooth surface (Figure 3C); and a DS-surface, which
consists of randomly distributed S-balls and D-balls (Figure 3B). For simplicity, it is assumed
that the numbers of S and D balls on the DS-surface are the same.

As we can see in Figure 6, the dependence of InT,gg on roughness © for weakly,
moderately, strongly absorbing hydrophilic and hydrophobic of S-surfaces remain the same
for DS- and D-surfaces. This result implied that despite the difference in roughness nature,
the dependence of the aggregation time on the roughness is driven a general principle,
which depends on the interplay between energetic and entropic factors. For weakly
(entropy driven, Figure 6A,D) and strongly (energy driven, Figure 6C,F) absorbing surfaces,
the dependence of Tagg on © is monotonic, while for the medium case (Figure 6B,E) the
U-shape dependence occurs due to the competition between these two factors. Overall,
our results agree with the experiment [29], which showed that at a high enough roughness,
a surface can block the self-assemble process.

3.4. Size Effects
3.4.1. Smooth Surfaces

To examine the size effect, we extended simulations to a system of N = 12 peptides
(Figure 7). For smooth surfaces, the dependence of the aggregation rate on the protein—
surface interaction is similar to the N = 6 case (Figure 4). At T = 0.58 (Figure 7A), for
attractive hydrophilic surfaces, no clear effect was seen for eP* < ePsl = 1.3, however, the
moderately absorbing surface (1.3 < ¢P* < 2.0) remarkably accelerates the aggregation
process, as InT,gg decreases from 20.5 to 15.65. The retardation by strongly attractive
hydrophilic surfaces appears at €P* > 2.0. The same scenarios occur for hydrophobic smooth
surfaces (Figure 7B), however, at T = 0.56, weakly attractive hydrophobic smooth surfaces
(M < €M1 = 1.1) noticeably decreased the peptide self-assembly while the catalyzing effect
of a medium absorbing smooth surface happened for 1.1 < ehs < 1.5. The strongly attractive
surfaces with e > eM52 = 1.5 restricted the formation of fibril-like structure of peptides.
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Figure 6. Dependence of InTagg on © for N = 6 chains at T = 0.54. Red, green and black circles refer to the S-, DS-, D-
surfaces, respectively. Results are shown for the weakly eP® = 0.8 (A), medium eP* = 1.2 (B), strongly €P* = 1.4 (C) absorbing
hydrophilic surfaces, as well as for weak hs = 0.6 (D), medium " = 0.8 (E) and strong ehs =12, (F) regimes of attractive
hydrophobic surfaces. Error bars are lower than data symbols.
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Figure 7. Effect of various surfaces on the aggregation time of N = 12 polypeptide chains at T = 0.58 for smooth hydrophilic
surfaces (A) and at T = 0.56 for hydrophobic surfaces (B). The dash lines at values ePsl =13, ¢Ps2 =20, ehsl = 1.1 and
M2 = 1.5 separate the different interaction ranges corresponding to different types of classified surfaces.

3.4.2. Rough Surfaces

As in the smooth surface case, for N = 12 peptides, we also systematically investigated
the effect of roughness on the aggregation time in the weak, medium and strong peptide—
surface interaction regimes for both hydrophilic and hydrophobic surfaces. Qualitatively,
the results are similar to the N = 6 case (compare Figures 6 and 8). However, for ¢P® =1
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(Figure 8A) the © dependence is rather weak and this is probably because the aggregation
mainly occurs in the bulk due to the weak interaction between polypeptide chains and
the hydrophilic surface. The surface effect is more pronounced in the case of hydrophobic

surface with e = .8, as the aggregation time increases with increasing © (Figure 8D).

The U-shape appears in the medium regime (Figure 8B,E), and this effect is stronger in
the presence of D- and DS- surfaces. The highly attractive rough surfaces significantly
increased the aggregation time and can even inhibit the process at © > 0.42 (Figure 8C) and
© > 0.38 (Figure 8F) for the hydrophilic and hydrophobic cases, respectively.

G D-Surface
(3-€) DS-Surface
(36 S-Surface

22

= st N=12 T=0356
£°=1.0 [3-E] S-Surface

- 3—E1 D-Surface hs
H=l2 T=0.58 21 O+ [I;SS-Sufrl'acc e =0.8

.8 0 0.2

0

01 02 03 04 05

C

Figure 8. Dependence of InTagg on ® of N = 12 peptides at T = 0.58 and 0.56 for hydrophilic (left column) and hydrophobic
surfaces (right column). For hydrophilic surfaces, we considered eP* = 1.0 (weak regime, A), 1.45 (medium, B), and 2.0
(strong, C). For hydrophobic surfaces the corresponding values ¢' = 0.8 (D), 1.2 (E), and 1.5 (F).

Thus, the similar behavior of the N = 6 and N = 12 systems with smooth and rough
surfaces of various types indicates that our results should be valid for larger systems.

4. Conclusions

Since protein aggregation, which is associated with neurodegenerative diseases, occurs
in vivo, understanding the influence of various surfaces on this process plays a crucial
role in developing new effective therapies. Furthermore, knowledge of the self-assembly
mechanism on surfaces is also useful for developing novel materials of fibrillar structure.
We constructed a simple lattice model that enabled us to theoretically access the effect of
surface roughness on the aggregation kinetics of polypeptide chains. Our model is reliable
as it can capture the experimental results of Robert Vacha et al. [35] obtained for both
hydrophobic and hydrophilic smooth surfaces that the dependence of the aggregation time
on the protein-surface interaction is nontrivial. In addition, our model can explain the
experiment of Shezal et al. [29], showing that a rough surface retards the fibril formation
and even block it at a high roughness level [48].
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By a systematic investigation of the dependence of fibril formation time on the rough-
ness of different surfaces, for the first time, we predicted the U-shape behavior, claiming
that a rough surface can not only slow down the aggregation process, but can also accel-
erate it at a suitable degree of roughness. This can occur in a regime where the entropic
factor competes with the energetic factor. Our results were obtained using simple models,
but they should be applied to more complex systems, because their validity is guaranteed
by general principles, but not by some details. This conclusion is partially supported by
the fact that our modeling captures the slowing down or acceleration of aggregation on
different surfaces such as lipid membranes [13-16], mica and glass [17,18], carbon nan-
otubes [21,22], nanoparticles [23,24], HOPG plane [25,26], etc. From this point of view,
more advanced off-lattice models should not qualitatively change these results.

Our study also pointed out that the dependence of aggregation time on surface
characteristics is complicated, not only by roughness, but also by the geometry of objects
that make the surface non-smooth. It would be interesting to experimentally verify our
prediction of the U-shaped dependence of aggregation time on roughness.

For the same sequence, the polypeptide chains form different fibrillary structures
on the hydrophobic and hydrophilic surfaces (Figure 2). In particular, on a hydrophobic
surface, the fibril-prone structure N* has the same structure as the native monomeric
structure, which suggests that the hydrophobic surface alters the morphology of fibrils to
a greater extent than the hydrophilic surface. This conclusion could be verified by other
more advanced theoretical models and experiments.
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4.2 Aggregation rate of amyloid beta peptide is controlled by beta-content in
monomeric state

The association between protein aggregation and many neurodegenerative diseases has
stimulated a large number of studies on the kinetics of protein self-assembly [1,2,30]. In addition
to external factors such as temperature, ionic strength, peptide concentration, pH, etc., the
fibrillation process is strongly influenced by internal factors (hydrophobicity, secondary
structure, total charge, etc.) [4,257]. Using a simple lattice model [7], we proved that aggregation
rate depends exponentially on the population of the fibril-prone conformation of the N*
monomer [8]. Although the N* state is to some extent related to monomer beta content, there is
no conclusive evidence for a relationship between monomer beta content and protein self-
assembly rate. The main goal of this work is to quantify the correlation between fibril formation
time and monomer B content using full atom molecular dynamics modeling and experimental
data obtained for the AP42 peptide and its mutations.

First, all-atom replica exchange molecular dynamics (REMD) simulation with the optimized
potentials for liquid (OPLS) and implicit solvent have been perform to determine the secondary
structures (percent of B-sheet or B-content, a-helix, coil and turn) of the wild type (WT) and 19
mutants of AB42 monomer, then the correlation between experimental aggregation rates x and
the secondary structures have been investigated.

We showed that the relative aggregation rate « defined as ratio of xnu/ xw: Can be described by a
linear (Eq. 12) or exponential dependence on the B-content (EQ. 13) (kmut, xwt Stand for the
aggregation rates of the mutations and WT, respectively. R is the correlation coefficient), which
implied that the richer the B-content the faster aggregation. Besides, the results also showed that
K is not associated with helix, coil propensity and exhibits a relatively poor correlation with the
turn.

K = Kmut/Kwt = —0.29 + 0.0635B,R = 0.85 (12)

k = Ky exp(cf),c=0.071,R = 0.8 (13)

The change in the free energy for conversion from a-helical to -sheet, 44G, was estimated as a
sum of the free energy change from coil to B-state (44Gg.coif) and the free energy change from
coil to a-helix ( 44Ggil-). Our calculation using 27 sequences from Chiti and Dobson’s dataset
[258] showed that if the effect of net charge is included, « displays a poor correlation with 44G
(R=0.4) , which is consistent with Chiti and Dobson experiment (R=0.41).

Our study also reported the modest correlation between x and the change in hydrophobicity
(4Hydr) (R=0.661) and the net charge change (4Charge) (R=0.683) due to mutation, which is
consistent with Chiti and Dobson [258].
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Finally, using equation (14), the variation of relative aggregation rates k caused by the mutations
was studied. From linear fit of In(kmu/ xw) and AHydr, AAG and ACharge , we extracted the
corresponding slopes A, B, C . Contradict to the case of only 44G, x revealed significant
correlation with the change of combination of hydrophobic, 44G and charge (R=0.863). More
interesting, the predicted rates almost concise to the experimental work because their correlation
coefficient R approximately equals to 1.

Following Chiti and Dobson [258] we tried to predict the mutation induced change in the
aggregation rate using the following equation

In(kmut/Kwe) = A.AHydr + B.AAG + C.ACharge . (14)

Here A =-0.081, B = 0.063 and C = -0.304 are the slopes from the linear fit of In(kmu/ ©wt) With
AHydr, 414G and ACharge. We showed that the predicted rate (Eq. 14) is highly correlated with
the experiment as R=0.83.

Since the computation of the aggregation rate using all-atom models is prohibited in modern
computing power, our result is important as it allows estimating k based only on the knowledge
of the beta content (Eqs 12, 13) which can be obtained from simulations of monomer.
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ABSTRACT

Understanding the key factors that govern the rate of protein aggregation is of immense interest since protein aggregation is associated with
a number of neurodegenerative diseases. Previous experimental and theoretical studies have revealed that the hydrophobicity, charge, and
population of the fibril-prone monomeric state control the fibril formation rate. Because the fibril structures consist of cross beta sheets, it
is widely believed that those sequences that have a high beta content () in the monomeric state should have high aggregation rates as the
monomer can serve as a template for fibril growth. However, this important fact has never been explicitly proven, motivating us to carry out
this study. Using replica exchange molecular dynamics simulation with implicit water, we have computed f of 19 mutations of amyloid beta
peptide of 42 residues (Ap42) for which the aggregation rate x has been measured experimentally. We have found that x depends on  in such
a way that the higher the propensity to aggregation, the higher the beta content in the monomeric state. Thus, we have solved a long-standing
problem of the dependence of fibril formation time of the B-structure on a quantitative level.
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I. INTRODUCTION efficient drugs for many diseases, this problem has attracted a lot of

attention of researchers in recent decades.

A number of neurodegenerative diseases are believed to be
associated with the aggregation of amyloid proteins. For example,
according to the amyloid cascade hypothesis, Alzheimer’s disease
(AD) is caused by the fibrillation of amyloid beta (AP) peptides
forming amyloid plaques. © AP peptides, which are cleaved from
amyloid precursor protein (APP) by 8- and y-secretases, have 36-43
residues, but AP40 (40 amino acids) and AP42 (42 amino acids) are
most abundant. As the main component of amyloid plaques in the
human brain, AB42 is more neurotoxic than AP40 due to faster self-
assembly.” Because understanding key factors driving protein aggre-
gation is important not only for basic research but also for designing

Accumulated experimental and theoretical data indicate that in
addition to external factors (pH, T, ionic strength, and protein con-
centration), there are intrinsic factors such as the hydrophobicity,
net charge, secondary structure, ~ and chain-length polydispersity
and the so-called population of fibril-prone state in monomeric state
N*"" which play a key role in the aggregation propensity. Locking
the monomer in a strandlike state by constraining the Asp23-Lys28
salt bridge accelerates the aggregation of amyloid beta peptides con-
siderably. ' As shown by NMR dispersion experiments - and sim-
ulation,” N* of Fyn SH3 is a nativelike folding intermediate that
is prone to aggregation. A high population of fibril-prone state N*

J. Chem. Phys. 150, 225101 (2019); doi: 10.1063/1.5096379
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promotes the formation of template for the protein accumulation
leading to an exponential dependence of fibril formation time on the
population of this conformation.”

The regions enriched by hydrophobic residues promote
aggregation as evident from the high correlation between the
hydration free energy and the aggregation rate of proteins Ap42,
HypF-N, and AcP.” Charged residues strongly influence protein
aggregation not only because they are involved in specific salt
bridges but also because a nonzero net charge prevents self-assembly
through repulsion between chains.

Chiti and Dobson have demonstrated that the variation in
the aggregation rate upon mutation depends on the free energy
change in conversion from the a-helix to B-sheet conformation,
AAG = AAGyia + AAGy.coi. Here, AAG oo and AAGy.qoy refer
to free energy changes in coil-helix and beta-coil transforma-
tions, respectively. However, these quantities were estimated using
a-helix and B-sheet propensities of individual wildtype (WT) and
mutant residues,  leaving the question of the dependence of the fibril
formation rate on the monomer B-content open.

In order to clarify the impact of secondary structures on the
propensity to aggregation, one has to compute them consistently
taking into account the contribution of all residues. To do so, in
this paper, we have performed the all-atom replica exchange molec-
ular dynamics (REMD) simulation using the optimized potentials
for liquid simulations (OPLS) force field and implicit solvent for the
wildtype (WT) and 19 mutants of AB42. We showed that the experi-
mentally determined aggregation rate is strongly correlated with the
B-content of the monomer, while no correlation with the a-content
was observed.

So far, it is believed that the higher the p-content in the
monomeric state, the faster the formation of fibrils, but there is no
convincing evidence. Here, based on the results obtained for a large
dataset, for the first time, we strongly supported this widespread
opinion.

1. CHOICE OF SEQUENCES

It is well known that the sequence of a protein controls not
only its folding ability but also the propensity to self-assembly.”
Mutation is used to change the sequence resulting in a variation
of the aggregation rate. Because the turn region” = of AP42,
for example, plays a key role in the fibril formation, some muta-
tions, such as Flemish (A21G), Osaka (E22D), Italian (E22K), Arc-
tic (E22G), and Towa (D23N), have been intensively studied.
Table S1 of the supplementary material lists 19 AP42 mutants, for
which the aggregation rate has been measured experimentally.”
We will perform a REMD simulation for this set of mutants. Note
that by performing 100 ns all-atom conventional MD simulation
in explicit water, Chong and Ham showed that the experimentally
determined self-assembly rates of these mutants strongly correlate
with hydrophobicity in such a way that the higher the hydropho-
bicity, the faster the aggregation” implying the important role of
hydration.

11l. MOLECULAR DYNAMICS SIMULATION

We have calculated secondary structures of WT and 19 mutants
(Table S1 of the supplementary material) in the monomeric state

ARTICLE scitation.org/journalljcp

using the OPLS force field " and the generalized Born (GB) model
for an implicit solvent.” The OPLS-AA force field was chosen
because for the AP monomer it provided conformations consis-
tent with the NMR data.” In addition, using this force field in
combination with the GB model for water, we previously obtained
a reliable estimation of the secondary structures not only of WT
but also of mutations of AR.”*" To improve sampling, REMD was
employed with 12 replicas in the temperature range from 290.16
to 490.16 K (see the supplementary material for more details), and
for each replica, 500 ns MD simulation was performed. One of the
representative structures, obtained in our previous work for the
monomer,  was chosen as the initial structure for all replicas in
WT simulation, while for the mutants we used the same structure
but the corresponding mutation was made using the Raptor X web
server (Fig. S1 of the supplementary material). Because we used
the REMD method, the results should not depend on the starting
configuration.

IV. EQUILIBRATION
A. Effectiveness of REMD simulation

To show the effectiveness of REMD simulation, we monitored
the evolution of each replica in the replica space. For illustration,
we plot the time dependence of exchanges of the second replica
with the remaining partners [Fig. S2 (upper panel) of the supple-
mentary material]. Clearly, this replica was exchanged with everyone
else, including the farthest 12th, implying that the replica exchange
method worked well for our system. This is also confirmed by a
strong overlap between adjacent distributions of potential energy of
12 replicas [Fig. S2 (lower panel) of the supplementary material]. For
contiguous temperatures, the probability of exchanges is about 20%-
30% and this is consistent with the overlap of the potential energy
distributions.

B. Time dependence of RMSD, total energy,
and beta content

We monitored the time dependence of the root mean square
displacement (RMSD), which was calculated using the initial struc-
ture as a reference structure and the coordinates of Ca-atoms. We
assumed that the system has reached equilibrium when RMSD gets
saturation. As evident from Fig. S3 (upper panel) of the supplemen
tary material, the equilibration time is about 210 ns for WT and
mutants. This conclusion is further supported by the time depen-
dence of the total energy and beta content of three sequences (Fig. S3
of the supplementary material).

C. Heat capacity in two time windows

To ensure that 210 ns is enough for equilibration, we have com-
puted the specific heat for time windows [210-400] and [210-500]
ns using the formula Cv = ((E?) — (E)?)/(ks T*), where E is the poten-
tial energy and (.. .) denotes the thermodynamics average. The heat
capacity, obtained in two time windows at 300 K, for WT, A21G,
and E22K, is shown in Fig. S5 of the supplementary material. Since
Cy is almost the same for two windows, we conclude that the data
were equilibrated. Note that together with WT, we select A21G and
E22K as representatives for displaying data because the former is
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among the sequences with low p-content, while the latter has the
highest {3 -content (see below). Our result obtained for WT (Fig. $4 of
the supplementary material) is consistent with the data reported by
Hicks "' that Cv slightly increases with the temperature in the range
of 300-350 K.

D. Secondary structure in two time windows

We have also calculated the secondary structures for the [210-
400] and [210-500] ns time windows using the STRIDE algorithm.
Since within error the obtained re%ults are identical for these win-
dows (Fig. S5 of the st erial), the AP42 variants are
at equilibrium after 210 ns (see also our prekus works for WT-).
The secondary structures obtained in the [210-500] ns window will
be used for data analysis. Although the MD simulation has been per-
formed for 12 temperatures, we will consider T = 300 K where exper-
imental data were collected. Details of MD simulation are provided

in the supplementary material.

lementary mz

V. AGGREGATION RATE DEPENDS ON B-CONTENT

The free energy surface was constructed for AP42-WT and
two selected mutants A21G and E22K (Fig. S6 of the supplemen
tary material) by using the dihedral angle principle component

WT

ARTICLE scitation.org/journalljcp

analysis ({PCA) method in which only the first two important com-
ponents V1 and V2 were kept (see the suppleme terial for
more details). Structures (S) representing major basms clearly show
that the mutations alter secondary structures. This is also evident
from the per-residue distributions and the most important struc-
tures of three sequences shown in Fig. 1. For WT, these distributions
were discussed in detail in our previous works.” " For E22K, the
B-propensity at the C-terminal levels up compared with WT, while
the reduction occurs in this region for A21G. The B-content is com-
patible in the 18-23 fragment for WT and E22K. Overall, E22K
increases the B-content from 21% (W'T) to 29%, but A21G reduces
it to 13.7% (Table 1). This is consistent with the experiments show-
ing that E22K speeds up aggregation, while Flemish A21G slows it
down.””

ntary ma

A. Linear and exponential dependence

Figure 2 shows that the experimentally measured aggregation
rate linearly depends on B-content

-0.29 +0.0635 B, (1)

Kmut/Kwt =

where B is measured in percentage. The correlation level is high
as R = 0.85. Thus, for the first time, we explicitly showed that the
B-content of the monomer controls the aggregation propensity for
AP peptides and this is expected to be true for other proteins.

FIG. 1. (Upper) Most representative

structures obtained by the clustering
method at equilibrium (see structures
S1 in Fig. S3 of the supplen
material) for WT, A21G, and E22K The
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uHﬁH.Iluanlm| . Im H"ll“
10 5 20 e i § 30 35 40

mutated residue is in the all-atom pre-
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sentation. (Lower) Per-residue distribu-
tions of secondary structures of AB42-
WT, A21G, and E22K at 300 K. Results
were obtained at equilibrium.
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TABLE |. The relative computational B-content and observed aggregation propensi-
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2 T T T T
ties of all mutations. The simulation result was obtained at 300 K, the aggregation = | ' ' !
rate was taken from experiment, and reference is at the last column. g
2 L5}
Simulation Experiment ; B
B-content  a-content log s T
Mutations (%) (%) (Kmut/kwt) ~ Reference E -
2 0.5F
AB42 2094 +£191 0.07 +£1.70 0 S L
141D-A42Q 1292 £2.37 1.98 +0.47 —0.964 6 and 24
141D-A42S  12.15+1.93 0.58 +0.15 0.913 95
141H-A42D 11.99 +2.38 3.32 +0.87 —0.708
I41E-A42L  13.83 £2.32 8.00 +2.16 0.445 0.6FT
141H-A42N  15.06 +2.85 2.37 +0.75 —0.837 s g
A21G 13.7 £2.02  7.63 +2.43 0.671 6and 23 X 04F ]
141T-A42N  11.82+1.74 0.73 £0.21 —0.605 6 and 24 202 e
141T-A42Q 13.31 +1.82 0.69 +0.30 0.590 i:» ok A
I41L-A42N  14.61 £2.66 0.60 +0.14 —0.561 % - -
141Q- A42L  19.79 +£3.17 1.35+0.42 —0.295 a5 F i
141T-A42M  12.78 +1.8 4.72+1.63 —0.292 E-OA = =]
141T- A421 1372 +1.96 026 +0.06  —0.075 5061 ]
141K 19.00 + 4.12 0 —0.518 = or ]
[41K-A42L 1856 +3.46 305072  —0.379 SR ]
I41R-A42R 1654 £2.07 397139  —0.324 gL
A42R 1549 £+ 1.9 492 +1.54 —0.034 B - propensities (%)
E22G 20.52 +2.43 0.67 £0.22 0.209 6and 23
D23N 23.91+2.39 0.80+0.14 0.238 22 FIG. 2. Dependence of the relative aggregation rate (upper panel) and the loga-
E22K 29.06 +3.53 1.28 +0.36 0.545 6and 23 rithm of the relative aggregation rate on the B-content (lower panel). The red circle

Although linear fit [Fig. 2 and Eq. (1)] works well, we can
show that the exponential fit is also possible. As evident from I'ig. 2,
there is also a high correlation (R = 0.8) between In(kmut/kwt) and
B-content and their relationship can be described by an exponential

function

refers to WT. Linear fits are y = —0.29 + 0.0635 x (R = 0.85) and y = —1.534 +
0.071 x (R=0.80).

respectively (Fig. 1). The enhancement occurs mainly in the 10-
18 region. With the exception of 141K, all mutations increase the
propensity to helix formation, varying from 0.26 (141T-A42I) to 8%

Kk = kpexp(cB), ¢=0.071, (2) (T41E-A42L) (Table T). A small change in this quantity as a result of
. . , . mutations leads to a poor correlation between the self-assembly rate
where ko is a fitting constant and f is measured in percentage. A and the a-content (Fig. S7 of the supplementary material, R = 0.16).

mutation that levels up self-aggregation enhances the B-propensity
in the monomeric state and slows it down otherwise. One can expect
that the exponential dependence is valid for other systems as the
a-P conversion is a barrier crossing event but constant ¢ may be not
universal.

Using lattice models, Li et al. have observed the exponential
dependence of x on the population of fibril-prone state N*." On
the other hand, the N* conformation is rich in p-sheets implying
that the exponential behavior [Eq. (2)] is in the line with this work.
From this point of view, exponential fit is more favorable than linear,
despite the fact that the correlation of the linear fit is higher. One of
the reasons why it is difficult to distinguish two dependences is that
the B-content varies in a narrow interval. We have to study a larger
dataset to solve this problem.

B. Aggregation rate does not correlate with helix-,
turn-, and coil-propensity

At 300 K, the helix-content of AB42-WT is practically zero,
and the mutations E22K and A21G increase it to 1.28% and 7.63%,

This is also consistent with the experiment showing that AB42-WT is
much more aggregation prone than AB40-WT " although they have
almost the same helix content.

The turn is highly populated at the C-terminal and in the 22—
29 region (Fig. 1). In A21G, it increases mainly at residues 9, 19-
21 and 31-34, while a notable reduction occurs at positions 11,
12, and 15-18, which leads to a slight increase from 61.17% (WT)
to 63.47% (A21G). Upon E22K replacement, the turn propensity
increases at residues 1-3 and 23, but decreases at positions 11-15
and 29-31, resulting in a decline by about 5%. Compared to the
a-content, the turn propensity varies over a wider range from 31.81
(D23N) to 73.54 (141T-A42N) leading to a higher correlation with
experiments (R = 0.46, Fig. S8 of the supplementary material). The
rationale for this observation is that the formation of fibril contacts,
such as the Asp23-Lys28 salt bridge, in the turn segment plays a key
role in the fibril growth. Nevertheless, it cannot be concluded
that the turn-propensity controls the aggregation rate as the corre-
lation coefficient remains below 0.5 (Fig. S8 of the supplementary
material).
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In WT, the coil structure is about 16% (Table S3 of the sup
plementary material) and it is predominantly populated at several
first and last residues (Fig. 1). After mutation, the per-residue dis-
tribution changes (Fig. 1), but the total amount slightly changes
remaining in the interval of 13%-21% (Table S3 of the supple
mentary material). Consequently, as in the case of a-content, the
coil propensity poorly correlates with the aggregation rate, having
R =0.15 (Fig. S9 of the supplementary material). One of the possible
causes of poor correlation with the a- and coil-content is that these
structures are poorly populated in the N* state.

VI. EFFECT OF CHARGE, HYDROPHOBICITY,
AND PROPENSITY TO CONVERSION FROM
AN a-HELICAL TO A p-SHEET CONFORMATION

A. Aggregation rate poorly correlates with the free
energy for conversion from an a-helical to a p-sheet
conformation AAG

The change in free energy from the coil to the B-state, AAGy_ci1,
was calculated using the formula AAGy oy = 13.64(Pﬁ"" - Pp"“"),
where Pg"" and Py™" are the B sheet propensities of the wildtype
and mutant residues, respectively, and 13.64 is the conversion con-
stant from the normalized scale to the unit kj/mol, and AAGy. .y is
measured in kJ/mol. Using Pp for the 20 amino acids provided in
the supplementary material of Chiti and Dobson” and in Table I of
Street and Mayo, '~ we obtained AAGy.. for all sequences studied
(Table S4 of the supplementary material).

The change in free energy from a-helix to the coil, AAG yj.q,
was estimated using the equation AAGq = RT In(P™/Pe™"),

on
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where P,"" and P,™" are a-helical propensities of the wildtype and
mutated sequences at the mutation site, respectively, and gas con-
stant R = 0.008 314 k] mol™" K™". The helix percentage was calcu-
lated using the AGADIR algorithm (www.http://agadir.crg.es/), and
the results are shown in Table S3 of the su ry material. The
free energy of conversion from an a-helical to a B-sheet conforma-
tion, AAG, is defined as AAG = AAGy.coi + AAGeoiiq and its values
are also given in Table S3 of the supplementary material.

As shown in F'ig. 3(a), the correlation between the experimen-
tal aggregation rates and AAG is quite low (R = 0.40), suggesting that
the B-content of the monomeric state is a better indicator for the self-
assembly propensity compared to the propensity to conversion from
the a-helix to the p-sheet conformation. By confining to mutations
that do not change the net charge, Chiti and Dobson showed " that
for a set of 15 sequences, the correlation level between x and AAG is
noticeably higher (R = 0.71) than ours. This result seems to contra-
dict our result, but using the entire set of 27 sequences,  we obtained
R = 0.41 (Fig. S10 of the supplementary material) which is close to
our value 0.40. From this prospect, our result is consistent with that
of Chiti and Dobson.  Nevertheless, further study is needed to clarify
the correlation with AAG.

B. Aggregation rate correlates with the change
in the hydrophobicity (AHydr) and overall
charge (ACharge) due to mutation

Following Dobson et al.,” we calculated the change in
hydrophobicity AHydr = Hydry: — Hydrmu, where Hydry and
Hydrmue are the hydrophobicity of the wildtype and mutant
sequences, respectively. Similarly, a change in the net charge is

a
. 06 T P Tee=] T T T  — ~0sF T & T T T 1T T T 1]
< 04} R=040 ] g ’ R=-0661
\;-E, o2l . « Slope = 0.063 ] s F ° Slope =-0.081
L
% <
g ° 1 E
H 02 1 £
S 04 1 5}
2 E.
= -0.6 k| 2
2 08 ] FIG. 3. Dependence of the logarithm of
el . ] * i i
m . A N the relative aggregation rate on the pre-
e 0 1 : ; :
) 2 0 2 4 6 32 -1 0 Al%l ¥ 4 5 6 1 dicted change in propensity to convert
- T, -heli B =
AAG . +AAG, .(kJ mol I) Y/ from an a-helical to ap sheet confor:
coil-oc B-coil d mation (a), hydrophobicity (b), charge
C (c), and the calculated aggregation rate
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defined as ACharge = |Chargemu| — |Chargew|, where Chargenu
and Chargew are the charge of the mutation and the wildtype,
respectively. We calculated AHydr and ACharge for all studied
sequences (Table S4 of the supplementary material) using the val-
ues of hydrophobicity and charge for 20 amino acids provided in the
supplementary material of Dobson et al.

The level of correlation between the experimental aggregation
rate and AHydr and ACharge is R = 0.661 and 0.683, respectively
[Figs. 3(b) and 3(c)]. These values are compatible with 0.545 and
0.721 reported by Dobson et al.,” but they are noticeably lower
than the correlation level between the aggregation rate and the beta
content.

We have calculated the change in the aggregation rate due to
mutation, using the following equation:”

In(Kmut/xwt) = A - AHydr + B+ AAG + C - ACharge. (3)

Here, A, B, and C are the slopes obtained from the linear fit between
In(#mut/kwt) and AHydr, AAG, and ACharge, respectively, as follows
from Figs. 3(a)-3(c) are —0.081, 0.063 and —0.304, respectively. The
predicted aggregation rates, obtained by using Eq. (3), are shown
in column 7 of Table $4 of the supplementary material. Despite
the poor correlation with AAG, its combination with hydrophobic-
ity and charge significantly improves the correlation between the
predicted and experimental aggregation rates as we have R = 0.863
[Fig. 3(d)]. This correlation level is as high as that for correlation
with the beta content. Interestingly, because the slope in Fig. 3(d) is
1.064 (close to 1), the predicted and experimentally measured rates
are almost the same.

VIl. CONCLUSION

We have carried out the all-atom REMD simulation in implicit
water for various mutations of AB42. The correlation between the
secondary structures obtained in the monomeric state and the exper-
imentally determined aggregation rates has been thoroughly ana-
lyzed. We have found that there is no correspondence between the
experimental rate and the helix and coil propensities, while the fit
with the turn is relatively poor. Using the data set of 27 sequences
from Chiti and Dobson, we demonstrated that if the change in net
charge was taken into account, then the experimental x does not cor-
relate with the propensity to conversion from a-helical to p-sheet
conformation free energy AAG as R is below 0.5. One of the pos-
sible reasons is that AAGp o and AAG,j.q Were determined by the
empirical propensities Pg and Py.” A direct estimate of AAG from the
all-atom simulation may improve the correlation but this requires
for a long simulation that is beyond the scope of this paper. Another
possible scenario is that the poor correlation between x and AAG is
due to a small dataset. To clarify this problem, we need more exper-
imental as well as simulation data that are more convincing rather
than the existing ones.

We have found a strong correlation between the experimental
aggregation rate and p-propensity in the monomer. The dependence
of k on f is expressed by an exponential function in such a way
that the higher the B-propensity, the faster the formation of fibril
[Eq. (2)]. But linear dependence [Eq. (1)] is not excluded, probably
due to the fact that the dataset is not large enough. Nevertheless,
our result sheds light on our understanding of major principles that

ARTICLE scitation.org/journalljcp

regulate the self-aggregation propensity of proteins, in particular,
intrinsically disordered proteins.

Since an estimation of the aggregation rate of long polypeptide
chains is beyond existing computational facilities, Eq. (2) [or maybe
Eq. (1)] is very useful because it would allow us to predict the aggre-
gation rate based on the B-content, which can be easily obtained by
REMD simulation.

SUPPLEMENTARY MATERIAL

See supplementary material for “Material and Method”; ini-
tial structure for MD simulation of WT; plots showing the perfor-
mance of the RE method; time dependence of RMSD, total energy,
and beta-content of the three representative sequences; temper-
ature dependence of the heat capacity, per-residue distributions
of the beta-content, and free energy surfaces of WT, A21G, and
E22K; dependence of the aggregation rate on AAG, helix, turn,
and coil propensity; tables showing sequences of AP42-WT and
mutations, characteristics of structures representing major basins
on the free energy surface of WT, A21G, and E22K, turn and coil
propensities, AAGg.coi and AAGeoila, estimated for 20 sequences
through the B- and a-propensities of amino acids, and AHydr and
ACharge.
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4.3 Heat-induced degradation of fibrils: Exponential vs. logistic kinetics

Fibril Fibril degradation with recycling

Fibril Monomer dissociation without recycling

-5 40

Figure 12: Heat-induced degradation schemes. Upper panel: heat-induced degradation of
structure with recycling of monomers; Lower panel: monomer dissociation from the fibril
structure without recycling, where the protein capture

Self-assembly of proteins has been proposed to be associated with many neurodegenerative
diseases [3]. Many studies have recently shown that oligomers are much toxic than mature fibrils
[259]. Therefore, in addition to knowing the kinetics of peptide formation into the amyloid fibril
structure, understanding the stability of fibrils and their degradation kinetics is also critical due to
the potential toxicity of the intermediately dissociated agents [260].

The research in this paper [13] aimed to theoretically characterize the difference between the
experiment on heat-induced fibril degradation by Goto’s group [10] and the monomers
dissociation experiment carried by Gruning et al using the protein capture technique [261]. The
former used Thioflavin fluorescence to monitor the degradation of fibril content (£2) and reported
that the time dependence of @ follows a bi-exponential kinetics. The latter estimated the
remaining fraction of associated monomers @ using a Trytophan fluorescence assay in which
engineered protein called ZApB3 was used to prevent ABs;, monomers from oligomerization or
recycling back to their mother pieces. By this way, Gruning et al. observed a mono-exponential
dependence of ® on time [261]. The difference between these two experiments/assays is sketched
in Figure 11. The upper panel showed the heat-induced degradation fibril which leads to the
reduction of B structures. The lower panel represents the dissociation of monomers from
protofibrils by using the monomer capture technique.

It has been already known that the time dependence of Q(t) can be described by a bi-exponential
function experiment [10]. However, an analytical formula for the time dependence of @(t), which
can be measured by Trytophan fluorescence, remains unknown. Therefore, we have developed a
phenomenological theory showing that ©(t) obeys the logistics function:
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)
o(t) = 0 + + Coq
th@, + (1 -1hO)er

(15)

Here 7, b and @, are phenomenological parameters; Ceq is non-zero in the case of allowing free
peptides reunite and 0 when free peptides are excluded from the system. A typical dependence of
O(t) on t is shown in Figure 12 for the case with recycling (red) and without recycling (blue) of

monomers.

Our simulation with lattice models [262] for the systems of N=10, 16, 28 chains and all-atom
models [263] for the AB17-42 (2BEG) (5 chains) and AB37-42 (10 chains) fibrils proved that Q in
heat-induced fibril degradation follows a bi-exponential function (Figure 12: purple curve). Our
results agreed well with experiment by Goto et al. [10].

In lattice model, ® has been estimated as the difference of the total number of monomers and the
number of free monomers. In order to mimic the protein capture technique which prevents free
monomers from recycling back to their original aggregate, a newly produced free monomer is
excluded from the lattice system during simulation.

100

Mor

Degradation (%)
un
o

Time

Figure 12: Schemes of different heat-induced degradation kinetics of fibril. Bi-
exponential purple curve shows the time-dependent degradation of percent of 3
structure (€2) represented by number of fibril contact. Percent of bounded chains (©)
during the dissociation process of monomers from fibril were exhibited by red and
blue logistical curves for applying and non-applying monomer capture technique,
respectively. The horizontal blue line determines the value of @
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Our lattice simulations confirmed the logistics behavior of @ (Eq. 15 and Figure 12) for both
recycling and non-recycling scenarios.

At long enough time scales the second term in the denominator in Eq. 15 dominates, then we
have a mono-exponential dependence O(t) ~e~/*, which was observed experimentally by
Gruning et al. [261]. This behavior holds when @ exceeds a threshold value @ (Figure 15). It
would be interesting to experimentally verify our prediction for @ below O, .
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Publication for this section: Heat-induced degradation of fibrils: Exponential vs. logistic
kinetics

Nguyen Truong Co, Pham Dang Lan, Pham Dinh Quoc Huy, and Mai Suan Li

J. Chem. Phys. 152, 115101 (2020)

Abstract

The degradation of fibrils under the influence of thermal fluctuations was studied experimentally
by various groups around the world. In the first set of experiments, it was shown that the decay
of fibril content, which can be measured by the ThT fluorescence assay, obeys a bi-exponential
function. In the second series of experiments, it was demonstrated that when the monomers
separated from the aggregate are not recyclable, the time dependence of the number of
monomers belonging to the dominant cluster is described by a single-exponential function if the
fraction of bound chains becomes less than a certain threshold. Note that the time dependence of
the fraction of bound chains can be measured by tryptophan fluorescence. To understand these
interesting experimental results, we developed a phenomenological theory and performed
molecular simulation. According to our theory and simulations using the lattice and all-atom
models, the time dependence of bound chains is described by a logistic function, which slowly
decreases at short time scales but becomes a single exponential function at large time scales. The
results, obtained by using lattice and all-atom simulations, ascertained that the time dependence
of the fibril content can be described by a bi-exponential function that decays faster than the
logistic function on short time scales. We have uncovered the molecular mechanism for the
distinction between the logistic and bi-exponential behavior. Since the dissociation of the chain
from the fibrils requires the breaking of a greater number of inter-chain contacts as compared to
the breaking of the beta sheet structure, the decrease in the number of connected chains is slower
than the fibril content. Therefore, the time dependence of the aggregate size is logistic, while the
two-exponential behavior is preserved for the content of fibrils. Our results are in agreement with
the results obtained in both sets of experiments.
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ABSTRACT

The degradation of fibrils under the influence of thermal fluctuations was studied experimentally by various groups around the world. In
the first set of experiments, it was shown that the decay of fibril content, which can be measured by the ThT fluorescence assay, obeys a
bi-exponential function. In the second series of experiments, it was demonstrated that when the monomers separated from the aggregate
are not recyclable, the time dependence of the number of monomers belonging to the dominant cluster is described by a single-exponential
function if the fraction of bound chains becomes less than a certain threshold. Note that the time dependence of the fraction of bound chains
can be measured by tryptophan fluorescence. To understand these interesting experimental results, we developed a phenomenological theory
and performed molecular simulation. According to our theory and simulations using the lattice and all-atom models, the time dependence of
bound chains is described by a logistic function, which slowly decreases at short time scales but becomes a single exponential function at large
time scales. The results, obtained by using lattice and all-atom simulations, ascertained that the time dependence of the fibril content can be
described by a bi-exponential function that decays faster than the logistic function on short time scales. We have uncovered the molecular
mechanism for the distinction between the logistic and bi-exponential behavior. Since the dissociation of the chain from the fibrils requires
the breaking of a greater number of inter-chain contacts as compared to the breaking of the beta sheet structure, the decrease in the number of
connected chains is slower than the fibril content. Therefore, the time dependence of the aggregate size is logistic, while the two-exponential
behavior is preserved for the content of fibrils. Our results are in agreement with the results obtained in both sets of experiments.

Published under license by AIP Publishing. hitps://doi.org/10.1063/1.5144305
INTRODUCTION with transverse B-strands. Recent experiments have provided evi-
dence that senile plaque levels are weakly correlated with the severity
Protein aggregation is believed to be associated with neurode- of dementia, but intermediate oligomers are predominantly toxic

generative diseases. For example, aggregation of a-synuclein protein
may be related to Parkinson’s disease, while Alzheimer’s disease
(AD), which is often seen in older people, is presumably caused by
formation of extracellular senile plaques consisting of amyloid beta
(AP) peptides in the patient’s brain.” AP peptides, which are cleaved
from amyloid precursor protein (APP) under the influence of f-
and y-secretases,” have most abundant isoforms As (40 amino
acids) and APs, (42 amino acids). AP aggregation occurs by the
nucleation mechanism with the lag phase to form mature fibrils

species. Thus, knowledge about the intermediate stages of fibril
growth plays a crucial role in determining effective AD therapy. In
addition, since finite-sized oligomers and fibrils can decompose into
non-toxic monomers, it is important to understand the process of
dissociation in detail.

Several experimental studies of the chemical stability” " and
dissociation of amyloid fibrils under high pressure  and laser
irradiation'"'* have been carried out, while only a limited research
was conducted to study their thermal stability. It was shown
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that due to thermal fluctuations, the dissociation kinetics can be
described by a bi-exponential function with two very different time
scales or degradation rates.

Recently, Gruning et al.” have carried out an interesting exper-
iment allowing for the study of the dissociation of A fibrils without
re-association. Using the engineered protein ZAB3W for the seques-
tration of the AP monomer, they were able to control the dissocia-
tion by tryptophan fluorescence. The basic idea of their experiment
was based on the fact that ZAB3W inhibits the AR aggregation by
sequestering the aggregation-prone central and C-terminal regions
of the AP monomer.”" Therefore, in the experiment of Gruning
et al.,” the concurrent effect of reverse and forward reactions was
avoided. More importantly, it was shown that in the absence of
monomer recycling, the dissociation of fibrils obeys a single expo-
nential law instead of bi-exponential decay. This interesting result
has not been theoretically explained.

Protein aggregation, in particular, the oligomerization of full-
length and truncated AP peptides, has been studied by many groups
around the world using molecular dynamics (MD) simulation.
However, the degradation of fibrils has not been theoretically con-
sidered. On the other hand, since the destruction of insoluble amy-
loid fibrils is one of the possible ways to treat neurodegenera-
tive diseases, this problem is of great interest not only from the
point of view of basic research but also from the point of view of
application.

In this paper, combining theory with all-atom MD and lattice-
based Monte Carlo simulations, we study the temperature-driven
dissociation of fibrils with and without recycling (Fig. 1). In a stan-
dard scenario with monomer recycling, the released monomer is
allowed to reattach to the mother aggregate, whereas in the case
without recirculation, the released monomer is removed from the
studied system. We have developed an analytical theory to describe
the fibril degradation with and without the capture of monomers,
which are detached from the parent aggregate (we use the words
aggregate and fibril with the same meaning, but, in general, the
aggregate is of less order than the fibril). We showed that the time
dependence of the aggregate size is described by the logistic function,

Fibril Fibril degradation with recycling
Fibril Monomer dissociation without recycling

4 4 4
> > >

FIG. 1. Top panel: schematic plot for the dissociation of fibrils in a standard sce-
nario with recycling, where the freed chain can reunite with the mother aggregate
and, therefore, the total number of chains is fixed. Bottom panel: the decomposition
of fibrils without monomer recycling, in which the released monomer is removed,
not allowing to reattach to the mother unit.
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while the behavior of the fibril content (the fibril content is propor-
tional to the ThT fluorescence signal and is measured by the number
of fibril contacts or beta content in simulation) is controlled by a
bi-exponential function. Then, our theory and the results, obtained
by tryptophan and ThT fluorescence techniques, were verified by
simulations using lattice and all-atom models.

We expect that the results obtained in this work should be valid
for the thermal degradation of not only proteins but also of other
systems.

MATERIALS AND METHODS
Lattice model

To study the degradation of sufficiently large fibrils, we used a
simple lattice model, " in which each amino acid is represented by
abead and the polypeptide chain has M = 8 beads. The sequence of a
polypeptide chain was chosen the same as in our previous works, "~
i.e., this is +HHPPHH-. Here, H and P refer to hydrophobic and
polar residues, respectively, while + and — are charged beads located
at the ends.

The potential energy of N chains is as follows:

N M N M

E= Z ZEsI(I)SI(])‘S(rlj = a) + Z ZESm(l)sl(j)s(rlj = a)’ (1)

I=1 i<j m<l i

where the first and second terms are intra- and inter-chain interac-
tions, respectively. r;; stands for the distance between beads i and j,
and the lattice spacing is denoted by a. sm(i) is the type of residue i
in the mth peptide, and §(0) = 1 and zero, otherwise. For intra-chain
interaction, we count the interaction energy between two residues i
and j that are separated by a lattice spacing but are not successive in
sequence. For a cubic lattice, this condition means that |i - j| must be
greater or equal to 3. In the case of inter-chain interaction, any pair
of two residues from different chains that are separated from each
other by distance a should contribute to the interaction energy.

The energy is measured in the unit of the hydrogen bond energy
enp. We chose the contact energies as Epq = —0.2, where a = P; +;
—, and the interaction energy between two hydrophobic residues
as Eyy = —1.7" To favor the formation of “salt bridge,” we assign
the sufficiently strong attraction between oppositely charged beads
E- = —0.6, while the repulsive interaction was chosen to be weaker
with E,, = E__ = —E,_/2 = 0.3. For all other contacts, we have
Eqg = 0.2. Note that the lattice model was successfully used to study
the formation of critical nucleus * and fibril formation in a crowded
environment.

Monte Carlo moves

The MC (Monte Carlo) algorithm was used to study degrada-
tion of fibrils on a discrete cubic lattice. MC moves include local
(corner flip, tail rotation, and crankshaft rotation) and global moves.
Global moves involve translating the entire chain along a randomly
chosen direction with a step of a and rotating it 90° around a ran-
domly selected one of the three axes. Since global moves are artificial,
we tried to maintain their acceptance rate as low as possible. How-
ever, if this rate is too low, the degradation process will be so slow
that the problem becomes computationally unfeasible. Therefore,
as in our previous work, ' the acceptance rates of local and global
moves were set at 0.9 and 0.1, respectively.
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Simulation was conducted in a hypercube with a periodic
boundary condition. Simulation time is measured in units of MCS
(MC step), which is a combination of local and global moves.
The concentration of chains in each system was chosen to be
around 57 uM, which corresponds to the cubic sizes of 135, 165,
and 235a for N = 10, 16, and 28 monomers, respectively, with
a, lattice spacing, set equal to 1. This concentration has the same
order of magnitude as in typical experiments. To obtain reliable
results, we performed 100-150 independent MC trajectories for each
simulation set.

Fibril structures in lattice models

Fibril-like structures in the lattice model are a set of monomers
forming anti-parallel structures with the lowest energy. In order to
find such structures, we carried out multiple MC simulations start-
ing from random configurations. Figure 2 shows fibril structures for
N =10, 16, and 28 for the force field described above.

Simulation of fibril degradation in lattice models

To study the kinetics and mechanisms of thermal degradation
of fibrils in the lattice model, simulations were conducted starting
from a fibril-like structure (I'ig. 2) at various temperatures. Inter-
and intra-chain contacts that exist in the fibril structure are called
fibril contacts. The intra-chain contact between beads i and j is
formed if |i — j| > 3, and the distance between them is equal to
the lattice spacing a. The inter-chain contact between two beads
belonging to two different chains occurs if the distance between
them is a.

Temperature in lattice model

Since in the lattice model the energy is measured in eqs, the
temperature is measured in eyp/kg. In what follows, we use dimen-
sionless temperature but mean that its unit is eyp/kg. The folding
temperature of the monomer Tr can be obtained either from the

:_Igi“, A i
IR T
(G ad

[
3

FIG. 2. Fibril structures of N = 10, 16, and 28 polypeptide chains in the lattice
model. Blue, red, green, and yellow balls represent positive charges, negative
charges, hydrophobic amino acids, and hydrophilic amino acids, respectively. The
connections between beads are peptide bonds. These structures have 114 (84),
192 (144), and 360 (276) fibril contacts for N = 10, 16, and 28, respectively. The
number of inter-chain contacts is shown in brackets.
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maximum of heat capacity * or from the condition (Q(T%)) = 0.5,
where Q(T¥) is the fraction of native contacts at the folding tem-
perature.”* Since the chain contains only eight beads, these quan-
tities can be calculated exactly. From the temperature dependence
of (Q(T)), we obtained Tr ~ 0.39 (Fig. S1 of the supplementary
material). The same value of Tr was obtained from the temperature
dependence of the heat capacity (results not shown). The room tem-
perature is set as the folding temperature of the monomer Ty = 0.39.
The lattice simulations were performed at temperatures above room
temperature.

All-atom MD simulation

The structure of AP fibrils remains controversial. The N-
terminus of the peptide is believed to be either disordered or ordered
in the fibril stage. Fibril structures of N-terminus truncated peptides
were proposed by Liihrs et al.” (ABy7-42), Petkova et al. (Ao_40),"
and Paravastu et al. (APo_40) " because the first 16 residues of A1
and the first 8 residues of APi_4 were assumed as unstructured.
However, recent experiments have shown that the N-terminus
might be ordered and involved in the fibril structure.”” " In this
work, we carried out all-atom MD simulation to study the degra-
dation of the fibril-like structure of 10 truncated peptides ABs7_s2
(37GGVVIA42). The cross beta structure (ig. 7) was resolved by the
Eisenberg group using the solid state NMR and has ID 20NV on the
website http://people.mbi.ucla.edu/sawaya/jmol/xtalpept/index.html.
We also performed the simulation for the fibril-like structure of five
APy7_4> chains (PDB ID: 2BEG, "~ Fig. 8).

As in the case of lattice models, the contacts formed in a fibril-
like structure are called fibril contacts. The contact between two
amino acids is formed if the distance between their centers of mass is
less than 6.5 A. For intra-chain contacts, we do not count the contact
between successive residues.

We used the Amber11 package " to perform explicit solvent
simulation applying the amber force field 99SB" and TIP3P water
model. " It is worth to mention that the amber force field 99SB
and TIP3P model of water is the best combination.”""* The motion
equation was solved by the leap-frog algorithm * with a time step
of 2 fs. By the SHAKE algorithm,  all bonds with hydrogen atoms
were constrained. A Langevin thermostat  was applied to main-
tain the designed temperature with 2 ps™" collision frequency. The
vdW interaction at distances longer than 1.4 nm was not taken into
account, and the electrostatic interaction was treated by the particle
mesh Ewald method.

Why we have to use lattice and all-atom models?

The best model to use is the all-atom model, but we also stud-
ied the lattice model for two reasons: First, due to its simplicity, we
can perform simulation with a larger number of chains compared
to the all-atom model. Second, in order to capture an experiment
without recycling,”” we must remove the monomer that has just
dissociated from the mother aggregate before continuing with the
simulation. This can be easily implemented in simple lattice mod-
els, but it is not so in an all-atom model, where the removal of one
chain requires to re-solvate a simulation box with a reduced num-
ber of water molecules. In principle, to avoid this problem, we can
use implicit all-atom or off-lattice coarse-grained models, but we
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have chosen lattice models because they allow us to deal with a large
number of polypeptide chains.

Experimental technique for monomer capture
and simulation protocol

In order to prevent the released Ap monomer itself from reunit-
ing with the parent aggregate, experimentally it was removed from
the system. For this, the free monomer was marked by the trypto-
phan fluorescence.”” Since the AB peptide does not contain trypto-
phan, the ZAB3W protein, which was obtained from ZAP3 making
a single point Y18W mutation, was used as a tryptophan fluores-
cence probe for monomer AP because it binds to the Ap monomer
but not to the fibril. In detail, when ZAB3W is bound to the AP pep-
tide, the fluorescence intensity increased and led to a blue-shifted
emission maximum Amax. Using a special simulation technique,
Gruning et al. found a correlation between Amax and the fraction
of free ZAP3W, after which they inferred the AP fraction, which still
remains in fibrils.

In the simulation, we followed exactly the same protocol as in
the experiment of Gruning et al.” that the dissociated peptide was
removed from the simulation box. This can be easily implemented
in simple lattice models, but it is not so in an all-atom model, where
the removal of one chain requires to re-solvate a simulation box with
a reduced number of water molecules. Thus, in this work, we only
used a lattice model to capture the process without recycling.

Quantities used for data analysis
Fraction of fibril contacts Q

Because the simulation started from the fibril structure (Figs. 1,
4,and 5) at t = 0, the number of fibril contacts, N1 (0), is the largest
one. The fraction of fibril contacts, which measures the -structure,
is defined as Q(t) = Npyit (t)/ Nt (0). Experimentally, this quantity
can be obtained by the ThT fluorescence technique.

Fraction of bound monomers ©

Monomers that have no contact with the rest are called free
monomers. The number of bound (non-free) monomers that belong
to oligomers or fibrils is the difference between the total number of
monomers and the number of free monomers. The concentration of
non-free monomers is defined as ©(t) = Nyon-free/ N. In experiments,
this quantity can be measured by the tryptophan fluorescence.” In
the capture scenario (without recycling), a monomer detached from
the aggregate is removed from the simulation box.

Free energy

To show the existence of intermediate states, we calculated the
free energy as a function of fibril contacts. It is defined as follows:

G(Nibeit) = —kp TIn(P(Niprit ) ) (2)

where P(Ngpy1) is the population of states with N,y fibril contacts.
In simulation, P(Ngpyi1) = #(Nfipri1)/ Arotal, Where n(Ngpyy) is the num-
ber of times the state with Ny fibril contacts occurs and .y is the
total number of sampled conformations.

The calculation of the equilibrium free energies is very
time consuming since the degradation and formation of fibrils
are irreversible processes. For systems with a finite number of
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chains, these processes are reversible but building equilibrium
free energy landscapes remains computationally difficult. There-
fore, we will construct nonequilibrium free energy landscapes, using
Eq. (2) and all sampled snapshots including those taken before
equilibration.

RESULTS
Theory

Dissociation of monomers from fibril
without recycling

Logistic behavior. In the first approximation, the decay of the
number of bound chains depends linearly on the number of chains,
i.e., dO/dt ~ © or dO/dt = —a®, where parameter a > 0 for decompo-
sition. This equation leads to exponentially fast decay © ~ exp(-at).
However, as can be seen from the simulation results below (Figs. 3,
5,and 7), O(t) decreases much more slowly than exponential behav-
ior at short time scales. To overcome this difficulty, we add a term
that is proportional to @, leading to the following kinetics equation:

‘;—‘? =-a@ + b&?, (3)
where fitting parameter b > 0. Equation (3) is similar to the equa-
tion for population growth, but the sign of the right side is opposite
(https://en.wikipedia.org/wiki/Logistic_function).

In our phenomenological theory, temperature is implicitly
expressed through adjustable parameters. For example, we do not

00 500 1000 1500 2000
—~ 100 N=16 T=0.54
) A
é 5F 0.58
@ S5of
25 N H L >
0 1000 2000 3000 4000
N=28 T=0.6
25 ; . ;
0 1500 3000 4500

Simulation Time (IOSMCS)

FIG. 3. Time dependence of percentage of bound monomers, ©(t), with recycling.
Color curves represent the logistic fitting [Eq. (7)] for each data set at different
temperatures and N. For N = 10, the sets of fitting parameters (@9, @eq, b, 7)
are (57.21, 45.83, 3.64 x 10~°, 294.1), (74.25, 26.75, 9.26 x 105, 121.95), and
(87.61, 1517, 3.4 x 10~*, 29.6) for T = 0.55, 0.58, and 0.64, respectively. For
N = 16, they are (14.76, 87.39, 8.26 x 10, 502.5), (44.0, 55.82, 3.11 x 1075,
438.6), and (61.109, 40.18, 2.391 x 10>, 378.78) for T = 0.54, 0.58, and 0.60,
respectively. In the N = 28 case, we have (24.21, 76.44, 2.301 x 10-5, 791.4),
(58.74, 43.20, 1.088 x 1075, 645.2), and (76.13, 25.89, 1.14x 10~*, 89.3) for
T = 0.60, 0.65, and 0.75, respectively. The characteristic time 7 is measured in
10° MCS and highlighted in blue.
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know exactly the temperature dependence of the parameters a and
b in Eq. (3), but we expect a to increase with temperature because
degradation accelerates with an increase in temperature. The param-
eter b may decrease or increase with T depending on the situation
(see below). In general, these parameters should be chosen in such
a way that the right side of Eq. (3) is negative in order to guarantee
a decrease in © with time. Thus, at t = 0, we have b@” — a® < 0 or
bBy/a < 1. The larger the system, the more stable the system; hence,
the parameters a and b should depend on the system size. This will
be confirmed by our simulation.
Equation (3) has the exact solution

©o

oty —0
(*) 760 + (1 - 166, )e!/™

(4)
implying that, in general, the fraction of bound chains follows logis-
tic kinetics without recycling. Here, the parameter 7 (7 = 1/a) plays
the role of “relaxation” time. Since degradation becomes faster with
an increase in temperature, 7 should decrease with an increase in T.

Single exponential kinetics. Atlarge enough time scales, the sec-
ond term in the denominator in Eq. (4) dominates over the first term
and we have

O(t) ~ exp(-t/7). (5)

We will show that this single exponential kinetics can describe the
experiment of fibril degradation without recycling.”” Namely, using
a special technique that does not allow the separated monomers to
reunite with the mother oligomer, it was shown that the dissociation
of monomer " obeys a single exponential kinetics if the fraction of
bound proteins becomes less than the crossover value O, ~ 90%.

Dissociation of monomers from fibril with recycling

When released monomers are not captured, one has to add to
Eq. (3) an additional term that describes the recycling. Because the
probability of recycling depends not only on the size of the parent
cluster but also on the number of free monomers, this term should
be proportional to ©(0, — @). Then, Eq. (3) becomes
‘Z—? = -a0 + bO +cO(O, - O). (6)
Because the recycling disfavors degradation, the coefficient ¢ > 0.
Introducing @ = a — ¢® and b = b — ¢, the last equation becomes
identical to Eq. (3) but with the renormalized parameters @ and b and
@y = O — Ocq. In other words, for the case of recycling, the dissoci-
ation of monomers from the aggregate is governed by the following
logistic equation:

60 = Qeq

o(t) = = . +
b(©0 = Oug) T+ [1 - b(O — Opy)T]e!/"

@cq) (7)

where 7 = 1/a. Contrast to the case without recycling, in the t — oo
limit, the portion of bound chains approaches a nonzero equilibrium
value @cq. Equation (7) satisfies this condition and the requirement
that © = @ at t = 0. Note that the parameter ©q should depend on
a, b, and ¢, but we do not have an analytical dependence. It can be
obtained in simulation from the time dependence of ©(t) in the limit
t — oco.
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Simulation results and comparison with experiment
Dissociation with recycling

Time dependence of the number of bound chains: Lattice mod-
els. Figure 3 shows the time dependence of the fraction of bound
chains for N = 10, 16, and 28 at different temperatures. Recall that
the temperature in the lattice model is implied in the Metropolis
algorithm and is dimensionless as kT is measured in the charac-
teristic energy eyp.  Simulations were carried out at T' > 0.39, i.e.,
above room temperature.

In agreement with our theory, the logistic dependence [Eq. (7)]
works well for all cases. As the temperature is lowered, the por-
tion of bound monomers at large time scales becomes larger or
Ocq increases. For N = 28, Ocq = 76.44%, 43.20%, and 25.89% for
T = 0.60, 0.65, and 0.75, respectively. The value of @¢q for N = 10
and 16 at different temperatures is given in the caption of F'ig. 3.

Time dependence of the fibril contacts: Lattice models. The frac-
tion of fibril contacts, (), can be experimentally measured by the
ThT fluorescence array, and it was shown that ™ its time dependence
is described by a bi-exponential function,

Q(t) = Qo + O exp(—t/11) + Q2 exp(—t/12). (8)

The existence of two time scales 7; and 7, means that the fibril degra-
dation occurs through an intermediate state. 7, and 7, describe the
decay at short and large time scales, respectively. To demonstrate the
existence of an intermediate state, we plot the free energy as a func-
tion of the fraction of fibril contacts for N = 28 and T = 0.60 (Fig. 4)
(similar results for other systems and temperatures are not shown).
For individual trajectories, we have two local maxima implying that
the intermediate state occurs upon fibril dissociation. It is important
to note that two local minima disappear if we average over many
MC trajectories (bottom panel in Fig. 4) due to the fact that local
minima/maxima of separate paths are located at different positions.

10
]k
2
R AW
2r + 4 Three separate trajectories
1 1 1 i I
% 20 40 60 80 100
9
[_‘CQ
Sty
!
=~ 3k 4
Averaged over 25 trajectories
0 1 1 1 1 I
0 20 60 80 100

40
Q(%)

FIG. 4. Top panel: free energy as a function of the fraction of fibril contacts,
obtained in three MC trajectories, for N = 28, T = 0.60. Bottom panel: the same as
on the top panel, but the results were averaged over 25 trajectories. Arrows show
the position of local minima.

J. Chem. Phys. 152, 115101 (2020); doi: 10.1063/1.5144305
Published under license by AIP Publishing

152, 115101-5

Nguyen Truong Co

Page 74




Study of factors governing mechanism of protein aggregation by using computer simulation

The Journal
of Chemical Physics

Therefore, care must be taken when interpreting simulation data on
a free energy landscape.

As can be seen from Fig. 5, in accordance with the experi-
ment,” the fraction of fibril contacts is perfectly fitted to the bi-
exponential function. For a given number of chains, characteristic
times 7, and 7, decrease with an increase in temperature (caption
of Fig. 5) since with shorter characteristic times, the degradation
occurs faster. Depending on the system size and temperature, 7, is
1-2 orders of magnitude greater than 7,. This result is consistent
with the experiment on degradation of 2-microglobulin amyloid
fibrils,” which showed that the off-rate constant of the second term
is much greater than the first one.

Figure 6 shows the temperature dependence of the degradation
rates Ko = 1/71 and ko2 = 1/72. These results suggest that both
rates obey the Arrhenius formula as they depend linearly on 1/T.
Using the experimental data (Fig. 3 from the work of Kardos et al.” "),
we can show that the degradation kinetics of f2m amyloid fibrils is
bi-exponential (Fig. S2). Using the fitting parameters from Fig. S2,
we can extract Kofr; and Kofi> and show that they also obey the Arrhe-
nius law (Fig. S3). Thus, our simulation results are consistent with
the experiment.

Time dependence of the number of bound chains: All-atom
model. Because the lattice model can produce artificial results due
to its discrete nature, we carried out the MD simulation with the
use of all-atom models with explicit water. The simulation started
from the fibril-like structure of 10 truncated peptides APs;_4 at
T = 350K, 375 K, and 400 K (F'ig. 7). For each temperature, 10 tra-
jectories were performed with different initial velocity fields, and the

1 0.0() 1 5l00

1000

N=28

0 500 1500 2000

0 1500 3000 4500 6000

Simulation Time (10°MCS)

FIG. 5. Thermal degradation kinetics of three fibril structures with10, 16, and 28
polypeptide chains at different temperatures. The results were obtained using the
lattice model. Smooth curves refer to the bi-exponential fit given by Eq. (£). For
N =10, the set (9, Q1, 2y, 71, 72) is (24.81, 17.65, 64.61, 8.55, 526.32), (17.29,
14.18, 76.8, 4.35,277.78), and (12.45, 13.55, 81.41, 3.73, 147.06) for T = 0.53,
0.55, and 0.58, respectively. For N = 16, we have (24.6, 17.79, 49.67, 55.56,
769.23), (10.24, 16.09, 67.79, 47.62, 588.24), and (3.68, 11.84, 77.47, 17.54,
384.61) for T = 0.56, 0.58, and 0.60, respectively. In the N = 28 case, the fitting sets
are (40.95, 33.92, 23.04, 961.54, 4761.90), (30.1, 32.16, 34.85, 751.88, 2564.10),
and (12.7, 5.35, 82.08, 32.26, 1000.0) for T = 0.58, 0.60, and 0.63, respectively.
Here, 09, 4, and (2, are in % and 74 and 7, are measured in 10° MCS.
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FIG. 6. Temperature dependence of the degradation rate xf and xof2, obtained

by using the lattice (upper panel) and all-atom simulation (lower panel). Ko is
measured in (10° MCS)~".
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FIG. 7. Upper panel: fibril-ike structure of 10 truncated peptides APaz—s. This
structure has 113 fibril contacts. (a) Dependence of the percentage of bound
monomers O(t) on the simulation time without the capture of released monomers.
The results were obtained using the all-atom model. The logistic fitting [Eq. (7)]
was conducted for each data set at different temperatures. The sets of fitting
parameters (G, Ocq, b, 7) are (72.43, 26.25, 2.9 x 104, 45.45), (84.87, 18.94,
1.9 x 1074, 43.48), and (99.02, 6.34, 32 x 10~*,19.61) for T = 350 K, 375 K,
and 400 K, respectively. The results were averaged over 10 MD trajectories. (b)
Time dependence of the fraction of fibril contacts of N = 10 chains, .Q(tg, in the all-
atom simulation. Bi-exponential fits are y = 27.58e~""% + 102.1e="22% _ 52,14
(T = 350 K), y = 6.13¢*™ + 62.35e~"%8 _ 995 (T = 375 K), and
y=11.31e70%" + 53936~ _ 11.85 (T = 400 K). Time ¢ is measured in ns.
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results were averaged over all trajectories. As in the lattice model, the
fraction of bound chains ©(t) obeys the logistic behavior [Eq. (7)].
We can show that the set of fitting parameters (b, ) is equal to
(2.9 x 1074, 45.5), (1.9 x 107%, 43.5), and (3.3 x 107, 19.6) for T
=350 K, 375 K, and 400 K, respectively (caption of Fig. 7). The char-
acteristic time 7, which is measured in ns, is of order of 10 ns and
decreases with an increase in T as the temperature increase speeds
up the degradation.

From a visual inspection, it seems that multiple exponential fits
are also suitable for the time dependence of the number of bound
chains. To clarify this issue, we performed exponential fits with dif-
ferent time scales, as shown in Fig. S4. The bi- and tri-exponential
fits do not work at T = 350 K because the initial slow decay cannot
be captured. This remains valid for a higher-order fit (results not
shown). At T = 375, the tri-exponential works better than in the
T = 350 K case, but again the initial decrease in @ cannot be
described. At T = 400 K, both logistic and single exponential fits
work well. So, at sufficiently high temperatures, when the degrada-
tion is fast, a fit with multiple time scales should work.

Time dependence of the fibril contacts: All-atom model.
Figure 7 shows that the portion of fibril contacts Q(t) of 10 short
peptides APs7_4 is well described by the bi-exponential function,
given by Eq. (8). The set of fitting parameters (Qo, 2, 22, 71, 72)
are (—52.14, 27.58, 102.1, 1.64, 322.6), (-9.95, 6.13, 62.35, 0.73, 58.8),
and (-11.85, 11.31, 53.93, 0.01, 50) for T = 350 K, 375 K, and 400 K,
respectively (caption of Fig. 7). The characteristic time 7, decreases
from 1.64 ns to 0.01 ns and 7, decreases from 322.6 ns to 50 ns as
the temperature increases from 350 K to 400 K, implying that the
degradation is very sensitive to temperature. It can be expected that
at sufficiently high temperatures, the time dependence of the fibril
contacts can be described by a single exponential because the initial
stage becomes so short that 7, — 0.

Fibril contacts decay faster than the number of bound chains: All-
atom simulation of 5Af17-42. From the lattice simulation, it can be
seen that with an increase in temperature, () decreases faster than
O(t) (Figs. 3and 5). For N=10and at T =0.55and t = 5 * 10°
MCS, O(t) ~ 67%, which is higher than Q(f) ~ 29%. For N = 16 and
T = 0.60, after t = 1.5 * 10° MCS, we have O(t) ~ 49%, but Q(t)
drops to 8.5%. This is also true for the all-atom model with 10AB37.4>
(Fig. 7), where at t = 25 ns, O(t) = 96.7, 87.5%, and 52.2%, whereas
Q(t) ~ 42.5%, 32.1%, and 15.7% for T = 350 K, 375 K, and 400 K,
respectively.

However, the simplicity of the lattice model and the shortness
of the chains studied in the all-atom model can affect our main con-
clusion, prompting us to study the degradation of the fibril structure
of longer sequences using the all-atom model. We performed the
MD simulation starting from the fibril-like structure of five AB7.42
chains (PDB ID: 2BEG ') and using the AMBER force filed 99SB.
The 2BEG structure has 184 fibril contacts. Figure 8 shows the time
dependence of the fraction of fibril contacts at 300 K. This fraction
(or the B-content) rapidly decreases according to the exponential
law. Although both fits work well for simulation data as indicated
by the high correlation levels (R = 0.97 and 0.99 for the single and
bi-exponential fits, respectively), only the bi-exponential fit captures
the initial stage of the decay process. In the bi-exponential fit, the
off-rate constant of the first term is about 22 times greater than the
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FIG. 8. Time dependence of fibril contacts of 2BEG at T = 300 K. The results were
averaged over MD 20 trajectories of 200 ns. Shown is the fibril structure 2BEG
from PDB (upper panel) and one of the last snapshots in the simulation (lower
panel).

second one. This result is in qualitative agreement with the expo-
nential behavior observed in experiments on the dissociation of the
B 2m amyloid fibril in the elevated temperature region™ as well as at
the ambient temperature.”

At t =200 ns, the fraction of fibril contacts Q(t) falls below 50%
but O(t) remains equal to 100% as none of the chains was dissociated
from the fibril (Fig. 8). This clearly demonstrates that the reduction
of Q(t) is much faster than ©(f) and this behavior cannot be fitted to
the logistic function [Eq. (7)]. This is the major difference between
two quantities.

Dissociation without recycling

Time dependence of the number of bound chains: Lattice
models. To study the degradation without recycling, MC simulation
was started with fibril conformations shown in Fig. 2 for N = 10, 16,
and 28, but, as in the experiment by Gruning et al,” we removed
any released chain from the box, not allowing it to rejoin the mother
aggregate. To get good statistics, hundreds of MC trajectories were
generated using different random seed numbers. The results were
averaged over all trajectories.

Figure 9 shows the time dependence of the fraction of bound
chains in lattice models with N = 10, 16, and 28 in the capture
scenario. For all cases and three temperatures, the curves are per-
fectly fitted to Eq. (3), implying that the thermal degradation obeys
the logistic behavior. Because 7 controls the degradation rate, it
decreases as the temperature increases (caption of 'ig. 9). For exam-
ple, in the N = 16 case, we have 7 = 892.9 x 10°, 396.8 x 10°,
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FIG. 9. Dependence of the fraction of bound monomers © on the simulation time
in the capture scenario for N = 10, 16, and 28 and three temperatures. Black
curves refer to the raw data. The color curves refer to the logistics fit [Eq. (3)]. For
N = 10, sets of fitting parameters (O, b, 7) are (105.0, 3.83 x 10-°, 1852.8),
(101.7,1.383 x 10-°, 632.9), and (101.9, 3.006 x 10-%, 285.7) for T = 0.45, 0.47,
and 0.50, respectively. In the N = 16 case, we obtained (101.98, 9.69 x 10-6,
892.9), (98.18, 2.45 x 105, 396.8), and (100.78, 9.508 x 10-°101.0) for
T =0.49,0.51, and 0.57, respectively. For N = 28, we have (98.48, 0.924 x 10-8,
1098.9), (99.69, 1.051 x 1075, 909.1), and (98.19, 2.45 x 10~5, 400.0) for
T =0.52, 0.53, and 0.57, respectively. The characteristic time 7 is measured in
10° MCS and highlighted in blue.

and 101 x 10° MCS for T = 0.49, 0.51, and 0.57, respectively. A
similar result was obtained for N = 10 and 28.

We can show that in the case when the capture of released
chains is allowed, the time dependence of the fibril contacts can be
represented using a bi-exponential function [Eq. (8)].

Crossover from logistic to single-exponential kinetics. Initially,
when the rigidity of the fibril is still high, O(t) slowly decreases
(Fig. 10), but after reaching the crossover value @, the degradation
becomes fast and the kinetics can be described by the single expo-
nential function (Fig. 10). @ depends on the number of chains and
temperature, but as a rule, the smaller the N and the higher the T, the
larger the @;. This is because as the number of chains is increased or
the temperature is lowered, it becomes increasingly difficult to fit the
data into single exponential function. For all temperatures studied,
we obtained O, = 87%, 70%, and 67% for N = 10, 16, and 28, respec-
tively (Fig. 10). Restricting to data with ® < O, we get a good single
exponential fit for all cases studied. This result agrees with the exper-
iment,”” which shows that single exponential kinetics works for Oc,
< 90%. As expected, for a given N, the relaxation time 7 [Eq. (4)]
decreases with the temperature. For example, in the N = 28 case,
7= 2778 x 10°, 2041 x 10°, and 714 x 10> MCS for T = 0.52, 0.53,
and 0.57, respectively (Fig. 10).

Temperature and size dependence of the parameters
of the phenomenological theory

The fitting parameters a, b, @, b, and ©, (parameter c is just
intermediate and not involved in the final formula of the theory)
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FIG. 10. Data are the same as in Fig. &, but we show the single exponential fit after
O(t) reached the crossover value O, noted by the orange straight line. Here,
O = 87%, 70%, and 67% for N = 10, 16, and 28, respectively. The blue, dark
green, and red curves represent an exponential it by equation © = @, * exp(—x/7)
+ 0. For N =10, the parameter set (®y, 7, ©4) is (140.54, 2857, —3.01), (170.89,
1220, —2.11), and (166.44, 500, —0.79) for T = 0.45, 0.47, and 0.5, respectively.
For N = 16, we have (194.13, 1538, —2.13), (196.58, 1471, —39.67), and (260.85,
208, —6.8) for T = 0.49, 0.51, and 0.57, respectively. For N = 28, we have (230.74,
2778, —17.8), (222.89, 2041, —12.41), and (280.22, 714, -7.66) for T = 0.52,
0.53, and 0.57, respectively. The characteristic time 7 is measured in 10° MCS
and highlighted in blue.

in our phenomenological theory [Eqs. (4) and (7)] can be obtained
using microscopic theory. However, this issue is beyond the scope
of the present paper. Here, we extract their temperature dependence
from the lattice and all-atom simulation (Fig. S5). In all cases, a and
a increase with T because they are the main factors that control
the intensification of dissociation with an increase in temperature.
The behavior of b and b is more complicated as they can increase
as well as decrease with T (Fig. S5). In the all-atom models with
recycling and the lattice models without recycling, the parameter ©,
grows with temperature, but in the lattice model with recycling, its
temperature dependence is not monotonic.

Since the fibril stability depends on the system size, the fitting
parameters should depend on the number of chains (Fig. S5). In
the lattice model, for a given temperature, a and a decrease with an
increase in N. As expected, the dependence of b and b on the system
size is not monotonic.

Exponential vs logistic kinetics from
the free energy perspective

We have shown that the decay of the number of fibril contacts
can be described by a bi-exponential function, while the slower time
dependence of the number of dissociated chains is subordinate to
the logistic function. Since the kinetic properties are determined by
thermodynamics, it is worth understanding the difference between
the two kinetics in terms of free energy landscapes.

The bi-exponential kinetics is associated with the existence of
one intermediate in the free energy profile plotted as a function of
the fraction of fibril contacts (Fig. 4). Because the logistic kinetics is
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Reaction coordinates 6,Q

FIG. 11. Schematic plots for free energy landscapes plotted as a function of the
fraction of fibril contacts © (black) and the fraction of bound chains © (red).
Bi-exponential kinetics of 2 is associated with two maxima (black curve), while
logistic behavior of © is due to a pronounced maximum and a rough free energy
profile at the initial stage (red curve).

related to the time dependence of the number of bound chains, we
plot the free energy as a function the fraction of bound chains © for
the lattice model with N = 28 at T = 0.75 (Fig. S6). For a sufficiently
large © (initial stage), the presence of shallow local minima can be
considered as a roughness of free energy that led to a slow decay
in the logistic behavior. On a large time scale, the logistic kinetics
becomes exponential due to the existence of a global maximum of
free energy (Fig. S6).

The free energy profiles that are responsible for the difference
between two kinetics are depicted in Fig 11. For bi-exponential
kinetics, the corresponding free energy, plotted as a function of the
fraction of fibril contacts (2, has two pronounced maxima separating
ordered and disordered states. In the case of logistic behavior, there
is only one barrier that controls fast kinetics at sufficiently large time
scales, while the initial slow decay of the fraction of coupled chains
is related to the roughness of free energy.

CONCLUSION

We have developed a theory to describe the temperature-
induced degradation of protein aggregates. Our theory is phe-
nomenological since the temperature dependence is accounted in
accordance with the fitting constants rather than from physical
insights. It is shown that the decrease in the number of bound chains,
which can be measured by using the tryptophan fluorescence tech-
nique, is represented by a logistic function. This contrasts sharply
with the bi-exponential kinetics of fibril contacts or beta content,
which can be experimentally monitored using the ThT fluorescence
array. Logistic kinetics occurs in both cases with and without recy-
cling of released chains. The main difference between the logistic
and bi-exponential behavior is that in the first case, the decrease
in the corresponding quantity is slower than in the second case.
The number of connected chains decreases with time more slowly
than the fibril content because to separate a chain from an aggre-
gate, one needs to break more inter-chain contacts than to spoil
beta-sheets.

We explored the difference between bi-exponential and logistic
kinetics in terms of free energy. It was shown that the bi-exponential
behavior is associated with the existence of two maxima in the
free energy profile, plotted as a function of the fraction of fibril
contacts. If the proportion of bound chains © is used as the reac-
tion coordinate, then the free energy has one global maximum and

ARTICLE scitation.org/journalljcp

shallow traps at large values of @. Such free energy led to logistic
behavior.

Our lattice and all-atom simulations support the bi-exponential
kinetics observed in the experiment of Kardos et al., who measured
the ThT fluorescence signal characterizing the content of fibrils.
Studying the free energy profile, we showed that this behavior is due
to the existence of intermediate states. Using the tryptophan fluo-
rescence technique to monitor the fraction of released proteins, it
was found”~ that the degradation kinetics is described by a single
exponential function if recycling is not allowed. We show that a
single exponential behavior occurs if we ignore the slow dynamics
when the concentration of bound chains exceeds the crossover value
. For the entire time interval, logistic kinetics should take place
regardless of whether we capture the released polypeptide chains
or not. It would be interesting to check our prediction of logistic
behavior experimentally.

SUPPLEMENTARY MATERIAL

See the supplementary material for Fig. Sl—temperature
dependence of the fraction of fibril contacts (Q(T))of the lat-
tice monomer; Fig. S2—experimental data, obtained by Goto’s
group, for thermal dissociation of B2m amyloid fibrils at differ-
ent temperatures; Fig. S3—temperature dependence of two exper-
imental degradation rates ko and ko, extracted from the bi-
exponential fits shown in Fig. S2; Fig. S4—dependence of percentage
of bound monomers O(t) on the simulation time without the cap-
ture of released monomers and multiple exponential fits; Fig. S5—
temperature dependence of parameters of the phenomenological
theory; and Fig. S6—free energy of the lattice model with N = 28
chains plotted as a function the fraction of bound chains © for three
trajectories at T = 0.75.
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Chapter 5: Conclusions and Future Work

5.1 Main conclusions

Having developed a phenomenological theory, simple lattice models and combined with
available all-atom models we obtained the following main results:

1. We have successfully extended the lattice model developed previously by Li. et al. to
study the aggregation of polypeptide chains in the presence of various types of foreign
surfaces. The simplicity of lattice models allowed us to obtain the dependence of the
aggregation rate of proteins on the roughness of hydrophobic and hydrophilic surfaces.
Due to the competition between entropy and energy, a moderately absorbing smooth
surface accelerates the aggregation process, while weakly and strongly absorbing
surfaces slow it down. Our observations are in good agreement with the experiment of
Vacha et.al.[132]. If the roughness is sufficiently high protein self-assembly is completely
inhibited, which is in good agreement with the experimental work of Shezada et al.[9].
For moderately absorbing surfaces, we predicted that a slightly rough surface could
catalyze aggregation but not prevent it. It would be interesting to test this effect
experimentally.

2. Using REMD with the all-atom model and implicit water we calculated the beta content
of the AB42 monomer and its 19 mutants. Comparing with their experimental aggregation
rate, for the first time, we disclosed the exponential dependence of aggregation rate on
beta-content of monomer. Thus the beta content of monomer is one of the important
factors that govern the protein aggregation kinetics. This factor provides an indirect way
to estimate the fibril formation time using only the beta-content of monomer, which can
be easily calculated from all-atom simulations. This result is valuable because estimating
the fibril formation time of proteins using all-atom models is impractical with current
computing power.

3. We have developed a phenomenological analytical theory that well describes the logistic
mechanism of monomer dissociation from fibrils in both cases, with and without the
possibility of reunification of the released monomers with the parent cluster. We have
shown that, during thermal degradation, the number of associated chains, which can be
measured by tryptophan fluorescence, decays more slowly than the fibril content
measured by ThT fluorescence. Above a certain threshold, the logistic function becomes
single exponential, and this aggregate size behavior is consistent with experiment. We
performed lattice and all-atom simulations that confirmed our analytical theory. It has
been experimentally shown that the time dependence of the fibril content, which is
proportional to the ThT fluorescence signal, is described by a bi-exponential function. To
gain a deeper understanding of this behavior, we performed lattice simulations to study
the free energy profile as a function of various reactions coordinates. We discovered that
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the bi-exponential kinetics is associated with two pronounced maxima in the free energy
profile plotted as a function of the fraction of fibril contacts, while the logistic
mechanism occurs when the free energy profile, plotted as a function of the fraction of
bound chains, contains one global maximum together with some shallow traps.

5.2 Future work

This dissertation was aimed at unraveling the various factors that govern the kinetics of protein
aggregation using homemade lattice models and all-atom models, but my work was mainly
focused on developing and conducting simulations with lattice models. Using the advantages of a
simple lattice model, we plan to consider the problem of fibril polymorphism, i.e. study the
conversion between different fibril morphologies and the relationship between morphology and
fibril formation time. Recently it was demonstrated that Ostwald’s rule, known from the
occurrence of crystal polymorphs, is valid for the assembly of synthetic polymers [264]. This rule
states that the less stable polymorph is formed before the more stable form. We will check
whether this is also true for proteins with the help of lattice models. Another interesting problem
concerns the secondary nucleation mechanism for fibril formation. We will use lattice models to
investigate the effect of a preformed fibril template on the fibril formation rate.

We have developed lattice models to study the self-assembly of polypeptide chains on the
surface. A possible continuation of this work is the implementation of the lattice model of the
lipid bilayer and the study of its effect on protein aggregation. Finally, in this dissertation, we
have proposed a picture of the kinetics of protein aggregation on rough surfaces based largely on
general considerations such as competition between energy and entropy factors. Thus, a more
detailed analysis of this process could be considered in the future.
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