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Summary 

Cells of multicellular organisms have to communicate with each other to assure organismal 

homeostasis and coordinate immune reactions or development. To communicate, cells send 

signal molecules, such as cytokines, and use a signaling process, a series of biochemical 

reactions, to sense the signal and trigger specific cellular responses. However, cellular 

signaling responses of genetically identical cells grown in identical, controlled conditions show 

substantial cell-to-cell heterogeneity, which is often ascribed to the randomness of 

biochemical reactions, termed molecular noise. On the other hand, cell-to-cell heterogeneity 

can also arise from differences in molecular content between cells, i.e., molecular phenotypic 

variability. However, the exact contribution of these two processes remains unclear, with no 

answer to a fundamental question of how precise a single cell is in cellular signaling. In 

addition, it is unknown which factors of phenotypic variability, if any, contribute substantially 

to the observed cell-to-cell heterogeneity. To fill these knowledge gaps, I used confocal 

imaging and bi-nuclear, fibroblast-derived syncytia stimulated with cytokines to distinguish 

molecular noise from phenotypic variability. I showed that molecular phenotypic variability is 

the main source of cell-to-cell heterogeneity, constituting ~90% of the total variability in the 

studied cytokine signaling responses. The generated data allowed also for assessing the 

influence of the measurement error, which was of minor contribution to the total observed 

signal. In addition, using confocal imaging and flow cytometry in human and mouse fibroblasts 

cell cultures, I showed that the nuclear state and the level of intracellular cytoplasmic signaling 

proteins were substantial contributors of observed cell-to cell heterogeneity of the cytokine 

signaling. Finally, the master process of cellular biology, the cell cycle, did not show substantial 

influence on the cytokine response, based on the confocal imaging. Taken together, the 

presented results reveal that cytokine signaling in the used system operates in a reproducible, 

high-fidelity manner indicating the high precision of a single cell in cellular signaling. The 

obtained data also gives hope that the cellular response can be at least partially predicted 

before the stimulation occurs, allowing for a better understanding of cellular biology. 
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Summary (in Polish) 

Komórki organizmów wielokomórkowych muszą komunikować się ze sobą, aby zapewnić 

organizmowi homeostazę i m.in, koordynować reakcje immunologiczne lub rozwój. Aby 

komunikować się, komórki wysyłają cząsteczki sygnałowe, takie jak cytokiny i wykorzystują 

proces sygnalizacji, czyli serię reakcji biochemicznych, aby wyczuć sygnał i wywołać określone 

odpowiedzi komórkowe. Jednak takie komórkowe odpowiedzi na sygnał w genetycznie 

identycznych komórkach hodowanych w identycznych, kontrolowanych warunkach wykazują 

znaczną heterogeniczność między komórkami, co często przypisuje się losowości reakcji 

biochemicznych, określanych mianem szumu molekularnego. Z drugiej strony 

heterogeniczność między komórkami może również wynikać z różnic w molekularnej 

zawartości między komórkami, tj. molekularnej zmienności fenotypowej. Jednak dokładny 

udział tych dwóch procesów pozostaje niejasny. Ponadto nie wiadomo, jakie czynniki 

zmienności fenotypowej, jeśli w ogóle, mają istotny wpływ na obserwowaną heterogeniczność 

między komórkami. Aby wypełnić te luki w wiedzy, wykorzystałem obrazowanie konfokalne 

i dwujądrowe, pochodzące z fibroblastów, syncytia stymulowane cytokinami, aby odróżnić 

szum molekularny od zmienności fenotypowej. Pokazałam, że molekularna zmienność 

fenotypowa jest głównym źródłem heterogeniczności międzykomórkowej, stanowiąc ~90% 

całkowitej zmienności w badanych odpowiedziach sygnalizacyjnych cytokin. Wygenerowane 

dane pozwoliły również na ocenę wpływu błędu pomiaru, który miał niewielki udział 

w całkowitym obserwowanym sygnale. Ponadto, stosując obrazowanie konfokalne 

i cytometrię przepływową w hodowlach ludzkich i mysich fibroblastów, wykazałam, że stan 

jądra komórkowego i poziom wewnątrzkomórkowych cytoplazmatycznych białek 

sygnałowych były istotnymi czynnikami przyczyniającymi się do obserwowanej między 

komórkami heterogeniczności sygnalizacji cytokin. Wreszcie, jeden z głównych procesów 

biologii komórki, cykl komórkowy, nie wykazał istotnego wpływu na odpowiedź cytokinową. 

Podsumowując, przedstawione wyniki pokazują, że sygnalizacja cytokinami w zastosowanym 

układzie działa z wysoką wiernością, wskazując na dużą precyzję pojedynczej komórki 

w sygnalizacji komórkowej. Uzyskane dane dają również nadzieję, że odpowiedź komórkową 

można przynajmniej częściowo przewidzieć przed wystąpieniem stymulacji, co pozwala na 

lepsze poznanie biologii komórki. 
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Abbreviation list 

ADP  adenosine diphosphate 
ATCC  American Type Culture Collection 
ATP  adenosine triphosphate 
BD  Becton, Dickinson and Company 
BJ  human fibroblasts’ trade name 
BSA  bovine serum albumin 
CFP  cyan fluorescent protein 
CMCD  chronic mucocutaneous candidiasis disease 
CO2  carbon dioxide 
DAPI  4,6-diamidino-2-phenylindole 
DMEM  Dulbecco's Modified Eagle Medium 
DNA  deoxyribonucleic acid 
EGF  epidermal growth factor 
ERK  extracellular signal-regulated kinases 
FBS  fetal bovine serum 
FRA  fractional response analysis 
FRA1  FOS-related antigen 1 
GPCR  G-protein-coupled receptors 
gp130  glycoprotein 130 
IFN-γ  Interferon gamma 
IFN-α  Interferon alpha 
IFN-β  Interferon beta 
IFNGR  Interferon gamma receptor 
IFNGR1  Interferon gamma receptor 1 
IFNGR2  Interferon gamma receptor 2 
IGF-1  insulin-like growth factor-1  
JAK1  Janus kinase 1 
JAK2  Janus kinase 2 
JNK  c-Jun N-terminal kinase 
KO  knock-out 
LIFR  leukemia inhibitory factor receptor 
MAPK  mitogen-activated protein kinase 
MEF  mouse embryonic fibroblast  
MI  mutual information 
NLR  NOD-like receptors 
NOD  nucleotide-binding oligomerization domain 
OSM  oncostatin M 
OSMR  oncostatin M receptor  
PBS  Phosphate-buffered saline 
qRT-PCR  quantitative Reverse Transcription Polymerase Chain Reaction  
PE  phycoerythrin 
PEG  polyethylene glycol 
PFA  paraformaldehyde  
RIG-I  retinoic acid-inducible gene I 
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RLR  RIG-I-like receptors (RLR), 
RNA  ribonucleic acid 
SLEMI  Statistical Learning Based Estimation of Mutual Information 
STAT  signal transducer and activator of transcription 
TC-PTP  T-cell protein tyrosine phosphatases 
TF  transcription factor 
TGF-β  transforming growth factor β 
TNF-α  tumor necrosis factor alpha 
TRAIL  TNF related apoptosis-inducing ligand 
YFP  yellow fluorescent protein 
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1. Motivation 

Multicellular organisms rely on cellular communication: the information about the 

extracellular environment has to be properly sensed and processed by single cells to trigger 

the appropriate action, all in the process named cellular signaling. Mutations and 

dysregulations of signaling components, e.g., receptors or kinases, may lead to severe 

diseases and organism malfunctions, which include cancers, autoimmune diseases, allergies 

or uncontrolled inflammation. Despite the importance of cellular signaling, experiments of the 

last decades show that cellular responses to external stimulation show substantial cell-to-cell 

heterogeneity. Even if all cells are of the same type, have the same genome and are grown in 

the same environment, they tend to respond differently, with some cells having strong and 

other low responses. It is largely unknown, whether the observed cell-to-cell heterogeneity is 

caused by 1) the stochasticity of biochemical reactions, implying imprecision of signaling of 

individual cells, or by 2) the differences in molecular content of cells, i.e., phenotypic 

variability. Resolving the question whether a single cell signaling is more stochastic or 

deterministic is essential for designing research strategies to understand the functioning of 

signaling in single cells, as well as functioning of the cell-to-cell communication. Different 

research directions are needed depending on whether signaling pathways in single cells 

operate in the stochastic or deterministic regime. For instance, if the cell-to-cell heterogeneity 

of cellular responses was the result of random processes, then finding the factors that 

determine the single cell response would not be possible. Noise is a set of impalpable 

elements, which cannot be pinned down. Therefore, we would need to rely mainly on 

statistical and probabilistic descriptions. On the other hand, if the cell-to-cell heterogeneity of 

cellular responses was the result of phenotypic variability, then we would be able to find the 

components that determine the variability of the responses. Such detrimental components 

could be then used to predict the response in mutated cells or design new drugs, or to improve 

the diagnosis. To do all that, first, the question should be answered: how precise the signaling 

of a single cell actually is?  
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2. Literature review 

2.1. Single cell measurements 

Many biological processes have been traditionally studied with cell population-averaged 

techniques, like Western blots, quantitative Reverse Transcription Polymerase Chain Reaction 

(qRT-PCR) or microarrays (Spiller et al., 2010). In this approach, the experimental 

measurement is derived from a pool of individual cells, implicitly assuming that the 

population-average value reflects the state of the investigated biological mechanism 

(Altschuler and Wu, 2010). While these methods are still very valuable, needed, broadly 

accepted by scientific community and can shed light to a fundamental principle of many 

biological processes, they also tend to omit the existence of subpopulations of cells which 

have biologically distinct characteristics and roles (Barteneva and Vorobjev, 2018; Chang et 

al., 2008; Vilar et al., 2003). In the simplest example, the bulk measurement of DNA content 

of proliferating diploid cell population will not identify the cells before and after DNA 

replication, but will indicate the mean DNA content as 3C, where C is the amount of DNA in 

haploid set of chromosomes (Gregory, 2001). In addition, diseases of each multicellular 

organism originate from a single cell or a small group of cells which all are averaged in 

population-oriented methods and therefore cannot be fully investigated (Mazzarello, 1999). 

Therefore, single cell measurement methods can substantially improve our understanding of 

cellular processes, including cellular communication, tissue composition or cell development 

(Raj and Oudenaarden, 2008). So far, single cell measurements have shown that cell-to-cell 

variability of the genetically identical cells is a common feature that is observed in organism 

development, gene transcription, cell morphology, drug perturbation, as well as in cellular 

signaling. 

2.2. Manifestation of the cell-to-cell variability on the whole-organism scale 

One of the earliest investigated examples of the cell-to-cell variability was mosaic X 

chromosome inactivation in female mice (Lyon, 1961), which were further noticed in other 

mammals, e.g., calico cats (Harper, 2011). The macro-scaled consequences of the cell-to-cell 

differences in inactivation of chromosome X is revealed in the existence of irregular color 

patches on the fur of calico cats. The patches arise in the early stages of the development, 
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when each cell commits, which of the chromosome X, maternal or parental, will be 

inactivated. Inactivation of a chromosome X leads to silencing of an allele responsible for a 

given pigment color located on the same X chromosome (Figure 2.1A). The exact determinants 

which chromosome will be inactivated have only begun to be understood and more studies 

are needed for complete explanation (Fang et al., 2019). It is known, however, that 

chromosome X silencing is an effect of DNA methylation (Nesterova et al., 2008). Similarly to 

chromosome X inactivation, twins, which at the beginning of their life share identical genomes 

and develop in the same placenta of the same mother, after the birth they can considerably 

differ in specific traits, like outer patterning of the armadillo species (Figure 2.1B) (Vogt, 2015). 

Likewise, an invasive freshwater species originated by the point mutation from the single 

organism in the pet trade in 1990s, the marbled crayfish, is also an evident example of the 

cell-to-cell differences due to its asexual type of reproduction (parthenogenesis) (Scholtz et 

al., 2003). This animal makes clones of itself without egg fertilization, leading to all-female and 

all-genetically identical offspring and yet, each daughter organism differs slightly by size, color, 

shape and behavior, even if all are kept in well controlled environmental conditions (Vogt et 

al., 2008) (Figure 2.1C).  

 

Figure 2.1. Differences in genetically identical single cells manifest in the whole-organism scale 

(A) Patches on the fur of female calico cats is the manifestation of stochastic X chromosome inactivation in each cell early 
in the development. (B) Quadruplets of armadillos arise from single fertilized cells, yet have distinct traits, e.g., patterning 
of heads. (C) Three juvenile clones of marbled crayfish show great size variability, albeit they were size-matched at the 
early stages of development and then cultured in the controlled conditions for 34 days. Scale bar 4 mm. A and B modified 
from (Symmons and Raj, 2016), C modified from (Vogt et al., 2008). 
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 All mentioned examples start from single-cell differences, but manifest on the whole-

organism scale after an environmental influence, e.g., in placenta, egg or as a mature 

organism. Therefore, the observed differences can be caused solely by the environment itself, 

due to the long time between the single cell- and whole-organism stadium. However, there 

are also many examples showing that characteristics of genetically identical cells grown in 

homogeneous environments differ substantially from the population-average on the short-

time scale. 

2.2.1. Cell-to-cell variability in cellular processes 

It is not surprising nor new, that genetically identical cells of the same organism can perform 

different actions and have distinct roles, e.g., a human hepatocyte has a completely different 

phenotype and action profile than a muscle myotube. However, even genetically identical 

mammalian cells of the same type, originated from the same ancestor cell, grown in a 

homogeneous, well-controlled environment, can differ substantially in terms of multiple 

features. For example, the high level of cell-to-cell variability in the mammalian cell culture 

was shown for endocytosis, viral infections and membrane lipid composition (Snijder et al., 

2009), as well as for measurements of protein level (Sigal et al., 2006), shape (Keren et al., 

2008), growth rate (Cadart et al., 2018; Vargas–Garcia et al., 2018), time to death after pro-

apoptotic treatment (Spencer et al., 2009) and many others. The same applies for single-cell 

organism such bacteria or yeast, where high cell-to cell variability was observed for cell growth 

rate (Facchetti et al., 2019), enzyme level (Novick and Weiner, 1957) or chemotaxis (Fuller et 

al., 2010). Even such a basic biological process as gene expression varies in the intensity 

substantially from cell-to-cell (Raj and Oudenaarden, 2008). Majority of the above examples 

at some point utilize the signal sensing – a cell has to sense the signal to grow, to activate the 

gene transcription, to respond to virus, as well as has to adapt to lack of nutrients or change 

the proliferation rate based on the signals sent by other cells. Therefore, the signal sensing 

often occurs prior to the final cellular decision, indicating that maybe the big part of the 

observed cell-to-cell heterogeneity was due to heterogeneity in signal sensing and processing, 

in other words in cellular signaling. Indeed, it was shown in many examples, elaborated below, 

that cellular signaling is also subjected to high cell-to-cell heterogeneity. However the sources 

of this phenomenon have not been fully resolved. Especially, there is a debate in the literature 
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on how precise the single cell is and how reliably it can behave after some environmental 

perturbation. Such knowledge would not only be highly beneficial for our understanding of 

biology itself, but also could improve the future treatment of the immunological diseases such 

as cancer or immunodeficiencies.  

2.3.  Cellular signaling 

Cells in multicellular organisms are surrounded by the constantly changing extracellular 

environment. The cellular environment changes because of various reasons, including threats 

like pathogens or oxygen stress, physical forces exerted during wound creation or cell growth 

as well as due to complex communication between even very distant cells. To properly 

perform their actions, like division, death, gene expression or secretion, cells must respond to 

the changes of the environment. To respond to the changes of the environment, three steps 

have to take place: sensing the environment state, processing the acquired information and 

triggering specific actions (Antebi et al., 2017). The biochemical machinery responsible for 

performing those steps are referred to as signaling pathways and the process itself is 

considered as cellular signaling. 

2.3.1. Molecular bases of cellular signaling 

Signaling pathways can consist of dozens of chemical species, including proteins and non-

peptide hormones, but also small molecules like nucleotides or ions, all ordered in a step-wise 

activating cascade. Therefore, the signal coming from the environment can be sensed by the 

cell through the signaling pathway in order to perform specific actions by the cell. Signals can 

be of mechanical, electrical or chemical nature (Nair et al., 2019). A chemical signal can have 

a form of lipids (e.g., steroids), proteins (growth factors, peptide hormones, cytokines and 

chemokines), nucleic acids and many others. In a typical example, a cell detects a chemical 

environmental signal by binding the signal molecule (ligand) to a specific transmembrane 

receptor at the cell surface, which results in a biochemical activity on the inside of the cell, 

e.g., the activation of a receptor-associated kinase. Next, the initial stimuli are processed in a 

step-wise cascade along intracellular signaling pathways, with one component activating the 

subsequent one, all finally culminating in effectors like transcription factors (Housden and 

Perrimon, 2014; Kholodenko, 2006). The effectors carry information about the identity, 
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intensity, and duration of the stimuli and initiate distinct cellular responses that might involve 

gene transcription, metabolism, faith commitment, pathogen sensing and many other cellular 

processes. It is worth noting that such simple representation of cellular signaling does not 

cover the complexity and inter-relatedness of the signaling process with all its exemptions. 

For example, there are multiple intracellular receptors which bind lipophilic ligands freely 

diffusing across the cell membrane and take part, e.g., in steroid signaling (Kumar et al., 2006). 

There are also internal receptors, including NOD-like receptors (NLR) and RIG-I-like receptors 

(RLR), recognizing intracellular pathogen associated molecular patterns (PAMPs) derived from 

pathogen and being a part of the innate immune system (Newton and Dixit, 2012). On the 

other hand, direct contact between two cells via their membrane proteins (often referred to 

also as ligands and receptors), with no “bridging” molecule needed, is crucial in developing an 

adaptive immune response (MacLeod and Anderton, 2015). In addition, the view “one ligand 

- one receptor - one effector” is convenient and sometimes needed for simplicity, while not 

showing the full picture of interconnected and cross-linked elements of signaling pathways, 

with “many ligands - many receptors - many effectors” as a better description (Komorowski 

and Tawfik, 2019).  

The importance of cellular signaling is emphasized by the evidence that its deregulation is 

connected with severe diseases. The inappropriate sensing of the signal can lead to either too 

strong or too weak response, which can dysregulate many processes and cause serious 

diseases and health obstruction ranging from obesity to hypertension, cardiac hypertrophy, 

drug addiction, aging, hepatitis B and many others, with cancer being one of the most studied 

in relation with the disrupted signaling pathways (Aggarwal et al., 2009; Berridge, 2014; 

Clevers and Nusse, 2012; Mora-Garcia and Sakamoto, 1999; Sebolt-Leopold and Herrera, 

2004; Taniguchi and Karin, 2018; Zaidi and Merlino, 2011). To develop effective therapies for 

such diseases we need to understand how the information is transmitted from the external 

environment through intracellular signaling pathway to the gene expression and cellular 

decision (Fallahi-Sichani et al., 2013). All the mentioned exemptions and examples, together 

with the complexity of signaling pathways often presented in enormous, overwhelming 

schemes (Figure 2.2), all these highlight how difficult to study yet important is the field of cell 

signaling. Taking into account the complexity of mammalian organisms, often involving dozens 

of signaling molecules and cell types, it appears natural to think that each information sent to 
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a cell is precisely sensed and the cell responds to it accordingly. In other words, activation of 

a specific signaling pathway should lead to reproducible outcomes in all receiver cells. There 

are examples when different cell fates like death, senescence, proliferation or morphological 

changes are governed by the action of one signaling pathway, indicating that specificity and 

precision of the information processing is of ultimate importance for the single cell (Purvis and 

Lahav, 2013; Spencer et al., 2009). In addition, the complex organism-level processes like 

immunity, circadian rhythms, muscle contraction, or wound healing seems to be well 

regulated and controlled, with not much space for imprecision. All these show that the 

reliable, high fidelity signaling appears to be essential for functioning of single cells as well for 

the multicellular organisms as a whole. However, experiments of recent decades cast a 

shadow of doubt at such thinking, indicating that the signaling responses to a stimulus of a 

given intensity can differ substantially between isogenic and outwardly identical cells. 

 

Figure 2.2 Insulin Receptor Signaling 

Insulin, an important hormone of metabolism, acts via a complex network of regulators, signal processors and effectors, 
indicating the difficulties in studying the signaling pathways. Illustration reproduced courtesy of Cell Signaling Technology, 
Inc. (www.cellsignal.com). 
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2.4. Cell-to-cell variability in cellular signaling 

Pioneering studies regarding single-cell responses to the uniform, environmental signals were 

performed on mammalian cells using glucocorticoid hormones signaling (Ko et al., 1990). They 

revealed that individual cells exhibit very heterogeneous expression levels of hormone-

inducible genes after hormone stimulation. More recent experiments aiming to examine cell-

to-cell variability in cellular signaling used single-cell high-throughput techniques such as 

confocal imaging, microfluidics, flow cytometry, live imaging, single molecule fluorescence in 

situ hybridization (smFISH) or combination of them (see reviews(Topolewski and Komorowski, 

2021; Wollman, 2018). These investigated a variety of signaling molecules, including 

cytokines, chemokines (cytokines that promote the movement of a cell or organism) and 

growth factors in bacteria (Ruiz et al., 2018), yeast (Colman-Lerner et al., 2005), protista (Fuller 

et al., 2010) and mammalian cells (Cheong et al., 2011; Jetka et al., 2019; Selimkhanov et al., 

2014). The conclusions were always similar: the response to a given dose of a stimulant was 

of great variability among single cells, sometimes spanning orders of magnitude. In addition, 

some fraction of cells stimulated with a saturating dose of the stimulus was observed to have 

responses similar to cells stimulated with a low dose or even to the unstimulated population 

(Lee et al., 2014). In other words, strongly responding cells after low stimulation showed 

similar levels of responses as weakly responding cells after high stimulation. From a 

perspective of an individual cell, it can be interpreted that sensing of the existing signal can 

be done only with inaccurate approximation, or imprecisely, as some cells give a very similar 

response to either high or low dosage of the signal. However, despite this variability of 

responses to the same stimulus, the majority of the outcomes seems to be correct: the 

homeostasis of an organism is being sustained, the pathogens are being defeated, the tissues 

are being regenerated and the cancer cells in majority are being killed. To explain this paradox 

and to efficiently study the signal transfer from environment to a cell, the method of 

quantifying cellular signaling fidelity was needed. The formalism which gives such ability is the 

information theory, traditionally used in computer science for quantifying the fidelity of 

electric signal receiving. 
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2.5. Information theory in cellular signaling 

Information theory, a formalism initially used in electronic communication and quantification 

of statistical accuracy (Cover and Thomas, 2012; Shannon, 1948), gained much broader 

applicability than originally anticipated. Recently, these concepts have been used in the 

research of many biological systems, including transcription regulation, development, 

neuroscience, or cellular signaling, allowing for the assessment of cell-to-cell variability on the 

accuracy of signal sensing (Uda, 2020). Adopting the information theory formalism, a cellular 

signaling pathway can be considered as a communication channel, which senses the given 

stimulus (input, or X) and converts it to the specific response (output, or Y) (Uda, 2020). It is 

thought that each biochemical reaction relayed in a signaling pathway introduces some noise 

or uncontrolled variability (Garner et al., 2016). Therefore, the input-output relationship of 

the biochemical signaling can be represented as a probability distribution, P(Y|X=x), instead 

of a deterministic dependency (Figure 2.3A). A high amount of information about values of x 

present in a variable Y would indicate the high probability of accurate estimation of x after 

observing Y. Such information transfer between the two variables, e.g., cytokine 

concentration and transcription factor nuclear level can be quantified as Mutual Information 

(MI), which measures the reliability of signal prediction based on the given response. MI is 

expressed in bits, where 2MI can be interpreted as the maximum number of inputs that can be 

encoded from the observed output, assuming that the input follows a given probability 

distribution. In other words, a channel having 1 bit of MI can resolve 2 states of input (binary 

response), while when MI equals 2, then the number of input values increases to 4 and so on. 

Unfortunately, the input distribution is often unknown, limiting the confidence about the true 

information transfer. Therefore, to account for this and to represent the upper bound of the 

information transfer in the signaling channel, the channel capacity (C*) term has been 

introduced, representing the maximum of MI over all possible input distribution. C* also takes 

the values in bits and, similarly to MI, is a log2 of the maximum number of distinguishable 

input values, based on the output distribution.  

Heading to more intuitive representation of information transfer quantification, the amount 

of information that can be transmitted through a signaling pathway depends on the overlap 

between response distributions corresponding to different inputs. Assuming the four different 
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input values used, the completely distinct output distributions would imply the maximum, 

that is four resolvable input values and two bits of transferred information (Figure 2.3B). 

Similarly, when the output distributions fully overlap, then the channel can distinguish only 

one resolvable input value, with zero bits of information transferred. In the intermediate 

scenarios, that is when the output distributions are only partially overlapped, the information 

can vary between zero and two bits, with the bigger overlaps, the lower information transfer 

value. 

 

Figure 2.3. Information theory and its application in cellular signaling 

(A) A biochemical signaling pathway can be represented as a probabilistic input-output relationship, P(Y|X=x), which 
encodes input, x, using output, y. Due to stochastic factors decoding is possible only with a limited precision. (B) Channel 
capacity is a suitable way of measuring the amount of information processed. Hypothetical responses distributions to four 
inputs (e.g., ligand concentrations) in three scenarios with a different degree of overlaps. Completely overlapping 
distributions do not allow for information transfer and imply the capacity of 0 bits. Information capacity increases for more 
distinct distributions and reaches 2 bits for completely distinct distributions to four considered inputs. Modified from 
(Topolewski and Komorowski, 2021) 

2.6. Cellular strategies for high signaling capacity 

The first quantification of signaling fidelity based on information theory was performed on 

mouse embryonic fibroblasts stimulated with a range of doses of tumor necrosis factor α (TNF-

α) (Cheong et al., 2011). The stimulation doses were considered as input, or X (Figure 2.4A). 

The response, or the output, Y, was measured in individual cells with immunostaining as the 

nuclear level of the transcription factor, nuclear factor κB (NF-κB). The obtained single cell 

response distributions were then used to calculate the channel capacity, reaching ~ 1 bit of 

information transferred in the investigated signaling pathway (Figure 2.4B). The result can be 
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interpreted as cells being able to distinguish only between presence or absence of a stimulant, 

with limited sensitivity to other stimulation levels.  

 

Figure 2.4 Channel capacity of NF-κB signaling pathway 

(A) Single cell response distributions to 30-min TNF-α stimulations based on microscopic images (exemplary cells are 
shown above the distribution, scale bars = 20 µm). Please note the big overlaps of distributions in 0 ng/mL and 50 ng/mL 
responses. (B) The noisy communication channel with channel capacity of ~ 1 bit calculated based on results in A. Modified 
from (Cheong et al., 2011). 

Similar quantity of mutual information or information capacity reaching at most ~ 1 bits was 

obtained using other signaling models, including ATP (adenosine triphosphate) (Selimkhanov 

et al., 2014), hormone- (Garner et al., 2016) or growth factor- signaling (Benary et al., 2020). 

Motivated by these results, researchers started to investigate the roles of different cellular 

mechanisms that ensure reliable signal sensing, processing and translating into a specific 

action. Researchers also started to explore the various ways of thinking about the fidelity of 

cellular signaling, e.g., by considering a group of individual cells as a signaling unit. Therefore, 

a number of mechanisms have been postulated to reconcile the apparent lack of signaling 

fidelity (two state recognition: presence or absence of the stimulant; Figure 2.5A) with the 

reliable functioning of individual cells during physiological processes (Topolewski and 

Komorowski, 2021). 
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2.6.1. Time averaging 

In electronic communication systems the average of multiple measurements taken over time 

has lower variability than a single measurement (Balaguer and Ibeas, 2021). In biological 

systems, the information about the ligand identity can be encoded in the dynamics of the 

response instead of a steady state- or maximum-response time point (Purvis and Lahav, 2013; 

Santos et al., 2007). Combining those observations and taking into account time trajectories 

of cellular response provided additional information over single time-point measurements in 

case of multiple signaling pathways, including those stimulated by growth factor, ATP, or a 

synthetic equivalent of bacteria (lipopolysaccharide) (Selimkhanov et al., 2014), as well as in 

cytokine-stimulated mammalian cells (Jetka et al., 2019) and yeast under stress conditions 

(Granados et al., 2018). The information gain was up to 0.5 bits of information, what can be 

translated as the ability of cells to resolve one additional dose of a stimulant (Figure 2.5B). 

 
Figure 2.5. Schemes of cellular strategies for high signaling capacity 
(A) Population of cells stimulated with different levels of inputs often show high overlaps of response distributions, 
implying low information capacity. (B) Temporal averaging (left panel): intertwined responses to two inputs (solid lines) 
can be reliably distinguished when their averages (dashed lines) are inspected, which increases information capacity. 
Differential signaling dynamics (right panel): two inputs may induce responses that are similar over one time-window but 
differ over another, which increases information capacity. (C) Activation of several distinct signaling effectors by a single 
ligand enhances information transfer. (D) Responses of N cells can be jointly considered as an output of a signaling system, 
leading to increased information capacity compared to cells analyzed individually. Information capacity was shown to 
scales with ½ log2(N). 
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2.6.2. Differential signaling dynamics 

In a similar line to time averaging strategy and exploiting measurements of cellular responses 

over time, the differential signaling dynamics can also enable the cells to increase the acquired 

information about identities and quantities of ambient ligands (Figure 2.5B). This concept has 

been elegantly shown on Notch signaling, which is a model of neighbor cell-to-cell 

communication (Guruharsha et al., 2012). In mammals, the Notch1 receptor can be activated 

by multiple transmembrane ligands placed in signal-sender cells, however each ligand bears 

different information and can promote different cell fates, e.g., during mice embryonic 

development (Preuße et al., 2015). After binding the ligand, the Notch1 receptor activity was 

either pulsatile or sustained, depending on the ligand used, which in turn induced different 

effects on the embryonic myogenesis (Nandagopal et al., 2018). Similarly, different growth 

factors elicit distinct nuclear-cytosolic translocation of transcription factor over time, 

providing the proof, that the transcription factor dynamics (the output) can encode the 

identity and concentration of the stimulant (the input) (Sampattavanich et al., 2018). 

2.6.3. Cross-wiring 

The research on the cellular precision of signal sensing often focuses only on one specific 

signaling pathway, single receptor type or one transcription factor to simplify the 

methodology and to make conclusions more straightforward. However, the nature of cellular 

signaling in biology is much more complicated, with multiple inputs possessing ability to bind 

to multiple receptors, which in turn can activate number of effectors leading to highly cross-

wired system (Figure 2.5C) (Rowland and Deeds, 2014; Rowland et al., 2017). Such 

interconnected architecture of signaling pathways was shown in theoretical models to be 

evolutionarily favorable, with higher signaling precision compared to simple signaling 

pathways with no cross-reactivity (Komorowski and Tawfik, 2019). Similarly, in experimental 

works measuring two outputs (two-dimentional response) after stimulation with insulin, 

epidermal growth factor (EGF) and specific inhibitors (Pope et al., 2020) or TNF-α (Cheong et 

al., 2011), the information capacity was significantly higher than when only one output was 

taken into account.  
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2.6.4. Combination of time averaging, differential dynamics and cross- wiring 

All the mentioned cellular approaches for increasing information capacity, that is time 

averaging, differential signaling dynamics and cross-wiring, can all be utilized in the same cell 

to increase the information capacity of the same signaling pathway, giving a more in-depth 

understanding of cell biology complexity and evolution. It was shown, that a yeast cell can 

distinguish with high precision the type and severity of environmental stress (including 

oxidative, osmotic and carbon stress) by integrating information from multiple TF dynamics, 

indicating that knowledge about combination of specific effectors can give almost optimal 

decoding, reaching up to 2.5 bits of information (Granados et al., 2018). Another study reveals 

that macrophage cells can detect and distinguish different types of bacterial infections (with 

varying pathogenicity, location and replication), by integrating dynamical activation of both 

NF-κB and mitogen-activated protein kinase (MAPK) signaling (Lane et al., 2019). Therefore, 

cells presumably use a complex biochemical circuit to precisely distinguish between multiple 

abiotic (environmental stress) and biotic (bacterial infections) stresses. 

2.6.5. Population response 

In many biological processes the response of a cell to stimulation is binary, that is yes or no 

responses, e.g., proliferation vs death or the contraction of a muscle fiber (Suderman et al., 

2017; Wada et al., 2020). Yet all of them are well regulated and can be triggered by specific 

stimuli. In case of such signaling processes, instead of considering single cells individually, the 

group of cells can be used as an information channel, because what can matter at the whole 

organism level is the percentage of cells which have undergone apoptosis or a combined 

contraction effect of a population of muscle fibers in a muscle. Therefore, examining the 

information capacity of several cells considered jointly can potentially lead to more efficient 

information flow (Figure 2.5D). This hypothesis was first tested in cells stimulated with TNF-α, 

when responses of a group of cells (multi-cell channels) were averaged, plugged into the 

formula to calculate the mutual information and compared to mutual information of single-

cell channels (Cheong et al., 2011). Such an approach led to the conclusion that the mutual 

information increases with the increase in the number of cells in the multi-cell channel. The 

further investigations using pro-apoptotic agent TNF-related apoptosis-inducing ligand 

(TRAIL) showed, that cellular populations with higher heterogeneity respond to a broader 
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range of the stimulant doses compared to populations of small heterogeneity (Suderman et 

al., 2017). To explain it more intuitively, one can imagine a hypothetical situation of a 

population of perfectly identical cells (Figure 2.6, blue dots). Each cell in such a population will 

die after the exactly same dosage of pro-apoptotic TRAIL, leading to the population of cells 

being able to recognize only two levels of a stimulation: lower than causing the death and 

higher than this threshold level, so bearing only 1 bit of information. In contrary, the 

population of higher levels of cell-to-cell heterogeneity will consist of cells with distinct 

threshold level of death, therefore a given small dose of stimulation will cause the death of 

some, but not all cells, with more cell deaths with increasing level of stimulation (Figure 2.6, 

red and blue dots). These findings indicate that the cell-to-cell heterogeneity can increase the 

information capacity of multiple-cell channels and indeed be beneficial, as such variable 

population is more robust to various death signals.  

The insight that multicellular organisms favor high cell-to-cell heterogeneity were extended in 

the recent work on myotubes and muscle tissue (Wada et al., 2020). Single muscle cells were 

stimulated repetitively with 10 levels of electric pulses showing the binary response of Ca2+ 

with the great cell-to-cell variability in intensity of the electric pulse needed for the cell 

activation. In other words, each cell had a specific threshold level required for the on/off 

response. The ability to discriminate stimulation levels based on the one-cell channel response 

reached the ~2.7 unique levels of stimulation (~1.4 bits). However, when the cells were 

grouped into multi-cell channels of up to 128 cells in one channel with summing up all the 

responses, the number of stimulation levels that could be discriminated increased up to 

almost 10 levels (~3.3 bits), indicating the perfect decoding. All these findings confirm that 

 

Figure 2.6. The simulation of population 
responses. 

The population death as responses to 
increasing doses of signal with 3 levels of noise. 
The higher the noise, the population is more 
sensitive to signal doses. Modified from 
(Suderman et al., 2017). 
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cell-to-cell heterogeneity can indeed be highly beneficial in specific biological processes. This 

advantageous nature of the heterogeneity raises the question of the origin of cell-to-cell 

variability in cellular signaling, its regulation and robustness (Wollman, 2018). If we knew the 

sources of cell-to-cell heterogeneity, we would better understand the overall signaling 

precision and maybe adjust the research accordingly, for example focusing on the cellular 

characteristics influencing the observed heterogeneity the most.  

2.7. Origins of cell-to-cell heterogeneity in biology 

 The origins of cell-to-cell heterogeneity of many cellular processes have been extensively 

investigated but a comprehensive understanding is missing. The initial work on decomposition 

of variability sources was done in the context of gene expression (Elowitz et al., 2002; Swain 

et al., 2002), but conceptually similar approach has been applied in development processes 

(Tkačik et al., 2014), cell fate decisions (Spencer et al., 2009) as well as in cellular signaling 

(Selimkhanov et al., 2014; Wada et al., 2020). 

2.7.1. Categories of sources of cell-to-cell heterogeneity 

 The observed differences between cellular responses or behaviors and traits are canonically 

thought to be of two, non-exclusive sources: extrinsic (sometimes referred to as deterministic, 

cellular phenotype or cellular state) and intrinsic (sometimes referred to as probabilistic, 

molecular noise, random, stochastic). The extrinsic sources are of intercellular origin and 

cover all differences among cells in terms of protein concentration, cell size, cell cycle state, 

metabolic state, number of past mitosis processes, but also the small differences of 

microenvironment, different DNA methylation, mutations and many others (Figure 2.7A). The 

intrinsic sources are of intracellular origin and include fluctuations in biochemical reactions or 

unpredictability of microscopic collision of individual atoms and molecules, especially in 

systems of low copy-number of molecules (Figure 2.7B). In other words, the influence of 

extrinsic sources on the cell-to-cell variability is minimized in a population of perfectly 

identical cells, all having the same cellular morphology and concentration of all proteins. On 

the other hand, the influence of intrinsic noise on the cell-to-cell variability is maximized, e.g., 

in systems with low number of molecules.  
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 To put the proposed categories into perspective of the already mentioned variable activation 

of chromosome X in female calico cats, the extrinsic source could be differences in the 

methylotransferases level between cells, the enzymes responsible for DNA methylation, with 

certain threshold level required for silencing of one pigment allele, while intrinsic source could 

be unpredictable number of methylation reactions, with the certain level of needed methyl-

residues needed for inactivation of the pigment allele. Traditionally, both intrinsic and 

extrinsic sources of cell-to-cell variability have been considered as noise that reduces the 

precision of cells in their action (Elowitz et al., 2002). However, the term “noise” implicitly 

assumes the loss of information between the signal and a cell action or implies 

unpredictability of a single cell in its behavior caused by both intrinsic and extrinsic sources of 

noise. Therefore, from the perspective of a single cell, the true uncertainty in a cellular action 

can be caused solely by stochastic biochemical effects, or in other words by the intrinsic noise 

(Eling et al., 2019). The extrinsic source of the cell-to-cell variability on the other hand does 

not necessarily cause the information loss, but only be the joint effect of the previous 

stochastic and deterministic factors influencing the current cellular phenotype. Therefore, the 

noise, or molecular noise, should be termed only in regards to intrinsic noise, while extrinsic 

noise should be rather termed as phenotypic variability. The existence of both variability 

sources was demonstrated in simple, yet potent dual-color fluorescent protein experiments 

on bacteria (Elowitz et al., 2002), which were further extended to both yeast (Bar-Even et al., 

 

Figure 2.7. Sources of cell-to-cell heterogeneity 

(A) Phenotypic variability, so differences of cellular features including protein abundance, cell size and shape as well as 
cell cycle phase and others all can influence the final cell behavior. (B) Molecular noise, e.g., random ligand binding of cells 
with identical phenotypes, is an inevitable characteristic of all biochemical reactions, influencing the final cellular behavior. 
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2006; Raser and O’Shea, 2004) and mammalian cells (Raj et al., 2006; Sigal et al., 2006), all 

related to gene expression. In addition, similar noise source decomposition into intrinsic and 

extrinsic sources has also been applied for cellular signaling research.  

2.7.2. Sources of heterogeneity in cellular signaling  

In terms of cellular signaling, the heterogeneity could result from a combination of the two 

opposing scenarios. In one extreme, signaling responses could be fully determined by the 

molecular content of the cell, i.e., cellular phenotype. Then, the cell-to-cell heterogeneity of 

responses would result solely from differences in cellular phenotypes, or phenotypic 

variability. Towards the other extreme, signaling processes could be subjected to the strong 

inherent randomness of cellular biochemistry, i.e., molecular noise. Then, the cell-to-cell 

heterogeneity of signaling responses would result mainly from random effects inside the cell, 

i.e., be dependent on the intrinsic sources of variability. Most probably, neither of the above 

two extreme scenarios is true for any signaling pathway and the truth lies somewhere in 

between. At this point, multiple questions may arise. What is the contribution of phenotypic 

variability and molecular noise in the cell-to-cell heterogeneity of cellular signaling? How 

much is it signaling pathway-dependent? What are the main cellular features of molecular 

phenotype that drive the observed heterogeneity? To answer these questions, we would need 

only one, simple, biological model: a group of cells perfectly identical in terms of any cellular 

characteristics and intracellular protein concentrations. In such a model the phenotype of 

each cell would be exactly the same, while the molecular noise would affect each cell 

independently. We could then stimulate such a group of cells and all the observed 

heterogeneity would result only from intrinsic sources. However, such an approach is 

extremely hard, if at all possible, to execute in practice. Even the natural process of cell 

division, which would of course replicate the single cell creating two daughter cells, is not a 

perfect solution, as the newborn cells are not perfectly identical neither. The natural process 

of cell division often causes stochastic differences in cell size of daughter cells (Cadart et al., 

2018) as well as uneven segregation of organelles (Chang and Marshall, 2017), proteins 

(Cohen et al., 2009; Fuentealba et al., 2008) and mRNAs (Shlyakhtina et al., 2019), especially 

influencing the low copy-number molecules (Huh and Paulsson, 2011). Therefore, researchers 

proposed a number of approaches, elaborated below, which were meant to mimic such an 
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ideal model of identical cells. These approaches limit the contribution of cellular phenotype 

variability in the overall cell-to-cell heterogeneity of cellular responses and therefore are great 

methods to investigate the true molecular noise, or stochasticity of cellular signaling. 

2.8. Experimental strategies for limiting the contribution of molecular 

phenotype 

To minimize the influence of a molecular phenotype the following methods were utilized: 

considering fold-change response instead of absolute response; correlating the cellular 

response with the cellular characteristics or cellular state; considering the sibling cells as the 

approximation of cellular clones; repetitive stimulation of the same cell with the same or 

increasing dosage of a stimulant; decomposition of extrinsic vs intrinsic noise by dual-color 

reporters. 

2.8.1. Fold-change response 

Traditionally, the cellular response after stimulation was considered as the absolute value of 

the effector signal, often measured as the arbitrary unit of fluorescence intensity with some 

flat-field correction applied. Such an approach does not take into account the differences of 

the effector level prior to the stimulation, a component of the molecular content of the cell. 

Such basal level of the effector before stimulation could be considered as the approximation 

of the cellular potential to be responsive- in other words, cells with high basal level of the 

effector before stimulation could be more prepared to respond strongly after stimulation. 

Indeed, when the dynamics of the nuclear levels of the signaling effector, NF-κB, was 

measured after stimulation with TNF-α, cells exhibited the usual level of cell-to-cell 

heterogeneity of responses (Lee et al., 2014). Nevertheless, when responses were redefined 

in terms of fold-changes, i.e., as the ratio between nuclear NF-κB level at a given time of after 

stimulation and before stimulation, the cell-to-cell heterogeneity decreased considerably. 

Besides, fold-change in the response of individual cells exhibited significantly higher 

correlation with downstream gene expression than the absolute level, indicating that indeed 

the fold-change is a better representation of the response value instead of the absolute level 

of the effector. Such an approach removes one component of the phenotypic variability- the 

basal level of the effector, making the whole population more unified. Similar results were 
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also obtained in the transforming growth factor beta (TGF-β) pathway, with the transcription 

factor Smad3 as the effector (Figure 2.8) (Frick et al., 2017) as well as in the EGF pathway with 

the modified version of the FOS-related antigen 1 (FRA1) transcription factor as the effector 

(Benary et al., 2020). Fold change responses were also considered to bear more information 

about the dosage used, that is to have higher information capacity than absolute values in 

these studies (Benary et al., 2020; Frick et al., 2017; Zhang et al., 2017). 

2.8.2. Cellular state as a determinant of the response 

Considering the cellular characteristics or cellular state as a determinant of the response is 

very similar to the fold-change response, but focuses on cellular features not directly related 

to the response effectors, e.g., on levels of certain proteins that could pre-determine response 

of a cell. With such determinants, the observed cell-to-cell heterogeneity of cellular responses 

could not be attributed to noise, but rather to differences in cellular states. Indeed, based on 

mathematical modeling, it was predicted and next experimentally confirmed (Yao et al., 2016) 

that the majority (R2 ~ 70%) of variance of ATP-stimulated Ca2+ response can be explained by 

variability in intracellular receptor activity, indicating that an individual cell itself could be very 

 

Figure 2.8. Fold change values allow 
for better signal discrimination 

(A) Absolute nuclear level of Smad3 
protein after TGF-β treatment. (B) 
Values of A normalized by the basal 
level of Smad3, leading to fold-
change values. (C) Histograms of 
absolute nuclear level of Smad3 after 
low, medium and high dose of TGF-β 
stimulation show high overlaps. (D) 
Histograms of fold change values of 
Smad3 after low, medium and high 
dose of TGF-β stimulation show 
small overlaps, indicating the fold 
change as better information-
bearing unit. Modified from (Frick et 
al., 2017). 
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precise and that the cell population is very heterogeneous in terms of cellular states. Similarly, 

the work on the response to heat, based on the modeling and microscopy, showed, that the 

basal levels of heat shock proteins (specifically, chaperone HSD72 and heat shock factor 1) 

explain 56% of the observed heterogeneity in heat-caused response (Guilbert et al., 2020). In 

the massive work connecting the gene expression variability with multiple cellular features, 

the authors measured the RNA level of 150 genes together with Ca2+ responses in live 

microscopy as well as with measurements of cell size, cell cycle and differentiation potential. 

They showed that the expression variability of the majority of genes can be significantly 

reduced (up to theoretical limit related to pure stochasticity of gene transcription reactions), 

when all cellular state features were considered (Foreman and Wollman, 2020). These findings 

indicate that the cellular state explains the majority of variance in the gene expression. Also, 

all these studies showed that our understanding of cell identity and uniformity of 

environmental signals is not complete. Cells can differ in their molecular states and therefore 

respond to stimuli in different ways. The cell cycle is one of the cellular processes, which divide 

cells into subgroups and could be potential factors changing the sensitivity of cells to external 

signals. It broadly changes the intracellular state of many proteins and biochemical reactions 

(Uzbekov, 2004). The cell cycle leads to the cell division and can be divided into 4 main phases: 

G1, when the cell is preparing for the DNA synthesis, S, when the DNA is synthesized, G2, when 

the cell is preparing for the division and M, that is mitosis, when the exact cell division occurs 

(Tyson and Novak, 2008). After that, the cycle starts from the beginning. During the cell cycle, 

the DNA content is doubled in S phase and changes from 2c in G1 phase, to 4c in G2 and 

mitosis (Figure 2.9). What is important, the cell cycle shows a high level of desynchronization 

in the single cells, bearing the potential of inducing the variability of e.g., cytokine or growth 

factor responses (Roukos et al., 2015). Unfortunately, the impact of the cell cycle on the signal 

processing in the single cells has not been studied in the literature so far.  

 

Figure 2.9 Cell cycle progression 

The cell cycle consists of successive phases: in G1 (gap 1), a cell 
prepares for the DNA duplication; in S (synthesis) phase the 
DNA duplication occurs; in G2 (gap 2) a cell prepares for 
mitosis; in mitosis the cell divides. After the mitosis, cell can 
stop in the cycle and go to G0 phase. Each phase can be 
characterized by analysis of DNA content histogram- cells after 
the DNA duplication have around twice as much DNA as cells 
before DNA duplication. 
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2.8.3. Responses of sibling cells 

Mammalian cell division leads to division of a mother cell into two daughter cells (Tyson and 

Novak, 2008). Each of the daughter cells is very similar to the other, however with some 

differences (Huh and Paulsson, 2011), which further accumulate along the progression of the 

cell cycle (Huang, 2009; Spencer et al., 2009). However, accepting these limitations, one can 

assume that daughter cells just after the division have higher similarity between each other 

than similarity between two random chosen cells from a population. Then, such two cells 

would serve as a non-perfect model of two identical cells, which scientists are looking for so 

extensively. Such assumption has been done in terms of cell fate decision-making (Spencer et 

al., 2009). Cells were tracked using time-lapse microscopy and treated with the TRAIL, which 

causes the cell apoptosis some time after the treatment. Such time was observed to be very 

variable among single cells – some cells died soon after treatment, some long after treatment. 

However, when the information about the cellular lineage was retrieved from the time lapse 

microscopic images, the death time of sibling cells turned out to be very similar (R2 between 

sisters up to 0.93, while for cells chosen at random only R2= 0.04). Lower R2 values were 

obtained in terms of responses to insulin-like growth factor-1 (IGF-1), while still much higher 

than for random sampled newly born cells (Gross et al., 2019). In addition, we know from the 

gene expression research, that the transcriptional activity dynamics was similar in daughter 

cells and transcriptional dynamics is synchronized (Phillips et al., 2019). Taking together, the 

cellular features inherited by both daughter cells are enough to make those cells comparable 

responsive, indicating that the cellular state can be passed from mother to daughter and that 

it at least partially governs the cellular behavior to stimulation. 

2.8.4. Repetitive stimulation 

Instead of looking for identical cells, one could think of stimulating the same cell multiple 

times and treating each single outcome of the perturbation as coming from a perfectly 

identical, but separate cell. Such an approach bears, however, some disadvantages. Mainly, it 

can be adopted only to a situation of rapid signaling, when the period of activation-relaxation 

cycle is relatively fast, in the order of seconds or minutes rather than hours, as many of the 

cellular characteristics can be naturally changing throughout such long time, due to e.g., 

progression in the cell cycle, stochasticity of gene expression, nonlinearity of cell growth or, 
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maybe the most potent, the gene expression activation caused by the stimulation (Shamir et 

al., 2016). Such changes in cellular phenotype can affect the response to subsequent 

stimulation, abolishing the assumption of cell identity. Therefore, the best choice of signaling 

pathways to utilize such a strategy is related to ion-responses, e.g., influx to the cytoplasm of 

Ca2+. Nevertheless, the repeated stimulation can be also adopted to signaling pathways 

operating on the regimes of hours, however with weaker cellular identity assumptions. 

Utilizing the workhorse of cellular signaling, TNF-α cytokine, the cells were stimulated twice: 

first by the reference concentration and second by the increased concentration, with the 3 h 

recovery period between both stimulations (Zhang et al., 2017). The response of the second 

stimulation turned out to be highly proportional to the response of the first stimulation for 

each of the doses used, indicating that a cell can respond to increasing dosage of a stimulant 

with higher precision than predicted by the studies with only single stimulation. Similar 

research of repetitive stimulation with ~2-3 h washout between doses of a stimulant was done 

on gonadotropin-releasing hormone (GnRH) (Voliotis et al., 2018) and IGF-1 (Gross et al., 

2019), with similar conclusions: cells respond to the second dose proportionally to the first 

dose, indicating that cells can distinguish multiple doses of a stimulant with high precision. 

The studies using cellular responses triggered in a very short time scale also showed similar 

phenomena. Repeated stimulation of acetylcholine (Keshelava et al., 2018) or electric pulses 

(Wada et al., 2020) both considered a response as the fast Ca2+ influx-efflux cycle counted in 

seconds. Such a signaling model not only limited the changes in the cellular state caused by 

the stimulation, but also allowed the use of more doses (up to 10, compared to 4 in the cases 

of long-lasting signaling responses). Overall, these studies enabled reconstitution of a dose 

response curve, with response level vs dose for each individual cell (Figure 2.10). Such curves 

elegantly show that depending on the signaling pathway used, the response is either mainly 

binary or mainly graded, but for both scenarios, the individual cell reliably responds to the 

used dose and each cell does it in a unique way. In other words, the phenotypic variability 

exceeds the molecular noise in cellular response.  
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Figure 2.10. Single cell-dose curves 

(A) Single cells were treated with indicated doses of acetylcholine (Ach, X axis) and the response as Ca2+ was measured (Y 
axis). Data for 4 cells presented, with error bars as standard deviation of repetitive measurements. Response curves for 
each cell are graded. Modified from (Keshelava et al., 2018) (B) Single cells were treated by electric pulse and Ca2+ influx 
was measured. Each cell has a unique response curve. Response curves are binary for two first cells, and graded for the 
third cell. Modified from (Wada et al., 2020) 

From the above examples it can be concluded that not all of the observed cell-to-cell 

heterogeneity in cellular signaling is the result of biochemical noise, but rather arises from the 

differences in cellular states. Prior to the stimulation, cells can be already predetermined to 

have the given response to the given dose of stimulation. In that way, single cell stimulated 

multiple times with increasing dosage will have much lower variability and therefore very high 

channel capacity, contrary to the observable low channel capacity population of single cell 

population (Figure 2.11). The decomposition of the sources of cell-to-cell heterogeneity into 

molecular noise and cellular phenotype of some cellular behaviors was also elegantly done for 

the first time in dual-color experiments. 
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2.8.5. Dual-color decomposition 

Instead of creating a perfect copy of the whole cell, which is difficult, one could imagine 

creating a perfect copy only of the cellular subsystem of interest inside the cell, e.g., in a gene 

expression study it would be introducing the two identical gene constructs into the genome 

of a cell. In this way, for each of the constructs, the majority of the cellular machinery is the 

same, i.e., the global level of polymerases, transcription factors, cell cycle stage, cell size and 

many others. The major difference would be then the stochasticity of biochemical reactions, 

so the molecular noise. Such an idea was applied first in bacteria (Elowitz et al., 2002). Two 

identical promoters were introduced into E. coli cells, each promoter regulating the 

production of either YFP or CFP (Yellow or Cyan Fluorescent Protein) (Figure 2.12A), which 

stands for the “dual-color” in the experiment description. Next, cell fluorescence of both 

channels was visualized and measured, producing the two-dimensional data that can be 

presented as a scatter (Figure 2.12C-E). Each dot on the scatter corresponds to a single cell 

with fluorescence of CFP on X axis and YFP on y axis. If there was no molecular noise at all, 

both fluorescence values would be equal, with all dots lying on the diagonal. The more the 

dot is off-diagonal, the higher the contribution of molecular noise. On the other hand, the 

higher influence of phenotypic variability, the more points are spread along the diagonal 

direction, which accounts for the between-cell differences in the fluorescence signal. Such 

Figure 2.11. Response variability of individual cells 
stimulated repeatedly. 

Each row represents a hypothetical single cell and 
its response to repetitive stimulation. Each cell has 
a unique cellular state and response characteristics 
to increasing doses of a stimulation. Low 
distribution overlaps indicate, that cell-to-cell 
response heterogeneity in a population of single 
cells is not necessarily equivalent to signaling noise. 
Modified from (Topolewski and Komorowski, 
2021). 



Literature review 

 35 

decomposition of: diagonal = phenotypic variability; off-diagonal = molecular noise, can be 

quantified and presented as the ratio of each component in the total variance of the data set. 

The decomposition idea can be presented more intuitively at microscopic images colored that 

red signal corresponds to YFP and green to CFP fluorescence (Figure 2.12C-D). 

On such images, the perfectly identical signals of CFP and YFP would give the yellow color in 

total (low molecular noise), while more green or red cells would indicate the higher 

differences between two fluorescent signals (higher molecular noise). In the E. coli cells, the 

contribution of molecular noise increased with the decrease in the gene transcription level 

(Elowitz et al., 2002). Similar dual-color experiments were done regarding gene transcription 

in yeast (Bar-Even et al., 2006; Raser and O’Shea, 2004) and mammalian cells (Raj et al., 2006; 

Sigal et al., 2006), leading to similar conclusions. However, such dual-color experiments have 

not been performed in relation to signaling processes, which would give great insight into the 

nature of stochasticity of signaling-related biochemical reactions. The cellular signaling of the 

immune system is of great need to be understood, as the global rate of autoimmune diseases 

 

Figure 2.12. Dual color experiment in gene expression study 

Two identical promoters were introduced into E. coli cells. Each promoter regulated the expression of one fluorescent 
protein, either CFP or YFP. The fluorescence of both proteins (green or red pseudo colors presented) was measured over 
time on the single cell level. Two scenarios are possible: (I) each protein is produced synchronously with the other, leading 
to equal yfp and cfp signals (red + green = yellow cell), implying low contribution of noise; (II) the protein production is 
asynchronous, with mosaic color of single cells, implying high contribution of noise. (C) and (D) microscopic images of cells 
with low noise (C) and high noise (D). (E) Decomposition of noise vs phenotype sources to total cell-to-cell heterogeneity. 
Each axis corresponds to the fluorescence signal of one fluorescence protein. Diagonal variability corresponds to 
phenotype differences. Variability perpendicular to the diagonal corresponds to noise. Each point represents a single cell: 
blue ones correspond to highly noisy bacterial strain; green one corresponds to strain of low noise.  
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affects up to 5% of the worldwide population, not accounting for cancer and immune-

deficiency diseases (Abbas et al., 2017; Wang et al., 2015).  

2.9. The importance of studying cellular signaling in immune system 

One of areas with the greatest complexity and requirements for information processing is the 

immune system. Mammalian immune responses involves cooperation of a great orchestra of 

tissues and immune cells, including B-cells, T-cells, granulocytes, macrophages, dendritic cells, 

as well as dozens of cytokines- signal proteins regulating the immune system and modulating 

the immune response (Abbas et al., 2017). The threat has to be precisely recognized, the 

information about its existence and nature has to be precisely passed to other cells, which in 

turn has to detect the signal sent, prepare for the threat spread, inform the other cells about 

the threat as so on. Specifically, thousands and millions of cells, signal molecules and 

biochemical reactions have to coordinately act with each other to successfully fight against 

bacteria and viruses, to specifically locate the cancer cells, to ensure homeostasis or to 

regulate the developing processes of a growing organism. Since signaling pathway 

disfunctions were characterized in cancers as well as in diabetes, drug addiction, ageing, 

neurodegeneration and immunodeficiencies (Berridge, 2014; Mora-Garcia and Sakamoto, 

1999), the responses to immune signals must be robust to molecular noise and have to reliably 

correspond to given immune signal. Therefore, the communication in immune responses is 

crucial. Revealing the sources of cell-to-cell heterogeneity would not only broaden our 

understanding of immune responses in general, but it will also shed light on the evolution 

reason behind high cell-to-cell heterogeneity of cellular response to immune stimuli, 

specifically, explaining whether this variability is actually beneficial and, e.g., by ensuring 

increased response diversity (Wollman, 2018). On the other hand, new therapeutic strategies 

can be developed. For example, let assume that a specific signaling pathway is up-regulated 

in cancer cells of a given type. Once we know which element of this pathway contributes the 

most to the overall cell-to-cell variability of cancer cells, let’s make other assumptions that it 

is an internal kinase, we can focus on blocking this specific protein from the activity, instead 

of blindly looking for the best molecular target. Such a strategy would decrease the survival 

rate of a small population of cells after cancer treatment, the phenomena called fractional 

killing, which is often the reason behind further re-growth and metastasis of cancers(Fallahi-
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Sichani et al., 2013; Roux et al., 2015). But first, to establish the methodology of studying the 

sources of cell-to-cell heterogeneity, a proper biological model of signaling pathway has to be 

chosen.  

2.10. Signaling pathways to study the sources of cell-to-cell heterogeneity 

of cytokine responses 

Although multiple signaling pathways have been already mentioned here and used 

throughout the research, not all of them constitute good models for studying the cell-to-cell 

heterogeneity of signaling responses in the context of the immune system. In principle, such 

suitable signaling pathway should fulfill the following criteria: 

- First, be strictly related to immune responses, with cytokine-signaling pathways as one of 

the best candidates, which govern a great majority of all immune-related communication 

processes. 

- Second, be widely studied in the literature and for which the molecular bases have been 

established. This is needed, as the research will not focus on discovering the new molecular 

species of this pathway, or the new negative feedback loops existed, but on measuring the 

precision of the pathway. Also, depending on the methodology, reliable antibodies should be 

available, for obvious reasons.  

- Third, has the easily measured outcome of the stimulation, or the output, with preference 

to signaling pathways of one main “effector” protein, which level being considered as the 

output. This excludes the pathways with existence of multiple outputs, which measuring all 

would be experimentally hard in each cell. 

- Fourth, be selectively responsive to only external stimulation, and not to, e.g., heat, culture 

medium or autocrine/paracrine signaling, which influence could compromise the further 

conclusions. 

Such suitable candidates which meet the above requirements are signaling pathways of 

interferon gamma (IFN-γ) and oncostatin M (OSM). 
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2.10.1. Interferon gamma pathway 

Interferons are pleiotropic cytokine proteins, involved in both innate and adaptive immune 

systems (Rauch et al., 2014). They are canonically divided into three groups, with IFN-γ as the 

only member of the interferons II type. In mammals, IFN-γ was proven to regulate the anti-

microbial immunity (Shtrichman and Samuel, 2001) and pregnancy (Murphy et al., 2009) as 

well as to have the impact on the developing of autoimmune diseases (Lees, 2015), obesity 

(Rocha et al., 2008), allergies (Teixeira et al., 2005), schizophrenia (Sharma et al., 2017)  and 

cancers (Zaidi, 2019) in mammals. In addition, mice with impaired IFN-γ signaling showed 

deficiencies in resistance to both bacterial, viral and parasite infections as well as have higher 

spontaneous rate of tumorigenesis (Tannenbaum and Hamilton, 2000). The biological activity 

of IFN-γ pointed it to the use in therapy, with multiple clinical trials designed and started up, 

mainly in the anti-cancer treatment (Ni and Lu, 2018). Unfortunately, hopes for IFN-γ as the 

potential anti-tumor treatment factor had to be dismissed, as some studies showed that IFN-

γ has a very complex and dual role in anti-tumor treatment, with adverse outcomes in cancer 

patients and development of autoimmune responses (Mojic et al., 2018; Zaidi, 2019).  

All these indicate the need for a better understanding of the IFN-γ action. The knowledge 

about the heterogeneity of the dynamics of IFN-γ response can shed light on the mechanisms 

behind the variable and complex functions of IFN-γ. This, in turn, can lead to more effective 

use of its potential in biomedical applications.  

2.10.2. Molecular mechanism of Interferon gamma pathway 

Canonically, after IFN-γ binds to its receptor (formed as a complex of two heterodimers – 

IFNGR1 and IFNGR2), the signal is processed in the cytoplasmic JAK-STAT signaling pathway, 

composed of the Janus kinase1 and 2 (JAK1 and JAK2) and transcription factor signal 

transducer and activator of transcription 1 (STAT1). Briefly, STAT1 molecules are 

phosphorylated at the Tyrosine 701 (Y701) residue by JAK kinases and after dimerization, 

Tyrosine701-phosphorylated STAT1 (pSTAT1) dimers are translocated to the nucleus, where 

they induce the transcription of specific genes (Murray, 2007) (Figure 2.13). Therefore, the 

easy-to-measure output of IFN-γ stimulation can be assumed as a pSTAT1 level in the nucleus. 

After some time, ranging from minutes to hours, the activated pSTAT1 is dephosphorylated, 
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mainly by the TC45 phosphatase enzyme, a nuclear isoform of the T-cell protein tyrosine 

phosphatases (TC-PTP). Dephosphorylation enables the binding of exportins to nuclear STAT1, 

which further causes the export of STAT1 to cytoplasm, where it is ready for the next round 

of the activation (Haspel and Darnell, 1999; Hoeve et al., 2002; Meyer et al., 2003). 

 

Figure 2.13. IFN-γ signaling 

When IFN-γ molecules bind the IFNGR1 - IFNGR2 double heterodimer receptors, a cascade of phosphorylation occurs, 
involving JAK1 and JAK2 kinases, leading to phosphorylation and dimerization of transcription factor called STAT1. Such 
activated STAT1 molecules translocate to the nucleus where they can activate the gene transcription. After the 
dephosphorylation, STAT1 exits the nucleus and can be re-activated.  

However, not surprisingly for those who study biology (as biology always has some 

exemptions to the rules), there are known other, non-canonical ways of the signal flow after 

IFN-γ stimulation. Among them, there can be listed pSTAT3 nuclear translocation instead of 

pSTAT1 or activation of phosphorylation of STAT1 Serine 727 residue by phosphatidylinositol 

3-kinase (PI3K), mitogen-activated protein kinase (MAPK) or protein kinase Cδ (PKCδ) (Deb et 

al., 2003; Nguyen et al., 2001; Takaoka et al., 2013). Activated STAT3 protein is considered as 

an anti-inflammatory factor, whose elevated level can lead to oncogenesis and therefore acts 

in an opposing way to STAT1 protein (Ho and Ivashkiv, 2006). However, in normal cell lines 

pSTAT1 is the most dominant and abundant effector protein in the nucleus after IFN-γ 

stimulation, while STAT3 is activated very weakly (Majoros et al., 2017). On the other hand, 

the alternative phosphorylation of STAT1 (on Serine 727), leading to the creation of pS727- 
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STAT1, causes an increase in the transcriptional activity of STAT1 molecules (Qing and Stark, 

2004). This modification, however, does not influence the DNA binding or nuclear 

translocation processes (Decker and Kovarik, 2000). This data suggests that Serine 727 

phosphorylation is important, but not crucial for the proper functioning of activated STAT1 

molecules. Studying both modifications (that is, phosphorylation of Tyrosine 701 and Serine 

727) simultaneously in the same cell would be of a great asset when focusing on gene 

transcription activation after IFN-γ stimulation. However, when focusing on the 

phosphorylated protein nuclear translocation, Tyrosine 701 phosphorylated STAT1 (pSTAT1) 

protein molecules is a main indicator of IFN-γ caused modification of STAT1 protein. It is worth 

noticing, that STAT1 can be subjected to many other posttranslational modifications, like 

acetylation, sumoylation, or ADP-ribosylation (adenosine diphosphate ribosylation), which are 

likely to change the conformation, functions and kinetics of STAT1 molecules (Begitt et al., 

2018; Iwata et al., 2016; Krämer et al., 2006; Zimnik et al., 2008) All these changes probably 

contribute to the final outcome of IFN-γ signaling and therefore also contribute to some 

extent to the observed heterogeneity. However, all listed changes, as of now, are considered 

less frequent and less crucial than the phosphorylation of Tyrosine 701.  

The molecular details of the IFN-γ signaling pathway show the amount of research done on 

that biological model, indicating that the basic molecular mechanisms have been at least 

partially established. At the same time, IFN-γ receptor (IFNGR) can be found in the membrane 

of a broad range of different cell types including immune system cells as well as epithelial and 

fibroblast cells of human and mouse tissues (Lee et al., 2013; Valente et al., 1992), justifying 

the use of easy-to-handle cell lines in the study. Moreover, IFN-γ is secreted exclusively by the 

immune cells like antigen-presenting cells, T-cells, or Natural Killers cells. These exclude the 

potential of the unwanted paracrine or autocrine signaling, when, e.g., fibroblast cells are 

used. 

All the above make the IFN-γ signaling pathway suitable for studying the sources of 

heterogeneity in immune responses. 
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2.10.3.  Oncostatin M pathway 

Similarly to IFN-γ, oncostatin M (OSM) is a cytokine involved in many immune-related 

processes. OSM was originally named after its ability to inhibit the proliferation of cancer cells 

(Zarling et al., 1986), but nowadays was shown to be involved in multiple biological processes 

like hematopoiesis, lipid metabolism, tissue remodeling, neuroprotection, inflammation and 

cancer development (Tanaka and Miyahima, 2003). Enhanced responsiveness to OSM was 

shown for some cancer types (Caffarel and Coleman, 2014; West et al., 2012), while others 

showed the decrease of OSM signaling strength (Kim et al., 2009; Lacreusette et al., 2007), 

proving the need for further research, especially in cancers (Masjedi et al., 2020).  

2.10.4. Molecular mechanism of the oncostatin M pathway 

OSM signaling occurs through two types of receptors: type I, composed of glycoprotein 130 

(gp130) and leukemia inhibitory factor receptor (LIFR) units, and type II, composed of gp130 

and OSM receptor (OSMR) units. In humans both receptor complexes are active and can 

downstream process the signal of OSM, while in mouse OSM binds with high affinity only to 

type II receptors (Hermanns, 2015) (Figure 2.14). After OSM binding, the JAK kinases (JAK1 

and JAK2), associated with cytoplasmic domains of the receptors (Hermanns et al., 1999), start 

to phosphorylate STAT proteins, mainly STAT3 at Tyosine 705 (pSTAT3) which in turn homo- 

or heterodimerize and translocate to the nucleus for regulation of transcription (Morris et al., 

2018; Okada et al., 2018). Similarly to IFN-γ, the level of pSTAT3 molecules can be considered 

as the simple output after the OSM stimulation. pSTAT3 in the nucleus is a substrate of 

dephosphorylation by the nuclear TC45, what in turn leads to STAT3 export to the cytoplasm, 

where it can be re-activated (Herrmann et al., 2007; Hoeve et al., 2002). 

However, the overall cross-wiring and inter-relatedness of OSM signaling is more complex 

compared to IFN-γ, which has to be taken into account during analysis of the results. In 

particular, OSM stimulation can also activate STAT5 and STAT1 transcription factors, 

depending on the receptor type engaged and cell type investigated (Auguste et al., 1997; 

Hintzen et al., 2008a). Moreover, OSM stimulation can activate not only JAK-STAT signaling 

pathways, but also extracellular signal-regulated kinases (ERK), c-Jun N-terminal kinase (JNK), 

MAPK, PKCδ and PI3K pathways, depending on the cell type and OSM concentration 



Literature review 

 42 

(Hermanns, 2015). However, JAK-STAT signaling pathways is considered as one of the most 

potent and canonical way of OSM signaling, with STAT3 as the main effector (Hermanns, 2015; 

Tanaka and Miyahima, 2003; Walker et al., 2016), especially in fibroblasts (Nagahama et al., 

2013; Scaffidi et al., 2002). 

The human type I and II receptors as well as mouse type II receptors, so all the active receptor 

types, are expressed in a broad range of human and mouse cell types, including fibroblasts 

(Consortium et al., 2014; Hermanns, 2015; Uhlén et al., 2015), justifying the use of common 

fibroblast cell lines in the research. Expression and secretion of OSM occurs exclusively in 

immune cells, including T cells, dendritic cells, neutrophils, with macrophages and monocytes 

as the primary source (Richards, 2013), excluding the paracrine or autocrine signaling of 

fibroblast cells, if used in the research (O’Hara et al., 2003; Scaffidi et al., 2002). 

Taken together, both IFN-γ and OSM signaling pathways need more understanding of its dual-

role, e.g., in cancer development and treatment as well as they constitute a suitable model 

for studying the cellular heterogeneity as they are experimentally easily controlled with single 

 

Figure 2.14 OSM signaling pathway via the OSMR receptor 

When OSM molecules bind the OSMR and gp130 receptors, a cascade of phosphorylation occurs, involving various JAKs  
kinases, leading to phosphorylation and dimerization of transcription factors, mainly STAT3. Such activated STAT3 
molecules translocate to the nucleus where they can activate the gene transcription. After the dephosphorylation, STAT3 
exits the nucleus and can be re-activated. Modified from (Tanaka and Miyahima, 2003) 
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input-single output. They also represent two distinct biological activities, with pSTAT1 acting 

as a pro-inflammatory and pSTAT3 as an anti-inflammatory agent, all important in, e.g., anti-

cancer immune responses, making the research broader and more universal. 

  



Aim and hypotheses 

 44 

3. Aim and hypotheses 

3.1.  Aim 

The aim of this dissertation is to identify sources of the cell-to-cell heterogeneity of cellular 

responses to cytokine stimulation in murine and human fibroblasts, with IFN-γ and OSM as 

model cytokines, both inducing JAK-STAT signaling pathway. 

3.2.  Hypotheses: 

I. Phenotypic variability and not molecular noise accounts for most of the cell-to-cell 

heterogeneity in IFN-γ and OSM signaling responses. 

II. Measurement error has a minor contribution to the observed level of 

immunofluorescence signals. 

III. Nuclear state contributes to the cell-to-cell heterogeneity of the IFN-γ and OSM 

signaling responses. 

IV. Intracellular levels of cytoplasmic and membrane signaling proteins partially predict 

the IFN-γ and OSM signaling responses. 

V. Cells before and after DNA replication show a different level of responses in IFN-γ and 

OSM signaling 
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4. Materials and methods 

4.1. Cell culture  

Mouse embryonic fibroblasts were kindly provided by Prof. Alan Brasier (Brasier et al., 2011). 

These cells were previously used in several studies including (Brasier et al., 2011) and (Czerkies 

et al., 2018). Normal human fibroblasts, or BJ cells, were purchased from the American Type 

Culture Collection (ATCC, CRL-2522). MEF S1 KO (MEF S1 -/-) cells, being genetically depleted 

of STAT1 genes were kindly gifted by Prof. Max F. Perutz Laboratories, University of Vienna, 

Vienna, Austria. PC3 cells, being naturally depleted of STAT3 gene were kindly gifted by 

Małgorzata Milczarek, National Medicines Institute, Warsaw, Poland. All cells were cultured 

in full medium: Dulbecco’s Modified Eagles Medium with 4.5 g/L D-glucose (#41965, Gibco), 

supplemented with 10% fetal bovine serum (FBS, #10500064, Gibco), 1% penicillin-

streptomycin (#15140122, Gibco). BJ cells were additionally supplemented with 1% non-

essential amino acids (#11140, Gibco). Cells were grown in a humidified incubator at 37oC with 

5% CO2. 

4.2. Cytokine stimulation and immunofluorescence for microscopy imaging 

For cytokine stimulation and immunofluorescence cells were plated in 96-well microplates 

with µClear® flat bottom (Greiner, #655090) at densities 7500 and 3000 cells per well for MEF 

and BJ, respectively. After 24 h, cells were subjected to 5 min pulse stimulation of either 

recombinant mouse interferon gamma (IFN-γ, #PHC4034, ThermoFisher) or recombinant 

human oncostatin M (OSM, #300-10T, PeproTech). Each of the cytokines was diluted down to 

indicated concentrations in full medium collected from cell cultures grown for 24h 

(conditioned medium). After 5 min, cytokine solutions were replaced with the same volume 

of conditioned medium. Cells were fixed by 10 min incubation with 3.7% paraformaldehyde 

(PFA, #P6148, Sigma Aldrich) at indicated time points after stimulation, permeabilized in 100% 

methanol at -20oC for 20 min, blocked for 1.5 h in 5% bovine serum albumin (BSA, #821006, 

Merck) solution containing 0.3% Triton X-100 (#T9284, Sigma Aldrich) at the room 

temperature and incubated overnight at 4oC with primary antibodies: phospho-STAT1 

(Tyr701) (p-STAT1, #9167, Cell Signaling) diluted 1:100, phospho-STAT3 (Tyr705) (p-STAT3, 

#9131, Cell Signaling) diluted 1:200, STAT1 (#610115, BD, or Becton, Dickinson and Company) 
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diluted 1:200 or STAT3 (#9139, Cell Signaling) diluted 1:200. The next day, cells were incubated 

with the secondary anti-rabbit IgG antibody conjugated with Alexa Fluor 488 (#A-21202; 

ThermoFisher) diluted 1:500 or anti-mouse IgG antibody conjugated with Alexa Fluor 555 (#A-

21422; ThermoFisher). Both primary and secondary antibodies were diluted in 1% BSA 0.3% 

Triton X-100. Nuclei were counterstained using 2 µg/mL 4,6-diamidino-2-phenylindole (DAPI, 

#D9542, Sigma Aldrich). 

4.3. Microscopy imaging and image analysis 

Cells were visualized using the automated confocal microscope (Pathway 435, BD) with the 

UAPO/340 20x objective (0.75 NA; Olympus). Obtained images were flat-field corrected to 

compensate for unequal illumination. Further, background fluorescence was subtracted. 

CellProfiler (Carpenter et al., 2006), custom scripts written in R and ImageJ as well as the 

automated platform for image analysis IPIQA, developed by Karol Nienałtowski and Agnieszka 

Gromadka in our Team were used for image segmentation and quantification. To quantify 

responses of individual nuclei, the average fluorescence of nuclear pixels was measured first. 

Then, the background-corrected nuclear fluorescence of each nucleus was divided by the 

average of non-stimulated cells’ nuclei fluorescence to obtain relative fluorescence reported 

in the figures.  

4.4.  Fusion of cells 

4.4.1. Preparation of syncytia 

Both MEF and BJ cells were subjected to the same polyethylene glycol (PEG)-mediated fusion 

to create double-stained syncytia composed of one cytoplasm and two nuclei. To accurately 

identify fused cells, cells were subjected to the whole-cell staining using two types of CellTrace 

(ThermoFisher) fluorescent dye: either CellTrace Yellow (#C34573; 555/580 

excitation/emission maxima) or CellTrace Far Red (#C34572; 630/661 excitation/emmision 

maxima). After the fusion, only cells fluorescent in both CellTrace channels were considered 

as fused. In detail, cells were first trypsinized, counted, divided into two equal populations, 

and stained with one of the CellTrace dyes according to the manufacturer’s instructions. Two 

single-color populations of cells were then mixed 1:1 and 7.5 mln were seeded onto the 10 

cm dish plate and kept in the culture incubator. After one hour, cells were washed with pure 
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DMEM (Dulbecco's Modified Eagle Medium) and fused by slowly adding 1.5 ml of 50 % (m/v) 

polyethylene glycol (PEG 1500, #86101-250G-F, Sigma Aldrich) resuspended in fresh FBS-free 

DMEM. Cells were kept in PEG for 2 min in total. The PEG solution was then aspirated and 10 

ml of fresh DMEM was slowly added and the dish plate with the cells was then placed in the 

incubator for the 30 min since the beginning of PEG adding and the fusion procedure was 

repeated up to 2 times in total. After that, DMEM was replaced by the full medium and cells 

were kept in the incubator for the next two hours. Finally, cells were seeded onto the 96-well 

imaging plate (Greiner) and kept 18 h until the stimulation and immunofluorescence 

procedure began. The fraction of fused cells reached around 4% of the whole population. 

Immunofluorescence procedure was the same as with single cells, but additional images 

related to whole-cell staining dyes were captured during image acquisition. 

4.4.2. Identification of properly fused bi-nuclear syncytia 

To properly assign two nuclei to one cytoplasm of a syncytium based on microscopy images, 

the whole-cell dye was needed in addition to nuclei dye. Unfortunately, fibroblasts often 

create dense cellular colonies, which hinders the segmentation of individual cells due to close 

proximity of cell boundaries. This can lead to the error of assigning two nuclei from separate 

cells as coming from the two unfused single cells. Therefore, to correctly identify cells which 

have undergone a fusion, two dyes for whole cell identification were used. In this way, only 

cells with cytoplasm stained with both dyes were considered as properly fused. Such syncytia 

were automatically identified in microscopic images, based on the signal in both images of 

whole-cell staining dyes. Next, such automatically marked syncytia were manually inspected, 

syncytia only with two nuclei were kept and those two nuclei were manually segmented. 

Finally, the manually marked nuclei together with parent cytoplasm were automatically 

quantified in terms of fluorescence intensity in all fluorescent channels. CellProfiler and 

custom scripts written in R and ImageJ were used for image segmentation and quantification 

(Carpenter et al., 2006). Data analysis, background subtraction and signal normalization were 

done the same way as for single cells. In addition, bi-nuclear syncytia with merged nuclei were 

excluded from analysis based on the manually adjusted threshold (see Figure 5.7). 
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4.5. Flow cytometry measurements 

For flow cytometry experiments, MEF cells were plated in 6-well plates (353046, Becton 

Dickinson, BD) at density 1 mln/well, whereas BJ cells in 10 cm dish (#353003, Falcon) at 

density 1 mln/dish. After 24h MEF and BJ cells were exposed to a 5-minute pulse of the 

indicated dose of IFN-γ and OSM, respectively, similarly as for microscopy imaging. Cells were 

then trypsinized, centrifuged (150 x g for 5 min) and fixed by 10 min incubation with 3.7% PFA 

(#P6148, Sigma Aldrich) after 15 minutes of IFN-γ stimulation or 30 minutes after OSM 

stimulation. Next, the samples were washed in 2% FBS in PBS, permeabilized in 100% 

methanol at -20oC for 20 min, washed in 2% FBS in PBS and blocked for 0.5 h in 2% FBS in PBS 

in room temperature. Cells were then incubated with a mixture of primary antibodies against 

3 antigens in the following way. MEF cells were incubated for 1h in room temperature with 

antibodies against: phospho-STAT1 (Tyr701) (pY-STAT1, #9167, Cell Signaling) diluted 1:100, 

STAT1 (#610115, BD) diluted 1:200 and for 15 min with primary antibodies against IFNGR1-PE 

(PE-Phycoerythrin; 12-1191-82, eBioscience) diluted 1:200. BJ cells were incubated for 1 h in 

room temperature with antibodies against: phospho-STAT3 (Tyr705) (pYSTAT3, #9131, Cell 

Signaling) diluted 1:200, STAT3 (#9139, Cell Signaling) diluted 1:200 and OSMR-PE (#12-1303-

42-PE, ThermoFisher) diluted 1:500. To show specificness of receptor antibodies, I used 

isotype control antibodies in the same concentration as antigen antibodies: for IFNGR1: 

normal mouse IgG-PE (#12-4888-81, eBioscience); for OSMR-PE: Mouse IgG1 kappa Isotype 

Control (#12-4714-81, ThermoFisher). To show specificness of anti-STAT1 and anti-pSTAT1 

antibodies, I used MEF S1 KO cells, while to show specificness of anti-STAT3 antibody and anti-

pSTAT3 antibody I used PC3 cells. Then, cells were centrifuged and incubated for 30 min in 

room temperature with the secondary antibodies conjugated either with Alexa Fluor 488 

(anti-rabbit, #A-21202; ThermoFisher) diluted 1:500 or Alexa Fluor 647 (anti-mouse, #A-

21235; ThermoFisher) diluted 1:500. Both primary and secondary antibodies were diluted in 

2% FBS in PBS. Therefore, the pSTAT levels were measured in Alexa Fluor 488 fluorescent 

channel, receptors in the PE channel and STAT levels in Alexa Fluor 647 channel. Finally, 

cellular fluorescence was measured at the Laboratory of Cytometry, Nencki Institute of 

Experimental Biology, Polish Academy of Sciences using the BD FACSAriaII flow cytometer with 

each sample suspended in a PBS buffer supplemented with 2% FBS. Debris exclusion, 
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compensation on single-stained samples and cell doublet discrimination were done in FlowJo 

10.7.1.  

4.6. Phosphatase inhibition  

Sodium orthovanadate Na2VO4 (#450243, Sigma Aldrich) was dissolved in H2O up to 100 mM, 

filter sterilized, aliquoted and kept in +4oC until used. Cells were incubated 1 h with 1 mM 

vanadate before cytokine stimulation. Cytokine stimulation was performed similar to previous 

experiments, but in the medium with 1 mM vanadate to assure constant block of the 

phosphatases.  

Table 1. List of primary and secondary antibodies used during the studies 

Antigen host dilution manufacturer cat. number 

primary antibodies 

pSTAT1 rabbit 1:100 Cell Signaling 9167 

pSTAT3 rabbit 1:200 Cell Signaling 9131 

STAT1 mouse 1:200 BD 610115 

STAT3 mouse 1:200 Cell Signaling 9139 

IFNGR1 hamster 1:200 eBioscience 12-1191-82 

OSMR mouse 1:500 ThermoFisher 12-1303-42-PE 

isotype hamster 1:200 eBioscience 12-4888-81 

isotype mouse 1:250 ThermoFisher 12-4714-81 

cyclin B mouse 1:200 Cell Signaling 4138 

β-actin rat 1:200 BioLegend 664802 

secondary antibodies 

rabbit IgG  

(Alexa Fluor 488) 

donkey 1:500 ThermoFisher A-21202 

mouse IgG 

(Alexa Fluor 555) 

donkey 1:500 ThermoFisher A-21422 

mouse IgG 

(Alexa Fluor 647) 

donkey 1:500 ThermoFisher A-21235 
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4.7. DNA microscopic measurements 

To measure the DNA content in individual cells during the microscopy measurements, I 

adopted the methodology from (Roukos et al., 2015). In detail, I used similar nuclei staining 

as in Methods 4.2, but during image acquisition, in addition to confocal mode, I imaged the 

cells in the DAPI channel in epi-fluorescence mode. Then, during image analysis in CellProfiler 

I adopt the analysis accordingly to obtain the information of both the cell cycle phase and the 

level of protein of interest in each individual cell. For cellular measurement of STAT1 and 

cyclin B (#4138, Cell Signaling, 1:200), I immunostained the whole cell with β-actin antibody 

(664802, BioLegend, 1:200), to outline the cellular boundaries. Images of quantized protein 

(pSTATs and cyclin B) as well as β-actin were acquired in a confocal mode. 

4.8. Calculation of the overlaps between response distributions 

For calculation of the overlaps between distributions corresponding to different doses of a 

given cytokine (e.g., in Figure 5.4) the following strategy was used. For each dose a kernel 

density estimation was performed. Then the range of all observed responses was divided into 

four intervals such that responses in one interval are most likely for one specific dose 

according to estimated densities of. Subsequently, for each estimated distribution, its fraction 

of probability in each interval was calculated by numerical integration and presented as pie-

charts. For calculation of the overlaps in Figure 5.11E, F, a similar strategy was used. However, 

instead of density estimates, Gamma density with mean given by response curves 

corresponding to different percentiles and standard deviation equal to 11% of the mean was 

used.  

4.9.  Simulation of response distributions with the assumed noise strength 

For simulation of response distributions with the assumed noise strength the following 

strategy was used. I considered response curves corresponding to every percentile from 0.05 

to 0.95, similarly to the curves shown for 0.05, 0.5, 0.95 percentiles in Figure 5.11C, D. For 

every curve, I calculated response distributions corresponding to every dose. The mean was 

assumed to be equal to the value of the dose-response curve. The standard deviation was 

assumed to be equal to ~0.11 of the mean, for both IFN-γ and OSM responses. Also, I assumed 
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the responses to have gamma distribution. The use of normal or log-normal distributions gives 

nearly identical results. Next, I calculated overlaps between these distributions according to 

maximum likelihood decoding. Quantified overlaps were averaged over all percentiles. 

4.10. Statistical hypothesis testing, statistical analysis and data 

presentation 

All statistics, statistical hypothesis testing, data processing and data presentation were done 

using custom scripts in R. The details of statistical tests for hypothesis testing are provided for 

each use. The percent of variance explained was calculated as the coefficient of determination 

(R2) of linear regression. Linear regression was done by least squares. 

4.11. Technical and biological replicates 

All experiments were performed in at least two technical replicates per experiment and 

presented as one representative of at least three biological replicates, unless stated 

otherwise. 

4.12. Linguistic disclaimer  

In the presented dissertation, the majority of results are described in the first-person 

perspective, predominantly in the active voice structure, e.g., “I performed the staining…” etc. 

In the opinion of the author, or in my opinion, such an approach is clearer, makes it easy to 

follow the story as well as engage the reader more, compared to the passive voice description. 

This opinion is shared worldwide in the scientific journal editorial boards (Nature). At the same 

time, I am aware of the disadvantages of such an approach, mainly the false belief that the 

whole study was planned, performed, discussed, improved and re-performed on my own, 

without any help from my teammates. Therefore, I would like to admit that the study 

presented in the dissertation was indeed planned and performed by me, but with great help 

of my supervisors, teammates, colleagues, students, scientists met throughout the studies as 

well as reviewers and editors of the published articles and alumni of the Systems Biology of 

Signaling group, which all not only improved my research, but often made it possible to 

perform.   
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5. Results 

5.1. IFN-γ pathway in MEF cells and OSM pathway in BJ cells  

To analyze precision of single-cell signaling and what contributes to the cell-to-cell 

heterogeneity of cellular signaling I used two signaling pathways: IFN-γ and OSM. To provide 

more general conclusions I utilized cell lines from two mammalian species: mouse embryonic 

fibroblasts (MEF cells) and human BJ fibroblasts (BJ cells). However, to limit the experimental 

complexity, the IFN-γ pathway was investigated in MEF cells while the OSM pathway in BJ 

cells. Firstly, before proceeding with the exact investigation of sources of cell-to-cell 

heterogeneity of cellular signaling, I verified the usefulness of the biological model, so I 

investigated the responsiveness of the cells to given stimulation. 

5.1.1. MEF and BJ cells are responsive to cytokine stimulation 

One of the main molecular effects of IFN-γ stimulation is the nuclear accumulation of STAT1, 

while for OSM stimulation it is the nuclear accumulation of STAT3. Therefore, to confirm the 

responsiveness of investigated cell lines to given cytokine stimulation I performed the fixed-

cell immunofluorescence of the nuclear levels of STAT1 or STAT3 proteins together with 

confocal imaging. Cells were pulse-stimulated for 5 min with the high dose of the cytokine (10 

ng/mL of IFN-γ and OSM, (Gough et al., 2014; Meyer et al., 2002)) and nuclear levels of total 

STAT1 after 30 min (Figure 5.1A) or total STAT3 after 30 min (Figure 5.1B) were visualized and 

quantified as the mean fluorescence of the nuclear area (Figure 5.1C, D, upper panels). To 

account for experiment-to-experiment differences, the STAT nuclear levels were normalized 

to the mean level of the control cells (relative nuclear STAT). The cells stimulated with the 

cytokine showed the increased level of STATs in the nuclei. The similar analysis performed on 

cells lacking the STAT1 (MEF S1 KO cells, Figure 5.1 C) or STAT3 (PC3 cells, Figure 5.1 D) showed 

no increase in STATs level after stimulation. All these confirm that the cytokine stimulation 

indeed causes the nuclear translocation of STATs and that this effect can be measured by the 

used methodology. However, the heterogeneity of cellular responses was very high, with 

distributions of control and stimulated cellular responses overlapping substantially, covering 

more than 20% of the range of stimulated cells.  
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Figure 5.1. Stimulation of MEF and BJ with cytokines caused the increase of nuclear STAT levels 

(A) MEF cells untreated (upper panel) or stimulated for 5 min with 10 ng/mL of IFN and immunostained against STAT1 (in 
red) after 30 min since the beginning of stimulation. Nuclei were counterstained by DAPI (in blue). Scale bars 20 um. (B) 
Same as A but for BJ cells stimulated with 10 ng/mL OSM and STAT3 immunostained after 30 min. (C) The quantification 
of mean nuclear STAT1 level in nuclei of MEF cells (upper panel) or MEF S1 KO cells (bottom panel) stimulated with 
indicated doses of IFN-γ for 5 min and immunostained after 30 since the beginning of stimulation. The STAT1 value was 
normalized to the mean level of the untreated cells (“related”). (D) Same as C, but for BJ (upper panel) or PC3 (bottom 
panel, a STAT3 KO model) cells stimulated with OSM and immunostained after 30 min since the beginning of stimulation. 
Please note the big overlaps between non-stimulated cells and 10 ng/mL-stimulated cells of bottom panels in C and D. For 
each condition at least 600 cells for C and 300 cells for D were analyzed. 
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To quantify the observed overlaps, the information theory can be used, with the R-package 

SLEMI facilitating the calculation of Shannon information based on experimental data (Jetka 

et al., 2019). The channel capacity in both IFN-γ and OSM cases were below 0.65 bits, 

indicating that the single cells cannot reliably distinguish even between absence of any dose 

and presence of the high dose of a cytokine. Therefore, the total level of STATs cannot be 

considered as the perfect information carrier, probably due to the already high basal level of 

STATs in the nucleus before stimulation (Figure 5.1A, B, upper panels), which was shown to 

reduce the dose discriminability in other signaling pathways (Frick et al., 2017; Lee et al., 

2014). Fortunately, STAT molecules are abundantly tyrosine-phosphorylated (pSTATs) after 

cytokine stimulation, with little basal level of phospho-form before stimulation (Bachmann et 

al., 2014; Gough et al., 2014; Nagel et al., 2014). Therefore, instead of considering the total 

STAT levels in the nucleus as the response measure, pSTAT nuclear level can be used to more 

precisely represent the cellular response. In addition, it is considered that the tyrosine-

phosphorylation of STATs regulate the DNA binding and nuclear translocation (Decker and 

Kovarik, 2000; Qing and Stark, 2004), justifying the choice of pSTAT levels as a more 

biologically relevant measure of the cellular response.  

5.1.1. pSTATs are better outputs to cytokine stimulation than STATs  

After confirming that the cells can properly react to the cytokine stimulation, I investigated 

whether the measurements of pSTAT nuclear levels instead of STAT levels would allow for 

better dose discrimination. Indeed, cells stimulated with high doses of the cytokines showed 

much higher responses compared to control cells (Figure 5.2A, B), allowing for almost perfect 

dose discrimination (0.87 bits for IFN-γ and 1bit for OSM). Therefore, the pSTAT1 nuclear level 

for IFN-γ and pSTAT3 for OSM are the outputs bearing more information about the stimulation 

than STAT levels. From now on in this dissertation, unless clearly stated, the cellular response 

to cytokine stimulation will be considered as either pSTAT1 (for IFN-γ) or pSTAT3 (for OSM) 

mean nuclear level (see material and methods for more details regarding quantification of the 

signal).  
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Figure 5.2. pSTAT nuclear levels precisely discriminate between presence and absence of cytokine stimulation 

(A) MEF cells untreated (upper panel) or stimulated for 5 min with 10 ng/mL of IFN and immunostained against pSTAT1 
(in red) after 30 min since the beginning of stimulation. Nuclei were counterstained by DAPI (in blue). Scale bars 20 um. 
(B) Same as A but for BJ cells stimulated with 10 ng/mL OSM and pSTAT3 immunostained after 30 min. (C) The 
quantification of nuclear pSTAT1 level in nuclei of MEF cells stimulated with indicated doses of IFN-γ for 5 min and 
immunostained after 15 since the beginning of stimulation. The pSTAT1 value was normalized to the mean level of the 
untreated cells (“relative”). At least 500 cells per dose are shown (N≥500). (D) Same as C, but for BJ cells stimulated with 
OSM and immunostained after 30 min since the beginning of stimulation. At least 150 cells per dose are shown (N≥150) 

The heterogeneity of such cellular responses was high, with some cells responding dozen 

times stronger than others, questioning the possibility of further dose discrimination. 

Therefore, more detailed studies with more doses were needed. However, to apply the 

multiple dose analysis and proceed with quantification of dose discrimination, the optimal 

time of stimulation should be chosen for each of the cytokine. This would assure the most 

prominent differences between control and stimulated cells and therefore more reliable 

conclusions of the limits of information flow in the investigated signaling pathway. 
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5.1.2. Temporal dynamics of cytokine responses 

Nuclear accumulation of pSTATs after IFN-γ and OSM stimulation usually start to decline after 

minutes to hours in a population of single cells (Hintzen et al., 2008b; Majoros et al., 2016; 

Miyawaki et al., 2019; Sarközi et al., 2011), indicating that there must be the time point with 

the maximum level of pSTAT in the nucleus after which the level only decreases. To find such 

a time point of the maximum response I performed the cytokine response measurements over 

multiple time points ranging from 0 to 90 min, for both IFN- γ (Figure 5.3A) and OSM (Figure 

5.3B). The time point of maximum response for IFN-γ stimulation was 15 min since the 

beginning of stimulation. For OSM the responses at 15 min and 30 min were similarly high, 

with slightly higher values at 30 min. Therefore, for further analyses and experiments, the 

time of maximum responses for IFN-γ were considered as 15 min and for OSM- 30 min. 

Therefore, the established method of cellular response measurement together with properly 

responding cells allowed to start the investigation on the signaling pathway precision on the 

single cell level. 

 

Figure 5.3. Distributions of responses to IFN-γ or OSM over time.  

(A) Distributions of MEF single-cell responses (y-axis) to 10 ng/mL of IFN-γ over time (x-axis) presented in the form of the 
violin plots. The width of the "violin" corresponds to the probability of the given response level to arise in the population 
of single-cells. Each violin has the same area. The plot jointly presents two technical replicates of one, out of two, biological 
replicates. At least 2000 cells per dose are shown (N≥2000). (B) As in A but for BJ cells stimulated with 10 ng/mL of OSM. 
At least 150 cells per dose are shown (N≥150)  
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5.2. Phenotypic variability vs molecular noise 

The decomposition of the phenotypic variability vs molecular noise of cellular signaling is 

challenging and no universal approach for it has been established. I used bi-nuclear syncytia 

model to quantify the contribution of both phenotypic variability and molecular noise in total 

cell-to-cell variability of the JAK-STAT signaling after cytokine stimulation. First, I quantified 

the level of cell-to-cell heterogeneity of signaling pathway responses. Next, I established and 

prepared the bi-nuclear syncytia which I used to decompose the two main sources of 

heterogeneity. Finally, I approximated the single-cell responses with the neglected influence 

of the molecular phenotype allowing for the assessment of the true single cell precision to 

dose discrimination. 

5.2.1. Distributions of single-cell dose responses to IFN-γ and OSM exhibit 

substantial overlaps 

The single cell response distributions of cells stimulated with one dose showed almost perfect 

discrimination between absence and presence of the cytokine (Figure 5.2). To perform more 

comprehensive analysis allowing for more precise assessment of information flow, I measured 

the responses to multiple doses at the time of maximal response for both cytokines. 

Specifically, I stimulated the cells with 5 min pulses of three doses, 0.1, 1, and 10 ng/mL, of 

either of the two cytokines and measured the responses after 15 min for IFN-γ (Figure 5.4A) 

or after 30 min for OSM (Figure 5.4B). The responses are marked with substantial cell-to-cell 

heterogeneity, with significant overlaps between responses to different doses, which is in line 

with previous studies on cytokine signaling (see Literature review 2.4). In other words, the 

same response can be evoked by multiple doses of the stimulant. On the other hand, it could 

be expected that a coordinated immune response requires high fidelity signaling at the single-

cell level. If the cell-to-cell heterogeneity was the result of molecular noise, the two above 

statements would be difficult to reconcile. Before addressing this seeming contradiction in 

more detail, I inspected the overlaps between response distributions qualitatively, using the 

methodology called fractional response analysis, FRA (Nienałtowski et al., 2021).  
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Figure 5.4. Cell-to-cell heterogeneity of single-cell dose-responses to IFN-γ and OSM.  

(A) Distributions of responses (phosphorylated STAT1) at 15 minutes after different doses of IFN-γ in MEF cells. Probability 
density (y-axis) is proportional to the frequency of cells with a given response. (B) Same as in A but for OSM responses 
(pSTAT3) at 30 minutes after stimulation of BJ cells. (C) Quantification of the overlaps between distributions corresponding 
to different doses of IFN-γ. Responses to 1 ng/mL are dissected into fractions typical to any of the doses and represented 
as pie-charts. (D) Quantification of the overlaps between IFN-γ response distributions presented in A. (E) Quantification of 
the overlaps between OSM response distributions presented in B.  
Distributions consisting of the sum of two technical replicates are shown in A and B. In A, between 2217 and 2485 cells 
were used to estimate each response distribution, whereas in B it was between 208 and 220 cells. Differences in cell counts 
result from cell-specific growth characteristics required for sub-confluency and reliable microscopy imaging. Responses at 
other time- points are shown in Figure 5.5. 
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Suppose one divides a range of all responses into smaller parts in which responses to one dose 

are more likely than for other doses (IFN-γ response distribution, Figure 5.4C). The responses 

that are most likely to a given dose can be called typical for this dose. Further, the fraction of 

cells responding typically for the same dose and typically for the other doses can be calculated 

for each stimulated dose. Upon stimulation with 1 ng/mL IFN-γ, 16% of cells have responses 

typical for 0.1 ng/mL, 39% typical for 1 ng/mL, and 43% typical for 10 ng/mL (Figure 5.4C). This 

dissection can be presented in the form of the matrix, known as confusion matrix in statistics, 

which then can be transformed into the pie-charts (Figure 5.4D, E). The matrix quantifies the 

overlaps between response distributions. It shows what fraction of cells stimulated with a 

given dose (rows) has responses most likely to arise for either of the doses (columns). In 

particular, the diagonal shows what fractions of cells have responses most likely, or typical, 

for the dose they were exposed to. Off-diagonal elements show what fractions of cells have 

responses typical for the dose other than the administered one.	 Compared to channel 

capacity, this approach gives a more comprehensive view on the cell-to-cell heterogeneity in 

cellular responses to multiple doses of the stimulant and is not dependent on the input 

distribution (Nienałtowski et al., 2021). Furthermore, the FRA does not implicitly assume, 

contrary to channel capacity, that the whole cell-to-cell heterogeneity results from noise, 

either intrinsic or extrinsic, both leading to the information loss. The pie charts can help to 

assess the probability of a single cell to decode the dose correctly. Specifically, if we assume 

that the cellular response depends only on the molecular noise, then the pie charts show the 

probabilities that a cell stimulated with one dose (rows) will decode the signal as another dose 

(columns). The diagonal elements show the probabilities of correct decoding. Off-diagonal 

elements show probabilities of confusing one concentration (rows) with another (columns). 

Therefore, using this interpretation, the probability of correct decoding is at best 78%, for 10 

ng/mL IFN-γ, and 89% for 0 ng/mL OSM. Besides, due to stochasticity of cellular processes, 

∼20% of cells confuse 0.1 ng/mL of the cytokine with its absence. In addition, the similar 

approach gave similar results at not-optimal time after stimulations (Figure 5.5). Even though 

it appears rather unlikely that cells could function reliably with such noisy sensing apparatus, 

the knowledge about the contribution of molecular noise and cellular phenotype is still limited 

(see Literature review 2.8).  
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Figure 5.5. Cell-to-cell heterogeneity of single-cell dose-responses to IFN-γ and OSM at optimal and sub-optimal time-
points. 

(A) Distributions of responses at indicated time-points (from 5 to 90 minutes) after stimulation with different doses of IFN-
γ, similarly to Figure 5.4A. At least 1100 cells per dose per time- point are shown (N≥1100). Panel of 15 min is repeated 
from Figure 5.4A (B) Quantification of the overlaps between IFN-γ responses at different time-points shown in A. 
Quantification was performed as shown in Fig. 1C. (C) Same as in A but for OSM responses. At least 150 cells per dose per 
time-point are shown (N≥150). Panel of 30 min is repeated from Figure 5.4B. (D) Same as B but for OSM stimulation. At 
least 150 cells per dose per time-point are shown (N≥150). 

In addition to the above heterogeneity quantification, the calculation of channel capacity can 

be made, as it is the broadly accepted measure of signaling pathway ability to resolve 

stimulation doses (see Literature review 2.5). Specifically, I used SLEMI R-package (Jetka et al., 

2019) to estimate the channel capacity for both IFN-γ and OSM data presented in the Figure 

5.4A, B. For IFN-γ, the channel capacity reached 0.78 bits, while 1.02 bits for OSM, allowing 
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for discrimination of only around 2 doses out of 4 possible. Both results, that is the low 

probability of correct decoding of doses presented in the pie-charts as well as low channel 

capacity of each signaling pathway confirm high cell-to-cell heterogeneity of cellular 

responses to both IFN-γ and OSM. In order to validate to what extent, the cell-to-cell 

heterogeneity results from molecular noise vs. from cellular phenotype, I used the bi-nuclear 

syncytia, with two nuclei and one shared cytoplasm, which imitate the two identical cells. 

5.2.2.  Bi-nuclear syncytia as a model approximating the two cells with identical 

molecular phenotype 

The sources of the observed heterogeneity are not fully understood and need further 

investigation. Especially, it is to be confirmed, to what extent the response of a single cell is 

governed by the cellular phenotype and to what extent by the molecular noise. Multiple 

studies have postulated that the potential to discriminate signal doses by single cells is very 

limited (see Literature review 2.4), which is hard to reconcile with the well-regulated 

functioning of the whole organism, especially in immune response. Whether the low dose 

discriminability comes from stochasticity of biochemical reactions or from differences 

between cellular phenotypes has been estimated only for specific, fast-acting signaling 

pathways or via indirect methods (see Literature review 2.8). In other words, more universal 

and direct methods of quantification of how precise a single cell is in signal sensing is of special 

interest. To do that, I utilized the bi-nuclear syncytia system, resembling in the basics the dual-

color experiments as well as imitating the two-identical-cells set up. I fused two cells of the 

same type, creating a syncytium with two nuclei and one, shared cytoplasm (Figure 5.6A). For 

proper cell identification I used two non-specific protein dyes which stain the whole cell. After 

the fusion, only cells with signals of both dyes were considered as fused (Figure 5.6B, C). The 

two nuclei shared the cellular membrane and cytoplasmic content, so the signaling outcome 

in each of nucleus can be approximated as the outcome of the two cells with the same 

molecular phenotype. Therefore, after the cytokine stimulation, any differences between 

responses of the both nuclei can be attributed to molecular noise and not differences in 

cellular phenotypes. The principle of the proposed approach is analogous to the two-color 

experiment used to dissect gene expression noise into intrinsic and extrinsic components (see 

Literature review 2.8.5). Here, however, as opposed to the expression level of two genes in 
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the same cell, the signaling responses in two nuclei of the syncytium are measured. It is to be 

determined in the future, to what extent the assumed biological model of bi-nuclear syncytia 

represents reality and reflects the two-identical cells setup. The technical details of bi-nuclear 

formation and identification are described in Methods 4.4. However, as the obtained syncytia 

would next be used for comparing the responses in two nuclei, one can argue that process 

like establishment of a physical connection could lead to sharing of nuclear content between 

nuclei in a syncytium and, in turn, averaging of signaling responses between nuclei. Therefore, 

it had to be accounted for.  
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Figure 5.6. Preparation of bi-nuclear 
syncytia with non-merged nuclei 

(A) A scheme of the cell fusion 
procedure leading to formation of bi-
nuclear syncytia. Cells stained with dye 
A (green) were fused with cells stained 
with dye B (red) for microscopic 
identification of bi-nuclear syncytia. 
Only cells with both dyes in the 
cytoplasm (yellow) were considered as 
fused. Responses in both nuclei were 
measure by immunostaining. (B) 
Representative microscope images of 
MEF bi-nuclear syncytia. Each row 
represents different fields of view. 
Columns show different fluorescence 
channels. Channels visualizing non- 
selective protein staining with dye A 
and dye B are followed by nuclear 
staining with DAPI and the overlay of 
the all three channels. (C) Same as B, 
but for BJ syncytia. 
The arrows indicate bi-nuclear syncytia. For the clarity, only syncytia with clearly distinct and separate nuclei were 
presented. The scale bar: 20 μm.  
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5.2.3. Nuclei of bi-nuclear syncytia do not share nuclear content as indicated by 

the non-specific protein staining 

To investigate whether two nuclei in a syncytium share the molecular content I utilized the 

non-specific protein staining, the same as for fused cells identification. Precisely, I quantified 

the fluorescence intensity of both dyes (A and B) for both nuclei of all syncytia. In properly 

fused syncytia, one nucleus comes from the cell stained with the dye A (“red nucleus”) and 

the second nucleus comes from the cell stained with the dye B (“green nucleus”). Therefore, 

if any physical connection or fast exchange occurs in a tangible degree after the fusion, the 

proteins from the “green nucleus” would be equilibrated with the “red nucleus” and vice 

versa- proteins from “red nucleus” would be equilibrated with the “green nucleus”. A 

comparison of fluorescence of both dyes in each nucleus would give us information about the 

level of presumably equilibration. To do that, I quantified the inter-nuclear ratio for each dye 

and plotted individual syncytia points as the scatter: on the X-axis the ratio for the dye A and 

on the Y-axis the ratio for the dye B (Figure 5.7A). The plot revealed two distinct groups: 

1) those of very similar nuclear ratios (on the diagonal), and therefore shared nucleoplasm 

2) those of dissimilar nuclear ratios (off the diagonal), and therefore separate nucleoplasm 

for each nucleus 

Points of group 1 were also accumulated around the point (1; 1), while those of group 2 had 

one of coordinates smaller than 1 with the second of coordinates much larger than 1. The 

groups were very distinct, indicating that the process of nucleoplasm mixing was largely 

binary: the nucleoplasm is either shared (group 1) or separate (group 2) with very little 

syncytia between. Presumably the physical connection could cause such equilibration, 

although I did not directly nor experimentally confirm that. However, to eliminate the effect 

of shared nucleoplasm in some syncytia, those with ratios similar for both dyes (merged 

nuclei, violet dots close to the diagonal) were excluded from the analysis, whereas syncytia 

with dissimilar ratios in either dye (non-merged nuclei, yellow dots, off-diagonal) were 

retained. The threshold for rejection was selected manually based on visual inspection, as 

shown by the dashed lines. Further visual analysis of microscopic images indicated that 

syncytia which were categorized as having “merged nuclei” indeed possessed two nuclei 

which had boundaries, but at the same time had very similar levels of non-specific dyes 
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(Figure 5.7B). In contrast, syncytia with non-merged nuclei had clearly different levels of 

fluorescence in each nucleus (Figure 5.6 B, C). All these indicate that full equilibration of all 

proteins of both nuclei is possible, but such nuclei can be excluded using non-specific, whole 

cell staining.  

 

 

  

 
Figure 5.7. Discrimination between merged and non-merged nuclei in bi-nuclear syncytia based on non-specific protein 
staining.  

(A) The ratio of both nuclei in dye A (X axis) and dye B (Y-axis) is plotted for each MEF- and BJ-derived bi-nuclear syncytia 
identified. Two distinct groups were identified: those of similar ratios (violet dots, with merged nuclei) and those of 
dissimilar ratio, with one ratio greatly different than the other (yellow dots, non-merged nuclei). Syncytia with merged 
nuclei were excluded from the analysis based on the manually adjusted threshold. (B) Representative microscope images 
of MEF bi-nuclear syncytia with merged nucleoplasm. Each row represents different fields of view. Columns show 
different fluorescence channels. Channels visualizing non- selective protein staining with dye A and dye B are followed 
by nuclear staining with DAPI and the overlay of the all three channels. (C) Same as B, but for BJ syncytia with merged 
nucleoplasm. The arrows indicate bi-nuclear syncytia with merged nucleoplasm. The scale bar: 20 μm.  
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5.2.4. Bi-nuclear syncytia respond similarly to single cells  

After preparing the bi-nuclear syncytia, I stimulated those of MEF origin with IFN-γ and those 

of BJ-origin with OSM of the high dosage (10 ng/mL) and measured the response in each 

nucleus with multiple time points after stimulation to compare the response dynamics to the 

dynamics of single cells. Again, the maximum response was noted at the time of 15 min for 

IFN-γ and 30 min for OSM, which indicates the similar temporal response characteristics for 

both syncytia and single cells (Figure 5.3 and Figure 5.8). However, the responses of syncytia 

were slightly higher for IFN-γ compared to single cells (compare Figure 5.3 and Figure 5.8), 

which does not exclude the use of bi-nuclear syncytia set-up, as this set-up focuses on the 

signals of two nuclei of the same syncytia and does not directly compare the response 

characteristics to the normal, single cells.  

5.2.5. Contribution of molecular noise and cellular phenotype to the cell-to-cell 

heterogeneity of cytokine responses as approximated by bi-nuclear syncytia  

In addition to temporal dynamics of the response to cytokine stimulation, I quantified the 

response in each nucleus of the bi-nuclear syncytia, allowing for the assessment whether 

Figure 5.8. Distributions of responses to IFN-γ or OSM in nuclei of bi-nuclear syncytia over time.  

(A) Distributions of single-nuclei responses (y-axis) of MEF-derived bi-nuclear syncytia to 10 ng/mL of IFN-γ over time (x-
axis) presented in the form of the violin plots. The width of the "violin" corresponds to the probability of the given response 
level to arise in the population of single-cells. Each violin has the same area. The plot jointly presents two technical 
replicates of one, out of two, biological replicates. At least 60 nuclei per time are shown (N≥60). (B) As in A but for 10 
ng/mL of OSM in BJ cells. N≥120 for each time. 
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molecular noise has a tangible effect in the final cellular outcome. I stimulated the cells with 

a 5-minute pulse of 4 doses of each cytokine: 0, 0.1, 1 and 10 ng/mL to see whether the noise 

contribution is dose-dependent. I chose the optimal time for the analysis, that is 15 min for 

MEF-derived, IFN-γ- stimulated bi-nuclear syncytia and 30 min for BJ-derived, OSM-stimulated 

bi-nuclear syncytia (Figure 5.9 A). Based on the visual inspection of microscopic images, the 

responses to the highest dose were very similar for both nuclei (Figure 5.9 B, C), giving a clue 

that the molecular noise can have only a minor contribution into the total cell-to-cell 

heterogeneity of cellular responses to cytokines. However, to better assess it, I plotted the 

value of response in one nucleus vs the value of response in the other nucleus in the form of 

a scatter plot for IFN-γ (Figure 5.9D) and OSM (Figure 5.9E), presented also with 

discriminability between replicates (Figure 5.10). In such a plot, the total variance of all 

responses can be decomposed to the diagonal direction and to direction perpendicular to the 

diagonal (Figure 5.9D, E, first panel). As discussed before, any difference between two nuclei 

responses can be approximately attributed to molecular noise, therefore the variability along 

the direction perpendicular to diagonal corresponds to the contribution of stochasticity of 

biochemical reactions. Similarly, any variability occurring in the diagonal direction can be 

attributed to cellular phenotype contribution, as this direction represents the variability 

among averaged responses of two nuclei in individual syncytia. Therefore, the level of spread 

of points in each of two directions can help in decomposing the sources of total cell-to-cell 

heterogeneity of cellular responses to cytokine stimulation. In case of stimulation with IFN-γ 

(Figure 5.9D) and OSM (Figure 5.9E), majority of points of all non-zero stimulations are spread 

diagonally, indicating similar responses in both nuclei, which confirms the initial visual 

inspection of microscopic images and indicates the main contribution of phenotypic variability 

and not molecular noise in total observed variance. However, to draw more robust 

conclusions, a more quantitative analysis of variance decomposition should be performed.  
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Figure 5.9. Molecular noise contributes marginally to the cell-to-cell heterogeneity of responses to IFN-γ and OSM. 

(A) A scheme of the cell fusion procedure leading to formation of bi-nuclear syncytia, similar to Figure 5.6A, but followed 
by stimulation with IFN-γ or OSM and immunostaining against pSTAT1 or pSTAT3, respectively (B) Representative 
microscope images of MEF-derived bi-nuclear syncytia 15 minutes after stimulation with 10 ng/mL IFN-γ. Each row 
represents different fields of view. Columns show different fluorescence channels. Channels visualizing non- selective 
protein staining with dye A and dye B are followed by nuclear staining with DAPI, the overlay of the three channels and 
finally the pSTAT1 image in grey-scale. The scale bar: 20 μm. (C) Same as B, but for BJ-derived bi-nuclear syncytia 30 
minutes after stimulation with 10 ng/mL OSM and pSTAT3 image in grey-scale. The scale bar: 20 μm. (D) FN-γ responses 
in bi-nuclear syncytia at 15 minutes post-stimulation with indicated doses (columns). Responses of the two nuclei, A and 
B, determine the coordinates of the corresponding point in the scatter. Variability along the diagonal, dashed line, 
corresponds to phenotypic variability. Variability in the perpendicular direction corresponds to variability due to molecular 
noise. Standard deviation of fractional contributions was estimated with bootstrap resampling. (E) The same as in A but 
for OSM responses at 30 minutes post-stimulation. Sum of two biological replicates is shown in D and E presenting 
between 41 and 126 syncytia for each dose. See Figure 5.10 for the exact number of syncytia used. 
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Figure 5.10. Two replicates of bi-nuclear syncytia measurements show similar phenomena 

Two biological replicates of data shown in Figure 5.9. Replicate 1 is plotted in black whereas replicate 2 in grey. The number 
of cells measured, N, is printed each plot. Panel (A) shows responses to IFN-γ	 in MEF-derived bi-nuclear syncytia, and  
Panel (B) shows responses to OSM in BJ-derived bi-nuclear syncytia.  

5.2.6. Total response variability can be decomposed to molecular noise and 

cellular phenotype components 

The decomposition proposed below resembles in basics the decomposition of intrinsic and 

extrinsic noise used in bi-color gene expression experiments (Elowitz et al., 2002; Swain et al., 

2002). However, such decomposition, based on bi-color experiment principle, is here used for 

the first time for the signaling responses. According to the variance decomposition formula, 

the total variance of the cytokine responses,  𝜎!"!.$ , can be decomposed to cellular phenotype 

variability, 𝜎%&'(.$ , and molecular noise, 𝜎(")*'$ : 

𝜎!"!.$ =	𝜎%&'(.$ +	𝜎(")*'$       (5-1) 

Neither 𝜎%&'(.$  nor 𝜎(")*'$  can be approximated from one dimensional data presented, e.g., in 

Figure 5.4A, B. Therefore, I used inter-nuclear variance of bi-nuclear syncytium as a measure 
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of 𝜎(")*'$ . If 𝑦)+ and 𝑦), are the signaling outcomes of the two nuclei in the i-th out of n 

measured syncytia, then 𝜎(")*'$  can be approximated as: 

𝜎(")*'$ =	 -
$(
∑ ((𝑦)+ −	𝑦+))$ +	(𝑦), −	𝑦+))$)(
).-  ,   (5-2) 

where 𝑦+) =
-
$
(𝑦)+ +	𝑦),)	 is the average of the two nuclei in the i-th syncytium. In the 

presented scatter plot of bi-nuclear syncytia (Figure 5.9D, E), 𝜎(")*'$  corresponds to variability 

perpendicular to the diagonal 𝑦)+ =	𝑦),. Indeed, the variability in this direction represents the 

variability around the inter-nuclear mean, i.e., around the point with coordinates (𝑦+); 	𝑦+)), 

Eq. 1. Further, the variability of the responses resulting from the differences in the molecular 

content of the syncytia is the variability of responses between syncytia themself. Therefore, 

the variability of inter-nuclear mean can be approximated as variability of the different cellular 

phenotypes, 𝜎%&'(.$  in the following way: 

 𝜎%&'(.$ =	∑ (𝑦+) −	𝑦+)$	(
).- ,      (5-3) 

where  𝑦+ is the average response of the all measured nuclei in all bi-nuclear syncytia. Again, 

on the scatter plot (Figure 5.9D, E), the variability resulting from differences in cellular 

phenotype is the variability of the average of the both nuclei of all bi-nuclear syncytia. These 

assumptions allow to interpret the variability of cellular phenotypes as the variability along 

the diagonal line, i.e., 𝑦)+ =	𝑦),. In other words, if no molecular noise exists, then both nuclei 

inside one syncytium would respond exactly the same, 𝑦)+ =	𝑦),, but each syncytium would 

respond in a different way, spreading along the diagonal line, indicating the cellular 

phenotype-caused variability. Finally, the total variability of signaling responses of all nuclei is 

given as: 

𝜎!"!.$ =	 -
$(
∑ ((𝑦)+ −	𝑦+)$ +	(𝑦), −	𝑦+)$(
).- )     (5-4) 

Now we have formulated all components of the decomposition formula 𝜎!"!.$ =	𝜎%&'(.$ +

	𝜎(")*'$  in regards to bi-nuclear syncytia measurements. To assess the contribution of each 

component to the total variance, the fractional contribution of both the molecular noise, 

𝜌(")*', and cellular phenotype, 𝜌%&'(., to the total variability of signaling responses are 

introduced as:  
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𝜌(")*' =	
/!"#$%
&

/'"'.& ,       (5-5) 

𝜌%&'(. =	
/)*%!.
&

/'"'.& ,       (5-6) 

Both 𝜌(")*'  and 𝜌%&'(. vary between 0 and 1, with their sum being 1. In summary, the 

comparison of the signaling responses of the two nuclei with the cell-to-cell heterogeneity 

allows for decomposing the origin of the cell-to-cell heterogeneity into differences resulting 

from molecular noise and cellular phenotypes.  

5.2.7. Phenotypic variability and not noise accounts for most of the cell-to-cell 

heterogeneity in cytokine signaling  

Having established the quantitative analysis of the decomposition of cell-to-cell 

heterogeneity, I applied it to the results of bi-nuclear syncytia. Fractional contribution of both 

molecular noise, 𝜌(")*', and cellular phenotype, 𝜌%&'(., is provided for each stimulation set-

up (Figure 5.9D, E), with standard deviation calculated using the bootstrap method. For all 

non-zero doses, the fractional contribution of molecular noise 𝜌%&'(. is greater than 0.83. 

Furthermore, for doses 1 and 10 ng/mL, where cells respond the strongest and decrease the 

influence of the basal response levels, 𝜌%&'(. ≥ 0.91. On average, for both cytokines and all 

non-zero doses, 91.3% of the variance results from the differences in the cellular phenotype, 

with the remaining 8.7% resulting from molecular noise. In summary, the results indicate that 

indeed the cellular phenotype accounts for most of the cell-to-cell heterogeneity in IFN-γ and 

OSM signaling, with molecular noise having only a limited impact on the total variability.  

5.2.8. Doses can be discriminated with high accuracy   

The data from bi-nuclear syncytia demonstrate that cellular biochemistry controls signaling 

responses with very good precision when compared to the overall cell-to-cell heterogeneity. 

If so, then the conventional interpretation of dose discriminability in terms of information 

theory is far from being perfect. Specifically, the overlaps of response distributions to multiple 

doses of a stimulant (e.g., in Figure 5.4) cannot be considered as an effect of the erroneous 

signal transmission. Instead, such overlaps should be interpreted only in terms of fractions of 

a cellular population that responded typically for a given dose. For instance, let us consider 

the responses to stimulation with 10 ng/mL of IFN-γ (bottom row of Figure 5.4D). Then, it is 
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correct to say that ∼25% of cells stimulated with 10 ng/mL of IFN-γ have responses typical for 

stimulation with 1 ng/mL. Nevertheless, this does not mean that, due to noise, in 25% of cells 

the output signal incorrectly encodes 1 ng/ml as opposed to correct 10 ng/mL. It does not 

mean neither, that a single cell can correctly recognize only the presence and absence of 

a stimulant. Then, the question arises: to what extent does the noise compromise the 

potential of a single-cell to discriminate between different doses? Or, in other words, how 

precise is an individual cell in sensing the external signal? To provide further insight into these 

questions, a more detailed analysis should be done. For example, we would want to 

investigate the real precision of a single cell by simulating the cell-to-cell heterogeneity 

coming exclusively from the molecular noise. To simulate or approximate the heterogeneity 

caused exclusively by the molecular noise, we would need two measures. First, (a), we would 

need a measure of the noise strength in a single cell, depending on the response level. Second, 

(b) we would need a single cell dose-response curve, indicating how the same single cell would 

respond when stimulated with different doses of a stimulant. Fortunately, the data obtained 

during single cell analysis (Figure 5.4A, B) and from bi-nuclear syncytia (Figure 5.9D, E) jointly 

allow for estimation of the true precision of a single cell.  

Firstly, to obtain a measure of a noise strength in a single cell (a), we cannot use the variance 

of inter-nuclear responses, 𝜎(")*'$ , itself, as it is only a summary statistic of the noise strength 

from the whole population. Having only this value, we would be not sure whether the noise 

strength in low responding cells is the same or much different than in highly responding cells. 

Instead, I utilized the relation between the noise strength of syncytia and their response level. 

To do that, I related the inter-nuclear standard deviation for each syncytium, 𝜎(")*'
()) : 

𝜎(")*'
()) =	4 -

$(
∑ ((𝑦)+ −	𝑦+))$ +	(𝑦), −	𝑦+))$)(
).- ,    (5-7) 

with inter-nuclear mean, 𝑦+)  of each measured syncytium, 𝑖, by plotting them as a scatter for 

both IFN-γ (Figure 5.11A) and OSM (Figure 5.11B). For both cytokines, the trend was linear 

𝜎(")*'
()) =	𝛼𝑦+). Linear regression quantified that for both cytokines 𝛼~0.11 indicating that the 

molecular noise constitutes 11% of the response level. Therefore, for both cytokines, 

I considered the 11% of the response level as a measure of the noise in a single cell (a). 

Secondly, to obtain the single cell dose-curve (b), the best approach would be to stimulate the 



Results 

 73 

cell repetitively, with increasing doses of a stimulant. This, however, cannot be done as 

I utilized long-lasting responses, up to 90 min (Figure 5.3A and Figure 5.3B) and measured the 

signal via immunofluorescence, which kills the cells. Unfortunately, the obtained data do not 

provide any direct measurement of such dose-responses and how these differ between 

individual cells. To overcome this shortcoming, I employed a simple model of a single-cell 

response. I supposed that the dose-response curves of individual cells can be represented by 

percentiles of the response distributions. The assumption is that the low responding cells for 

the low dose will also be the low responding cells for the high dose of a stimulant. In other 

words, I divided response distributions for each dose into percentiles and created, for 

example, 5th, 50th and 95th percentile cells, representing weakly, moderately and strongly 

responding cells for IFN-γ responses (Figure 5.11C) and OSM responses (Figure 5.11D). In this 

way, I constructed the response curves (b) corresponding to every percentile from 0.05 to 

0.95. Although this procedure does not reconstruct the exact response curves of single cells it 

seems to be suitable for the considered context. Having constructed the two measures, that 

is (a) the level of noise dependent on the mean response equals 11% and (b) a model of single 

cell dose response curves, I next constructed the response distributions of each percentile for 

each dosage as the gamma distribution with the standard deviation taken from (a) and the 

mean taken from dose-response curve of single percentile (b). I applied this strategy for every 

single cell dose curve, so for every percentile. Next, I quantified the overlaps and averaged 

over all percentiles for IFN-γ (Figure 5.11E) and OSM (Figure 5.11F). Finally, I could calculate 

the matrices of discrimination probabilities, similar to Figure 5.4E, F. The matrices, presented 

as pie-chart, again show the probabilities that a cell stimulated with one dose (rows) will 

generate a response that is most likely for the other doses (columns). The diagonal elements 

of constructed matrices show fractions very close to 1, for both cytokines, indicating that 

when the heterogeneity comes exclusively from molecular noise, and not from cellular 

phenotype differences, the doses can be highly accurately discriminated. In this scenario the 

discrimination is much more reliable compared to the estimation performed under the 

assumption that the whole observed cell-to-cell variability results from molecular noise 

(Figure 5.4E, F), and implies that single cell is much more precise than predicted based on the 

cell-to-cell heterogeneity.  
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Figure 5.11.Molecular noise is linearly dependent on the response level and is low enough to enable almost perfect dose 
discrimination 

(A) Inter-nuclear standard deviation, 𝜎!"#$%
(#) , is plotted against inter-nuclear response, 𝑦## of each syncytium, 𝑖, for IFN-γ 

responses in MEF-derived bi-nuclear syncytia. The fitted regression line is presented in gray, with the indicated formula 
and regression error. All doses at 15 minutes post-stimulation were considered jointly. (B) The same as A, but for OSM at 
30 min after stimulation in BJ-derived bi-nuclear syncytia. (C) Three different percentiles of the response distribution, 
corresponding to weak, moderate and strong responses for each dose from A. (D) The same as C, but for OSM at 30 min 
after stimulation. (E) Quantification of the overlaps between IFN-γ response distributions constructed by averaging every 
percentile from 1 to 99 as in C, with the noise strength taken from the regression in A. (F) The same as E, but for OSM 
responses. 
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5.2.9. The low inter-nuclear variability does not result from equilibration of 

nuclear pSTATs  

In the bi-nuclear experiments the inter-nuclear variability was relatively low compared to 

inter-syncytial variability. Contrary to the considering such inter-nuclear variability as 

molecular noise, this phenomenon can be explained by the fast equilibration of the pSTATs 

level between the nuclei. Such equilibration can be an effect of the physical connection 

between nuclei or fast nuclear export of pSTATs from one nucleus and subsequent import into 

the second nucleus, leading to the similar level of pSTATs in each of the nuclei, without the 

influence of the molecular noise. This interpretation, if found true, would definitely 

compromise the conclusions presented in the dissertation. As mentioned earlier, the nuclei 

physically connected were excluded from the analysis based on the whole-cell staining during 

syncytia preparation (Figure 5.7). However, to verify whether the considering the inter-

nuclear variability as molecular noise is justified it needs to be shown, that there is no fast 

nuclear export of pSTATs with subsequent fast import to the other nucleus. Firstly, such 

process of fast export-import of pSTATs seems to be in contrast to the current view of the 

pSTATs shuttling, which postulate, based on experiments, that both pSTAT1 and pSTAT3 

abundantly translocate to the nucleus, but exit in majority only after dephosphorylation in the 

form of STATs, with limited, if any occurring, export of the pSTATs molecules (Herrmann et al., 

2007; Meyer et al., 2003; Reich and Liu, 2006).  Secondly, I addressed experimentally the issue 

of presumably fast export and import of pSTAT molecules by performing the same molecular 

noise quantification but in very early time points after stimulation. If the low noise 

contribution is an effect of the inter-nuclear equilibration by the fast export-import rate, then 

the noise contribution should be lower in early time points. The non-phosphorylated STATs 

were shown to exit the nucleus already after a couple of minutes after the nuclear entry  

(Cimica et al., 2011; Herrmann et al., 2007; Pranada et al., 2004). In addition, the mobility of 

pSTATs molecules is much lower than STATs due to the DNA-binding ability of pSTATs (Haspel 

and Darnell, 1999; McBride and Reich, 2003; Meyer et al., 2003). Therefore, as fast as after 5 

min after stimulation the putative equilibration process should influence the noise 

quantification in much lower degree than in 15 or 30 min after stimulation. However, when 

bi-nuclear syncytia were stimulated with 10 ng/mL of either IFN- γ or OSM, the 𝜌(")*'  already 

after 5 min reached the value occurring also in 15 min for IFN-γ (Figure 5.12A) or both 15 and 
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30 for OSM (Figure 5.12A). Therefore, the fast exit of the activated pSTATs molecules with fast 

import to the other nucleus, without the step of the dephosphorylation, does not influence 

the noise quantification, confirming the correctness of the used assumptions. 

 

Figure 5.12. Inter-nuclear variability of pSTATs in the syncytial nuclei is equally low at early time points after stimulation 
and at the time of maximal response  

(A) IFN-γ responses in MEF-derived bi-nuclear syncytia at 0-, 5- and 15-minutes post-stimulation with 10 ng/mL. 
Corresponds to Figure 5.9D. (B) The same as A, but for OSM responses at 0-, 5-, 15- and 30-min post stimulation with 10 
ng/mL in BJ-derived bi-nuclear syncytia. Corresponds to Figure 5.9D and E. Sum of two biological replicates is shown in A 
and B presenting at least 65 syncytia for each dose. 

5.2.10.  Channel capacity of a single cell considerably exceeds the binary sensing 

precision 

The information theory with its channel capacity measure allows for quantification of the 

ability to resolve stimulation doses by a population of single cells (see Literature review 2.5). 

For the single cell populations stimulated with IFN-γ and OSM, the channel capacity reached 

up to around 1 bit, allowing only for nearly binary discrimination of a presence or absence of 

a stimulant. However, the information theory assumes that all the observed cell-to-cell 
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heterogeneity decreases the signaling fidelity. Therefore, in the hypothetical situation where 

there is no molecular noise at all and the cell-to-cell heterogeneity of responses is caused 

solely by differences in cellular phenotypes, the channel capacity would still indicate the 

significant information loss and low signaling fidelity. In this situation, however, all the single 

cells considered individually have perfectly recognized the dose and responded precisely, each 

cell in its own way. Therefore, to overcome this limitation in the information theory 

interpretation I estimated the channel capacity for a hypothetical single cell with the 

molecular noise as the only source of variation. The molecular noise for each single cell was 

derived from bi-nuclear syncytia experiments and equals 11% of the response. Similarly to the 

overlap quantification, the single cell dose response curves were estimated using percentile 

strategy (see Results 5.2.8). With these assumptions, and simulating the single cell response 

distribution as gamma distribution with the mean obtained from percentile calculation and 

standard deviation equals 11% of the response, the single cell channel capacity reached 1.95 

bits for IFN-γ and 2 bits for OSM. Such high channel capacity values indicate, that nearly all 4 

doses could be precisely discriminated by individual single cells, compared to binary 

discrimination of presence or absence of a stimulant in a heterogeneous population of single 

cells. Therefore, a single cell is very reliable in signal sensing, but different cells have different 

sensitivities and characteristics of dose-response curves, creating the final cell-to-cell 

heterogeneity of a population. 

5.3.  Nuclear state and the cytokine response  

In the syncytium, the molecular content of the two nuclei is different, as they originate from 

two different cells, which is reflected in the dye staining pattern (Figure 5.7). Therefore, the 

nuclear protein levels can also be different for each nucleus as well as the nuclear shape or 

the arrangement of the nucleopores and many other features, jointly considered as the 

nuclear state. The different nuclear states can potentially contribute to the differences in 

responses between the two nuclei and therefore also quantifies as the molecular noise in the 

heterogeneity decomposition analysis. 
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5.3.1. Nuclear state contributes substantially to the response variability in long 

times after cytokine stimulation 

To test the hypothesis that the nuclear state contributes to the differences between nuclei of 

the bi-nuclear syncytium, I would need to find the stimulation condition where the influence 

of the nuclear state on the pSTAT levels is strong. In such a condition, if the hypothesis is true, 

the responses between two nuclei in bi-nuclear syncytia will differ substantially. One of such 

presumable conditions is the long time after stimulation- at that time the pSTAT levels 

decrease due to the dephosphorylation and nuclear export processes. Such processes are 

dependent on the nuclear content. Therefore, to test whether nuclear differences can start 

manifesting at the time of the signal decrease I performed heterogeneity decomposition for 

late time points after stimulation. For simplicity, I used only the highest cytokine doses, 10 

ng/mL. Indeed, in syncytia stimulated with 10 ng/mL of IFN-γ and measured after 30 min, the 

signal of two nuclei started to differ more than in earlier time points, with  𝜌(")*'  increasing 

to the value of 0.47 (Figure 5.13A), compared to 𝜌(")*' = 0.09 present at 15 min. At 90 min 

after beginning of stimulation, the signal from two nuclei differed even more, with almost all 

points lying far from the plot diagonal, indicating substantial differences between two nuclei 

signals. On the other hand, for OSM stimulation with 10 ng/mL, at no time point the nuclei 

differed substantially and both 30, 60 and 90 min since the beginning of stimulation had 

similar 𝜌%&'(. values ranging from 0.09 to 0.04 (Figure 5.13B). In conclusion, the nuclear state 

can indeed influence the decomposition of bi-nuclear syncytia heterogeneity, but it is 

probably cell-specific or signaling pathway-dependent. For time points after IFN-γ stimulation 

reaching 30 min and longer, the nuclear state starts to override the molecular noise diverging 

the signal in the two nuclei.  
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Then, I asked what specific characteristics of the nuclear state could contribute to the 

increased differences between syncytial nuclei after IFN-γ stimulation in MEFs. As the IFN-γ-

stimulated response starts to drop at 30 min, the increased nuclear differences indeed could 

be related to dephosphorylation of pSTAT1. The dephosphorylation rate largely depends on 

the nuclear level of the TC45 phosphatase (see Literature review 2.10)(Böhmer and Friedrich, 

2014). Therefore, it is possible, that both nuclei differ in terms of the level of TC45, which does 

not manifest in early time points as the dephosphorylation is then relatively slow or 

overridden by the fast nuclear import. At the late time points however, the dephosphorylation 

starts to dominate over the import. To verify this, I used the vanadate (in the form of sodium 

orthovanadate, Na2VO4), the well-known non-specific inhibitor of phosphatases, used 

previously in STAT1 nuclear shuttling studies (Haspel and Darnell, 1999; Meyer et al., 2003). 

The phosphatase inhibition should diminish the differences of nuclear states in bi-nuclear 

syncytia observed in late time points after stimulation. To confirm the vanadate effectiveness 

 

Figure 5.13.  Inter-nuclear variability of pSTAT levels in syncytial nuclei increases in long time points for IFN-γ but not for 
OSM 

(A) IFN-γ responses in bi-nuclear syncytia at long time points, 0-, 15-, 30- and 90-minutes post-stimulation with 10 ng/mL. 
Corresponds to Figure 5.9D. A time point of 15 min replicated from Figure 5.9D, 10 ng/mL for comparison. (B) The same 
as A, but for OSM responses at 0-, 30-, 60- and 90-min post stimulation with 10 ng/mL. Corresponds to Figure 5.9D and E. 
Sum of two biological replicates is shown in A presenting at least 62 syncytia for each non-zero time point. One biological 
replicate is shown in B presenting at least 19 syncytia for each non-zero time point. 
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and analyze its effect on the response dynamics I treated the single cells with vanadate for 1 

h and next stimulated with IFN-γ. The vanadate caused much higher nuclear pSTAT1 level in 

all time points in single cells after IFN-γ stimulation compared to cells with no vanadate 

treatment (Figure 5.14). In addition, the nuclear pSTAT1 level after vanadate treatment 

reached the maximum around 30 min and remained constant at least until 90 min, compared 

to significant signal loss at 90 min in control cells. Therefore, the vanadate treatment indeed 

inhibits the dephosphorylation process leading to long-lasting response with higher maximum 

level of nuclear pSTAT1. 

  

Then, I used the same vanadate treatment for bi-nuclear syncytia and performed 

heterogeneity decomposition to quantitively analyze the effect of nuclear state. Instead of 

using 𝜌(")*'  notation, I will now call the same measure as fractional contribution of both the 

molecular noise and nuclear state, or 𝜌(").2(34.. Inhibition of phosphatases did not influence 

the 𝜌(").2(34. at the time of 15 min (0.06+- 0.02 after vanadate treatment vs 0.07+- 0.04 in 

control syncytia). However, at the time of 30 min, the vanadate indeed decreased the 

variability between two nuclei, as the 𝜌(").2(34. = 0.02 ± 0.01 was much lower compared to 

𝜌(").2(34. = 0.23 ± 0.08 of syncytia with no vanadate treatment. This shows that 

phosphatases indeed can influence the decomposition of heterogeneity sources in syncytia at 

Figure 5.14. Inhibition of phosphatases 
increase the response to IFN-γ and changes its 
dynamics 

MEF single cells were either treated with 1 mM 
vanadate for 1 h (gray) or left untreated (blue). 
After that time, all cells were stimulated with 
10 ng/mL IFN-γ for 5 min and the cellular 
response was measured at the indicated time 
points. At least 1000 cells (N>1000) were 
analyzed for each condition. P-value < 0.0001 
for each of the time point between control and 
vanadate-treatment cells (two-tail t test on 
log-transformed values and K-S test) 
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long time points after IFN-γ stimulation, while having no impact at the short time points. In 

addition, as at the time of 90 min, 𝜌(").2(34.  after vanadate treatment increased to 0.17, 

indicating that the inhibition of phosphatases was not permanent, or that other components 

of nuclear state or molecular noise dominated the response level at this time. All these 

indicate that the nuclear state, and especially dephosphorylation process, indeed contributes 

substantially to the response in long times after IFN- γ stimulation. 

 

Figure 5.15. Inhibition of dephosphorylation in bi-nuclear syncytia makes the nuclei to respond more similarly 

MEF-derived bi-nuclear syncytia were either treated with vanadate for 1 h (gray) or left untreated (blue). After that time, 
all syncytia were stimulated with 10 ng/mL IFN-γ for 5 min and the cellular response was measured at the indicated time 
points in each nucleus. The decomposition of heterogeneity onto 𝜌()%!. and  𝜌!"#.+!,-.was done similarly as in Figure 
5.9D. At least 50 syncytia (N>50) were analyzed for each non-zero time point. Sum of all two biological replicates 
performed is shown. 
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5.4. Measurement error of immunocytofluorescence 

One of the components of the measured level of nuclear pSTAT, 𝑆5'6*37'8, besides the true 

pSTAT value, 𝑆!73', is the measurement error, what can be presented by the formula: 

𝑆5'6*37'8 = 𝑆!73' + 	𝜀 ,      (5-8) 

where 𝜀 is the measurement error, which can be either positive or negative in value. 

Quantification of the measurement error is challenging, as it is statistically independent for 

each measurement. At the same time, the quantification of a measurement error can be 

useful in the estimation of precision of the experimental methodology. The measurement 

error, 𝜀, of the immunofluorescence method comes from multiple factors: non-specific 

antibody binding, illumination differences due to scattering of non-homogeneous medium, 

background fluorescence of a cell as well as non-optimal marking of a cell on microscopic 

images. All these factors influence the final outcome in a random, or uncontrolled, way for 

each investigated nucleus. One of the ways to approximate the measurement error of 

immunofluorescence method is to measure multiple times exactly the same entities, e.g., 

cellular nuclei of the true value	𝑆!73'. If the measurements were taken enough times, the 

average of the measured levels would correspond to the true value, while standard deviation 

of measurements, 𝜎, would correspond to the measurement error, 𝜀. In the simplest model, 

the error 𝜀 follows a normal distribution with mean 0 and standard deviation, 𝜎, derived from 

the multiple measurements of the same true value: 

𝜀~𝑁(0, 𝜎),      (5-9) 

However, 𝜎 can be different depending on the 𝑆!73'. For example, variability of the 

measurement error can be higher for the higher values of 𝑆!73'. To account for that, 𝜎 needs 

to be related to 𝑆!73'. The simplest assumption is that the relationship would be linear and 

would follow the formula: 

 𝜎 = 	𝛼𝑆!73' , (5-10) 

where 𝛼 is the slope of the linear regression with the intercept = 0. Finally, rewriting Eq. 5-8 

in terms of the above assumptions gives us: 
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 𝑆5'6*37'8 = 𝑆!73' + 𝛼𝑆!73' ∙ 𝜀9,  (5-11) 

where 𝜀9 follows a normal distribution with the mean 0 and standard deviation 1: 

𝜀9~𝑁(0, 1)  (5-12) 

Therefore, according to the presented model, the slope coefficient of the linear regression 

𝜎~	𝛼𝑆!73' , would approximate the level of measurement error. For obvious reasons, it is hard 

to measure the protein level multiple times in the same cells or nuclei. Fortunately, the bi-

nuclear syncytia provide a possibility to approximate two nuclei with identical levels of 

pSTATs. According to Figure 5.7, the bi-nuclear syncytia can have two states: either with 

separate nuclei or merged nuclei. Such a binary distinction suggests that in syncytia with 

merged nuclei, there could be a physical connection between nuclei that causes the 

equilibration of the levels of nuclear proteins. Therefore, bi-nuclear syncytia with two merged 

nuclei can be a model of two nuclei with identical levels of pSTAT proteins.  

5.4.1. Bi-nuclear syncytia with merged nucleoplasm can approximate the 

contribution of technical errors 

To assess the measurement error of immunofluorescence, I quantified the nuclear pSTAT1 

level in MEF-derived syncytia stimulated with IFN-γ and pSTAT3 level in BJ-derived syncytia 

stimulated with OSM, in syncytia with merged nucleoplasm. I analyzed images from various 

previous bi-nuclear stimulation experiments, with doses varying from 0 to 10 ng/mL and time 

points ranging from 5 to 90 min. In addition, to decrease the possibility of misidentification, 

the threshold for merged vs unmerged nuclei discrimination was set to avoid syncytia with 

partially merged nucleoplasm (Figure 5.16A). The obtained data allowed for comparison 

between pSTAT protein levels in two nuclei with the same pSTAT content. The decomposition 

of total heterogeneity applies here, although with different meanings. Namely, 𝜌%&'(. stays 

the same and corresponds to the variance caused by differences between syncytia, while 

𝜌(")*'  should be considered as fractional contribution of measurement error, 𝜌'77"7. With 

these assumptions, the 𝜌'77"7  for both cell types equaled 0.03 +- 0.01, while 𝜌%&'(. reached 

0.97+-0.01 (Figure 5.16B, D). This indicates that bi-nuclear syncytia with merged nuclei have 

indeed very similar nuclear levels of pSTAT proteins in both nuclei and that only a small 
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fraction of total variability is caused by measurement error. However, the quantity of 𝜌'77"7  

does not explain what is the level of noise compared to true measured value. To assess this, I 

performed the more detailed measurement error quantification according to the Eq. 5-8. 

5.4.2. Measurement errors have a minor contribution to the 

immunocytofluorescence signal 

As mentioned earlier and showed in the Eq. 5-11, the slope coefficient 𝛼 can be considered as 

the measure of the contribution of measurement error to the final observed level of nuclear 

pSTAT proteins. If 𝛼, expressed in %, reached the 100%, it would mean that the observable 

fluorescence signal is far from the true level. However, if 𝛼 reached 0%, then all of the 

measured signals exactly equal the true value, according to the proposed model. To get 𝛼, I 

calculated the slope of linear regression obtained by relating inter-nuclear standard deviation, 

𝜎'77"7
()) , with inter-nuclear mean, 𝑦+)  for all of syncytia with merged nucleoplasm, i (Figure 

5.16D, E). The 𝛼 reached around 9% of true signal for IFN-γ stimulated MEF-derived syncytia 

and 11% of OSM-stimulated BJ-derived syncytia, indicating that only a small fraction of a 

fluorescent signal can be considered as the measurement error. These results point out that 

the contribution of the molecular noise calculated using bi-nuclear syncytia is probably 

overestimated, and at least some part of the molecular noise-driven variability can be 

attributed to measurement error. In other words, the actual contribution of molecular noise 

may be lower than estimated by the introduced reasoning. However, the comparison between 

molecular noise and measurement error requires more in-depth investigation. 
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Figure 5.16 Measurement errors have a minor contribution to the immunocytofluorescence signal 

(A) Discrimination between merged and non-merged nuclei in bi-nuclear syncytia based on non-specific protein staining. 
Corresponds to Figure 5.7. In addition to the previously introduced threshold, a more stricken threshold was applied, to 
remove from the analysis syncytia with partially merged nucleoplasm (grey). (B) IFN-γ responses in bi-nuclear syncytia 
with merged nucleoplasm at various time points after stimulation and various doses used (colors). Corresponds to Figure 
5.9D. Instead of 𝜌!"#$%, 𝜌%..". is presented. (C) Same as B, but for BJ syncytia. (D) Inter-nuclear standard deviation, 𝜎%..".

(#) , 
is plotted against inter-nuclear response, 𝑦## of each syncytium, 𝑖, for IFN-γ responses. The fitted regression line is 
presented in gray, with the indicated formula and regression error. All doses and time points post-stimulation were 
considered jointly. (E) Same as D but for BJ syncytia. 

  



Results 

 86 

5.5. Levels of STATs and receptors in cytokine responses 

The bi-nuclear syncytia experiments (see Results 5.2) showed that the cellular phenotype is a 

dominant factor of the observed cell-to-cell heterogeneity in cytokine responses. To assess 

what are the key components of the cellular phenotype influencing the IFN-γ and OSM 

responses, I measured the whole-cell levels of STATs and receptors together with cellular 

responses in the same cell, using flow cytometry. Precisely, for IFN-γ in MEFs, I measured both 

STAT1, pSTAT1 and the component of the IFN-γ receptor complex, IFNGR1. For OSM in BJ cells, 

I measured both STAT3, pSTAT3 and the component of the OSM receptor complex, OSMR.	

5.5.1. Flow cytometry is suitable for measuring low-abundant proteins 

The flow cytometry enables the measurement of cellular protein levels with higher sensitivity 

over the fluorescence microscopy, meaning the higher ability to detect even lowly-abundant 

proteins (Basiji et al., 2007). While STAT and pSTAT proteins occur in high abundance, the 

cytokine receptors generally are present in low copy number in a cell. Therefore, I chose flow 

cytometry to be able to measure the receptor level more precisely than using microscopy. To 

increase the signal of receptors even further, I permeabilized cells prior immunostaining, to 

detect the intracellular and membrane fraction of receptors. Flow cytometry measurements 

showed significant differences in signals between positive staining and negative staining for 

whole-cell receptors (Figure 5.17A, B) as well as STAT (Figure 5.17C, D) and pSTAT proteins 

(Figure 5.17E, F). Next, to avoid the false positive correlation arising from fluorescence leakage 

(see materials and methods), I set up the compensation using single-stained samples, 

obtaining no increase in signals in non-specific fluorescent channels (Figure 5.18). Therefore, 

these results point to the flow cytometry as suitable for measuring the level of both STATs, 

pSTATs and receptors of IFN-γ and OSM signaling pathways. 
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Figure 5.17. Positive and negative staining of IFN-γ and OSM signaling pathway components measured intracellularly on 
the flow cytometer.  

(A) Whole-cell IFNGR measured on MEF cells with anti-IFNGR antibody (solid line) or isotype control (dashed line). (B) 
Whole-cell OSMR measured on BJ cells with anti-OSMR antibody (solid line) or isotype control (dashed line). (C) Whole-
cell STAT1 measured on MEF cells (solid line) or in MEF S1 -/- (dashed line). (D) Whole-cell STAT3 measured on BJ cells 
(solid line) or PC3 cell line, considered as STAT3 -/- (dashed line). (E) Whole-cell pSTAT1 measured at 15 min after IFN-γ 
stimulation with either 0 ng/mL (light blue) or 10 ng/mL (dark blue) on MEF cells (solid line) or MEF S1 -/- cells (dashed 
line). (F) Whole-cell pSTAT3 measured at 30 min after OSM stimulation with either 0 ng/mL (light green) or 10 ng/mL (dark 
green) on BJ cells (solid line) or PC3 cells (dashed line). A representative of two biological replicates is shown. At least 1600 
cells (N>1600) are presented in each probability density curve. P-value < 0.0001 for each of the protein between positive 
and negative staining control (two-tail t test on log-transformed values and K-S test). 
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Figure 5.18. Proper compensation assures no fluorescence leakage to non-specific channels in flow cytometry 

(A) – (C) Compensation for MEF cells; (D) – (E) Compensation for BJ cells. Each panel consists of two subpanels. Each 
subpanel presents the signal of either positive signal-sample (black) or unstained sample (grey) as scatter of positive signal-
channel (x axis) vs non-specific channels (y axis on subpanels). The inset presents the name of the fluorescent channel and 
the stained protein. A488.A – Alexa Fluor 488 corresponding to pSTATs; PE.A – phycoerythrin corresponding to receptors; 
A647.A – Alexa Fluo 647 corresponding to STATs. Dashed lines for positive signal sample (black) or unstained sample (grey) 
present 99.5 percentile of the population signal. Note that those lines cover each other indicating their almost identical 
coordinates. At least 3700 cells (N>3700) are presented in each condition 
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5.5.2. STAT proteins are moderate predictors of the cytokine response, while 

receptors are weak. 

Having established the staining method of STAT, pSTAT and receptor using flow cytometry, I 

proceeded with the co-staining experiments of cells stimulated with 10 ng/mL IFN- γ and 10 

ng/mL OSM. I considered the pSTAT whole-cell total level as cellular responses, and the whole-

cell total levels of STATs and receptors as the predictors of the response, all measured at 15 

min for IFN-γ in MEF cells or 30 min for OSM in BJ cells after the beginning of the stimulation. 

The single-cell level of the response exhibits moderate correlation with the level of the STATs 

for both IFN-γ (Figure 5.19A) and OSM (Figure 5.19B), as cells with high responses tend to have 

higher levels of STAT proteins. In addition, the measurement showed low dependency 

between receptor levels and the response, as dark points corresponding to cells with high 

receptor levels are randomly spread throughout the point cloud. To analyze the data more 

quantitively, I utilized the linear regression with R2 coefficient indicating the percentage of the 

response variance that can be explained by the levels of either STAT, receptor or both (Figure 

5.19 insets). Specifically, for IFN-γ stimulated MEFs, the STAT1 level explained 37% of the 

response variance, while for BJ and OSM stimulation, the STAT3 level explained 50% of the 

response variance. The receptor levels showed low R2 for both IFN-γ (R2 = 16%) and OSM (R2 

= 19%) treatments. In addition, the multiple linear regression, correlating both STATs and 

receptors with the response, did not much increase the R2 values neither for IFN-γ nor OSM, 

indicating the redundancy of both predictor values, STAT and receptors. In non-stimulated 

cells, the correlations were lower and both STAT and receptors contributed equally to the 

response variance explained (Figure 5.19C, D). To exclude the possibility that the obtained 

correlations resulted from STAT or receptor levels being responsive to cytokine stimulation, I 

validated that neither STAT nor receptor levels change after stimulation (Figure 5.20). 

Therefore, the whole-cell level of STATs is a moderately predictor of the response, indicating 

that indeed the cellular phenotype, with more features investigated, can at least partially 

determine the final response of the IFN-γ and OSM response. 
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Figure 5.19. Whole-cell level of signaling components measured intracellularly can partially predict the response to IFN-γ 
and OSM 

(A) Measurements of whole-cell pSTAT1 (y-axis) at 15 minutes after stimulation with 10 ng/mL of IFN-γ plotted against 
whole-cell STAT1 (x-axis) as measured with flow cytometry. Each point corresponds to a single cell with the shade intensity 
encoding the whole-cell level of the receptor component, IFNGR. The inset presents R2 for a fraction of pSTAT1 variance 
explained by whole-cell STAT1 level, IFNGR level and the two factors jointly, as indicated by the arrows. (B) The same as 
in (A) but for OSM signaling: whole-cell pSTAT3 (y-axis) at 30 minutes after 10ng/ml of OSM plotted against whole-cell 
STAT3 (x-axis) as measured with flow cytometry. Each point corresponds to a single cell with the shade intensity encoding 
the whole-cell level of the receptor component, OSMR. The inset presents R2 for a fraction of pSTAT3 variance explained 
by whole-cell STAT3 level, OSMR level and the two factors jointly, as indicated by the arrows. (C) The same as in (A) but 
for non-stimulated cells. (D) The same as in (C) but for non-stimulated cells.  
Technical details: Measurements are expressed as the relative fluorescence. For each protein and each cell, the raw flow 
cytometry readout was divided by the mean fluorescence of non-stimulated cells. At least 1900 cells were measured for 
each condition (N≥1900). A representative of two biological replicates is shown. 
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Figure 5.20. Cytokine stimulation does not change total effector or receptor levels. 

(A) Whole-cell levels of pSTAT1 (left panel), STAT1 (middle panel) or IFNGR (right panel), as measured with flow cytometry, 
without stimulation (solid line) or at 15 min after 10 ng/mL IFN-γ stimulation (dashed line). (B) Whole-cell levels of pSTAT3 
(left panel), STAT3 (middle panel) and OSMR (right panel), as measured with flow cytometry, at 30 min after 10 ng/mL 
OSM stimulation (dashed line) or without stimulation (solid line). At least 1970 cells per condition were measured 
(N≥1970). The small differences in distribution means in STATs and receptors were statistically important in hypothesis 
testing (p < 0.0001 for two tailed t-test on log-transformed values and K-S test) probably due to the high number of 
observations. However, the differences are of minor practical importance as the stimulation level explains at most 7.5% 
of total variance of both STAT and receptors according to R2 of linear regression. In comparison, for pSTAT levels the 
stimulation variable explains at least 64% of the total variance. 

  



Results 

 92 

5.6. The cytokine response throughout the cell cycle 

The measurements of signaling pathway components indicate that cellular state can indeed 

be a moderate predictor of the response to cytokine stimulation. However, measuring levels 

of both STAT and receptors did not explain the whole response variance, indicating that there 

can be other factors influencing the response. One of the master cellular processes, cell cycle, 

could change the sensitivity of cells to the cytokine sensing or make the signaling cascade act 

at different speed, causing the change in the final response level. For example, cells before 

the DNA replication could respond at different levels than cells after the DNA replication. The 

chromatin condensation level is different at each of the cell cycle phase, which can influence 

the pSTAT molecules retention in the nucleus (Meyer et al., 2003). Also, throughout the cell 

cycle the volume of the cell increases at a different rate than the cell surface, pointing out the 

possible changed sensitivity in cells at the beginning of the cell cycle compared to cells before 

mitosis. To investigate this hypothesis, I combined the cell cycle phase measurement together 

with response measurement after cytokine stimulation on the single cell level.   

5.6.1. Histogram of the cell cycle can be obtained using microscopy 

measurements 

Throughout the cell cycle, the DNA replicates in phase S, leading to doubling the DNA level 

from phase G1 to G2 and mitosis. Therefore, one of the easiest ways to distinguish cells in the 

different cell cycle phases is to measure DNA content on a single cell level. Some cells will have 

around twice the level of DNA content (G2/M cells) as the other cells (G1 cells), with some 

fraction between (S cells). The DNA measurements for cell cycle staging is widely used in flow 

cytometry, and is based on the thresholding of the DNA content histogram. To identify the 

cell cycle phase of each single cell, I used a similar methodology of DNA measurement, but 

using fluorescent microscopy (Roukos et al., 2015). The usage of microscope, instead of flow 

cytometry, enables the spatial recognition of fluorescence signal and therefore allows for 

measuring of the cellular response to cytokine as the mean nuclear level of pSTAT instead of 

less biologically relevant whole-cell total level. To stage the cell cycle in single cells I 

fluorescently stained the DNA as usually for immunofluorescent experiments, but for image 

acquisition I used the epifluorescent mode (Figure 5.21A, B) instead of confocal. This ensured 
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the collection of the DNA signal from the whole nucleus, not only from one focal plane. The 

histograms of DNA content in a population of both MEF (Figure 5.21C) and BJ (Figure 5.21D) 

cells showed proper peaks for G1 and G2/M phases, corresponding to cells before and after 

DNA replication. The thresholds for each of those two phases were adjusted manually.  

 
Figure 5.21 DNA content histogram obtained during microscope image acquisition shows peaks for G1 and G2/M cell cycle 
phases. 

(A) Representative microscopic images of nuclei of MEF nuclei stained with DAPI and visualized in epifluorescence mode. 
(B) Same as A but for BJ nuclei. (C) DNA content histogram of MEF nuclei. Cells with nuclei in the red region were classified 
as G1 cells and classified as G2/M cells if found in the blue region. Threshold adjusted manually. (D) Same as C but for BJ 
cells. Scale bars 20 um. At least 13000 cells are presented in each histogram. 

To validate the correctness of the cell cycle phases identification, I next combined the DNA 

measurement with immunofluorescence of the cyclin B protein, known to be upregulated in 

G2/M phases. Indeed, the level of cyclin B, measured as the mean relative fluorescence of the 

cellular area, was higher in cells of G2/M phases compared to G1 cells (4-fold increase for MEF 

cells and 3-fold increase for BJ cells), proving the correctness of the cell cycle discrimination 

with this method.  
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Figure 5.22 The microscopic staging of the cell cycle phases is sensitive to cyclin B increasing level in G2/M phase. 

(A) Representative microscopic images of nuclei of MEF cells with nuclei stained with DAPI, the cellular body 
immunostained against B-actin and immunostained against cyclin B. DAPI channel was visualized in epifluorescence mode 
while B-actin and cyclin B in confocal mode. (B) Same as A but for BJ cells. (C) MEF cells were staged according to the cell 
cycle phase and probability density of cyclin B cellular intensity was plotted for G1 cells (red) and G2/M cells (blue). In 
addition, below the density plots, the jitter plot with the mean (red or blue squares) and standard deviation of the data 
is presented, assuming log-normality of the data. The cyclin B value was normalized to the mean level of the whole 
population (“relative”). (D) Same as C but for BJ cells. For C and D: p<0.0001, two-tailed t-test (log-transformed data) and 
K-S test. Scale bars 20 um. At least 416 cells were analyzed in each density plot. A representative of two biological 
replicates is shown. The cell cycle phase explains 28% of total variance in BJ cells and 35% in MEF cells according to R2 of 
linear regression on log-transformed data. 
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5.6.2. Cell cycle phases show similar levels of the cytokine responses 

Next, to investigate whether cells before DNA replication (G1 cells) respond differently to cells 

after DNA replication (G2/M cells), I stimulated MEF cells with IFN-γ (Figure 5.23A) and BJ cells 

with OSM (Figure 5.23B) with the dose of 10 ng/mL and analyzed their nuclear pSTAT levels 

together with cell cycle phase discrimination. Surprisingly, data shows no big differences 

between G1 and G2/M cells in terms of responses to cytokines of MEF (Figure 5.23 C) and BJ 

cells (Figure 5.23D), pointing that the cellular response is robust to progression in the cell 

cycle. This can be due to the fact that one of the main predictors of the response, STAT levels, 

presumably also did not differ throughout the cell cycle as well. Indeed, simultaneous 

measurements of mean cellular level of STAT1 in MEF cells (Figure 5.23E) and STAT3 in BJ cells 

(Figure 5.23F) also showed no substantial differences between G1 and G2/M phases, 

indicating that the cell probably keeps the constant concentration of STATs during the 

progression in the cell cycle, assuring the similar responses in all cell cycle phases.  
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Figure 5.23. Cellular response to cytokines is robust to cell cycle progression 

(A) The quantification of nuclear pSTAT1 level in nuclei of MEF cells stimulated with 10 ng/mL of IFN-γ for 5 min or left 
unstimulated and immunostained after 15 since the beginning of stimulation. The pSTAT1 value was normalized to the 
mean level of the untreated cells (“relative”). (B) Same as A, but for BJ cells stimulated with 10 ng/mL OSM and 
immunstained against pSTAT3 after 30 min. (C) MEF cells stimulated with 10 ng/mL of IFN-γ were staged according to the 
cell cycle phases and probability density of pSTAT1 nuclear intensity was plotted for G1 cells (red) and G2/M cells (blue). 
In addition, below the density plots, the jitter plot with the mean (red or blue square) and standard deviation of the data 
is presented, assuming log-normality of the data. (D) Same as C but for BJ cells. (E) Same as C, but for cellular STAT1 level 
in non-stimulated MEF cells. (F) Same as D but for cellular STAT3 level in non-stimulated BJ cells. At least 223 cells (N>223) 
were analyzed in each density plot. A representative of two biological replicates is shown. Statistical difference occurred 
only for E (p<0.001 for both two-tailed t-test for log-transformed data and K-S test), however, the difference in means is 
of minor importance as the cell cycle phases explain 0.5% of total variance of STAT1 level according to R2 of linear 
regression on log-transformed data. For STAT3 and pSTATs levels p > 0.1 and the cell cycle phases explained at most 0.1% 
of total variance. 
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6. Discussion 

Cellular responses to external stimuli are often characterized by high cell-to-cell 

heterogeneity, despite the same genetic background of the cells and the same culturing 

conditions. While it is nowadays getting clearer and well known that such heterogeneity of 

cellular communication is an inevitable trait of all populations of cells, very little is known 

about the causes of the observed high cell-to-cell heterogeneity of cellular responses to 

extracellular signals. It was debated, for example, to what extent the response is 

predetermined (influence of cellular phenotype) or stochastic (influence of molecular noise) 

(Koseska and Bastiaens, 2017; Madsen and Vanhaesebroeck, 2019; Wollman, 2018). My study 

involving IFN-γ and OSM on mice and human fibroblasts showed that the majority of the cell-

to-cell heterogeneity of responses to cytokines is induced by the variability in molecular 

phenotypes of single cells, and not by molecular noise or measurement error, indicating high 

signaling precision of individual cells (Topolewski et al., 2022). I also found that among various 

traits of cellular phenotype, the levels of response-related proteins can partially predict the 

strength of the response, while the cell cycle has no influence on the response strength 

prediction. 

6.1. Precision of a single cell 

The precision of a cell seems to be crucial in multicellular organisms like mammals in which a 

great number of cells need to coordinate their activities through cell-to-cell communication 

so that the whole organism survives, properly develops, fights threats and adjusts to the 

environment. The precision of a cell in signal sensing and processing has been recently studied 

in terms of information theory which quantifies how much information about the stimulation 

doses can be encoded in the responses (Uda, 2020). The analysis of multiple signaling 

pathways ranging from NF-κB (Cheong et al., 2011), through TRAIL (Suderman et al., 2017), 

GnRH (Garner et al., 2016), Erk and Ca2+ (Selimkhanov et al., 2014) show that a single cell 

barely distinguishes between absence and presence of the high dose of the stimulant, due to 

high heterogeneity between cells in their responses. To explain how a multicellular organism 

can function with such variability, the sources of observed heterogeneity of cellular reactions 

should first be revealed. In my study, as biological models, I used IFN-γ and OSM, two 
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cytokines vastly involved in immune response via JAK-STAT signaling pathway, with IFN-γ 

utilizing STAT1 while OSM utilizing STAT3 as main effector proteins. Using 

immunofluorescence, confocal imaging and single cell image analysis I confirmed that after 

cytokine stimulation, each STAT protein is tyrosine phosphorylated and translocated to the 

nucleus. However, in terms of information theory dose discrimination, pSTAT nuclear levels 

showed much greater ability to decode the stimulation doses compared to STAT nuclear 

levels. This can be explained by the higher basal level of STATs in the nucleus than the basal 

level of pSTAT. Precisely, both STAT1 and STAT3 constantly shuttle between cytoplasm and 

nucleus even without any stimulation (Cimica et al., 2011; McBride and Reich, 2003; Reich, 

2013). After the stimulation, not all of STAT molecules in the nucleus have been moved to the 

nucleus due to stimulation, as some of them are nucleus-translocated before the stimulation, 

limiting the dose discrimination ability. On the other hand, pSTAT molecules before an 

external stimulation are present in the nucleus only marginally, as phosphorylation of pSTAT 

molecules is done mainly during JAK kinase activation and only low amount is detected 

experimentally without any stimulation (Bachmann et al., 2014; Gough et al., 2014; Majoros 

et al., 2016). After the stimulation almost all pSTAT molecules in the nucleus are related to the 

stimulation, assuring proper dose discrimination. Similar phenomena were found also in other 

signaling pathways, utilizing response dynamics during live cell imaging. For example, 

accounting for fold change instead of absolute values of nuclear transcription factors ensured 

higher information transfer of NF-κB (Lee et al., 2014; Zhang et al., 2017) as well as TGF-β 

(Frick et al., 2017). This can be explained by minimizing the influence of already existing 

molecules in the nucleus. Therefore, when considering the optimal measurement output for 

the best dose discriminability after stimulation, one should choose the one with the low 

enough basal level before the stimulation, assuring that the majority of the response is strictly 

related to the stimulation itself and not to, e.g., non-specific stimulation. Such output for the 

IFN-γ and OSM signaling pathways studied here were pSTAT levels in the nucleus, and not 

STAT levels. The tyrosine-phosphorylated forms of STATs were also considered as more 

cytokine response-related in other works, for example, investigating the heterogeneity of 

cytokine responses in cancer cells (Gough et al., 2014) or relating multiple signaling pathways 

during innate immunity (Czerkies et al., 2018).  
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The precision of a cell to sense the external signal is limited by the influence of molecular 

noise, that is the stochasticity of the biochemical reactions. My study using bi-nuclear syncytia 

with two nuclei and one shared cytoplasm showed that molecular noise contributes less than 

10% of the cell-to-cell variance of signaling responses, indicating that the single cell is very 

precise in signal sensing and processing. The remaining variability, ~90%, can be attributed to 

differences in the molecular content of the cells, i.e., cellular phenotype. The presented 

quantification invites to revisit the view of stochastic effects in biochemical signaling and 

indicates that signaling in single mammalian cells can operate not far from the deterministic 

regime. The presented results are in line with some recent studies that measured repeated 

signaling responses in the same cell over time. Specifically, those studies attempted to assess 

the contribution of molecular noise and cellular phenotype into the total observable 

variability. The electric pulse study performed such decomposition by comparing the variance 

of responses to the same dose in each individual cell vs variance of the cellular responses of 

all cells (Wada et al., 2020). The decomposition revealed that the majority, that is 83%, of total 

variance was attributed to cellular phenotype variability. This indicates that in the biological 

model used, that is myotubes stimulated with electric pulse, the observed heterogeneity of 

Ca2+ responses is caused mainly by differences in cellular states in the population. Similar 

decomposition values were obtained in a study utilizing live cell imaging of ERK signaling, 

which quantified the intrinsic-to-extrinsic noise ratio in the quasistationary time regime after 

the stimulation (Selimkhanov et al., 2014). The intrinsic noise was estimated as the mean 

variation between successive ERK measurements of the individual cells, while the total 

variance was estimated as the variance of the single cell trajectory around the average of the 

all trajectories. The resulting calculations showed that the intrinsic noise, or molecular noise, 

constitutes around 2%, while the cellular phenotype 98% of the total variance. However, 

fluctuations in a quasi-steady state do not have to properly reflect the fluctuation in the initial 

phase of the response, where most of the signaling-related reaction occurs. All the described 

variability decomposition proportions are very close to the one obtained in this dissertation, 

using bi-nuclear syncytia. Nevertheless, some other heterogeneity decomposition showed 

different quantities. For example, when ERK signaling pathway was repetitive stimulated by 

the light in the optogenetic system, measured using live-cell imaging (Toettcher et al., 2013) 

and analyzed quantitively (Selimkhanov et al., 2014), the molecular noise was accounted for 

the ~ 47% of the total variance. The difference can be attributed to the complexity of the 
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optogenetic system, composed of multiple genetically engineered proteins which all enabled 

the clever control of stimulation, but at the same time it bore the potential of not controlling 

the all-possible variables in the system. The bi-nuclear syncytia system is free of this 

disadvantage as the response of two nuclei are easy to compare, analyze and conclude. 

Furthermore, it allows for extending the heterogeneity decomposition to other cell signaling 

pathways, like growth factors, hormones, and other cytokines, which often operate in a too 

long regime for repetitive stimulation. This approach also allows for live imaging, giving the 

possibility of analyzing the stochasticity in a time-dependent manner. In addition, the analysis 

of non-specific staining in bi-nuclear syncytia as well as heterogeneity decomposition in early 

time points after the stimulation showed, that two nuclei are probably independent on each 

other, ruling out one of the drawbacks of repetitive stimulation which is the dependency of 

the subsequent measurements. On the other hand, unfortunately, bi-nuclear syncytia offer 

the possibility to analyze only two nuclei in the same cytoplasmic environment, compared to 

multiple repetitive stimulation of the same cell. However, further expanding this biological 

model can lead to creation of multiple-nuclei syncytia, allowing for more representative 

response measurements. Nevertheless, it is crucial to mention some drawbacks of the used 

bi-nuclear syncytia biological model. Many of the signaling pathways do not involve nuclear 

accumulation of the transcription factors, for example during Ca2+ signaling, which regulates 

the entry and exit of Ca2+ from various cellular compartments (Clapham, 2007). For such 

signaling pathways, the bi-nuclear syncytium would not be a suitable approximation of two 

identical cells, as they do not utilize nuclei as the main effector place. In addition, if the 

movement of the pSTAT molecules were chaotic, for example utilizing extremely fast 

diffusion, then all the pSTAT molecules quickly after the stimulation would be evenly 

distributed in the cytoplasm. In that situation, if any randomness of the signaling pathways 

occurs, then only the randomness related to nuclear import would be reflected in differences 

between two nuclei. Although the directional movement of pSTAT molecules is yet to be 

confirmed, some studies showed the involvement of cytoskeleton in the STAT1 and STAT3 

signaling and nuclear transport (Guo et al., 2018; Supasai et al., 2017), the similar behavior of 

some transcription factors like p53 (Campbell and Hope, 2003) or NF-κB after specific 

stimulation (Fazal et al., 2007). The involvement of cytoskeleton in STAT signaling suggests the 

more complex and directional movement of pSTAT1 and pSTAT3 molecules than simple 

diffusion, which all would enable to consider the bi-nuclear syncytia as a valuable model of 
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investigation of the molecular noise. If the movement of pSTAT molecules are directional and 

at the time of stimulation no substantial number of those molecules mix in the cytoplasm, 

then any stochasticity occurring near one nucleus would manifest in the signal of that nucleus. 

The same is true for the second nucleus as well, enabling the simulating the two-identical cells 

setup and the proper estimation of molecular noise. Apart from that, it would be of great 

interest to confirm experimentally in more detail the usefulness of the bi-nuclear syncytia 

system in the studying the sources of cell-to-cell heterogeneity of cellular responses. 

 Taking together, the decomposition of the cytokine response heterogeneity can be 

successfully determined using bi-nuclear syncytia under some assumptions. Also, the bi-

nuclear syncytia together with other studies on the information transmission point that the 

single cell is very precise in signal sensing, and operates close to deterministic manner. Such 

conclusion can be a foundation on the further research, where little space will be left for the 

stochasticity, uncertainty or unpredictability of the cellular responses to external stimulation, 

allowing for finding the full determinants of the too-high or too-low signaling outcomes in 

cancer cells or in patient-derived cells with some signaling-related diseases.  

In addition to the quantification of the sources of the cell-to-cell variability, the data presented 

in this dissertation delivers several other interesting observations. These include the linear 

relation of noise to the level of the response. Precisely, the inter-nuclear standard deviation 

of bi-nuclear syncytia equals ~11% of the response. This measurement can be further 

employed by theoretical models to examine signaling fidelity in more detail and to find the 

limit of dose discriminability of single cells. Specifically, if we assume that the only variability 

of the response in a single cell is the molecular noise constituting 11% of the response, and 

that a single cell has a dose response curve estimated as a specific percentile of the whole 

population, then the dose discriminability reaches almost optimal values, easily recognizing 

around 4 doses of a stimulant. Even higher dose decoding could be obtained if more doses 

were analyzed or assuming a continuous stimulation. All these results are in great contrast to 

calculations of dose discriminability done previously (see Literature review 2.5). At the same 

time, a conclusion that a single cell can reliably distinguish between multiple stimulant doses 

has already occurred in the literature multiple times, especially in repetitive stimulation 

research (see Literature review 2.8.4). These apparent discrepancies do not come from the 
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weakness of experimental design of the former studies, but rather show the weaknesses of 

the information theory reasoning. Traditionally, the cellular phenotype variability has been 

considered as the extrinsic noise, which in the information theory reasoning causes a loss of 

information about the input signal along the signaling relay. Therefore, information theory 

applied to a population of single cells leads to low information flow, as single cells show a 

great variability of cellular phenotypes and low molecular noise contribution. The same low 

information flow would be obtained from the population of largely stochastic responses 

(Nienałtowski et al., 2021; Topolewski and Komorowski, 2021). However, those two scenarios 

differ substantially- in the first, with phenotypic variability as the main source of response 

variability, the single cell is very precise, while in the second scenario, where the molecular 

noise is predominant, the single cell is mainly random and not reliable in terms of the response 

to the stimulation. I proposed in this dissertation, that information loss by the signaling 

apparatus of the single-cell result only from the molecular noise. Therefore, instead of 

applying information theory to a population of single cells, one should utilize for example the 

FRA analysis together with quantification of the overlaps between distributions specific to 

different doses. Such an approach allows for the conclusion that some fraction of cells 

responded typically or atypically to given doses, giving more precise and biologically relevant 

information than information theory.  

The decomposition of total response variability into molecular noise and phenotypic 

variability in the bi-nuclear syncytia has certain shortcomings that should be accounted for. 

Primarily, the decomposition does not take into account the experimental measurement 

error. Measurement noise as being statistically roughly independent for each nucleus 

quantifies in the above as molecular noise. Secondly, in the syncytium, the molecular content 

of the two nuclei is different, as these originate from two different cells. Different nuclear 

content can potentially contribute to the differences in responses between the two nuclei and 

therefore also quantifies in the above as molecular noise. Therefore, within the proposed 

methodology the contribution of the molecular noise can be overestimated, as it 

encompasses other factors. Although the activity of phosphatases investigated here did not 

influence the decomposition substantially at early time points since the stimulation, it does 

not exclude the possibility that other factors of nuclear phenotypes are quantified as the 

molecular noise at early time points. For example, STAT proteins enter the nucleus via nuclear 
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por complexes (NPCs) (Jerke et al., 2009; Liu et al., 2005), structures anchored in the nuclear 

membrane (Tran and Wente, 2006). The differences in levels of NPCs between two nuclei in 

the syncytium can influence the response independently on each nucleus, which is not related 

to the molecular noise. Similarly, the shape of the nucleus can also matter as well as its size, 

as the morphology of the fibroblast nucleus can vary (Skinner and Johnson, 2017). All those 

components need more insight during investigating their role as variability sources. 

Nevertheless, if such a role was confirmed, it would only indicate that the influence of 

molecular noise was overestimated using bi-nuclear syncytia, proving that a single cell is even 

more precise than estimated in this dissertation. In addition to the nuclear phenotype, 

measurement error is an inevitable trait of all measurements. In fluorescence microscopy, the 

error can come from the specimen itself, from the microscope or from the detector (Wolf et 

al., 2013). For example, the number of photons measured during microscopy image 

acquisition has an intrinsic uncertainty called photon noise. On the other hand, the antibody 

binding to a specific target is also subjected to some stochasticity, as the antibody binding 

occurs on a molecule level independently for each measuring entity, for example a cell. 

However, those stochastic and in principle independent events are less prominent and they 

less influence the uncertainty of the measurement in samples with high abundance of targets 

and therefore with high signals. For example, the photon noise scales with the square root of 

detected photons, therefore should be negligible in measurements where more photons are 

collected (Waters, 2009). Similarly, the error related to antibody binding will be minimized if 

the optimized time of incubation is applied, giving enough high signal. In addition to all of that, 

the measurement error can be also caused by differences in image analysis, especially if it is 

manual or semi-automated. I presented the measurement error quantification based on the 

bi-nuclear syncytia with the two nuclei with merged nucleoplasm. It showed that the 

measurement error has a minor, but not negligible contribution to the strength of the 

measured signal, reaching ~10% of the measured signal. However, this quantity is probably 

influenced by the semi-automated image analysis applied during the data analysis, 

overestimating the true error of the stochastic events on the particle- or molecule level. 

Nevertheless, it also indicates that the contribution of molecular noise also could have been 

overestimated due to measurement error. However, subtracting the contribution of the 

measurement error from the contribution of the molecular noise is not straightforward. This 

is because of different models and assumptions used, which make the direct comparison 



Discussion 

 104 

difficult. However, the obtained data suggest, that the molecular error causes the molecular 

noise to be overestimated in the used setup. This in turn indicates that a single cell actually 

can operate in a deterministic, or close to deterministic regime in signal sensing, at least in 

IFN-γ and OSM signaling, with this claim being of great novelty. 

Among questions inspired by the presented data, the issue of phenotypic variability appears 

to be particularly puzzling. In light of the current understanding of stochasticity in gene 

expression, the molecular content of the cell is partly shaped by random processes (Hagai et 

al., 2018; Symmons and Raj, 2016). It is not clear, however, whether or how cells account for 

variability in their molecular content when interpreting outcomes of signaling processes. 

Conceivably, in some cases, different signaling outcomes to the same input signal are 

interpreted in the same way in different cells. This could be achieved, for instance, by 

mechanisms that ensure robustness to copy number variability of signaling components, e.g., 

via counterbalancing correlations or bi-directional enzymes (Hart et al., 2011; Shinar et al., 

2007). For example, it has been shown that cells do not sense the number of active G-protein-

coupled receptors (GPCRs) receptors but their fraction (Bush et al., 2016). This ensures the 

robustness of signaling to the variability in the copy number of receptors. In other instances, 

different signaling outcomes to the same input signal could be interpreted differently in 

different cells. The latter seems to be the case for the two cytokines considered here, as 

individual cells differ significantly in their sensitivity to these stimuli. Different sensitivities 

could contribute to the mechanism of inflammation control or in a wider context, could 

constitute a bet-hedging strategy against the unpredictability of future environmental 

states(Carey et al., 2018; Kussell and Leibler, 2005). Clearly, the role of different cellular 

identities is not fully understood. Nevertheless, the high precision of a single cell opens up the 

possibility to find the determinants of the response. With such determinants, one would be 

able to specifically downregulate the highly activated signaling pathway, characteristics of 

many diseases, for example cancers and autoimmune diseases. It is only the identification of 

such determinants, which separates us from the treatment success. Fortunately, for IFN-γ and 

OSM signaling pathways, some of the determinants have been found throughout in the 

studies presented in this dissertation.  
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6.2.  Determinants of the cytokine stimulated response 

Molecular content of the cell is composed of distinct components, which can be often 

experimentally quantified. Therefore, the factors that impact differences in cellular responses 

can be in principle determined with dedicated experiments. Finding response determinants 

would provide valuable understanding into how signaling pathways function. I investigated 

three such presumably determinants: phosphatase level, the cell cycle, and the level of 

intracellular signaling proteins, with phosphatase activity and the level of intracellular STAT 

proteins being considerable predictors of the response. 

I showed that the activity of phosphatases was at least partially responsible for differences in 

pSTAT levels among two nuclei of bi-nuclear syncytia after a long time since the stimulation 

with IFN-γ. The usage of a non-specific phosphatase inhibitor, Na2VO4, or vanadate, 

diminished those differences, proving that it could be the main source of single cell differences 

in their responses at late time points. The differences did not decrease to the base level, 

probably due to lack of specificity in the inhibitor activity, although the vanadate inhibitor was 

shown to be highly specific for phosphatases regulating JAK-STAT signaling pathways (Baron 

and Davignon, 2008; Haspel and Darnell, 1999). However, there is also a possibility that the 

inhibitor was indeed specific and blocked the majority of active phosphatase, but other factors 

at the very late time points differed between nuclei, or the stochasticity of the biochemical 

reactions indeed took over the signaling process. For example, some putative binding partners 

of STAT molecules could be activated in late time points after stimulation, which would 

decrease the ability to detect the STAT1 molecules by immunostaining. On the other hand, at 

the late time points, the pSTAT import process could be of lower intensity and therefore 

subjected to more stochastic fluctuations leading to differences between two nuclei even 

when the phosphatase activity level was equalized by the inhibition. Nevertheless, more 

studies are needed to prove which of the mentioned factors matter. However, the 

dephosphorylation process influences the response late after the stimulation and therefore 

influences the temporal dynamics of the response, which could greatly impact the cell 

decision. For example, it was shown that IFN-α and IFN-β, two examples of type I IFNs, have 

different temporal dynamics of the response. Precisely, IFN-α causes a cellular response of 

shorter duration than IFN-β, which in turn leads to lower expression of the long response 
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genes (“tunable genes”) compared to IFN-α (Schneider et al., 2014; Schreiber and Piehler, 

2015). Such differences could also occur between single cells having long- or short-lasting 

responses, with different genes activated after the same stimulation of IFN-γ. Those 

differently activated genes can contribute to a broader sensitivity rate of a cellular population 

to various threats, e.g., different bacterial pathogenicity or replication rate (Lane et al., 2019). 

In addition, the inefficient dephosphorylation of mutated pSTAT1 was found in chronic 

mucocutaneous candidiasis disease (CMCD) (Liu et al., 2011), implying that the impaired 

dephosphorylation of pSTAT1 molecules could be a disease-causing agent and it is to be 

determined whether this can be controlled pharmacologically. Further studies regarding 

phosphatase process in JAK-STAT cellular signaling is needed to prove a direct correlation of 

the phosphatase activity with the dynamics of pSTAT nuclear level, especially for late time 

points, which could presumably change the further specific gene expression. 

The next analyzed component of the cellular phenotype was the level of the intracellular levels 

of whole-cell STAT molecules and receptors. STAT levels were found to be moderate 

predictors of the response, while receptors showed weak predictability. The small prediction 

power of receptors could be an effect of measuring of intracellular receptors, which is less 

biologically relevant than membrane receptors. However, this type of experimental setup was 

necessary to increase the fluorescent signal above the noise level. More accurate measuring 

of the receptor level by the usage of the fluorescently labeled receptor proteins could increase 

the predictor power. Similarly, instead of focusing on the receptors, one could use the 

immunostaining against the intracellular cytokine itself, which should present biologically 

more relevant measure of the receptor activity, due to the internalization of such molecules 

in a complex with receptors (Anderson et al., 1983; Blanchard et al., 2001; Blouin and Lamaze, 

2013; Zanin et al., 2021). Nevertheless, all those approaches either use more sophisticated 

fluorescent systems (Chmiest et al., 2016; Wilmes et al., 2015) and are of great risk due to the 

complexity of experimental design or low number of presumably cytokine molecules found in 

the cell. In contrast, STAT levels were properly measured as intracellular proteins and they 

showed higher response prediction ability. Similar conclusions correlating the cellular 

response with the level of intracellular proteins was drawn in previous studies on Ca2+ 

signaling (Yao et al., 2016) and heat shock response (Guilbert et al., 2020). Such correlations 

of the response with the level of other proteins can have profound implications, e.g., in 
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medicine. Recently it was found that the cellular level of STAT1 is a good prognostic factor for 

overall survival in specific tumors (Zhang et al., 2020). The JAK-STAT signaling pathway is often 

dysregulated in cancer cells (Brooks and Putoczki, 2020). It is therefore promising to find other 

predictors of the JAK-STAT activity, to either inhibit/stimulate as a treatment or to use those 

factors as predictors of the current treatment or the expected overall survival. In summary, 

total whole cell measurement of STAT levels showed at least moderate prediction power, 

providing a good starting point for investigation of other cellular phenotype features, for 

example the cell cycle. 

The last feature of the cellular phenotype which was assumed to be a predictor of the cellular 

response to IFN-γ and OSM was the cell cycle progression. However, I showed that the cell 

cycle progression did not contribute to differences in pSTAT levels between single cells. After 

comparing the distribution of the IFN-γ or OSM response in cells being before DNA duplication 

(G1 cells) to being after DNA duplication (G2/M cells), no evident differences were observed 

neither in the shape of the distribution nor in the means. This is non-obvious, if not surprising, 

observation because it means that despite substantial cell-to-cell heterogeneity of IFN-γ and 

OSM responses at the single cell level the signaling process is robust to the cell cycle. This is 

probably assured by keeping the similar concentration of the signaling proteins in a cell 

throughout the cell cycle, which I indirectly showed to be true for STAT molecules. This result 

of similar STAT abundance throughout the cell cycle phases is in contradiction with the work 

of Gao et al. (Gao et al., 2015), which analyzed the cellular localization of the STAT1 molecules 

in different cell cycle phases. They showed that the STAT1 abundance is substantially higher 

in the G1 cells compared to G2 cells. Although there is a non-debatable achievement of this 

study in the cellular localization and clustering of STAT1 molecules, I see some inaccuracies in 

the data presentation of this publication. Precisely, the authors considered the total number 

of STAT1 molecules per cell as the measure of the STAT1 abundance. Such measures, however, 

could indeed be increased in G2/M cells as they are simply bigger in size than G1 cells 

(Ginzberg et al., 2015, 2018). However, cell volume to some extent correlates with protein 

abundance (Cookson et al., 2009; Lin and Amir, 2018), causing the bigger in size G2/M cells to 

have similar concentration of the protein as G1 cells, which inevitably causes the higher 

number of molecules per cell in G2/M cells. Therefore, the cellular concentration seems to be 

a better measure to analyze whether the STAT1 changes throughout the cell cycle, as used in 
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my study. In addition, Gao et al. analyzed only 20 cells in total, which may be too small to draw 

robust conclusions, compared to more than 500 used in my study. In total, although STAT1 

can indeed form different forms of clusters in different cell cycle phases, it seems unlikely that 

the mean cellular level or concentration changes throughout the cell cycle progression. In 

addition to that, the stimulation by IFN-γ and OSM is well known for their inhibition of the cell 

cycle progression, however this activity is observed after long continuous stimulation 

exceeding 24h (Kano et al., 1997; Klausen et al., 2000), therefore has no direct effect on quick 

responses analyzed in this dissertation. To summarize, I showed the robustness of the JAK-

STAT signaling to cell cycle progression, which suggests that cell-to-cell heterogeneity may 

play a relevant biological role or have not been evolutionary eliminated for some important, 

and so-far rather obscure, reasons. For example, the cell cycle progression involves changes 

in multiple master features of a cell, for example cellular shape, gene expression, relaxation 

of the chromatin or cytoskeleton rearrangement (Poon, 2016). If the multicellular organism 

evolved to operate with cells responding uniformly, then any big deviation in the cell cycle 

progression and therefore in master cellular features could lead to frequent and unexpected 

outlier response. Such an unexpected response of a group of cells could easily move the naive 

organism out of the homeostasis. Therefore, multicellular organisms probably evolved to 

diminish the influence of the outlier responses by being used to it. Nevertheless, the cell cycle 

progression is regulated with multiple steps of feedback loops, protein interactions and 

posttranslational modifications, all having their own signaling pathways, with the input often 

being of intracellular nature. It would be of great interest to investigate the precision of such 

signaling pathways in terms of cell cycle regulation with respect to internal input- cell fate 

decision regime. For example, it was shown in unicellular yeasts, that the single cell decision 

to proliferate or to arrest in the cell cycle is greatly predicted by the single value of the 

concentration of the Whi5 protein in the nucleus. Such studies for multicellular organism, 

although very challenging and requiring the usage of intracellular input markers (Hansen and 

O’Shea, 2015; Ruiz et al., 2018), would show how much precise is the single in complex system 

with such great orchestrate of regulatory components to decide about its proliferation fate.  

In summary, the presented work shows that outwardly identical cells represent different 

cellular phenotype features, with each cell sensing extracellular information differently. 

Therefore, it will be meaningful to study the structure and role of these phenotypes in more 
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detail, in contrast to a scenario in which differences between cells in cellular signaling have a 

stochastic, less palpable origin. Specifically, it appears that intracellular signaling pathway 

components could to some degree predict the responses of individual cells. Overall, my study 

appears to be indicative for further studies aiming to establish key determinants of single cell 

responses.  
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7. Summary and conclusions 

The presented studies allowed for the revealing of sources of the cell-to-cell heterogeneity of 

cellular responses to IFN-γ in mouse fibroblasts and OSM in human fibroblasts and showed 

that: 

I. Phenotypic variability accounts for ~90% of the cell-to-cell heterogeneity in IFN-γ and 

OSM signaling responses, while molecular noise accounts for up to ~10%. 

II. Measurement errors have a minor contribution to the observed level of 

immunofluorescence signals, reaching ~10% of the true signal. 

III. Nuclear state at late time points contributes to the cell-to-cell heterogeneity of 

signaling responses to the IFN-γ stimulation, while in OSM signaling responses it has 

no effect. 

IV. Intracellular levels of STAT proteins moderately predict the signaling responses to IFN-

γ and OSM stimulation, while the intracellular level of receptors are weak predictors 

of such responses. 

V. Cells before and after DNA replication show a similar level of signaling responses to 

the IFN-γ and OSM stimulation, presumably due to lack of differences between STAT 

levels. 
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