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S U M M A R Y

Doctoral thesis: Karol Nienałtowski, Parametric and non-parametric
methods to address complexity of cellular signaling pathways, 2021.
All processes in the organisms, including regulation of development, immu-
nity, tissue homeostasis, and repair, require coordination between cells. This
coordination occurs through cell-to-cell communication using particular sig-
naling molecules, including cytokines, hormones, and other ligands. Briefly,
cells synthesize and release signaling molecules, which then bind to specific
membrane receptors. Such activated receptors trigger a series of intracellular
reactions, which form a signaling pathway. The signal is eventually trans-
ferred to the nucleus, leading to the activation of cellular effectors, e.g., the
creation of response genes.
However, many components of signaling pathways are functionally pleiotropic,
and signaling responses are marked with substantial cell-to-cell heterogene-
ity. For instance, a distinct signaling molecule often activates multiple differ-
ent effectors, and a particular effector can be triggered by various signaling
molecules, which results in cross-wired signaling. Moreover, biochemical sig-
naling processes are intrinsically stochastic, and the responses of apparently
identical cells can vary significantly.
Cell-to-cell variability of signaling effectors, signaling dynamics, and cross-
wiring structure of pathways all give rise to signaling complexity. There-
fore, studies of cellular signaling require comprehensive quantitative sup-
port. There are two general approaches to these obstacles, i.e., parametric
and non-parametric modeling.
The first approach intends to explore in detail reactions of signaling path-
ways. Here, the signaling pathway is represented as a dynamical model,
which describes mathematically changes in time of the reactants state, e.g.,
concentration of proteins. The model’s dynamics, properties, and interpreta-
tion of results strictly depend on its parameters. Methods to understand the
relationship between parameters and model behavior is of particular inter-
est in the context of biochemical dynamics and related phenomena. These
methods include sensitivity and identifiability analysis. The sensitivity anal-
ysis provides valuable insights into how robust the model is to changes of
biological parameters and which model inputs are the key factors that affect
the model outputs. On the other hand, the identifiability analysis determines
parameter estimation accuracy and the model’s predictions. Both techniques
have proven their importance for utilizing modeling in physics and engineer-
ing. However, models of cellular signaling differ from conventional models
in several ways. They are significantly more complex, consist of a higher
number of parameters, and the accuracy of their estimations is limited due
to the quality or the lack of experimental data.
The second, non-parametric approach neglect any assumptions regarding
the structure or character of intracellular processes. The relation between
cellular response (output) to an external signal (input) is represented in a
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probabilistic manner. This relationship can be explained within the Shan-
non information theory in terms of communication channels. In such an
approach, the information flow via the input-output channel is analyzed.
However, conventional communication channels differ considerably from
signaling pathways. The first ones have limited noise, operate in optimal
or defined conditions, and transfer long sequences of discreet symbols.
In my Ph.D., I developed parametric and non-parametric methods that can
deal with the complexity and stochasticity of the cellular signaling pathways.
In the parametric approach, I focused on developing techniques that explain
relations between parameters and model dynamics. Firstly, in the chapter
"Sensitivity Analysis in quantitative biology models" [1] of the book "Quanti-
tative Biology: Theory, Computational Methods and Examples of Models" [9], we
have identified currently used sensitivity analysis methods to describe cel-
lular processes on underlying parameters. We have presented specific tools
that analyze parameter dependence locally and globally in deterministic and
stochastic regimes. Moreover, we have shown on illustrative examples that
sensitivity analysis leads to a deeper understanding of studied phenomena
and helps in manipulating complex models. Secondly, in the article [2], we
have proposed methods for dissecting the impact of individual parameters
on the behavior of complex multi-parameter models. Precisely, we have in-
troduced an information-theory measure of similarity between groups of
parameters. Based on this measure, we have established a novel definition
of identifiable parameters. Moreover, we have developed a tool, which uses
hierarchical clustering for finding a maximal possible number of identifiable
parameters. We have shown that our methodology helps design biological
experiments, which can improve models’ accuracy.
Moreover, in the article [3], we have developed non-parametric methods to
introduce fractional response analysis (FRA), which quantifies changes in
fractions of cells with given response levels. We have demonstrated on sev-
eral biological examples that outcomes of physiological processes depend
on the number of cells with specific responses rather than on mean or me-
dian. Proposed fractional response analysis can be universally performed
for heterogeneous, multivariate, and dynamic measurements and quantifies
otherwise hidden patterns in single-cell data. Furthermore, we have shown
that FRA has a rigorous mathematical definition in terms of Rényi min-
information; hence, FRA estimates the overall signaling fidelity. However,
compared to the conventional Shannon information, properties of Rényi min-
information are more appropriate to describe information flow in biochemi-
cal systems.
Methods developed within this thesis have been implemented within freely
available software packages: ClusteringIdentifiability and FRA.



S U M M A R Y ( P O L I S H )

Praca doktorska: Karol Nienałtowski, Parametryczne i nieparametryczne
metody analizy biochemicznych szlaków sygnałowych, 2021.

Wszystkie procesy wewnątrz żywych organizmów wymagają koordynacji
działań między komórkami. Koordynacja odbywa się poprzez komunikację
pomiędzy komórkami za pomocą specjalnych cząsteczek sygnałowych, ta-
kich jak: cytokiny, hormony i inne ligandy. W dużym uproszczeniu cząsteczki
sygnałowe są produkowane i wypuszczane przez komórkę do przestrzeni
międzykomórkowej. Następnie cząsteczka sygnałowa wiąże się ze specy-
ficznymi receptorami znajdującymi się na błonach komórkowych. W wyniku
połączenia receptor zmienia swoją konformację, wywołując szereg reakcji
wewnątrzkomórkowych, które tworzą tzw. ścieżkę sygnałową. Sygnał os-
tatecznie jest przenoszony do jądra komórkowego, gdzie aktywowana jest
odpowiedź komórkowa na sygnał, np. ekspresja odpowiednich białek efek-
torowych.
Należy jednak zauważyć, że wiele elementów szlaków sygnałowych jest
funkcjonalnie plejotropowych, a odpowiedź komórkowa na sygnał cechuje
się znaczną heterogenicznością pomiędzy komórkami. Na przykład cząsteczka
sygnałowa często aktywuje wiele różnych efektorów, a konkretny efektor
może być aktywowany przez różne cząsteczki sygnałowe, co skutkuje syg-
nałowniem krzyżowym z innymi szlakami sygnałowymi. Ponadto reakcje
molekularne są z natury stochastyczne co powoduje, że odpowiedź komórkowa
pozornie identycznych komórek może znacznie się między sobą różnić.
Heterogeniczność odpowiedzi komórkowej na sygnał, dynamika sygnałowa-
nia oraz sygnałowanie krzyżowe z innymi szlakami prowadzą łącznie do
znacznej złożoności procesów sygnałowania. Dlatego analiza sygnałowania
w komórkach wymaga wsparcia przy użyciu metod ilościowych. Istnieją
dwa ogólne podejścia do tego problemu, tj. modelowanie parametryczne i
nieparametryczne.
Pierwsze podejście ma na celu szczegółowe zbadanie reakcji tworzących
ścieżki sygnałowe. W tym podejściu ścieżkę sygnałową reprezentuje się w
postaci modelu matematycznego, który opisuje zmiany stężeń cząsteczek w
czasie, w wyniku reakcji biochemicznych. Dynamika modelu, jego właści-
wości i interpretacja wyników ściśle zależą od parametrów modelu. Metody
pozwalające zrozumieć związek między parametrami a zachowaniem mod-
elu są szczególnie interesujące w kontekście szlaków sygnałowych. Metody
te obejmują między innymi analizę wrażliwości (ang. sensitivity analysis) i
identyfikowalności (ang. identifiability analysis) parametrów. Analiza wrażli-
wości dostarcza cennych informacji na temat zmienności dynamiki modelu
wynikających ze zmiany wartości parametrów oraz wskazuje, które parame-
try najbardziej wpływają na zachowanie modelu. Natomiast analiza identy-
fikowalności określa dokładność estymacji parametrów oraz wskazuje stopień
poprawności predykcji modelu. Obie techniki z powodzeniem są wykorzysty-
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wane w procesie modelowania w fizyce czy w inżynierii. Jednakże modele
sygnałowania komórkowego znacząco różnią się od typowych modeli z in-
nych dziedzin. Zazwyczaj modele szlaków sygnałowych są znacznie bardziej
złożone, składają się z większej liczby parametrów, a dokładność ich esty-
macji jest ograniczona ze względu na jakość, bądź brak danych eksperymen-
talnych.
W przypadku podejścia nieparametrycznego pomija się wszelkie założenia
dotyczące struktury lub charakteru procesów wewnątrzkomórkowych. Związek
między odpowiedzią komórkową (wyjściem), a sygnałem (wejściem) jest
reprezentowany w sposób probabilistyczny. Zależność tę można opisać, ko-
rzystając z teorii informacji Shannona, jako kanał komunikacyjny. W tak
rozumianym szlaku sygnałowym, analizowany jest przepływ informacji pomiędzy
wejściem do kanału, a jego wyjściem. Jednakże standardowe kanały komu-
nikacyjne różnią się od ścieżek sygnałowych. W przeciwieństwie do syg-
nałowania komórkowego, kanały komunikacyjne mają ograniczony szum,
działają w optymalnych lub określonych warunkach, a przesyłane wiado-
mości składają się z długich sekwencji dyskretnych symboli.
W mojej pracy doktorskiej opracowałem parametryczne i nieparametryczne
metody, które są dostosowane do złożoności i stochastyczności szlaków syg-
nałowych.
W podejściu parametrycznym skupiłem się na opracowaniu technik wyjaśni-
ających relacje między parametrami a zachowaniem modelu. Po pierwsze, w
rozdziale "Sensitivity Analysis in quantitative biology models" [1] książki "Quan-
titative Biology: Theory, Computational Methods and Examples of Models" [9],
zidentyfikowaliśmy obecnie stosowane metody analizy wrażliwości, które
można wykorzystać do analizy sygnałowania komórkowego. Przedstawiliśmy
konkretne metody, które służą do analizy wrażliwości parametrów lokalnie
i globalnie w modelach deterministycznych i stochastycznych. Ponadto za-
prezentowaliśmy na przykładach modeli biologicznych, w jaki sposób anal-
iza wrażliwości prowadzi do głębszego zrozumienia badanych zjawisk oraz
pomaga w tworzeniu i usprawnianiu złożonych modeli. Po drugie, w artykule
[2] zaproponowaliśmy metody analizy wpływu poszczególnych parametrów
na zachowanie złożonych modeli wieloparametrowych. Korzystając z teorii
informacji i analizy korelacji kanonicznych, zaproponowaliśmy nową miarę
podobieństwa między grupami parametrów. Na podstawie tej miary zdefin-
iowaliśmy metodę analizy identyfikowalności parametrów modelu. Ponadto
opracowaliśmy narzędzie, które wykorzystuje grupowanie hierarchiczne w
celu znalezienia maksymalnej możliwej liczby parametrów identyfikowal-
nych. Wykazaliśmy, że nasza metodologia pomaga w projektowaniu ekspery-
mentów biologicznych, które mogą poprawić dokładność modeli.
Ponadto w artykule [3] opracowaliśmy nieparametryczne metody frakcyjnej
analizy odpowiedzi (FRA), która ilościowo określa zmiany we frakcjach komórek
o danych poziomach odpowiedzi. Wykazaliśmy na kilku biologicznych przykładach,
że odpowiedź systemu biologicznego zależy od liczby komórek z określonymi
odpowiedziami (ich frakcji), a nie od średniej lub mediany odpowiedzi całej
populacji. Zaproponowana metoda może być zastosowana do analizy danych
eksperymentalnych ze ścieżek sygnałowych i innych systemów biologicznych
bez względu na ich heterogeniczność, mnogość efektorów, czy dynamikę w
czasie. Pokazaliśmy też, że FRA pomaga wykryć zjawiska na poziomie po-
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jedynczych komórek, których nie dało się zauważyć korzystając ze standar-
dowych technik. Dodatkowo wykazaliśmy, że FRA posiada ścisłą matem-
atyczną interpretację w postaci min-informacji Rényi’ego (ang. Rényi min-
information). Zatem FRA może być wykorzystywana, jako miara dokładności
przepływu informacji w szlakach sygnałowych. Pokazaliśmy, że w porówna-
niu ze standardową informacją Shannona, właściwości min-informacji Rényi’ego
są odpowiedniejsze do opisu przepływu informacji w systemach biochemicznych.
Metody opracowane w ramach tej pracy zostały zaimplementowane w ra-
mach ogólnodostępnych pakietów oprogramowania: ClusteringIdentifiabil-
ity i FRA.



1 I N T R O D U C T I O N

According to the most recent estimates, a human consists of 3.7 · 1013(±0.8)
cells [10]. Among them, there can be distinguished over 200 different cells
types [11] that perform a staggering variety of functions. The functions they
play in the organism pretend inter alia their morphology, including shape
and size. Cells that serve for storage, like fat cells and oocytes, have huge
volumes, respectively, 6000 and 40000 times bigger than the most minor, red
cells [12, 13]. The role of red cells is the delivery of oxygen to the body tis-
sues from the pulmonary alveolus. Hence, their small size enables them to
squeeze through narrow capillaries and biconcave disk shape, which max-
imizes the surface area to volume ratio, making oxygen transport efficient
[14]. All of the cell types are among the most complex and fascinating biolog-
ical systems in nature [15]. Cells need to control their growth, proliferation,
metabolism, calcium balance, and many other cell-type-specific processes
throughout their whole life. What is worse, all these happen in messy bio-
logical conditions with genetic mutations and variations, phenotypic noise
and variability, as well as environmental changes [16]. Hence, cells seem to
be a buzzing crucible of ongoing processes and complex biochemical reac-
tions that somehow do not prevent cells from performing specific functions
in organisms in cooperation with other cells.
The complexity of these mechanisms leads to questions related to intra- and
inter-cellular processes within a cell and in cell populations. Firstly, how
do cells interact to develop and maintain higher levels of organization and
function [17]? Secondly, how do the components within a cell interact to
bring about its structure and realize its functioning? Although experimental
molecular biology has uncovered a massive amount of biological facts, it is
not sufficient for interpreting biological systems and interactions between
them [15]. This insufficiency is because of biological systems’ inherent com-
plexity and the intrinsic and extrinsic stochasticity of molecular events.
Typically, the questions above are recognized by integrating experimental in-
sights into isolated parts of a cell or organism. Such a system-wide perspec-
tive and thus system-level understanding of biochemical activity is achieved
using mathematical and computational methods and is called Systems Biol-
ogy [18, 19].
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1.1 biochemical signaling pathways

Cells communicate with each other to regulate development, tissue repair,
and immunity, as well as normal tissue homeostasis. Generally, cellular in-
teraction consists of six steps: (i) synthesis and (ii) release of the signaling
molecules including cytokines, hormones, morphogens, and other ligands;
(iii) transport of the signal to neighboring cell; (iv) detection of the signaling
molecule by various cell-surface receptors; (v) inter-cellular reactions trig-
gered by the receptor-signal complex, e.g., phosphorylation of transduction
factors; and (vi) removal of the signal, which often terminates the cellular
response [20, 21, 22].
In systems biology, biochemical processes responsible for decoding the extra-
cellular signal and leading to cellular response, i.e., steps iv-vi, are concep-
tualized as signaling pathways. Simplistically, the signaling pathway can be
view as a pipeline that links cellular behavior with the outside environment.
The initial stimuli are processed in a cascade of biochemical reactions, e.g.,
protein phosphorylation catalyzed by protein kinases or enzymatic reactions.
This transmission leads the signal to cell decision centers and culminates in
cellular response. At the molecular level, these responses include modifi-
cation in genes’ transcription or translation and changes in proteins, both
post-translational and conformational, as well as their location.
One example of signaling pathways that play a crucial role in the immunity
system is interferons (IFNs) signaling. The viral infection initiates a complex
regulatory system of innate and adaptive immune responses, which goal is
to deal with pathogens. One of the most critical reactions to the viral dis-
ease is the production and secretion of IFNs into extra-cellular space [23].
In a typical scenario, an infected cell releases interferons causing nearby
cells to heighten their immune defenses. IFNs play a key role in antitumor
immunity, the regulation of immune responsiveness, and tissue integrity un-
der homeostatic conditions [24]. We identify more than twenty distinct IFN
genes divide into specific classes, i.e., Type I IFN, Type II IFN and Type III.
The group of type I IFNs consists of many members of the IFN-α fam-
ily (among others IFN-αI and IFN-αII, or IFN-ω and IFN-τ) and IFN-β.
The IFN type I activates a pathway via a homologous receptor complex
termed IFNAR, which consists of two subunits IFNAR-1 and IFNAR-2 [23].
Binding of IFN type I to the IFNAR results in activation of the Janus pro-
tein tyrosine kinases (Jaks), Jak1, and Tyk2 [23]. Further, phosphorylated
Jaks leads to the tyrosine phosphorylation of the proteins from the signal
transducers’ family and activators of transcription, STAT, specifically STAT1

and STAT2. Then, phosphorylated STATs proteins form two transcriptional-
activator complexes: (i) IFN-α-activated factor (AAF), and (ii) and IFN-stimulated
gene factor 3 (ISGF3). The AAF is a homodimer of activated STAT1 proteins,
whereas ISGF3 is a heterodimer of STAT1 and STAT2 associated with the
interferon regulatory factor (IRF) [23]. ISGF3 binds DNA elements called
interferon-sensitive response elements (ISREs) and subsequently activates
interferon-stimulated genes, including genes encoding antiviral proteins such
as Mx1 and OAS and various transcription factors including interferon-regulatory
factors (IRFs) [23]. The type I IFNs are main cytokines for innate immune
response against viral infections [25].
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The IFN type II is structurally unrelated to IFN type I, and the mechanisms
that regulate its production are also different. In contrary to the IFNs type
I, there is only one member of this group, IFN-γ. IFN-γ activates the sig-
naling pathway by binding to its cell-surface receptor, which consists of two
subunits IFNGR1 and IFNGR2 [26]. Ligand binding induces the assembly
and activation of the IFNGR complex, leading to the cross-phosphorylation
and activation of Jaks, JAK1, and JAK2, and phosphorylation of the cyto-
plasmic domain, providing docking sites for the SH2 domains of STATs [27].
The latter sequence is as follows; phosphorylated STAT1 proteins form a ho-
modimer through reciprocal phosphotyrosine-SH2 interactions, then STAT1

complex translocates to the nucleus and binds to IFN-γ activated sequence
(GAS) elements in the promoters of most IFN-γ responsive genes (ISGs) [27].
IFN-γ is involved in the regulation of both innate and adaptive immune
responses. The vital biological roles are antiviral and antiproliferative prop-
erties, macrophage activation, control of apoptosis, and promotion of anti-
gen processing, presentation, and T-helper type 1 differentiation [28]. The
IFN-γ signaling regulates over 200 hundred genes, which are involved in in-
duction, repression, stabilization, or destabilization of cell functioning [28].
Therefore, the proper regulation of the IFN-γ signaling is essential for main-
taining homeostasis and eliciting thoughtful immune responses [29].
The group of IFN type III include interleukin (IL)-28A (IFN-λ2), IL-28B (IFN-
λ3), and IL-29 (IFN-λ1). Type I and III IFNs share a signaling cascade that
is activated via different cell-surface receptors [30]. Type III IFNs bind to a
heterodimeric receptor which consists of the IL-10 receptor 2 (IL10R2) and
the interferon λ receptor 1 (IFNLR1), which is structurally different from
the IFNAR [30]. Even though both IFNs use the same signaling cascades,
type I and III IFNs evoke distinct biological activities [30]. However, it is still
unclear why stimulation with type I and III IFNs result in divergent antiviral
and immune-modulatory states [30, 31, 32, 33, 34]. IFNs induced signaling
pathways are schematically presented in Figure 1.
The description above illustrates the complexity of a particular signaling
pathway. However, the cellular system comprises many signaling pathways
that create robust channels that effectively process external signals. All sig-
naling pathways together create the signaling network, which tightly en-
twines all cellular components. Moreover, many signaling pathways are func-
tionally pleiotropic [36, 37, 38]. Pleiotropy comes from signaling pathways
interconnect via proteins and cascade, forming a tangled signaling network
[39, 40]. It might seem that signaling networks contain prohibitively wide
connected and interconnected components, which should foreclose the cell
from operating accurately. Indeed, whether genetic, biochemical, or environ-
mentally induced, perturbations of these signaling pathways can manifest in
various diseases.
Dysfunctions in signalling may have tangible consequences for an organism
[41, 42, 43, 44]. For instance, cancer cells exhibit altered signaling what con-
tributes to their uncontrolled growth [45, 46, 47].
The IFNs signaling has a crucial function in orchestrating the immune sys-
tem; hence, any dysregulation of the pathway may result in various immune
disorders, especially hematological malignancies [48]. Different IFNs path-
way dysfunctions lead to other diseases: (i) mutation (V617F) in the JH2



1.1 biochemical signaling pathways 17

Figure 1: Figure from [35]. Precise model of signaling pathways of the interferons
that mediate antitumor responses. Mechanisms presented in the figure
are partially described in the main text. The scheme shows an extremely
complex, cross-wired network.

pseudo-kinase domain of JAK2 leads to the constitutive activation of STAT5,
and a malignant phenotype was shown in 80% of the patients with myelo-
proliferative neoplasms [49, 50]; (ii) rare JAK2 gene rearrangement can result
in an atypical form of chronic myeloid leukemia [51, 52, 53]; (iii) several ac-
quired JAK1 missense mutations can lead to adult lymphoblastic leukemia
[54, 55, 56]; (iv) dysregulation of STAT proteins also contributes to the patho-
genesis of several types of lymphoid malignancies, e.g., T-cell large granu-
lar lymphocytic leukemia, anaplastic large cell lymphoma, T-cell angioim-
munoblastic lymphoma, and Sezary syndrome [57, 58, 59].
The biochemical system tries to limit the effects of signaling disorders using
various defense mechanisms. The IFNs signaling is regulated by several com-
plexes, such as protein tyrosine phosphatases (PTPs), suppressor of cytokine
signaling (SOCS), and the protein inhibitor of activated STAT (PIAS) families.
Another defense mechanism is the multifunctionality of biological systems
that increases the capacity to cope with diverse challenges [60], including
ones that have never been encountered before [61, 62]. For instance, cross-
talks between signaling pathways enable cells to adjust cellular processes to
intra-, and inter- environmental changes, like stress, crucial for evolutionary
adaptation [16].
Studying signaling processes remains crucial for improving treatments, for
instance, against cancer [63, 64]. First of all, signaling pathways are natural
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ways of targeting molecular components; hence, transduction molecules rep-
resent attractive targets for various medical therapies [35, 65]. Secondly, a
better understanding of signaling processes may help recognize the origins
of their aberrations that alter cellular functioning [66]. Decades of experi-
mental research have resulted in a detailed qualitative description of the
most important signaling pathways, especially the oncogenic ones [67, 68].
However, quantitatively understanding how information about a complex
mixture of extra-cellular stimuli is processed and translated into distinct cel-
lular responses remains elusive [69, 16].
One of the difficulties with understanding biochemical signaling arises from
the natural stochasticity of intracellular processes. The randomness of re-
sponse to the signal is formed by (i) intrinsic variability, which arises from
the probabilistic nature of the timing of collision events between reacting
biological molecules and (ii) extrinsic variability, which results from varying
components upstream to the system of interest, e.g., imbalance of homeosta-
sis state [35, 65]. It has been shown that the latter dominates, especially in
eukaryotic systems[70, 71].
Another challenge comes from the immense complexity of signaling pro-
cesses [69, 16]. Typically, the signaling pathway consists of several auto-
regulatory mechanisms, e.g., negative and positive feedback loops and de-
lays. Additionally, many components are functionally pleiotropic, e.g., var-
ious receptors often activate the same pathways [72]. For instance, as men-
tioned, IFNs type I and type III activate a shared signaling pathway via
distinct cell-surface receptors.
Moreover, signaling pathways interact with each other. For instance, although
different types of IFN transmit signals through distinct receptor complexes,
the IFN type I receptor component, IFNAR1, facilitates the efficient assem-
bly of IFN type II activated transcription factors [40]. The cross-talk between
IFNs type I and type II signaling pathways provides a molecular basis for
their overlapping roles [40]. Moreover, IFN type I signaling has an impor-
tant role in strengthening IFN type II signaling by increasing the association
of IFNAR1 with IFNGR2 and maintaining the docking sites in IFNAR1 for
STAT1 [40]. IFN type II could achieve stronger activation effects based on
this dependence by enhancing responsiveness to other IFNs type I stimuli.
This mechanism is called priming phenomenon [73].
Systems biology ensures computational and mathematical support for ana-
lyzing complex, stochastic biochemical systems. Quantitative methods inte-
grate theoretical knowledge with experimental data to create predictive mod-
els of signaling systems. However, computational models are not the one-to-
one equivalent of biochemical systems because computers’ performance is
not enough for the computational complexity of the ’precise’ models. More-
over, there are still many cellular processes that have not been sufficiently
studied experimentally. The lack of experimental data decreases the predic-
tivity of ’precise’ models. Therefore, the computational models present a
simplification of the cellular processes.
The typical study of signaling systems involves examining how the intensity
of a stimulus, e.g., cytokine dose, translates into the activity of signaling ef-
fectors, e.g., transcription factors[74, 75, 76, 77, 78, 79, 80]. This is usually
done by exposing cells to a range of doses and measuring responses either
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in bulk or at the single-cell level. Results of such experiments are then rep-
resented and interpreted in terms of dose-response curves. The standard
dose-response curve depicts how the mean or median of response changes
with the increasing dose and provides a basic, first-order model of how a sig-
naling system operates. Commonly, the dose-response curves are enriched
by the error bars with standard deviations of signaling effectors to depict
the heterogeneity of biochemical responses. However, there are many draw-
backs of such representation of signaling pathways. Firstly, cells exposed to
the same stimulus show great cell-to-cell heterogeneity [81, 82, 83, 84]. Hence,
the mean response can result from a small fraction of strongly responding
cells or a significant fraction of weakly responding cells [74, 75]. Moreover,
the standard deviation is not able to represent different distributions of cell-
to-cell heterogeneity. Secondly, the highly interconnected architecture typical
for mammalian signaling usually results in a single stimulus activating sev-
eral primary signaling effectors or downstream genes [85, 86, 87, 88, 89]. Fi-
nally, it was shown that the stimulation alters temporal profiles of signaling
responses [90, 91]. These problems can be addressed in two ways:

1. replacing the first-order model with a more complex parametric model,

2. interpreting the simple input-output relation as a communication chan-
nel.

The parametric models assume the structure of the biological system and de-
scribe its dynamics using various mathematical techniques. The most com-
mon modeling formalism assumes the deterministic behavior of molecules
and represents their dynamics as a set of ordinary differential equations
(ODEs). ODEs systems represent the production and consumption rates of
individual species in the model; hence, the change in concentration for each
species is represented by a single ODE. The ODEs models are obtained us-
ing mass-action kinetics that assumes that the rate of a chemical reaction is
proportional to the concentration of the reactants [92]. The difficulty with
mass-action kinetics is that it is only valid for elementary monomolecular
or pseudo-monomolecular reactions. Elementary reactions constitute funda-
mental processes; hence, they should not be decomposed into smaller steps.
Additional assumptions on the law of mass action provide novel kinetics. For
instance, Michaelis-Menten kinetics is used to describe enzyme-catalyzed re-
actions [93]. In contrast, Hill function is used to describe the membrane
diffusion process [94] and simple gene expression regulation [95]. Determin-
istic modeling is an excellent tool for organizing and formalize knowledge
about the cellular processes [8]. It also provides a mechanism for integrating
different experimental sources in a predictive model [96].
However, novel, high-throughput experimental techniques allow studying
the stochasticity of intra-cellular processes on the single-cell level. If we do
not want to lose the additional information hidden in variability, we need
another stochastic approach. A wide range of methods has been developed
to model intrinsic and extrinsic sources of variability in biological systems.
Intrinsic variability is a relatively well-understood aspect of biological mod-
els. Traditionally, it is modeled using the chemical master equations (CMEs),
which is the foundation for modeling stochastic dynamics in most physi-
cal, chemical, and biological phenomena [97]. However, analytic solutions
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of CMEs can be found only for a few trivial models. A good alternative for
studying stochastic models is the exact simulation of processes using Gille-
spie’s framework [98, 99]. However, to obtain a distribution resulting from
the intrinsic variability, many trajectories of the Gillespie algorithm need to
be simulated, which can be computationally expensive. Another option is
to solve CME using approximation methods, e.g., the finite state projection
[100], or linear noise approximation [101].
Significant effort has been invested in modeling intrinsic variability in sys-
tems biology, although it has been shown that extrinsic variability generally
dominates, especially in eukaryotic systems[70, 102]. In the literature, there
is no commonly accepted method for modeling extrinsic variability. Despite
several intense mathematical and theoretical studies of intrinsic and extrinsic
variability [70, 103, 104, 105, 102], computational modeling efforts that com-
bine intrinsic and extrinsic variability are still rare. In the literature, we could
find several solutions [106, 107, 108, 102]. Unfortunately, application of most
of them is limited, for example, due to the high computational cost [106], the
requirement of analytical solutions of extrinsic factor [107] or restriction to
only one source of extrinsic variability [108].
The inherent limitation of the parametric modeling approach is associated
with their fixed model structure. The prior knowledge and modeling as-
sumptions can lead to potential bias. Moreover, the dynamics of biological
models are susceptible to the kinetics parameter. Their values are estimated
from experimental data so that the model’s dynamic replicates the behav-
ior of the biological system with minimum error. However, the accuracy of
the estimation process is commonly limited due to the lack of experimental
data. Numerous tools have been proposed to address problems with mod-
els’ parameters, like identifiability and sensitivity analysis. However, many
of them are inherited from engineering and theoretical statistics; hence they
are not solely suited to the more complex models in quantitative biology
[1, 7]. Therefore, the necessity of developing new methods that specifically
address problems with parametrical modeling of biological systems.
Information theory provides a novel paradigm for analyzing biochemical
networks. Here, the complex signaling network is reduced to the input-
output information channel [109, 110]. Therefore, we do not adjust a de-
tailed description of each reaction but treat the system as a black box and
focus on the resulting response. This simplification protects from bias that
comes from the model’s structure and parameters estimation. Information
theory provides sophisticated tools to describe the statistical relation be-
tween input and output of the system. This methodology was developed
to analyze electronic communication, e.g., the accuracy of encoding and de-
coding schemes, precision, and size of data compression [111, 112]. In the
biological systems, this formalism achieves interesting biologically relevant
interpretations [113, 78, 5, 6]. However, it can be debated that metrics used to
quantify the information flow in the communication channels are the most
suitable for cellular signaling relays. For instance, communication channels
are developed to reduce signal noise and enable the perfect decoding of dis-
crete signals. On the other hand, the biological systems are characterized
by considerable variability of all processes; hence, they do not require exact
decoding of the input signal.
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In my research, I focused on developing analysis techniques in both paradigms,
i.e., parametrical modeling and information theory. In parametrical mod-
eling, I have proposed a novel metric for analyzing the relations between
groups of parameters. Based on this metric, I have created a tool for identi-
fiability analysis, which can improve parameters estimation and help mean-
ingful design experiments. Moreover, I have depicted the usefulness of local
and global sensitivity analysis in the context of quantitative biology. My
work in the field of information theory resulted in novel measures of infor-
mation flow that consider the nature of biological systems. Finally, I have
proposed a simple extension of the conventional dose-response curve that
enables describing biological systems with multiple effectors and takes into
account the variability of response.



22 introduction

1.2 mathematical models of biochemical signal-
ing pathways

Biochemical signaling networks are immensely complex and stochastic sys-
tems; therefore, understanding their processes requires various quantitative
strategies to enable biological insights. One of the approaches that deal with
this problem is computational modeling. Briefly, mathematical models of
signaling networks quantitatively describe changes of molecular state, e.g.,
copy numbers of molecules, in time after some biochemical reaction, e.g.,
activation of the signaling receptor through binding specific cytokine. Math-
ematical models present a simplified abstraction of signaling networks un-
der different levels of detail. Most signaling network reconstructions focus
on particular nodes, modules, or pathways in a given network (see Figure
2) [114]. Models can be abstract constructs used to emphasize some critical
features of signaling pathways [115, 116] as well can describe in detail the
whole dynamics of specific pathways in specific organisms [117, 118].

We can distinguish two roles of the modeling approach: descriptive and pre-
dictive. In the first role, models help to integrate experimental knowledge to
decipher phenomena observed in experiments. Here, the model reconstructs
the theoretical explanation of phenomena. Such models enable us to confront
our prior knowledge of the biochemical system with the actual behavior of
cells. It is done by comparing the model’s dynamics with experimental data.
In the latter role, modeling can be used to specify different, often mutually
exclusive hypotheses and then explore the possible emerging behaviors [9].
For instance, such techniques enable us to determine the exact conditions
under which different complex behaviors, such as oscillations or bistability,
can occur; it is also used to simulate experiments that would be difficult or
impossible to perform in the laboratory. The usage of modeling has the most
sense if it meets both issues.

The process of designing mathematical models is a complex procedure that
involves a series of interconnected steps of model improvement: (i) construc-
tion, (ii) verification, (iii) calibration, and (iv) validation. In the construction
step, we need to define the scope and level of modeling abstraction and math-
ematical methods to represent the molecular processes. In the verification
step, we check if the model’s behavior is in line with theoretical knowledge.
The calibration and validation of the model require the usage of experimen-
tal data. These steps are cyclically iterated until the improved model reaches
expected conditions. In my Ph.D., I was working on improving methods
used in the process of designing mathematical models. These methods are
applicable at various stages of model development. Below, I will introduce
the reader to the fundamental mathematical techniques related to the model-
ing of signaling pathways. I hope it will help to understand the contribution
of my work to mathematical modeling and systems biology.

In general, a mathematical model of a biological system can be seen as a map-
ping between a vector of model parameters, θ = (θ1, . . . , θl) ∈ Rl, to model
responses, x = (x1, . . . , xN) ∈ RN. In other words, θ and x can be thought of
as the model input (e.g., kinetic rates and initial conditions) and the model
output (e.g., mRNA, protein levels, and receptor states). The form of a re-
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lation between the output, x, and the parameter vector, θ, depends on the
assumptions about the specified biological system as well as our goal accord-
ing to the model. The main division is regarding attitude to the sources of
response diversity. In the deterministic regime, i.e., assuming homogeneity
within the cell and within a cell population, parameters-output relation is
described as a function

x = F(θ). (1)

In the stochastic setting model can be represented in two forms. Assuming
homogeneity within a cell population, the modeled relation takes the form
of probabilistic dependence

x ∼ P(x|θ). (2)

Otherwise, some a prior distribution θ ∼ P(θ) is introduced to describe diver-
sity in cell population. In such setting the output is considered over all possi-
ble environmental conditions, what mathematically is expressed by marginal
likelihood

x ∼ P(x) =
∫
P(x|θ)P(θ)dθ. (3)

1.2.1 Deterministic modeling

The assumption of homogeneity, both within the cell and within a cell pop-
ulation, significantly simplifies the mathematical description of a biological
system. Such models describe dynamics of dependent variables (model’s out-
put), i.e., changes of variables state, as a function of independent variables
(e.g., time and/or space). Here, the dynamics of the variables are strictly
determined by a set of primary conditions, i.e., kinetics parameters and ini-
tial values of variables. Commonly, signaling pathways are represented as
spatially homogeneous time-variant systems described by ordinary differ-
ential equations (ODEs). Here, the only independent variable is time. This
simplification facilitates the analysis of the effects of multiple inputs, feed-
back loops, and pathway crosstalk on the dynamics of complex signaling
networks [119, 120, 121].

Generally, ODEs describe how the a set of N variables, x = (x1, . . . , xN),
change with time t given an initial condition x(t0) = x0,

dx(t)

dt
= f(x(t), θ). (4)

Here, x(t) is the state of the system, for example, the concentration of some
entities, t is an independent variable, and f(·) is a possibly nonlinear function
that describes how the parameters θ affect the rate of the state’s change. The
output of the model can be then defined as a concatenated vector of values
of x at specified times, (t1, . . . , tn),

x = (x(t1), . . . , x(tn))
T . (5)

Generally, the solution of the Eq. 5, x(t) = F(θ, t) can be understood as a
time-dependent function. This solution settles down to a constant value in
biological models following an initial transient phase in specific conditions.
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This particular state of the system is called a steady state. It holds for the
state x = x∗ when the right side of the Eq. 5, f(·, ·), satisfy the condition

0 = f(x∗, θ). (6)

The stability of the ODEs solution plays an essential role in analyzing the
behavior of the model.

ODE models represent the rates of production and consumption of individ-
ual biomolecular species, dx(t)dt , in terms of mass action kinetics, an empirical
law stating that rates of a reaction are proportional to the concentrations of
the reacting species [9]. Each biochemical transformation is therefore repre-
sented by an elementary reaction with forwarding and reverse rate constants.
Changes in localization, a central feature of biological pathways, are repre-
sented by compartmentalization. For example, cytoplasm and nucleus can
be considered as two separate, well-mixed compartments [9]. A set of ODEs
gives the dynamics of the system

dx(t)

dt
= S ·w(x), (7)

where S is the stoichiometric matrix, whereas w(x) is a vector of reactions
kinetic functions. The stoichiometric matrix is obtained based on the prin-
ciple of mass balance. To derive a stoichiometric matrix for each species,
we have to track what produces it (collect the reactions where it acts as a
product) and consume it (collect the reactions where it acts as substrate).
Summing up these processes while respecting their stoichiometry gives the
corresponding rate of change of this species. A vector of reactions kinetic
functions, w(x) = [w1, . . . ,wR], describes how fast each jth reaction occurs.
The particular functional forms of w(x) depend on the reaction kinetic laws.
In the literature, we can find a large variety of reaction kinetic laws [122],
however the most crucial in modeling signaling pathways are law of mass
action and Michaelis-Menten kinteics.

The solution of ODEs representing biochemical model solutions is generally
obtained by numerical integration. Although for linear or saturated kinetics,
stationary concentration profiles can be obtained analytically [123, 124].

1.2.2 Uncertatintity and identifiability of parameters in the biological mod-
els

Characteristically, quantitative models are intrinsically dependent on param-
eters. Compared to engineering or physics problems, biological models de-
pend on a relatively large number of parameters [125]. Unfortunately, pa-
rameters of biochemical models rarely can be measured directly. Therefore,
the choice of parameter values requires methodological support.

Generally, the choice of the parameters values, i.e., their estimation, is per-
formed by comparing model’s output with experimental data. However, bio-
logical systems are observed partially, hence dimensions of observations are
smaller than the dimensions of internal model states. The comparison be-
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Figure 2: Figure from [114]. Scope of the model construction. Owing to a lack of
comprehensive data regarding the interactions in a network, most sig-
nalling network reconstructions focus on particular nodes, modules or
pathways in a given network. These reconstructions usually consist of a
list of associations between network components. Network nodes describe
the many interactions that a given molecules participates in. Network
modules consist of a group of related reactions that often incorporate
feedback mechanisms. Network pathways connect a signalling input to a
signalling output. Each of these types of reconstruction has distinct advan-
tages for analytical purposes. However, some properties emerge from the
interconnectivity of the nodes, modules and pathways with other network
components.

tween model and experimental data is done using function g(·, ·), that map
the internal model states, x(t), to the observables y(t)

y(t) = g(x(t), ϑ) + ε(t), (8)

where ϑ denotes scaling and offset parameters, whereas ε(t) represents the
measurement noise. The measure, that rate how well a model with particular
parameters values describes the experimental data yD is called a goodness-
of-fit (GOF). There are many possible choices for goodness-of-fit function
[9]. In the case of the biochemical models, researches commonly use the
chi-square function, χ2(θ). Characteristically, for normally distributed noise
ε(t) ∼ N

(
0,σ2

)
, χ2(θ) is a function of the model likelihood

χ2(θ) ∝ −2 · L(yD|θ), (9)

where L(yD|θ) = logP(yD|θ)) denotes the log-likelihood.

The larger the value of goodness-of-fit, the greater difference between the
model’s output and the experimental data. Thus, minimizing of goodness-
of-fit leads to the optimal (estimated) parameter values, θ̂ = arg min

[
χ2(θ)

]
.

Finding the optimal parameter, θ̂ is called an optimization problem and can
be solved using various numerical algorithms.

The most straightforward optimization algorithms start at some initial point
(e.g., prior or sampled parameters values) and move around on the land-
scape of parameters space to obtain a better fit. A straightforward strategy
is to move downhill as quickly as possible: known gradient of GOF descent,
this algorithm repeatedly estimates the local gradient and moves a short dis-
tance in the direction that most decreases the GOF. The method above is
called local because the algorithm penetrates the neighborhood of the cur-
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rent parameters estimates. There are some extensions of this method that
decrease the number of steps of the algorithm or can be more efficient by
taking advantage of the least-squares structure of our minimization prob-
lem, e.g., Levenberg-Marquardt algorithm. However, the landscape can be
arbitrarily complicated, with sudden sharp cliffs or even multiple local min-
ima, making such algorithms ineffective or leading to incorrect results. An-
other global approach is to choose various initial points and apply local
methods randomly. Popular global strategies include simulated annealing,
e.g., Markov Chain Monte Carlo (MCMC), and genetic algorithms inspired
by genetic recombination and natural selection.
When the model sufficiently describes measured data, it can be applied to
the purposes for which it was derived. Usually, the goal is to predict some
experimentally non-measurable values, e.g., rate constants or initial concen-
trations, time-courses of experimentally unobserved species concentrations,
or the system behavior under changed environmental conditions such as
altered network structure or different external stimulation. Therefore, re-
searchers need to define the level of confidence of the model’s prediction.
As the model intrinsically depends on the parameters’ values, the level of
prediction’s confidence is determined by the level of their uncertainty [126].
The uncertainty of the parameters’ values comes from the model’s structure
and ’so-called’ practical problems with their estimation. Structural uncer-
tainty comes from (1) compensative effects of parameter changes, i.e., there
is a function, which describes the relationship between the model’s param-
eters, also known as parameters collinearity; (2) insensitivity of individual
parameters, i.e., a change of the parameter value does not affect the model’s
output. The practical uncertainty happens when the amount and quality of
experimental data are insufficient to estimate parameters with high preci-
sion. The ’weakness’ of experimental data comes from various limitations,
e.g., availability of specific anti-bodies, technical constraints to the number
of species observed at once, or huge experimental costs (counted in time
and money). Consequently, biological systems are often only partially ob-
served. The parameter is non-identifiable if it cannot be precisely estimated
due to model’s or experimental limitations [118]. Contrarily, the parameter
is identifiable if its value can be determined explicitly.
Identifiability of parameters are determined within some range, called con-
fidence intervals (CI), which contain the "true" value of the parameter with
the desired probability [127]. Thus, the relevant issue is also the width of the
CIs, which indicates a model prediction reliability.
Mathematically, a confidence interval [θ̂i − σi, θ̂i + σi] of a parameter esti-
mate θ̂i denotes that with a confidence level α signifies that the true value
θ∗i is located within this interval with probability α.
Asymptotically, CIs are derived from the curvature of the likelihood, as
the Hessian matrix of the likelihood function, i.e., H = 5T 5 χ2(θ̂i). Then
asymptotic confidence intervals are equal

σi =
√
χ2(α,df) ·Cii, (10)

where C is a covariance matrix of the parameter estimates, i.e., C = 2 ·H−1,
χ2(α,df) is the α quantile of the χ2-distribution with df degrees of free-
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dom [128]. The approximation of the actual uncertainty of parameters us-
ing asymptotic CI is possible if the amount of experimental data is large
compared to the number of the parameters and the measurement noise is
relatively small. Such conditions are challenging to be satisfied in systems
biology. Therefore, the solution is to approximate CIs using a threshold in
the likelihood. In this approach, CIs are defined by a confidence region [129]{

θ|χ2(θ) − χ2(θ̂) < χ2(α,df)
}

, (11)

where confidence region borders represent CIs.
The analysis of CIs helps to recognize the identifiability of the parameters.
First of all, identifiable parameters characterize with finite confidence in-
tervals. On the other hand, the structural and practical non-identifiability
indicates non-finite confidence intervals.
Structural non-identifiability is related to the model structure independent
from experimental data. In such conditions, the parameter estimates θ̂ are
not uniquely identified, and consequently, the likelihood function, χ2(θ), ob-
tains its minimum for different parameters values. As a remedy for struc-
tural non-identifiability, most approaches aim to select an optimal subset of
parameters that is both sufficiently sensitive and has the lowest collinear-
ity. The identifiable subset can then be estimated jointly with the remaining
parameters assumed fixed.
In practical non-identifiability, insufficient amount and/or quality of exper-
imental data manifests in infinite CIs. Precisely, according to a definition
proposed in [126], a parameter estimate θ̂i is practically non-identifiable if
the likelihood-based confidence region is infinitely extended in increasing
and/or decreasing direction of θi. However, the likelihood has a unique
minimum for this parameter.
Following [126], we illustrate parameters identifiability using contour plots
of the likelihood function, χ(θ), for a two-dimensional parameter space, as
in Figure 3.A. Fistly in te left panel, structural non-identifiability results in
a perfect flat valley infinitely extended along with the corresponding func-
tional relation between parameters. Furter, the middle panel shows a practi-
cal non-identifiability that leads to the relatively flat valley, which is infinitely
extended in one direction. In contrast to the structural identifiability, a single
lowest point represents parameters to estimate, θ̂. Finally, in the right panel,
the confidence interval, expressed by a thick white line, is limited. Thus, this
plot represents a case where both parameters are identifiable.
However, it becomes challenging to discriminate between structural and
practical identifiability using this approach. Difficulties appear in multipara-
metric models with sparse or low-quality experimental data. Typically, in
the case of practical non-identifiability, there are observed non-single min-
ima of the likelihood function. Therefore, in [126] authors proposed a con-
venient and systematic approach for analysis parameters identifiability by
using profile likelihoods, χ2PL. Therein, the parameter space is explored for
each parameter in the direction of the slightest increase in χ2.
Precisely, the profile likelihood method works by systematically tracing an
optimal path over the likelihood or in the case of MAP estimation, the prob-
ability density function. Initially, parameters are estimated together, θ∗ = θ̂,
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Figure 3: A Contour plots of χ2(θ) for a two-dimensional parameter space, shown
in non-logarithmic scale for illustrative reasons. Shades from black to
whitecorrespond to low and high values of χ2, respectively. Thick white
lines display likelihood-based confidence regions and white stars the op-
timal parameter estimates θ̂. Left panel: a structural non-identifiability
along the functional relation h(θ) = θ1 · θ2 = 10 (dashed line). The
likelihood-based confidence regionis infinitely extended. Middle panel:
a practical non-identifiability. The likelihood-based confidence region is
infinitely extended for θ1 → ∞ and θ2 → −∞, lower confidence bounds
can be derived. Right panel: both parameters are identifiable. Figure from
[126]
B Black lines display profile likelihood versus parameter in the hypothetic
example. Gray stars display the estimated values of the parameters θ.
Dashed lines represent thresholds for confidence intervals. Left panel: a
structural non-identifiability modification of parameter value can be com-
pensated by changing other parameters, which keep the likelihood value
constant. Middle panel: practical non-identifiability. Right panel: identifia-
bility - changing the value of parameter leads to decreasing the likelihood.

after which each parameter θi is profiled separately. The profiled parameter
is subsequently changed within some range, i.e., θi ∈ [θ∗i − σPL, θ∗i + σPL].
Subsequently, for each parameter’s value, all the unchanged parameters are
re-estimated. In such case, the profile likelihood of parameter θi at point
θi = θ̃i is equal

χ2PL,i(θ̃i) = min
θ−i

[
χ(θ|θi = θ̃i)

]
, (12)

where θ−i denotes, that re-optimisation of likelihood function is with respect
all parameters except θi. Analysis of the whole profile likelihood, i.e., for
each value within range [θ∗i − σPL, θ∗i + σPL], enables to determine the iden-
tifiability of the patameter. If parameter θi is structurally non-identifiable,
then its profile likelihood is flat, because small changes in θi can be easily
compensated by changes of other parameters (see illustrative Figure 3B). The
profile likelihood of a practically non-identifiable parameter has a minimum
but is not excessing a threshold χ2(α,df) within a range of values of param-
eter θi. Finally, the profile likelihood of an identifiable parameter exceeds
χ2(α,df) for both increasing and decreasing values of θi.



1.2 signaling pathways 29

Analysis of the PL enables to distinguish non-identifiability among cali-
brated parameters. As it was mentioned, non-identifiability parameters alter
the level of confidence in the model’s prediction. Hence, it should be taken
into account, especially during experimental design. Poorly planned experi-
ments might lead to practical non-identifiability and might not increase the
model’s predictivity. Calculation of PL requires experimental data; therefore,
this method can only be used to verify the identifiability of the parameters.
In the article, [2] we introduced the asymptotic version of profile likelihoods
(APL) that enables to predict non-identifiability without experimental data.
This technique can be used for designing the most efficient experiments from
the modeling perspective.

1.2.3 Sensitivity analysis of parameters

Analysis of the identifiability of the parameters improves the model’s ac-
curacy, i.e., the precision of description of the system’s behavior and the
ability to predict novel phenomenons. When the model’s parameters are
determined, we can investigate how parameter values impact quantitative
characteristics of model behavior. The sensitivity analysis provides rigorous
tools for this purpose. A key concept in sensitivity analysis is the sensitivity
coefficient, which quantifies how sensitive the model output is to changes
in a given parameter. The sensitivity coefficient can be calculated for small
changes around nominal values. Such a technique is called local sensitiv-
ity analysis. For deterministic models, a natural way to evaluate the local
sensitivity is to estimate the derivative using a Taylor expansion for small
perturbations around some nominal value, θ∗

x(θ∗ +∆) ≈ x(θ∗) + ∂x

∂θ
·∆. (13)

The higher raise of the output, x(θ∗+∆), to the small perturbation of param-
eter θ, the more significant its impact on the model. This relation is described
by the sensitivy coefficient ∂x∂θ . Parameters that have a more substantial effect
on the model are called sensitive. For multi-parameter model we analyse the
relation between output and all parameters, ∂θ = (∂θ1, ...,∂θl). If changes in
parameters are small, the problem is solved by finding the derivative of a so-
lution of the equation (4), x(t), with respect to the parameter θi, zi(t) =

∂x(t)
∂θi

.
Evaluation of zi(t) at the times and components of interests defines the sensi-
tivity vector Si =

(
z
(q)
i (t1), . . . , z

(q)
i (tn)

)
of the parameter θi. The sensitivity

vector describes the shift in Y in response to perturbation in the parameter
θi, ∂Y = Si∂θi. A collection of the sensitivity vectors for all i = 1, . . . , l con-
stitutes the sensitivity matrix S = (S1, ...,Sl), which summarises the change
in Y in response to perturbation of all of the model parameters ∂X = S∂θ.
The sensitivity matrix, S, is directly linked with the concept of Fisher infor-
mation. Given that Y is observed with the Gaussian unit variance error the
FI can be written as

FI(θ) = STS. (14)
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Therefore the FI contains information regarding the size of a perturbation,
||∂X|| =

√
∂θTFI(θ)∂θ. The pairwise similarity between parameters, quanti-

fied as the cosine between the Si and Sj vectors, is also given by elements of
the FI, cos(Si,Sj) = STi Sj/||Si||||Sj||.
In the global sensitivity analysis, the sensitivity coefficient is calculated ar-
bitrary changes within some range [130]. In contrary to the local version,
global analysis enables the comparison of parameter impact across parame-
ter space.
Learning which parameters have more robust and weaker relationships to
model behavior is valuable in itself. However, it provides other insights
about model properties. For instance, sensitivity analysis shows how strong
the system’s behavior is to external perturbations of parameters [131, 132].
Moreover, if experiments exhibit unexpected variability, sensitivity analysis
helps verify if parameter value fluctuations can explain such observations.
Knowing sensitivities helps understand the effects of uncertainties in param-
eter estimates. Specifically, sensitive parameters can be inferred from data
with higher accuracy than insensitive parameters. Therefore, calculating sen-
sitivities is helpful to select experiments that yield more informative data to
constrain unknown parameter values. Finally, knowledge of parameter sen-
sitivities can also be used to identify and eliminate insensitive parameters,
leading to simplified models [133].
There are a large number of methods of sensitivity analysis [134]. Most of
them are inherited from engineering and theoretical statistics; they are not
entirely suited to the specificity of the biochemical models. Notably, many
techniques are limited only to the deterministic regime. In the article, [1] I
present local and global sensitivity methods analysis with their application
to biochemical models.
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1.3 information theory in anlysing singlaing path-
ways

Claude Shannon developed information theory to find fundamental limits
on signal processing and communication operations. However, it might seem
confusing that information can be quantified, not a physical entity but an
abstract concept.

The definition of the amount of information is provided by Shannon’s infor-
mation theory [112, 111]. Firstly, he proposed to quantify the information
that is kept in some random data, by the average description length that is
needed to specify the microstate of the system. Precisely, for a discrete ran-
dom variable X, with possible outcomes x1, . . . , xn, which description length
is equal l1, . . . , ln and the probability of occurence p(x1), . . . ,p(xn) the aver-
age description length of the data has the lower band∑

i

p(xi)li > −
∑
i

p(xi) logp(xi) = H(X), (15)

where H(X) is called entropy of random variable X. This inequality indicates
that the average description length for any representation of xi cannot be
reduced to less than the value of entropy. Thus, entropy can be used as a
measure of the amount of information contained in a distribution (or data
which is obtained from distribution). The entropy, H(X), is expressed in bits,
and 2n·H(X) equals an average number of states of data set of length n with
entropy H(X). Entropy is interpreted as the uncertainty regarding data val-
ues when there is no other source of knowledge. Therefore, entropy is the
highest when the input distribution is uniform because the probability that
we guess the input value without any additional knowledge is the lowest.
On the other hand, entropy takes a maximum value when x can bring only
one value.

The notion of the information proposed by Shannon can be interpreted in a
broad sense to include all systems in which the state of one part affects the
state of another element [112, 111]. Such a system can be seen as a model that
consists of the input (sender) X, the output (receiver) Y, and a channel X→ Y,
that describes the transformation of input into output. Shannon provided a
formal definition of a communication system. The communication channel
is described as a stochastic model, where X and Y are random variables,
whereas channel X → Y by a conditional random variable Y|X. Random
variables X, Y follow distributions P(x) and P(y), whereas the channel Y|X is
described by conditional distribution P(y|x).

When the output is observed, the uncertainty regarding the input values is
described by the conditional Shannon entropy

H(X|Y = y) = −
∑
i=1

P(xi|Y = y) log2 P(xi|Y = y), (16)
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where P(xi|Y = y) decscribe the probability that the input value xi is gener-
ated by the output y

P(xi|Y = y) =
P(y|X = xi)P(xi)∑m
j=1 P(y|X = xj)P(xj)

. (17)

Entropy above describes uncertainty regarding input value after observing
a specific output value, y, and is not representative of all possible output
values. The average entropy of the input after observing the output is given
by

H(X|Y) =

∫
y∈Y

H(X|Y = y)P(y)dy, (18)

over some output space Y.

The difference between initial, a priori, entropy of the input, H(X), and av-
erage entropy of the input given the output, a posteriori, H(X|Y), quantifies
the information gain that defines the Shannon information, or mutual infor-
mation

I(X, Y) = H(X) −H(X|Y) =
∑
i

∑
j

P(xi,yj) log
P(yj|xi)

P(yj)
. (19)

The mutual information can be interpeted as the amount of uncertatinty
regarding random variable X, which can be expained having knowledge
about random variable Y.

The transmission via the channel Y → X depends on the communication
system and the input distribution P(X). The upper bound for the mutual
information, given an input distribution P(X), is called the channel capacity

C∗ = max
P(X)

I(X, Y) (20)

Shannon defined information capacity to quantify log2 of the maximal num-
ber of discrete symbols that can be transferred in a single transmission with
a negligible error when messages are encoded in terms of long sequences of
discrete symbols through a communication channel described by the proba-
bility distribution P(Y|X). Such interpretation of Shannon capacity is known
as Shannon coding theorem [111]. The distribution for which the maximum
of mutual information is achieved is called the optimal input distribution
and denoted as P∗(X). The information capacity, C∗, is expressed in bits, and
2C
∗

can be interpreted, within Shannon’s coding theorem, as the number of
input values that the system can effectively resolve based on the information
contained in the output. For instance, C∗ = 2 denotes the existence of four
states that can be distinguished, on average, with negligible error.

1.3.1 Measure of information flow in the signaling pathways

Systems biology applies information theory for two primary purposes. Firstly,
it is used to quantify information transmission in cells [113, 135, 135, 78, 80].
Secondly, mutual information can help to identify complex and nonlinear
relationships within signaling network [136, 137, 138]. It comes from the fact
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that mutual information is a measure of statistical dependence between two
variables that, in contrast to classical correlation measures, is robust to di-
mensionality, nonlinearity, and the exact analytical form of the underlying
distribution [139, 140, 141, 142]. In my thesis, I was focused on the first ap-
proach.
Following Berg and Purcell [143], probabilistic modeling has been applied
to examine the fidelity of receptors, as well as more complex biochemical
signaling systems [113]. In this way, the signaling pathway can be interpreted
as an information transmission problem suitable to be described from the
perspective of mathematical information theory.
Regardless of specific details of a signaling pathway, a signaling system can
be considered as an input-output device described using a probability distri-
bution P(Y|X = x) that for a given level of input, x, elicits stochastic output,
Y (see Figure 4). In a typical example, the input, x, is the concentration of a
ligand, e.g., cytokine, that activates a receptor. The output, Y, is an activity
of one or more signaling effectors, e.g., of transcription factors quantified
over time. As cellular signaling systems are inherently stochastic, the infor-
mation about the input contained in the output is imprecise, and only a
limited number of input values can be resolved [143, 79, 144, 145]. In a typ-
ical experiment aimed to quantify fidelity, input values, x1 6 x2, . . . 6 xm,
ranging from 0 to saturation are considered, that follow a certain distribu-
tion P(X) = (P(x1), . . . ,P(xm)). Formally, responses corresponding to each
of the inputs, xi, are assumed to follow a probability distribution

y ∼ P(Y|X = xi). (21)

Schematically, the representation of the signaling pathway as a channel is
presented in the Figure 4.
It might seem that modeling of signaling pathways as the input-output chan-
nel reduces a complex mechanism to a simple dose-response relationship.
However, these are the most relevant factors that describe biological con-
text mechanism [109]. In contrast to parametric models, such representation
rejects any prior assumptions about the system. Moreover, information the-
ory takes into account the probabilistic character of biological phenomena.
Hence, we do not need to build models as the structure of the complex mech-
anism is somehow hidden in the heterogeneity of responses. Information
theory elucidates this complexity in terms of the discrimination of different
inputs based on the responses.
Representation of the signaling pathway as a communication channel leads
to a novel interpretation of information measures. In the context of biochem-
ical signaling entropy of the input, H(X) quantifies the prior uncertainty re-
garding the stimulants when we do not observe the response. On the other
hand, when the response to the stimulation is observed, then remaining un-
certainty regarding the stimulants is quantified by the conditional entropy
H(X|Y). Thus, the information transfer of a given signaling system is equal
to uncertainty reduction when we observe the signaling response. The defi-
nition above strictly corresponds to the mutual information, I(X, Y). In other
words, the mutual information tells us what amount of knowledge about the
input the signaling system can express (write) in the signaling response in
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certain environmental conditions, described by the distribution P(X). When
applying these concepts to biological situations, the in vivo input distribu-
tion is often difficult to measure, so the channel capacity is usually calculated
instead of evaluating the mutual information from the input distribution. In
the biological systems, we could interpret the mutual information as a mea-
sure of the adaptation to the environmental conditions, represented as the
input distribution [145]. Therefore, it is said that the optimal distribution of
stimulants, P∗(x), describes the most suitable environmental conditions for
which the biological system has adapted during the evolutionary process
[145]. Therefore, the channel capacity quantifies how many distinguishable
states the signaling systems sense, which provides the overall signaling fi-
delity in the best environmental conditions, represented as an optimal oc-
currence of the set of stimulant concentrations. According to the capacity
values, we can distinguish three types of cellular systems:

• cells can distinct only presence and absence of the stimulus, 2C
∗
= 2,

• cells distinguish the stimulant with mistakes, 2C
∗
< 2,

• cells distinct additionally the level of stimulant doses, e.g., small or
high level, 2C

∗
> 2.

Estimation of the mutual information requires a large sample size for the
data set; therefore, many single cells need to be measured. In such a case,
we interpret information as "information at the population level". It assumes
that cellular systems do not differ significantly between cells. On the other
hand, if a single cell can be stimulated and measured multiple times, we ob-
tain a single cell system description. Hence, analyzed information refers to
"information at the single-cell level". Here, we assume that the cellular sys-
tem can differ between different cells. The interpretation of the information
depends on the problem settings involved in encoding and decode systems.

1.3.2 Applications of information theory to systems biology

Information theory has been extensively used to examine information pro-
cessing in signaling transduction [113, 135, 135, 78, 80]. Here, we present
some of the essential works in this area.
In [113] authors studied the channel capacity and mutual information be-
tween an upstream transcription factor, Bicoid, and a downstream target
gene product, Hunchback, during early embryogenesis in Drosophila flies.
The authors showed that in vivo Bicoid/Hunchback system uses a distribu-
tion of the input, Bicoid, that leads to the mutual information that differs
only by 10% from the channel capacity. If the close agreement in mutual
information values and the channel capacity could be generalized, it would
imply a design principle in cellular information processing.
In [135] authors examined the channel capacity between tumor necrosis fac-
tor (input) and the transcription factor NFκB and activating transcription
factor–2 (ATF-2) (outputs). They found that a combination of the effects of
NF-κB and ATF-2 increases the information capacity. Moreover, the authors
predicted potential structures of the network of information transmission.
They defined their properties and the consequences for the cellular system.
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In [78] authors calculated the channel capacity of the continuous-time course
of molecular concentrations in response to stimulation measured using live
imaging. The novel method of calculation of the channel capacity uses the
k-nearest neighbors method. The combined effect can increase the channel
capacity compared with using only a snapshot at a single time point.

In [5] authors proposed a novel algorithm for quantification of mutual in-
formation and channel capacity in signaling systems with high-dimensional
outputs and a large number of input values. The provided solution is effi-
cient in terms of computational time as well as the sample size needed for
accurate estimation.

In [80] compared the mutual information in the single-cell with population
level in G protein-coupled receptor signaling. Authors stimulated human
kidney embryo cells, HEK293, with different doses of acetylcholine (Ach),
which activated the muscarinic acetylcholine receptor M3R - the only mem-
ber of the acetylcholine GPCR group expressed in HEK293 cells - resulting in
Ca 2+ intracellular influx, which was measured as the signaling output in in-
dividual cells using a live imaging technique. Individual cells were exposed
5 times to each of 7 increasing doses of Ach so that 35 measurements were
taken for each cell so that individual quantitative characteristics of individ-
ual cells were obtained, examining 433 cells in total. For each dose, the data
enabled the construction of response distributions both for the population
of cells as well as for individual cells. The authors showed huge differences
between single cells, suggesting that the information transmission system
differs between individual cells. However, the law number of samples used
to estimate the channel capacity leads to questions regarding the overestima-
tion of this measure. Moreover, the authors showed that the average channel
capacity at the single-cell level (almost 2 bits) was greater than the channel
capacity at the population level, which is expected.

1.3.3 Bottleneck of Shannon information for describing information flow in
signaling

Shannon information gained widespread applicability in engineering and
has also been adapted to quantify information transfer in cellular signal-
ing pathways. However, it can be debated whether it is the most suitable
measure for quantification of information flow along with cellular signaling
relays.

Cellular signaling systems do not transfer information with messages en-
coded in terms of long sequences of discreet symbols, which makes the
interpretation of Shannon information difficult to formulate under the cir-
cumstances in which cellular signaling operates.

The Shannon information can be interpreted as the number of inputs that can
be discriminated on average based on cellular response. However, it does
not tell us directly which inputs and to what extent can be distinguished.
For instance, what is the difference between two signaling systems with the
number of distinguishable states equal 1.7, and 1.4, respectively? Typically, it
is said that the first system deciphers the proper input with fewer errors than
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Figure 4: Signaling pathway as a communication channel.
On the left schematic representation of the signaling pathway. Extracel-
lular signaling molecules (e.g., ligands) bind to specific membrane recep-
tors, activating a series of intracellular reactions (signaling pathway). This
process culminates in the translocation of a transcription factor into the
nucleus, inducing the expression of target genes.
In the middle panel representation of signaling pathway as a simple input-
output model. Input and output are represented as random variables X, Y.
The signaling system can be considered an input-output device described
using a probability distribution P(Y|X = x).
On the right side, schematic presentation of the sender-receiver commu-
nication system. Here, the signal, X, is transferred to the receiver via a
communication system. The signal is decoded to the form of cellular re-
sponse, Y. The accuracy of the communication channel is described as
an amount of knowledge about the signal, X, that we can obtain based on
the decoded outcome, Y. The information is quantified using the notion of
entropy as an uncertainty. Therefore, the accuracy of the communication
channel is defined as the mutual information between sent and received
signals, i.e., I(X, Y). It is equal to the difference between the entropy of
the signal, H(X), and the entropy of the signal given the received signal,
H(Y|X), i.e., I(X, Y) = H(X) - H(Y|X). The maximal mutual information
depending on the signal distribution is called channel capacity, C∗.

the second one. However, there is no general formula that maps Shannon’s
information to errors’ numbers.
Shannon information depends on the input distribution, P(X), which in most
biochemical applications are unknown, and a rationale for choosing a partic-
ular distribution is missing. Besides, maximization concerning the input dis-
tribution for calculating information capacity raises the question of whether
cellular signaling operates under optimal conditions. Moreover, the Shannon
measure’s strong deprecation of the overlapping output distributions leads
to the optimal distribution, consisting of the most extreme signals. However,
such a repertoire of signals is extremely rare.
Taking all into account, there is a necessity to consider how to measure an
information flow in signaling pathways. Current methods provide a formal
description and important insights; however, their properties do not fully
match the properties of biological systems.
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This thesis aims to develop quantitative methods that can deal with the
complexity of the cellular signaling pathways. My work focused on two
general approaches to analyzing signaling pathways, i.e., parametric and
non-parametric modeling. The first approach aims to explore in detail pro-
cesses of signaling pathways described as multi-parameter models. In the
second approach, the complexity of the signaling mechanisms is hidden in
the stochasticity of observed cellular responses.
I defined three objectives to accomplish these goals:

• Objective A. Identification of the potential of sensitivity analysis para-
metric methods for studies of cellular signaling.

• Objective B. Utilization of identifiability analysis approaches to exam-
ine multiparameter models of signaling pathways.

• Objective C. Development of non-parametric methods suited for the
complexity of cellular signaling processes.
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3.1 canonical correlation analysis

Canonical correlation analysis (CCA) is a statistical method used to mea-
sure the linear relationship between two multidimensional variables [146].
It was developed by Hotelling in mid 1930s [147] and is commonly used in
various areas, e.g., economics, medical studies, engineering [148, 149, 150].
Briefly, CCA retrieves bases for each variable in which the correlation matrix
between the variables is diagonal, and the correlations on the diagonal are
maximized. The dimensionality is reduced to the smallest dimensionality of
the two variables. Characteristically, CCs are invariant with respect to affine
transformations of the variables.
Let us consider two sets of vectors x = (x1, . . . , xn) and y = (y1, . . . ,ym).
The goal is to find bases, in which the correlations of the variables onto
these basis vectors are mutually maximized. Let us look at the case where
only one pair of basis vectors are sought, namely the ones corresponding to
the largest canonical correlation. Those basis vectors are obtained by finding
the linear combinations x̃ = xTwx and ỹ = yTwy, such that their correlation
is maximized, i.e.,

ρ =
x̃ỹ√
x̃2ỹ2

=
wTxxy

Twy√
(wTxxx

Twx)(wTyyy
Twy)

=
wTxΣxywy√

(wTxΣxxwx)(w
T
yΣyywy)

(22)

Vectors x̃ and ỹ are first pair of canonical variables. The maximal correla-
tion ρ equals first eigenvalue, whereas wx and wy are eigenvectors of the
covaraince matrix between x and y, i.e.,

C =

[
Σxx Σxy
Σyx Σyy

]
. (23)

Thus, the canonincal correlation is obtained by solving the eigenvalue equa-
tions {

Σ−1
x,xΣx,yΣ

−1
y,yΣy,xwx = ρ2wx

Σ−1
y,yΣy,xΣ

−1
x,xΣx,ywy = ρ2wy

(24)

The number of non-zero solutions of eigenvalue equations equals the small-
est dimensions of spaces defined by a set of vectors x and y; hence it is
less than minm,n. The following pairs of canonical variables are obtained
by finding eigenvalues of decreasing magnitudes. The subsequent canonical
correlations are uncorrelated (orthogonal) to previous solutions due to the
symmentry of the covariance matrix, C. Let x̃(i) and ỹ(i) be an ith pair of
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canonical variables, and ρi is corresponding canonincal correlation. Then,
for any i 6= j 6= min(m,n) canonical variables satosfy the condition

x̃(i)x̃(j) = wT
x̃(i)
xxTwx̃(j) = w

T
x̃(i)
Σxxwx̃(j) ,

ỹ(i)ỹ(j) = wT
ỹ(i)yy

Twỹ(j) = wTỹ(i)Σyywỹ(j) ,

x̃(i)ỹ(j) = wT
x̃(i)
xyTwỹ(j) = wTx̃(i)Σxywỹ(j) .

(25)

There is a strict realiton betwwen canoncial correlations and mutual infor-
mation. Let us consider two random multivariate normal variables X, Y.
Suppose X = (X1, . . . ,Xm) and Y = (Y1, . . . , Yl). We can divide the Fisher
information matrix and the covariance matrix Σ = FI−1 into components
corresponding to X and Y

Σ =

(
ΣXX ΣXY
ΣYX ΣYY

)
(26)

and

FI =

(
FIXX FIXY
FIYX FIYY

)
. (27)

The mutual information formula for the multivariate normal can be easily
computed using one of the following well-known formulae [151]

I(X, Y) = −
1

2
log
(

|Σ|

|ΣXX||ΣYY |

)
(28)

or

I(θX, θY) = −
1

2

k∑
j=1

log(1− (ρj)
2) (29)

where | · | denotes the determinant of a matrix and ρi are canonical correla-
tions calculated from Σ. The formulae (28) and (29) have however two strong
disadvantages: involve inversion of the FI, and requires division by the ma-
trix determinant, which can be close to zero.

In the article [2] we have shown that Eq.28 can be reformulated to avoid
inversion of the FI. Precisely, we prooved that

|Σ|

|ΣX||ΣY |
=

|FI|

|FIX||FIY |
. (30)

Therefore, the mutual information (Eq. 29) can be reformulated as

I(X, Y) = −
1

2

k∑
j=1

log(1− (ρFIj )2), (31)

where ρi are canonical correlations calculated directly from FI. These are
defined as

ρi = max
wiX,wiY

 wiX
T
FIABw

i
Y√

wiX
T
FIAAw

i
Xw

i
Y

T
FIBBw

i
Y

 (32)
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subject to (i 6= j)
wiX

T
FIAAw

j
X = 0,

wiY
T
FIBBw

j
Y = 0,

and
wiX

T
FIABw

j
Y = 0,

for i = min(m, l) and j < i.
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3.2 hierarchical clustering

Clustering aims to find similar objects and assign them into groups, called
clusters. Clustering is an unsupervised classification method, which goal
is to find natural centers for a set of unlabeled objects. Clustering is fun-
damental statistical and data exploratory analysis used in multiple areas,
including pattern recognition, image analysis, information retrieval, bioin-
formatics, data compression, computer graphics, and machine learning.
Hierarchical clustering is one of the types of clustering. Contrary to many
other methods, hierarchical clustering does not have a pre-defined number
of clusters. In general, we distinguish two clustering strategies agglomerative
and divisive (see Figure 5).
Agglomerative clustering is also called bottom-up. Therein, each object starts
as a one-element cluster. Iteratively pairs of the most similar clusters are
merged as one and move up the hierarchy.
Divisive clustering is commonly known as a top-down approach. In this
case, all objects are grouped in one cluster, recursively divided into the most
distinctive clusters, which moves down the hierarchy.
In both approaches, the result is a hierarchy of nested clusters in both cases,
usually presented in a dendrogram. A dendrogram is a multi-level hierarchy
diagram representing a tree in which clusters from one level are linked and
form larger clusters of the higher level.
The hierarchical clustering algorithm requires defining a measure of similar-
ity between sets of objects. Usually, this is done by defining a proper metric
function (e.g., Euclidean and Manhattan distance), a linkage criterion that
specifies the similarity of sets as a function of the pairwise distances of ob-
jects in those sets (e.g., simple/complete-linkage clustering).
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Figure 5: Representation of the hierarchical clustering with a diagram called a den-
drogram. The bottom points (nodes) represent observations. The connec-
tions with black lines determine the clustering results. The height of the
linkage is proportional to the dissimilarity between connected groups of
parameters. The horizontal dashed line represents the cut-off that forms
clusters of the most similar observations. Clusters are represented with
colors. The arrows on the left and right sides of the dendrogram repre-
sent the clustering strategies, agglomerative and divisive, respectively.
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3.3 generalisation of shannon information in the
rényi sense

Eight years after publication of Shanon’s concept, in 1956 Alfred Rényi gen-
eralized Shannon’s entropy by questioning one of the Shannon’s axioms
[152]. Precisely, Shannon assumed ammong others that for any distribution
P = (p1,p2, . . . ,pn) and for t ∈ [0, 1], the entropy measure should follow a
formula

H [((t · p1, (1− t) · p1,p2, . . . ,pn)] = H [(p1,p2, . . . ,pn)] +H [(t, 1− t)] . (33)

Rényi proposed to replace this axiom with a weaker additivity condition.
Additivity of the entropy indicates that a combined experiment consisting
of the performance of two independent experiments is equal to the sum of
the entropies of these two experiments. Formally, for distributions P and Q,
the additivity is expressed as

H [P ∗Q] = H [P] +H [Q] . (34)

Following this concept, Rényi proposed a novel parametrized entropy mea-
sure, Hα, where the α ∈ [0,∞]. Generally speaking, α quantifies the penalty
for the deviation from the scenario of equiprobable values, which maximize
the entropy regardless of α. Particularly, for α = 1 Rényi entropy takes the
Shannon form.
The definition of the differential Rényi entropy, also called α entropy, is
based on the generalization of the relative entropy (Kullback Leibler diver-
gence) [153].

Definition 3.3.1 (Rényi Divergence). Let X be random variable, whereas P and
Q be a probability distibutions with density functions p(x) and q(x), respectively.
Then the Rényi divergence, Dα, between the probability distributions P and Q of a
random variable X is defined as

Dα(P||Q) =
1

1−α
log
∫
p(x)1−α

q(x)1−α
p(x)dx, (35)

where α ∈ (0, 1) ∪ (1,∞) denotes order of Rényi divergence. Moreover, the Rényi
divergences of orders α ∈ {0, 1,∞} are defined as [154]

D0(P||Q) = lim
α↓0

Dα(P||Q) = − logQ(p > 0),

D1(P||Q) = lim
α↑1

Dα(P||Q) = D(P||Q),

D∞(P||Q) = lim
α↑∞Dα(P||Q) = log

(
ess supP

p

q

)
,

(36)

where ess sup denotes the essential supremum1.

Rényi divergence follows many properties of the Kullback-Leibler diver-
gence. For instance, Dα(P||Q) is nonnegative for all α > 0 [153]. Moreover,

1 The essesntial supremum of any random variable X with respect to the probability distribution
P is defined as ess supP(X) = sup {c|P(X > c) > 0}
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for α ∈ (0,∞) the Rényi divergence is equal to 0 if and only if PX(·) = QX(·).
However, for α→ 0 and α→∞ Dα(P||Q) is not sufficient to claim the equal-
ity of PX(·) and QX(·). Morevover, the Rényi divergence is nondecreasing in
α [153], i.e.,

D0(P||Q) 6 Dα(P||Q) 6 D∞(P||Q) for any α ∈ (0,∞). (37)

Given the definition of Rényi divergence, we can introduce the notion of
Rényi entropy.

Definition 3.3.2 (Rényi Entropy). Let X be a random variable on sample space
X, that is an interval I of length n. Let P be a probability distribtuion with density
functions p(x), that has a support in an interval I. Then the Rényi entropy of order
α ∈ [0,∞] of random variable X described by probability distribution P is defined
as

Hα(X) = logn−Dα(P||UI), (38)

where UI denotes the uniform distribution on I.

The Rényi’s entropy is monocite in α, which comes directly from the Eq. 38

and fact that Dα(·||·) is nondecresaing in α Eq.37. Precisely, Hα(·) is nonin-
creasing in α, i.e.,

H∞ 6 Hα 6 H0. (39)

Rényi entropy properties lead to more convenient formulae for different
Rényi orders.

H0(X) = log |{x ∈ X|p(x) > 0}| Hartley or max-entropy (40a)

Hα(X) =
1

1−α
log
∫
(p(x))αdx α ∈ (0, 1)∪ (1,∞) (40b)

H1(X) = H(X) Shannon entropy (40c)

H∞(X) = min
x∈X

− logp(x) min-entropy (40d)

Many properties of Shanon’s entropy are not generalised. For instance, un-
like Shanon’s entropy, Hα(X) (for α 6= 1) suffers from the disadvantage that
the ineqaultity Hα(X1,X2) 6 Hα(X1) + Hα(X2) does not hold in general
[155]. Moreover, if we mimic the definition of the conditional entropy,H(X|Y),
and define conditional Rényi entropy as

∫
Y p(y)Hα(X|Y = y)dy, then the

conditional version may be larger than Hα(X) [156]. Hence, the definitions
of the mutual information and the channel capacity also cannot be translated
one-to-one to Rényi version.
Due to the importance of the Rényi generalizations, [157] there have been
proposed multiple remedies for this situation. We are particularly interested
in the definition of generalized mutual information. Below, we review two
major approaches to accomplish such generalization [157]. All of them have
been designed for the application of the coding theorem. Hence, some of
them are defined only to the discrete input alphabet.
To be consistent, here we consider the memoryless channel Wd : X → Y

described by the by a conditional probability distribution P(Y|X), where X is
a random variable on finite discrete alphabet X (M = |X|) and Y is a random
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variable on alphabet Y. Limitation to the discrete memoryless channel is not
problematic, as the signaling pathways are usually analyzed for a limited
range of the input (signal) values.
The different definitions of generalized Rényi’s mutual information have
been derived from different representations of their Shannon analog, i.e.,

I(X, Y) = H(X) +H(Y) −H(X, Y) (41a)

= H(X) −H(X|Y) (41b)

= D(PY|XPX||PY × PX) (41c)

= D(PY|X||PY |PX) (41d)

= min
QY

D(PY|XPX||QY × PX) (41e)

= min
QY

D(PY|X||QY |PX), (41f)

where minimizations are taken over unconditional distributions on Y.

3.3.1 Arimoto-Rényi mutual information

Suguru Arimoto drew his inspiration from the Eq. 41b. However, as it was
mentioned, there is no simple Rényi equivalent of conditional entropy. There-
fore, Arimoto proposed a novel definition of the conditional entropy [158].

Definition 3.3.3 (Conditional Arimoto-Rényi entropy). Let us consider the
channelWd. Then the conditional Arimoto-Rényi entropy,Haα(X|Y), for α ∈ (0, 1)∪
(1,∞) is defined as

Haα(X|Y) =
α

1−α
log
(
E
[
||PX|Y(·|Y)||α

])
(42a)

=
α

1−α
log

(
E

[(∑
x∈X

(
PX|Y(x|Y)

)α)−α])
, (42b)

where || · ||α denotes the α-norm. By its continuous extension, the conditional Arimoto-
Rényi entropy of orders 0,1 and∞ are defined as

H0(X|Y) = ess supH0(PX|Y(·|Y)), (43a)

H1(X|Y) = H(X|Y), (43b)

H∞(X|Y) = − log E

[
max
x∈X

PX|Y(x|Y)

]
, (43c)

where ess sup denotes the essential suprememum.

Having the definition of the conditional Rényi entropy, we can define the
Arimoto-Rényi mutual information [158].

Definition 3.3.4 (Arimoto-Rényi mutual information). Under the assumptions
as in 3.3.3, the Arimoto-Rényi mutual information of the channel Wd is defined as

Iaα(X, Y) = Hα(X) −Haα(X|Y). (44)
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The conditional entropy in Arimoto sense has an interesting interpretation
because of its relation to the Bayesian hypothesis testing [155]. Following
the article Sason et. al. [155], let us consider the aforementioned maximum-a-
posteriori decision rule (MAP). Then, let denote εX as the minimum proba-
bility of error in guesing the value of random variable X. According to the
MAP approach and the Eq.40d εX is equal to [155]

εX = 1− exp (−Ha∞ (X)) (45)

Then, the the minimum probability of error of X given Y, εX|Y , can be
achieved by a deterministic function L∗ : Y→ X:

εX|Y = min
L:Y→X

P [X 6= L(Y)]

= P [X 6= L∗(Y)]

= 1− E

[
max
x∈X

PX|I(x|Y)

]
= 1− exp (−Ha∞ (X|Y)) .

(46)

3.3.2 Csiszár-Rényi mutual information

Instead of defyining the conditional Rényi entropy, Csiszár proposed to de-
rive the generelisation from the Eq. 41f.

Definition 3.3.5 (Csiszár-Rényi Mutual Information). Let consider the memory-
less channel W : X → Y described by a conditional probability distribution P(Y|X),
where X and Y are random variables taking values in X and Y, respectively. Then,
the Csiszár-Rényi mutual information of order α of channel W is defined by

Icα(X, Y) = inf
QY

EX
[
Dα

(
PY|X(·|X)||QY

)]
, (47)

where the expectency is taken over the P(X) and the infinium is taken over such
probability distributions QY , which SuppQY = Y. If the probability distribution
P(X) has a density function p(x), then Eq.47 takes form

Icα(X, Y) = inf
QY

∫
X

Dα
(
PY|X(·|X)||QY

)
p(x)dx (48)

The channel capacity of the Csiszár-Rényi mutual information takes a form

Ccα = sup
P(X)

inf
QY

EX
[
Dα

(
PY|X(·|X)||QY

)]
, (49)

whereas its differential version is equal

Ccα = sup
p(X)

inf
QY

∫
X

Dα
(
PY|X(·|X)||QY

)
p(x)dx. (50)

A major shortcoming of Csiszár’s definition of the mutual information is
that the minimization therein is hard to solve analytically even for simple
toy examples. Nevertheless, the Csiszár channel capacity plays an important
role in the coding theory. It has been shown (sequently for different orders
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α = 1 [159, 160], α ∈ (0,∞) [154], and α ∈ {0,∞} [153] ), that for finitie Y the
Csiszár’s channel capacity equals the minimax Rényi divergence

Rα = inf
QY

sup
x∈X

Dα(PY|X||QY). (51)

A minimax Rényi divergence characterizes the redundancy for universal
lossless compression in Campbell’s setting [161].
Similarly to the Shannon approach, the distibution P(X) for which Ccα gain
its maximum is called optimal or capacity achievieng and it is denoted P∗(X)
or Popt(X). Analogously, a distribution for which Rα obtain its minmum
is calle redundancy optimal or redundancy achievieng, and is denoted Qopt(Y).
Moreover, for finite output space Y a redundancy achieving distribution al-
ways exists [153].

3.4 rényi-min information

In the section above, we have introduced the generalization of the Shannon
information proposed by Alfred Rényi. Here, we describe some properties
of the Rényi-∞ information that were used in this Ph.D. thesis. The Rényi-∞ information derives from the Rényi-∞ entropy, H∞, which characterize
with the lowest penalty for the deviation from the scenario of equiprobable
values among all Rényi’s entropies. Therefore, it is commonly named Rényi-
min information. For convenience, we will use both nomenclatures.

3.4.1 Csiszár’s-Rényi min-capacity as the maximum of the minimax Rényi
divergence

The minimax redundancy (Eq. 51) for α =∞with assumption of countable Y

adopts a simpler formula [161, 153]. Precisely, if we reformulate the minimax
redundancy

R∞ = inf
QY

sup
x

D∞(PY|X||QY)
= inf
QY

sup
x

log sup
y

PY|X(y)

QY(y)

= inf
QY

sup
y

log
supx PY|X(y)
QY(y)

= inf
QY

{
sup
y

{
− logQY(y) − inf

x
− logPY|X(y)

}}
,

(52)

we obtain the definition of the worst-regret in terms of the Minimum De-
scription Length (MDL) [162].
Briefly, MDL is a formalization of the so-called "Occam’s razor". In 13th

century, Franciscan friar William of Ockham, a scholastic philosopher, pos-
tulated that "Entities should not be multiplied without necessity.". In general,
Occam’s razor states that when presented with competing hypotheses that
make the exact predictions, one should select the solution with the fewest
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assumptions [162, 163]. However, it is not a way of choosing between hy-
potheses that make different predictions. The formalization of Occam’s ra-
zor principle in the information-theoretic language is called MDL [162, 164].
According to this principle, the "best" hypothesis, i.e., a model together with
its parameters, for a given set of data, is the one that leads to the best com-
pression of the data. The "best" model minimizes the total number of bits
needed to encode the model and the data given the model.

The problem of measuring maximal information transfer in the memory-
less channel X → Y can be defined in terms of the MDL [162]. In this case
model, M, consists of the probability distributions of the output depending
on the signal, i.e., M = {p1 = P(Y|X = x1), . . . ,P(Y|X = xk)}. Then, the regret
of some code length function L(·) with respect to the model M on n-element
vector of data yn, yn ∈ Yn, is defined as

R(M,L,yn) = L(yn) − inf
i∈{1,...,k}

− logP(Y = yn|X = xi). (53)

Then, the worst-regret equals supyn∈Yn L(y
n)− infi∈{1,...,k}− logP(Y = yn|X =

xi). Therefore, with L(yn) = − logQY(yn) the minimax Rényi divergence for
α =∞ equals the minimal worst-regret

R∞ = inf
QY

{R(M,L,yn)} . (54)

However, we know that the worst-regret is minimized with Shratkov distri-
bution [162]. Thus, for QY = pNML the minimax Rényi divergence is maxi-
mized and takes the form

R∞ =
∑
yn∈Yn

sup
i∈{1,...,k}

P(Y = yn|X = xi). (55)

Therefore, we obtain a simple formula for calculating the channel capacity
in the Rényi α =∞ sense.

3.4.2 Optimal input distribution of Rényi min-information. Equivalence of
the Rényi-min capacity in the Arimoto’s and Csiszár’s sense

As mentioned above, one of the factors that affect mutual information is the
input distribution, P(X). The selection of the input distribution suitable for
quantifying information transfer in a specific application can be problematic
and provides a degree of arbitrariness. Therefore, typically, we consider the
input distribution, which maximizes the mutual information. Hence, it is
called the optimal distribution. Nevertheless, in the case of the Shannon in-
formation, the optimal distribution usually consists of only the most extreme
signals and omits intermediate ones. However, such a repertoire of signals
is relatively rare in biochemical systems. It seems more natural to consider a
situation where the signal comes from some range. Here, we show that the
Rényi-min information in the Arimoto sense is maximized for the equiproba-
ble input distribution. Hence, this property both eliminates the arbitrariness
of the input distribution choice and takes into account more realistic prior
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conditions. In addition, we prove the equivalence of the Arimoto and Csiszár
formulations on the level of channel capacity.

Theorem 3.4.1. Let’s Ca∞ denote maximal Arimoto-Rényi mutual information, i.e.
Ca∞ = maxPXI

a∞(X, Y). Then the following statements are true:

1. Ia∞(X, Y) is maximised for equiprobable distribution P(X).

2. Ca∞ = Cc∞,

Proof.

Ia∞(X, Y) = H∞(X) −H∞(X|Y) = log
EY [maxx P(x|Y)]

maxx P(x)
=

= log

∑
ymaxx P(x|y)P(y)

maxx P(x)
= log

∑
ymaxx P(x,y)
maxx P(x)

=

= log

∑
ymaxx P(y|x)P(x)

maxx P(x)
6 log

∑
ymaxx P(y|x)maxx P(x)

maxx P(x)
=

= log
∑
y

max
x
P(y|x)

maxx P(x)
maxx P(x)

= log
∑
y

max
x
P(y|x)

(56)

The inequality above define the upper bound of the mutual information
defined by Arimoto. Let’s notice that for equiprobable distribution P(X) =
1
|X|

= 1
M the upper bound is reached, i.e.

Ia∞(X, Y) = . . .

= log

∑
ymaxx P(y|x)P(x)

maxx P(x)

= log

∑
ymaxx P(y|x) 1M

1
M

= log
∑
y

max
x
P(y|x).

(57)

Hence, the probability distribution P(X) = 1
M is an optimal distribution.

Therefore, the Arimoto-Rényi-min channel capacity is equal to

Ca∞(X, Y) = log
∑
y

max
x
P(y|x). (58)

Moreover, let’s notice, that right side of the Eq.59 is equal to the worst-case
redundancy (Eq. 52),

Ca∞(X, Y) = log
∑
y

max
x
P(y|x) = Rc∞(X, Y) = Cc∞(X, Y), (59)

hence, the equivalence between Arimoto and Csiszár Rényi-min channel ca-
pacities.

According to the equivalence of Arimoto and Csiszár-Rényi-min channel
capacities, for the simplicity of the notation, below we denote the Rényi-min
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channel capacity as C∞(X, Y) or Cmin(X, Y). The proof above provides the
unified formula of the value of Rényi-min channel capacity, i.e.,

Cmin(X, Y) = log
∑
y

max
x
P(y|x). (60)

Operating between two definitions of mutual information might be confus-
ing. Their equivalence applies only to the formula and the value of the chan-
nel capacity. Nevertheless, the optimality of the input distributions as well as
other properties of the mutual information remains disjunctive. For instance,
the Theory 3.4.1 shows that the Rényi-min information in Arimoto sense is
maximized for the equiprobable input distribution. However, it does not tell
that this is the only possible optimal input distribution. On the other hand,
the Rényi-min capacity in Csiszár sense does not depend on the input distri-
bution. Therefore, we should be careful while we operate with the notion of
the Rényi-min capacity.

We consider only the equiprobable input distribution in the further analysis
as this distribution maximizes both Rényi-min information measures. The
optimality of equiprobable distribution does not depend on the structure
of the output distributions. Notably, it does not deprecate signals that give
overlapped output distributions. It is opposite to the Shannon information,
which strongly favors signals, for which output is the most distinct. Accord-
ing to Shannon approach, each signal, which gives output, that overlap with
other should be strongly penalized. This difference may lead to significantly
different conclusions in the analysis of the information transfer in signaling
pathways.

3.4.3 Arimoto-Rényi min-information as an uncertainty measure.

This section introduces a functional relation between Rényi-min capacity
and the uncertainty in the input discrimination based on the output data.
Here, we consider the mutual information in the sense of Aimoto, Iamin(X, Y).
Firstly, Rényi-min entropy defined as

Hmin(X) = min
x∈X

− logp(x), (61)

can be interpreted in terms of the task of guessing a signal. Indeed, according
to Eq.45, Hmin determines the probability of error in guessing the value of
random variable X, i.e., εX = 1− exp (−Hmin (X)). According to Eqs. 46 and
44 analogous relation can be obtained for the Arimoto-Rényi-min mutual
information. Precisely, let us denote εX|Y as the minimum probability of
error of guessing X given Y, then the following formula occurs

εX|Y = 1− exp (Iamin (X|Y) −Hmin (X)) . (62)

If we assume the equprobability of the input distribution, then

Cmin(X, Y) = log(M) + log(1− εX|Y)

= log
(
M
(
1− εX|Y

))
,

(63)
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as the Arimoto-Rényi-min information takes the maximal value in such con-
dition. From Eq. 63 we get the convenient formulat of εX|Y , as

εX|Y = 1−
1

M
2Cmin(X,Y). (64)

The εX|Y denotes the minimum probability of error in MAP decision rule,
then 1− εX|Y can be interpreted as maximal success, i.e., maximal probability
of the correct discrimination of X based on Y. Therefore, for equiprobable
input distribution, the exponent of the Rényi-min capacity, 2C

∗
min , can be

interpreted as the number of inputs that the system can resolve on average.
Therefore, in the Rényi-min approach, the number of resolved input states
is proportional to the maximal probability of the correct discrimination. The
property above clearly indicates the Rényi-min channel capacity to measure
the uncertainty of the input decoded by the observer from the output.
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4.1 identification of the potential of sensitiv-
ity analysis parametric methods for studies
of cellular signaling

Sensitivity analysis provides rigorous tools to investigate how parameter
values impact quantitative characteristics of model behaviour [165]. It al-
lows to obtain a deeper understanding of studied phenomena as well as
helps in manipulating complex models. Basic sensitivity analysis methods
have been developed to analyze engineering or physics problems that differ
significantly from dynamical models in quantitative biology. Typically quan-
titative biology models depend on a relatively larger number of parameters;
hence sensitivity analysis methods need to be adjusted to solve biochemical
problems.
In the chapter "Sensitivity Analysis in quantitative biology models" [1] of the
book "Quantitative Biology: Theory, Computational Methods and Examples of
Models" [9], we have introduced methods of sensitivity analysis in the
context of quantitative biology. We presented a small number of the pri-
mary techniques without superfluous technical details. The focus on major
methodological concepts aims to help understand how sensitivity analysis
can address specific questions arising in modeling practice. Typically, meth-
ods of sensitivity analysis are presented only in the deterministic scenario.
Here, all of the methods were also described in the stochastic regime.

4.1.1 Local sensitivity analysis methods

Firstly, we have introduced the local methods of sensitivity analysis. Briefly,
local methods indicate how small changes of the parameters value ∆, with
respect to some nominal value, θ∗, influence the model’s response (see Eq.
13). Therein, we introduced local sensitivity analysis in both deterministic
and stochastic regimes. Assuming the the deterministic approach (as in Eq.
1), the sensitivity to parameter θi is defined by a vector of derivatives SVj =
∂X
∂θ =

(
∂x(t1)
∂θi

, . . . , ∂x(tn)
∂θi

)T
, where each x(tj)

∂θi
is a N-dimmnesional row vector.

A collection of sensitivity vectors for i = 1, . . . , l constitutes the sensitivity
matrix

SM = (SV1, . . . , SVl) . (65)

In the chapter, we have presented an interpretation of those factors as well
as methods of their computation.
In the stochastic regime (as in Eq. 2), coventional derivative of the output can-
not be defined. In the chapter we presented different approaches to evaluate
local sensitivites, i.e.,(i) derivate of the mean, EX

∂θ , (ii) derivateive of the vari-

51
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ance, E(X−EX)2

∂θ , and (iii) the Fisher Inormation Matrix, FI (see Eq. 14). The
FI quantifies changes in the probability distribution due to joint changes of
all model parameters. The diagonal elements of the FI are used to calculate
local sensitivity coefficients,

SLi =
√
FIi,i. (66)

However, in the information theory, FI also measures the amount of informa-
tion that random variable X carries about an unknown parameter θ. There-
fore, the sensitivity coefficient tells us how much information we gain from
experimental measures about the model’s parameters.

Although the local sensitivity coefficients in the deterministic and stochastic
scenarios exhibit many similarities, significant differences exist. The matrix
SM2 gives sensitivities in units of the output, whereas the FI measures the
relative change of unit-less probability density values. As a result, the de-
terministic and stochastic scenarios cannot be compared directly with each
other [166].

In general, the calculation of the Fisher information matrix of multi-parameter
biochemical models is challenging. However, it is tractable if we assume that
the model’s output is expressed as the multivariate normal distribution. Fol-
lowing [101] we have precisely described the method of calculation the FI
in chemical master equation (CME) models approximated using linear noise
approximation (LNA).

4.1.2 Global sensitivity analysis methods

Typically, in engineering, models’ parameters come from a specific small
range of values. In the context of the multi-parameter biochemical models,
sometimes, it is not easy to define the scope of possible parameter values.
Moreover, biochemical systems characterize by extrinsic variability, which
results from varying components upstream to the system of interest. Vary-
ing model parameters can determine extrinsic variability. Here, rather than
considering model parameters as point values, they are represented as dis-
tributions, i.e., P(θ).

On the other hand, the local sensitivities are valid only around nominal
parameter values, θ∗ and may be substantially different from sensitivities
calculated for other points in the parameter space, θ ∈ Rl. Therefore, it is
necessary to explore sensitivities in some range of parameters’ values in the
biochemical systems. The global sensitivity analysis (GSA) operate with a
probability distribution, P(θ), of plausible parameter values [130, 167]. With
this distribution, one can sample parameter space and assemble a representa-
tive collection of model outputs in order to analyze the impact of parameters
on the output. How the impact of parameters is assessed varies among meth-
ods and depends on the specific aim of the analysis. In the chapter, we have
described three commonly used GSA techniques.

The screening technique is a simple generalization of the local method. Here,
sensitivity coefficients are calculated for values on a grid, Ω, that represent
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the considered parameter space, Rl. In the screening method, derivative δY
δθi]

is replaced by so-called elementary effects, EEi

EEi =
dist (Y(θ), Y(θ+∆i))

∆
, (67)

where dist(·) is a distance function between two corresponding outputs, e.g.,
Euclidian distance in deterministic case or Kolmogorov-Smirnov distance in
the stochastic scenario. Biochemical models are characterized by a relatively
huge number of parameters and a wide range of parameter values; therefore,
it is necessary to look precisely through the parameter space to obtain infor-
mative sensitivity factors. One of the efficient solutions is a penetration of pa-
rameter space using the Morris Trajectory algorithm. The Morris algorithm pro-
duces a representative sample of elementary effects {EE(1), EE(2), . . . , EE(r)),
where EE(j) is a vector of EEs for each parameter that is generated in the
jth step of the algorithm. Based on the series of elementary effects, we could
estimate the overall influence of the parameter on the output and quantify
the extent to which the influence of the parameter varies across the consid-
ered grid. Moreover, the screening tells us about the interactions of each
parameter with other parameters.

Next, variance-based (or Sobol) methods quantify sensitivity of parameters
by computing variance of the output, P(Y), resulting from sampling the
model parameters from the distribution P(θ). The variance of the distribu-
tion P(Y) can be decomposed into contributions resulting from individual
parameters. Using the variance decomposition theorem [168] the overall vari-
ance can be written in two ways as the sum of the components correspond-
ing to the parameter θi and the remaining sources of variability,

Var {Y} = Eθi
{

Varθ−i
{Y|θi}

}
variability generated by θi

+Varθi
{

Eθ−i
{Y|θi}

}
other sources

(68)

and
Var {Y} = Eθ−i {Varθi {Y|θ−i}}

variability generated by θi

+Varθ−i
{Eθi {Y|θ−i}}

other sources

, (69)

where θ−i is the vector of all model parameters except θi.

The ratio of the conditional variance Varθi
{

Eθ−i
{Y|θi}

}
, and the overall vari-

ance is used as the so called first-order sensitivity index of θi [169]

SGSi =
Varθi

{
Eθ−i {Y|θi}

}
Var {Y}

, (70)

which estimates how much the total variance of the model output could be
reduced if the i-th parameter was fixed. On the other hand, Eθ−i

{Varθi {Y|θ-i}}

includes the variability that is induced through interactions with other model
parameters. It leads to the total sensitivity coefficient [170]

SGTi =
Eθ−i {Varθi {Y|θ−i}}

Var {Y}
, (71)
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which estimates how much total variance would remain if all parameters
except θi were fixed. Using both coefficients in parallel allows one to un-
derstand the total impact of each parameter better. For instance, low SGSi
and high SGTi , in relation to other parameters, suggest that parameter θi is
sensitive through its interactions with other parameters, but not directly.
Finally, we described the Monte Carlo Filtering (MCF) that quantifies the
role of every single parameter in inducing a specifically defined property of
model behavior. For instance, it is often of interest to understand the combi-
nation of parameter values responsible for generating oscillations or causing
a specific response variable to exceed a defined threshold. The method aims
to detect to what extent each parameter θi determines the analyzed property.
This is achieved by sampling parameters from the distribution P(θ) and ob-
taining empirical estimates of the probabilities P(θi|condition is satisfied)
and P(θi|condition is not satisfied), separately for each single parameter θi.
The result quantifies how likely the value of the condition is due to a specific
value of the parameter θi. If both probability distributions are identical, then
the value of θi carries no information about the value of the condition. On
the other hand, if these distributions have different supports, then the value
of the parameter θi solely determines the value of the condition. Therefore
the degree to which the distributions differ is a sensitive indicator of the
impact of the parameter θi on the specified condition.

4.1.3 Application to biological models

All presented methods were applied to two exemplary models: a simple
model of gene expression and the minimalistic model of a signaling pathway
in both deterministic and stochastic scenarios. The gene expression model
enabled us to compare sensitivity analysis results with intuition. The sig-
naling pathway model allowed us to present the usefulness of sensitivity
analysis methods and their potential applications in practice.
The chapter introduced the reader to the sensitivity methods that are ad-
justed to the quantitative biology dynamical models. Utilizing the potential
of sensitivity analysis in providing a deeper understanding of biological phe-
nomena relies mainly on developing new techniques that will account for
the specificity of biological models and also will be able to provide definite
answers to specific biological questions. The development of new tools that
provide more direct answers to particular questions would make them more
attractive for quantitative biologists and better understand modeled biologi-
cal processes.
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4.2 utilization of identifiability analysis approaches
to examine multiparameter models of signal-
ing pathways

Despite the usefulness of methodological developments, identification of
identifiability parameters in a multi-parameter biochemical model still con-
stitutes a substantial challenge. In the article, [2] we have proposed a natural,
universal and simple measure to quantify the similarity between groups
of model parameters that combines canonical correlation analysis (CCA)
with mutual information (MI). Based on this measure, we have introduced
a novel definition of asymptotic parameter identifiability that corresponds
to well-known definitions based on profile likelihoods. Moreover, we ap-
plied hierarchical clustering to identify the maximal number of identifi-
able parameters. In the article, we have shown its usefulness in meaningful
experimental planning.

4.2.1 Similarity measure between groups of parameters

In the artile, we have proposed to use the canonical correlation analysis to
measure similarity between groups of parameters (see Methods for details
Section 3.1 and Figure 6A). Therein, the similarity between two groups of pa-
rameters θA = {θi1 , . . . , θia}, θB =

{
θj1 , . . . , θjb

}
is described as a canonical

correlation (CC) between two sets of sensitivity vectors ΩA = {Si1 , . . . ,Sia},
ΩB = {Si1 , . . . ,Sib}. CCs form a set of correlation coefficients defined recur-
sively. The first CC, ρ1, is a maximal cosine between a linear combination, u1,
in ΩA and a linear combination, v1, in ΩB, ρ1 = cos(u1, v1). Each next CC is
found in the same way under the constraint that the next linear combination
must be orthogonal to these found in the previous steps. Repeating the pro-
cedure m = min(ia, jb) times provides a set of CCs 1 > ρ1 > . . . > ρm > 0.
The value of 1 indicates that there exists a linear combination of parame-
ters in θA and θB having an identical impact, whereas 0 indicates existence
of an orthogonal parameter combination. The CCs therefore provide an m-
dimensional similarity measure between θA and θB. With specific assump-
tion the CCs are closely related with the mutual information between the
maximal likelihood estimates ˆθA and θ̂B (Eq. 31) (see Figure 6B), i.e.,

I(θA, θB) = H(θ̂A) −H(θ̂A|θ̂B) = −
1

m

m∑
i

log(1− ρ2i ). (72)

The mutual information I(θA, θB) describes the reduction of the entropy,
H(θ̂A), of the estimate θ̂A resulting from knowledge of θ̂B. The more similar
θA and θB are, the more knowledge one will help determine the value of the
other. Therefore, the mutual information I(θA, θB) is an adequate measure
for quantifying the overall similarity between parameter groups. In the arti-
cle, the similarity measures I(θA, θB) is called MI-CCA, as it combines two
interpretations: canonical correlation analysis of groups of parameters with
mutual information their estimates.
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4.2.2 (δ, ζ)-identifiability

Based on the similarity measure MI-CCA we have proposed a novel defini-
tion of identifiability of individual parameters in multi-parameters models.
This definition takes into account different sources of non-identifiability of
parameters, i.e., the lack of their sensitivity, and structural or practical com-
pensation effects of a parameter by remaining model parameters [171, 172,
173, 174, 175, 176, 177, 178, 179].

In this definition, the parameter θi is said to be (δ, ζ)-identifiable if ρ(θi, θ−i) <
δ and ||Si|| > ζ, where θ−i denotes the remaining model parameters. Corre-
lation ρ is used here in the canonical sense (as in CCA). If θi was estimated
as a single model parameter, ζ-condition requires its asymptotic variance to
be smaller than 1/ζ. The δ-condition requires the parameter not to be corre-
lated with any linear combination of the remaining parameters by more than
δ. Moreover, this condition translates into demanding that the variance of es-
timates does not increase by more than 1/(1− δ2) when the single parameter
and multi-parameter scenarios are compared.

The (δ, ζ)-identifiability can be seen as an asymptotic version to the profile
likelihoods based identifiability (see Eq.12). Let us denote, APL(θi) as the
asymptotic profile likelihood, APL(θi) = max θ−i (L(θ)). Assuming general
reularity conditons it can be prooved that PLn(θi) → APL(θi). In the arti-
cle [2], we have shown that asymptotic profile likelihood, APL(θi), can be
reformulated as

APL(θi) = L(θ
∗) −

1

2
FIii(1− ρ

2)(θi − θ
∗
i ). (73)

The assumption of (δ, ζ)-identifiability imposes conditions on the curvature
of APL as the signless, second order derivative with respect to θi

κ =

∣∣∣∣∂2APL(θi)∂θ2i

∣∣∣∣ = FIii(θ∗) (1− ρ2) . (74)

The contribution resulting from FIii must be greater than ζ, and the contri-
bution coming from correlation must be more significant than (1− δ2). The
actual value of FIii can be neglected as it can be artificially inflated by scal-
ing of the parameter or repeating the same experiment several times. The
correlation ρ is affected by neither of these factors.

The identifiability based on profile likelihoods [126] is determined by con-
fidence intervals {θi : |χ

2
PL,i(θi) − χ

2
PL,i(θ̂i)| < ∆}, where θ̂ is the argument

maximising Ln(θ), and ∆ is a constant selected based on χ2 statistics. If con-
fidence interval extends infinitely parameter is non-identifiable.

The two methods are applicable in different practical situations. If experi-
mental data, X, is available and Ln(θ) can be calculated, profile likelihood is
the superior method. Our method, however, is tailored to deal with a situa-
tion where only L(θ) is available, whereas Ln(θ) is not. For instance, if data
X is not available or Ln(θ) cannot be evaluated, analyzing APL is the best
one can do.
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Canonical correlation analysis (CCA)

Mutual information  

reduction in entropy

expressed by the CCA

Hierachical clusteringA

B

C

D Hierachical clustering algorithm

Figure 6: Canonical correlations and identifiability analysis.
a Conceptual illustration of the canonical correlations.Two subsets of sen-
sitivity vectors represented as linear subspaces (planes ΩA and ΩB).
Canonical vectors on the planes are found to yield maximum cosine. In a
two-dimensional subspace case, the second canonical vectors, u2, v2, are
required to be perpendicular to the first ones.
b Mutual information as a measure of similarity between two parameter
sets θA and θB, which span linear subspaces ΩA and ΩB interpreted in
terms of the asymptotic posterior P(θ̂|θ).
c Agglomerative hierarchical clustering of model parameters represented
as dendrogram.
d The pseudo-code describing the heuristic procedure for maximising
number of identifiability parameters, in the sense of (δ, ζ)-identifiability .
Recursively, at each level, a pair ofmost similar clusters is merged into
a single cluster and δ-condition is verified. Linkages between clusters,
at each stage of clustering, areplotted at high 1

m

∑m
i=1(1 − ρ

2), where
m is the size of a new cluster, compared to a previous linkage. Identi-
fiability results from violation ofeither of the δ-condition or ζ-condition
therefore even parameters that have sensitivities above a threshold can be
non-identifiable. Non-identifiable parameters are marked in red.

4.2.3 Identifiaction of maximal number of (δ, ζ)-identifiable parameters

We proposed to use a hierarchical clustering algorithm with an MI-CCA as
an aggregation measure to elucidate similarity between groups of model
parameters. Results of the clustering can be presented in the form of dendro-
gram (see Figure 6C). The standard algorithm is enriched with the identifia-
bility verification of clusters at each level of the procedure. Parameters that
are identified as non-identifiable are assumed as fixed, which reduces the to-
tal compensation effects. This heuristic procedure leads to the maximization
of the set of identifiable parameters in the model. Clustering algorithm is
described in the Figure 6D. The clustering procedure was implemented and
shared in the form of the R-package [180].
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4.2.4 Application to biological systems

Apart from methodological development, the article shows that this tool
provides relevant insight into how experimental designing contributes to
the identifiability of model parameters.
The tool was applied to analyze the NF-κB pathway, one of the key com-
ponents controlling the innate immune response. We used a model that de-
scribes a dynamic activation of NF-κB induced genes in response to the
stimulation by a pro-inflammatory cytokine, TNF-α [181, 182]. The model is
represented as a set of ODEs that contain 39 parameters and 19 variables.
The dendrogram obtained for the NF-κB system reveals that correlated pa-
rameters are grouped into clusters that essentially correspond to the network
structure. This property provides relevant practical information that demon-
strates how our method can help understand the functional role of individ-
ual parameters. If we want to change the model dynamical response, we
should manipulate parameters values across different modules rather than
within the same module.
Moreover, we have demonstrated the applicability of this tool to design ex-
periments. Firstly, we checked which parameters of the NF-κB model can
be estimated from the published experiments reported in 9 papers [183, 184,
185, 186, 187, 188, 189, 190, 182]. We showed that 18 out of 39 model param-
eters could not be estimated as they fail to satisfy the δ-condition. We have
also analyzed how each of the analyzed papers increased the number of iden-
tifiable parameters. Chronologically first two papers, [183, 184], rendered 13

parameters identifiable. Subsequent seven papers provided information that
enabled the estimation of only five new parameters. This indicates that to ob-
tainining identifiable parameters requires specifically tailored experiments
different from these performed to address conventional biological questions.
Using this tool, we have also proposed two tailored experiments that would
estimate additional six parameters.
The proposed tool establishes a theoretically grounded approach to exam-
ine the connection between correlations and non-identifiability systemati-
cally. This knowledge helps understand how non-identifiability arises and
provides guidelines on whether experimental perturbations can remove de-
tected correlations.
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4.3 development of non-parametric methods suited
for the complexity of cellular signaling pro-
cesses

Multivariate, high-throughput single-cell signaling responses are typically
represented in a standard form of dose-response curves. However, such
representations do not capture the inherent complexity of single-cell high-
throughput data, neglect the dynamics of cellular processes, and foreclose
the analysis of multiple signaling effectors. These limitations can lead to
simplified or even incorrect conclusions from experimental data [81, 82, 83,
84, 85, 86, 87, 88, 89, 90, 91]. Therefore, researchers applied Shannon infor-
mation to quantify information transmission in signaling systems. However,
the Shannon approach is tailored to specific communication and engineering
conditions unsuitable for biological systems.

In the article [3] we have presented a novel analytic framework, fractional
response analysis (FRA), that uses probabilistic modeling and information
theory to deconvolute behaviors of cellular populations. The main idea be-
hind this work is to demonstrate that outcomes of physiological processes
depend on the number of cells with specific responses rather than on mean
or median, which constitutes the fraction of cells with a given response as
a biologically relevant variable. Therefore, we proposed to quantify what
fractions of the cellular population exhibit different responses for different
doses.

4.3.1 Fractional response curve

We introduced the fractional response curve (FRC) that quantifies fractions
of cells that exhibit different responses to a change in dose. Formally, signal-
ing system is represented as a input-output channel (similarly to 1.3). Briefly,
we consider a series of doses x1, . . . , xi, . . . , xm and denote a response as y.
The relation between response, y, and dose, xi, is represented as the probabil-
ity distribution, P(Y|X = xi). For the lowest dose, we set the value of FRC to 1

as the whole population has responses specific to the first dose when higher
doses are not considered, i.e., r(x1) = 1. For each subsequent dose, the FRC
increases by the fraction of cells stimulated with the subsequent dose that
exhibit responses different from lower doses, which counts the number of
distinct distributions a cellular population generates for increasing doses. In
other words, the value of the FRC for dose xi is the sum of the previous
value and the fraction of cells exhibiting different responses,

r(xi) = r(xi−1) +∆r, (75)

where ∆r is equivalent to the overall increase in the frequency of responses.
For an illustration of FRC, we considered a simple hypothetical example
involving one signaling effector and three doses, x1, x2 and x3, which can
be interpreted as control, intermediate and high dose (see Figure 7a-e).
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Formally, FRC is defined as

r(xi) =

∫
y∈Y

max
xj>xi

P(y|xj)dy, (76)

where integration takes place over space Y, the set of all possible responses, y.
The integral in the above formula quantifies the area under the curve (or un-
der surface for multivariate data) maxxj>xiP(y|xj). The curve describes the
maximal frequency of the response y among doses x1, . . . , xi. As subsequent
doses are taken in the account, the change from r(xi) to r(xi+1), ∆r, quan-
tifies the overall increase in the frequencies of responses due to considering
the dose xi+1.

Adding subsequent fractional increments, δr, leads to the value of FRC ex-
pressed in terms of the cumulative fraction of cells that exhibit different
responses due to dose change.

4.3.2 Fractional cell-to-cell heterogeneity

The FRC quantifies fractions of cells that exhibit different responses due to
dose change but does not quantify overall cell-to-cell heterogeneity: it does
not show what fraction of cells exposed to one dose exhibits responses in
the range characteristic for other doses. Therefore, within FRA, we propose
augmenting the FRC by quantifying the overlaps between distributions cor-
responding to different doses. We call a given response as typical for a given
dose if it is most likely, i.e., most frequent, to arise for this specific dose than
all other doses. The fractional analysis is conveniently presented for the hy-
pothetical examples of three doses, Figure 7f-i. The results of fractional anal-
ysis, presented as pie-charts, can be shown in a matrix as the fraction of
cells stimulated with one dose (rows) that has responses typical for other
doses (columns) Figure 7h. The pie-chart partitioning can be plotted along
with the FRC (Figure 7.i) so that the fractional increments, ∆r, and fractional
cell-to-cell heterogeneity are concisely presented.

Formally, we define the response, y, to be typical for dose xj if it is most
likely to arise for this dose, which writes as

P(y|xi) > P(y|xj) for all j other than i. (77)

The above condition allows assigning any response y to a dose for which it
is typical. Further, for each stimulation level, xi, we can quantify fractions
of cells that exhibit response typical to each of the considered doses, xj.
Formally, it is defined as

vi,j =

∫
y∈Y

I{P(y|xj)>P(y|xk)|:k6=j}P(y|xi)dy. (78)

description of the complex multivariate responses into a simple quantitative
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Figure 7: Fractional response analysis.
a Hypothetical response distributions to three different doses encoded by
colors. Distributions are represented as a probability density, which is pro-
portional to the frequency of cells with a given response level.
b-d Quantification of the fraction of cells that exhibit different responses
due to dose increase, ∆r, and constriction of FRC, for responses presented
in a. Each panel from b to d corresponds to subsequent changes in dose.
The color regions mark the overall increase in frequency due to consider-
ing the dose marked by the color. The area of the colored region quantifies
∆r. The value of the FRC for each dose is obtained by adding the incre-
ment, ∆r.
e Quantification of the number of distinct distributions induced by the
three considered doses.
f Dose-typical responses for the response distributions of a.
g Dissection of the responses to dose 2 into responses typical to any of the
three doses. The fraction of cells typical to a given dose is marked with
the corresponding color. The surface area of each color quantifies the typ-
ical fraction.
h The fractions of cells stimulated with one dose (rows) with responses
typical to any of the doses (columns).
i The FRC together with the bands representing cell-to-cell heterogeneity
as quantified in h. For each reference dose (x-axis), the fractions of cells
stimulated with the reference dose that exhibit responses typical to other
doses can be plotted in the form of color bands around the curve. The
color encodes the dose a given fraction refers to. The height of the band
marks the size of the fraction (y-axis). Fractions corresponding to doses
higher than the reference dose are plotted above the curve, whereas to
doses lower than the reference dose below the curve.

In the article we show that FRC can be reforumlated as the fraction of cells
that exhibit response typical to its own dose. Formally,

r(xi) =

i∑
k=1

vkk (79)

This formula gives the novel interpretation of FRC as the number of distinct
response distributions that were experimentally observed.
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FRA compresses complex dose-response data into a comprehensive quanti-
tative description accounting for cell-to-cell heterogeneity and multivariate
measurements. We showed that FRA is a convenient and meaningful way of
representing single-cell data. Moreover, FRA enables to uncover of hidden
patterns in single-cell data.

4.3.3 Fractional analysis of biological systems

To show the advantages of FRA for discrimination between different re-
sponse modalities, we can consider in silico models of binary and graded re-
sponse in which the same mean response results from different response dis-
tributions in cellular populations (see Figure 8a-c). The two response modali-
ties are represented differently within FRA, highlighting differences masked
by the population average. For both cases, FRC shifts gradually, however
for the graded system FRC reaches the value of over 3 Figure 8d, compared
to nearly 2 for the binary case Figure 8e. FRC of 3 reflects the property of
the considered graded system to generate responses in the range typical for
basal, intermediate, and saturating doses. In contrast, the binary system can
only generate responses in two ranges, basal and saturating, which leads to
a maximal FRC of 2. The structure of the responses of the two systems is fur-
ther reflected in the bands around FRC and the pie-charts, Figure 8f-g. The
bands and pie charts indicate that response distribution corresponding to a
given dose overlaps with distributions corresponding to several other doses
for the graded system. For the binary system, on the other hand, responses
to different doses overlap only with the distributions corresponding to the
minimal and the highest dose; therefore, the bands have only two colors,
violet, below the FRC, which corresponds to the minimal dose, and green,
above the FRC, corresponding to the highest dose. The two response modali-
ties are represented differently within FRA, highlighting differences masked
by the population average. Similar differences in the functioning of a more
complex system represented by multivariate data could not be detectable
with a simple visual inspection as for simple univariate examples. In such
cases, the different response modalities could be uncovered with FRA.

In the article [3], we have confirmed those properties by applying FRA to
experimental data. We used FRA to experimental measures of responses to
cytokines signaling, i.e., IFN-γ and IL-10 in the human monocyte cell line
U937 and IFN-γ in cancer cell lines A549 and CALU1. Moreover, to show
the application of FRA to multivariate data, we examined time-series TNF-α
dose responses with live confocal imaging of a murine embryonic fibroblasts
cell line stably expressing fluorescent NF-κB complex.

Moreover, we applied FRA to analyze type I interferon signaling in human
peripheral blood mononuclear cells (PBMCs), a system involving multiple
signaling effectors, cell-to-cell heterogeneity, and several cell types. Dose-
responses to the type I interferon variant IFN-α2a were analyzed via whole-
cell tyrosine phosphorylation levels of effector proteins STAT1, STAT3, STAT4,
STAT5, and STAT6 (pSTATs) measured jointly in individual cells using mass
cytometry (CyTOF). Mean levels and distributions of pSTATs in B-cells, CD4+
T-cells, CD8+ T-cells, NK cells, and CD14+ monocytes were calculated and
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Figure 8: FRA of binary vs graded response for the in silico model.
a Mean of log responses in the binary and graded in silico models.
b Distribution of log responses in the graded models.
c Distribution of log responses in the binary models.
d FRA of distribution of log responses in the graded models shown in b.
e FRA of distribution of log responses in the binary models shown in c.
f Pie-charts corresponding to d, representing cell-to-cell heterogeneity
structure in the graded model.
g Pie-charts corresponding to d, representing cell-to-cell heterogeneity
structure in the binary model.

revealed that different STATs reached different maximal phosphorylation
levels for different doses in different cell types. Overall, however, no appar-
ent pattern in the functioning of the signaling system was revealed.

The FRA enabled to condenses the description of the complex multivariate
responses to a simple quantitative form. The FRA results show entirely dif-
ferent conclusions than standard techniques. Both the FRC and fractional
cell-to-cell heterogeneity are very similar for all cell types. Characteristi-
cally, the fractional dose responses in different cell types follow the same
logarithmic pattern identifying a phenomenon that governs the behavior of
multivariate cellular responses of our system, which remains hidden when
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conventionally inspecting data. Formally, FRC scales as the logarithm of the
dose

r(x) ∝ log(x), (80)

which given incremental approximation, ∆log(x) = log(x+ ∆x) − log(x) ∼

∆x/x, implies fold-change sensitivity in the population

∆r ∝ ∆x/x (81)

which in the studied system universally describes dose-responses in popula-
tions across different cell types.
Interestingly, similarly to IFN-α2a in PBMC, in other experiments analyzed
in this article, dose responses are sensitive to fold-changes in the dose in-
stead of additive changes. Such property resembles the empirical Weber-
Fechner law that characterizes the performance of many psycho-physiological
sensory systems [191]. Minimal detectable stimulus change, ∆x, in the sense
of weight, hearing, vision, and smell, has been observed to be of fold-type. So
far, in the signaling pathways, similar observations have been seen on a level
of the single signaling effector in a representative cell, or population-average
[192, 193, 194, 195, 196]. However, the application of FRA demonstrated that
within heterogeneous populations of cells of a given type and across types,
a number of cells that exhibit a different response is proportional to the fold-
change in the dose to the state of the heterogeneous population described
by multivariate data. However, a mechanistic explanation of cellular popula-
tions’ fold-change sensitivity is unclear and remains to be determined.
Overall, FRA delivers a concise representation of complex single-cell data,
which is particularly relevant for high-throughput techniques, which are in-
creasingly allowing the measurement of a high number of parameters per
cell, generating extensive, high-dimensional datasets [197].

4.3.4 Interpretation of FRA in terms of information-theory

Apart from the fact that the method has undeniable advantages when ap-
plied to the description of single-cell data, we have shown that it has a
rigorous mathematical interpretation in terms of Rényi min-information. In
section 3.3 we have to make a brief introduction to the generalization of
Shannon information in Rényi sense.
Formally, we have noticed that the logarithm of the FRC for the highest dose,
xm is equal to the Csiszár’s-Rényi min-capacity Eq.55, i.e.,

Ccmin = log2(r(xm)), (82)

or equivalently
r(xm) = 2C

c
min . (83)

It means that FRA is a measure of information flow in the biochemical sys-
tems in a Rényi min-information sense. Analogously to Shannon capacity,
Rényi min-information measures how many distinguishable states the sig-
naling systems sense, which provides the overall signaling fidelity. In the
article, we have shown that the properties of Rényi min-information make
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this measure more appropriable to describe information flow in biochemical
systems.
First of all, Rényi-min information does not depend on the input distribu-
tions. Therefore, its application does not require any assumptions regarding
the optimality of the system. Moreover, it does not involve long sequences
of discrete symbols for rigorous interpretation.
Secondly, the Rényi-min approach provides the best decoding strategy based
on the maximum-a-posteriori decision rule (MAP), i.e., assign the signaling
response to the dose for which it is most frequent [198]. Then, among cells
stimulated with the dose xk, the faction that could be decoded correctly is
the fraction that exhibits responses most frequent for xk, which is referred
to as typical and quantified as vk,k (see Figure 7.f). The Rényi-min channel
capacity equals the logarithm of the sum of fractions of cells that can be
decoded correctly, i.e.,

C∗min = log2

(
m∑
k=1

vk,k

)
(84)

Therefore, Rényi-min capacity has a precise biological interpretation as the
logarithm of the sum of fractions of cells simulated with a given dose with
responses typical for this dose. Hence, in the Rényi-min sense number of dis-
tinguishable states based on the response equals the sum of fractions of cells
decoded correctly. In contrast to the Shannon information, here we could
indicate which states are distinguishable. Moreover, fractional interpretation
of Rényi min-capacity offers the qualitative and quantitative decomposition
into fractions of cells with non-typical responses levels, which can be pre-
sented as pie-charts (see Figure 7.h). Hence, we get information on why
some of the states are not distinguishable.
Moreover, if we assume the equiprobability of the input distribution, then
based on the equivalence of the Rényi min-capacity in Csiszár’s and Ari-
moto’s sense (see Methods 64), this measure has another interpretation in
the probability of the correct discrimination, εY|X. Precisely,

εY|X =
1

m
2C
∗
min (85)

is the probability that an observer would correctly guess the dose of a ran-
domly selected cell among cells stimulated with any m doses.
Therefore, Rényi-min capacity can be interpreted as the logarithm of the
number of different doses that can be decoded correctly on average by the
observer, according to the maximum a posteriori decision rule.
For comparison of the Rényi min-information capacity and Shannon infor-
mation capacity, we considered a data set published in the [80], where au-
thors quantify information transfer by G protein-coupled receptor signal-
ing (see details in the introduction 1.3). Authors performed experiments
that enabled comparison of information flow on single-cell and population.
Dose-response distributions of the population are shown as violin plots in
Figure 9.a, whereas dose-responses of three individual cells are presented
in Figure 9.b. The authors first used the population distributions to cal-
culate Shannon information capacity. Here, calculation of Shannon capac-
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ity using R-package SLEMI [5] yielded 0.89 bits (log2(1.85)). Calculation of
Shannon capacity for population distributions implicitly assumes that cell-
to-cell heterogeneity constitutes a noise source leading to information loss.
Therefore, subsequently, the authors calculated capacity using response dis-
tributions of individual cells, which quantified information transfer of in-
dividual cells, i.e., under noise arising inside of single-cells, and not from
cell-to-cell heterogeneity. The average capacity among individual cells was
1.65 bits (log2(3.14)). The latter scenario’s considerably higher capacity in-
dicated that not all cell-to-cell heterogeneity could be interpreted as noise
leading to information loss inside individual cells. Individual cells might be
in different states that determine their dose-response levels, and different
cells in the population are indifferent states[80].
Here, for comparison Rényi-min with Shannon mutual information, we firstly
analyzed population response distributions, Figure 9.c. The value of FRC for
the highest dose, 2.03, indicates that overall cellular populations can gener-
ate two distinct distributions. Comparing FRC with Shannon capacity, we
have that FRC is more than 2C

∗
, which is in line with the inequality of

Eq.39. In addition to the value of Rényi min-information, FRA reveals the
overlaps between distributions are substantial for low and high doses and
moderate for intermediate doses. As pointed out by the authors of the pa-
per presenting the data, Shannon’s information cannot be interpreted here
as the capacity of cells to discriminate between doses due to cell-to-cell het-
erogeneity, which is not equivalent to noise. In contrast, the interpretation of
Rényi min-information capacity presented above is valid, as it does not refer
directly to the capacity of individual cells to discriminate between the doses.
Furthermore, FRA is designed to quantify dose responses of a heterogeneous
population of cells. As the considered data set involves response distribu-
tions of individual cells, the question arises whether FRA could be deployed
to analyze these in addition to population response distributions. From a
technical perspective, using single-cell response distributions, as opposed to
population response distributions, is irrelevant. FRA can be easily performed
for each cell; nevertheless, interpretation of FRC and overlaps between re-
sponse distributions need to be established. By analogy with population
response distributions, we describe two possible interpretations:

(i) an increase in FRC, ∆r = r(xi) − r(xi−1), can be interpreted as the
probability of a given cell to generate a response to the dose xi that
is distinct from all lower doses (more likely for xxi than for any lower
dose). The value of r(xi) quantifies that the overall number of distinct
response distributions specific to an examined cell. Value of FRC for
the maximal dose, r(xm), is the maximal number of distinct response
distributions that a given cell generates. Overlaps between response
distributions, as quantified by pie-charts, and color bands around FRC,
show probabilities of a given cell stimulated with a given does to gener-
ate a response that is typical (most frequent) for any of the considered
doses;

(ii) considering the best possible strategy to decode the dose from the out-
put of individual cells, i.e., maximum likelihood decoding, FRA can
be interpreted in terms of correct and incorrect decoding probabilities.
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The increase in FRC shows the probability of correctly discriminating
the dose xi from lower doses. Values of the FRC, r(xi), is the sum
of probabilities of correct decoding of the doses not greater than xi.
Therefore, r(xm)/m, is the overall probability of correct decoding. Fi-
nally, pie charts, and color bands around FRC, show probabilities of
decoding a response to a given dose (rows) as another dose (columns).

FRA plots for three individual representative cells are shown in Fig.9.d. The
highest value of FRC for individual cells is higher than for the population re-
sponses. An individual cell can generate, therefore, a more distinct response
distribution than a population of cells, which is in line with findings pre-
sented in [80]. Analogously, an individual cell can resolve between higher
numbers of doses than predicted by the population response distributions.
In addition, FRA plots quantify that cells differ in terms of which concen-
trations can be resolved; some are better in resolving small doses and other
high doses.
The analyses above imply several insightful conclusions regarding the appli-
cability of information theory to quantify information transfer in single-cells.
As pointed out by [80], responses of individual cells are much less variable
than the overall cell-to-cell heterogeneity of responses. Cell-to-cell hetero-
geneity cannot be interpreted as noise leading to information loss about the
level of signaling input. Shannon information capacity, therefore, calculated
based on population response distributions, cannot be interpreted in terms
of the potency of individual cells to resolve between different concentra-
tions. Each cell is different, and therefore to calculate its potential to resolve
between different concentrations, its own response distribution should be
determined. On the other hand, Rényi information can be calculated and
meaningfully interpreted in terms of fractions of cellular populations. Cal-
culation of Shannon information capacity based on distributions of individ-
ual cells can be done and interpreted to the extent provided by the Shan-
non framework, including the Shannon coding theorem. On the other hand,
the interpretation of Rényi is straightforward and does not require any ad-
vanced formalism like the Shannon coding theorem.
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Figure 9: Comparison of Rényi min-capacity and Shannon capacity for GPCR sig-
naling published in [80].
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Figure 9: a Violin plot is representing population response distributions to differ-
ent doses of lonomycin. At least 433 cells were measured per condition,
whereas each cell was measured 35 times.
b Responses of three representative cells to different doses of lonomycin.
Points at each panel correspond to measurements performed in the same
cell.
c FRA of the population responses shown in a.
d FRA of the responses of three individual cells shown in b.
e Pie-chart representing cell-to-cell heterogeneity structure of population
responses shown in a. f Pie-charts representing dose-response variability
of responses shown in b corresponding to three individual cells.
i Variability of Shannon capacity in the cellular population. Shannon ca-
pacity, represented here as the power of 2, was calculated for each cell and
presented as a histogram.
j Same as in i but for Rényi min-capacity
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The development of experimental high-throughput techniques provides enor-
mous data sets that describe molecular mechanisms of signaling pathways
at the level of single cells. For instance, with automated confocal microscopy,
immunocytochemistry enables to read the fluorescence signal from thou-
sands of cells. On the other hand, more comprehensive mass cytometry
(CyTOF) allows the analysis of multiple factors in thousands of cells at once.
Despite the source of experimental data, its study requires quantitative sup-
port due to the complexity and stochasticity of cellular signaling.
During the last decades, there have been developed multiple mathemati-
cal and computational methods that are used to analyze biological systems.
Most of these methods have been adapted directly from engineering prob-
lems. In my Ph.D., I have demonstrated that biological systems significantly
differ from engineering models; hence they require specific techniques tai-
lored to the complexity and stochasticity of the cellular signaling pathways.
During my work, I have described current and new solutions to work with
the multi-parameters models of signaling pathways. Moreover, I have pro-
posed novel non-parametric approaches that suit the complexity of cellular
mechanisms.
In the chapter "Sensitivity Analysis in quantitative biology models" [1] of the
book "Quantitative Biology: Theory, Computational Methods and Examples
of Mod- els" [9], we have presented an overview of sensitivity analysis meth-
ods in the context of quantitative biology. The chapter contains exemplary
applications of those methods in the deterministic and stochastic regimes.
Moreover, the chapter provides a list of exercises that help readers explore
the problems of sensitivity analysis.
In the article[2], we have provided a novel technique for analyzing similar-
ity between groups of model parameters and introduced the definition of
asymptotic parameter identifiability. Both methods are helpful to describe
the impact of parameters on the behavior of complex multi-parameter mod-
els. The proposed definition of identifiability is related to the well-known
profile likelihood but is far more efficient to calculate in the local scenario.
The concept, however, is very general and can be easily extended to the
global case at the price of more intensive computations. The article provides
relevant insight into how experimental designs contribute to the identifia-
bility of model parameters. Moreover, we have illustrated how this tool can
be used to design meaningful experiments. Created techniques are imple-
mented and shared in an R-package. A potential extension of the work is
making an automatic tool for verifying experiments and developing new
ones.
Finally, in the article [3], we have presented drawbacks of the conventional
representation of single-cell dose-response and propose to quantify changes
of cellular fractions rather than mean or median. The introduced tool, frac-
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tional response analysis, delivers a concise representation of complex single-
cell data, particularly relevant for high-throughput techniques, increasingly
allowing the measurement of a high number of parameters per cell, gener-
ating massive, high-dimensional datasets. Moreover, the fractional response
analysis has a rigorous mathematical definition in terms of Reńyi-min in-
formation. We have described multiple advantages of Reńyi-min informa-
tion over commonly used Shannon information in the context of biological
systems. Using theoretical, model examples, and biological data, we have
shown that the Reńyi-min measure detects patterns hidden for the Shan-
non measure. Based on the reviewers’ opinions, I am firmly convinced that
Reńyi-min information will be commonly used to measure information flow
in the signal pathways. However, there are still many questions regarding
the usage of Reńyi-min, for instance, (i) what type of response distributions
are distinguishable by Reńyi-min, (ii) does Reńyi-min information preserve
the information inequality in the biological systems, (iii) what the sensitivity
of the measure is to the number of input signals. The application of frac-
tional response analysis to several datasets gave promising biological results.
Fractional response analysis demonstrated that the number of cells that ex-
hibit a distinct response is proportional to the fold change in the dose within
heterogeneous populations of cells. This phenomenon resembles the empiri-
cal Weber-Fechner law. However, a mechanistic explanation of the sensitivity
to dose fold changes in cell populations is unclear and remains to be deter-
mined.
I firmly believe that the results of this thesis will be helpful for researchers
to face the difficulties with the complexity and stochasticity of cellular sig-
naling.
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1 Sensitivity Analysis in Quantitative Biology Models

Karol Nienałtowski1, Tomasz Jetka1, and Michał Komorowski1

1Institute of Fundamental Technological Research, Polish Academy of Sciences

Parameters constitute an inherent component of quantitative biology models. Model dependence on
parameters is a source of valuable insights as well as a cause of numerous modelling difficulties. Sen-
sitivity analysis provides rigorous tools to quantify how parameter values determine model behaviour.
It allows to obtain a deeper understanding of studied phenomena as well as helps in manipulating
complex models. In the chapter basic methods of sensitivity analysis are described in the context of
quantitative biology dynamical modelling. Specific tools that analyse parameter dependence locally
and globally in parameters space are presented in both deterministic and stochastic regimes. Theo-
retical concepts are followed by illustratory examples.
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1.1 Introduction

Quantitative models are intrinsically dependent on parameters. Moreover, compared to
engineering or physics problems, dynamical models in quantitative biology typically
depend on a relatively large number of parameters [1, 2]. Therefore, understanding how
parameter values determine model behaviour is highly intricate and requires a methodolog-
ical support [3, 4]. Sensitivity analysis provides rigorous tools to investigate how parameter
values impact quantitative characteristics of model behaviour [5].

A key concept in sensitivity analysis is the ‘sensitivity coefficient’, which quantifies how
sensitive the model output is to changes in a given parameter. The sensitivity coefficient
can be calculated for small changes around nominal values (local sensitivity) or arbitrary
changes within a range (global sensitivity) [6].

Learning which parameters have stronger and weaker relationships to model behaviour
is valuable in itself. However, it provides other insights about model properties. For
instance, sensitivity analysis shows how robust the system’s behaviour is to external pertur-
bations of parameters [7, 8]. Moreover, if experiments exhibit unexpected variability, then
sensitivity analysis helps to verify if such observations can be explained by fluctuations
in parameter values. Sensitive parameters can be inferred from data with higher accuracy
than insensitive parameters. Therefore, calculating sensitivities is helpful to select exper-
iments that yield more informative data to constrain unknown parameter values. Finally,
knowledge of parameter sensitivities can also be used to identify and eliminate insensitive
parameters, which can lead to simplified models [9].

This chapter introduces methods of sensitivity analysis in the context of quantitative
biology dynamical models. We present a small number of the most relevant methods with-
out superfluous technical details. The focus on major methodological concepts is aimed
to help in gaining intuition how sensitivity analysis can address specific questions aris-
ing in modeling practice. We present both local and global methods in both deterministic
and stochastic regimes. The theoretical concepts are presented first and are followed by
an illustratory analysis of two example models. The chapter concludes with a small set of
exercises to help the student to better understand the presented methods and concepts.

1.2 Methods of sensitivity analysis

In general, a mathematical model of a biological system can be seen as a map-
ping between a vector of model parameters, θ = (θ1, . . . , θl) ∈ 2, to model responses,
Y = (Y1, . . . , Yk) ∈ Rk. In other words, θ and Y can be thought as the model input (e.g.
kinetic rates and initial conditions) and the model output (e.g. mRNA, protein levels nad
receptor states). The output, Y , and the parameter vector, θ , are related to each other by a
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functional dependence,

Y = G(θ), (1.1)

in the deterministic regime or by a probabilistic dependence,

Y ∼ P(Y|θ), (1.2)

in the stochastic setting.
The main aim of the sensitivity analysis is to systematically and quantitatively charac-

terise how changes in θ effect changes in Y .

1.2.1 Local methods

Local methods are concerned with small changes (perturbations) in parameter values, 1,
with respect to some nominal value, θ∗. For deterministic models, a natural way to eval-
uate the local sensitivity is to estimate the derivative using a Taylor expansion for small
perturbations

Y(θ∗ +1) ≈ Y(θ∗)+ ∂Y
∂θ
·1. (1.3)

For stochastic models, the derivative of the output cannot be defined. Instead, one can
quantify sensitivity of the distribution of outputs given the inputs, P(Y|θ). A statistically
meaningful way of such quantification is the use of the Fisher information,

E

{(
∂ log(P(Y|θ))

∂θi

)2
}

. (1.4)

Below we present how local sensitivities can be calculated for quantitative biology dynam-
ical models in the deterministic and stochastic setting.

1.2.1.1 Deterministic models

The approach to compute the derivative of the model output depends on an available form
of the functional dependence G(θ). Deterministic models most often have the form of
ordinary differential equations (ODEs) that typically describe how abundances of a set of
k entities, y = (y1, ..., yk), change with time t given an initial condition y(t0) = y0

dy
dt
= F(y, θ), (1.5)

where F(·) is a law that determines the temporal evolution of the system. The output
of the model can be then defined as a concatenated vector of values of y at specified
times, (t1, . . . , tn),

Y(θ) = (y(t1), . . . , y(tn))T . (1.6)
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Alternative definitions of the output may be more appropriate depending on the purpose
of the analysis. For instance, the output may contain only selected components of y (e.g.
those observed experimentally) or could be a specific function of y (e.g. linear combination
or ratio of variables). For simplicity of notation, we assume that the output is defined
by Eq. 1.6.

The derivative ∂Y
∂θi

defines the sensitivity vector for the parameter θi

SVi = ∂Y
∂θi
=
(
∂y(t1)
∂θi

, . . . ,
∂y(tn)
∂θi

)T

, (1.7)

where each of ∂y(tj)
∂θi

, j = 1, ..., n, is a k-dimensional row vector. A collection of sensitivity
vectors for i = 1, . . . , l constitutes the sensitivity matrix

SM = (SV1, . . . , SVl) (1.8)

that contains all information needed to describe local changes in the model output resulting
from the inifinitesimal parameter perturbation, 1θ ,

1Y = SM 1θ . (1.9)

The squared length of 1Y can be then written as

‖1Y‖2 = 1YT1Y = 1θTSM2 1θ , (1.10)

where ‖ · ‖ is Euclidean norm and SM2 is the squared sensitivity matrix defined as

SM2 = SMT SM. (1.11)

By definition, the i-th diagonal element of SM2 is ‖SVi‖2. This provides a basic measure
of the overall sensitivity to the parameter θi. The local sensitivity coefficient of the i-th
parameter is defined as [10, 11]

SLi =
√

SM2i,i = ‖SVi‖. (1.12)

The off-diagonal elements of SM2 correspond to the angles between sensitivity vectors as

cos
(
^(−→SVi,

−→
SVj)

)
= SM2

i,j√
SM2i,i · SM2j,j

. (1.13)

and as such represent the ability of one parameter to compensate for changes in the values
of the other [4]. The cosine of 1 represents parallel sensitivity vectors, where a change in
one parameter can be compensated fully by a change in the other. Conversely, the value of 0
represents orthogonal sensitivity vectors, where no compensation is possible.
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For ODE models, the derivative ∂Y
∂θi

can be calculated relatively easily. It can be shown
(see Question 1.A) that the derivative with respect to the parameter θi of a solution of
the Eq. 1.5, z(i)(t) = ∂y(t)

∂θi
, is described by [12]

dz(i)(t)
dt
= ∇yF(y(t), θ) z(i)(t)+ ∂F(y(t), θ)

∂θi
, (1.14)

where ∇yF(y(t), θ) is the Jacobian matrix of F(·) with respect to y.
Calculation of S requires solving Eq. 1.5 and 1.14, which can be done efficiently with

available ODE solvers. Derivation of Eq. 1.14 directly from Eq. 1.5 requires symbolic
calculations, which can be effectively achieved with available toolboxes (e.g. [13]).

1.2.1.2 Stochastic models

In the stochastic setting, the model output Y is described by the probability distribution,
Y ∼ P(Y|θ). Therefore conventional derivative of Y cannot be defined. The mean output,
µ(θ) = E {Y}, on the other hand, is deterministic and its derivative can be considered as a
way to evaluate local sensitivity [14]

SVi = ∂µ(θ)
∂θi

. (1.15)

The mean however does not contain entire information about the impact of a parameter
on the output [15, 16]. A parameter can for instance change the variability of the output
without affecting the mean (compare with Question 4). Therefore one may also consider
sensitivity of the variance

∂6

∂θi
= ∂E

{
(Y −µ(θ))2}

∂θi
. (1.16)

The derivatives of higher moments could also be taken into account. Yet, to summarise the
overall impact of a parameter, the sensitivity of the entire distribution, P(Y|θ), should be
calculated. The theory of statistical inference [17] showed that a natural candidate is the
the Fisher information matrix (FIM) defined as

FIMi,j(θ) = E
{
∂ log(P(Y|θ))

∂θi
· ∂ log(P(Y|θ))

∂θj

}
(1.17)
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It quantifies changes in the probability distribution due to joint changes of all model
parameters. The diagonal elements of the FIM are used to calculate local sensitivity coef-
ficients in the stochastic setting

SLi =
√

FIMi,i. (1.18)

The interpretation of the off-diagonal elements of the FIM is not as straightforward as in the
deterministic regime [15]. Although the local sensitivity coefficients in the deterministic
and stochastic scenarios exhibit many analogies, important differences exist. Matrix SM2

(Eq. 1.11) gives sensitivities in units of the output, whereas FIM measures the relative
change of unitless probability density values. As a result, the deterministic and stochastic
scenarios cannot be compared directly with each other [18].

In general, calculation of the Fisher information matrix is difficult. For a small number of
analytically tractable probability distributions a closed form can be derived. For instance,
if a random variable Y follows a multivariate normal distribution (MVN),

Y ∼MVN(µ(θ),6(θ)), (1.19)

with mean, µ, and covariance matrix, 6, the FIM is given as [19]

FIM(θ)i,j = ∂µ

∂θi

T
6-1(θ)

∂µ

∂θj
+ 1

2
tr
(
6-1 ∂6

∂θi
6-1 ∂6

∂θj

)
. (1.20)

An important example of models with outputs expressed as the MVN distribution are
certain stochastic models of biochemical reactions. A primary tool to model stochastic
biochemial systems is the Chemical Master Equation (CME) (see Chapter XXX-CME
above). One of CME approximations that provides a sound balance between accuracy and
insight is the linear noise approximation (LNA) [20] (see Chapter YYY-LNA). It is valid
under the assumptions of large copy number of molecules in the system [21]. In LNA
model variables have normal distribution, therefore it can be easily employed to quantify
sensitivies.

In order to describe how the FIM matrix can be computed for the LNA model, we extend
notation and introduce the stoichiometric matrix S = {sij}j=1,...,r

i=1,...,k that describes changes in
the population sizes due to r different chemical reactions, where sij is the change in the
number of type i molecules after a reaction of type j. The probability that the reaction
of type j occurs in time interval [t, t+ dt) equals wj(y, θ)dt, where functions wj(y, θ) are
parameter dependent transition rates.

With the LNA, if we assume that initially model output has normal distribution, then for
each t

y(t) ∼ MVN (µ(t, θ),6(t, θ)) . (1.21)
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The mean, µ(t, θ) and variance, 6(t, θ), of the system state y(t) can be calculated from
ODEs [15, 20]

dµ(t, θ)
dt

= F(µ, θ), (1.22)

d6(t, θ)
dt

= A(µ, θ)6(t, θ)+6(t, θ)A(µ, θ)T + E(µ, θ)E(µ, θ)T , (1.23)

where

F(µ, θ) = S · (w1(µ, θ), ..., wl(µ, θ)),

{A(µ, θ)}i,k =
r∑

j=1

sij
∂wj

∂µk
, (1.24)

E(µ, θ) = S
√

diag(F(µ, θ)).

If the output is defined as a trajectory measured at times t1, . . . , tn

Y = (y(t1), . . . , y(tn))T

then it can also be shown that

Y ∼MVN (µ((t1, . . . , tn), θ),6((t1, . . . , tn), θ)) . (1.25)

The matrix

6((t1, . . . , tn), θ) =




6(t1, θ) Cov {y(t1), y(t2)} . . . Cov {y(t1), y(tn)}
Cov {y(t1), y(t2)} 6(t2, θ) . . . Cov {y(t2), y(tn)}

...
... . . .

...
Cov {y(t1), y(tn)} Cov {y(t2), y(tn)} . . . 6(tn, θ)




(1.26)

is nk× nk dimensional and requires covariances between time points ti and tj,
Cov

{
y(ti), y(tj)

}
, to be calculated. These are determined by the following equation

Cov
{
y(ti), y(tj); θ

} = 6(ti, θ)8(ti, tj)T for ti ≤ tj, (1.27)

where 8(ti, tj) is the fundamental matrix of the non-autonomous system of ODEs

dX
dtj
= A(µ, θ)X(tj), (1.28)

such that 8(ti, ti) = I with I being the identity matrix.
Therefore in the LNA both mean µ and covariance matrix 6 are given by solutions

of ODEs and the Eq. 1.14 provides a method to calculate their derivatives with respect to
parameters. Hence, the formula of the Eq. 1.20 can be used to calculate the FIM. A detailed
description of this procedure can be found in [15] and is implemented in Matlab package
– StochSens [13].
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1.2.2 Global methods

The sensitivities provided by the local methods are valid around nominal parameter val-
ues, θ∗, and may be substantially different from sensitivities calculated for other points in
the parameter space, θ ∈ 2. Methods for global sensitivity analysis (GSA) aim to provide a
remedy to this drawback [6]. Instead of using fixed nominal values of the parameters GSA
methods specify a probability distribution, P(θ), of plausible parameter values [22]. With
this distribution, one can sample parameter space and assemble a representative collection
of model outputs in order to analyse impact of parameters on the output. How the impact
of parameters is assessed varies between methods and depends on the specific aim of the
analysis.

Here we focus on three commonly used GSA techniques. The so-called screening tech-
nique is the conceptually simplest and computationally most efficient method, therefore is
used as a first-line tool before more advanced tools are employed [23, 24]. Next, variance
based methods quantify sensitivity of parameters using variance of the output resulting
from sampling the model parameters from the distribution P(θ). Finally, filtering allows
users to measure the impact of parameters on specifically defined properties of model
behaviour. All GSA methods described here rely on sampling parameters and correspond-
ing model outputs. Therefore both deterministic and stochastic models can be analysed
using these methods without substantial modifications [25].

1.2.2.1 Screening

Screening can be seen as a simple generalisation of the local methods. Sensitivity coeffi-
cients are not calculated for nominal values only but for values on a grid, �, that represent
the considered parameter space, 2. A simple grid is usually created by setting a minimal
and a maximal value for each of the model parameters, and uniformly distributing inter-
mediate values. Formally, the i-th parameter θi can take h values in the set �i

θi ∈ �i =
{
θmin

i , θmin
i + (θ

max
i − θmin

i )

h− 1
, . . . , θmin

i + (h− 2)(θmax
i − θmin

i )

h− 1
, θmax

i

}
, (1.29)

where θmin
i and θmax

i are lower and upper bounds, respectively. The grid is then defined
as the product � = �1 × . . .×�l, which are usually called elementary effects (EEs). The
elementary effect of the i-th parameter between the point θ = (θ1, . . . , θi, . . . , θl) ∈ � and
its incremental change θ +1i = (θ1, . . . , θi +1, . . . , θl) ∈ � is defined as

EEi = dist (Y(θ), Y(θ +1i))

1
, (1.30)
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where dist(·) is a distance function between two corresponding outputs, e.g. Euclidian dis-
tance. Definitions of the EEs may differ depending on the application [24] . The definition
presented above is presented as it is suitable for analysis of models with multi-dimensional
output.

Quantification of sensitivities of individual parameters requires computations of EEs
across the entire grid. This can be performed systematically using a variety of approaches
including the Morris Trajectory algorithm (Box 1) selected here for simplicity [23]. In
each run, j = 1, . . . , r, the algorithm generates a vector of EEs, EE(j) = (EE1, ..., EEl), such
that i-the element of the vector contains EE corresponding to i-th parameter . Repeated
runs produce a representative sample of elementary effects (EE(1), EE(2), . . . , EE(r)). The
sample is intended to cover the entire grid and is used to estimate the mean, µi, and the
standard deviation, σi, of EEs

µi = 1
r

r∑

j=1

EE(j)i , σi =
√√√√ 1

r− 1

r∑

j=1

(
EE(j)i −µi

)2
, (1.31)

where EE(j)i is the elementary effect of the i-th parameter calculated in the j-th run.
The estimate of µi measures the overall influence of the i-th parameter on the output.

The standard deviation, σi, quantifies the extent to which the influence of the parameter
varies across the considered grid. The EE of the i-th parameter depends on values of other
parameters, therefore σi can be also interpreted as a measure of the interactions of the i-th
parameter with other parameters.

The screening method can be applied in both deterministic and stochastic scenario
with appropriate modifications of the distance function, dist (Y(θ), Y(θ +1i)). In the
deterministic case, the Euclidian distance is most often used. In stochastic scenario,
the distance must quantify differences between the probability distributions P(·|θ) and
P(·|θ +1i) [26]. This can be achieved using one of the available measures e.g. Kol-
mogorov distance, Hellinger distance or Kullback-Leibler divergence [27, 28], of which
the Kolmogorov distance is prevalently used to ease computations. The Kolmogorov dis-
tance between the random variables U and V is defined as

dist(U, V) = sup
u∈R
{|FU(u)− FV(u)|}, (1.32)

where FU(·) and FV(·) are empirical cumulative distribution functions of U and V , respec-
tively. Within the screening method, the Kolmogorov distance can be therefore used to
calculate the distance between distributions P(·|θ) and P(·|θ +1i), based on samples
collected for parameter values on the Morris trajectories.
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Box 1
1: function MORRIS TRAJECTORY

2: I = {1, 2, . . . , l} F Set of parameters indexes
3: θ (0) = P(�1 ×�2 × . . .×�l) F Sampling initial parameters values
4: Y(0) = G(θ (0)) F Initial model output
5: for q = (1, 2, . . . , l) do F Index of subsequent algorithm steps – q
6: θ (q) = θ (q−1) F Assigning parameters values from the previous step
7: i = U(I) F Sampling parameter index i from uniform distribution
8: θ

(q)
i = P(�i) F Sampling value of parameter θi

9: 1 = |θ (q)i − θ (q−1)
i |

10: Y(q) = G(θ (q)) FModel output

11: EEi = dist
(
Y(q),Y(q−1))

1

12: I = I \ {i} F Removing index of the already computed elementary effect
13: end for
14: return (EE1, EE2, . . . , EEl)

15: end function

1.2.2.2 Variance based methods

Variance based methods offer an alternative approach to quantify the global sensitiv-
ities of model parameters. Instead of using differences in outputs generated by per-
turbations of parameters, as in the local methods and screening, the overall variabil-
ity of the output is used to extract information about parameter sensitivities. Precisely,
the distribution of parameters, P(θ), induces a corresponding distribution of outputs,
P(Y) = ∫2P(Y|θ)P(θ)dθ , where in the deterministic scenario P(Y|θ) = δG(θ)(Y), with
δ being Dirac delta, and in the stochastic regime P(Y|θ) is the analysed model itself. The
variance of the distribution P(Y) can be decomposed into contributions resulting from
individual parameters. Using the variance decomposition theorem [29] the overall vari-
ance can be written as the sum of the components corresponding to the parameter θi and
the remaining sources of variability,

Var {Y} = Eθi

{
Varθ−i {Y|θi}

}
︸ ︷︷ ︸

variability generated by θi

+Varθi

{
Eθ−i {Y|θi}

}
︸ ︷︷ ︸

other sources

, (1.33)

where θ−i is the vector of all model parameters except θi, i.e.
θ−i = (θ1, . . . , θi−1, θi+1, . . . , θl); Eθi {·} and Varθi {·} are the expected value and variance
with respect to the distribution P(θi) =

∫
2P(θ)dθ−i; Eθ−i {Y|θi} and Varθ−i {Y|θi} are the

expected value and the variance with respect to the distribution
∫
2 P(Y|θ)P(θ−i|θi)dθ−i.
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Intuitively, a sensitive parameter is expected to have a large contribution to the
overall variance. The decomposition of the Eq. 1.33 demonstrates that if the param-
eter θi has a substantial contribution to the variability of the model output the com-
ponent Varθi

{
Eθ−i {Y|θi}

}
is large. Therefore the ratio of the conditional variance

Varθi

{
Eθ−i {Y|θi}

}
and the overall variance is used as the so called first-order sensitivity

index of θi [30]

SGS
i =

Varθi

{
Eθ−i {Y|θi}

}

Var {Y} (1.34)

The major caveat of the above coefficient is that it does not quantify the entire variability of
the output Y induced by the parameter θi. Precisely, it quantifies only the direct contribution
of each parameter but neglects contribution exerted by interactions with other parameters.
This can be illustrated by comparing the sum of the first-order contributions with the total
output variability. Precisely, it can be shown (see Question 1.B) that

Var {Y} ≥
l∑

i=1

Varθi

{
Eθ−i {Y|θi}

}
. (1.35)

In order to measure the indirect effects the decomposition of the Eq. 1.33 can be written in
the reversed order

Var {Y} = Eθ−i

{
Varθi {Y|θ−i}

}
︸ ︷︷ ︸
variability generated by θi

+Varθ−i

{
Eθi {Y|θ−i}

}
︸ ︷︷ ︸

other sources

. (1.36)

Now the contribution of the parameter θi is expressed as Eθ−i

{
Varθi {Y|θ-i}

}
. Compared to

the Eθi

{
Varθ-i {Y|θi}

}
, it includes the variability that is induced through interactions with

other model parameters and leads to the total sensitivity coefficient [31] (see Question 1.B)

SGT
i =

Eθ−i

{
Varθi {Y|θ−i}

}

Var {Y} . (1.37)

Sensitivity coefficients SGS
i and SGT

i have a straightforward interpretation. The value of
SGS

i estimates how much the total variance of the model output could be reduced if the
i-th parameter was fixed. Conversely, coefficients SGT

i estimate how much total variance
would remain if all parameters except θi were fixed. Using both coefficients in parallel
allows to better understand the total impact of each parameter. For instance, a low SGS

i and
high SGT

i , in relation to other parameters, suggests that parameter θi is sensitive through
its interactions with other parameters, but not directly. When considering parameters to
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be removed from complex models, the total-effect coefficient is a more reliable tool as it
provides a more comprehensive quantification of parameter impact.

Calculation of the variances and expected values used to express the sensitivity coeffi-
cients in Eq. 1.37 and 1.34 can be achieved relatively easily using Monte Carlo approaches
by generating a sample of parameters, from the distribution P(θ), and corresponding out-
puts. Unfortunately, obtaining precise estimation using direct sampling is inefficient [25] as
a large sample size is required. Therefore, quasi-Monte Carlo sequences instead of Monte
Carlo sampling or Fourier Amplitude Sensitivity Test (FAST) are often used to improve
accuracy of the estimates [32].

1.2.2.3 Monte Carlo Filtering

In comparison to the previous techniques, Monte Carlo Filtering (MCF) does not provide
sensitivity coefficients, but rather intends to quantify the role of each single parameter in
inducing a specifically defined property of model behaviour. For instance, it is often of
interest to understand what combination of parameter values is responsible for generating
oscillations or causing a specific response variable to exceed a defined threshold.

Formally, MCF requires the condition to be defined as a binary function of the model
output cond: Rk→ {0, 1},

cond(Y) =
{

1 if condition is satisfied
0 otherwise

, (1.38)

which takes 1 if the condition is satisfied (e.g. oscillations exist) and 0 otherwise.
The aim of the method is to detect to what extent the value of the condition is deter-

mined by each parameter θi. This is achieved by sampling parameters from the distribu-
tion P(θ) and obtaining empirical estimates of the probabilities P(θi| cond(Y) = 0) and
P(θi| cond(Y) = 1), separately for each single parameter θi, that describe how likely the
value of the condition is due to a specific value of the parameter θi. If both probability
distributions are identical, then the value of θi carries no information about the value of the
condition. On the other hand, if these distributions have distinct supports then value of the
parameter θi solely determines value of the condition. Therefore the degree to which the
distributions differ is a sensible indicator of the impact of the parameter θi on the specified
condition. Differences are usually quantified using Kolmogorov distance (Eq. 1.32), as it
is relatively straightforward to estimate, which is interpreted as a measure of the impact of
the single parameter θi on value of the condition.

1.2.3 Logarithmic parametrisation

Differences in order of magnitudes or units often make both variables and parameters
incomparable within each other. Therefore it is advisable to consider relative rather than
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absolute changes when performing sensitivity analysis. A simple way to introduce relative
sensitivities is to use logarithmic transformation. In case of local methods, derivatives can
be modified as follows

∂ log Y
∂ log θ

= ∂Y
∂θ

θ

Y
=

∂Y
Y
∂θ
θ

. (1.39)

This simple relation gives a straightforward transformation from the relative to absolute
sensitivities so that the vectors of relative sensitivities,

S̃V i =
(
∂ log ym(t1)
∂ log θi

, . . . ,
∂ log ym(tn)
∂ log θi

)
, (1.40)

can be computed directly from the previously defined vectors SV i (Eq. 1.7).
In case of stochastic models, the definition of the Fisher information matrix already

includes the logarithm of the density function. The transformation of parameters is per-
formed analogously as in the Eq. 1.39.

In order to account for relative changes when using GSA methods, two modifications
can be introduced: (i) the output can be defined in terms of logarithms of endogenous
variables; (ii) the distribution of parameters should be appropriately selected. For instance,
instead of assuming that the parameter θi is sampled from a uniform distribution at the
interval [θmin

i , θmax
i ], i.e. U

(
θmin

i , θmax
i

)
, one can assume that the parameter is sampled

from the distribution 10 U(log10(θ
min
i ), log10(θ

max
i )) [22].

1.3 Applications of the sensitivity analysis

In order to illustrate the presented methods, we analyse two generic examples of dynamical
models in quantitative biology. First, simple model of gene expression (GE) is sufficiently
simple to allow a clear comparison of results provided by the sensitivity analysis with
intuition. The second example represents a minimal model of a signalling pathway (SP)
activating a transcription factor.

1.3.1 Model examples

1.3.1.1 Gene expression (GE)

We assume that the gene expression process begins with the production of mRNA
molecules at rate θ1. Each mRNA molecule, y1, may be independently translated into pro-
tein molecules, y2, at rate θ2. Both mRNA and protein molecules are degraded at rates θ3

and θ4, respectively. Therefore, the vector of model parameters is θ = (θ1, θ2, θ3, θ4), and
the system of ODEs describing the model can be written as follows

(mRNA)
dy1

dt
= θ1 − θ3y1, (protein)

dy2

dt
= θ2y1 − θ4y2, (1.41)
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and has the following stationary solution y∗ = (y∗1, y∗2
)

y∗1 =
θ1

θ3
, y∗2 =

θ1

θ3

θ2

θ4
. (1.42)

The stationary solution of the stochastic version of the model can be obtained using the
linear noise approximation by solving the Eq. 1.22 and Eq. 1.23. Then, y∗ ∼MVN (µ,6)
with

µ =
(
θ1

θ3
,
θ1θ2

θ3θ4

)
, 6 =




θ1
θ3

θ1θ2
θ3(θ3+θ4)

θ1θ2
θ3(θ3+θ4)

θ1θ2
θ3θ4
·
(
θ2+θ3+θ4
θ3+θ4

)


 . (1.43)

The schematic of the model together with trajectories corresponding to the deterministic
and stochastic versions of the model are presented in the Fig. 1.1.A-B.

1.3.1.2 Signaling pathway (SP)

The second example represents a minimal model that aims to incorporate major compo-
nents of a signaling pathway [33, 34]. An extracellular ligand, with a time dependent con-
centration denoted as u(t), leads to the activation of kinase, y1. The activated kinase induces
activation of a transcription factor, y2. Subsequently, the TF molecules translocate to the
nucleus, y3, where they modulate expression of specific genes. In particular, they induce
transcription of repressor molecules, y4, that inhibit the activation of the kinase and spon-
taneously degrade. For simplicity, we assume that the produced repressor molecules are
immediately present in the cytoplasm. The process is depicted in the Fig. 1.1.C and can be
described by the following ODEs

(active kinase)
dy1

dt
= u(t)

1+ u(t)
(θ1 − y1)

1
1+ y4/θ2

− θ3y1,

(cytoplasmic activated TF)
dy2

dt
= y1/θ4

1+ y1/θ4
(θ5 − y2 − y3)− θ6y2 − θ7y2,

(nuclear activated TF)
dy3

dt
= θ7y2 − θ8y3,

(repressor of signaling)
dy4

dt
= θ9

(y3/θ10)
θ12

1+ (y3/θ10)
θ12
− θ11y4,

where θ1 is the total number of kinase molecules; θ2 is the dissociation constant for the
repressor activity; θ3 is the kinase deactivation rate; θ4 is the dissociation constant for the
TF activation by the kinase; θ5 is the total number of the TF molecules; θ6 is the TF deac-
tivation rate; θ7 is the TF nuclear translocation rate; θ8 is the TF cytoplasmic translocation
rate; θ9 is the maximal repressor transcription rate; θ10 is the dissociation constant for
repressor transcription activation by TF; and θ11 is the repressor degradation rate. In order

5.0 publications included in the thesis 105



Nienaltowski 2016/6/16 19:58 Page 15 #15

15

to keep the example as simple as possible, we assume a constant stimulation profile for
time t > 0 i.e. u(t) = 100 and that at time t = 0 the system reached the stationary state with
u(t) = 0 for t ≤ 0. Knowing the stoichiometry and reaction rates involved in the process
allows us to write a stochastic version of the model and simulate it in the CME framework.
A schematic of the model together with trajectories corresponding to the deterministic and
stochastic scenarios are presented in the Fig. 1.1.C-D.

1.3.2 Results

Below we apply the introduced local and global methods to analyse the deterministic and
stochastic versions of the GE and SP models.

1.3.2.1 Gene expression model

The first step in the analysis of any model is to choose the model output. In the case of the
GE model, the protein level is a natural candidate. For simplicity, we also assume that only
the stationary state is of interest. Therefore we set Y = y∗2.

Deterministic scenario (local). The simplicity of the example allows local sensitivity
analysis of the deterministic version of the model to be performed analytically. With the
deterministic solution for the stationary state (Eq. 1.42) the sensitivity (Eq. 1.40) can be
expressed as

S̃M = (
∂ log θ1θ2

θ3θ4

∂ log θ1
,
∂ log θ1θ2

θ3θ4

∂ log θ2
,
∂ log θ1θ2

θ3θ4

∂ log θ3
,
∂ log θ1θ2

θ3θ4

∂ log θ4
) = (1, 1,−1,−1). (1.44)

Sensitivities SLi can be read from matrix SM2 = S̃MT S̃M (Eq. 1.11). Therefore, we obtain
SL1 = SL2 = SL3 = SL4 = 1. This is consistent with intuition. Each parameter has exactly
the same role in changing the stationary level of the protein y∗2 regardless of the nominal
parameter values. Change of 1% in value of each parameter leads to the 1% change of the
protein abundance.

Stochastic scenario (local). Analytical calculation of the SLi coefficients for the stochas-
tic scenario although in principle possible, using the Eq. 1.43, could be troublesome
(see Question 4). Therefore, we calculate these numerically using the software package
StochSens [13]. In order to calculate the coefficients, we first set the nominal parame-
ter values, as presented in the Table 1.1. Parameters are scaled so that time is measured
in minutes, whereas species are expressed as total number of molecules. The analysis
demonstrates that all parameters exhibit almost identical importance similarly as in the
deterministic scenario (see Fig. 1.2.A). Values of sensitivity coefficients can be compared
only between parameters. Comparison between the stochastic and deterministic regimes is
not justified as coeffecients for the two cases have different units.
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Figure 1.1
Illustration of the models. (A) Gene expression model (GE); (B) Signaling pathway model (SP); (C) Simulated
trajectories of the GE model for a nominal parameter set in the deterministic (solid line) and the stochastic (dashed
lines) regime; (D) Simulated trajectories of the SP model or nominal parameter set in the deterministic (solid line)
and the stochastic (dashed lines) regime. A time interval between 105 and 110 minute is zoomed for each species.
Nominal parameters are presented in the Table 1.1.
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Figure 1.2
Sensitivity analysis of the deterministic (white colouring) and stochastic (black colouring) versions of the GE
model using local and global methods. (A) Local sensitivity coefficients, SLi, for the deterministic (white boxes,
left axis) and stochastic (black boxes, right axis) regimes. Boxes are scaled so that they have the same relative
magnitudes for each regime. (B) Mean elementary effects and their standard deviations (Eq. 1.31) for each model
parameter obtained by the screening method using r = 104 and h = 103 in deterministic (white circles, left and
bottom axis) and stochastic (black circles, right and top axis) cases. (C-F) Comparison of the first-order, SGS

i , and
total sensitivity coefficients, SGT

i within the deterministic (C, D) and stochastic (E, F) regimes. (D, F) Effects
of altering of the parameter distribution, P(θ) on the first-order and total sensitivity coefficients. For plots(C,
E) θ2 is sampled from the different distribution θ∗2 · 10U(−1,1) whereas for plots (D, F)from a wider distribution
θ∗2 · 10U(−2,2), where θ∗ is defined in the Table 1.1 and U(−a, a) is the uniform on the interval (−a, a).
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Deterministic scenario (global). In order to compare local methods with global anal-
ysis, we have first analysed the deterministic version of the model with the screening
and variance based methods. Results of the screening illustrated in the Fig. 1.2.B depict
the relation between means and standard deviations of elementary effects (Eq. 1.30). The
approximately equal means of elementary effects of all parameters show that, as expected,
the parameters have a similar impact. The standard deviations of the elementary effects are
also similar for all parameters indicating that the impact of each parameter is similar across
the considered parameter grid.

Similar conclusions are obtained using the variance based methods (Fig. 1.2.C-F). To
calculate the variance based coefficients, we assumed that the probability distribution
describing plausible parameters, P(θ), corresponds to the following sampling procedure:
each parameter θi is sampled by generating an auxiliary random variable, ui, from the
uniform distribution on the interval (−1, 1), i.e. ui ∼ U(−1, 1), and setting θi = θ∗i · 10ui ,
where θ∗i is a fixed nominal value. Under this assumption according to the Eq. 1.34 and the
form of the output, Y = θ1θ2

θ3θ4
, the first order coefficient of the parameter θ1 is equal to

SGS
1 =

θ∗1 θ
∗
2

θ∗3 θ
∗
4

Var
{
10u1

}
E
{

10u2

10u310u4

}
= θ

∗
1 θ
∗
2

θ∗3 θ
∗
4

Var
{

10U(−1,1)
}(

E
{

10U(−1,1)
})3

. (1.45)

Performing the same calculation for the remaining parameters be get

SGS
1 = SGS

2 = SGS
3 = SGS

4. (1.46)

The above derivation demonstrates why the numerically calculated values of the vari-
ance based coefficients (Fig. 1.2.C) are similar for all parameters. It also shows why
assumptions regarding the probability distribution, P(θ), may have a significant impact
on results of the analysis. To demonstrate the latter, we considered the case where θ2 is
sampled from a wider space (Fig. 1.2.D), u2 ∼ U(−2, 2) as opposed to the previous case
with u2 ∼ U(−1, 1). Altering the distribution results in a significant relative increase of
the first order sensitivity coefficient of the parameter θ2 (Fig. 1.2.D). A similar property is
exhibited by the total sensitivity coefficients (Fig. 1.2.C and Fig. 1.2.D).

Stochastic scenario (global). The stochastic version of the model was analysed with the
screening and variance based methods yielding very similar results as the deterministic
version. The obtained sensitivity coefficients are presented in the Fig. 1.2.B,E & F.

1.3.2.2 Signaling pathway model

The simplicity of the GE model made it possible to explain the results of sensitivity analy-
sis with analytical considerations and confront them with intuition. However that is rarely
possible. Here we analyse the SP model to demonstrate that sensitivity analysis can pro-
vide insight that is beyond intuition. We define the output, Y , as the temporal profile of
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the nuclear transcription factor level. Thus we assume that the value of the variable y3 at
multiples of 5 minutes ranging from 0 to 120 minutes is the output of the system

Y = (y3(0), y3(5), . . . , y3(115), y3(120)). (1.47)

As we assume that the system is activated at time t = 0 by a constant stimuli, the system
is out of the stationary state. Moreover, it contains nonlinear reaction rates and therefore
numerical computations need to be used to calculate the sensitivity coefficients.

Local analysis. The local sensitivity coefficients for both deterministic and stochastic
versions of the model are presented in the Fig. 1.3.A. Two parameters appear to be sig-
nificantly more sensitive compared to the rest: θ5, describing the total number of the TF
molecules; and θ8, describing the translocation rate of the TF from the nucleus to the cyto-
plasm.

In contrast, θ6, the rate of the deactivation of the TF in the cytoplasm, hardly influences
the output of the model. The analysis highlights the role of the total number of the TF
molecules and translocation rate in shaping the response of the system and suggests the
possibility to neglecting the parameter θ6 in further analysis. This holds for both stochastic
and deterministic regimes. In addition, a direct comparison of the coefficients obtained
for the deterministic and stochastic regimes shows that the parameter θ5 is not only the
most sensitive but it has also the highest impact on stochastic effects (Fig. 1.3.A), as its
sensitivity coefficient is much higher in the stochastic than in the deterministic scenario,
compared to other parameters.

Global analysis. Global methods can verify to what extend findings of the local meth-
ods hold throughout the parameter space. Results of the screening method and variance
based method are presented in the Fig. 1.3.B and the Fig. 1.3.C-F, respectively. The results
are consistent with the local analysis and allow to conclude that previous findings hold
throughout the considered parameter space. A unique component provided by the screen-
ing method is the high value of the standard deviation of elementary effects of the param-
eter θ5 that implies that the impact of this parameter exhibits a substantial dependence on
other parameter values.

In addition, variance-based methods allow for an alternative interpretation of the sen-
sitivity coefficients. Variance of the output reflects lack of robustness to perturbations of
parameter values. From this perspective the computed sensitivities for the SP model imply
that the output is not robust to perturbations in some parameters, particularly θ5, i.e. fluc-
tuations of the total concentration of the TF.

The MCF method allows to quantify impact of parameters on whether a condition of
interest is satisfied. Here we intended to identify parameters that have the strongest impact
on whether trajectories of the SP model contain a time widow of at least 20 minutes
length with over 50% of the total amount of the TF located in the nucleus. If his con-
dition is satisfied then cond(Y) = 1 and 0 otherwise. Fig. 1.4.A presents estimates of the
Kolmogorov distance between distributions P(θi| cond(Y) = 1) and P(θi| cond(Y) = 0),
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for each parameter θi. According to these coefficients, rates of TF translocation from the
nucleus to the cytoplasm, θ8, and deactivation of the kinase, θ3 are mostly responsible
for inducing model behaviour that satisfies the condition. Moreover, Fig. 1.4.B shows that
condition is mostly satisfied for small values of parameters θ3 and/or θ8. Parameters θ6 and
θ7, on the other hand, have been identified as insignificant, which is also confirmed by the
scatter plot at Fig. 1.4.C.

1.3.3 Parameters collinearity

Conventional sensitivity analysis aims to quantify the impact of individual parameters.
Although mutual relationships are implicitly taken into account while calculating the sen-
sitivity coefficients, no direct insight is provided on how joint changes in parameter values
impact the model output. One of the essential observations that highlights how mutual
interactions between parameters shape model output is the possibility to compensate a
change in value of one parameter with a change in values of other parameters [35, 36].

To illustrate this phenomenon consider the GE model with the output defined as the
stationary abundance of mRNA and protein, Y = (y∗1, y∗2). Assume we consider changes
of the two parameters, θ1, θ2, inside a unit ball (∂ log θ1)

2 + (∂ log θ2)
2 ≤ 1 in the log-

parameter space. As a result of mutual compensation, these are mapped onto output ellip-
soid S̃V1∂ log θ1 + S̃V2∂ log θ2 in the log-output space, where S̃V i are sensitivity vectors
(Eq. 1.40). Equation 1.10 shows that the principal axes of this ellipsoid can be calculated
as eigenvectors and their radiuses are given as the square roots of the reciprocal eigenvalues
of the matrix SM2 (Fig. 1.5.A).

Similar insight can be gained by analysing which parameter combinations result in
changes of the output within a unit ball (∂ log Y1)

2 + (∂ log Y2)
2 ≤ 1 (Fig. 1.5.B). Then,

in the log-parameter space there is a corresponding ellipsoid, whose axes are also defined
by eigenvectors of matrix SM2 with radiuses as inverses of the square roots of their eigen-
values. The minor axis of this ellipsoid defines a direction that leads to the biggest change
in the model output. This direction is often referred to as ‘stiff’. On the other hand, ‘sloppy’
direction have little effect on the model output. Figure 1.5.C shows a significant difference
between ‘stiff’ and ‘sloppy’ directions in GE model.

In the context of the above considerations, the cosine between sensitivity vectors
(Eq. 1.13) is a sensible measure of similarity between parameters. The value of 1 indi-
cates that sensitivity vectors are parallel, which implies that corresponding parameters have
(locally) an equivalent effect on the output. On the other hand, the value of 0 means that
these vectors are orthogonal and the corresponding parameters have unique impacts on the
output.
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Figure 1.3
Sensitivity analysis of the deterministic (white colouring) and stochastic (black colouring) versions of the SP
model using local and global methods. (A) Local sensitivity coefficients, SLi, for the deterministic (white boxes,
left axis) and stochastic (black boxes,right axis) regimes. Boxes are scaled so that they have the same relative
magnitudes for each regime. (B) Mean elementary effects and their standard deviations (Eq. 1.31) for each model
parameter obtained by the screening method using r = 104 and h = 103. (C-D) Comparison of the first-order,
SGS

i , and total sensitivity coefficients, SGT
i within the deterministic (C) and stochastic (D) regimes.
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GE SP
Nominal parameters values

value units value units value units
θ1 100 molec.

min. θ1 100000 molec. θ7 1 1
min.

θ2 20 molec. θ2 250 1
min. θ8 0.1 1

min.
θ3 3 1

min. θ3 0.5 1
min. θ9 16000 molec.

min.
θ4 0.6 molec. θ4 10000 1

min. θ10 2000 molec.
θ5 5000 molec. θ11 0.01 1

min.
θ6 0.01 1

min. θ12 2 1
Initial conditions

value units value units value units
y1 33 molec. y1 0 molec. y3 0 molec.
y2 1111 molec. y2 0 molec. y4 0 molec.
molec.=molecules, min.=minutes

Table 1.1
Nominal parameters values and initial conditions used in the analysis of the GE and SP models.
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Figure 1.4
Results of the MCF analysis applied to the SP model. The parameter values were tested if the corresponding tra-
jectories contained a time window of 20 minutes with at least 50% of the transcription factor molecules present
in the nucleus. In the analysis 10000 parameters sets were sampled. (A) Kolmogorov distance between the esti-
mates of the distribution P(θi| cond(Y) = 1) and P(θi| cond(Y) = 0). (B,C) Scatter plots corresponding to pairs
of parameters with the highest (B) and the lowest (C) Kolmogorov distance with marking describing the value of
the tested condition.
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The analysis can be extended to quantify similarity between sub-groups of model param-
eters θA = (θa1 , . . . , θala

) and θB = (θb1 , ..., θblb
). As for correlations between multidimen-

sional random variables, a concept of canonical correlations (CCs) [37] can provide valu-
able insight. The canonical correlation between θA and θB is a vector ρ = [ρ1, . . . ,ρm],
which contains maximal cosines between mutually orthogonal linear combinations of
parameters within θA and θB, where m = min(la, lb). CCs lead to one dimensional mea-
sure of similarity between θA and θB [4]

I(θA, θB) = − 1
m

m∑

i

log(1− ρ2
i ). (1.48)

Quantification of similarity between groups of parameters combined with a hierarchical
clustering algorithm can be used to depict similarity between model parameters in form of
a dendrogram [4].

A dendrogram with parameters similarity for the GE model is plotted in the Fig. 1.5.D.
The linkage between individual parameters θ1 and θ3 as well as between θ2 and θ4 is
plotted at zero height, which indicates that the parameters can be mutually compensated.
Contrary, linkage between the pairs (θ1, θ3) and (θ2, θ4) is at a non-zero height, as the
pairs cannot be mutually entirely compensated. A similar analysis can be performed for
more complex models where mutual relationships between parameters are intricate. The
dendrogram plotted for the SP model reveals which parameters and to what extend can
be mutually compensated. The possibility of mutual compensation leads to dominance of
‘sloppy’ directions presented in the Fig. 1.5.E-F.

1.4 Summary

Parameters are inherent components of quantitative biology models. Model dependence
on parameters is a source of valuable insights into studied processes as well as a cause of
numerous difficulties.

For instance, dependence on parameters allows to examine impact of underlying pro-
cesses on studied phenomena. Having a model of a signaling pathway it is in principle
possible to predict an impact of up-regulation or down-regulation of receptor number on a
pathway’s function. However, dissecting an impact individual parameters make on model
behaviour is usually nontrivial to quantify as it is exerted via a complex set of interactions
with other parameters and systems’s components. For instance, the effect of up-regulating
the number of receptors may be different in case of high and low rate of receptor’s repressor
expression.

In addition, being able to compare model behaviour with experimental data provides
a mean to estimate unknown parameter values. In a typical quantitative biology model,
determination of values of all parameter based on available data is difficult or impossible
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Figure 1.5
Collinearity and sloppiness in the GE and SP models (A-B) A mapping between parameter and output spaces for
the GE model. (A) The image of the unit ball is the ellipsoid, whose principal axes have the length of the square
roots of the eigenvalues λi of the matrix S. (B) Inverse image of the output onto parameter space. Eigenvectors
of the matrix S are the principal axes of the ellipsoid, whereas λ-0.5

i are lengths of these axes. The direction
corresponding to the first eigenvalue is called ‘stiff’ as a small change in parameter combination is needed to
induce a substantial change in the output, the second direction is called ‘sloppy’ as a significantly larger change
in the parameters is needed to induce the same change in the output. (D) Parameters collinearity in the GE
model presented as the dendrogram.(E) Spectral decomposition of the S matrix of the SP model. (F) Parameters
collinearity in the SP model presented as the dendrogram. In all calculations nominal parameters were used,
presented in the Table 1.1.
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[8, 35] due to a large number of parameters compared to data size [38]. Lack of suffi-
cient information to constrain parameter values makes estimates to be associated with high
uncertainties.

Sensitivity analysis allows to extract insights about modelled processes as well as to
avoid some difficulties resulting from parameters dependance. Local and global sensitivi-
ties enable comparison of parameters impact across parameter space. Knowing sensitivities
is useful for understanding effects of uncertainties [16] in parameter estimates. In partic-
ular sensitivities enable to verify to what extent conclusions drawn from a model depend
on parameter values [7]. As sensitive parameters can be estimated from experimental data
with higher accuracy than insensitive parameters knowing parmater sensitivities is help-
ful when designing experiments aimed at parameter inference. Specifically, it is desired to
select experiments that yield model parameters sensitive [39]. Moreover, sensitivity anal-
ysis helps to identify and eliminate parameters that have a negligible impact on model
behaviour [2].

Despite their usefulness existing methods suffer from certain drawbacks. As being
largely inherited from engineering and theoretical statistics, they are not entirely suited to
the specificity of the quantitative biology dynamical models. Utilising the potential of sen-
sitivity analysis in providing deeper understanding of biological phenomena relies largely
on developing new techniques that will account for specificity of biological models and
also will be able to provide tangible answers to specific biological questions. In particular,
tools to disentangle complexity of models resulting from non-linearities and large number
of parameters remain to be developed. Development of new tools that provide more explicit
answers to specific questions would make them more attractive for quantitative biologists
and therefore lead to better understanding of modelled biological processes.
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Exercises

1. Premilimaries
a. Prove the Eq. 1.14. Let’s assume notation as in the chapter: y is model’s output, governed by ODE
equation

dy
dt = F(y, θ), y(t0) = y0.

Prove that if we introduce zi(t) = ∂y(t)
∂θi

, i = 1, . . . , l , then it fulfills the Eq. 1.14

dzi(t)
dt = ∇yF(y(t), θ)zi(t)+ ∂F(y(t),θ)

∂θi
.

b. Let Y = G(θ), then variance of the Y can be decomposed according to

Var {Y} =
l∑

i=1
Vi +

l∑
i<j

Vij + . . .+ V1...l, (1.49)

where

Vi = Varθi
{
Eθ-i {Y|θi}

}
, Vij = Varθij

{
Eθ-ij

{
Y|θi, θj

}}− Vi − Vj, . . . V12...l = Var {Y} − ∑
Vu

u⊂{1,...,l}
.

The Equation 1.49 is usually called ’Sobol variance decomposition’. Prove the Eq. 1.49 for l = 3.
Notice that VJ (where J = {j1, . . . , jk} ⊆ {1, 2, . . . , l}) describes the contribution of interactions of

parameters θJ into overall variance. Indexes above normalised by total variance of the output lead to
definition of higher order-indexes SGS

J = VJ
Var{Y} . Using them, total effects coefficients can be explained

as a total contribution to the output variation due to individual parameter

θi:SGT
i = SGS

i +
∑
i<j

SGS
ij +

∑
i6=j,i6=k,j<k

SGS
ijk + . . .+ SGS

12...l.

2. Fisher Information Matrix
a. Prove the Eq. 1.20 that describes the FIM for the normal distribution in the one dimensional scenario,
i.e. if Y ∼ (N)(µ(θ),σ 2(θ)), Y ∈ R.
b. Consider a deterministic system subject to a measurement error, e.g.

Y(t, θ) = y(t, θ)+ ε,
where y(t, θ) is a solution of some ODE system and ε ∼N (0,6), 6 – measurement error, independent
of θ . Express FIM of this system using sensitivity vectors and matrix (Eq. 1.7, Eq. 1.11).
c. Calculate coefficients SLi (Eq. 1.18) for the gene expression model in the stochastic scenario assuming
that the system is in the stationary state,Y = y1 (RNA) and knowing that stationary distribution of y1 is a
Poisson distribution with an appropriate coefficient.

3. Simple models Consider two simple models with two parametrs θ = (θ1, θ2):

(Model I:) GI(θ) = θ1 + θ2 (Model II:) GII(θ) = θ1 · θ2

a. Calculate local the sensitivity coefficients with and without logarithmic parametrisation for both mod-
els. Use nominal vector θ∗ = (10, 10). Which approach is more appropriate in each case?
b. Calculate the global sensitivity coefficients – first order and total effects for both models. Assume
that θi ∈ (1, 100) and use both direct and logarithmic approach to space sampling. How the sampling
procedure influence results for each of models?

c. Repeat b), assuming that θ1 ∈
(

1
10 , 10

)
and θ2 ∈ (10, 1000).

118 appendix



Nienaltowski 2016/6/16 19:58 Page 28 #28

28 Part

d. Repeat b), assuming that θ1 ∈ (1, 10) and θ2 ∈ (1, 1000).
e. Compare total variance of the model output Var {Y} computed directly and using Eq. 1.33 and Eq. 1.36
in cases b), c) and d).

4. Gene expression model
a. In the conventional definition of the sensitivity coefficient, Euclidean distance is used to aggregate
all entries of output vector. However, any other norm can be used in its place. Let’s consider GE model
and assume that the output is Y = (y1(0.5), y1(1), y1(2)) and y1(0) = 0. Repeat calculation of sensitivity
coefficient for GE model (see Section. 1.3.2), but instead of a standard norm, use a weighted norm defined
as below

‖x‖D = ‖xT Dx‖2, where D =



4 0 0
0 2 0
0 0 1


 and SLi =

√
WT

i DWi

b. Expand parameters set for GE model by adding initial condition, i.e. θ = (θ1, θ2, θ3, θ4, y1(0)). Repeat
b) for added parameter.
c. Calculate Fisher Information Matrix analytically for gene expression model in stochastic setting.
d. In the local analysis of the stochastic GE model presented in the chapter all parameters turned out to
be similarly sensitive. Find such nominal parameter values that generate significant differences between
parameters in stochastic scenario.
e. Derivatives of momements is one of the strategies to quantify sensitivity in the stochastic scenario.
Calculate ∂E{Y(t)}

∂θi
as well as ∂Var{Y(t)}

∂θi
and compare with the analysis presented in the chapter.
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Clustering reveals limits of parameter
identifiability in multi-parameter models of
biochemical dynamics
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Abstract

Background: Compared to engineering or physics problems, dynamical models in quantitative biology typically
depend on a relatively large number of parameters. Progress in developing mathematics to manipulate such
multi-parameter models and so enable their efficient interplay with experiments has been slow. Existing solutions are
significantly limited by model size.

Results: In order to simplify analysis of multi-parameter models a method for clustering of model parameters is
proposed. It is based on a derived statistically meaningful measure of similarity between groups of parameters. The
measure quantifies to what extend changes in values of some parameters can be compensated by changes in values
of other parameters. The proposed methodology provides a natural mathematical language to precisely
communicate and visualise effects resulting from compensatory changes in values of parameters. As a results, a
relevant insight into identifiability analysis and experimental planning can be obtained. Analysis of NF-κB and MAPK
pathway models shows that highly compensative parameters constitute clusters consistent with the network
topology. The method applied to examine an exceptionally rich set of published experiments on the NF-κB dynamics
reveals that the experiments jointly ensure identifiability of only 60 % of model parameters. The method indicates
which further experiments should be performed in order to increase the number of identifiable parameters.

Conclusions: We currently lack methods that simplify broadly understood analysis of multi-parameter models. The
introduced tools depict mutually compensative effects between parameters to provide insight regarding role of
individual parameters, identifiability and experimental design. The method can also find applications in related
methodological areas of model simplification and parameters estimation.

Background
Methods to understand the relationship between param-
eters (input) and model properties (output) are of par-
ticular interest in the context of biochemical dynamics
and related phenomena. Sensitivity analysis and statistical
inference have proven their importance for utilising mod-
elling in physics and engineering. Models of biochemical
dynamics, however, are different from conventional mod-
els in a number of ways. Primarily they involve a substan-
tially larger number of parameters compared to available
data. The high number of parameters and sparse data

*Correspondence: m.komorowski@sysbiosig.org
1Institute of Fundamental Technological Research, Polish Academy of
Sciences, Warsaw, Poland
Full list of author information is available at the end of the article

in ordinary differential equation (ODE) models make a
conventional sensitivity analysis and statistical inference
methods often prohibitively difficult to apply. This chal-
lenge has given rise to a number of approaches aimed
at improving our ability to develop, verify and manipu-
late multi-parameter mechanistic models of such systems.
These methods can be vaguely grouped into those aim-
ing at: 1) improved description of parameter sensitivities;
2) detection of parameters that cannot be inferred from
experimental data (identifiability analysis) and 3) guided
experimental design to improve parameter identifiability
and inference accuracy. Within the first group a number
of studies have reported an intrinsic feature of dynamic
multi-parameter models of biochemical dynamics to be
sensitive only to a small number of linear combinations

© 2015 Nienałtowski et al. Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0
International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and
reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the
Creative Commons license, and indicate if changes were made. The Creative Commons Public Domain Dedication waiver
(http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated.
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of parameters [1–5]. The conventional identifiability anal-
ysis verifies whether local distinct changes in parameter
values imply distinct changes in model behaviour. A pri-
ori methods focus on determining whether this condition
is satisfied prior to data collection. This can be done
either based on model structure, often by attempting to
find functional relationships between parameters [6], or
by analysing model responses to local perturbations in
parameter values. The latter is achieved by examining
the Fisher information matrix (FIM). Two natural sources
of non-identifiability have been recognised: insensitiv-
ity of individual parameters and compensative effects of
parameter changes, also known as collinearity. Both prob-
lems have gained substantial attention. As a remedy, most
approaches aim to select an optimal subset of parameters
that is both sufficiently sensitive and has lowest collinear-
ity. The identifiable subset can be then estimated jointly
with the remaining parameters assumed fixed. The deter-
minant of the FIM and its least eigenvalue are used to
measure optimality [7–10] of the selected set. Pairwise
clustering has also been proposed to reduce the number
of parameters [9]. A posteriori methods focus on finding
identifiable parameters when experimental data are avail-
able. The likelihood surface around its maximum is then
examined by means of the Hessian matrix [11, 12]. A sta-
tistical concept of profile likelihoods is particularly helpful
[13] in this case. Identifiability analysis is closely related
to experimental design. It has been used to show how
the information content in experimental measurements
can be maximised [13–16]. Despite useful methodological
developments performing routine modelling tasks with a
multi-parameter model still constitutes a substantial chal-
lenge. Here, we introduce a natural, universal and simple
measure to quantify similarity between groups of model
parameters. Themeasure links canonical correlation anal-
ysis (CCA) with Shannon’s mutual information (MI) and is
called MI-CCA throughout the paper. Similarity between
model parameters has been previously addressed (e.g.
[9, 10, 17]). However a precise, statistically interpretable
similarity measure has not been proposed. MI-CCA,
when employed in a hierarchical clustering, provides
statistically meaningful and precise information about
mutual compensability of parameters. It can also be used
as an assistance tool to validate parameters identifiabil-
ity in experimental planning. Apart from its simplicity
and rigorous statistical interpretation, the main advan-
tage of our tool is that it can be applied to large models,
for which other, well established, approaches are compu-
tationally infeasible. We demonstrate the power of our
framework by analysis of the NF-κB andMAPK signalling
models. We find that highly similar parameters consti-
tute groups consistent with the network topology. For
the NF-κB model we analyse the majority of published
experimental protocols [18–26] and examine parameters

identifiability. We show how the method can be used to
guide further experiments.

Methods
A typical model of biochemical dynamics describes how
abundances of a set of k molecular entities, y =
(y1, . . . , yq, . . . , yk), change with time t. Deterministically
it is usually written as an ordinary differential equation
(ODE)

dy
dt

= F(y, θ), (1)

where F() is a law that determines the temporal evolution
of y and implicitly contains a control signal. The vec-
tor θ = (θ1, . . . , θl) is a vector of model parameters. To
numerically simulate the model, parameter values and ini-
tial condition, (y1(0), . . . , yk(0)), must be set. The method
proposed in this paper is a priori in nature, therefore the
parameter values and initial conditions are not inferred
from data and must be assumed in advance based on the
modellers knowledge.
Often only certain components of y, for instance first

q, y(q) = (y1, . . . , yq), at specified times, (t1, . . . , tn), are
of interest. These components, which may correspond to
experimentally measured variables, are denoted here as
Y = (

y(q)(t1), . . . , y(q)(tn)
)
.

Conventional sensitivity analysis fails to capture collective
interactions betweenmodel parameters
Sensitivity analysis provides a prediction how Y will
change, ∂Y , in response to small changes in a single
parameter, ∂θi, or all parameters, ∂θ = (∂θ1, . . . , ∂θl). If
changes in parameters are small, the problem is solved
by finding the derivative of a solution of the equation (1),
y(t), with respect to the parameter θi, zi(t) = ∂y(t)

∂θi
. This

derivative can be easily calculated by solving another ODE
(see Additional file 1). Evaluation of zi(t) at the times
and components of interests defines the sensitivity vec-
tor Si =

(
z(q)i (t1), . . . , z

(q)
i (tn)

)
of the parameter θi. The

sensitivity vector describes the shift in Y in response to
perturbation in the parameter θi, ∂Y = Si∂θi. A collection
of the sensitivity vectors for all i = 1, . . . , l constitutes the
sensitivity matrix S = (S1, . . . , Sl), which summarises the
change in Y in response to perturbation of all of the model
parameters ∂Y = S∂θ . The sensitivity matrix, S, is directly
linked with the concept of Fisher information. Given that
Y is observed with the Gaussian unit variance error the
FIM can be written as (see Additional file 1)

FI(θ) = STS. (2)

Therefore the FIM contains information regarding the size
of a perturbation, ||∂Y || = √

∂θTFI(θ)∂θ . The pairwise

5.0 publications included in the thesis 125



Nienałtowski et al. BMC Systems Biology  (2015) 9:65 Page 3 of 9

similarity between parameters, quantified as the cosine
between the Si and Sj vectors, is also given by elements of
the FIM, cos(Si, Sj) = STi Sj/||Si||||Sj||. It is not clear, how-
ever, how the FIM can serve as a tool to analyse mutual
relations between groups of parameters. Belowwe provide
a rigorous and practical solution to this problem.

Measuring similarity between parameters groups
Canonical correlations. The canonical correlation analy-
sis (CCA) is a simple extension of the Pearson correlation.
With CCs it is possible to measure correlations between
multidimensional covariates. We modify the well estab-
lished definition to suit the considered context. Assume,

we measure similarity between two subsets of parameters
θA = {

θi1 , . . . , θia
}
and θB = {

θj1 , . . . , θjb
}
that corre-

spond to the two subsets of sensitivity vectors, �A ={
Si1 , . . . , Sia

}
and �B = {

Sj1 , . . . , Sjb
}
. The latter can be

interpreted as hyper-planes. CCs form a set of correlation
coefficients defined recursively. The first CC, ρ1, is a max-
imal cosine between a linear combination, u1, in �A and a
linear combination, v1, in �B, ρ1 = cos(u1, v1). Each next
CC is found in the same way under the constraint that
the next linear combination must be orthogonal to these
found in the previous steps (see Additional file 1). Repeat-
ing the procedure m = min(ia, jb) times provides a set of
CCs 1 ≥ ρ1 ≥ . . . ≥ ρm ≥ 0 (see Fig. 1a–b). The value of 1

Canonical correlation analysis (CCA)BSensitivity vectorsA

Single parameter model

Multi-parameter model

Mutual information  

reduction in entropy

expressed by the CCA

C D

Fig. 1 Canonical correlations and identifiability. a Illustrative view of the sensitivity vectors Si . b Conceptual illustration of the canonical correlations.
Two subsets of sensitivity vectors represented as linear subspaces (planes �A and �B). Canonical vectors on the planes are found to yield maximum
cosine. In a two-dimensional subspace case, the second canonical vectors u2, v2 are required to be perpendicular to the first ones. c The introduced
δ-condition requires that each parameter θi is correlated less than δ with the remaining parameters θ−i = (θ1, .., θi−1, θi+1, . . . , θl). It can be
interpreted in terms of how variance of the estimates changes when a single parameter and all model parameters are estimated. Parameter θ0
denotes the linear combination of θ−i maximally correlated with θi , i.e. θ0 = lin∗ {θ−i}. dMutual information as a measure of similarity between two
parameter sets θA , θB , which span linear subspaces �A , �B interpreted in terms of the asymptotic posterior P(θ̂ |θ)
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indicates that there exists a linear combination of param-
eters in θA and θB having an identical impact, whereas
0 indicates existence of an orthogonal parameter com-
bination. The CCs therefore provide an m-dimensional
similarity measure between θA and θB.
Mutual information. The above geometric view has a

natural probabilistic interpretation that provides a natural,
one-dimensional similarity measure. Assume, we estimate
the parameter vector θ using the maximal likelihood esti-
mate θ̂ (equivalently Bayesian posterior estimate) from
data X = Y + ξ , where ξ is a measurement error. Asymp-
totically (for large number of independent copies of X,
denoted here byN) the distribution of the estimate θ̂ given
a true value θ is asymptotically multivariate normal

P(θ̂ |θ) ∝ exp(− 1
2N

(θ̂ − θ)FI(θ)(θ̂ − θ)T ). (3)

Consider the entropy, H(θ̂A), of the estimate θ̂A, and the
average conditional entropy of θ̂A given θ̂B, H(θ̂A|θ̂B). The
reduction in entropy of θ̂A resulting from knowledge of θ̂B
is given by Shannon’s mutual information between θ̂A and
θ̂B, denoted here by I(θA, θB). We propose to use I(θA, θB)

as the natural measure of similarity. The more similar θA
and θB are, the more knowing one will help in determining
the value of the other. In Additional file 1 we show that the
mutual information between estimates θ̂A and θ̂B and CCs
are closely related

I(θA, θB) = H(θ̂A)−H(θ̂A|θ̂B) = − 1
m

m∑
i
log

(
1 − ρ2

i
)
,

(4)

where H(θ̂A|θ̂B) is the condition entropy of θ̂A given θ̂B.
The above measure, which throughout the paper is called
MI-CCA, provides a novel and efficient way to quantify
overall similarity between parameter groups via mutual
information and CCs.
We use the constructed measures to propose a natu-

ral definition of parameters identifiability in the multi-
parameter scenario.

(δ, ζ )-identifiability
Conventionally, parameters of a statistical model P(Y |θ)

are said to be identifiable if there exists a neighbourhood
of θ such that for all parameter values in that neighbour-
hood P(Y |θ) represents a different distribution. Equiva-
lently the FIM must have the full rank. This definition
refers simultaneously to the entire vector of model param-
eters θ . The definition of [13] introduces a notion of prac-
tical non-identifiability by examining the flatness of the
likelihood surface. We propose a novel definition of iden-
tifiability of individual parameters in multi-parameters
models. It is widely recognised that lack of identifiability

can arise from two sources: lack of sensitivity, or com-
pensation of a parameter by remaining model parameters
[7–10, 12, 27–30]. A definition that quantifies this intu-
ition has been missing. Therefore, we propose a natural
criterion of whether the parameter θi can be identified
along with the remaining model parameters, θ−i. The
parameter θi is said to be (δ, ζ )-identifiable if ρ(θi, θ−i) <

δ and ||Si|| > ζ . Correlation ρ is used here in the canon-
ical sense. If θi was estimated as a single parameter of the
model ζ -condition requires its asymptotic variance to be
smaller than 1/ζ . The δ-condition requires the parame-
ter not to be correlated with any linear combination of the
remaining parameters by more than δ. In variance terms,
it translates into demanding that the variance does not
increase by more than 1/(1− δ2) when the single parame-
ter and multi-parameter scenarios are compared (Fig. 1c).
The above definition is conceptually similar to the profile
likelihood approach. However it uses asymptotic likeli-
hood instead of actual likelihood and therefore does not
require any numerical optimisation. Based on the FIM,
solutions are given analytically by CCs. As a result iden-
tifiability can be determined for models of virtually any
size. In practical applications values of δ and ζ must be
selected. The above interpretation of δ and ζ values pro-
vides a theoretical ground to guide how these thresholds
can be set. For instance, in the logarithmic parametrisa-
tion setting ζ = 1 requires a parameter to be learned with
at most an order of magnitude error. Parameter δ controls
how the estimate’s variance increases when the parameter
is estimated as a single parameter and jointly with remain-
ing model parameters. Setting stricter values (lower δ and
higher ζ ) will result in lower variance of parameter esti-
mates. Efficiency of the method enables the analysis to be
performed for a range δ and ζ values that correspond to
different levels of stringency. In the applications consid-
ered in this paper we used ζ = 1 and δ = 0.95. The latter
corresponds to approximately 10-fold increase of variance
(Fig. 1c). In Additional file 1 we use one of the analysed
experiments to show that these thresholds provide results
consistent with the profile likelihood approach. In general,
profile likelihoods can also be used to validate method’s
predictions as experimental data become available (see
Sections 4.3 and 6.6 of the Additional file 1).

Clustering reveals similarity structure and identifiability
Using the constructed similarity measure we can mean-
ingfully group model parameters. We provide a modifica-
tion of the conventional hierarchical clustering algorithm.
At each level of the hierarchy, clusters are created by
merging clusters at the next lower level. At the low-
est level, each cluster contains a single parameter. The
pair chosen for merging consists of the two groups with
the highest mutual information, I(θA, θB). When a new
cluster is formed we verify if each of the parameters
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within the newly created cluster satisfies the δ-condition.
The parameters of the clusters most correlated with the
remaining parameters of the cluster are removed until all
satisfy the δ-condition. We use average canonical corre-
lation between the clusters, 1

m
∑m

i=1(1 − ρ2), which is
normalised opposed to I(θA, θB), to determine the height
of linkages. A set of identifiable parameters is not guar-
anteed to be maximal. Finding the maximal set would
require testing each of the subsets of the parameter set,
which is computationally infeasible. As the output of the
algorithm, we obtain the visualisation of similarity struc-
ture and a set of identifiable parameters (see Fig. 2). The
pseudocode describing the clustering algorithm in details
is presented in Section 3 of the Additional file 1 and an
R-implementation (Additional file 2) is available as an
online supplement.

Example: a simple gene expression model
To clarify the principles behind the method, we use a sim-
plistic gene expressionmodel. We assume that the process

Hierachical clusteringA

B

Fig. 2 a Agglomerative hierarchical clustering of model parameters. b
Verification of the δ-condition. Recursively, at each level, a pair of
most similar clusters is merged into a single cluster and δ-condition is
verified. Linkages between clusters, at each stage of clustering, are
plotted at high 1

m

∑m
i=1(1 − ρ2), wherem is the size of a new cluster,

compared to a previous linkage. Identifiability results from violation of
either of the δ-condition or ζ -condition therefore even parameters
that have sensitivities above a threshold can be non-identifiable.
Non-identifiable parameters are marked red

begins with the production of mRNA molecules at rate
kr . Each mRNA molecule r may be independently trans-
lated into protein molecules at rate kp. Both mRNA and
protein molecules are degraded at rates γr and γp, respec-
tively. Therefore, we have the vector of model parameters
θ = (kr , kp, γr , γp) and ODEs presented in Figure 1A in
Additional file 1. Consider the steady state Y =

(
kr
γr
, krkp

γrγp

)
.

We address the following questions: 1) Which model
parameters are most similar?; 2) Which parameters are
identifiable?; 3) What consequence does the similarity
structure have for the model robustness?; 4) How can the
steady state experiment be modified to reduce parameter
correlations? The similarity of the parameters is deter-
mined entirely by the response of the model to changes
in parameter values. The steady state formula implies that
perturbations in kr and γr have the same impact i.e. they
increase or decrease the RNA and protein level. The same
holds for perturbations in kp and γp. On the contrary, a
perturbation in (kr , γr) does not have the same impact
as one in (kp, γp). The first pair affects the level of both
RNA and protein; the latter only the level of protein.
This intuition is formalised and visualised by the method.
The linkage between parameters kr , γr and kp, γp is plot-
ted at zero height, and the non-identifiable parameters
are marked red (Figure 1B in Additional file 1). Linkage
between the pairs is at a non-zero height, as they are not
entirely correlated. As for model robustness, the dendro-
gram depicts that mutually compensative perturbations
occur within pairs (kr , γr) and (kp, γp). The analysis high-
lights the sources of non-identifiability and therefore helps
to find experiments that render more parameters iden-
tifiable. For instance, in this example, pushing the initial
condition r(t0), p(t0) above the steady state levels changes
the model dynamics (Figure 1C in Additional file 1). The
resulting exponential decay is not invariant with respect
to parameter changes. As a result all parameters can be
identified (Figure 1C in Additional file 1).

Results
TheNF-κB pathway is one of the key components control-
ling the innate immune response. The model considered
(see Additional file 1) was first proposed in [3] and fur-
ther developed in [26]. For the simulations we have used
parameter values and initial conditions introduced therein
and reproduced in the Table 1 of the Additional file 1. The
model represents a dynamic activation of NF-κB induced
genes in response to stimulation by a pro-inflammatory
cytokine, TNF-α. It involves 39 parameters and 19 vari-
ables and encapsulates typical features of systems biol-
ogy models. We address three questions: 1) What can
we learn from the structure of parameter similarities?
2) Which parameters of the network can be estimated
from the experiments published in the literature? 3) What
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experiments can be performed to increase the number of
identifiable parameters?
Correspondence between parameter correlations and

topology of the NF-κB system. The dendrogram obtained
for the NF-κB system reveals that correlated parame-
ters are grouped into clusters that largely correspond
to the network structure (Fig. 3b). The cluster C1 con-
tains parameters describing IKK kinase post-translational
modifications and its interactions with the IκBα-NF-κB
complex; C2: TNF-α receptor activation and signalling;
C3: IKKK kinase post-translational modifications and its
interactions with A20 and IKK; C4: nuclear shuttling of
NF-κB and IκBα - NF-κB binding; C4: A20 transcription
and mRNA degradation; C6: IκBα transcription, transla-
tion, degradation and post-translational modificationsC7:
NF-κB - DNA interactions and nuclear shuttling of IκBα.
The correspondence of the correlation structure with

the network topology is one of the main findings of the
paper. After that is explicitly stated it may seem intu-
itive. Although it provides relevant practical information,
it has not been reported before. When aiming to change
model dynamical response, parameters of various net-
work modules should be manipulated rather than those
within the same module. Regarding parameter inference,

knowing a priori some parameters within various mod-
ules is more likely to help in estimating the remaining
parameters than knowing the same number of parame-
ters within a single module. The analogous conclusion
holds for the system robustness. In the above analysis, we
assumed that all model variables define model behaviour,
i.e. q = n, and considered a response of the system
to a physiological stimulation: gradual increase, plateau
and gradual decrease of TNF-α. In a later subsection
we present analogous observation for a MAPK signalling
model. Earlier work of Huang et al. [31] reported similar
fining using pairwise correlations. Moreover, the authors
demonstrated that parameter correlations can be effec-
tively used for systematic model reduction.
Experiments examining the NF-κB dynamics jointly

exhibit highly correlated parameters. It is debatable how
much data is needed to ensure parameters’ identifiability
in systems biology models, and whether it is realistically
achievable. Here we examined collectively all experiments
reported in 9 papers [18–26] that contain rich data sets
on the dynamics of the NF-κB system. We asked which
parameters of the NF-κBmodel can be estimated from the
published experiments (see Table 1 in Additional file 1).
We found that 18 out of 39 model parameters cannot
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be estimated as they fail to satisfy the δ-condition (red
parameters in Fig. 4a). The huge amount of literature
available data, providing a comprehensive knowledge on
the dynamics of the NF-κB system, was not sufficient to
ensure identifiability of all model parameters. The identi-
fiability problem is widely reported. Here we demonstrate
that it is not mitigated by a huge number of experiments
performed to obtain insights other than values of kinetic
rates. To draw our conclusions we have initially set δ =
0.95 and ζ = 1. As we used logarithmic parameterisation,
i.e. log(θi) instead of θi the latter corresponds to learn-
ing a parameter more accurately than with an order of
magnitude error if the remaining model parameters were
known. Value δ = 0.95 requires the estimate’s variance not
to increase bymore than approximately 10 times when the
single parameter and multi-parameter scenarios are com-
pared. Thereafter we have verified that our main findings
remain robust to assumptions regarding specific values
of δ and ζ (Figure 3 in Additional file 1). We have also
analysed how each of the analysed papers increased the
number of identifiable parameters (Figure 2 in Additional
file 1) . Chronologically first two papers [18, 19], rendered
13 parameters identifiable. Subsequent 7 papers provided
information to estimate 8 new parameters, which gives
approximately 1 parameter per paper. This indicates that
making more parameters identifiable requires specifi-
cally tailored experiments different to these performed to
address conventional biological questions.
Given the size of the model analysed and the size of the

data included in the aforementioned papers a posterior
identifiability analysis would be hardly feasible. Identi-
fiability studies available so far analyse single or small
number of experiments. Importantly the dendrogram in

Fig. 4a identifies which parameters are most correlated
and therefore non-identifiable. This information can be
effectively used to design experimental perturbations that
decrease parameter correlations and enhance parameters
identifiability.
Tailored experiments can decrease parameter correla-

tions and increase the number of identifiable parameters.
In order to find experiments that can provide informa-
tion about non-identifiable parameters, we first randomly
searched a space of potential new TNF-α stimulation
time-profiles that together with available data wouldmake
new parameters identifiable. Details of considered proto-
cols are presented in Additional file 1. We have assumed
that only variables proven before to be measurable could
be quantified. After having generated 1000 random TNF-
α stimulation time-profiles we surprisingly found that
none of the generated protocols can make more param-
eters to satisfy (δ, ζ )-condition. The underling cause is
show in Figure 5 in Additional file 1: in all such proto-
cols certain parameters have close to 1 correlation with
the remaining parameters. This finding indicates that a
successful strategy to obtain new identifiable parame-
ters in multi-parameter models may require more careful
design of new experiments. Correlation structure (Fig. 4a)
revealed the underlying cause of non-identifiability and
therefore we can select some of the highly correlated
parameters to be estimated in additional experiments. We
propose a small number of experiments that lead to iden-
tifiability of ki, KN, ka, c3, c4, and c3a. Here we describe
how ki, KN, ka can be estimated whereas experiments
to estimate c3, c4 and c3a are described in Additional
file 1. Parameters ki, KN, ka and ka20 describe dynamics
of phosphorylated IKKK (y1).
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ẏ1 = ka y16 (KN − y1) ka20/(ka20 + y9) − ki y1, (5)

where y16 and y9 denote activated TNF-α receptors and
cytoplasmic A20 protein, respectively (see also equation
(31) in Additional file 1). We assume phosphorylated
IKKK, phosphorylated TNF-α receptors and cytoplasmic
A20 protein can be measured by means of immunchem-
istry and we are able to evaluate the equation and compare
it to a data. As identified by the dendrogram (Fig 4a),
structure of the equation (5) also indicates that considered
three parameters have very similar impact on y1. Figure
7A in Additional file 1 shows that indeed in a TNF-α
stimulation experiment in wild type cells all parameters
are highly correlated and non-identifiable. However, com-
bining the dynamics in wild type cells, in A20 knockout
cells and in A20 knockout cells with blocked phosphatase
activity provides information to make ki,KN and ka iden-
tifiable (Figure 7C in Additional file 1). We verified that
these identifiability predictions are correct using profile
likelihood approach (Figure 7 B,D in Additional file 1).
Identifiability also does not depend on specific parameter
values used (Figure 7E in Additional file 1).
Analysis of the MAPK signalling model. In order to

verify whether other biochemical models exhibit similar
properties regarding correspondence between parame-
ters similarity and network topology we have performed
analysis of a MAPK signalling model [32]. The dendro-
gram of this model reflects the network topology (Figure
9 and 10 in Additional file 1). Our observations, there-
fore, might have a more general character. The model of
[32] incorporates over 200 parameters and 100 equations.
Computations required to plot dendrogram take several
minutes on a standard desktop computer. The computa-
tional time scales with the cube of number of parameters.
Therefore, the method can be applied to much larger
models.

Discussion and conclusions
The mutually compensative effects of parameters changes
in mathematical models have gained substantial attention
in recent years [1, 4, 5, 27, 28, 33]. Methods to better
understand origins and consequences of parameter cor-
relations have began to emerge. Particularly, authors of
[7] defined identifiability of parameter subsets using the
smallest eigenvalue of corresponding sub-matrices of the
FIM. Selection of an identifiable set of parameters based
on orthogonalisation of sensitivity vectors was proposed
in [8, 10]. In [9, 10, 17] authors used pairwise correlations
to better understand parametric sensitivity. In addition,
the method introduced in [17] allows to detect existence
of an explicit functional relationship between parameters
but, in contrary to our method, it does not quantify the
degree of collinearity. The existing methods are largely
based on the determinant, the eigenvalues of the FIM or

the pairwise correlations, and do not reveal the complex-
ity of mutual relationships between parameters in multi-
parameter models. Pairwise correlations cannot reflect
similarity between groups of parameters. For instance,
three parameters that have low pairwise correlations can
be jointly non-identifiable. This is detected by CCA. MI-
CCA allowed us to phrase intuitions about the impact of
parameter correlations on parameter sensitivity and iden-
tifiability in a natural, statistically justified framework. In
addition efficiency of the method makes it ideally suitable
for large ODE models.
In the setting of this paper the mutual information

I(θA, θB) is calculated based on the asymptotic poste-
rior (3), which makes it exceptionally efficient to cal-
culate in the local scenario. The concept however is
very general and can be easily extended to the global
case at the price of more intensive computations (see
Additional file 1).
Apart from methodological development, the paper

provides relevant insight into how experiments designed
for purposes other than parameter estimation contribute
to identifiability of model parameters. Non-identifiability
problem may not be easily mitigated by collecting large
number of measurements in experiments aimed at bio-
logical insight other than parameter estimation. Despite
exceptionally rich data on the NF-κB dynamics, a large
fraction of model parameters remains non-identifiable.
Experimental design strategies to be used in the multi-
parameter scenario have not been developed yet. System-
atic improvement of experimental design requires origins
of non-identifiability to be pinpointed and removed. Our
method constitutes a theoretically grounded approach to
examine link between correlations and non-identifiability
in a systematic way. Having a precise picture how cor-
relations translate into non-identifiability allows targeted
and rational design of further experiments. However it
does not provide any automated or systematic approach
to indicate a sequence of experiments leading to a
full identifiable model. It only provides information to
the modeller regarding sources of non-identifiability. It
only helps to understand how non-identifiability arrises
and provides guidelines whether considered experimental
perturbations can remove detected correlations.
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ARTICLE

Fractional response analysis reveals logarithmic
cytokine responses in cellular populations
Karol Nienałtowski1, Rachel E. Rigby 2, Jarosław Walczak1, Karolina E. Zakrzewska1, Edyta Głów1,

Jan Rehwinkel 2 & Michał Komorowski 1✉

Although we can now measure single-cell signaling responses with multivariate, high-

throughput techniques our ability to interpret such measurements is still limited. Even

interpretation of dose–response based on single-cell data is not straightforward: signaling

responses can differ significantly between cells, encompass multiple signaling effectors, and

have dynamic character. Here, we use probabilistic modeling and information-theory to

introduce fractional response analysis (FRA), which quantifies changes in fractions of cells

with given response levels. FRA can be universally performed for heterogeneous, multivariate,

and dynamic measurements and, as we demonstrate, quantifies otherwise hidden patterns in

single-cell data. In particular, we show that fractional responses to type I interferon in human

peripheral blood mononuclear cells are very similar across different cell types, despite sig-

nificant differences in mean or median responses and degrees of cell-to-cell heterogeneity.

Further, we demonstrate that fractional responses to cytokines scale linearly with the log of

the cytokine dose, which uncovers that heterogeneous cellular populations are sensitive to

fold-changes in the dose, as opposed to additive changes.
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Many studies of signaling systems involve examining how
the intensity of a stimulus, e.g., cytokine dose, translates
into the activity of signaling effectors, e.g., transcription

factors1–7. This is usually done by exposing cells to a range of
doses and measuring responses either in bulk or at the single-cell
level. Results of such experiments are then represented and
interpreted in terms of dose–response curves. The standard
dose–response curve depicts how the mean, median, or a char-
acteristic of choice, changes with the increasing dose, and pro-
vides a basic, first-order model of how a signaling system
operates. Several aspects of cellular signaling are difficult to
analyze with mean/median dose–responses. For example, sig-
naling responses can differ significantly between cells, encompass
multiple signaling effectors, and are dynamic. First, outwardly
very similar cells exposed to the same stimulus exhibit substantial
cell-to-cell heterogeneity8–11 (see refs. 12–14 for review). There-
fore, the same mean/median response can result from a small
fraction of strongly responding cells or a significant fraction of
weakly responding cells1,2,15. Second, the highly interconnected
architecture typical for mammalian signaling usually results in a
single stimulus activating several primary signaling effectors or
downstream genes16–21. For example, effectors of type I inter-
ferons include six members of the signal transducer and activator
of transcription (STAT) family22, which are activated with dif-
ferent sensitivities at different doses. Therefore, the description of
dose–response in terms of an individual signaling effector is
incomplete23. Third, live-cell imaging experiments demonstrated
that the dose may not only alter the response at a single time-
point but can control temporal profiles of signaling
responses24,25. For instance, low doses of tumor necrosis factor-
alpha (TNF-α) may induce one peak of nuclear factor-κB sig-
naling activity, whereas higher doses may induce additional
peaks7,26. Besides, the dose may control the onset, shut off,
amplitude, or, in principle, any other characteristics of the
responses27–30. Overall, mean/median dose–response curves do
not capture the inherent complexity of single-cell high-through-
put data, and an alternative approach is required. We have used
probabilistic modeling and information-theory to develop a dif-
ferent analytic framework, fractional response analysis, involving
fractional cell counting, which is capable of deconvoluting
behaviors of heterogeneous cellular populations.

Results
Conventional dose–response analysis does not capture complex
data. To demonstrate the need and utility of FRA, we studied type
I interferon signaling in human peripheral blood mononuclear
cells (PBMCs), a system involving multiple signaling effectors,
cell-to-cell heterogeneity, and several cell types. Dose–responses
to the type I interferon variant IFN-α2a were analyzed via whole-
cell tyrosine phosphorylation levels of effector proteins STAT1,
STAT3, STAT4, STAT5, and STAT6 (pSTATs) measured jointly
in individual cells using mass cytometry (CyTOF). Cells were
collected from a healthy donor, and measurements were per-
formed 15 min after IFN-α2a stimulation, the time of maximal
response (Supplementary Fig. 1). Along with signaling effectors,
26 phenotypic markers (Supplementary Table 1), such as CD3
that marks T cells, were measured to allow for identification of
several cell types including B cells, CD4+ T cells, CD8+ T cells,
natural killer (NK) cells, and CD14+ monocytes31–33 (Supple-
mentary Fig. 2). Such multivariate data are often analyzed using t-
SNE plots to visualize multiple cell types and signaling
effectors32,33 (Fig. 1a, b, Supplementary Fig. 3), which is a pre-
requisite for a more-detailed quantitative analysis usually invol-
ving mean/median dose–responses and population response
distributions of individual signaling effectors. Following this

strategy, mean levels and distributions of pSTATs in B cells,
CD4+ T cells, CD8+ T cells, NK cells, and CD14+ monocytes
were calculated (Fig. 1c, d) and revealed that each STAT reached
different maximal phosphorylation level for different doses in a
particular cell type. Medians and means of the log-data (Sup-
plementary Fig. 4a, b) yielded similar conclusions. Plotting dis-
tributions of individual signaling effectors (Fig. 1d,
Supplementary Fig. 4c) exposed considerable differences in terms
of cell-to-cell heterogeneity between cell types and STATs.
Nonetheless, no pattern in the functioning of the signaling system
was apparent. However, the data involved five signaling effectors
measured in single cells of five different types resulting in a
tangible complexity possibly covering any existent regularities,
which highlights the need for comprehensive approaches capable
of handling complex data.

Fractional response curves. Outcomes of physiological processes,
e.g., of inflammation or stress responses, depend on the number
of cells with specific responses, rather than on their mean or
median, which constitutes the fraction of cells with a given
response as a biologically relevant variable. We proposed, there-
fore, to quantify dose–responses in terms of cellular fractions and
show here how this can be achieved for multivariate data.

We first introduced the fractional response curve (FRC) that
quantifies fractions of cells that exhibit different responses to a
change in dose, or in fact any other experimental condition. For
each subsequent dose, the increase of FRC reflects the fraction of
cells that exhibit responses different from lower doses. Adding
cumulatively distinct fractions results in counting the number of
distinct response distributions.

For an illustration of FRC, in addition to the formal definition
derived in Methods, we considered a simple hypothetical example
involving one signaling effector and three doses, although the
approach extends to a general multivariate scenario. Response
distributions to three doses, x1, x2, x3, which can be interpreted as
control, intermediate, and high dose, are shown in Fig. 2a. When
dose 1 was considered alone, fractions of cells with all possible
responses sum up to 1 (Fig. 2b). Therefore, we defined the value
of the FRC for dose 1 to be 1, and write r(x1)= 1. We then asked
what fraction of the cellular population exhibits different
responses after the change from dose 1 to dose 2. The fraction
of cells exhibiting different responses is equivalent to the overall
increase in the frequency of responses (Fig. 2c, green region). The
overall fractional increase, denoted as Δr, is calculated as the area
of the green region, and Δr= 0.31, represents the 31% of the
cellular population exhibiting different responses due to dose
increase. Therefore, we defined the value of the FRC for dose 2 to
be the sum of the previous value and the fractional increment,
r(x2)= r(x1) + Δr= 1.31. When dose 3 was considered, the
fraction of cells that exhibited different responses is again
equivalent to the overall increase in the frequency of different
responses, now compared with the two lower doses (Fig. 2d). As
before, the overall increase, Δr, is equivalent to the area of the
yellow region (Fig. 2d), with Δr= 0.74, representing 74% of cells
stimulated with dose 3 exhibiting responses different to
populations stimulated with lower doses. Again, the value of
the FRC for dose 3 was defined as the sum of the previous value
and the fractional increment, r(x3)= r(x2) + Δr= 2.05. Changes
in the FRC show what fraction of cells exhibit different responses
owing to the dose increase. Adding subsequent fractional
increments, Δr, leads to the value of FRC expressed in terms of
the cumulative fraction of cells that exhibit different responses
due to dose change.

The sum of the dose-to-dose increments, also, records the
number of distinct response distributions that were
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experimentally observed, which provides the second interpreta-
tion of the FRC. Precisely, for dose 1 considered alone, a single
response distribution was observed, r(x1)= 1. Dose 2 added 31%
of a distinct distribution, and r(x2)= 1.31 (the gray area, Fig. 2d).
Similarly, accounting for all three doses we had 2.05 distinct
response distributions (the gray area, Fig. 2e). The number of
distinct response distributions induced by changing dose

quantifies the number of programmed responses of a cellular
population, which appears to provide relevantly, yet, so far,
unexplored, quantitative characteristics of signaling systems
(Supplementary Fig. 5).

The FRC can be universally calculated for any type of signaling
data, i.e., an arbitrary number of signaling effectors, time points
of measurements, doses, or other experimentally varied
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parameters, as long as sufficient data are available. The
interpretation for univariate and multivariate data are the same
(compare Fig. 2 and Supplementary Fig. 6). The response
probability distributions do not need to be explicitly quantified,
as the distinct fractions can be estimated with logistic regression
(see Methods) or, in principle, other statistical classifiers, which is
particularly relevant for multivariate data.

In addition to the interpretations in terms of fractions of cells,
FRC has a rigorous mathematical definition in terms of Rényi
information, which, broadly speaking, counts probability dis-
tributions corresponding to outputs of a communication system
(see Supplementary Note 1 and Supplementary Table 2). It differs
from more frequently used Shannon information as discussed in

detail in Supplementary Note 2 using G protein-coupled
receptors (GPCRs) signaling data6 as well as theoretically.

Fractional cell-to-cell heterogeneity. The FRC quantifies frac-
tions of cells that exhibit different responses due to dose change
but does not quantify overall cell-to-cell heterogeneity: it does not
show what fraction of cells exposed to one dose exhibits responses
in the range characteristic for other doses. Therefore, within FRA,
we propose to augment the FRC with quantification of the
overlaps between distributions corresponding to different doses.
We call a given response as typical for a given dose if it is most
likely, i.e., most frequent, to arise for this specific dose compared

Fig. 1 Dose–responses to IFN-α2a in PBMCs. a t-SNE plots constructed based on phenotypic markers. Cell types are encoded by color and each dot
represents a single cell. b t-SNE plots of whole-cell pSTATs levels 15min after stimulation with two selected doses of IFN-α2a as well as in unstimulated
cells. Positions of dots corresponding to single cells are the same as in a allowing cell type identification. The color of each dot represents normalized (0 for
minimum and 1 for maximum) mass cytometry signal. Analogous t-SNE plots for all considered doses are shown in Supplementary Fig. 3. c Mean pSTATs
levels in five cell types as a function of the dose calculated from mass cytometry signals of single cells. The mean of log-data and medians are shown in
Supplementary Fig. 4a, b. d Distributions of responses in five cell types after stimulation with different doses of IFN-α2a in terms of pSTAT1 (top row) and
pSTAT5 (bottom row) as measured with mass cytometry. The shown probability density is proportional to the frequency of cells with a given level of the
pSTAT. The value of the probability density is proportional to the frequency of cells with given response levels. Distributions of other pSTATs are shown in
Supplementary Fig. 4c. Different doses correspond to different colors. Technical details: at least 2500 cells were measured per condition. The plot shows
one representative of two biological replicates.

Fig. 2 Fractional response analysis. a Hypothetical response distributions to three different doses encoded by colors. Distributions are represented as a
probability density, which is proportional to the frequency of cells with a given response level. b–d Quantification of the fraction of cells that exhibit
different responses due to dose increase, Δr, and constriction of FRC, for responses presented in a. Each panel from b to d corresponds to subsequent
changes in dose. The color regions mark the overall increase in frequency due to considering the dose marked by the color. The area of the colored region
quantifies Δr. The value of the FRC for each dose is obtained by adding the increment, Δr. e Quantification of the number of distinct distributions induced
by the three considered doses. f Dose-typical responses for the response distributions of a. g Dissection of the responses to dose 2 into responses typical
to any of the three doses. The fraction of cells typical to a given dose is marked with the corresponding color. The surface area of each color quantifies the
typical fraction. h The fractions of cells stimulated with one dose (rows) with responses typical to any of the doses (columns). i The FRC together with the
bands representing cell-to-cell heterogeneity as quantified in h. For each reference dose (x- axis), the fractions of cells stimulated with the reference dose
that exhibit responses typical to other doses can be plotted in the form of color bands around the curve. The color encodes the dose a given fraction refers
to. The height of the band marks the size of the fraction (y-axis). Fractions corresponding to doses higher than the reference dose are plotted above the
curve, whereas to doses lower than the reference dose below the curve.
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to all other doses. In the hypothetical example, low responses are
most likely, and therefore typical, for dose 1, intermediate
responses are typical for dose 2, and high responses for dose 3
(Fig. 2f). We can then divide responses to a given dose into
responses typical for any dose. For instance, for dose 2, 35% of
cells have responses typical for dose 1, 54% typical for dose 2, and
11% typical for dose 3 (Fig. 2g). The results, presented as pie-
charts, can be shown in a matrix as the fraction of cells stimulated
with one dose (rows) that has responses typical for other doses
(columns) (Fig. 2h). This pie-chart partitioning can be plotted
along with the FRC (Fig. 2i) so that the fractional increments, Δr,
and fractional cell-to-cell heterogeneity are concisely presented.
Similar to FRC, quantification of the fractional cell-to-cell het-
erogeneity structure can be performed for multivariate data
without quantification of the response distributions (see Methods
and Supplementary Fig. 6).

Populations of different types of PBMCs exhibit very similar
logarithmic dose–responses. FRA compresses complex
dose–response data into a simple quantitative description
accounting for cell-to-cell heterogeneity and multivariate mea-
surements. To determine the kinds of biological information that
can be uncovered, we performed FRA for IFN-α2a multivariate
dose–responses in different types of PBMCs, assuming that all
five measured pSTATs jointly constitute a cell’s response. The
FRC and fractional cell-to-cell heterogeneity (Fig. 3a, b) are very
similar for all cell types. Counter to the differences seen in the
analysis presented in Fig. 1a–d and Supplementary Fig. 4, the
dose–responses in different cell types follow the same logarithmic
pattern identifying a phenomenon that governs the behavior of
multivariate cellular responses of our system, which remains
hidden when inspecting data in the conventional way.

For all cell types, the FRC is linear and increases at the same
rate with respect to the log of the dose, which means that the
fraction of cells showing different responses is proportional to the
dose fold-change, over a broad range of doses, i.e., from 0 to 2500
U/mL. The linear increase of the FRC demonstrates that the
fraction of cells that exhibit different responses are very similar
from 0 to 25 U/mL, from 25 to 250 U/mL, and from 250 to 2500
U/mL. For each subsequent dose change, Δr ≈ 0.5 so that 50% of
cells have different responses. A given fold-change in the dose
induces a different response in the fixed fraction of cells, across a
broad range of doses. Therefore, cellular populations are sensitive
to fold-changes in the dose as opposed to additive changes.

Formally, FRC scales as the log of the dose

rðxÞ / logðxÞ; ð1Þ
which given incremental approximation, Δlog(x) = log(x+ Δx)
− log(x) ≈ Δx/x, implies fold-change sensitivity in the population

Δr / Δx=x; ð2Þ
which in the studied system universally describes dose–responses
in populations across different cell types.

The FRA, therefore, condenses the description of the complex
multivariate responses into a simple quantitative formula.
Furthermore, FRA uncovered that the number of programmed
response distributions, i.e., maximal value of FRC, and the
fractional cell-to-cell heterogeneity structure are very similar for
all cell types. This similarity indicates that the immune system
may precisely control responses of fractions of cells rather than
responses of individual cells. In multicellular organisms, a
fraction of cells with a given response level is a biologically
essential response variable. For example, the outcome of a viral
infection in tissue depends on the number of NK cells with given
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Fig. 3 Different types of PBMCs exhibit highly similar dose–responses to IFN-α2a. a FRA of IFN-α2a responses. Here, levels of all pSTATs were assumed
to jointly constitute cell’s response. Supplementary Fig. 7 shows FRA for individual STATs. b Pie-charts of the cell-to-cell heterogeneity structure used to
plot color bands in a. Cell-to-cell heterogeneity is shown as pie-charts, in addition to a, in order to clearly visualize the similarity between the cell types.
Technical details: The plot presents an analysis of one biological replicate. The analysis of the second biological replicate yielding very similar results is
shown in Supplementary Fig. 8.
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response levels and induced cytotoxic activity. Our analysis
revealed that in the studied system the fraction of cells that have
responses in a specific range is not only tightly controlled in the
population of a given cell type but is controlled in the same way
across different cell types, as opposed to responses of individual
cells that are largely heterogeneous within one cell type and across
cell types. The role for controlling the fractions of cells with
specific responses can, in principle, be tested by perturbing cell-
to-cell heterogeneity through genetic manipulation and observing
the phenotypic effects on the performance of the immune system.

Fold-change sensitivity of cellular populations is a recurrent
property of cytokine signaling. To explore how responses that
are qualitatively different translate into differences in FRA, we
examined responses to the cytokines interferon-gamma (IFN-γ)
and interleukin 10 (IL-10). As these are implicated in macrophage
phenotypic diversity34, we used the human monocyte cell line
U937, differentiated into macrophage-like cells, and immunos-
tained to measure responses via nuclear levels of the key signaling
effectors, phosphorylated STAT1 for IFN-γ, and phosphorylated
STAT3 for IL-10 at 30 min after stimulation (Fig. 4a, b). For IFN-
γ, response distributions shift gradually towards higher values as

the dose increases, which is referred to as the graded
response35–37. For IL-10, the distributions flatten over a broad
region as the dose increases reflecting the higher number of
responding cells for high doses, with the dose having a limited
impact on the level of the response, similar to a binary system2,37

where responses aggregate in “on” and “off” regions. The quali-
tative differences in the responses to IFN-γ and IL-10 cytokines
are mirrored by FRA (Fig. 4d, e and Supplementary Fig. 11a, b).
Compared with IL-10, FRC for IFN-γ increases faster and reaches
a higher value, which reflects the higher number of cells with
distinct responses for increasing doses. Besides, bands around
FRC for IFN-γ are narrower than for IL-10, indicating that the
response distributions are more distinct. Furthermore, for IL-10
the bands below the curve are broader than above the curve,
which reflects the large fractions of cells with response typical to
doses lower than encountered, which points to the similarity with
the binary system. In Supplementary Note 3, we used in silico
generated data of exact binary and graded responses, as well as
responses of lung cancer cell lines to IFN-γ to show in detail how
FRA can discriminate between different response modalities.
Overall, differences in the response distributions visible to the
naked eye are adequately mapped onto the FRA plot, which
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Fig. 4 IFN-γ, IL-10, and TNF-α exhibit logarithmic dose–responses in cell lines. a Distributions of responses 30min after stimulation with different doses
of IFN-γ in terms of nuclear pSTAT1 as measured with confocal microscopy imaging and immunostaining in the U937 cell line. Responses are expressed as
mean fluorescence of nuclear pixels. Selected doses are shown. See Supplementary Fig. 9 for all doses. b The same as in a but for pSTAT3 after stimulation
with IL-10. c Temporally resolved responses of individual murine embryonic fibroblasts to increasing concentrations of TNF-α. Each line corresponds to a
single cell. Responses are expressed as the ratio of the nuclear pixels fluorescence average to the cytoplasmic-pixels fluorescence average. Selected doses
are shown in the panel. See Supplementary Fig. 10 for all doses. Measurements were taken every 3min in a murine embryonic fibroblast cell line stably
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indicates that similar phenomena hidden by the complexity of
multivariate data could be uncovered in the same way.

To further explore how generally applicable FRA is, we
examined time-series responses to cytokine stimulation. We
measured TNF-α dose–responses with live confocal imaging of a
murine embryonic fibroblast cell line stably expressing fluor-
escent NF-κB complex4, a key TNF-α signaling effector4,29, for 60
min (Fig. 4c). As the data constituting the time-series are
multivariate, it is not feasible to assess the fraction of cells with
distinct responses for increasing doses as well as overlaps between
response distributions using visual inspection alone. FRA, on the
other hand, enables the quantification and visualization of the
cell-to-cell heterogeneity structure (Fig. 4f and Supplementary
Fig. 11c). The overlaps between distributions are considerable.
The rate of the increase of FRC, as well as width of the bands
around FRC, are more similar to IFN-γ than for IL-10, which
cannot be seen here directly from the time-series data (Fig. 4c).
Primarily, however, FRC increases linearly with the log of TNF-α
dose, which again discloses the fold-change sensitivity of the
cellular population.

Despite differences in the responses to the above cytokines and
type of data used, FRC increases almost linearly with respect to
the log of the dose for all three cytokines. Therefore, similarly to
IFN-α2a in PBMCs, IFN-γ, IL-10, and TNF-α responses are
sensitive to fold-changes in the dose, as opposed to additive
changes, suggesting that this mode of the response may be a more
universal biological pattern that describes cytokine signaling in
cellular populations.

Discussion
Sensitivity to dose fold-changes in populations of cells resembles
the empirical Weber-Fechner law that characterizes the perfor-
mance of many psycho-physiological sensory systems. Minimal
detectable stimulus change, Δx, in the sense of weight, hearing,
vision, and smell, has been observed to be of fold-type. So far,
several pathways have been shown to follow some form of fold-
change sensitivity either by observing representative individual
cells or population averages. For instance, Wnt and TGF-β sig-
naling exhibit desensitization to background ligand concentration
and subsequent sensitivity to fold-changes38,39 with an incoherent
feed-forward loop motif being the explanatory mechanism40–42.
Also, single-cell gene expression induced by the nuclear signaling
effectors β-catenin, SMAD, or NF-κB, were shown to be sensitive
to fold-changes in their nuclear levels11,38,39. Similarly, changes in
inter-spike intervals in Ca2+ spike trains are proportional to
baseline inter-spike intervals in GPCRs signaling activated with
phospholipase C ligands43.

Here, FRA allowed us to make a considerably different
observation. We demonstrated that within heterogeneous popu-
lations of cells of a given type, and across types, the number of
cells that exhibit a different response is proportional to the fold-
change in the dose. We did not refer to a single signaling effector
in a representative cell or population average but to the state of
the heterogeneous population described by multivariate data.
Ultimate outcomes of multicellular processes like immunity are
not determined by individual cells alone or population averages
but by a heterogeneous collective. By accounting for cell-to-cell
heterogeneity, we showed that the distribution of the collective,
which encodes stimulation levels in multicellular systems, shifts
with the fold-changes of the dose. Therefore, the way in which
heterogeneous cell populations encode signals is quantitatively
similar to the way we perceive differences in certain sensations
(weight/light).

Weber-Fechner law is a pattern that can arise from a range of
different mechanisms44,45 with the underlying neural

implementations still being discovered45,46. Here also, a
mechanistic explanation of the fold-change sensitivity of cellular
populations is not clear and remains to be determined, possibly
by relating cell-to-cell heterogeneity with ligand sensitivity, which
might involve feed-forward loops, as in fold-change detection in
individual cells over a long time scale40–42.

Overall, FRA delivers a concise representation of complex
single-cell data, which is particularly relevant for high-throughput
techniques, which are increasingly allowing the measurement of a
high number of parameters per cell, generating very large, high-
dimensional datasets47. The high information content of multi-
variate, single-cell measurements makes biological discoveries
more likely. On the other hand, however, insights may be difficult
to extract due to data complexity. Therefore, making use of the
increasing amount of single-cell high-throughput measurements
requires approaches that can extract relevant insights in spite of
complexity. FRA is not limited to cytokine signaling, proteomic
data, or dose–responses, enabling the systematic investigation of
single-cell high-throughput data in a wide range of situations, in
which responses are measured in single cells at any “-omics”
scale. Accurate estimation requires, however, the number of
measured cells to considerably exceed the number of measures
signaling effectors, and a representative selection of doses (see
Supplementary Note 4 for caveats of FRA). Nonetheless, FRA
should yield insights into the structure of signaling heterogeneity
in immunology, developmental biology, cancer research, and
diverse other fields in which response analysis in single cells is of
relevance.

Methods
Software implementation. The methodology to perform and visualize FRA is
provided as a user-friendly R-package available for download at http://github.com/
sysbiosig/FRA. The package contains an installation guide and a brief user manual.

Formal definition of the FRC. Consider a series of doses x1,…,xi,…,xm and denote
a single-cell response as y. Depending on the context, y, may be a number or a
vector, e.g., the level of one or more measured signaling effectors. Suppose that
responses to a given dose, xi, are represented as the probability distribution,

PðY jxiÞ: ð3Þ
The FRC is then formally defined as

rðxiÞ ¼
Z
Y
max
xk ≤ xi

PðyjxkÞdy; ð4Þ

where integration takes place over Y, the set of all possible responses, y. The
integral quantifies the area under the curve (or under surface for multivariate data),
with respect to y, defined as maxxk ≤ xi P yjxk

� �
: For the calculations shown in Fig. 2

the integration corresponds to the calculation of the area of the gray regions in c–e.
As explained in Supplementary Note 1, the FRC defined as above is closely related
Rényi min-information capacity.

Formal definition of typical fractions. Having the responses represented in terms
of the probability distribution, Eq. 3, we can define which responses, y, are typical
to any of the doses. Precisely, we define the response, y, to be typical for dose xj if it
is most likely to arise for this dose, which writes as

PðyjxjÞ> PðyjxkÞ for all k other than j: ð5Þ
The above condition allows assigning any response, y, to a dose for which it is
typical. Therefore, for a given dose, xi, we can identify what fraction of cells
stimulated with this dose exhibits responses typical to any dose, xj, for j from 1 to
m. These fractions, denoted as vij, can be practically computed as explained below.

Calculation of typical fractions. The fractions of cells stimulated with dose i that
have responses typical to dose j, vij, can be easily calculated from data regardless of
the number of doses and the type of experimental measurements. We have that

vij ¼
number of cells stimulated with xi with responses typical for xj

number of cells stimulated with xi
: ð6Þ

Calculation of typical fractions, vij, with the above formula requires the possibility
to examine the condition P(y | xj) > P(y | xk) for any experimentally observed
response, y. The distributions P(y | xj) can be reconstructed from data using a
variety of probability density estimators48. The use of the available estimators,
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however, might be problematic for multivariate responses26,49. We, therefore,
propose a more convenient strategy. We replace the condition P(y | xj) > P(y | xk)
with an equivalent condition that is computationally much simpler to evaluate.
Precisely, we propose to use the Bayes formula

PðxjjyÞ ¼
PðyjxjÞPðxjÞ

∑
m

k¼1
PðyjxkÞPðxkÞ

: ð7Þ

If we set the equiprobable prior distribution, i.e., P(xj)= 1/m, we have that P(y|xj) is
proportional to P(xj|y) and the condition P(y|xj) > P(y|xk) is equivalent to

PðxjjyÞ>PðxkjyÞ: ð8Þ
The above strategy allows avoiding estimation of the response distributions, P(y|xj),
from data. For continuous and multivariate variable y the estimation of P(xj|y) is
generally simpler than estimation of P(y|xj)26,48. Precisely, an estimator

P̂ xjjY ¼ y
� �

of the distribution P(xj|y) can be built using a variety of Bayesian

statistical learning methods. For simplicity and efficiency, here we propose to use
logistic regression, which is known to work well in a range of applications48. In
principle, however, other classifiers could also be considered. The logistic regres-
sion estimators of P(xj|Y = y) arise from a simplifying assumption that log-ratio of
probabilities, P(xj|Y = y) and P(xm|Y = y) is linear. Precisely,

log
PðxjjY ¼ yÞ
PðxmjY ¼ yÞ

� �
� αj þ βTj y: ð9Þ

The above formulation allows fitting the logistic regression equations to experi-
mental data, i.e., finding values of the parameters, αj and βj that best represent the
data. The fitted logistic regression model allows assigning cellular responses to
typical doses based on conditions given by Eq. 8. Formally, the fractions vij defined
by Eq. 6 are calculated as

vij ¼
1
ni

∑
ni

l¼1
1

P̂ xj jY¼yð Þ>P̂ xk jY¼yð Þ:k≠j
� 	 yli

� �
; ð10Þ

where ni is the number of cells measured for the dose xi, yli denotes response of the

l-th cell, and 1
P̂ xj jY¼yð Þ>P̂ xk jY¼yð Þ:k≠j

� 	ðyliÞ is equal 1 if P̂ xjjY ¼ y
� �

>P̂ xkjY ¼ y
� �

for any k≠ j and 0 otherwise.

Calculation of the FRC. Calculation of the FRC can be conveniently performed
using the typical fractions, as defined above, rather than through integration of
Eq. 4. Precisely, to calculate the FRC for the dose, xi, consider doses x1,…,xi in
isolation from higher doses. Then, the sum of typical fractions v11,…,vii is
equivalent to FRC for the dose xi

rðxiÞ ¼ ∑
i

k¼1
vkk: ð11Þ

The equivalency of the above equation and Eq. 4 is derived in the Supplementary
Methods.

Mass cytometry (CyTOF). PBMCs were isolated from the peripheral blood of
healthy adult donors using Lymphoprep (Stemcell Technologies), according to the
manufacturer’s instructions. Cells were washed in serum-free Roswell Park Memorial
Institute (RPMI) then resuspended at 107 cells/mL in serum-free RPMI containing
0.5mM Cell-ID Cisplatin (Fluidigm) and incubated at 37 °C for 5 min. Cells were
washed with RPMI containing 10% (v/v) FCS (Sigma) and 2mM L-Glutamine (R10),
centrifuging at 300 × g for 5 min before being resuspended to 6 × 107 cells/mL in R10
and rested at 37 °C for 15min. 50mL of cells (3 × 106 cells) were transferred to 15mL
falcon tubes for stimulation and antibody staining. Antibodies and their dilutions are
listed in Supplementary Table 1. Staining for CD14, CCR6, CD56, CD45RO, CD27,
CCR7, CCR4, and CXCR3 was done before stimulation/fixation for 30min in R10 at
37 °C. Cells were stimulated with 0, 25, 250, 2500, or 25000 U/mL recombinant
human IFN-α2a (PBL Assay Science, #11100-1) diluted in R10 for 15min at 37 °C.
After washing with 5mL cold Maxpar PBS (Fluidigm), cells were fixed with 1×
Maxpar Fix I Buffer (Fluidigm) for 10min at RT before being washed with 1.5mL
Maxpar Cell Staining Buffer (CSB, Fluidigm). All centrifugation steps after this point
were at 800 × g for 5min. Cells were barcoded using Cell-ID 20-Plex Pd Barcoding Kit
(Fluidigm), according to the manufacturer’s instructions, and washed twice with CSB
before samples were pooled and counted. All further steps were performed on the
pooled cells. Fc receptors were blocked using Fc Receptor Binding Inhibitor Antibody
(eBioscience, #14-9161-73) diluted 1:10 in CSB for 10min at RT. Surface antibody
staining mixture was added directly to the blocking solution and incubated for 30min
at RT. Cells were washed twice with CSB, resuspended in ice-cold methanol, and
stored at −80 °C overnight. After washing twice with CSB, cells were stained with
intracellular antibody staining mixture for 30min at RT before two further washes in
CSB. Cells were resuspended in 1.6% (v/v) formaldehyde (Pierce, #28906) diluted in
Maxpar PBS and incubated for 10min at RT. Cells were resuspended in 125mMCell-
ID Intercalator (Fluidigm) diluted in Maxpar Fix and Perm Buffer (Fluidigm) and
incubated overnight at 4 °C. Compensation beads (OneComp eBeads Compensation
Beads, Invitrogen, #01-1111-42) stained with 1mL of each antibody were also

prepared. The next day, cells and compensation beads were washed twice with CSB
and twice with Maxpar water (Fluidigm), mixed with a 1:10 volume EQ Four Element
Calibration Beads (Fluidigm) before acquisition on a Helios Mass Cytometer (Flui-
digm) using the HT injector. Data were normalized, randomized, and concatenated
using Helios CyTOF Software v6.7 (Fluidigm), cytofCore v0.4, flowCore v1.46.2, and
Cytobank v6.2. Compensation and de-barcoding were performed using the CATA-
LYST v1.5.3.23 package50. Different immune cell subpopulations were gated in R
v3.5.1 from single, live, CD45+ cells as shown in Supplementary Fig. 2.

Collection and analysis of PBMCs were carried out in accordance with the EU
Directive 2004/23/EC and the UK Human Tissue Act 2004 (HTA), under the HTA
licence (number 12433) of the Weatherall Institute of Molecular Medicine.
Informed consent was obtained and the samples were fully anonymised.

U937 cells. U937 cells (CRL-1593.2, ATCC), a human monocyte cell line, were
cultured under standard conditions at 37 °C in a humidified atmosphere of 5%
CO2/95% air in low glucose RPMI 1640 (Corning, #10-040-CV) medium
supplemented with 10% fetal bovine serum (FBS, ThermoFisher, #10500064)
and 1% penicillin–streptomycin solution (P/S, ThermoFisher, #15140122). For
macrophage differentiation, U937 cells were suspended in a medium with 20
ng/mL phorbol 12-myristate 13-acetate (PMA, Sigma Aldrich, #P1585) and
plated in 96-well microplates with µClear®flat bottom (Greiner, #655090) in
density 2 × 104 cells per well. After 24 h medium with PMA was removed and
fresh medium was added to cells. 72 h after seeding on 96-well microplates
differentiated cells were incubated with recombinant human IFN-γ (Ther-
moFisher, #PHC4031) at concentrations 0DAPI10 ng/mL or recombinant
human IL-10 (PeproTech, #200-10) at concentrations 0–1000 ng/mL for 30
min. Afterwards, cells were fixed with 3.7% paraformaldehyde (PFA, Sigma
Aldrich, #P6148) for 10 min at room temperature, RT, then permeabilized with
90% ice-cold methanol (Sigma, #322415), for 30 min at −20 °C, blocked with
5% bovine serum albumin (BSA, Merck, #821006) and 0.3% Triton X-100
(Sigma Aldrich, #T9284) for 1 h at RT, and incubated with primary
antibody–phospho-STAT1 (Tyr701) (pSTAT1, Cell Signaling, #9167) diluted
1:100 or phospho-STAT3 (Tyr705) (pSTAT3, Cell Signaling, #4113) diluted
1:200 in 1% BSA with 0.3% Triton X-100 for 18 h at 4 °C. Next day, cells were
incubated with an appropriate secondary antibody–Alexa Fluor 488 (Life
Technologies, #A-21206) or Alexa Fluor 555 (Life Technologies, #A-31570)
diluted 1:500 in 1% BSA with 0.3% Triton X-100 for 1.5 h at RT and stained
with 2 µg/mL 4’,6-diamidino-2-phenylindole (Sigma Aldrich, #D9542) for 10
min at RT. The fluorescence signal was acquired using an automated confocal
microscope (Pathway 435, BD) and analyzed with Cell Profiler v2.1.1, R v3.5.1,
and ImageJ v1.48.

Murine immortalized fibroblasts. Murine embryonic fibroblasts 3T3 cell line,
previously used in several studies including4,26, expressing fluorescent fusion
proteins relA-dsRed as wells H2B-GFP for nuclei identification were cultured
in an incubator under standard conditions at 37 °C in a humidified atmosphere
of 5% CO2/95% air. The cell line was kindly provided by Professor S. Tay. The
cells were cultured in high glucose Dulbecco’s Modified Eagle’s Medium
without phenol red (ThermoFisher, #21063029) supplemented with 10% FBS
(ThermoFisher, #10500064) and 1% penicillin–streptomycin solution (P/S,
ThermoFisher, 15140122). Approximately 1.3 × 105 cells were plated on 35-
mm confocal dish for imaging. After 48 h in the incubator, cells were trans-
ferred to the environmental chamber in a microscope. At time 0, medium was
removed from cells and recombinant mouse TNF-α (Sigma Aldrich, #T7539)
was added at concentrations 0-100 ng/mL as a 5-minute pulse. Live imaging
was performed using a confocal microscope, Leica TCS SP5 X. During single
experiment, images have been captured every 3 min over 1 h in two channels
simultaneously at nine different positions on the plate. The experiment has
been repeated at least four times to test reproducibility and to allow for a
sufficient number of observations. Nuclear and cytoplasmic fluorescence (pixel
mean) was then quantified from microscopic images using Cell Profiler v2.1.1,
and R v3.5.1. The response of each cell was then represented as the ratio of
nuclear to cytoplasmic fluorescence in order to ensure the robustness of
measurements to changes in confocal plane over time. The data set is described
in detail in ref. 26, where it was initially published.

Reporting summary. Further information on research design is available in the Nature
Research Reporting Summary linked to this article.

Data availability
Data generated during the study are available for download from https://github.com/
sysbiosig/FRA/ and are also deposited in the open-access repository https://doi.org/
10.5281/zenodo.4835622. The study also involves data published in ref. 26.

Code availability
FRA is made available as an R-package (see Supplementary Note 5) downloadable from
https://github.com/sysbiosig/FRA/ that is also deposited in the open-access repository
https://doi.org/10.5281/zenodo.4818586.
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