

Instytut Podstawowych Problemów Techniki Polskiej Akademii Nauk Zakład Mechaniki Doświadczalnej Pracownia Pól Odkształceń

Aneta Antolik

WPŁYW ŚRODKÓW ODLADZAJĄCYCH NA MIKROSTRUKTURĘ I ZAGROŻENIE WYSTĄPIENIEM REAKCJI ALKALICZNEJ KRUSZYWA GRANITOWEGO W BETONIE NAWIERZCHNIOWYM

Rozprawa doktorska

Promotor: dr hab. inż. Daria Jóźwiak-Niedźwiedzka

Promotor pomocniczy: dr inż. Mariusz Dąbrowski

Warszawa, 2022

Składam serdeczne podziękowania promotorom mojej pracy: Pani dr hab. inż. Darii Jóźwiak-Niedźwiedzkiej Panu dr. inż. Mariuszowi Dąbrowskiemu oraz Panu prof. dr. hab. inż. Michałowi A. Glinickiemu i Koleżankom i Kolegom z Pracowni Pól Odkształceń za nieocenioną pomoc i wsparcie w realizacji niniejszej rozprawy

Wykaz ważniejszych pojęć i oznaczeń7					
1. Ws	tęp	8			
1.1.	Przedmiot rozprawy	8			
1.2.	Cel i zakres rozprawy	9			
1.3.	Tezy rozprawy	10			
1.4.	Układ rozprawy	10			
2. Rea	akcja alkaliczno-krzemionkowa w betonie nawierzchniowym	12			
21	Mechanizm i czynniki decydujące o reakcji alkalicznej kruszywa	12			
2.1.	Charakterystyka betonu nawierzchniowego z uwagi na odporność na rea	12 kcję			
2.2	alkaliczną kruszywa	23			
2.3.	Podatność kruszywa granitowego na wystąpienie reakcji alkalicznej	25			
2.4.	wpływ srodkow odladzających na reakcję alkaliczną kruszywa w bet	onie			
25	Podeumowanie	20			
2.3.	I ousumowanie				
3. Ma	teriały do badań i ich charakterystyka	35			
3.1.	Materiały składowe	35			
3.1	.1. Kruszywo	35			
3.1	.2. Pozostałe składniki zaprawy i betonu	37			
3.2.	Skład zaprawy i betonu	38			
4. Prz	zeprowadzone badania i opis zastosowanych metod	45			
4.1	Program badań	45			
4.2.	Skład fazowy i mikrostruktura	46			
4.2	.1. Rentgenowska spektroskopia fluorescencyjna	46			
4.2	.2. Rentgenowska analiza dyfrakcyjna	46			
4.2	.3. Analiza petrograficzna kruszywa	47			
4.2	.4. Analiza mikroskopowa SEM	48			
4.3.	Właściwości fizyczne mieszanki betonowej i mechaniczne betonu	50			
4.4.	Odporność kruszywa na reakcję alkaliczną	51			
4.4	.1. Metoda szybka	51			
4.4	.2. Metoda przyspieszona	51			
4.4	.3. Metoda długotrwała	53			
4.4	.4. Metoda symulowanych warunkow eksploatacyjnych	33			
4.5.	1 Autoralea matoda wyznaczonia zawartaści realstruwnych minoralów w kryszy				
4.5	.1. Autorska metoda wyznaczania zawartości reaktywnych minerałów w kruszy	55			
4.5	.2. Ocena stopnia zniszczenia konstrukcji betonowej (Damage Rating Index)	56			
4.5	.3. Autorska metoda wyznaczania stopnia spękania betonu wskutek ASR	58			
5. Pot	tencjalna reaktywność alkaliczna kruszywa granitowego	62			
5.1.	Wyniki oznaczenia składu mineralnego kruszywa	62			
5.2.	Wyniki ilościowego oznaczenia zawartości minerałów reaktywnych w kruszywie	69			
5.3.	Wyniki oznaczenia podatności kruszywa na reakcję alkaliczną	70			
5.3	.1. Metoda szybka	70			
5.3	.2. Metoda przyspieszona	70			
5.3	.3. Metoda długotrwała	75			

Spis treści

5.3 5.4.	8.4. Metoda symulowanych warunków eksploatacyjnych Podsumowanie			
6. Wpływ środków odladzających na spękania betonu i produkty reakcji ASR				
6.1. 6.2. 6.3. 6.4.	Mikrostruktura zaprawy narażonej na działanie środków odladzających Mikrostruktura betonu poddanego symulowanym warunkom eksploatacyj Morfologia i skład chemiczny produktów reakcji alkalia-krzemionka Podsumowanie			
7. Oc odladza	zena jednoczesnego wpływu zawartości kwarcu zdeformowanego i ających na ekspansję wskutek reakcji alkalia-krzemionka	i środków 115		
7.1. 7.2. 7.3. 7.4.	Ilościowa ocena podatności kruszywa granitowego na reakcję alkalia-krze Ekspansja betonu w warunkach eksploatacyjnych Analiza składu chemicznego produktów ASR Podsumowanie	mionka115 119 127 129		
8. Zas	stosowanie metod ilościowej oceny mikrostruktury do analizy na wych zniszczonych w wyniku ASR	awierzchni 132		
8.1. 8.2. 8.3. 8.4.	Charakterystyka pobranych próbek Analiza mikrostruktury Ocena stopnia zniszczenia konstrukcji Podsumowanie			
9. Wi	nioski końcowe	143		
Literat	ura cytowana w pracy	145		
Normy	i zalecenia techniczne	154		
Streszc	zenie	156		
Summa	ary	158		
Załączn	niki	160		
Załąc Załąc Załąc Załąc Załąc Załąc Załąc Załąc Załąc Załąc Załąc	 cznik 1 – Analiza sitowa kruszyw zastosowanych w badaniach cznik 2 – Wyniki ekspansji wywołanej ASR cznik 3 – Wyniki ubytku masy – metoda szybka cznik 4 – Wyniki wytrzymałości na ściskanie cznik 5 – Wyniki zawartości minerałów reaktywnych w kruszywie cznik 6 – Wyniki charakterystyki porów w betonie metodą trawersową cznik 7 – Wyniki XRD cznik 8 – Mikroskopowa analiza struktury betonu metodą SEM cznik 9 – Wyniki pomiarów do wyznaczenia DRI cznik 10 – Wyniki składu chemicznego produktów reakcji ASR 			

Wykaz ważniejszych pojęć i oznaczeń

- α powierzchnia właściwa porów powietrznych [1/mm],
- A całkowita zawartość porów powietrznych [%],
- AEA domieszka napowietrzająca (ang. Air Entraining Admixture),
- A₃₀₀ zawartość mikroporów o średnicy poniżej 300 µm [%],
- AAR reakcja alkaliczna kruszywa (ang. Alkali Aggregate Reaction),
- AMBT przyspieszone badanie na beleczkach zaprawy (ang. Accelerated Mortar Bar Test),
- ASR reakcja alkaliczno krzemionkowa kruszywa (ang. Alkali Silica Reaction),
- Alkalia jony sodu i/lub potasu,
- CPT badanie na belkach betonu (ang. Concrete Prism Test),
- d_{hkl} odległość międzypłaszczyznowa [Å],
- E ekspansja, [%] lub [mm/m],
- E_d rezonansowy moduł sprężystości [GPa],
- EDS rentgenowska spektroskopia energodyspersyjna (ang. Energy Dispersive

Spectroscopy),

- f_c wytrzymałość na ściskanie [MPa],
- *L*-wskaźnik rozmieszczenia porów powietrznych [mm],
- m masa [g],
- PPL nikole rozkrzyżowane (ang. Plane Polarized Light),
- RH wilgotność względna powietrza (ang. Relative Humidity) [%],
- SEM elektronowy mikroskop skaningowy (ang. Scanning Electron Microscope),
- w/c-współczynnik wodno-cementowy,
- XPL nikole skrzyżowane (ang. Cross Polarized Light),
- XRD rentgenowska analiza dyfrakcyjna (ang. X-Ray Diffraction Analysis),
- XRF rentgenowska analiza fluorescencyjna (ang. X-Ray Fluorescence Analysis).

1. Wstęp

1.1. Przedmiot rozprawy

Przedmiotem rozprawy jest zagadnienie niszczenia nawierzchni betonowych dróg i lotnisk w Polsce w wyniku działania reakcji alkaliczno-krzemionkowej kruszywa (*Alkali Silica Reaction*, ASR), przy zastosowaniu środków odladzających oraz przeciwdziałanie temu zjawisku. Celem badań jest poznanie przyczyn występowania powyższego zjawiska przy zewnętrznym dostępie alkaliów pochodzących ze środków odladzających. Zakres badanych krajowych kruszyw ograniczono do kruszywa granitowego, które jest najczęściej stosowane w betonach nawierzchni drogowych i lotniskowych. Uwzględniono także inne kruszywa ze skał magmowych głębinowych: granodiorytowe i kruszywo gabro.

Rozpoznanie mechanizmów reakcji alkalia-krzemionka jest niezbędne do zaprojektowania i wykonania trwałej nawierzchni betonowej. Opis zjawiska niszczenia betonu w wyniku ASR wymaga określenia wpływu poszczególnych składników betonu i czynników tego procesu oraz oddziaływań zewnętrznych, a także w razie potrzeby zastosowania adekwatnych metod oceny trwałości betonu w warunkach stosowania środków odladzających.

Kruszywo wytwarzane ze skał magmowych głębinowych – granitowe – uznawane jest za kruszywo wysokiej jakości w zastosowaniu do betonu nawierzchniowego. Kruszywo to jest preferowane do budowy nawierzchni betonowych lotnisk i dróg szybkiego ruchu w Polsce. Natomiast prace przeprowadzane w ośrodkach zagranicznych (kraje skandynawskie, USA i Kanada, Japonia) dotyczyły jedynie lokalnych złóż kruszyw. Dotychczasowa charakterystyka polskich złóż kruszyw ze skał magmowych głębinowych pod względem reaktywności alkalicznej została określona przy wykorzystaniu metod obecnie uznawanych za niewłaściwe i wycofanych z użycia. Pomimo tego wymagane jest, aby kruszywo przeznaczone na nawierzchnie lotniskowe wykazywało zerowy stopień reaktywności. Ze względu na występujące niejasności i sprzeczności dotyczące oceny potencjalnej reaktywności krajowych kruszyw ze skał granitowych, niezbędne było przeprowadzenie szczegółowych badań.

Przedstawiony w Rozdziale 2 stan wiedzy i znaczenie zjawiska, a także omówione w Rozdziale 4 metody badawcze, uzasadniają podjęcie tematu.

Ocena reaktywności alkalicznej kruszywa granitowego z krajowych złóż w betonie nawierzchniowym oraz opracowanie metody analizy ilościowej umożliwiającej identyfikację

8

reaktywnych minerałów w tym kruszywie stanowi podstawową część rozprawy. Rozprawa obejmuje również modyfikacje obecnie stosowanych metod badawczych do oceny reaktywności alkalicznej kruszywa granitowego oraz dostosowanie do odwzorowania w laboratorium naturalnych warunków środowiska, uwzględniając zastosowanie soli odladzających.

1.2. Cel i zakres rozprawy

Zasadniczym celem przedstawionych badań było określenie reaktywności alkalicznej powszechnie stosowanych w nawierzchniach betonowych kruszyw ze skał magmowych głębinowych – granitowych – oraz analiza wpływu środków odladzających na przebieg reakcji w betonie z kruszywem granitowym. Zakres badań obejmował beton napowietrzony w celu uzyskania trwałości mrozowej. Wpływ środków odladzających na mrozoodporność i odporność na powierzchniowe łuszczenie betonu jest znany z literatury [12][97][122] i nie był tematem rozprawy.

Uzyskanie celu rozprawy wymagało:

- przeprowadzenia badań potencjalnej reaktywności alkaliczno-krzemionkowej kruszyw ze skał magmowych głębinowych (granity, gabro, granodioryt) za pomocą metod odpowiadających dzisiejszej wiedzy i technice,
- identyfikacji składników reaktywnych w kruszywie i opracowania oryginalnej, ilościowej metody oceny ich zawartości z wykorzystaniem techniki analizy obrazu,
- modyfikacji istniejących metod pomiaru odporności kruszyw na reakcję alkaliakrzemionka tak, aby uwzględnić wpływ środków odladzających w symulowanych warunkach środowiskowych,
- zbadania jednoczesnego wpływu zmiennych warunków wilgotnościowych oraz różnego stężenia środków odladzających (NaCl, HCOONa, HCOOK) na możliwość wystąpienia reakcji alkalicznej kruszywa,
- szczegółowej analizy mikrostruktury próbek zapraw i betonów po przeprowadzonych badaniach reaktywności alkalicznej ukierunkowanej na identyfikację i charakteryzację produktów tej reakcji,
- opracowania oryginalnej mikroskopowej metody wyznaczania stopnia spękania betonu wskutek reakcji alkalicznej kruszywa i wykazania jej przydatności do oceny uszkodzenia betonu w eksploatowanych nawierzchniach betonowych.

1.3. Tezy rozprawy

Sformułowano następujące tezy badawcze:

- Kruszywo granitowe z krajowych złóż o ustalonej przydatności na podstawie zerowego stopnia reaktywności jest podatne na reakcję alkaliczno-krzemionkową, w szczególności w obecności środków odladzających jako zewnętrznego źródła alkaliów.
- 2. Zawartość kwarcu zdeformowanego w kruszywie granitowym z krajowych złóż wpływa decydująco na jego podatność na reakcję alkaliczno-krzemionkową.
- Istnieje zależność wielkości ekspansji betonu z kruszywem granitowym w badaniu symulowanych warunków eksploatacyjnych od składu produktów ASR w spękanych ziarnach kruszywa.

1.4. Układ rozprawy

Praca składa się z 9 rozdziałów i 10 załączników. Cel rozprawy został sformułowany w postaci tez zamieszczonych w Rozdziale 1. Część teoretyczną rozprawy na tle stanu wiedzy przedstawiono w Rozdziale 2. Zastosowane materiały opisano w Rozdziale 3. Program badawczy wraz z opisem zastosowanych metod badawczych opisano w Rozdziale 4. Zaproponowano modyfikacje metod do oceny możliwości wystąpienia ASR w betonie nawierzchniowym. W Rozdziale 5 opisano wyniki badań doświadczalnych potencjalnej reaktywności alkalicznej analizowanych kruszyw ze skał magmowych głębinowych z zastosowaniem oraz bez zastosowania środków odladzających. W Rozdziale 6 przedstawiono szczegółowe wyniki badań mikrostruktury betonu. Szczególną uwagę poświęcono identyfikacji i charakteryzacji produktów reakcji ASR. W Rozdziale 7 przedstawiono dyskusję uzyskanych wyników dotyczącą wpływu składu mineralnego kruszywa i środków odladzających na możliwość wystąpienia reakcji alkalia-krzemionka. Rozdział 8 obejmuje wyniki analizy odwiertów pobranych z betonowych nawierzchni drogowych zniszczonych wskutek reakcji alkalicznej kruszywa.

Wyniki badań potwierdziły słuszność tez rozprawy, co zostało przedstawione w podsumowaniu i wnioskach w Rozdziale 9. Zamieszczony spis publikacji cytowanych obejmuje 187 pozycji literaturowych oraz 26 norm i zaleceń techniczne. Załączniki zestawione na końcu rozprawy zawierają:

- zestawienie sitowej analizy kruszyw zastosowanych w badaniach – Załącznik 1,

- zestawienie otrzymanych wyników badań i pomiarów - Załączniki 2-10.

2. Reakcja alkaliczno-krzemionkowa w betonie nawierzchniowym

2.1. Mechanizm i czynniki decydujące o reakcji alkalicznej kruszywa

Zjawisko reakcji alkalia-krzemionka (*Alkali Silica Reaction*, ASR) rozpoznano w latach dwudziestych XX w. w USA, a jako pierwszy opisał je Stanton w 1940 r. [159]. Powiązał on pęcznienie betonu z alkaliami pochodzącymi z cementu oraz reaktywną formą krzemionki obecną w kruszywie. Od momentu rozpoznania przyczyn ASR, jej ślady udokumentowano w licznych konstrukcjach betonowych, a w wielu z nich miała bezpośredni wpływ na ich destrukcję. Uszkodzenia są zwykle widoczne jako charakterystyczna siatka spękań, odpryski, a także wypełniające je białe wydzielenia produktów reakcji [117]. Zaawansowany stopień postępowania reakcji może prowadzić do nadmiernej deformacji elementów konstrukcji i w konsekwencji do jej zniszczenia. Przykłady degradacji konstrukcji betonowych spowodowanych ASR przedstawiono na Rys. 2.1.

Reakcja alkalia-krzemionka to reakcja chemiczna między reaktywną krzemionką obecną w niektórych typach kruszyw, a wodorotlenkami sodu i potasu w cieczy porowej w betonie. Alkalia w betonie są zawarte głównie w cemencie, a w niektórych przypadkach w domieszkach [114], kruszywie [20] lub mogą być dostarczone przez środowisko zewnętrzne [10]. W wyniku tej reakcji powstaje produkt – krzemian alkaliczno-wapniowy [86]. Tworzenie się pęczniejącego żelu alkaliczno-krzemionkowego ma szkodliwy wpływ na beton: inicjowanie pęknięć w kruszywie reaktywnym, propagację pęknięć w matrycy cementowej, wysięk żelu z pęknięć i rozszerzanie objętości, rozwój naprężenia w betonie oraz pogorszenie właściwości mechanicznych betonu. Zakres uszkodzeń spowodowanych reakcją zależy od kilku czynników [117][119][129], w tym rodzaju kruszywa i jego właściwości [38][48][116], szybkości tworzenia się żelu [39], stężenia jonów sodu, potasu i wapnia w betonie [38], a także stosowania dodatków mineralnych w postaci popiołu lotnego [110][123][140] bądź żużla wielkopiecowego [72][166].

Rys. 2.1 Przykłady zniszczonych nawierzchni betonowych w wyniku reakcji ASR na świecie: (a) spękania w nawierzchni lotniskowej, USA [132], (b) spękania w nawierzchni drogowej wypełnione żelem ASR (autostrada na północy Niemiec) po 15 latach eksploatacji [5], (c) spękania na nawierzchni lotniska w Channel Islands ANG (baza sił powietrznych w Kaliforni) [135], (d) spękania na nawierzchni drogi ekspresowej zlokalizowanej w środkowej Polsce [49], (e) nawierzchnia betonowa położona w północnej Polsce [źródło: Autorka], (f) nawierzchnia pasa drogi kołowania lotniska położonego w środkowej Polsce [źródło: Autorka]

Zniszczenia betonu wywołane reakcją alkaliczną kruszywa charakteryzują się pękaniem ziaren kruszywa i matrycy cementowej oraz obecnością żelu sodowo-potasowo-wapniowo-

krzemowego wypełniającego powstałe spękania oraz pory powietrzne [114], Rys. 2.2. Spękania kruszywa krzemionkowego są wynikiem formowania się produktu reakcji w postaci żelu Si-Ca-Na-K, który wypełnia powstałe spękania i przemieszcza się do matrycy cementowej, powodując jej zniszczenie.

Rys. 2.2 Mikrofotografia zaprawy cementowej ze spękanymi w wyniku reakcji ASR kruszywem i matrycą cementową oraz porem powietrznym, wypełnionymi produktami reakcji w postaci żelu Si-Ca-Na-K (analiza składu chemicznego w mikroobszarach EDS w punkcie 1), [źródło: Autorka]

Zainicjowanie i późniejszy rozwój reakcji alkalia-krzemionka wymaga jednoczesnego spełnienia trzech głównych warunków: obecności reaktywnej formy krzemionki w kruszywie, dostatecznej zawartości alkaliów (wodorotlenków sodu i potasu) oraz wysokiej wilgotności betonu (powyżej 80%) [114].

Nie wszystkie kruszywa stosowane w betonie rozpatruje się pod kątem potencjalnej reaktywności alkalicznej. Kruszywa do nawierzchni lotniskowych muszą spełniać warunek tzw. zerowego stopnia reaktywności.

Za kruszywa potencjalnie reaktywne uważa się te, które w swoim składzie mineralnym posiadają reaktywne formy kwarcu. Ze względu na rozmiar kryształów kwarcu reaktywne są: kwarc mikrokrystaliczny (10-100 μ m), kwarc kryptokrystaliczny (< 10 μ m) oraz kwarc amorficzny (brak wykształconych kryształów) [107]. Spośród minerałów krzemionkowych do reaktywnych zalicza się między innymi opal, trydymit, krystobalit, szkło wulkaniczne, a także kwarc zdeformowany (Rys. 2.3).

Rys. 2.3 Reaktywne formy krzemionki (zaznaczono strzałkami): (a) opal, (b) trydymit, (c) krystobalit, (d) kwarc zdeformowany, (e) chalcedon, (f) kwarc mikrokrystaliczny, cienki szlif, światło przechodzące, XPL [źródło: Autorka]

Krzemionka, w zależności od formy w jakiej występuje w kruszywie, reaguje z wodorotlenkami sodu i potasu z różną intensywnością [129]. Największą reaktywnością charakteryzuje się amorficzna krzemionka – opal, dalej kwarc krypto- i mikrokrystaliczny i kwarc zdeformowany [129][172][138][31]. Na stopień reaktywności kruszywa wpływa m.in. rozmiar ziaren, co przekłada się na powierzchnię właściwą i dostępność reaktywnych form krzemionki. Większe rozdrobnienie ziaren kruszywa powoduje uzyskanie większej

powierzchni właściwej, która ma kontakt z zaczynem cementowym, co sprzyja występowaniu ASR [187].

Zawartość reaktywnych minerałów w kruszywie determinuje ich odporność na reakcję alkalia-krzemionka w betonie. W różnych krajach, gdzie podejmowane są kroki zapobiegające reakcji alkalicznej kruszywa w betonie, określone są graniczne kryteria zawartości reaktywnych form krzemionki, powyżej których kruszywo uznaje się za reaktywne, Tabela 2.1. Dopuszczalna zawartość mikro- i kryptokrystalicznego kwarcu waha się od 0,5 do 5%. Znacznie większe różnice występują w dopuszczalnej ilości kwarcu zdeformowanego, którego ilość powyżej 1% jest niedopuszczalna w Kanadzie, podczas gdy w Wielkiej Brytanii dopuszczalne jest nawet 30% kwarcu zdeformowanego. W Polsce dopuszczalny limit zawartości reaktywnych składników nie jest unormowany żadnymi dokumentami.

Tabela 2.1 Graniczna zawartość składników reaktywnych w kruszywach potencjalnie reaktywnych w wybranych krajach świata [2][102][134][N7]

Państwo	Potencjalnie reaktywne formy krzemionki w kruszywie	Dopuszczalny limit (% zawartości w kruszywie)		
Belgia	Opal, chalcedon, kwarc mikro- i kryptokrystaliczny	<2%		
Kanada	Opal, trydymit, krystobalit, szkło wulkaniczne, chalcedon, kwarc mikro-i kryptokrystaliczny, kwarc zdeformowany	<1%		
Dania	Opal, kwarc kryptokrystaliczny	<2%		
	I. Opal, krystobalit, trydymit	I. 0%		
Irlandia	II. Chalcedon, kwarc mikro-	II. <0,5%		
	i kryptokrystaliczny			
Norwegia	Kwarc mikrokrystaliczny	<2%		
Rosja	Opal, kwarc mikrokrystaliczny, szkło wulkaniczne, krystobalit, trydymit, chalcedon	<5%		
	I. Opal, krystobalit, trydymit	I. 0%		
Wielka	II. Kwarc mikro- i kryptokrystaliczny, kwarc	II. <5% w kruszywie		
Brytania	zdeformowany, opal, chalcedon, szkło	drobnym		
-	wulkaniczne	HI -200/		
	III. Kwarc zueioiniowany	111. <30%		
	I. Kwarc mikrokrystaliczny, kwarc	I. <5%		
D	Zdeformowany	н - 20/		
Brazyna	II. Unaicedon, szkio wulkaniczne	II.<3%		
		111. < 1%		
	IV. Opai	1V. <0,5%		

Głównym źródłem alkaliów w betonie jest cement. Alkalia w cemencie występuja w postaci dobrze rozpuszczalnych soli (Na₂SO₄, K₂SO₄ lub (Na, K)₂SO₄) [13]. W betonie z cementem wysokoalkalicznym (Na₂O_{eq} > 0,8%), roztwór porowy charakteryzuje się pH pomiędzy 13 a 14 i zawiera prawie wyłącznie jony Na⁺, K⁺ i OH⁻ oraz bardzo małe stężenie jonów Ca2+, SO42-, Cl-. W betonie z cementem o niskiej zawartości alkaliów (poniżej 0,6% [86]) roztwór porowy może wykazywać pH pomiędzy 12,5 a 12,9 [112]. Część metali alkalicznych zawartych w cemencie wbudowuje się w produkty hydratacji cementu, dlatego wprowadzono pojęcie alkaliów aktywnych [N8]. Cement nie jest jednak jedynym źródłem alkaliów, który może mieć wpływ na powstanie szkodliwej reakcji. Metale alkaliczne mogą być wymywane z innych składników betonu, tj. dodatków mineralnych (popiołu lotnego, żużla wielkopiecowego i domieszek chemicznych). Alkalia mogę pochodzić również z reakcji wodorotlenku wapnia z minerałami zawierającymi alkalia, które obecne są w kruszywie. Źródłem alkaliów w kruszywie mogą być przede wszystkim skalenie zawierające potas oraz sód, a także szkło wulkaniczne, miki, minerały ilaste, zeolity [9]. Zagadnieniem ostatnio podjętym przez naukowców jest pojęcie zewnętrznego źródła alkaliów, które pochodzą przede wszystkim ze środków odladzających stosowanych zimą do utrzymania odpowiedniej jakości nawierzchni betonowych [44][58][129].

Kolejnym istotnym czynnikiem wpływającym na intensywność i przebieg reakcji alkalicznej w betonie są warunki wilgotnościowe środowiska. Wilgoć umożliwia dyfuzję jonów alkalicznych do miejsc reakcji, a powstały w jej wyniku żel pęcznieje poprzez absorbcję wody i zwiększa swoją objętość, prowadząc do ekspansji betonu. W betonach, które nie są eksploatowane w warunkach wysokiej wilgotności nie obserwuje się szkodliwej reakcji [24]. Wilgotność względna betonu niezbędna do pojawienia się ekspansywnego żelu to minimum 80% [160]. Jednak warto zauważyć, że również w warunkach suchych w betonie, w którym zapewniono możliwość właściwej hydratacji [181], jego wilgotność względna tuż pod powierzchnią może utrzymywać się powyżej 80%, nawet po kilkudziesięciu latach, co stwarza ryzyko pojawienia się ASR [117]. Zapewnienie warunków stałej, niskiej wilgotności w betonie może ograniczyć ryzyko wystąpienia ASR, jednak nie jest jednoznaczne, w jaki sposób na zwiększenie szkód wskutek tej reakcji wpływa cykliczne nasączanie i suszenie. W warunkach naprzemiennego nasączania i suszenia może zachodzić dyfuzja alkaliów i ich większe gromadzenie się w strefach suszenia, co również może wpłynąć na zainicjowanie ASR [24].

Na przebieg reakcji alkaliczno-krzemionkowej wpływa również temperatura. Jej wzrost powoduje zwiększenie podatności betonu na reakcję alkaliczną [35][74][111][126]. Choć

znane są badania, w których zastosowanie niższej temperatury (13°C i 20°C) wpłynęło na uzyskanie większej ekspansji w stosunku do próbek przetrzymywanych w wyższej temperaturze (38°C) dla wybranych kruszyw [183][67].

Mechanizm reakcji ASR wciąż nie jest do końca rozpoznany i pozostaje tematem wielu badań. Jednakże według obecnego stanu wiedzy chemiczny przebieg reakcji może być opisany następująco [11][23][114][129][140]: w środowisku zasadowym następuje rozpuszczanie krzemionki zawartej w kruszywie przez jony hydroksylowe rozbijające mostki siloksanowe i atakujące końcowe grupy silanolowe (\equiv Si – OH), które są obecne na granicy krzemionka-woda (1):

$$(\equiv Si - O - H)_{s} + (OH^{-})_{aq} \rightarrow (\equiv Si - O^{-})_{aq} + H_2O$$
(1)

gdzie: s – ciało stałe, aq – jony uwodnione,

jony OH⁻ hydrolizują także wiązania siloksanowe \equiv Si-O-Si \equiv (2):

$$(\equiv \text{Si} - \text{O} - \text{Si} \equiv)_{s} + 2(\text{OH}^{-})_{aq} \rightarrow 2 (\equiv \text{Si} - \text{O}^{-})_{aq} + \text{H}_2\text{O}$$
(2)

Jony sodu i potasu dostarczane przez cement równoważą ujemne ładunki anionowe w sieci krzemionkowej (3):

$$(\equiv Si - O^{-})_{aq} + A^{+} \rightarrow 2 (\equiv Si - O - A)_{s}$$
(3)

gdzie: A = Na lub K.

Powstające w ten sposób produkty reakcji absorbują wodę, co powoduje ekspansję i w konsekwencji pękanie betonu [11]. Absorbując wodę, żel zwiększa swoją objętość i generuje ciśnienie przekraczające wytrzymałość betonu na rozciąganie, powodując jego zniszczenie [114]. Początkowo reakcja zachodzi na granicach ziaren kruszywa lub w już istniejących pęknięciach [92]. Powstawanie produktów ASR powoduje generowanie naprężenia, które po przekroczeniu wytrzymałości na rozciąganie kruszywa powoduje nowe pęknięcia. Następnie żel ASR przemieszcza się do zaczynu cementowego i powoduje niszczenie struktury betonu. Schematyczny przebieg procesu ASR przedstawiono na Rys. 2.4.

Rys. 2.4 Schemat przebiegu reakcji alkaliczno-krzemionkowej w betonie na podstawie [21][32]

Mechanizm ekspansji wywołanej reakcją alkaliczną kruszywa w betonie został opisany w literaturze za pomocą różnych hipotez [57][59][114]. Jedna z teorii związana jest z powstawaniem naprężenia w betonie będącego wynikiem wchłaniania wody przez powstający produkt reakcji i jego pęcznienie. Wielkość ekspansji związana jest przede wszystkim z szybkością powstawania żelu, jego ilością oraz właściwościami fizykochemicznymi (właściwości żelu opisano w dalszej części Rozdziału 2.1). Absorpcja wody przez żel ASR wpływa na jego lepkość. Żel, wchłaniając wodę, może przechodzić w zol o mniejszej lepkości, co umożliwia jego przemieszczanie się w głąb matrycy cementowej. Naukowcy nie są jednak zgodni co do niszczącego charakteru zoli. Jones [68] uważa, że zole o niskiej lepkości są zdolne do wywołania naprężenia powodującego ekspansję betonu, podczas gdy Vivian [175] przypuszcza, że zol musi charakteryzować się dużą lepkością. Ciśnienie, które powstaje w wyniku pęcznienia żelu, stopniowo wzrasta wraz z postępowaniem reakcji w czasie [100]. Hobbs [59] mechanizm niszczenia betonu w wyniku ASR opisał następująco: pęczniejący żel ASR początkowo wywołuje tylko naprężenie wewnętrzne, które nie prowadzi do powstawania rys. Naprężenie stopniowo wzrasta, co prowadzi do propagacji niewielkich spekań, jednak jeszcze bez wyraźnej ekspansji. W kolejnym etapie następuje przemieszczanie się żelu do powstałych rys wraz ze wzrostem naprężenia w betonie. Naprężenie wewnętrzne wytworzone wokół żelu w spękaniach jest już dostatecznie wysokie, aby wywołać znaczącą ekspansję betonu.

Teoria ciśnienia osmotycznego zaproponowana przez Hansena [57] jest kolejną hipotezą opisywaną przy próbach wyjaśnienia mechanizmu ASR. Zakłada, że zaczyn cementowy, który otacza reaktywne ziarna kruszywa, działa jak błona półprzepuszczalna, która umożliwia przemieszczanie się roztworu porowego do wewnątrz, ale ogranicza ruch jonów krzemianowych na zewnątrz. Efektem tego jest powstanie ciśnienia osmotycznego i wywieranie naprężenia na zaczyn cementowy przez pęczniejący żel alkalicznokrzemionkowy. W wyniku działania ciśnienia powstają pęknięcia w zaczynie cementowym [158]. Według Dent Glasser [18] półprzepuszczalną błoną może być również sam żel alkaliczno-krzemionkowy, co również powoduje powstanie ciśnienia osmotycznego.

Bardziej współczesną teorią ekspansji betonu w wyniku ASR jest teoria podwójnej warstwy elektrycznej [114][127][136]. Zgodnie z tą hipotezą, żel ASR zachowuje się jak koloid złożony z ujemnie naładowanych cząstek, a pęcznienie żelu przypisuje się elektrostatycznemu odpychaniu się warstw podwójnych między cząstkami koloidalnymi.

W ostatnich dekadach przy rozpatrywaniu mechanizmu reakcji w wielu pracach podjęto próbę wyjaśnienia roli jonów wapnia w przebiegu reakcji alkalicznej. Kleib i in. [82] zaproponowali mechanizm ASR uwzględniający rolę wapnia w postaci trzech etapów:

Etap 1: Jony OH⁻ w roztworze porowym atakują grupy silanolowe i siloksanowe i następuje tworzenie stabilizowanych form krzemowo-sodowych/potasowych.

$$2SiO_{2} + OH^{-} \rightarrow SiO_{5/2}^{-} + SiO_{5/2}H \text{ (formowanie silanolu)}$$
(4)

$$SiO_{5/2}H + OH^{-} \leftrightarrow SiO_{5/2}^{-} + H_{2}O \text{ (równowaga zobojętnienia silanolu)}$$
(5)

$$SiO_{5/2}^{-} + NA^{+}/K^{+} \rightarrow SiO_{5/2}Na;K \text{ (stabilizacja ładunku)}$$
(6)

Etap 2: Atak jonów SiO_{5/2}- przez OH⁻, co powoduje redukcję istniejącego ciała stałego (SiO₂).

$$2\mathrm{SiO}_2 + \mathrm{OH}^- + \mathrm{H}_2\mathrm{O} \to \mathrm{H}_2\mathrm{SiO}_4^{2-} \tag{7}$$

Obecność jonów H₂SiO₄²⁻ jest związana z równowagą kwasowo-zasadową:

$$H_2SiO_4^{2-} + H_2O \leftrightarrow H_3SiO_4^{-} + OH^{-}$$
(8)

Etap 3: Kationy w roztworze porowym betonu reagują z jonami $H_2SiO_4^{2-}$ formując C-S-H i/lub C-(N/K)-S-H

$$H_{2}SiO_{4}^{2-} + Ca^{2+} + H_{2}O \rightarrow C-S-H$$
(9)

$$2H_{2}SiO_{4}^{2-} + Ca^{2+} + 2Na^{+} + H_{2}O \rightarrow C-N-S-H$$
(10)

$$2H_{2}SiO_{4}^{2-} + Ca^{2+} + 2K^{+} + H_{2}O \rightarrow C-K-S-H$$
(11)

20

Pomimo różnych teorii dotyczących wyjaśnienia mechanizmu ASR z uwzględnieniem roli jonów wapnia, niezaprzeczalne jest stwierdzenie, że jony Ca²⁺ są niezbędne do wystąpienia reakcji [32].

Dogłębne zrozumienie mechanizmu reakcji alkalia-krzemionka wymaga także znajomości właściwości powstających w jej wyniku produktów [11][43][89][93]. Skład chemiczny produktów reakcji ASR jest zmienny w zależności od składników betonu [61], a także wieku i miejsca jego zlokalizowania w mikrostrukturze betonu [42]. Żel ASR powstający w ziarnach kruszywa lub na jego powierzchni zazwyczaj charakteryzuje się zwiększoną zawartością alkaliów oraz zmniejszoną zawartością jonów wapnia w porównaniu do żelu, który migrował do matrycy cementowej [169]. Związane jest to z zastępowaniem jonów Na⁺ i K⁺ przez jony Ca²⁺ jako skutek kontaktu żelu ASR z matryca cementowa bogata w wapń [42]. Wzór strukturalny żelu alkaliczno-krzemionkowego można opisać następująco: $SiO_2 \cdot (Na_2O)_n \cdot (K_2O)_k \cdot (CaO)_c \cdot (H_2O)_x$, możliwa jest również śladowa obecność aluminium i magnezu [41]. Jednak najważniejszymi parametrami opisującymi skład chemiczny żelu są stosunki atomowe (lub molowe) pierwiastków: Na/Si, K/Si, (Na+K/Si), Ca/Si [42][60]. Gholizadeh-Vayghan i in. [43] na podstawie przeglądu literaturowego 100 różnych składów chemicznych żelu ASR zaprezentowali następujące zakresy dla parametrów Na/Si, K/Si, Ca/Si: (0,05-0,5), (0,0-0,3), (0,1-1,0). Kawamura i Fuwa [75] dla próbek zapraw wykonanych w laboratorium stwierdzili stosunki molowe (Na+K)/Si oraz Ca/Si w zakresach odpowiednio (0,2-0,8) oraz (0,05-0,5). Natomiast Hou i in. [60] zaobserwowali zwiększona zawartość alkaliów: (Na+K)/Si=0,1-1,2 i zmniejszoną zawartość wapnia: (Ca+Mg)/Si=0,0-0,2 w żelu ASR.

Skład chemiczny żelu może wpływać na jego właściwości ekspansywne. Nie wszystkie produkty ASR są zdolne do pęcznienia [24]. Powstawanie większej ilości żelu ASR w betonie nie zawsze jest jednoznaczna z większym zniszczeniem. Jest to zależne od właściwości żelu, które zmieniają się w zależności od jego składu chemicznego [76]. Obecność wapnia jest warunkiem koniecznym do powstania żelu ASR [163], jednak możliwe jest, że żel o niższej zawartości Ca i wyższej zawartości alkaliów może zachowywać się jak ciecz, która przenika przez układ połączonych porów w matrycy cementowej bez powodowania jej uszkodzeń [76]. Z drugiej strony, bardzo duża zawartość wapnia w żelu (Ca/Si>0,5) sprawia, że jego skład i właściwości są zbliżone do fazy C-S-H, w efekcie czego żel charakteryzuje się wysoką sztywnością i niską zdolnością do pęcznienia [76]. Gholizadeh-Vayghan i Rajabipour [43] stwierdzili, że wraz ze wzrostem Ca/Si z 0,05 do 0,18 absorpcja wody i pęcznienie żelu

zmniejszało się, jednak dalszy wzrost Ca/Si od 0,18 do 0,40 powodował wzrost pęcznienia i absorpcji wody. Natomiast Ca/Si powyżej 0,40 znów powodowało stopniowe zmniejszenie zdolności do absorpcji wody przez żel, a powyżej 0,55 żel nie wykazywał zdolności ekspansywnych. O wpływie zwiększonej zawartości wapnia na obniżenie właściwości ekspansywnych żelu ASR pisali również Leemann i in. [90]. Struble i Diamond [162] także potwierdzili wpływ zróżnicowania składu chemicznego żelu na jego właściwości ekspansywne poprzez badania syntetycznych związków krzemianu sodowego oraz krzemianu sodowowapniowego. Natomiast Leemann i Lothenbach [91] stwierdzili, że beton z żelem ASR zawierającym większą ilość sodu w stosunku do potasu może wykazywać większą ekspansję.

Produkty reakcji ASR mogą występować zarówno w postaci amorficznej jak i krystalicznej. Leemann i in. [93] zaobserwowali, że w początkowym etapie reakcji alkalicznokrzemionkowej powstające produkty reakcji są w postaci amorficznej. Zaczynają się tworzyć blisko powierzchni styku ziaren kruszywa z zaczynem cementowym w już istniejących porach kruszywa. Powstawanie nawet niewielkich ilości żelu ASR generuje naprężenie, które powoduje spękania w ziarnie kruszywa. Kiedy pęknięcie przechodzi do zaczynu cementowego następuje ekstruzja lub dyfuzja produktów ASR do zaczynu cementowego. Efektem tego jest pozostanie pustych spękań w kruszywie, natomiast żel ASR pozostaje w spękaniu tylko tuż przy powierzchni styku z zaczynem cementowym, tworząc tzw. korek. Kolejnym etapem jest stopniowe wypełnianie się pustych spękań w ziarnach kruszywa. Na tym etapie dominujące jest powstawanie żelu krystalicznego [89]. W zależności od postaci żelu zauważono różnice w jego składzie chemicznym, tj. zbliżona zawartość wapnia w żelu krystalicznym i amorficznym, ale zwiększona zawartość alkaliów w żelu krystalicznym [93].

Badania nad ekspansywnymi właściwościami żelu prowadzono głównie na produktach amorficznych [42][162]. Chociaż wykazano pęcznienie amorficznych produktów reakcji ASR, metodyka badawcza nadal pozostaje kwestią dyskusyjną. Struble i Diamond [162] wywołali pęcznienie żelu w wyniku pobierania wody, co nie odzwierciedlało rzeczywistych warunków w betonie, w którym obecny jest alkaliczny roztwór porowy. Odwzorowanie rzeczywistych warunków panujących w betonie do zbadania pęcznienia produktów ASR jest trudne w realizacji [89]. Badań dotyczących pęcznienia krystalicznych produktów reakcji ASR jest w literaturze znacznie mniej. Leemann i in. [94] prowadzili badania nad sorpcją pary wodnej przez krystaliczne produkty ASR. Wnikanie wody do warstw między sąsiednimi płaszczyznami atomowymi i w efekcie pęcznienie produktów krystalicznych ASR próbowano określić poprzez sprawdzenie odległości międzypłaszczyznowej d_{hkl}, która byłaby inna w porównaniu do stanu wyjściowego. W przeprowadzonych badaniach [94] nie stwierdzono różnic d_{hkl}. Wyniki te potwierdzono w [40], gdzie również nie stwierdzono zmian odległości międzypłaszczyznowej w warunkach wilgotności sprzyjającej zaistnieniu reakcji alkalicznej kruszywa. W badaniach nad syntetycznym żelem ASR także nie stwierdzono wzrostu odległości międzypłaszczyznowej w warunkach narażenia na sorpcję wody [153]. Jednak powołane wyniki literaturowe nie wykluczają możliwości wpływu krystalicznych produktów ASR na powstawanie naprężenia przez ciśnienie krystalizacji w ziarnach kruszywa.

2.2. Charakterystyka betonu nawierzchniowego z uwagi na odporność na reakcję alkaliczną kruszywa

W serii obowiązujących norm poświęconych nawierzchniom betonowym PN-EN 13877 [N16] niewiele jest konkretnych wskazówek dotyczących zalecanego składu i właściwości betonu. Należy stosować materiały dopuszczone przez normę PN-EN 206 [N19][46]. Bardziej szczegółowe informacje dotyczące składu betonu cementowego stosowanego na nawierzchnie zamieszczone są w dedykowanych dokumentach, tj. dotyczących nawierzchni lotniskowych NO-17-A204 [N8] oraz drogowych – Wytyczne GDDKiA [N26].

Do budowy warstwy jezdnej nawierzchni lotniskowej stosowany jest beton klasy C30/37 do C45/55. Możliwe jest stosowanie tylko cementu portlandzkiego o minimalnej klasie wytrzymałości CEM I 32,5 i zawartości alkaliów w postaci ekwiwalentu sodowego Na₂O_{eq} \leq 0,60%. Jako kruszywo grube należy stosować grys granitowy o maksymalnej wielkości ziaren 31,5 mm i jednorodnym składzie petrograficznym. Dopuszcza się stosowanie kruszyw z innych skał głębinowych, których wysoka jakość zostanie potwierdzona wcześniejszymi badaniami, które umożliwią określenie ich przydatności do budowy lotniskowych nawierzchni betonowych. Zostały podjęte próby zastosowania kruszywa porfirowego i amfibolitowego do betonu na nawierzchnie lotniskowe [84], jednak zagadnienie reaktywności kruszywa nie było rozpatrywane, a zmiany w strukturze wewnętrznej betonów na bazie kruszywa amfibolitowego w odniesieniu do kruszywa granitowego spowodowały pogorszenie parametrów mechanicznych i fizycznych.

Właściwości kruszywa grubego i drobnego powinny spełniać wymagania normy PN-EN 12620+A1:2013 [N14][179]. Natomiast na podstawie zapisów normy NO-17-A204:2015 [N8] potencjalna reaktywność alkaliczna kruszywa drobnego i grubego oceniana jest na podstawie stopnia reaktywności badanego według PN-B-06714-46:1992 [N9], który

powinien wynosić "0". W tej metodzie zalecane jest przechowywanie przez 1 h danej frakcji kruszywa w roztworze wodorotlenku sodu (90°C) i oznaczenie wagowe ubytku masy kruszywa. Kryterium oceny stopnia "0" potencjalnej reaktywności alkalicznej kruszywa odpowiada ubytkowi masy $\leq 0,5\%$. Norma ta została wycofana z użytku w dniu 30. stycznia 2020 r. bez zastąpienia.

W katalogu typowych konstrukcji nawierzchni sztywnych w Tab. 11.1 [N23] są zamieszczone wymagania dla cementów przeznaczonych do drogowych nawierzchni betonowych. Tutaj oprócz wymagań normowych wg PN-EN 197-1 [N18] jako wymagania specjalne podano maksymalną zawartość alkaliów wyrażoną jako procentowa ilość Na₂O_{eq} w cemencie wg PN-EN 196-2 [N17]. Według obowiązujących od 2019 r. wymagań stawianych drogowym nawierzchniom z betonu cementowego (Wytycznych Technicznych GDDKiA [N26]) przy wyborze materiałów do budowy nawierzchni drogowej należy uwzględnić klasę obiektu (S1-S4) oraz kategorię środowiska, w jakim będzie pracować (E1-E3). W odróżnieniu od nawierzchni lotniskowych, do budowy nawierzchni drogowych dopuszczone są również cementy z dodatkami. Stosowane są cementy o klasie wytrzymałości 32,5 lub 42,5, N lub R. Rodzaj zastosowanego cementu jest zależny od klasy obiektu uwzględniającej kategorię ruchu budowanej drogi oraz od kategorii oddziaływań środowiskowych i kategorii reaktywności kruszywa. Do betonu dolnej i górnej warstwy należy stosować ten sam rodzaj i klasę cementu. Stosunek wodno-cementowy w mieszance betonowej nie może być większy niż 0,45, a w przypadku betonu dla dróg najwyższej kategorii ruchu KR5÷KR7 zawartość cementu nie może być mniejsza niż 360 kg/m³.

Do budowy nawierzchni drogowych stosuje się kruszywa naturalne pochodzenia mineralnego, których nie poddano żadnej obróbce (z wyjątkiem mechanicznej). Właściwości kruszyw muszą spełniać wymagania zapisane w normach PN-EN 12620 [N14] oraz Wytycznych Technicznych GDDKiA [N26]. Wymagane jest udokumentowanie kategorii reaktywności alkalicznej kruszywa według nowo opracowanych Wytycznych Technicznych [N8]. Oznaczenie kategorii reaktywności alkalicznej kruszywa jest warunkiem koniecznym jego zastosowania w drogowym betonie nawierzchniowym. Stosowanie do betonu kruszywa o nieznanej kategorii reaktywności alkalicznej nie jest możliwe.

Przyjęto cztery kategorie reaktywności kruszywa wg [N8]:

R0 - kategoria 0 reaktywności kruszywa (kruszywo niereaktywne),

R1 - kategoria 1 reaktywności kruszywa (kruszywo umiarkowanie reaktywne),

R2 - kategoria 2 reaktywności kruszywa (kruszywo silnie reaktywne),

24

R3 - kategoria 3 reaktywności kruszywa (kruszywo bardzo silne reaktywne).

Beton nawierzchniowy, zarówno drogowy jak i lotniskowy, musi spełniać wymagania dotyczące właściwości mechanicznych i trwałości w trudnych warunkach eksploatacji. Mieszanka betonowa przeznaczona na nawierzchnie musi umożliwić jej prawidłowe wbudowanie w konstrukcję, a następnie trwałość w projektowanym okresie czasu, który zapewni bezpieczeństwo pojazdom drogowym i statkom powietrznym. Podstawowymi wymaganiami dla betonów nawierzchni drogowych są wymagania wytrzymałościowe: wytrzymałość na ściskanie oraz na rozciąganie oraz trwałościowe: nasiąkliwość, mrozoodporność oraz odporność na powierzchniowe łuszczenie [164]. Dla betonów nawierzchni lotniskowych, podobnie jak dla drogowych, podstawowym wymaganiem jest wytrzymałość na ściskanie i rozciąganie przy zginaniu oraz wytrzymałość na rozciąganie przy rozłupywaniu [105], oraz nasiąkliwość w wodzie i środkach odladzających, mrozoodporność na powierzchniowe łuszczenie [N8].

Podczas rozbudowy Portu Lotniczego im. Fryderyka Chopina w Warszawie (2013-2014) wg autorów [186] prowadzono bardzo szczegółową ocenę betonu pod względem trwałości, jednak w badaniach nie uwzględniono wpływu środków odladzających na potencjalną degradację betonu w wyniku reakcji alkalicznej kruszywa.

Chociaż w Polsce nie odnotowano wcześniej znaczących objawów degradacji nawierzchni betonowych dróg w wyniku reakcji alkalia-krzemionka [83], to jednak wyniki badania konstrukcji betonowych uszkodzonych w wyniku ASR [54] ujawniły przypadki wiaduktów drogowych i budynków, których to dotyczy. Natomiast na podstawie ostatnich wyników badań betonu w odwiertach z nawierzchni drogi ekspresowej jednoznacznie uzyskano spójny zestaw dowodów na wystąpienie ekspansywnej reakcji alkalia-krzemionka [49]. Po 15 latach eksploatacji odcinka drogi ekspresowej zaobserwowano przedwczesne uszkodzenia nawierzchni betonowej objawiające się widocznymi spękaniami, które na podstawie badań diagnostycznych zidentyfikowano jako produkty reakcji alkalia-krzemionka o typowym składzie.

2.3. Podatność kruszywa granitowego na wystąpienie reakcji alkalicznej

Kruszywo łamane wytwarzane ze skał granitowych uznawane jest za kruszywo wysokiej jakości w zastosowaniu do betonu nawierzchniowego dróg i lotnisk [47][105][164]. Charakteryzuje się wysoką wytrzymałością, odpornością na ścieranie i odpornością na warunki środowiska [52][105]. W grupie kruszyw ze skał magmowych, w porównaniu do kruszywa

bazaltowego, charakteryzuje się lepszą przyczepnością z zaczynem cementowym i większą jednorodnością [105]. Znanych jest wiele konstrukcji inżynierskich zbudowanych z betonu zawierającego kruszywo granitowe, które zachowały trwałość i funkcjonalność przez długi czas. Jednakże w literaturze zagranicznej pojawiają się również przykłady konstrukcji z zastosowanym kruszywem granitowym, które uległy zniszczeniu na skutek działania reakcji alkalia-krzemionka [25][29][30][33][148][149][156].

Reaktywność kruszywa, w tym ze skał magmowych, jest przede wszystkim spowodowana obecnością i rozpuszczaniem fazy szklistej w nich zawartej [14]. Jednak taka jednoznaczność wpływu składu mineralnego na ASR nie dotyczy kruszywa ze skał magmowych głębinowych o wykrystalizowanej strukturze. Wyniki badania podatności tych kruszyw na reakcję alkaliczną są zróżnicowane, zarówno odnośnie do badań laboratoryjnych, jak i w rzeczywistych konstrukcjach inżynierskich.

W kruszywie granitowym, z uwagi na skład mineralny i związaną z tym dużą zawartość kwarcu, istnieje ryzyko obecności szkodliwych minerałów sprzyjających reakcji alkalicznej kruszywa w betonie [28]. Pomimo że kruszywo ze skał granitowych charakteryzuje się zbliżonym składem chemicznym i mineralogicznym, może się różnić rozkładem wielkości minerałów, stanem odkształcenia lub strukturą krystaliczną [103]. Różna zawartość reaktywnych minerałów oraz uporządkowanie struktury kwarcu w kruszywie zasadniczo wpływa na jego podatność na reakcję alkaliczną w betonie [101]. Amorficzne formy kwarcu są najbardziej reaktywne, jednak wśród krystalicznych odmian krzemionki wysoce reaktywny może być kwarc mikrokrystaliczny lub kwarc w stanie odkształcenia [117]. Zawartość mikrokrystalicznej krzemionki oraz dyslokacje i związki między defektami w strukturze sieciowej kwarcu mogą mieć istotny wpływ na wynik reaktywności alkalicznej kruszywa ze skał zawierających kwarc, w tym na kruszywo ze skał granitowych [178][137]. Jednocześnie potencjalna reaktywność kruszywa granitowego oprócz charakterystyki petrograficznej jest zależna również od umiejscowienia geograficznego i związanej z nim tzw. historii geologicznej [28]. Stopniowy spadek zawartości reaktywnego kwarcu widoczny był od najstarszych do najmłodszych granitów [14].

Udokumentowane przypadki reakcji alkalicznej w kruszywach granitowych, które odnotowano na całym świecie [14][29][30][148][149][33][156][173][56][26] wskazują na zróżnicowaną podatność tego kruszywa na reakcję alkaliczną. Reaktywność kruszywa granitowego jest utożsamiana z obecnością subgranulacji na granicach ziaren kwarcu w stanie naprężenia [29][156][14][26] lub mikrokrystalicznego kwarcu [14][26][30][156]. Natomiast

reakcja alkaliczna wystąpiła również w gruboziarnistym i pozbawionym odkształceń kwarcu kruszywie granitowym [56]. Zawartość zdeformowanych kryształów skaleni oraz zmienionych płaszczyzn kryształów biotytu i muskowitu również sprzyjała wystąpieniu reakcji alkalia-kruszywo [79].

Potencjalna reaktywność kruszyw granitowych może być przypisana zarówno obecności mikrokrystalicznego kwarcu ($\leq 100 \mu$ m), jak i występowaniu kwarcu w stanie naprężenia [14][28][177]. Kwarc mikrokrystaliczny uznany jest za szybko reagujący, natomiast kwarc w stanie naprężenia (zdeformowany) jest sklasyfikowany jako wolno reagujący [113][115]. Kruszywa granitowe mogą wykazywać zróżnicowaną podatność na reakcję alkaliczną z uwagi na zawartość mikrokrystalicznego kwarcu lub kwarcu w stanie naprężenia. Jest to o tyle istotne, że wiąże się z trudnościami związanymi z metodologią diagnostyki kruszyw wolno reagujących, w których zastosowanie normowych metod ekspansji nie spełnia swojej roli [173]. Problemem dotyczącym kruszyw wolno reagujących jest zbyt ostre kryterium w metodzie przyspieszonej, ponieważ kruszywo uznane za potencjalnie reaktywne w metodzie petrograficznej, ze względu na liczną obecność składników reaktywnych, nie wykazuje wystarczająco wysokiej ekspansji po 14 dniach [15].

W Polsce skały granitowe występują głównie na terenie Dolnego Śląska: masyw Karkonoszy, masyw łużycki, masyw Strzegom-Sobótka oraz Strzelin-Otmuchów, a także w Tatrach. Masyw łużycki jest jednym z największych masywów granitowych w Europie Środkowej, jednak najważniejszym obszarem eksploatacji i zasobów granitu w Polsce jest masyw Strzegom-Sobótka. Jak podaje Owsiak [114], reaktywne minerały mogą występować w takich skałach jak m.in. gnejsy i granity. W zestawieniu skał, które mogą reagować z wodorotlenkami sodu i potasu w betonie na podstawie [114] jako reaktywne składniki w skałach magmowych: granitach i granodiorytach, wymieniono kwarc w stanie naprężenia, charakteryzujący się falistym kątem wygaszania: 25° lub większym.

Badania dotyczące reaktywności polskich granitów były już wcześniej prowadzone, jednak ich rezultaty nie dały jednoznacznych wyników [114][113][121][53][104]. Kruszywo granitowe badane przez Naziemca i in. [104] w badaniach przyspieszonych [N2] nie wykazało reaktywności, podczas gdy Góralczyk i Filipczyk [53] wykazali w badaniach długotrwałych [N3], że kruszywo granitowe potencjalnie może być reaktywne, natomiast w badaniu za pomocą metody szybkiej [N9] charakteryzowało się zerowym stopniem reaktywności. Owsiak [113][115] w swoich badaniach wykazała, że granity w porównaniu do innych kruszyw magmowych charakteryzowały się dłuższym okresem inkubacji ASR. Zaobserwowała

wydłużony okres inkubacji ASR w zaprawie z kruszywem granitowym przechowywanej w 38°C [N5]. W ciągu pierwszych 18 miesięcy badania ekspansja wynosiła niecałe 0,1%, jednak po 21 miesiącach zauważono gwałtowny wzrost ekspansji, która osiągnęła 0,6% po 30 miesiącach.

2.4. Wpływ środków odladzających na reakcję alkaliczną kruszywa w betonie nawierzchniowym

Odporność betonu na działanie mrozu i środków odladzających jest jednym z najważniejszych parametrów decydującym o trwałości nawierzchni podczas eksploatacji. Beton, poprzez odpowiedni skład i właściwości [50][51], musi spełnić wymagania dotyczące zabezpieczenia przed destrukcyjnym oddziaływaniem agresywnego środowiska [80]. W publikacjach na temat wpływu mrozu i środków odladzających na trwałość nawierzchni betonowych analizowany był wszystkim właściwości przede ich wpływ na fizyczne betonu [64][73][96][125][141][145][176][180], mrozoodporność [45][63][88][120][151][176][182], odporność na powierzchniowe łuszczenie [22][88][87][109][176][184] oraz cykliczne namaczanie-wysychanie [73][88][176], a także mikrostrukturę [3][17][73][151]. Natomiast zagadnienie reakcji alkalicznej kruszywa w betonie nawierzchniowym przedstawione w literaturze dotyczy przede wszystkim mechanizmu tego zjawiska [102][155], możliwości zastosowania kruszyw potencjalnie reaktywnych [78][144] oraz metod prewencji [131][146][171][185].

Nawierzchnie drogowe i lotniskowe w szczególny sposób są narażone na penetrację alkaliów pochodzących ze środków odladzających. Środki odladzające na bazie chloru stosowane do zimowego utrzymania nawierzchni drogowych to przede wszystkim chlorek sodu, a także chlorek wapnia i chlorek magnezu. Natomiast środkami używanymi do odladzania betonowych nawierzchni lotniskowych są sole kwasów organicznych: mrówczan sodu, mrówczan potasu, octan sodu lub octan potasu [44]. Stopień wystąpienia bądź przyspieszenia reakcji alkalia-krzemionka w zależności od rodzaju zastosowanych środków odladzających na bazie chloru [16][58][106][150] oraz soli kwasów organicznych [6][44][131][133] był analizowany w literaturze światowej odnośnie do reaktywnych kruszyw rzeczywistych lub modelowych kruszyw wysoce reaktywnych oraz odnośnie do rodzaju zastosowanego cementu. Badania te dotyczyły przede wszystkim wpływu chlorków sodu i magnezu oraz octanów na wywołanie reakcji alkalicznej w kruszywie reaktywnym, tj. szarogłazie, wapieniu

krzemionkowym, żwirze zawierającym ryolit, kwarcycie, ryolicie i diacycie, łupku ilastym [6][44][131][133][150], szkle borokrzemowym [58] oraz opalu [106].

Wpływ zewnętrznego źródła NaCl na wywołanie lub przyspieszenie reakcji ASR jest kwestią nie do końca rozpoznaną, a prezentowane w literaturze wyniki są niejednoznaczne. Możliwość wywołania lub przyspieszania reakcji alkalicznej w kruszywie przez chlorek sodu jako zewnętrzne źródło alkaliów analizowano w pracach [3][16][78][106], gdzie badano ekspansję próbek, a głównym proponowanym mechanizmem działania były zmiany związane ze wzrostem wartości pH roztworu porowego w betonie. Jednak przeciwne wnioski zostały zaprezentowane w pracach [77] oraz [58]. Tutaj obserwowany był znaczący spadek stężenia jonów OH⁻ w roztworze porowym. Heising i in. [58] stwierdzili wzrost stężenia jonów Si²⁺ w obecności NaCl w roztworze porowym, mimo niższego stężenia jonów OH⁻. Stężenie jonów OH⁻, a tym samym pH roztworu porowego obniżało się ze względu na uwalnianie potasu, a także tworzenie się soli Friedla z ettringitu, co spowodowało uwolnienie siarczanu i tworzenie się portlandytu. Jednak finalnie decydujące znaczenie dla uszkodzeń wywołanych reakcją alkaliczną w betonie narażonym na zewnętrzne działanie NaCl miała całkowita zawartość alkaliów w roztworze porowym. To decydowało o rozpuszczalności kwarcu, a tym samym tworzeniu się żelu ASR. Autorzy badań przeprowadzonych w warunkach laboratoryjnych oraz polowych [10] stwierdzili, że chlorek sodu nie wpłynął w bezpośredni sposób na rozpoczęcie bądź przyspieszenie reakcji alkalicznej kruszywa. Stwierdzili jednak, że w warstwie powierzchniowej (60-80 mm) w roztworze porowym wzrosły stężenia jonów Cl⁻ oraz Na⁺, natomiast zmniejszyło się stężenie jonów K⁺ oraz OH⁻, a następnie pH. Sahyan i in. [150] stwierdzili, że największy wpływ na ekspansję spowodowaną reakcją alkalia-kruszywo miał rodzaj kruszywa oraz zawartość alkaliów betonie. Autorzy nie stwierdzili znaczącego wpływu roztworu chlorku sodu na ekspansję wywołaną ASR, w przeciwieństwie do niektórych wyników przedstawianych w literaturze. Heising i in. [58] stwierdzili, że zewnętrzny dostęp alkaliów (NaCl) sprzyjał wystąpieniu reakcji alkalicznej kruszywa mimo zastosowania cementu o niskiej zawartości alkaliów.

Dostępne są nieliczne wyniki badań podejmujące temat trwałości betonów poddanych działaniu środków odladzających na bazie mrówczanów oraz octanów, a w szczególności dotyczące zagadnienia reaktywności alkalicznej kruszywa. Temat ten badali między innymi Giebson i in. [44] oraz Rangaraju i in. [131], wskazując na potencjalne zwiększenie uszkodzeń wywołanych reakcją ASR po zastosowaniu wyżej wymienionych środków odladzających. Jednak mechanizm ich działania może być odmienny od konwencjonalnego. Początkowo

sadzono, że jest on znikomy ze względu na ograniczona głębokość penetracji (1-3 mm), co mogło wywołać jedynie efekt powierzchniowy [6]. W przypadku skrajnie niekorzystnych warunków laboratoryjnych, takich jak zastosowanie silnie reaktywnego kruszywa oraz cementu wysokoalkalicznego, zauważono przyspieszenie reakcji, jednak uznano, że środki odladzające nie odgrywają istotnej roli w warunkach polowych [6]. Natomiast w ostatnich latach na nawierzchniach lotniskowych zauważono coraz więcej uszkodzeń, które prawdopodobnie związane są z reakcją ASR. W 2010 roku dotyczyło to kilkudziesięciu lotnisk wojskowych oraz cywilnych na całym świecie [44]. Zostało to powiązane ze stosowaniem środków odladzających na bazie mrówczanów oraz octanów sodu lub potasu [44]. Po około 7 latach od zmiany rodzaju środka odladzającego z mocznika na octan potasu na jednym z niemieckich lotnisk stwierdzono liczne uszkodzenia na skutek ASR. W przypadku obecności kruszywa reaktywnego nawet cement o niskiej zawartości alkaliów nie był w stanie zapobiec rozpoczęciu i szybszemu postępowaniu ASR [44][133]. Autorzy [44] zauważyli wzrost pH oraz stężenia jonów Ca²⁺ w roztworach porowych w obecności środków odladzających. Przeprowadzone badania doprowadziły do wniosku, że głównymi przyczynami przyspieszenia reakcji ASR w obecności środków odladzających na bazie mrówczanów oraz octanów są dodatkowe źródło alkaliów oraz rozpuszczanie Ca(OH)₂, które wpływa na wzrost stężenia jonów OHw roztworze porowym i wzrost pH. Czynniki te wyjaśniają również, dlaczego stosowanie cementu niskoalkalicznego nie zapobiega wystąpieniu reakcji alkalicznej, a jedynie powoduje jej opóźnienie. Jednak opisane zjawisko było analizowane tylko w betonach z kruszywem reaktywnym ze skał osadowych (np. szarogłaz).

Giebson i in. [44] przeprowadzili badania wpływu środków odladzających na bazie soli kwasów organicznych na potencjał wystąpienia reakcji alkalicznej w kruszywie ze skał osadowych i stwierdzili wyraźny wpływ octanu potasu na przyspieszenie ASR i uzyskanie większej ekspansji betonu w porównaniu do próbek, które badano w wodzie. Jednakże autorzy powyższych prac [131][6][44] analizowali wpływ środków odladzających na bazie octanów na zaprawę i beton zawierający przede wszystkim kruszywo reaktywne (szarogłaz, wapień krzemionkowy).

W Polsce, z uwagi na panujący klimat, stosuje się środki odladzające zarówno na nawierzchniach drogowych, jak i lotniskowych. Z uwagi na dostępność, jak również niską cenę i skuteczność działania, na nawierzchnie drogowe najczęściej stosowany jest chlorek sodu. Natomiast nawierzchnie lotniskowe ze względu na ryzyko przeniesienia jonów chlorkowych na elementy samolotów oraz wyposażenia lotniskowego, wymagają użycia innych środków,

soli kwasów organicznych: mrówczanu sodu lub potasu oraz octanu sodu lub potasu [85], z których na największym lotnisku w Polsce stosuje się mrówczany.

Wyniki opublikowanych krajowych badań odnośnie do wpływu środków odladzających na nawierzchnie drogowe dotyczą wpływu NaCl i mrozu na właściwości mechaniczne [165][147][161][128] oraz mrozoodporność betonu [165][108][128], odporność na powierzchniowe łuszczenie [161][128] oraz nasiąkliwość [165]. Natomiast nawierzchnie lotniskowe są charakteryzowane z uwagi na trwałość betonu narażonego na środki odladzające, tj. mrozoodporność w wodzie i odporność na środki odladzające oraz odporność na powierzchniowe złuszczenie w wodzie i w środkach odladzających (mrówczan sodu, mrówczan potasu) [85][95][84][125].

W krajowej literaturze brak jest informacji dotyczących wpływu środków odladzających na reakcję alkaliczną kruszywa w betonie nawierzchniowym. Zagadnienie wpływu środków odladzających na betonowe nawierzchnie lotniskowe odnośnie do reakcji alkalicznej kruszywa zostało jedynie przywołane przez autorów [84] na podstawie dokonanego przeglądu literaturowego dotyczącego wpływu octanów i mrówczanów na zaprawę i beton. Stwierdzono, że hipoteza dotycząca mechanizmu zniszczenia nawierzchni betonowej, które jest spowodowane reakcją ASR wywołaną lub przyspieszoną przez środek odladzający, nie została w pełni potwierdzona. Natomiast wyniki wstępnych badań opublikowanych przez [70] wykazały, że główną przyczyną degradacji betonu w cyklicznych warunkach ekspozycji chemicznej (10% NaCl) i fizycznej (namaczanie-wysychanie WD i 60°C) był zarówno wpływ fizyczny – cykle WD, jak i wpływ chemiczny – ASR, co może świadczyć o udziale NaCl w degradacji betonu w wyniku ASR.

2.5. Podsumowanie

Pomimo wielu lat badań dotyczących reakcji alkalia-krzemionka w betonie nawierzchniowym, jest ona wciąż przedmiotem rozważań i analiz naukowych. Informacje o występowaniu reakcji alkaliczno-krzemionkowej w betonie w nawierzchniach dróg i lotnisk coraz częściej pojawiają się w literaturze światowej, a problem reakcji alkalicznej kruszywa w betonie nawierzchniowym odnotowano również w Polsce. Ponieważ nie ma możliwości zatrzymania reakcji, która ujawniła się w konstrukcji betonowej, dlatego tak istotna jest prewencja. Istnieje wiele metod badania reaktywności alkalicznej kruszyw, jednak nie ma zgodności co do wyboru jednej metody, a w dalszym ciągu wpływ środków odladzających na ASR, w tym na kruszywa tzw. wolno reagujące, nie został jednoznacznie określony. Niezbędne jest więc uzupełnienie

metodyki badania reaktywności alkalicznej kruszyw wolno reagujących oraz narażonych na zewnętrzne oddziaływanie środków odladzających.

Kruszywa granitowe i granitoidowe (gabro, granodioryt) powszechnie uznawane są za kruszywa wysokiej jakości i dlatego wykorzystywane są do budowy nawierzchni betonowych. Chociaż problem dotyczący odporności kruszyw granitowych na reakcję alkalia-krzemionka został już zasygnalizowany na świecie, to wyniki badań zarówno laboratoryjnych, jak i polowych, nie prowadzą do jednoznacznych wniosków, co również potwierdza potrzebę rozpoznania reaktywności kruszyw ze skał magmowych głębinowych z polskich złóż. Mimo że są to skały o dużej jednorodności składu chemicznego, nadal nie ma metod badawczych, które w szybki i jednoznaczny sposób pozwoliłyby na ocenę reaktywności kruszyw, zwłaszcza kruszyw wolno reagujących.

Dotychczasowa charakterystyka polskich złóż kruszyw ze skał magmowych głębinowych z uwagi na reakcję alkaliczną została określona przy wykorzystaniu metod obecnie uznawanych za przestarzałe (metoda szybka - określenie stopnia reaktywności) i wycofanych ze zbioru norm. Natomiast badania wykonane przy wykorzystaniu metod aktualnie stosowanych również nie dają bezdyskusyjnych wyników, a dotychczasowa ocena podatności krajowych kruszyw granitowych na reakcję alkaliczną nie jest jednoznaczna.

Badania wrażliwości betonu nawierzchniowego na stosowanie środków odladzających z uwagi na wystąpienie reakcji alkalicznej kruszywa wykazały, że wpływ tych środków nie jest dostatecznie poznany i zrozumiany. Istnieją też sprzeczności i niejasności opisywanych efektów w zależności od zastosowanego środka i badanego rodzaju kruszywa reaktywnego. Dane literaturowe odnośnie do wpływu środków odladzających na zagrożenie wystąpieniem reakcji alkalicznej kruszywa w betonie nawierzchniowym są niejednoznaczne, a nawet sprzeczne. Z jednej strony autorzy nie stwierdzili wpływu NaCl na zainicjowanie lub przyspieszenie reakcji alkalicznej w betonie, a z drugiej natomiast inni autorzy wykazali wpływ NaCl na zwiększenie ekspansji betonu z kruszywem reaktywnym nawet z zastosowaniem cementu niskoalkalicznego. Inni autorzy wprawdzie wykazali wpływ środków odladzających na bazie soli kwasów organicznych na wywołanie reakcji alkalicznej kruszywa w betonie, ale analizie poddali jedynie beton zawierający kruszywo reaktywne i sole, głównie w postaci octanów.

Przedstawiony przegląd literaturowy odnośnie do wpływu środków odladzających na bazie chlorków lub soli kwasów organicznych na wywołanie lub przyspieszenie reakcji alkalia-

krzemionka potwierdza, że temat ten nie jest do końca rozpoznany. Brak jest danych dotyczących wpływu środków odladzających na beton nawierzchniowy z kruszywem uznanym za niereaktywne. Niezbędne jest określenie możliwości wystąpienia reakcji alkalicznej w betonie z kruszywem ze skał magmowych głębinowych w obecności środków odladzających powszechnie stosowanych na nawierzchniach dróg i lotnisk.

Wpływ środków odladzających na mikrostrukturę betonu nawierzchniowego z kruszywem granitowym o zerowym stopniu reaktywności na reakcję alkaliczną kruszywa nie jest dostatecznie poznany. Brak publikacji w tym zakresie powoduje, że na temat mikrostruktury nie można wypowiedzieć się na podstawie wyników badań mrozoodporności i odporności na powierzchniowe łuszczenie lub cyklicznego namaczania-wysychania.

Uzyskanie wyników dotyczących krajowych złóż kruszyw jest dodatkowym atutem pracy, dzięki czemu możliwa będzie bardziej skuteczna selekcja kruszyw do wykonania trwałych nawierzchni betonowych poddanych działaniu różnych środków odladzających.

W większości prac dotyczących reakcji alkalicznej kruszywa w obecności środków odladzających w betonie nawierzchniowym uwaga koncentruje się głównie na mechanizmie oraz relacji zawartość kruszywa reaktywnego - odporność na reakcję alkalia-krzemionka. Badania ukierunkowane są najczęściej na poznanie warunków, których spełnienie jest niezbędne do otrzymania trwałych betonów nawierzchniowych, w których możliwe jest zastosowanie reaktywnego kruszywa.

Z przeglądu literatury wynika, że brak jest badań nad wpływem środków odladzających na możliwości wystąpienia reakcji alkalicznej w kruszywie granitowym w betonie nawierzchniowym oraz brak powiązań zależności między zawartością reaktywnych minerałów w takim kruszywie, a ekspansją betonu.

Reasumując, można stwierdzić, że:

- występują niejasności i sprzeczności dotyczące potencjalnej reaktywności alkalicznokrzemionkowej krajowych kruszyw ze skał magmowych głębinowych (kruszywa granitowego);
- niezbędne jest uzupełnienie metodyki badania reaktywności alkalicznej kruszyw wolno reagujących, tj. granitowych, w tym narażonych na zewnętrzne oddziaływanie środków odladzających;
- reakcja alkalia-krzemionka może być zainicjowana i przyspieszona w betonach z kruszywem reaktywnym, poddanych działaniu środków odladzających zawierających

jony metali alkalicznych, przy czym nawet zastosowanie cementów niskoalkalicznych nie zapobiega reakcji alkalia-krzemionka;

- brakuje udokumentowania wpływu środków odladzających na możliwość wystąpienia reakcji alkalicznej w betonie z kruszywem klasyfikowanym jako niereaktywne, ze skał magmowych głębinowych, tj. kruszywa granitowego;
- stopień zniszczenia mikrostruktury betonu jest zależny od stężenia środka odladzającego, przy czym brakuje zgodności co do stężenia wywołującego największe uszkodzenia; większość wyników badań wskazuje, że jedynie zastosowanie środków odladzających w stanie nierozcieńczonym (zwykle 50% wag.) powoduje widoczną degradację;
- w wyniku badania odwiertów pobranych z nawierzchni betonowej stwierdzono objawy reakcji ASR nie tylko w warstwie przypowierzchniowej, ale również w warstwach głębszych, w których nie było oznak penetracji środka odladzającego; brakuje jednoznacznego potwierdzenia hipotezy, że degradacja betonu nawierzchniowego była spowodowana reakcją alkalia-krzemionka wywołaną lub przyspieszoną przez środek odladzający.

3. Materiały do badań i ich charakterystyka

3.1. Materiały składowe

3.1.1. Kruszywo

Przedmiotem badań były kruszywa ze skał magmowych głębinowych z różnych lokalizacji znajdujących się na terenie Polski. Wybór tego rodzaju kruszywa podyktowany był ich powszechnym zastosowaniem w betonach nawierzchniowych. Wybrano czynne kopalnie o największym wydobyciu kruszywa granitowego wykorzystywanego do budowy nawierzchni betonowych. W niniejszej pracy skupiono się na szczegółowym rozpoznaniu kruszyw granitowych (5 lokalizacji) z kopalni położonych w południowo-zachodniej Polsce. Dodatkowo wybrano dwa inne kruszywa ze skał magmowych głębinowych: 1 kruszywo granodiorytowe i 1 kruszywo gabro. Kruszywa te zostały wybrane z uwagi na różną zawartość krzemionki, co może znacząco różnicować je pod względem odporności na ASR.

W pracy przyjęto następujące oznaczenia kruszyw:

- G1...G5 kruszywa granitowe pochodzące z 5 lokalizacji w Polsce,
- GD kruszywo granodiorytowe,
- GA kruszywo gabro.

Właściwości fizyczne badanych kruszyw przedstawiono w Tabeli 3.1. Natomiast wyniki składu chemicznego zbadanego metodą XRF przedstawiono w Tabeli 3.2. Wszystkie kruszywa granitowe charakteryzowały się zbliżonymi właściwościami i składem chemicznym. Gęstość objętościowa kruszyw granitowych wynosiła od 2,60 do 2,67 mg/m³ (średnia 2,63 mg/m³), kruszywa granodiorytowego 2,67 mg/m³, a największą gęstością charakteryzowało się kruszywo grabro: 2,91 mg/m³. Nasiąkliwość kruszyw mieściła się w zakresie 0,2-1,2%. Wszystkie kruszywa charakteryzowały się wysoką mrozoodpornością (F1). Największą ilość SiO₂ na podstawie wyników XRF stwierdzono w kruszywie granitowym G2 (75,8%), najmniejszą w G1 (73,1%), średnia spośród wszystkich kruszyw granitowych wynosiła 74,3 \pm 1,1%. Kruszywa gabro oraz granodiorytowe charakteryzowały się zwiększoną zawartością Fe₂O₃, MgO i CaO oraz zmniejszoną zawartością SiO₂ w porównaniu do kruszyw granitowych. Kruszywo granodiorytowe zawierało o około 23% mniej SiO₂ (SiO₂=56,87%) od średniej wartości dla kruszywa granitowego, natomiast kruszywo gabro o 37% mniej (SiO₂=46,59%). Ponadto w kruszywie gabro zidentyfikowano najmniejszą zawartość K₂O oraz Na₂O spośród wszystkich przebadanych kruszyw. Im wyższa zawartość alkaliów w kruszywie tym większe ryzyko uwalniania ich do betonu, co również może przyspieszać ASR.

	Gęstość objętościowa [mg/m ³]	Nasiąkliwość [%]	Współczynnik Los Angeles	Mrozoodporność
Norma	PN-EN-1097-6:2002		PN-EN-1097-2/2000	EN-1367-1:2001
G1	2,63	0,7	LA40	F1
G2	2,61	1,2	LA40	F1
G3	2,60	0,8	LA40	F1
G4	2,65	0,6	LA30	F1
G5	2,67	1,0	LA30	F1
GD	2,69	0,2	LA25	F1
GA	2,91	0,9	LA15	F1

Tabela 3.1 Właściwości fizyczne badanych kruszyw wyznaczone według PN-EN 12620 (dane producentów)

Tabela 3.2 Skład chemiczny badanych kruszyw, wyznaczony metodą XRF, G1-G5 (kruszywo granitowe), GD (kruszywo granodiorytowe), GA (kruszywo gabro), wag. [%]

Składnik	G1 [%]	G2 [%]	G3 [%]	G4 [%]	G5 [%]	GD [%]	GA [%]
SiO ₂	73,07	75,77	74,14	75,12	73,62	56,87	46,59
TiO ₂	0,26	0,13	0,12	0,19	0,20	0,89	0,86
Al ₂ O ₃	14,22	13,03	14,00	13,30	14,21	13,65	13,49
Fe ₂ O ₃	2,02	1,16	1,26	1,47	1,59	7,86	10,44
MnO	0,05	0,03	0,03	0,04	0,03	0,14	0,16
MgO	0,40	0,15	0,19	0,28	0,25	5,72	10,81
CaO	1,81	1,15	0,86	1,54	1,57	6,76	10,89
Na ₂ O	3,76	3,35	3,54	3,59	3,78	2,50	2,44
K ₂ O	3,80	4,48	5,06	3,88	3,99	3,58	0,15
P ₂ O ₅	0,07	0,04	0,12	0,04	0,07	0,96	0,14
(SO ₃)	<0,01	<0,01	<0,01	<0,01	<0,01	0,10	<0,01
(Cl)	0,02	0,02	0,02	0,02	0,02	0,04	0,013
(F)	0,03	<0,01	<0,01	0,06	<0,01	<0,01	<0,01
SUM	99,87	99,86	99,86	99,91	99,84	99,57	99,64
Analizowano kruszywo ze skał magmowych głębinowych w następujących frakcjach:

- Kruszywo granitowe G1: 2/8 mm, 8/16 mm,
- Kruszywo granitowe G2: 2/8 mm, 8/16 mm,
- Kruszywo granitowe G3: 2/8 mm, 8/16 mm, 16/22 mm,
- Kruszywo granitowe G4: 2/8 mm, 8/16 mm,
- Kruszywo granitowe G5: 2/8 mm, 8/16 mm, 16/22 mm,
- Kruszywo granodiorytowe GD: 2/8 mm, 8/16 mm, 16/22 mm,
- Kruszywo gabro GA: 2/5 mm, 4/8 mm, 8/11 mm, 11/16 mm, 16/22 mm.

Niektóre z otrzymanych kruszyw (G1, G2, G4) nie posiadały frakcji 16/22 mm, ze względu na jej brak w produkcji.

Dodatkowo do przygotowania wybranych receptur betonu wykorzystano niereaktywne kruszywa:

- grys amfibolitowy, frakcja: 2/8 mm, 8/16 mm, 16-22 mm (kategoria reaktywności R0, ekspansja wg PB/1/18 po 14 dniach = 0,036% < 0,050%),
- naturalny piasek kwarcowy, frakcja 0/2 mm (kategoria reaktywności R0, ekspansja wg PB/1/18 po 14 dniach = 0,040%<0,050%).

Kategorię reaktywności kruszywa amfibolitowego i piasku kwarcowego potwierdzono przeprowadzeniem badania potencjalnej reaktywności wykonanego według metody przyspieszonej wg PB/1/18 [N21].

3.1.2. Pozostałe składniki zaprawy i betonu

Do wykonania próbek zapraw i betonów wykorzystano dwa rodzaje cementów portlandzkich CEM I 42,5 R Górażdże oraz CEM I 52,5 R Małogoszcz, które różniły się przede wszystkim zawartością alkaliów. W pracy nie rozważano badań nad wpływem ilości alkaliów w cemencie na reaktywność kruszyw ze skał magmowych głębinowych, a rodzaj zastosowanego cementu był uzależniony od metody badawczej. W Tabeli 3.3 przedstawiono skład chemiczny stosowanych cementów wyznaczony metodą XRF, natomiast w Tabeli 3.4 ich właściwości fizyczne.

Składnik Cement	SiO ₂	Al ₂ O ₃	Fe ₂ O ₃	CaO	MgO	SO ₃	Na ₂ O	K ₂ O	Na ₂ O _{eq}	LOI
CEM I 42,5 R	19,03	4,84	3,22	63,64	1,15	2,97	0,21	0,53	0,56	3,34
CEM I 52,5 R	19,42	5,15	2,94	64,1	1,75	3,50	0,29	0,88	0,87	2,43

Tabela 3.3 Skład chemiczny zastosowanych cementów wyznaczony metodą XRF, % wag.

Tabela 3.4 Właściwości fizyczne cementów (na podstawie danych od producentów)

Właściwości	CEM I 42,5 R	CEM I 52,5 R
Gęstość [g/cm ³]	3,10	3,15
Powierzchnia właściwa wg Blaine'a [cm²/g]	3674	5100
Wytrzymałość na ściskanie po 28 dniach [MPa]	58,7	63,3
Początek czasu wiązania [min]	185	196

Aby zapewnić wymaganą zawartość powietrza w betonie nawierzchniowym, która warunkuje jego mrozoodporność, w mieszance betonowej zastosowano domieszkę napowietrzającą na bazie syntetycznego środka powierzchniowo czynnego w ilości do 1,5% masy cementu. Domieszka napowietrzająca umożliwia formowanie stabilnych mikropęcherzyków powietrza w betonie. Równomierne rozmieszczenie w mikrostrukturze oraz ich niewielkie rozmiary (< 300 μm) gwarantują odporność betonu na cykliczne działanie mrozu, również w obecności środków odladzających [154]. Dodatkowo zastosowano domieszkę uplastyczniającą na bazie zmodyfikowanych lignosulfonianów, której celem było zmniejszenie ilości wody zarobowej przy zachowaniu stałej konsystencji.

Do zaprawy wykonanej według receptury przewidzianej w metodzie przyspieszonej, do betonu według receptury przewidzianej w metodzie długotrwałej oraz betonu do badania symulowanych warunków eksploatacyjnych stosowano wodę destylowaną.

3.2. Skład zaprawy i betonu

Skład zaprawy i betonu uwarunkowany był stosowaną metodą badawczą. W zaplanowanym programie badawczym wykonano jeden rodzaj zaprawy:

 zaprawa do określenia reaktywności alkalicznej kruszywa metodą przyspieszoną, PB/1/18 [N21],

oraz dwa rodzaje betonów:

- beton do określenia reaktywności alkalicznej kruszywa metodą długotrwałą, ASTM C 1293 [N3],
- beton nawierzchniowy do określenia ekspansji w wyniku ASR w symulowanych warunkach eksploatacyjnych, PB/5/18 [N22].

Do przeprowadzenia badania reaktywności alkalicznej kruszywa, zaprawy wykonano zgodnie z zapisami Procedury Badawczej PB/1/18 [N21]. Do przygotowania próbek wykorzystano cement o największej zawartości alkaliów, który był dostępny na polskim rynku, CEM I 52,5 R, Na₂O_{eq} = 0,87% (Tabela 3.3). Kruszywo ze skał magmowych głębinowych rozdrobniono, w taki sposób, aby krzywa przesiewu odpowiadała zapisom PB/1/18 [N21]. Zastosowano stały współczynnik wodno-cementowy w/c = 0,47. Do badań wykorzystano wszystkie analizowane kruszywa ze skał magmowych głębinowych (G1, G2, G3, G4, G5, GD, GA). Wytworzone w laboratorium mieszanki zapraw wykorzystano do przygotowania belek o wymiarach 25 x 25 x 285 mm (po 3 dla każdej serii).

Beton do przeprowadzenia badania reaktywności alkalicznej za pomocą metody długotrwałej (CPT) wykonano zgodnie z zapisami normy ASTM C 1293 [N3]. Do badań zastosowano cement o zawartości alkaliów 0,87% w postaci ekwiwalentu tlenku sodu, dlatego konieczne było dodanie wodorotlenku sodu do wody zarobowej w ilości, która zapewni: Na₂O_{eq} = 1,25 ± 0,05% w spoiwie oraz zawartość alkaliów w całej mieszance równą 5,5 ± 0,2 kg/m³. Badanie zostało przeprowadzone w wariancie: badane kruszywo drobne (0,125 – 4 mm) połączone z niereaktywnym kruszywem grubym (kruszywo amfibolitowe frakcji 4 – 22 mm). Analizowane kruszywo ze skał magmowych głębinowych rozdrobniono do drobnej frakcji 0 – 4 mm. W mieszance betonowej udział kruszywa drobnego stanowił 30% całego kruszywa, natomiast grubego 70%. Krzywą przesiewu przedstawiono na Rys. 3.1. Współczynnik wodnocementowy wynosił 0,45. Wytworzone w laboratorium mieszanki wykorzystano do wykonania następujących próbek:

- belki o wymiarach 75 x 75 x 285 mm (po 3 dla każdej serii),
- kostki sześcienne o boku 100 mm (po 3 dla każdej serii).

W Tabeli 3.5 przedstawiono skład betonu wykonanego do badań ekspansji wg ASTM C 1293, natomiast w Tabeli 3.6 znajdują się właściwości mieszanki betonowej.

Rys. 3.1 Krzywa przesiewu kruszywa do betonu przygotowanego do badania wg ASTM C 1293 [N3]

Rodzaj kruszywa grubego			Grano- dioryt	Gabro			
Oznaczenie	G1	G2	GD	GA			
Rodzaj cementu			CEM I 52	,5 R Na ₂ O _e	$e_q = 0,88\%$		
		Zav	wartość [kg	g/m ³]			
Cement	420	420	420	420	420	420	420
Woda	189	189	189	189	189	189	189
Kruszywo drobne 0 – 4 mm (analizowane kruszywo)	536	535	534	538	539	540	553
Kruszywo grube 4 – 22 mm (grys amfibolitowy)	1252	1248	1247	1255	1258	1261	1291
NaOH	2,060	2,060	2,060	2,060	2,060	2,060	2,060

Rodzaj kruszywa grubego			Grano- dioryt	Gabro			
Oznaczenie	G1	G2	G3	G4	G5	GD	GA
Zawartość powietrza [%]	0,8	0,8	1,0	0,7	0,6	0,8	0,7
Gęstość [kg/m ³]	2465	2481	2484	2498	2467	2482	2514
Opad stożka [mm]	50	30	30	30	50	60	70
Temperatura [°C]	19,5	22,0	22,0	22,0	19,0	20,0	20,5

Tabela 3.6 Właściwości mieszanki betonowej do badania ekspansji wg ASTM C 1293 [N3]

Do wykonania betonu nawierzchniowego poddanego działaniu symulowanych warunków eksploatacyjnych (PB/5/18 [N22]) przyjęto następujące założenia:

- beton przeznaczony na nawierzchnie drogowe kategorii ruchu KR5÷KR7,
- klasa ekspozycji: XF4,
- klasa wytrzymałości betonu: min. C35/45,
- rodzaj i klasa cementu: CEM I 42,5 R (zawartość alkaliów $Na_2O_{eq} = 0,56\%$),
- zawartość cementu: min. 360 kg/m³,
- współczynnik wodno-cementowy w/c: maks. 0,45,
- zawartość powietrza w mieszance min. 5,5%,
- uziarnienie kruszywa: do 16 mm lub 22 mm,
- zastosowanie domieszki napowietrzającej i uplastyczniającej.

Dobór stosu okruchowego w mieszance betonowej podyktowany był zapisami Katalogu Typowych Konstrukcji Nawierzchni Sztywnych [N23]. Na Rys. 3.2 i Rys. 3.3 przedstawiono wyniki optymalizacji dla betonu z kruszywem do 16 i 22 mm. Proporcje poszczególnych frakcji kruszyw do betonu zostały dobrane na podstawie proporcji sugerowanych w betonie nawierzchniowym dolnej warstwy technologii dwuwarstwowej, gdy kruszywo miało frakcję do 22 mm oraz na podstawie wartości granicznych, gdy kruszywo charakteryzowało się frakcją jedynie do 16 mm.

Rys. 3.2 Optymalizacja stosu okruchowego betonu nawierzchniowego z kruszywem grubym do 16 mm

Rys. 3.3 Optymalizacja stosu okruchowego betonu nawierzchniowego z kruszywem grubym do 22 mm

Skład betonu został zaprojektowany zgodnie z założeniami Procedury Badawczej PB/5/18 [N22]. Wybrano najczęściej stosowaną klasę ekspozycji w przypadku betonu przeznaczonego na nawierzchnie i obiekty inżynierskie i przyjęto zawartość cementu 360 kg/m³, w/c=0,45, natomiast ilość domieszek chemicznych: napowietrzającej oraz uplastyczniającej określono na podstawie badań wstępnych: 0,15% masy cementu w przypadku domieszki napowietrzającej oraz 0,04% masy cementu dla domieszki uplastyczniającej. Ilość domieszki napowietrzającej dobrano w celu zapewnienia napowietrzenia w przedziale 5,5 – 6%

(warunek mrozoodporności betonu nawierzchniowego). Skład betonu wykonanego do badania symulowanych warunków eksploatacyjnych przedstawiono w Tabeli 3.7, natomiast właściwości mieszanek betonowych w Tabeli 3.8. Do badania wykorzystano 5 spośród 7 analizowanych kruszyw (G1, G3, G5, GD, GA), wybór był związany z wynikami ekspansji wg metody PB/1/18). Wybrano trzy kruszywa granitowe: o skrajnych oraz środkowej wartości ekspansji wg PB/1/18, tj. G1 – 0,097%, G3 – 0,134% oraz G5 – 0,108%. Kruszywo grube stanowiły badane kruszywa, natomiast jako kruszywo drobne zastosowano niereaktywny piasek kwarcowy (ekspansja po 14 dniach wg PB/1/18 równa 0,040%).

Przygotowano próbki do pomiarów wydłużenia - 75 x 75 x 285 mm z czopikami pomiarowymi (3 próbki) oraz dodatkowe próbki kontrolne do określenia wytrzymałości na ściskanie oraz do analizy rozkładu porów powietrznych w postaci kostek sześciennych 100 x 100 x 100 mm (4 próbki) w celu identyfikacji poprawności napowietrzenia.

Rodzaj kruszywa grubego		Granitowe	Grano- diorytowe	Gabro	
Oznaczenie	G1	G3	G5	GD	GA
Rodzaj cementu	$\begin{array}{l} \text{CEM I 42,5} \\ \text{R Na}_{2}\text{O}_{eq} = \\ 0,56\% \end{array}$	$\begin{array}{l} \text{CEM I 42,5} \\ \text{R Na}_{2}\text{O}_{eq} = \\ 0,56\% \end{array}$	$\begin{array}{l} \text{CEM I 42,5} \\ \text{R Na}_{2}\text{O}_{eq} = \\ 0,56\% \end{array}$	$\begin{array}{l} \text{CEM I 42,5} \\ \text{R Na}_2\text{O}_{eq} = \\ 0,56\% \end{array}$	$\begin{array}{l} \text{CEM I 42,5} \\ \text{R Na}_{2}\text{O}_{eq} = \\ 0,56\% \end{array}$
		Zawartość []	kg/m ³]		
Cement	360	360	360	360	360
Woda	162	162	162	162	162
Piasek kwarcowy $0-2 \text{ mm}$	526	526	526	526	526
Kruszywo grube 2 – 8 mm	522	258	265	267	289
Kruszywo grube 8 – 16 mm	696	430	442	445	482
Kruszywo grube 16 – 22 mm	-	516	530	534	578
Domieszka napowietrzająca [% m.c.]	0,15	0,15	0,15	0,15	0,15
Domieszka uplastyczniająca [% m.c.]	0,04	0,04	0,04	0,04	0,04

Tabela 3.7 Skład betonu z kruszywami ze skał magmowych głębinowych wykonanego do przeprowadzenia badania symulowanych warunków eksploatacyjnych (PB/5/18, [N22])

Tabela	3.8	Właściwości	miesz	anek	betonowych	Z	kruszyw	vem	ze	skał	magmowy ch
głębino	wych	wykonych	do	przep	orowadzenia	ba	dania	symu	llow	anych	warunków
eksploa	tacyjr	nych (PB/5/18,	[N22])							

Rodzaj kruszywa grubego		Granitowe	Granodiorytowe	Gabro	
Oznaczenie	G1	G3	G5	GD	GA
Zawartość powietrza [%]	5,5	5,6	5,7	5,8	5,5
Gęstość [kg/m ³]	2229	2299	2276	2307	2421
Opad stożka [mm]	120	140	130	120	120
Temperatura [°C]	20,0	20,5	20,5	20,0	20,5

4. Przeprowadzone badania i opis zastosowanych metod

4.1. Program badań

Program badawczy został podzielony na 4 etapy:

- Charakterystyka składu chemicznego i mineralnego kruszywa granitowego z uwagi na możliwość wystąpienia reakcji alkalicznej w betonie.
- Opracowanie ilościowego określenia reaktywnych składników mineralnych w kruszywie (metoda autorska).
- 3) Określenie potencjalnej reaktywności alkalicznej kruszywa granitowego.
- Ocena wpływu środków odladzających na wystąpienie reakcji alkalicznej w betonie z kruszywem granitowym.
- 5) Identyfikacja produktów reakcji alkalia-krzemionka w betonie nawierzchniowym i charakterystyka uszkodzeń (metoda autorska).

Charakterystykę składu chemicznego i mineralogicznego kruszyw przeprowadzono w celu rozpoznania obecności minerałów reaktywnych w kruszywie. Do analizy składu chemicznego wykorzystano metodę XRF, natomiast skład mineralogiczny określono za pomocą metody petrograficznej oraz XRD. Opracowano również autorską metodę analizy obrazu w celu ilościowego określenia reaktywnych składników mineralnych w kruszywie (narzędzie wstępnej oceny reaktywności kruszywa).

Drugim etapem było określenie potencjalnej reaktywności alkalicznej analizowanych kruszyw za pomocą standardowych metod: przyspieszonej (AMBT, PB/1/18 [N21]) oraz długotrwałej (CPT, ASTM C 1293 [N3]). Badania miały na celu określenie kategorii reaktywności kruszywa, a także walidację wyników uzyskanych za pomocą ilościowej metody analizy obrazu.

Na podstawie wyników uzyskanych w etapie 1 i 2 wybrano 5 spośród 7 kruszyw do dalszej analizy, której celem było zbadanie wpływu środków odladzających na reakcję alkaliakrzemionka. W tym celu zmodyfikowano metodę przyspieszoną PB/1/18 [N21], stosując różne stężenia środków odladzających (NaCl, HCOONa, HCOOK) w miejsce 1 M roztworu NaOH. A także zbadano jednoczesny wpływ zmiennych warunków wilgotnościowych oraz różnego stężenia środków odladzających (symulacja rzeczywistych warunków środowiska) na potencjał wystąpienia ASR w betonie nawierzchniowym stosując pomiary ekspansji wg PB/5/18 [N22]. W końcowym etapie próbki zapraw i betonów przebadano za pomocą mikroskopu skaningowego SEM-EDS z uwagi na zmiany w mikrostrukturze i identyfikację produktów reakcji ASR oraz ich charakterystykę. Opracowano autorską metodę oceny uszkodzeń betonu wskutek ASR, którą wykorzystano do analizy odwiertów pobranych z rzeczywistych zniszczonych drogowych nawierzchni betonowych.

4.2. Skład fazowy i mikrostruktura

4.2.1. Rentgenowska spektroskopia fluorescencyjna

Skład chemiczny kruszyw ze skał magmowych głębinowych oraz cementu (użytego do wykonania próbek zapraw i betonów) analizowano przy użyciu spektrometru fluorescencji rentgenowskiej z dyspersją długości fali (Wavelength Dispersive X-ray Fluorescence Spectrometer, WD-XRF) Philips PW 2400. na próbkach sproszkowanych, w Państwowym Instytucie Geologicznym (PIG). Celem badania było dokładne określenie zawartości krzemionki oraz alkaliów w analizowanych kruszywach, a także ilościowe określenie składu chemicznego cementu, zwłaszcza ilość alkaliów.

Badania zostały przeprowadzone zgodnie z wewnętrznymi procedurami PIG. Do wykonania analizy składu chemicznego XRF kruszyw wybrano najmniejszą frakcję (2/8 mm oraz 2/5 mm w przypadku kruszywa gabro). Kruszywo przemyto, a następnie suszono przez 24 godziny w temperaturze 100°C. Kruszywo rozdrobniono w moździerzu ceramicznym i przesiano przez stalowe sito o wymiarze oczka 63 μ m. Cement również został rozdrobniony i przesiany przez sito o tym samym rozmiarze ziaren. Około 1 g badanej próbki włożono do tygla i prażono przez 1 h w piecu w temperaturze 1000°C. Kalcynowaną próbkę stopiono następnie z 5 g topnika LiBO₂. Pod koniec topienia dodano około 100 mg I₂O₅ w celu zmniejszenia lepkości stopu.

4.2.2. Rentgenowska analiza dyfrakcyjna

Metoda dyfrakcji rentgenowskiej (X-ray diffraction, XRD) miała na celu jakościowe oznaczenie składu fazowego kruszywa. Przygotowanie kruszywa oraz wykonanie badania odbywało się zgodnie z wewnętrznymi procedurami IPPT PAN. Kruszywo frakcji 2/8 mm (lub 2/5 mm) przemyto oraz wysuszono w temperaturze 100°C przez 24 godziny. Następnie kruszywo zostało rozdrobnione w moździerzu ceramicznym i przesiane przez sito o wielkości ziarna 45 µm. Badania przeprowadzono na dyfraktometrze Bruker (Karlsruhe, Niemcy) D8 Discover. Źródłem promieniowania rentgenowskiego była lampa miedziana o napięciu 40 kV

i natężeniu 40 mA. Czas zbierania wynosił 1 s, wielkość kroku 0,02°, zakres 2Θ Cu Kα od 5 do 65°.

4.2.3. Analiza petrograficzna kruszywa

Celem analizy petrograficznej było rozpoznanie składu mineralnego w kruszywie granitowym, ze zwróceniem szczególnej uwagi na reaktywne składniki mineralne. Do analizy petrograficznej niezbędne było przygotowanie specjalnych preparatów, cienkich szlifów. Są to cienkie, o grubości 30 ± 2 µm, wypolerowane próbki kruszywa, przyklejone do szkiełka mikroskopowego, o wymiarach 25 x 40 mm. Badaniu poddano 2 frakcje każdego z kruszyw: 2/8 mm (2/5 mm) oraz 8/16 mm. Kruszywo po przemyciu wysuszono w temperaturze 100°C przez 24 h, a następnie rozdrobniono do frakcji 2/4 mm, zgodnie z Wytycznymi Technicznymi [N8]. Pierwszym krokiem przygotowania preparatów było zatopienie ziaren kruszywa w żywicy epoksydowej i jej utwardzenie. Następnie próbki szlifowano i polerowano. Szlifowanie i wstępne polerowanie wykonano na papierach ściernych ze ścierniwem z węglika krzemu, o gradacji P 100 - P 1200, umocowanych na obrotowej szlifierko-polerce Presi Mecatech 334. Polerowanie wykańczające przeprowadzono z wykorzystaniem past diamentowych o gradacji 6, 3, 1, 0,25 µm na suknach polerskich. Tak przygotowany preparat został przyklejony do szkiełka mikroskopowego, następnie nadmiar preparatu odcięto na pile tarczowej. Proces szlifowania i polerowania powtórzono z drugiej strony preparatu i kontynuowano w tej samej sekwencji aż do uzyskania docelowej grubości 30 ±2 µm. Grubość preparatu była związana z ustandaryzowaniem grubości preparatów geologicznych, dzięki którym rozpoznawanie minerałów jest jednoznaczne, na podstawie widocznych w świetle przechodzącym charakterystycznych cech (przyjęta referencyjna barwa kwarcu).

Dla każdego z 7 analizowanych kruszyw wykonano 4 preparaty petrograficzne: po 2 dla frakcji 2/8 mm oraz 8/16 mm. Do obserwacji mikroskopowych wykorzystano mikroskop polaryzacyjny Olympus BX51, wyposażony w cyfrową, kolorową kamerę oraz automatyczny stolik Prior ES11BX/B. Badania prowadzono w świetle przechodzącym spolaryzowanym (nikole skrzyżowane, Cross Polarized Light, XPL), niespolaryzowanym (nikole rozkrzyżowane, Plane Polarized Light, PPL) oraz z płytką gipsową (nikole skrzyżowane z płytką gipsową, Gypsum Plate Cross Polarized Light, GPXPL). W szczególnych przypadkach (np. rozróżnienie kwarcu i skaleni, które wykazują zbliżone właściwości optyczne) korzystano z pomocniczego mikroskopu polaryzacyjnego ze stolikiem obrotowym.

Cienkie szlify przygotowano również z odwiertów nawierzchni betonowych analizowanych w dalszej części pracy (Rozdział 8). Wykonano po 3 preparaty z obydwu nawierzchni betonowych. Beton zaimpregnowano żywicą fluorescencyjną w celu dalszej obserwacji rys w świetle UV. Badania prowadzono również w świetle spolaryzowanym XPL oraz niespolaryzowanym PPL.

4.2.4. Analiza mikroskopowa SEM

Próbki zapraw oraz betonów po przeprowadzeniu zaplanowanych badań zostały poddane badaniom mikrostruktury za pomocą skaningowego mikroskopu elektronowego (SEM). Głównym celem wykonanych badań była identyfikacja produktów reakcji ASR. W Tabeli 4.1 przedstawiono zestawienie próbek przebadanych w SEM.

Warunki ekspozycji próbek	Roztwór	G1	G3	G5	GD	GA
	Woda destylowana	-	-	\checkmark	-	-
PB/1/18	10% NaCl	-	-	\checkmark	-	-
	15% HCOONa	-	-	\checkmark	-	-
	50% HCOOK	-	-	\checkmark	_	-
	Woda destylowana	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark
PB/5/18	10% NaCl	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark
	15% HCOONa	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark
	50 % HCOOK	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark
Odwierty z nawierzchni drogowych	Droga ekspresowa (Polska)			Autos	trada (Nier	ncy)

Tabela 4.1 Zestawienie próbek zapraw i betonów poddanych analizie mikrostruktury w skaningowym mikroskopie elektronowym

Próbki o przekroju 42 x 25 mm oraz grubości 10 mm wycięto ze środka większych próbek, Rys. 4.1 i Rys. 4.2. Miejsce pobrania i rozmiar próbki były tak dobrane, by otrzymana analizowana próbka była reprezentatywna dla całego przekroju próbki, uwzględniając odległości od powierzchni narażonej na szkodliwe oddziaływanie czynników zewnętrznych. Z każdej zaprawy i betonu wycięto i przygotowano po 3 próbki do obserwacji mikrostruktury.

Wycięte próbki były zaimpregnowane żywicą epoksydową i szlifowane przy użyciu tarcz diamentowych o gradacji 125, 75, 54, 18 i 9 µm na polerce obrotowej Presi Mecatech 334. Polerowanie wykańczające realizowano przy użyciu past diamentowych o gradacji 6, 3, 1 i 0,25 µm. Tak przygotowane próbki oczyszczano alkoholem etylowym, w celu pozbycia się wszystkich zanieczyszczeń, a następnie nanoszono warstwę wegla o grubości około 20 nm za pomocą napylarki Cressington C208. Napylanie było konieczne, ponieważ badany materiał jest nieprzewodzący, w związku z tym niezbędne było zabezpieczenie powierzchni przed ładowaniem się wiązką elektronów. Do obserwacji mikrostruktury wykorzystano mikroskop JEOL JSM-6460LV wyposażony w detektor z dyspersją energii rentgenowskiej (EDS) (PV72-55050 EDAX, AMETEK, USA, oprogramowanie Genesis Spectrum 6.2 firmy EDAX Inc.). Detektor EDS umożliwił wykonanie punktowych badań składu chemicznego produktów reakcji ASR, a także ocenę składu mineralnego badanych kruszyw. Analizę przeprowadzono w warunkach wysokiej próżni w trybie elektronów wstecznie rozproszonych (Electron Backscatter Diffraction, EBSD). Zastosowano napięcie przyspieszania o wartości 20 kV oraz odległość pracy równą ~10 mm (ze względu na pomiary EDS). Dla każdej z próbek wykonano około 250 analiz punktowych EDS.

Rys. 4.1 Schemat próbki zaprawy 25 x 25 x 285 mm z zaznaczonym miejscem pobierania próbek do badań mikrostruktury.

Rys. 4.2 Schemat próbki betonu 75 x 75 x 285 mm z zaznaczonym miejscem pobierania próbek do badań mikrostruktury.

4.3. Właściwości fizyczne mieszanki betonowej i mechaniczne betonu

Określenie podstawowych właściwości mieszanek betonowych wykonano zgodnie z normą PN-EN 12-350:

- konsystencja metodą opadu stożka [N10],
- zawartość powietrza metodą ciśnieniową [N13],
- gęstość [N12].

Przeprowadzenie badania zawartości powietrza metodą ciśnieniową umożliwiło wstępną ocenę poprawności napowietrzenia mieszanki betonowej i ewentualną korektę składu. Kolejnym krokiem było przeprowadzenie charakterystyki porów powietrznych w stwardniałym betonie. Charakterystykę porów powietrznych w stwardniałym betonie wykonano zgodnie z normą PN-EN 480-11:2008 [N20]. Przygotowanie zgładów betonowych odbyło się według procedury opracowanej przez IPPT PAN.

Z próbek betonu 100 x 100 x 100 mm wycięto próbki o grubości około 25 mm (przekrój 100 x 100 mm), następnie je wypolerowano na proszkach węglika krzemu o gradacji 120, 320, 600, 800, 1200 μm. Na wypolerowane zgłady nałożono granatowy tusz, którego celem było uzyskanie jednorodnego tła do obserwacji pustek powietrznych, które wypełniono białą pastą cynkową. Do charakterystyki rozkładu porów powietrznych w betonie wykorzystano stanowisko do automatycznej analizy obrazu, które składało się z mikroskopu stereoskopowego Nikon SMZ800, kamery cyfrowej QICAM Fast 1394, automatycznego stolika Marzhauser SCAN 150 x 150 oraz oprogramowania Image Pro Plus 7.0. Przy zastosowanym powiększeniu x30, rozdzielczość obrazu w postaci rozmiaru piksela wynosiła 1,54 μm.

Zastosowana metoda trawersowa charakterystyki porów powietrznych polega na określeniu rozkładu wielkości porów na postawie analizy rozkładu cięciw porów powietrznych, które przecięto linią trawersy. Charakterystykę porów powietrznych w betonie stanowią następujące parametry:

- A całkowita zawartość powietrza [%],
- α powierzchnia właściwa porów powietrznych stosunek powierzchni porów powietrznych do ich objętości [1/mm],
- L wskaźnik rozmieszczenia porów powietrznych, określa maksymalną odległość dowolnego punktu zaczynu cementowego od krawędzi pora powietrznego [mm],

• A₃₀₀ – zawartość mikroporów (porów powietrznych o średnicy poniżej 300 μm) [%].

Badanie właściwości mechanicznych betonów obejmowało wytrzymałość na ściskanie zgodnie z normą PN-EN 12390-3 [N14]. Badanie przeprowadzono po 28 dniach dojrzewania na trzech kostkach sześciennych 100 x 100 x 100 mm, na prasie hydraulicznej Controls C46Z00.

4.4. Odporność kruszywa na reakcję alkaliczną

4.4.1. Metoda szybka

Ocenę reaktywności alkalicznej kruszyw ze skał magmowych głębinowych wykonano za pomocą metody szybkiej na podstawie normy PN-B-06714-46:1992 [N9]. Celem badania było określenie stopnia reaktywności kruszywa ze skał magmowych głębinowych wg aktualnych wymagań dotyczących betonowych nawierzchni lotniskowych.

Badanie polegało na pomiarze ubytku masy kruszywa po 1 h przechowywania w 90°C w 4 lub 10% roztworze wodorotlenku sodu. Badanie przeprowadzono na kruszywach frakcji drobnej 1/2, 2/4 mm oraz grubej 4/8 mm. Wykonano po 2 próbki analityczne dla każdego rodzaju kruszywa oraz frakcji. Kruszywo drobne badano w 4% NaOH (masa próbki 200 g), natomiast kruszywo grube w 10% NaOH (masa próbki 500 g). Wynik stanowił ubytek masy w postaci średniej z dwóch próbek, wyrażony w %. Kruszywo o ubytku masy poniżej 0,5% klasyfikuje się do zerowego stopnia reaktywności.

4.4.2. Metoda przyspieszona

Ocenę reaktywności alkalicznej kruszyw ze skał magmowych głębinowych wykonano za pomocą metody przyspieszonej, na podstawie zapisów Procedury Badawczej PB/1/18 [N21]. Celem badania było określenie czy kruszywa granitowe, wybrane do badań są niereaktywne.

Badanie polegało na cyklicznych pomiarach ekspansji próbek zapraw przechowywanych w 1 M NaOH i 80°C.

Skład i materiały składowe zapraw przedstawiono w Rozdziale 3.2. Kruszywo do badań zostało rozdrobnione w kruszarce szczękowej Retsch BB50, a następnie przesiane do odpowiednich frakcji wg PB/1/18 [N21]. Pomiar wydłużenia próbek przeprowadzono za pomocą urządzenia zaprojektowanego i wykonanego przez zespół z IPPT PAN (Rys. 4.3). Odczytów dokonano z dokładnością do 1 µm.

Rys. 4.3 Urządzenie do pomiaru zmian długości próbek zapraw i betonów, wraz z prętem referencyjnym wykonanym z Invaru, zaprojektowane i wykonane przez zespół z IPPT PAN

Długość badania wydłużono z 14 do 28 dni, ze względu na możliwość późniejszego wystąpienia reakcji alkalia-krzemionka. Kruszywo ze skał granitowych może być niekiedy uznawane za kruszywo wolno reagujące [15][173]. Długość próbek mierzono cyklicznie, 2 – 3 razy w tygodniu, uwzględniając by odnotować długość próbek po 14 i 28 dniach. Według metod normowych, na które się powoływano ([N21][N2]), dopuszczalny limit wydłużenia dla kruszywa grubego wynosi 0,10%. W niniejszych badaniach granicę tę zaostrzono do tej samej wartości, jednak w czasie wydłużonym – po 28 dniach ekspozycji.

Wykonane zostały również badania według zmodyfikowanej metody PB/1/18 [N21]. Modyfikacja polegała na zmianie roztworu, w którym przechowywano próbki przez 28 dni. Oryginalny 1 M roztwór NaOH zamieniono na roztwory środków odladzających:

- NaCl: 3%, 10%, 20% wag.
- HCOONa: 10%, 15% wag.
- HCOOK: 25%, 50% wag.

Wprowadzenie do badania środków odladzających miało na celu określenie wpływu tych środków odladzających na ekspansję i powstanie reakcji ASR.

W dalszych rozważaniach stosowane jest pojęcie 1 M roztworu NaOH, w stężeniu molowym, pomimo stosowania pozostałych roztworów w stężeniach procentowych, ze względu na posługiwanie się ogólnie przyjętą nomenklaturą normową. 1 M stężenie NaOH odpowiada 3,83% NaOH.

4.4.3. Metoda długotrwała

Metoda długotrwała zgodna z ASTM C 1293 [N3] była zastosowana do oceny reaktywności alkalicznej badanych kruszyw ze skał magmowych głębinowych. Celem badania było sprawdzenie reaktywności alkalicznej kruszyw granitowych za pomocą metody innej niż przyspieszona (dokładniejsza weryfikacja uzyskanych wyników). Badanie polegało na cyklicznych pomiarach ekspansji próbek betonu przechowywanych w warunkach wysokiej wilgotności oraz 38°C. Skład i materiały składowe betonu przedstawiono w Rozdziale 3.2. Pomiary wydłużenia próbek wykonywano za pomocą tego samego urządzenia, które wykorzystywano w metodzie przyspieszonej, Rys. 4.3. Zastosowano kryterium reaktywności kruszywa zgodnie z normą [N3]: kruszywo uznawano za niereaktywne, jeśli jego wydłużenie nie przekroczyło 0,04% po 365 dniach.

4.4.4. Metoda symulowanych warunków eksploatacyjnych

Badanie ekspansji próbek betonowych w symulowanych warunkach eksploatacyjnych przeprowadzono w oparciu o Procedurę Badawczą PB/5/18 [N22]. Zastosowanie niniejszej techniki badawczej pozwoliło na ocenę wpływu środków odladzających na ekspansję betonu z uwagi na reakcję alkalia-krzemionka w kruszywie. Skład i materiały składowe betonu przedstawiono w Rozdziale 3.2. Schemat postępowania przedstawiono na Rys. 4.4.

Po każdym cyklu wykonano pomiar długości próbek (z dokładnością do 1 μm), masy (z dokładnością do 1 g) oraz częstości drgań rezonansowych (z dokładnością do 0,01 kHz). Pomiary długości próbek wykonano za pomocą urządzenia opisanego w Rozdziale 4.4.1, Rys. 4.3. Częstotliwość drgań rezonansowych badano za pomocą urządzenia Grindosonic. Na tej podstawie obliczono rezonansowy moduł sprężystości próbek pryzmatycznych.

W metodzie PB/5/18 [N22] jako roztwór odladzający stosowany jest chlorek sodu w dwóch stężeniach: 3 lub 10%. W celu określenia wpływu innych roztworów odladzających na wystąpienie reakcji alkalicznej w betonie nawierzchniowym wprowadzono modyfikację metody w postaci zastosowania różnych środków odladzających, oprócz chlorku sodu użyto również mrówczanu sodu oraz mrówczanu potasu.

Rys. 4.4 Schemat postępowania w cyklicznym badaniu symulowanych warunków eksploatacyjnych

W niniejszych badaniach zastosowano roztwory środków odladzających w następujących stężeniach: woda destylowana, 10% wag. NaCl, 10% wag. HCOONa, 15% wag. HCOONa, 25% wag. HCOOK, 50% wag. HCOOK. Wybór stężeń podyktowany był stosowaniem roztworów o takich stężeniach w warunkach rzeczywistych do odladzania nawierzchni drogowych i lotniskowych (10% NaCl, 15% HCOONa, 50% HCOOK). Dodatkowo analizie poddano wpływ roztworów rozcieńczonych (10% HCOONa i 25% HCOOK).

4.5. Ilościowa analiza obrazu

4.5.1. Autorska metoda wyznaczania zawartości reaktywnych minerałów w kruszywie

Reaktywność kruszywa jest przede wszystkim zależna od rodzaju i ilości reaktywnych składników w kruszywie. Jednak dostępne metody normowe oceny reaktywności alkalicznej kruszyw nie podchodzą do tego problemu w sposób ilościowy lub podchodzą wybiórczo jak np. duńska norma dotycząca reaktywności piasku [N24]. W niniejszej pracy opracowano metodę ilościowego oznaczenia zawartości składników reaktywnych w kruszywie granitowym.

Ze względu na wybrane do badań kruszywa ze skał magmowych głębinowych, pod uwagę wzięto następujące minerały: kwarc mikrokrystaliczny (rozmiar ziaren poniżej 100 μm), kwarc kryptokrystaliczny (rozmiar ziaren poniżej 10 μm), kwarc amorficzny, a także kwarc zdeformowany [1][28][55][69][71].

Do badań wykorzystano cienkie szlify przygotowane do analizy petrograficznej oraz mikroskop optyczny opisany w Rozdziale 4.2.3. Dla każdego z analizowanych kruszyw analizie poddano 4 cienkie szlify: po 2 dla frakcji 2/8 mm oraz 8/16 mm, wynik stanowił średnią z analizy 4 powierzchni. Obserwacje prowadzono w świetle przechodzącym, spolaryzowanym (XPL). Pojedyncze obrazy o wymiarze 2,2 x 1,65 mm i wysokiej rozdzielczości (1 px = 0,86 µm) zebrano z całej powierzchni cienkich szlifów, a następnie połączono je w jeden obraz za pomocą oprogramowania Image Composite Editor, bez użycia kompresji, dzięki czemu zachowano wysoką rozdzielczość pojedynczych obrazów. Analizę otrzymanych obrazów przeprowadzono w oprogramowaniu Image Pro Plus. Pierwszym krokiem analizy było oddzielenie ziaren kruszywa od tła (żywicy). W tym celu obraz przekonwertowano z zastosowaniem składowych kolorów RGB (czerwonego, zielonego i niebieskiego), tak by nowo powstały obraz odzwierciedlał rzeczywiste kontury ziaren kruszyw. Podobnie jak w procedurze opisanej w pracy [71], zastosowano również specjalne filtry morfologiczne (dylatacja, erozja) oraz operacje binaryzacji. Jeśli była taka konieczność, do oddzielenia połączonych ziaren stosowano ręczną separację.

Kolejnym krokiem było odseparowanie składników reaktywnych w kruszywie zidentyfikowanych na obrazach. W analizie petrograficznej głównym rozpoznanym składnikiem reaktywnym był kwarc zdeformowany, a ilość kwarcu mikrokrystalicznego była pomijalnie mała, dlatego w dalszych rozważaniach wzięto pod uwagę tylko kwarc zdeformowany. Składniki oznaczano w sposób manualny, wybór składników reaktywnych

opierał się na doświadczeniu eksperymentatora, który w sposób jednoznaczny stwierdzał, które minerały są reaktywne. Na dużym obrazie (po złożeniu z pojedynczych) oznaczono obszary, w których znajdują się ziarna kwarcu wykazujące wysoki stopień falistego wygaszania, charakterystyczny dla kwarcu zdeformowanego. Według danych literaturowych [114] kwarc zdeformowany z kątem falistego wygaszania powyżej 15° jest reaktywny, w innych źródłach podawany jest kąt 25° [134]. Dla uproszczenia analizy i zmniejszenia błędu eksperymentatora nie rozważano wielkości kąta falistego wygaszania. Na podstawie tych oznaczeń odseparowano składniki reaktywne oraz policzono ich całkowitą procentową powierzchnię w stosunku do powierzchni ziaren kruszywa. Uproszczony schemat postępowania przedstawiono na Rys. 4.5. Manualna separacja ziaren kwarcu zdeformowanego wydaje się być metodą technicznie łatwą do realizacji, jednak wymagała dużego doświadczenia petrograficznego, aby minerały były rozpoznawane prawidłowo.

Rys. 4.5 Uproszczony schemat graficzny procedury wyznaczania zawartości kwarcu zdeformowanego w kruszywie

4.5.2. Ocena stopnia zniszczenia konstrukcji betonowej (Damage Rating Index)

Ocenę stopnia zniszczenia za pomocą wskaźnika oceny uszkodzeń (DRI, *Damage Rating Index*) na skutek reakcji alkaliczno-krzemionkowej przeprowadzono na betonie poddanym działaniu symulowanych warunków eksploatacyjnych (PB/5/18, [N21]) oraz na odwiertach z nawierzchni betonowej (autostrada w Niemczech, droga ekspresowa w Polsce). Badanie

miało na celu ilościowe określenie wpływu środków odladzających na zniszczenie betonu wskutek ASR.

Z pryzm laboratoryjnych po badaniu wg PB/5/18 [N22] wycięto próbki prostopadłościenne o wielkości 7,5 x 7,5 x 3 cm. Analizie poddano 4 powierzchnie o sumarycznej powierzchni 225 cm². Natomiast z rdzeni betonu nawierzchniowego wycięto próbki o wielkości 10 x 10 x 3 cm i analizę przeprowadzono na 6 próbkach o sumarycznej powierzchni 600 cm². Sugerowana minimalna wielkość analizowanej powierzchni wynosi 200 cm², co zostało spełnione. Próbki po wycięciu oczyszczono pod bieżącą wodą. Próbki zostały wypolerowane na proszkach SiC (P 180, P 320, P 600, P 1200) na polerce obrotowej, a następnie wysuszone w temperaturze 50°C przez 24 godziny. Na przygotowanej powierzchni narysowano siatkę złożoną z kwadratów 1 x 1 cm. Obserwacje wykonywano na mikroskopie stereoskopowym Nikon SMZ800 przy powiększeniu 30x. Obliczenia DRI zostały przeprowadzone na podstawie metody zaproponowanej przez Villenneuve i in. [174]. Ocena stopnia zniszczenia konstrukcji polega na zsumowaniu liczby defektów mikrostruktury związanych z ASR i zidentyfikowanych w pojedynczym kwadracie 1 x 1 cm. Poszczególne czynniki mają różne wagi, Tabela 4.2. Zsumowane wartości po uwzględnieniu wag znormalizowano do 100 cm², podając liczbę DRI. Im wyższa wartość DRI, tym wyższy wskaźnik degradacji betonu wywołanej przez ASR. Na Rys. 4.6 przedstawiono stanowisko do obserwacji mikrostruktury w celu wyznaczenia DRI.

Rodzaj uszkodzenia	Oznaczenie	Waga
Spękanie zamknięte w kruszywie	CCA	0,25
Spękanie otwarte w kruszywie bez produktów reakcji	OCA	2
Spękanie otwarte w kruszywie wypełnione produktami reakcji	OCA + RP	2
Spękanie w matrycy cementowej	ССР	3
Spękanie w matrycy cementowej wypełnione produktami reakcji	CCP + RP	3
Odspojenie kruszywa grubego	Debon	3
Ziarno kruszywa przereagowane w produkt reakcji	RA	2

Tabela 4.2 Rodzaje uszkodzeń mikrostruktury związane z ASR [174]

Rys. 4.6 Stanowisko do obserwacji mikroskopowych przy wyznaczeniu DRI; mikroskop stereoskopowy z analizowaną próbką 7,5 x 7,5 cm z narysowaną siatką

4.5.3. Autorska metoda wyznaczania stopnia spękania betonu wskutek ASR

Opracowano metodę ilościowej oceny spękania betonu z zastosowaniem cyfrowej analizy obrazu. Celem badania było ilościowe oznaczenie stopnia zniszczenia odwiertów. Do badań wykorzystano preparaty wycięte z odwiertów pobranych z uszkodzonej nawierzchni betonowej (droga ekspresowa z centralnej Polski), które zaimpregnowano żywicą z dodatkiem barwnika fluorescencyjnego. Próbki do obserwacji przygotowano według procedury do przygotowywania cienkich szlifów petrograficznych – uzyskanie preparatów 26 x 38,5 mm o grubości 30 ± 2 µm. Zaimpregnowanie próbek żywicą fluorescencyjną umożliwiło obserwacje spękań w świetle przechodzącym UV. Obserwacje przeprowadzono na mikroskopie stereoskopowym, polaryzacyjnym Olympus BX 51 wyposażonym w stolik automatyczny Prior ES11BX/B, przy powiększeniu x40. Obrazy zostały zebrane z całej powierzchni cienkiego szlifu (około 1000 mm²), a następnie złożone w jeden obraz przy pomocy oprogramowania Image Composite Editor z zachowaniem wysokiej rozdzielczości obrazu.

Cyfrową analizę obrazów mikroskopowych w świetle ultrafioletowym przeprowadzono przy użyciu systemu automatycznej analizy obrazu Image Pro Plus. Otrzymane obrazy zostały poddane binaryzacji, a następnie zastosowano ograniczenia kształtu (usunięcie porów) w postaci współczynnika opisującego stosunek maksymalnej odległości ze środka ciężkości obiektu do jego granicy do minimalnej odległości ze środka ciężkości obiektu do jego granicy (Radius Ratio) większego od 3 oraz współczynnika kolistości (Roundness) większego od 2. Z otrzymanych obrazów usunięto obiekty niebędące rysami. Obrazy dodatkowo poddano przekształceniom morfologicznym (dylatacja i erozja) w celu usunięcia nieprawidłowych

nieciągłości rys. Zastosowano również przekształcenia szkieletyzacji i usunięcia punktów węzłowych, które umożliwiły wyznaczenie całkowitej długości dendrytycznej rys. Na Rys. 4.7 przedstawiono kolejne przekształcenia obrazu przykładowego cienkiego szlifu.

Do analizy stopnia zarysowania kruszywa grubego w próbkach betonowych z odwiertu pobranego z uszkodzonej drogi wykorzystano również obrazy uzyskane na zgładach polerowanych (45 x 25 x 10 mm) przygotowanych do obserwacji w mikroskopie skaningowym. W tym celu zebrano zdjęcia SEM z całej powierzchni próbek polerowanych przy powiększeniu x300. Następnie spośród zebranych zdjęć wybrano te, na których znajdują się ziarna spękanego kruszywa grubego (200-280 obrazów, w zależności od próbki). Otrzymane obrazy zostały poddane binaryzacji w zakresie (0-105). Kolejnym krokiem było zastosowanie filtrów morfologicznych dylatacji oraz erozji, których zadaniem było domknięcie nieciągłości rys. Następnie zastosowano ograniczenia kształtu (usunięcie porów) w postaci współczynnika opisującego stosunek maksymalnej odległości ze środka ciężkości obiektu do jego granicy do minimalnej odległości ze środka ciężkości obiektu do jego granicy (Radius Ratio) większego od 3 oraz współczynnika kolistości (Roundness) większego od 2. Z otrzymanych obrazów usunięto obiekty niebędące rysami. Tak przygotowany obraz umożliwiał wyznaczenie całkowitej powierzchni zarysowań na analizowanym obszarze. Kolejnym krokiem było zastosowanie przekształcenia szkieletyzacji, które umożliwiło wyznaczenie całkowitej długości dendrytycznej rys. W tym celu konieczne było również wyodrębnienie punktów węzłowych i odjęcie ich z obrazu całego szkieletu. Cyfrową analizę obrazów mikroskopowych SEM przeprowadzono przy użyciu systemu automatycznej analizy obrazu (Image Pro Plus 7.0). Na Rys. 4.8 przedstawiono zdjęcia każdego z wykonanych przekształceń krok po kroku.

Rys. 4.7 Analizowany obszar powierzchni próbki wyciętej (26 x 38,5 mm) z odwiertu pobranego z uszkodzonej drogi w świetle UV (a) otrzymany bezpośrednio z mikroskopu, (b) wyodrębnione ziarna kruszywa, (c) po usunięciu matrycy, (d) po usunięciu obiektów niebędących rysami, (e) po przekształceniu szkieletyzacji, (f) po nałożeniu obrazów ziaren kruszywa oraz wyodrębnionych wcześniej rys

Rys. 4.8 Analiza zdjęć SEM stopnia zarysowań w kruszywie grubym na podstawie zdjęć SEM, (a) zdjęcie wyjściowe z mikroskopu, (b) binaryzacja, (c) dylatacja, (d) erozja, (e) ograniczenia w postaci współczynników kształtu do usunięcia obiektów niebędących rysami, (f) szkieletyzacja, (g) wyznaczenie punktów węzłowych, (h) usunięcie punktów węzłowych z obrazu szkieletu siatki zarysowań

Aneta Antolik

5. Potencjalna reaktywność alkaliczna kruszywa granitowego

5.1. Wyniki oznaczenia składu mineralnego kruszywa

Skład mineralny kruszywa określony za pomocą dyfrakcji rentgenowskiej XRD przedstawiono na Rys. 5.1 - Rys. 5.3.

Rys. 5.1 Skład mineralny kruszywa granitowego (G1-G5), Qz – kwarc, Bt – biotyt, Ab – albit, Mc – mikroklin, Olg – oligoklaz (z grupy plagioklazów)

Rys. 5.2 Skład mineralny kruszywa granodiorytowego (GD), Qz – kwarc, Ann – Annit Bytbytownit, Hb – hornblenda

Rys. 5.3 Skład mineralny kruszywa gabro (GA), Ab – albit, Aug – augit, Hbl – hornblenda, Chm – szamozyt (chloryt), Qz – kwarc

We wszystkich kruszywach granitowych główną zidentyfikowaną fazą był kwarc. Stwierdzono również obecność albitu (skaleń sodowy), biotytu, oligoklazu (plagioklaz) oraz mikroklinu (skaleń alkaliczny wzbogacony potasem). W kruszywie granodiorytowym rozpoznano kwarc, annit (rodzaj biotytu), bytownit (rodzaj plagioklazu) oraz hornblendę (rodzaj amfibolu). W kruszywie gabro zidentyfikowano albit (skaleń sodowy), augit (rodzaj piroksenu), hornblendę (rodzaj amfibolu), kwarc oraz szamozyt (rodzaj chlorytu). W kruszywie gabro, w odróżnieniu od pozostałych kruszyw, kwarc nie był głównym składnikiem mineralnym. Dokładność metody rentgenowskiej w ocenie śladowych bądź niewielkich ilości faz w testowanej próbce była ograniczona. Dlatego ocenę składu mineralnego kruszywa przeprowadzono również na cienkich szlifach.

Wyniki analizy petrograficznej przedstawiono na rysunkach Rys. 5.4 - Rys. 5.10.

Rys. 5.4 Mikrofotografie ziarna kruszywa granitowego G1 w świetle przechodzącym spolaryzowanym (XPL, kolumna lewa) oraz niespolaryzowanym (PPL, kolumna prawa), na cienkim szlifie, Qz – kwarc, SQz – kwarc zdeformowany, MQz – kwarc mikrokrystaliczny, Fsp – skaleń alkaliczny, Bt – biotyt

Rys. 5.5 Mikrofotografie ziarna kruszywa granitowego G2 w świetle przechodzącym spolaryzowanym (XPL, kolumna lewa) oraz niespolaryzowanym (PPL, kolumna prawa), na cienkim szlifie, Qz – kwarc, SQz – kwarc zdeformowany, SFsp – skaleń zserycytyzowany

Rys. 5.6 Mikrofotografie ziarna kruszywa granitowego G3 w świetle przechodzącym spolaryzowanym (XPL, kolumna lewa) oraz niespolaryzowanym (PPL, kolumna prawa), na cienkim szlifie, Qz – kwarc, SQz – kwarc zdeformowany, Fsp – skaleń alkaliczny, Bt – biotyt, Ms – Muskowit

Rys. 5.7 Mikrofotografie ziarna kruszywa granitowego G4 w świetle przechodzącym spolaryzowanym (XPL, kolumna lewa) oraz niespolaryzowanym (PPL, kolumna prawa), na cienkim szlifie, Qz – kwarc, SQz – kwarc zdeformowany, Fsp – skaleń alkaliczny, Bt – biotyt

Rys. 5.8 Mikrofotografie ziarna kruszywa granitowego G5 w świetle przechodzącym spolaryzowanym (XPL, kolumna lewa) oraz niespolaryzowanym (PPL, kolumna prawa), na cienkim szlifie, Qz – kwarc, SQz – kwarc zdeformowany, Fsp – skaleń alkaliczny, SFsp – skaleń zserycytyzowany, Bt – biotyt

Rys. 5.9 Mikrofotografie ziarna kruszywa granodiorytowego GD w świetle przechodzącym spolaryzowanym (XPL, kolumna lewa) oraz niespolaryzowanym (PPL, kolumna prawa), na cienkim szlifie, Qz – kwarc, SQz – kwarc zdeformowany, MQz – kwarc mikrokrystaliczny, Pl – plagioklaz, Fsp – skaleń alkaliczny, Bt – biotyt, Hb - hornblenda

Rys. 5.10 Mikrofotografie ziarna kruszywa gabro GA w świetle przechodzącym spolaryzowanym (XPL, kolumna lewa) oraz niespolaryzowanym (PPL, kolumna prawa), na cienkim szlifie, MQz – kwarc mikrokrystaliczny, Pl – plagioklaz, Fsp – skaleń alkaliczny, Ol – oliwin, Px – piroksen

We wszystkich zbadanych ziarnach kruszywa granitowego (G1-G5) kwarc był głównym rozpoznanym minerałem. W analizie petrograficznej zidentyfikowano również skalenie oraz biotyt, Rys. 5.4 - Rys. 5.8. Niewielkie zróżnicowanie można było zaobserwować w wielkości pojedynczych kryształów kwarcu, jak również w zawartości minerałów pobocznych. W kruszywie granitowym G2 oraz G5 zaobserwowano obecność skaleni silnie zseryzcytyzowanych. Największą zawartość biotytu stwierdzono w kruszywie granitowym G4. Na podstawie analizy zawartości powierzchniowej poszczególnych minerałów sklasyfikowano je następująco: G1 – granit biotytowy, G2 – granit biotytowy, G3 – granit muskowitowobiotytowy, G4 – granit biotytowo-muskowitowy, G5 – granit biotytowy. Szczegółowa analiza przeprowadzona z uwagi na składniki mineralne potencjalnie wywołujące szkodliwą reakcję ASR wykazała, że w przypadku wszystkich kruszyw granitowych głównym reaktywnym minerałem był kwarc zdeformowany (przykłady na Rys. 5.11). Stwierdzono również obecność kwarcu mikrokrystalicznego, jednak tylko w ilościach śladowych (Rys. 5.4).

Rys. 5.11 Mikrofotografie ziaren kruszyw granitowych w świetle przechodzącym spolaryzowanym, na cienkim szlifie, przedstawiające faliste wygaszanie w ziarnach kwarcu zdeformowanego

W kruszywie granodiorytowym (Rys. 5.9) zaobserwowano zmniejszoną ilość kwarcu w porównaniu do kruszywa granitowego. W zbliżonej zawartości do kwarcu zaobserwowano plagioklazy oraz skalenie alkaliczne. Zidentyfikowano również liczne ślady hornblendy i biotytu, co umożliwiło dokładniejszą klasyfikację skały jako granodioryt hornblendowobiotytowy. Podobnie jak w kruszywach granitowych, w badanym kruszywie granodiorytowym głównym reaktywnym minerałem był kwarc zdeformowany. Kwarc mikrokrystaliczny występował w śladowych ilościach (<0,1%).

Pod względem składu mineralnego spośród analizowanych kruszyw najbardziej odróżniało się kruszywo gabro, Rys. 5.10. Kwarc, który dominował w poprzednich kruszywach, tu występował w śladowych ilościach. Stwierdzono znikomą zawartość zarówno kwarcu zdeformowanego jak i mikrokrystalicznego. W kruszywie gabro głównymi fazami skałotwórczymi były plagioklazy oraz skalenie. Zidentyfikowano również znaczną ilość oliwinów i piroksenów. Kruszywo zostało sklasyfikowane jako gabro oliwinowo-piroksenowe.

5.2. Wyniki ilościowego oznaczenia zawartości minerałów reaktywnych w kruszywie

Zastosowana metoda ilościowej analizy obrazu (opisana w Rozdziale 4.5.1) pozwoliła na wyznaczenie zawartości minerałów reaktywnych, w każdym z badanych kruszyw Ponieważ kwarc mikro- i kryptokrystaliczny występował jedynie w niektórych z analizowanych kruszyw i wyłącznie w śladowych ilościach (<0,1%), nie został wzięty pod uwagę w dalszych rozważaniach. Natomiast zaobserwowano znaczną ilość kwarcu zdeformowanego, który był poddany dalszej analizie. Wyniki przedstawiono na Rys. 5.12.

Rys. 5.12 Powierzchniowa zawartość kwarcu zdeformowanego w badanych kruszywach, wyznaczona za pomocą metody analizy obrazu (słupki błędu stanowią odchylenie standardowe z 4 pomiarów)

Zawartość kwarcu zdeformowanego w badanych kruszywach ze skał magmowych głębinowych wynosiła od 0,2 do 4,7%. Kruszywa ze skał granitowych pomimo zbliżonego składu chemicznego wykazały zróżnicowanie zawartości kwarcu zdeformowanego. Najwięcej składników reaktywnych zidentyfikowano w kruszywie granitowym G3 (4,7%), a najmniej w kruszywie granitowym G1 (1,8%) i była to 2,5-krotnie mniejsza wartość w porównaniu do granitu G3. Kruszywo granodiorytowe charakteryzowało się średnią zawartością kwarcu zdeformowanego (2,7%) w porównaniu do kruszyw granitowych, natomiast kruszywo gabro zawierało znacznie mniej kwarcu zdeformowanego (0,2%) i była to najmniejsza zawartość składników reaktywnych spośród przebadanych kruszyw.

5.3. Wyniki oznaczenia podatności kruszywa na reakcję alkaliczną

5.3.1. Metoda szybka

Wyniki badania reaktywności alkalicznej kruszyw na podstawie metody szybkiej przedstawiono w Tabeli 5.1. Badanie przeprowadzono na dwóch próbkach dla każdej z analizowanych frakcji (1/2, 2/4, 4/8 mm), różnica między wynikami oznaczania dwóch próbek analitycznych we wszystkich analizach wynosiła poniżej 0,05%, co spełnia wymagania normy [N9]. Warunkiem oceny niereaktywności kruszywa na podstawie metody szybkiej jest ubytek masy kruszywa poniżej 0,5%. We wszystkich analizowanych kruszywach uzyskano wyniki znacznie poniżej wartości granicznej, tj. od 0,00 do 0,03%. Zgodnie z zapisami normy [N9] wszystkie badane kruszywa granitowe, kruszywo granodiorytowe oraz kruszywo gabro wykazały zerowy stopień reaktywności alkalicznej.

Tabela 5.1 Ubytek masy [%] kruszywa pod działaniem NaOH, wg PN-B-06714-46:1992 [N9]

Kruszywo Frakcja [mm]	G1	G2	G3	G4	G5	GD	GA
1/2	0,01	0,00	0,01	0,02	0,03	0,02	0,00
2/4	0,00	0,01	0,02	0,01	0,02	0,02	0,00
4/8	0,00	0,01	0,01	0,02	0,03	0,02	0,00

5.3.2. Metoda przyspieszona

Wyniki badania reaktywności alkalicznej kruszyw za pomocą metody przyspieszonej PB/1/18 [N21] przedstawiono na Rys. 5.13. Badanie metodą przyspieszoną wydłużono do 28 dni ze względu na stwierdzenie obecności kwarcu zdeformowanego w badanych kruszywach, który jest uznawany za minerał wolno reagujący [27].

Rys. 5.13 Wydłużenie próbek zapraw z kruszywem granitowym (G1-G5), kruszywem granodiorytowym (GD) oraz kruszywem gabro (GA), 28-dniowa ekspozycja na roztwór 1 M NaOH w 80°C

Badania przeprowadzone metodą przyspieszoną wykazały różną ekspansję próbek zapraw w zależności od zastosowanego kruszywa. Wszystkie próbki po 14 dniach wykazały wydłużenie mniejsze od granicznej wartości równej 0,10%, jednak przedłużenie badania do 28 dni pokazało, że w większości kruszyw nie nastąpiło wygaszenie reakcji. Reakcja postępowała z niemal identyczną intensywnością (z wyjątkiem kruszywa gabro). W zaprawach z kruszywem granitowym oraz granodiorytowym stopień nachylenia krzywych był zbliżony przez okres 28 dni. Natomiast w przypadku kruszywa gabro po około 10 dniach nastąpiła stabilizacja i wygaszenie reakcji.

1 M roztwór wodorotlenku sodu, który wykorzystywany był w metodzie przyspieszonej, zastąpiono roztworami różnych środków odladzających, tj. NaCl oraz HCOONa i HCOOK. Stężenia mrówczanów dobrano w taki sposób, by odpowiadały warunkom rzeczywistym (stężeniom wykorzystywanym w trakcie odladzania nawierzchni). Pomimo odmiennych właściwości chemicznych NaCl i soli organicznych wyniki ekspansji przedstawiono na jednym wykresie aby zaobserwować ich wpływ na ekspansję w odniesieniu do poszczególnych kruszyw, Rys. 5.14 i Rys. 5.15. Do badań wybrano 3 z 5 kruszyw granitowych: G1, G3, G5 oraz kruszywo granodiorytowe GD i kruszywo gabro GA na podstawie wyników wg PB/1/18 [N21].

Rys. 5.14 Wyniki zmiany wydłużenia próbek zaprawy z kruszywem granitowym G1, G3, G5, w temperaturze 80°C z zastosowaniem różnych roztworów: wody destylowanej (H₂O), 10% i 20% chlorku sodu (NaCl), 1 M wodorotlenku sodu (NaOH), 15% mrówczanu sodu (HCOONa), 50% mrówczanu potasu (HCOOK)

Rys. 5.15 Wydłużenie próbek zaprawy z kruszywem granodiorytowym GD i kruszywem gabro GA w temperaturze 80°C z zastosowaniem różnych roztworów: wody destylowanej (H₂O), 10% i 20% chlorku sodu (NaCl), 1 M wodorotlenku sodu (NaOH), 15% mrówczanu sodu (HCOONa), 50% mrówczanu potasu (HCOOK)

Próbki przechowywane w wodzie destylowanej przez 28 dni wykazały śladową ekspansję od 0,002 do 0,004%. Podobnie małe wydłużenie zmierzono w przypadku roztworu 10% NaCl (wydłużenie od 0,004 do 0,019%) oraz roztworu 15% HCOONa (wydłużenie od 0,009 do 0,013%). Próbki zanurzone w chlorku sodu o większym stężeniu (20%) wykazały większe zmiany długości, jednak na niskim poziomie (od 0,006 do 0,026%). Na wykresach przedstawionych na Rys. 5.14 i Rys. 5.15 niektóre krzywe pokrywały się ze względu na zastosowaną skalę. Zauważalna ekspansja została odnotowana w próbkach badanych w 1 M roztworze wodorotlenku sodu (od 0,022 do 0,134%). Natomiast znaczące wydłużenie widoczne było w próbkach narażonych na działanie 50% roztworu mrówczanu potasu, ekspansja

o wartości od 0,159 do 0,997%. Biorąc pod uwagę kryteria metody normowej z roztworem wodorotlenku sodu, w której dopuszczalna wartość wydłużenia wynosi 0,1%, zmiana długości w roztworze mrówczanu potasu była znacząca, a badane kruszywa były wysoce podatne na reakcję alkalia-krzemionka w tych warunkach.

Ponieważ skala wykresów przedstawiona na Rys. 5.14 i Rys. 5.15 uniemożliwiła dokładniejszą analizę wpływu rodzaju kruszywa i środka odladzającego na ekspansję próbek zapraw, wyniki przedstawiono również w formie tabelarycznej, Tabela 5.2.

Tabela 5.2 Wydłużenie [%] próbek zapraw po 28 dniach ekspozycji w temperaturze 80°C z zastosowaniem różnych roztworów (woda destylowana, chlorek sodu, wodorotlenek sodu, mrówczan sodu, mrówczan potasu)

Roztwór	G1	G3	G5	GD	GA
H ₂ O	$0,002 \pm 0,001$	$0,004 \pm 0,001$	$0,004 \pm 0,001$	$0,004 \pm 0,001$	$0,003 \pm 0,001$
10% NaCl	$0,010 \pm 0,001$	$0,012 \pm 0,001$	$0,019 \pm 0,001$	$0,004 \pm 0,001$	$0,005 \pm 0,001$
20% NaCl	$0,019 \pm 0,001$	$0,026 \pm 0,001$	$0,026 \pm 0,001$	$0,018 \pm 0,001$	$0,006 \pm 0,001$
1 M NaOH	$0,097 \pm 0,002$	$\begin{array}{c} 0,134 \pm \\ 0,002 \end{array}$	$0,108 \pm 0,003$	$0,103 \pm 0,005$	$0,022 \pm 0,002$
15% HCOONa	$0,009 \pm 0,001$	$0,013 \pm 0,001$	$0,009 \pm 0,001$	$0,011 \pm 0,001$	$0,009 \pm 0,001$
50% HCOOK	$0,645 \pm 0,032$	$0,928 \pm 0,018$	$0,974 \pm 0,001$	$0,997 \pm 0,009$	$0,159 \pm 0,007$

Próbki przechowywane w wodzie destylowanej, chlorku sodu i mrówczanie sodu nie wykazały wyraźnej ekspansji, dlatego nie można analizować wpływu rodzaju kruszywa na wydłużenie. Zróżnicowanie ekspansji w zależności od rodzaju kruszywa stwierdzono w próbkach przechowywanych w roztworze mrówczanu potasu. Zaprawy z kruszywami: G3, G5, GD miały bardzo zbliżoną ekspansję po 28 dniach (0,928 – 0,997%), mniejsze wydłużenie zaobserwowano w zaprawach z kruszywem G1 – 0,645% (o 35% mniej od najbardziej ekspansywnego w tym roztworze kruszywa granodiorytowego GD). Najmniejszą ekspansję stwierdzono w zaprawie z kruszywem GA – 0,159% (o 84% mniej od zaprawy z kruszywem GD). Wydłużenie próbek z kruszywem GA po 28 dniach, które wynosiło 0,159% bezwzględnie jest było dużą zmianą, jednak na tle pozostałych kruszyw było niewielkie. Wzrost długości obserwowano do 8. dnia, po tym czasie stwierdzono bardzo wyraźny spadek szybkości

ekspansji, próbki w dalszym ciągu ulegały wydłużeniu, jednak ze znacznie mniejszą szybkością. Nie zaobserwowano tego zjawiska w kruszywach granitowych i kruszywie granodiorytowym, w których ekspansja postępowała ze stałą szybkością, nie nastąpiło jej spowolnienie ani wygaszenie. Wygaszenie reakcji w próbkach z kruszywem gabro było prawdopodobnie związane z wyczerpaniem dostępnych minerałów reaktywnych. Kruszywo gabro w petrograficznej analizie obrazu wykazało najmniejszą zawartość kwarcu zdeformowanego (0,2%). Umieszczenie próbek z kruszywem GA w bardzo agresywnym środowisku, jakim był stężony roztwór mrówczanu potasu, spowodowało szybkie wyczerpanie dostępnych minerałów reaktywnych w pierwszych dniach badania. Dalszy wzrost wydłużenia próbek ze znacznie mniejszą szybkością mógł być również związany z postępem degradacji zaczynu cementowego, który był już uszkodzony na skutek ASR, a w dalszym ciągu znajdował się w agresywnym chemicznie środowisku, a także w podwyższonej temperaturze.

5.3.3. Metoda długotrwała

Wyniki badania wytrzymałości na ściskanie po 28 dniach dojrzewania betonów przeznaczonych do badania według ASTM C 1293 [N3] przedstawiono na Rys. 5.16.

Rys. 5.16 Wyniki badania wytrzymałości na ściskanie po 28 dniach dojrzewania betonu przeznaczonego do badania według ASTM C 1293 [N3]

Betony przeznaczone do przeprowadzenia badania wg ASTM C 1293 [N3] charakteryzowały się 28-dniową wytrzymałością na ściskanie od 53,5 do 58,6 MPa, co świadczyło o zbliżonej klasie betonu niezależnie od zastosowanego kruszywa. Wyniki badań potwierdziły poprawność i jednorodność wykonanych mieszanek betonowych.

Wyniki badania reaktywności alkalicznej kruszyw za pomocą metody długotrwałej wg ASTM C 1293 [N3] przedstawiono na Rys. 5.17.

Rys. 5.17 Wydłużenie próbek betonów z kruszywem granitowym (G1-G5), kruszywem granodiorytowym (GD) oraz kruszywem gabro (GA) w warunkach wysokiej wilgotności i 38°C

Wyniki badań uzyskanych metodą długotrwałą wykazały reaktywność kruszyw G3 i G4. Początkowo zaobserwowano niewielki skurcz, następnie systematyczne wydłużenie w dużej mierze ze stałą szybkością. Na podstawie zmierzonej ekspansji stwierdzono, że 2 kruszywa granitowe spośród wszystkich przebadanych przekroczyły dopuszczalny dla tej metody limit 0,04% (G4 oraz G3 - 0,047%), a kolejne dwa były zbliżone do tej wartości (G1 – 0,036%, G5 – 0,037%). Szczególnie widoczne było tempo wzrostu wydłużenia próbek betonowych z kruszywem G4 po 180 dniach, co potwierdziło dłuższy okres inkubacji reakcji alkalicznej w betonach z kruszywem granitowym.

5.3.4. Metoda symulowanych warunków eksploatacyjnych

Wyniki badania wydłużenia próbek betonu w symulowanych warunkach eksploatacyjnych (polegających na cyklicznych zmianach temperatury, wilgotności oraz zanurzenia w roztworze środków odladzających) przeanalizowano pod kątem wpływu rodzaju środka odladzającego i wpływu rodzaju kruszywa.

Wyniki badania wytrzymałości na ściskanie po 28 dniach dojrzewania betonów przeznaczonych do badania według PB/5/18 [N22] przedstawiono na Rys. 5.18.

Rys. 5.18 Wyniki badania wytrzymałości na ściskanie po 28 dniach dojrzewania betonu przeznaczonego do badania według PB/5/18 [N22]

Beton przeznaczony do badania wg PB/5/18 [N22] po 28 dniach dojrzewania osiągnął wytrzymałość od 48,1 do 51,4 MPa, co świadczyło o zbliżonej klasie betonu niezależnie od zastosowanego kruszywa. Wyniki badań potwierdziły poprawność i jednorodność wykonanych mieszanek betonowych. Nie stwierdzono znaczącego wpływu rodzaju kruszywa.

Do badania symulowanych warunków eksploatacyjnych (PB/5/18) przygotowano próbki z betonu napowietrzonego w celu zapewnienia wymaganej mrozoodporności. W Tabeli 5.3 przedstawiono wyniki analizy rozkładu porów powietrznych w próbkach betonu nawierzchniowego.

	Zastosowane kruszywo				
	G1	G3	G5	GD	GA
Całkowita zawartość powietrza A [%]	4,75	4,49	4,73	5,26	4,50
Powierzchnia właściwa porów α [mm ⁻¹]	33,72	35,89	29,76	36,66	34,65
Wskaźnik rozmieszczenia <i>[</i> [mm]	0,15	0,14	0,17	0,13	0,15
Zawartość mikroporów A ₃₀₀ [%]	3,01	2,89	2,82	3,35	2,91

Tabela 5.3 Zestawienie wyników analizy porów powietrznych w betonie do badań symulowanych warunków eksploatacyjnych

Wskaźnik rozmieszczenia \overline{L} porów powietrznych wynosił od 0,13 do 0,17 mm i był mniejszy od maksymalnej wartości granicznej 0,2 mm, która stanowi kryterium właściwej

mikrostruktury betonu nawierzchniowego wg Katalogu Typowych Konstrukcji Nawierzchni Sztywnych [N23]. Wszystkie próbki charakteryzowały się znacznie większą od minimalnej (1,5%) zawartością mikroporów A₃₀₀: od 2,82 do 3,35%. Powierzchnia właściwa porów mieściła się w przedziale od 29,76 do 36,66 mm⁻¹, co świadczyło o obecności dużej liczby porów o niewielkich średnicach. Całkowita zawartość powietrza wynosiła od 4,50 do 5,26%. Badania potwierdziły poprawność wykonanych mieszanek betonowych z uwagi na odpowiednie napowietrzenie.

W Tabeli 5.4 przedstawiono wyniki wydłużenia próbek po 10 cyklach badania symulowanych warunków eksploatacyjnych z zastosowaniem różnych roztworów odladzających: wody destylowanej, 10% roztworu chlorku sodu, 15% roztworu mrówczanu sodu oraz 50% roztworu mrówczanu potasu, a w Tabeli 5.5 zmianę modułu sprężystości. Wyniki w postaci wykresów zmiany wydłużenia w czasie zostały przedstawione na Rys. 5.19 i Rys. 5.20.

	Rodzaj roztworu (środka odladzającego)					
Kruszywo	Woda destylowana (W)	Chlorek sodu 10% (NaCl)	Mrówczan sodu 15% (HCOONa)	Mrówczan potasu 50% (HCOOK)		
G1	$0,\!27\pm0,\!01$	$0,\!70\pm0,\!01$	$1,\!67\pm0,\!05$	$5,00 \pm 0,17$		
G3	$0,\!24 \pm 0,\!01$	$0{,}53\pm0{,}01$	$1,\!79\pm0,\!04$	$4,\!17 \pm 0,\!15$		
G5	$0,\!30\pm0,\!01$	$0{,}52\pm0{,}03$	$1,\!48 \pm 0,\!06$	$3,\!19\pm0,\!13$		
GD	$0,\!32\pm0,\!02$	$0{,}52\pm0{,}02$	$1,\!75\pm0,\!04$	$2,\!66 \pm 0,\!15$		
GA	$0,\!23\pm0,\!01$	$0,\!33\pm0,\!02$	$1,22 \pm 0,06$	$2,\!10 \pm 0,\!14$		

Tabela 5.4 Wydłużenie [mm/m] próbek betonów po 10 cyklach badania symulowanych warunków eksploatacyjnych z zastosowaniem różnych roztworów

Rys. 5.19 Wydłużenie próbek z kruszywem granitowym (a) G1, (b) G3, (c) G5 w symulowanych warunkach eksploatacyjnych z zastosowaniem różnych roztworów: woda destylowana (W), 10% NaCl, 50% HCOOK, 15% HCOONa

Rys. 5.20 Wydłużenie próbek z (a) kruszywem granodiorytowym oraz (b) kruszywem gabro w symulowanych warunkach eksploatacyjnych z zastosowaniem różnych roztworów: woda destylowana (W), 10% NaCl, 50% HCOOK, 15% HCOONa

Tabela	5.5	Zmiana	modułu	sprężystości	[%]	próbek	betonów	poddanych	symulowanym
warunk	om e	eksploata	cyjnych z	z zastosowani	em rá	óżnych śi	rodków od	lladzających	

	Rodzaj roztworu (środka odladzającego)				
Kruszywo	Woda destylowana (W)	Chlorek sodu 10% (NaCl)	Mrówczan sodu 15% (HCOONa)	Mrówczan potasu 50% (HCOOK)	
G1	$-3,60 \pm 0,03$	$-8,10 \pm 0,11$	$-15,84 \pm 0,11$	$-41,38 \pm 0,85$	
G3	$-1,83 \pm 0,02$	$-6,42 \pm 0,32$	$-9,78 \pm 0,46$	$-35,58 \pm 1,15$	
G5	$-1,64 \pm 0,01$	$-5,82 \pm 0,08$	$-14,21 \pm 0,39$	$-36,00 \pm 1,70$	
GD	$-1,54 \pm 0,03$	$-3,30 \pm 0,11$	$-15,72 \pm 0,19$	$-35,74 \pm 1,49$	
GA	$-1,12 \pm 0,02$	$-4,53 \pm 0,06$	$-8,15 \pm 0,21$	$-34,42 \pm 1,68$	

Zaobserwowano wyraźny wpływ rodzaju środka odladzającego na wartość ekspansji i spadek betonów badanych modułu spreżystości próbek W symulowanych warunkach eksploatacyjnych. Najmniejszy stopień zniszczenia stwierdzono w przypadku próbek badanych w wodzie destylowanej (wydłużenie 0,23 – 0,30 mm/m, spadek modułu sprężystości od 1,12 do 3,60%). Wprowadzenie do programu badań roztworu, który nie jest agresywny chemicznie, miało na celu sprawdzenie, jaki stopień zniszczenia jest wynikiem oddziaływań fizycznych, a więc zmian temperatury i wilgotności. Największą ekspansję (2,10 - 5,00 mm/m) i spadek modułu sprężystości (od 34,42 do 41,38%) stwierdzono dla próbek betonowych badanych w 50% roztworze mrówczanu potasu. Mniejsze uszkodzenia spowodował 15% roztwór mrówczanu sodu (wydłużenie 1,22 do 1,67 mm/m, spadek modułu sprężystości od 8,15 do 15,84%) oraz 10% roztwór chlorku sodu (wydłużenie od 0,33 do 0,70 mm/m, spadek modułu sprężystości od 4,53 do 8,10%).

Wartość ekspansji przeliczono odnośnie do próbek, które badane były w wodzie destylowanej (ekspansja próbek przechowywanych w wodzie destylowanej stanowiła 100% dla danego kruszywa). Wyniki obliczeń przedstawiono w Tabeli 5.6.

	Rodzaj i stężenie roztworu (środka odladzającego)					
Kruszywo	Woda destylowana (W)	Chlorek sodu 10% (NaCl)	Mrówczan sodu 15% (HCOONa)	Mrówczan potasu 50% (HCOOK)		
G1	100%	259%	619%	1852%		
G3	100%	221%	746%	1738%		
G5	100%	173%	493%	1063%		
GD	100%	163%	547%	831%		
GA	100%	143%	530%	913%		

Tabela 5.6 Zmiana wydłużenia próbek poddanych symulowanym warunkom eksploatacyjnym z zastosowaniem różnych środków odladzających względem próbek, w których roztworem nasycanym była woda destylowana

Najmniej agresywnym roztworem był 10% roztwór chlorku sodu, który spowodował wzrost ekspansji o 43% w betonie z kruszywem gabro i o 159% w betonie z kruszywem granitowym G1. W przypadku zastosowania 10% roztworu chlorku sodu (metoda opisana w normach niemieckich TP B-StB [N25] oraz europejskiej RILEM AAR-12 [N6]) dopuszczalna wartość wydłużenia wynosiła maksymalnie 0,5 mm/m. W analizowanych

materiałach jedynie w przypadku betonu z kruszywem gabro nie przekroczono limitu (0,33 mm/m). Znaczny wzrost ekspansji zaobserwowano w próbkach badanych w 15% roztworze mrówczanu sodu, który spowodował wzrost o 393% w betonie z kruszywem G5 i o 646% w betonie z kruszywem G3. Największy wpływ miał 50% roztwór mrówczanu potasu, który wywołał aż 18-krotny wzrost ekspansji w betonie z kruszywem granitowym G1 i ponad 8-krotny wzrost w betonie z kruszywem granodiorytowym (GD).

Największą ekspansję z zastosowaniem wszystkich roztworów odladzających odnotowano dla próbek z kruszywem granitowym (G1, G3, G5), a najmniejszą dla próbek z kruszywem gabro. Wyjątek stanowił beton z kruszywem granitowym G5, w którym uzyskano najmniejszą względną ekspansję w roztworze mrówczanu sodu, jednak jej wartość bezwzględna (1,48 mm/m) była większa od ekspansji próbek z kruszywem gabro. W przypadku kruszyw granitowych nie można jednoznacznie stwierdzić, który beton wykazuje największą ekspansję. W 10% roztworze chlorku sodu oraz w 50% roztworze mrówczanu potasu największą ekspansję uzyskano dla betonu z kruszywem granitowym G1, natomiast w 15% roztworze mrówczanu sodu największą ekspansję otrzymano w betonie z kruszywem granitowym G3.

Stężenia roztworów środków odladzających na bazie soli kwasów organicznych: mrówczanu sodu i mrówczanu potasu zostały wybrane w taki sposób, aby odwzorować warunki rzeczywiste. Roztwór mrówczanu sodu jest stosowany w stężeniu 15% wag., natomiast roztwór mrówczanu potasu 50% wag. Beton z kruszywem G1 i G3 przebadano również w rozcieńczonych roztworach: 10% wag. mrówczan sodu i 25% wag. mrówczan potasu. Wyniki przedstawiono na Rys. 5.21 (wydłużenie) oraz w Tabeli 5.7 (moduł sprężystości).

Dostruća	G1	G3	
Köztwor	zmiana modułu sprężystości [%]	zmiana modułu sprężystości [%]	
10% mrówczan sodu (HCOONa)	$-15,84 \pm 0,12$	$-9,74 \pm 0,25$	
15% mrówczan sodu (HCOONa)	$-14,50 \pm 0,33$	$-9,78 \pm 0,46$	
25% mrówczan potasu (HCOOK)	$-34,57 \pm 0,80$	$-36,17 \pm 1,86$	
50% mrówczan potasu (HCOOK)	$-41,38 \pm 0,85$	$-35,58 \pm 1,15$	

Tabela 5.7 Wyniki zmiany modułu sprężystości próbek betonów poddanych symulowanym warunkom eksploatacyjnych z zastosowaniem roztworów kwasów soli organicznych

Rys. 5.21 Wydłużenia próbek z kruszywem granitowym (a) G1, (b) G3, w warunkach eksploatacyjnych z zastosowaniem roztworów kwasów soli organicznych (mrówczan sodu, mrówczan potasu) w różnych stężeniach: 50% HCOOK, 25% HCOOK, 15% HCOONa, 10% HCOONa

Rozcieńczenie roztworów soli kwasów organicznych spowodowało zarówno zmniejszenie ekspansji, jak i spadek modułu sprężystości. Większe różnice zauważono w przypadku roztworu mrówczanu sodu niż mrówczanu potasu. Aby lepiej zobrazować różnice w ekspansji próbek badanych w dwóch stężeniach roztworów soli kwasów organicznych, wyniki przedstawiono w odniesieniu do próbek, które badane były w wodzie destylowanej, a także względem próbek badanych w roztworach o stężeniu stosowanym w rzeczywistych warunkach: 15% w przypadku roztworu mrówczanu sodu, 50% dla roztworu mrówczanu potasu, Tabela 5.8. Tabela 5.8 Zmiana wydłużenia próbek poddanych symulowanym warunkom eksploatacyjnym z zastosowaniem roztworów kwasów soli organicznych, względem próbek badanych w roztworach rzeczywistych, tj. 15% HCOONa, 50% HCOOK

Roztwór	Zmiana wydłużenia względem próbek badanych w roztworach rzeczywistych, tj. 15% HCOONa, 50% HCOOK		
	G1	G3	
10% HCOONa	69,5%	73,7%	
25% HCOOK	87%	99,5%	

Zmniejszenie stężenia roztworu mrówczanu sodu o jedną trzecią i dwukrotne zmniejszenie stężenia roztworu mrówczanu potasu nie spowodowało proporcjonalnego zmniejszenia ekspansji próbek betonów. Większą różnicę zaobserwowano przy zastosowaniu roztworu mrówczanu sodu, zmiana wydłużenia próbek G1 i G3 nasycanych roztworem rozcieńczonym zmniejszyła się odpowiednio o 30,5 i 26,3% względem próbek nasycanych roztworem rzeczywistym. Wyniki dla obydwu kruszyw były do siebie zbliżone. Natomiast dwukrotne rozcieńczenie roztworu mrówczanu potasu nie spowodowało tak dużego zmniejszenia szkodliwego działania tego środka chemicznego. Dla kruszyw G1 i G3 nasycanych roztworem rozcieńczonym zmiana wydłużenia zmniejszyła się odpowiednio o 13 i 0,5%. Agresywność mrówczanu potasu była widoczna zwłaszcza w próbkach z kruszywem G3, w których odnotowano ekspansję niemal równą ekspansji uzyskanej w próbkach nasycanych 50% roztworem HCOOK.

5.4. Podsumowanie

W badaniach analizowano kruszywa ze skał magmowych głębinowych odnośnie do ich zastosowania w nawierzchniach betonowych. Wybrane do badań kruszywo granitowe charakteryzowało się zbliżonym składem chemicznym i mineralogicznym, co zostało potwierdzone badaniami XRF oraz XRD. Dodatkowe kruszywa, w postaci granodiorytu i gabro wykazywały kolejno mniejszą zawartość krzemionki. W analizie petrograficznej zidentyfikowano reaktywne minerały w kruszywie. Głównym składnikiem, który może wywołać reakcję alkalia-krzemionka w analizowanych kruszywach, był kwarc zdeformowany. Znaleziono również śladowe ilości kwarcu mikrokrystalicznego, jednak były one pomijalnie małe. Opracowano autorską metodę ilościowej analizy obrazu do wyznaczenia zawartości

kwarcu zdeformowanego. Zawartość kwarcu zdeformowanego wynosiła od 0,2% (w kruszywie gabro G1) do 4,7% (w kruszywie granitowym G3).

Określono kategorię reaktywności alkalicznej badanych kruszyw metodami normowymi: metodą przyspieszoną AMBT (1 M NaOH, 80°C) oraz długotrwałą CPT (38°C, RH 100%). Większość zapraw z analizowanym kruszywem przekroczyło ekspansję 0,1% po 28 dniach ekspozycji w warunkach przyspieszonych (z wyjątkiem gabro). Natomiast w metodzie długotrwałej belki betonu z dwoma kruszywami granitowymi przekroczyły dopuszczalny limit 0,04% wydłużenia, a z dwoma kolejnymi były bardzo zbliżone do jego osiągnięcia. W obydwu metodach najwyższą ekspansję wykazały kruszywa granitowe G3 i G4.

Zbadano wpływ środków odladzających (chlorek sodu, mrówczan sodu, mrówczan potasu) na ekspansję zaprawy i betonu z kruszywem ze skał magmowych głębinowych (kruszywo granitowe, granodiorytowe, gabro). Wykorzystano dwie metody badawcze: metodę przyspieszoną w 80°C oraz metodę badania symulowanych warunków eksploatacyjnych, modyfikując je poprzez zastosowanie różnych roztworów do namaczania. Dodatkowo wykonano badania z użyciem wody destylowanej do dokładniejszego zaobserwowania wpływu rodzaju i stężenia środka odladzającego.

W badaniach przyspieszonych prowadzonych w 80°C przez 28 dni wykorzystano roztwory: wody destylowanej, 10 i 20% NaCl, 1 M NaOH, 15% HCOONa, 50% HCOOK. Stwierdzono zróżnicowanie wydłużenia próbek w zależności od rodzaju środka odladzającego, jak i rodzaju kruszywa wykorzystanego do przygotowania próbek zapraw. Próbki przechowywane w wodzie destylowanej wykazywały znikome wydłużenie, podobnie jak 10% roztwór NaCl i 15% roztwór HCOONa. Nieznacznie większe wydłużenie zaobserwowano dla próbek przechowywanych w 20% roztworze chlorku sodu. Największe wydłużenie zaobserwowano w próbkach badanych w 50% roztworze HCOOK.

Najmniejsze wydłużenie obserwowano dla próbek z kruszywem gabro, a największe dla próbek z kruszywem granitowym.

W badaniach przeprowadzonych w symulowanych warunkach eksploatacyjnych z cykliczną zmianą temperatury, wilgotności oraz nasycania środkiem odladzającym zastosowano: wodę destylowaną, 10% roztwór NaCl, 15% roztwór HCOONa, 50% roztwór HCOOK. Dla wybranych próbek wykonano także pomiary w rozcieńczonych roztworach mrówczanu sodu i mrówczanu potasu (odpowiednio 10 i 25%). Stwierdzono istotny wpływ rodzaju środka odladzającego na wartość ekspansji i moduł sprężystości próbek betonów.

Największą ekspansję i spadek modułu sprężystości obserwowano dla próbek nasycanych 50% roztworem mrówczanu potasu, niższe dla 15% roztworu mrówczanu sodu i najniższe dla 10% roztworu chlorku sodu, jednak było ono i tak od 1,5 do 2,5 razy większe od ekspansji uzyskanej dla próbek nasycanych wodą destylowaną. Podobnie jak w przypadku metody przyspieszonej najniższe wartości ekspansji obserwowano dla próbek wykonanych z kruszywem gabro. Zmiany modułu sprężystości były zgodne ze zmianami wydłużenia: im większa ekspansja betonu, tym większy spadek modułu sprężystości.

W badaniach przeprowadzonych w symulowanych warunkach eksploatacyjnych analizowano wpływ wielkości stężenia środków na bazie soli organicznych na wielkość ekspansji próbek betonu. Wartość ekspansji była niższa, jednak nie była proporcjonalna do obniżenia stężenia roztworu. Zaobserwowano znaczne obniżenie ekspansji próbek namaczanych w roztworze 10% HCOONa, natomiast w przypadku 25% HCOOK różnica była nieznaczna.

6. Wpływ środków odladzających na spękania betonu i produkty reakcji ASR

6.1. Mikrostruktura zaprawy narażonej na działanie środków odladzających

Wybrane próbki zapraw, które wcześniej poddano działaniu środków odladzających w podwyższonej temperaturze (80°C), przeanalizowano z uwagi na obecność produktów reakcji ASR. Do badań wybrano zaprawy z jednym kruszywem (G3) w celu porównania wpływu czterech różnych roztworów: wody destylowanej, 10% roztworu chlorku sodu, 15% roztworu mrówczanu sodu oraz 50% roztworu mrówczanu potasu. Kruszywo granitowe G3 zostało wybrane do analizy mikrostruktury ze względu na największą ekspansję zaprawy w metodzie PB/1/18 [N21], dlatego spodziewano się największych zmian związanych z ASR w mikrostrukturze.

Próbki zapraw badane w wodzie destylowanej nie wykazały ekspansji (0,002 – 0,004%) ani widocznych zmian mikrostruktury w postaci licznych spękań. Nie stwierdzono również obecności żelu alkaliczno-krzemionkowego. Na Rys. 6.1 przedstawiono przykładowy obraz mikrostruktury zaprawy z kruszywem G3 po 28 dniach badania w wodzie destylowanej w 80°C.

Rys. 6.1 Mikrostruktura zaprawy z kruszywem G3 po 28 dniach przechowywania w wodzie destylowanej w 80°C

Obserwacje mikrostruktury potwierdziły wyniki badania ekspansji według zmodyfikowanej metody przyspieszonej AMBT. W mikrostrukturze zapraw przechowywanych w 10% roztworze chlorku sodu zaobserwowano zarówno spękania w matrycy cementowej jak i kruszywie. Dodatkowo część spękań wypełniona była produktem reakcji ASR w postaci żelu Si-Ca-Na-K. Pomimo stosunkowo niewielkiej ekspansji (0,004 - 0,019%), reakcja ASR rozpoczęła się, o czym świadczyła obecność produktów reakcji. Nie stwierdzono znacznej ilości żelu, przedłużenie ekspozycji na chlorek sodu w podwyższonej temperaturze mogłoby spowodować większe uszkodzenia wynikające z przyspieszenia reakcji. Na Rys. 6.2 przedstawiono zdjęcie mikrostruktury zaprawy z kruszywem G3 po 28 dniach ekspozycji na 10% roztwór NaCl w 80°C z widocznym spękaniem w ziarnie kruszywa granitowego, wypełnionym produktem reakcji ASR. Na spektrogramie EDS w żelu widoczna była również śladowa obecność chloru, pochodzącego z NaCl.

Rys. 6.2 Mikrostruktura zaprawy z kruszywem G3 po 28 dniach przechowywania w 10% roztworze NaCl w 80°C, spękanie w kruszywie wypełnione (1) żelem Si-Ca-Na ze śladami chloru, (2) kwarc

Pomimo że ekspozycja na 15% roztwór mrówczanu sodu nie wywołała znacznej ekspansji zaprawy (0,009 - 0,013%), podobnie jak ekspozycja na roztwór chlorku sodu, zaobserwowano obecność spękań w matrycy cementowej i w kruszywie, a także obecność żelu Si-Ca-Na-K w spękaniach kruszywa. Podobnie jak dla chlorku sodu, nie stwierdzono znaczącej ilości żelu, jednak znalezione przykłady potwierdziły rozpoczęcie reakcji alkaliczno-

krzemionkowej wynikające z obecności minerałów reaktywnych i zewnętrznego dostępu alkaliów.

Rys. 6.3 Mikrostruktura zaprawy z kruszywem G3 po 28 dniach przechowywania w 15% roztworze HCOONa w 80°C, spękanie w kruszywie wypełnione (1) żelem Si-Ca-K-Na, (2) skaleń sodowy

Znacznie większą ekspansję uzyskano w zaprawach poddanych działaniu 50% roztworu mrówczanu potasu w 80°C (0,159 - 0,997%), efektem tego było rozpoznanie wielu znaczących śladów obecności produktów reakcji ASR na obrazach mikrostruktury w skaningowym mikroskopie elektronowym. Ekspansja produktów reakcji spowodowała degradację zarówno matrycy cementowej, jak i ziaren kruszywa. Liczne mikrospękania wypełnione były żelem alkaliczno-krzemionkowym. Żel zaobserwowano głównie w spękaniach ziaren kruszywa (Rys. 6.5), ale także w strefie kontaktowej kruszywo – matryca cementowa (Rys. 6.6). Zwiększona ilość żelu spowodowała jego migrację, efektem czego było częściowe wypełnienie sferycznych porów powietrznych produktami reakcji (Rys. 6.4).

Rys. 6.4 Mikrostruktura zaprawy z kruszywem G3 po 28 dniach przechowywania w 50% roztworze HCOOK w 80°C, (1) żel Si-Ca-K w porze powietrznym, spękania w kruszywie wypełnione produktem reakcji ASR (żel), (2) skaleń potasowy, (3) kwarc

Rys. 6.5 Mikrostruktura zaprawy z kruszywem G3 po 28 dniach przechowywania w 50% roztworze HCOOK w 80°C, spękanie w kruszywie wypełnione (1) żelem Si-Ca-K, (2) kwarc

Rys. 6.6 Mikrostruktura zaprawy z kruszywem G3 po 28 dniach przechowywania w 50% roztworze HCOOK w 80°C, (1) żel Si-Ca-K w strefie kontaktowej kruszywo – matryca cementowa oraz w spękaniu kruszywa, (2) kwarc

Przeprowadzone badania mikrostruktury zapraw poddanych działaniu różnych roztworów środków odladzających w stałej temperaturze 80°C potwierdziły ich istotny wpływ na wywołanie reakcji alkalia-krzemionka. Analizowane kruszywa, które na podstawie metody szybkiej uznawane są za niereaktywne, w agresywnym chemicznie środowisku wykazały dużą podatność na wystąpienie destrukcyjnej reakcji. Potwierdziły to liczne ślady produktów reakcji alkalia-krzemionka na obrazach mikrostruktury zapraw.

6.2. Mikrostruktura betonu poddanego symulowanym warunkom eksploatacyjnym

Mikrostruktura betonu, który w zmiennych cyklach termiczno-wilgotnościowych badany był w wodzie destylowanej, po upływie 10 cykli badania niezależnie od zastosowanego kruszywa (i ekspansji od 0,23 do 0,32 mm/m) była bardzo zbliżona. Na Rys. 6.7 – Rys. 6.10 przedstawiono przykładowe obrazy SEM wraz z analizą EDS w wybranych punktach próbek betonu z kruszywem G3 (obrazy z pozostałymi kruszywami znajdują się w Załączniku 8.). Na całym przekroju próbki zaobserwowano mikrospękania (około 1 - 5 µm) matrycy cementowej oraz nieliczne spękania ziaren kruszywa grubego i drobnego. W żadnej z próbek nie stwierdzono obecności żelu alkaliczno-krzemionkowego. W strefie przypowierzchniowej próbek zidentyfikowano ettringit, który wypełniał całkowicie lub częściowo pory powietrzne. Obecność ettringitu stwierdzono do głębokości około 20 mm od powierzchni, w środku próbek nie występował.

Rys. 6.7 Mikrostruktura betonu z kruszywem G3 po badaniu symulowanych warunków eksploatacyjnych (namaczanie w wodzie destylowanej), (a) przy powierzchni próbki – odległość około 1 mm od powierzchni, (b) w środku próbki – odległość około 37,5 mm od powierzchni

Rys. 6.8 Ziarno kruszywa G3 w betonie po badaniu symulowanych warunków eksploatacyjnych (namaczanie w wodzie destylowanej), 30 mm od powierzchni, spękania niewypełnione produktem reakcji ASR, skaleń potasowy (1), skaleń sodowy (2), kwarc (3), biotyt (4), biotyt domieszkowany tytanem (5)

Rys. 6.9 Mikrostruktura betonu z kruszywem G3 po badaniu symulowanych warunków eksploatacyjnych (namaczanie w wodzie destylowanej), 1 mm od powierzchni, por powietrzny wypełniony ettringitem (1)

Rys. 6.10 Mikrostruktura betonu z kruszywem G3 po badaniu symulowanych warunków eksploatacyjnych (namaczanie w wodzie destylowanej), niezhydratyzowane ziarno cementu, 20 mm od powierzchni, alit (1), glinożelazian czterowapniowy C₄AF (2), faza C-S-H (3)

Dodatkowy czynnik agresywny w postaci ekspozycji na 10% roztwór chlorku sodu wywołał większe zniszczenia betonu w porównaniu do namaczania w wodzie destylowanej. Na Rys. 6.11 - Rys. 6.16 przedstawiono mikrostrukturę betonu z kruszywem G3 wraz z przykładami obecności żelu w spękaniach kruszywa i w porach powietrznych (obrazy z pozostałymi kruszywami znajdują się w Załączniku 8.). Zaobserwowano liczne makro- i mikrospękania w matrycy cementowej przy powierzchni próbki, a także mikrospękania w jej środku. Ślady chloru w matrycy cementowej stwierdzono do głębokości około 25 mm we wszystkich próbkach betonu (niezależnie od użytego kruszywa). Przy powierzchni mającej kontakt z otoczeniem stwierdzono również ślady ettringitu i soli Friedla. Ettringit występował w znacznie mniejszej ilości niż w betonach, które namaczane były w wodzie destylowanej. Zauważono spękania w strefie kontaktowej kruszywo – matryca cementowa. Część spękań była pusta w środku, w niektórych zidentyfikowano żel alkaliczno-krzemionkowy.

Rys. 6.11 Mikrostruktura betonu z kruszywem G3 po badaniu symulowanych warunków eksploatacyjnych (namaczanie w 10% roztworze NaCl), (a) przy powierzchni próbki – odległość około 1 mm od powierzchni, (b) w środku próbki – odległość około 37,5 mm od powierzchni

Rys. 6.12 Mikrostruktura betonu z kruszywem G3 po badaniu symulowanych warunków eksploatacyjnych (namaczanie w 10% NaCl), spękania i odspojenia w matrycy cementowej i kruszywie, spękania w strefie kontaktowej matryca – kruszywo, kwarc (1), skaleń potasowy (2)

Rys. 6.13 Mikrostruktura betonu z kruszywem G3 po badaniu symulowanych warunków eksploatacyjnych (namaczanie w 10% NaCl), spękania w kruszywie wypęłnione żelem ASR (1), skaleń potasowy (2)

Rys. 6.14 Mikrostruktura betonu z kruszywem G3 po badaniu symulowanych warunków eksploatacyjnych (namaczanie w 10% NaCl), żel ASR (1) wypełniający pory powietrzne

Rys. 6.15 Mikrostruktura betonu z kruszywem G3 po badaniu symulowanych warunków eksploatacyjnych (namaczanie w 10% NaCl), spękania ziarna kruszywa grubego wypełnione żelem ASR (1), skaleń potasowy (2), skaleń sodowy (3)

Rys. 6.16 Mikrostruktura betonu z kruszywem G3 po badaniu symulowanych warunków eksploatacyjnych (namaczanie w 10% NaCl), sól Friedla (1)

Wielkość ekspansji próbek betonu, które były poddane działaniu 15% roztworu mrówczanu sodu (od 1,22 do 1,79 mm/m) potwierdzono na obrazach mikroskopowych. Na rysunkach Rys. 6.17 - Rys. 6.21 przedstawiono obrazy mikrostruktury betonu z kruszywem G3 wraz z przykładami obecności żelu w spękaniach kruszywa i w porach powietrznych (obrazy betonu z pozostałymi kruszywami znajdują się w Załączniku 7.) Zaobserwowano liczne mikrospękania (~ 1 - 10 μ m) w matrycy cementowej przy powierzchni próbki, a także w jej środku. Zaobserwowano wyższe piki pochodzące od sodu w fazie C-S-H w matrycy cementowej w porównaniu do próbek przechowywanych w wodzie destylowanej. Nie znaleziono śladów ettringitu w matrycy cementowej. W spękaniach kruszywa oraz w porach powietrznych stwierdzono liczną obecność produktów reakcji ASR w postaci żelu. Dodatkowo znaleziono siarki, Rys. 6.21. Na podstawie wskazań EDS przypuszcza się, że był to

trójwęglanoglinian wapnia [44]. Prawdopodobnie pojawienie się nowej fazy mogło dodatkowo wpłynąć na zwiększoną ekspansję betonu poddanego działaniu roztworu HCOONa.

Rys. 6.17 Mikrostruktura betonu z kruszywem G3 po badaniu symulowanych warunków eksploatacyjnych (namaczanie w 15% roztworze HCOONa), (a) przy powierzchni próbki – odległość około 1 mm od powierzchni, (b) w środku próbki – odległość około 37,5 mm od powierzchni

Rys. 6.18 Mikrostruktura betonu z kruszywem G3 po badaniu symulowanych warunków eksploatacyjnych (namaczanie w 15% HCOONa), żel ASR (1) w spękaniu kruszywa, skaleń potasowy (2), skaleń sodowy (3), kwarc (4)

Rys. 6.19 Mikrostruktura betonu z kruszywem G3 po badaniu symulowanych warunków eksploatacyjnych (namaczanie w 15% HCOONa), żel ASR (1), skaleń potasowy (2), skaleń sodowy (3), kwarc (4)

Rys. 6.20 Mikrostruktura betonu z kruszywem G3 po badaniu symulowanych warunków eksploatacyjnych (namaczanie w 15% HCOONa), żel ASR w porze powietrznym (1), żel ASR w przereagowanym ziarnie kruszywa (2)

Rys. 6.21 Mikrostruktura betonu z kruszywem G3 po badaniu symulowanych warunków eksploatacyjnych (namaczanie w 15% HCOONa), nowa faza (prawdopodobnie trójwęglanoglinian wapnia) wypełniająca por powietrzny (1)

W próbkach, które były badane w 50% roztworze mrówczanu potasu uzyskano ekspansję od 2,1 mm/m dla betonu z kruszywem gabro GA do 5,0 mm/m dla betonu z kruszywem granitowym G1, co zaobserwowano również na obrazach mikroskopowych – największy stopień destrukcji spośród przebadanych roztworów środków odladzających. Na Rys. 6.22 - Rys. 6.26 przedstawiono obrazy mikrostruktury betonów z różnymi kruszywami wraz z przykładami obecności żelu w spękaniach kruszywa i w porach powietrznych. Zaobserwowano liczne mikrospękania (~1 - 15 µm) w matrycy cementowej przy powierzchni próbki oraz w jej środku. Widoczne były również wyższe wskazania pochodzące od potasu w fazie C-S-H w matrycy cementowej. W spękaniach kruszywa oraz w porach powietrznych stwierdzono obfitą obecność produktów reakcji ASR w postaci żelu. Żel całkowicie wypełniał pory powietrzne. Zidentyfikowano nową fazę o morfologii przypominającej ettringit, jednak bez obecności siarki, Rys. 6.26. Podobną fazę zaobserwowano również w próbkach namaczanych w mrówczanie sodu (Rys. 6.21), ale bez obecności potasu. Prawdopodobnie był to trójwęglanoglinian wapnia [44].

Rys. 6.22 Mikrostruktura betonu z kruszywem G3 po badaniu symulowanych warunków eksploatacyjnych (namaczanie w 50% roztworze HCOOK) (a) przy powierzchni próbki – odległość około 1 mm od powierzchni (b) w środku próbki – odległość około 37,5 mm od powierzchni

Rys. 6.23 Mikrostruktura betonu z kruszywem G3 po badaniu symulowanych warunków eksploatacyjnych (namaczanie w 50% HCOOK), żel ASR (1) w porze powietrznym ASR, skaleń sodowy (2)

Rys. 6.24 Mikrostruktura betonu z kruszywem G3 po badaniu symulowanych warunków eksploatacyjnych, fragment kruszywa przereagowany w żel ASR (1), skaleń potasowy (2), skaleń sodowy (3)

Rys. 6.25 Mikrostruktura betonu z kruszywem G3 po badaniu symulowanych warunków eksploatacyjnych (namaczanie w 50% HCOOK), spękanie w kruszywie wypełnione żelem ASR (1), kwarc (2)

Rys. 6.26 Mikrostruktura betonu z kruszywem G3 po badaniu symulowanych warunków eksploatacyjnych (namaczanie w 50% HCOOK), nowa faza (prawdopodobnie trójwęglan wapnia) wypełniająca pory powietrzne (1)

W Tabeli 6.1 przedstawiono porównanie wpływu różnych roztworów na mikrostrukturę kruszywa w betonie po badaniu symulowanych warunków eksploatacyjnych. W betonie przechowywanym w wodzie destylowanej widoczne były spękania o niewielkiej rozwartości, bez produktów ASR. Zastosowanie roztworów środków odladzających wywołało pojawienie się spękań o większej rozwartości, a także wypełnienie ich żelem ASR. Spękania o najmniejszej rozwartości oraz wypełnione produktem reakcji stwierdzono w kruszywie z betonu przechowywanego w roztworze chlorku sodu, natomiast największą rozwartość spękań zauważono w kruszywie z betonu przechowywanego w roztworze mrówczanu potasu.

Š		The -	
ialitu sytitutowaliych watulixo	15% HCOOK	Level X-138 Sound IPT PAN	No. ref. mos. ABZ
z NIUSZYWA W UCIUIIC PU UAU	15% HCOONa	NPT TPT	SBKV X308 30.mm
I IOZIWOIOW HA HIIIKIOSHUKUU	10% NaCl	XG0 50Mm	ZBKU X500 JBMm
yjnych, powiększenie x500	Woda destylowana	under der	XEB EBAM
r auera o. eksploatac	Roztwór Kruszywo	G1	G3

hetonie no hadaniu svmulowanych warunków **/Y** 6/11/ F mikrostrukture krus Tahela 6.1 Porównanie wnływni różnych roztworów na

Stopień zniszczenia próbek betonu po badaniu symulowanych warunków eksploatacyjnych określono ilościowo za pomocą wskaźnika DRI sformułowanego oryginalnie przez [174]. Wyniki przedstawiono w Tabeli 6.2. Największą wartość wskaźnika DRI stwierdzono dla betonu poddanego działaniu mrówczanu potasu (380-583). Wysoką wartość DRI odnotowano także w betonie przechowywanym w roztworze mrówczanu potasu (335-512). Próbki betonu narażone na działanie chlorku sodu charakteryzowały się nieco niższą wartością DRI w porównaniu do próbek przechowywanych w mrówczanach (253-376). Najmniejszą wartość DRI stwierdzono w próbkach przechowywanych w wodzie destylowanej (180-243). Niezależnie od zastosowanego roztworu środka odladzającego najniższymi wartościami DRI charakteryzował się beton z kruszywem gabro.

Tabela 6.2 Wyniki obliczeń wskaźnika oceny uszkodzeń (DRI, damage rating index) betonu po ekspozycji na symulowane warunki eksploatacyjne

	Rodzaj roztworu (środka odladzającego)					
Kruszywo	Woda destylowana (W)	Chlorek sodu 10% (NaCl)	Mrówczan sodu 15% (HCOONa)	Mrówczan potasu 50% (HCOOK)		
G1	243	376	491	567		
G3	189	333	512	583		
G5	217	304	483	500		
GD	234	334	458	474		
GA	180	253	335	380		

Na podstawie klasyfikacji stopnia zniszczenia betonu zaprezentowanej przez Sancheza [142] bazującej na wielkości DRI stwierdzono, że w próbkach przechowywanych w wodzie destylowanej stopień zniszczenia jest marginalny. Beton z DRI w zakresie 330-500 klasyfikowany był jako zniszczony w stopniu umiarkowanym, co stanowiło większość próbek przechowywanych w chlorku sodu oraz w mrówczanie sodu. Natomiast dla betonu z DRI powyżej 500 stopień zniszczenia był wysoki, co stanowiło większość próbek narażonych na działanie mrówczanu potasu.

6.3. Morfologia i skład chemiczny produktów reakcji alkalia-krzemionka

W próbkach zapraw po zmodyfikowanym badaniu AMBT z zastosowaniem 50% roztworu mrówczanu potasu zamiast 1 M NaOH zidentyfikowano zarówno żel w postaci amorficznej, jak i krystalicznej. Na obrazach SEM żel w postaci krystalicznej rozpoznano po

charakterystycznej strukturze przypominającej rozety. Jednak w przypadku badanych próbek żel amorficzny występował w większej ilości. Na zdjęciach Rys. 6.27 - Rys. 6.31 przedstawiono przykłady żelu krystalicznego i amorficznego.

Rys. 6.27 Mikrostruktura zaprawy z kruszywem G3 po 28 dniach przechowywania w 50% roztworze HCOOK w 80°C, żel krystaliczny (1) i amorficzny (2) w strefie kontaktowej matryca cementowa – kruszywo, kwarc (3), biotyt (4)

Rys. 6.28 Mikrostruktura zaprawy z kruszywem G3 po 28 dniach przechowywania w 50% roztworze HCOOK w 80°C, żel amorficzny (1) w spękaniu kruszywa, kwarc (2)

Rys. 6.29 Mikrostruktura zaprawy z kruszywem G3 po 28 dniach przechowywania w 50% roztworze HCOOK w 80°C, żel krystaliczny (1) i amorficzny (2) w strefie kontaktowej matryca cementowa – kruszywo, kwarc (3)

Rys. 6.30 Mikrostruktura betonu z kruszywem G3 po badaniu symulowanych warunków eksploatacyjnych, namaczanych w 50% roztworze HCOOK w 80°C, żel amorficzny w strefie kontaktowej kruszywo – matryca cementowa

Rys. 6.31 Mikrostruktura zaprawy z kruszywem G3 po 28 dniach przechowywania w 50% roztworze HCOOK w 80°C, żel krystaliczny (1) i amorficzny (2) w spękaniu kruszywa, kwarc (3)

W zależności od postaci żelu, krystalicznej lub amorficznej, zauważono różnice w składzie chemicznym, Rys. 6.32. Żel amorficzny charakteryzował się większą zawartością wapnia, a także nieznacznie mniejszą zawartością alkaliów w swoim składzie.

Rys. 6.32 Diagram trójskładnikowy składu chemicznego żelu krystalicznego i amorficznego zlokalizowanego w spękaniach ziaren kruszywa lub strefie kontaktowej kruszywo – matryca cementowa w próbkach zaprawy z kruszywem G3 po 28 dniach ekspozycji w 50% roztworze HCOOK i 80°C

Przeprowadzono szczegółową analizę składu chemicznego żelu ASR zidentyfikowanego próbkach symulowanych W betonu badaniu warunków ро eksploatacyjnych. Analizie poddano zawartość wapnia, krzemu oraz alkaliów, a także umiejscowienie żelu. Stosunek Ca/Si oraz (Na+K)/Si w próbkach poddawanych działaniu tego samego środka odladzającego był bardzo zbliżony. Natomiast wyraźne różnice w składzie chemicznym żelu ASR były widoczne w zależności od zastosowanego środka odladzającego. Skład chemiczny produktów reakcji zidentyfikowanych w próbkach betonu po badaniu symulowanych warunków eksploatacyjnych przedstawiono w Tabeli 6.3. Na Rys. 6.33 przedstawiono wyniki w sposób graficzny w postaci trójskładnikowych diagramów Si-Ca-(Na+K).

Tabela 6.3 Skład chemiczny produktów reakcji alkalia-krzemionka zlokalizowanych w spękaniach ziaren kruszywa w betonie po badaniu symulowanych warunków eksploatacyjnych: Ca/Si, (Na+K)/Si, Na/K (obliczone na podstawie % atomowych EDS), średnia z min. 15 pomiarów

Kruszywo	Roztwór	Ca/Si	(Na+K)/Si	Na/K
	HCOOK	$0,\!37 \pm 0,\!11$	$0,\!62 \pm 0,\!12$	100% K
G1	NaCl	$0,\!26 \pm 0,\!12$	$0,\!31 \pm 0,\!06$	$1,\!48 \pm 0,\!26$
	HCOONa	$0,\!36\pm0,\!08$	$0,\!34 \pm 0,\!05$	$1,\!67 \pm 0,\!58$
	HCOOK	$0,\!27\pm0,\!05$	$0,53 \pm 0,06$	100% K
G3	NaCl	$0{,}28\pm0{,}09$	$0,\!24 \pm 0,\!05$	$1,\!41 \pm 0,\!42$
	HCOONa	$0,\!34 \pm 0,\!10$	$0,\!31 \pm 0,\!04$	$1,\!69\pm0,\!60$
	HCOOK	$0,\!44 \pm 0,\!15$	$0,\!63 \pm 0,\!14$	100% K
G5	NaCl	$0,\!27\pm0,\!09$	$0,\!27 \pm 0,\!12$	$1,\!83\pm0,\!50$
	HCOONa	$0,\!44 \pm 0,\!15$	$0,\!33\pm0,\!03$	$1,\!93\pm0,\!35$
	HCOOK	$0,\!35\pm0,\!07$	$0,52 \pm 0,16$	100% K
GD	NaCl	$0{,}29\pm0{,}07$	$0{,}28\pm0{,}09$	$1,87 \pm 0,61$
	HCOONa	$0,\!37\pm0,\!09$	$0,\!36 \pm 0,\!12$	$1,\!63\pm0,\!32$
GA	HCOOK	$0,45 \pm 0,13$	$0,51 \pm 0,13$	100% K
	NaCl	$0,30\pm0,08$	$0,\!21 \pm 0,\!07$	$1,91 \pm 0,45$
	HCOONa	$0,\!42\pm0,\!09$	$0,\!35\pm0,\!08$	$2,03 \pm 0,53$

Rys. 6.33 Diagram trójskładnikowy składu chemicznego żelu zlokalizowanego w spękaniach ziaren kruszywa w betonie z kruszywem (a) G1, (b) G3, (c) G5, (d) GD, (e) GA po badaniu symulowanych warunków eksploatacyjnych, na wykresie f) przedstawiono zbiór punktów z wszystkich kruszyw

Żel ASR powstały w próbkach badanych w roztworze mrówczanu potasu (50% HCOOK) charakteryzował się większą zawartością alkaliów w swoim składzie chemicznym, tj. większą zawartością potasu, ponieważ w tym przypadku sód nie został wykryty. Zauważono również, że żel wyróżniał się zauważalnie większą zawartością wapnia. Najmniejszą zawartością wapnia i sumy alkaliów charakteryzował się żel w betonie poddanym działaniu chlorku sodu. Natomiast żel w betonie narażonym na działanie roztworu mrówczanu sodu (15% HCOONa) charakteryzował się nieznacznie wyższą zawartością alkaliów w porównaniu do chlorku sodu, a także wyższą zawartością wapnia (zbliżoną do żelu w próbkach poddanych działaniu mrówczanu potasu).

Rodzaj zastosowanego środka odladzającego miał decydujący wpływ na rodzaj i ilość alkaliów występujących w żelu. Narażenie betonu na zewnętrzne źródło potasu w postaci mrówczanu potasu sprawiło, że w żelu zidentyfikowano potas, nie znaleziono śladów sodu. Natomiast w betonie poddanym działaniu zewnętrznego dostępu sodu w postaci chlorku sodu lub mrówczanu sodu obserwowano większą ilość sodu niż potasu, którego głównym źródłem był cement. Stosunek Na/K w produktach reakcji ASR w przypadku zewnętrznego oddziaływania chlorku sodu wynosił od 1,41 do 1,87 natomiast dla mrówczanu sodu od 1,63 do 2,03.

Skład żelu różnił się w zależności od miejsca występowania w przekroju betonu, żel zidentyfikowany w porach powietrznych miał inny skład w porównaniu do żelu znalezionego w spękaniach w kruszywie. W Tabeli 6.4 i na Rys. 6.34 przedstawiono wyniki dla produktów reakcji ASR znalezionych w betonie po badaniu symulowanych warunków eksploatacyjnych. Zawartość alkaliów w poszczególnych próbkach była zbliżona zarówno w porach, jak i w spękaniach kruszywa w próbkach poddanych działaniu tego samego roztworu środka odladzającego. Główną różnicą była zawartość wapnia: 3-krotnie wyższa w żelu zidentyfikowanym w porach powietrznych. Na diagramie trójskładnikowym widoczne jest wyraźne przesunięcie punktów w stronę wapnia. Rodzaj zastosowanego kruszywa ze skał magmowych głębinowych nie miał dużego wpływu na skład chemiczny żelu.

Kruszywo	Roztwór	Ca/Si	(Na+K)/Si
	HCOOK	$1,09 \pm 0,34$	$0,72 \pm 0,13$
G1	NaCl	$1,06 \pm 0,37$	$0,\!14\pm0,\!04$
	HCOONa	$0,93 \pm 0,23$	$0,\!39 \pm 0,\!11$
	HCOOK	$0{,}89\pm0{,}08$	$0{,}74\pm0{,}04$
G3	NaCl	$1,04 \pm 0,32$	$0,\!17\pm0,\!04$
	HCOONa	$0,\!79\pm0,\!09$	$0,\!15\pm0,\!05$
	HCOOK	$0,83 \pm 0,24$	$0,\!66\pm0,\!07$
G5	NaCl	$0,91 \pm 0,11$	$0,\!22\pm0,\!05$
	HCOONa	$1,03 \pm 0,11$	$0,\!40\pm0,\!05$
GD	HCOOK	$0,\!98 \pm 0,\!14$	$0,\!69\pm0,\!10$
	NaCl	$0,96 \pm 0,32$	$0,35 \pm 0,17$
	HCOONa	$1,17 \pm 0,26$	$0,32 \pm 0,04$
GA	HCOOK	$0,\!96\pm0,\!06$	$0,\!53\pm0,\!06$
	NaCl	$0,99 \pm 0,08$	$0,\!28 \pm 0,\!04$
	HCOONa	$0,89 \pm 0,08$	$0,\!44 \pm 0,\!06$

Tabela 6.4 Skład chemiczny produktów reakcji alkalia-krzemionka zlokalizowanych w porach powietrznych w betonie po badaniu symulowanych warunków eksploatacyjnych: Ca/Si, (Na+K)/Si, (obliczone na podstawie % atomowych EDS)

Rys. 6.34 Diagram trójskładnikowy składu chemicznego żelu zlokalizowanego w spękaniach ziaren kruszywa oraz w porach powietrznych w betonie z kruszywem z kruszywem (a) G1, (b) G3, (c) G5, (d) GD, (e) GA po badaniu symulowanych warunków eksploatacyjnych

6.4. Podsumowanie

Próbki zapraw po przeprowadzonych badaniach ekspansji według zmodyfikowanej metody AMBT (zastosowanie różnych roztworów odladzających) poddano analizie mikrostruktury z uwagi na obecność produktów reakcji ASR. Stwierdzono zróżnicowanie stopnia degradacji mikrostruktury w zależności od zastosowanego roztworu odladzającego. Największą obfitość żelu ASR zaobserwowano w próbkach, które wykazały największą ekspansję (po badaniu w 50% roztworze HCOOK). Ślady produktów ASR stwierdzono również w zaprawie po badaniu w 10% roztworze NaCl oraz 15% roztworze HCOONa, pomimo niewielkiej ekspansji.

Badanie mikrostruktury betonów po badaniu symulowanych warunków eksploatacyjnych potwierdziły obecność produktów reakcji ASR i wielkość ekspansji wywołanej wystąpieniem szkodliwej reakcji. We wszystkich badanych próbkach widoczne były zmiany w matrycy cementowej wywołane zmiennymi warunkami ekspozycji próbek. Pęknięcia w matrycy cementowej występowały na całym przekroju próbki, jednak ich większe nagromadzenie stwierdzono przy powierzchni mającej kontakt ze środkiem odladzającym. Wyraźnie widoczny był wpływ rodzaju środka odladzającego na stopień zniszczenia betonu. Ilość spękań w matrycy cementowej i kruszywie była proporcjonalna do ekspansji próbek betonu poddanych działaniu symulowanych warunków eksploatacyjnych.

Najmniejsze zniszczenie i brak produktów reakcji ASR zaobserwowano w próbkach, które były badane w wodzie destylowanej. Większą ilość spękań w kruszywie i matrycy cementowej, a także ślady produktów reakcji ASR potwierdzono w próbkach badanych w chlorku sodu. Mrówczan sodu spowodował znacznie większe uszkodzenia mikrostruktury, natomiast największe - mrówczan potasu. W próbkach poddanych działaniu mrówczanu potasu stwierdzono również największą obfitość żelu alkaliczno-krzemionkowego.

Decydujący wpływ na skład chemiczny żelu ASR miał roztwór środka odladzającego, w którym badane były próbki. Żel pochodzący z betonu poddanego działaniu mrówczanu potasu (50% HCOOK) charakteryzował się największą zawartością alkaliów oraz wapnia w porównaniu do pozostałych środków odladzających. Najmniej alkaliów oraz wapnia zidentyfikowano w żelu pochodzącym z betonu narażonego na działanie chlorku sodu.

W badaniach mikrostruktury stwierdzono obecność żelu zarówno w postaci amorficznej, jak i krystalicznej. W analizowanych materiałach stwierdzono przeważającą obecność żelu amorficznego. Stwierdzono różnice w składzie chemicznym w zależności od postaci żelu. Żel krystaliczny charakteryzował się większą zawartością alkaliów i mniejszą zawartością wapnia.

7. Ocena jednoczesnego wpływu zawartości kwarcu zdeformowanego i środków odladzających na ekspansję wskutek reakcji alkalia-krzemionka

7.1. Ilościowa ocena podatności kruszywa granitowego na reakcję alkaliakrzemionka

Na podstawie ilościowych wyników analizy petrograficznej w postaci całkowitej powierzchni kwarcu zdeformowanego (Rozdział 5.2) oraz reaktywności alkalicznej wg metody przyspieszonej (PB/1/18 [N21], po 28 dniach) kruszyw ze skał magmowych głębinowych (Rozdział 5.3.2), wyznaczono zależności ekspansji od zawartości minerałów reaktywnych w kruszywie. Wyniki przedstawiono w dwóch wariantach, ze względu na zróżnicowanie skał (granit, granodioryt, gabro), które występuje w badanych materiałach: na Rys. 7.1 widoczna jest zależność tylko dla kruszywa granitowego, natomiast na Rys. 7.2 przedstawione zostały wszystkie badane kruszywa. Dla kruszywa granitowego widoczna jest wysoka zgodność pomiędzy wynikami AMBT oraz wynikami zawartości kwarcu zdeformowanego z analizy obrazu, współczynnik determinacji \mathbb{R}^2 jest równy 0,98 [4]. Gdy brane są pod uwagę wszystkie analizowane kruszywa, dopasowanie liniowe ma niższy współczynnik determinacji, jednak pozostaje w dalszym ciągu na wysokim poziomie ($\mathbb{R}^2 = 0,85$).

Rys. 7.1 Wydłużenie próbek zapraw z kruszywem granitowym po 28 dniach ekspozycji w 80°C w 1 M roztworze NaOH w funkcji zawartości kwarcu zdeformowanego wyznaczonego za pomocą ilościowej analizy obrazu

Rys. 7.2 Wydłużenie próbek zapraw z badanymi kruszywami granitowymi (G1-G5), kruszywem granodiorytowym (GD) oraz kruszywem gabro (GA) po 28 dniach ekspozycji w 80°C w 1 M roztworze NaOH w funkcji zawartości kwarcu zdeformowanego wyznaczonego za pomocą ilościowej analizy obrazu

Przeprowadzono analizę pod kątem zgodności wyników wydłużenia uzyskanych za pomocą metody długotrwałej (ASTM C 1293 [N3]) oraz ilościowej analizy petrograficznej. Wyniki przedstawiono na Rys. 7.3 (dla kruszywa granitowego) i Rys. 7.4 (dla wszystkich kruszyw). W odróżnieniu od metody przyspieszonej, w tym przypadku dla zależności wyznaczonej tylko dla kruszyw granitowych uzyskano dopasowanie liniowe o niższym współczynniku determinacji ($R^2 = 0,67$) niż dla zależności uwzględniającej wszystkie kruszywa ($R^2 = 0,81$).

Rys. 7.3 Wydłużenie próbek zapraw z kruszywem granitowym po 365 dniach ekspozycji w 38°C w warunkach wysokiej wilgotności w funkcji zawartości kwarcu zdeformowanego wyznaczonego za pomocą ilościowej analizy obrazu

Rys. 7.4 Wydłużenie próbek zapraw z badanymi kruszywami granitowymi (G1-G5), kruszywem granodiorytowym (GD) oraz kruszywem gabro (GA) po 365 dniach ekspozycji w 38°C w warunkach wysokiej wilgotności w funkcji zawartości kwarcu zdeformowanego wyznaczonego za pomocą ilościowej analizy obrazu

Niższy współczynnik determinacji R^2 dla zależności wielkości wydłużenia otrzymanego w metodzie długotrwałej od zawartości składników reaktywnych, w porównaniu do tej samej zależności wyznaczonej dla metody przyspieszonej, może być wynikiem różnic w warunkach przeprowadzania obydwu metod pomiarów zmian długości. Różne wymiary i rodzaje próbek, proporcje, kondycjonowanie i warunki ekspozycji w PB/1/18 [N21] i ASTM C 1293 [N3] mogą prowadzić do różnych mechanizmów determinujących szybkość postępowania ASR. Zmiana jednego z parametrów, np. czasu trwania testu, może łatwo zmniejszyć korelację między nimi [171][34]. Jednak pomimo występujących różnic, uzyskana zależność liniowa dla metody długotrwałej jest na dostatecznym poziomie ze współczynnikiem $R^2 = 0,81$.

Na podstawie wyników ilościowej analizy obrazu oraz pomiarów wydłużenia wykonanego metodą normową (PB/1/18 [N21]) wyznaczono graniczną zawartość kwarcu zdeformowanego w kruszywie z krajowych złóż charakteryzujących się wysoką odpornością na reakcję alkaliczną, na poziomie 2,1%. Do wyznaczenia zawartości kwarcu zdeformowanego w kruszywie posłużyła zależność liniowa przedstawiona na Rys. 7.1 (y=0,013x+0,073, gdzie x to zawartość kwarcu zdeformowanego, a y wielkość ekspansji), która charakteryzowała się wysokim współczynnikiem dopasowania liniowego ($R^2 = 0,98$).

Obecność kwarcu zdeformowanego, który był głównym składnikiem reaktywnym analizowanych kruszyw, może sugerować, że badane kruszywa ze skał magmowych głębinowych, a w szczególności granity, należą do kruszyw wolno reagujących. Szczegółowa

analiza petrograficzna połączona z ilościową analizą obrazu umożliwiła wykrycie potencjalnego zagrożenia związanego z ASR, nawet jeśli ekspansja uzyskana według metod normowych klasyfikowała kruszywo jako niereaktywne.

Przeprowadzone badania na podstawie metody przyspieszonej PB/1/18 [N21] wykazały różną ekspansję próbek zapraw w zależności od zastosowanego kruszywa. Wszystkie próbki po 14 dniach wykazały wydłużenie mniejsze niż graniczna wartość równa 0,10%, jednak przedłużenie czasu badania do 28 dni pokazało, że w większości próbek nie nastąpiło wygaszenie reakcji, która postępowała z niemal identyczną intensywnością (z wyjątkiem gabro). Wyniki badań uzyskanych metoda długotrwała ASTM C 1293 [N3] również wykazały potencjalną reaktywność niektórych kruszyw. Zgodnie z ASTM 1778-14 [N4] i AASHTO PP65-11 [N1] ekspansja zaprawy poniżej 0,10% po 14 dniach jest wystarczająca do zaklasyfikowania kruszyw jako niereaktywnych. Jednak według Departamentu Obrony (Department of Defense, DOD) dopuszczalną graniczną ekspansję 28-dniową próbek zapraw ustalono na 0,08% [98][99]. Budowa nawierzchni drogowych i lotniskowych wymaga stosowania kruszyw wysokiej jakości do zapewnienia trwałości, co w szczególnych wypadkach może oznaczać ich zaostrzanie, zwłaszcza gdy możliwy jest dodatkowy dostęp alkaliów ze środków do odladzania. W przypadku analizowanych kruszyw ze skał magmowych głębinowych, większość przekroczyła granicę 0,1%, a także 0,08% wydłużenia w trakcie 28 dni, co może wskazywać na wolniejsze tempo reakcji [157].

Wydłużenie badań przyspieszonych z 14 do 28 dni pozwoliło na dokładniejszą analizę kinetyki reakcji wg Rekomendacji RILEM [107]:

$$E_t(\%) = 1 + E_{t0}(\%) - \exp[-k(t - t_0)^M]$$
(12)

gdzie E_t jest procentowym wydłużeniem po czasie t (dni) zanurzenia w roztworze NaOH, E_{t0} jest procentowym wydłużeniem po czasie t₀ (dni) zanurzenia w roztworze NaOH, t₀ (dni) jest okresem indukcji przed rozpoczęciem wzrostu kinetyki reakcji (przyjęto jako 3 dni [65][66]), k jest stałą szybkości łączącą w sobie efekt zarodkowania, wielowymiarowego wzrostu, geometrii produktów reakcji i dyfuzji, a M jest wykładniczym czynnikiem związanym z formą i wzrostem produktów reakcji [107].

Z powyższego równania wyznaczono parametr kinetyczny ln k. Jeżeli wartość parametru ln k jest większa niż -6, kruszywo uznawane jest za reaktywne [65][66]. Wyniki obliczeń parametru ln k oraz M, wydłużenia po 14 i 28 dniach w warunkach przyspieszonych oraz wydłużenia po 365 dniach wg metody długotrwałej przedstawiono w Tabeli 7.1.

Kruszywo	Wydłużenie po 14 dniach (PB/1/18) [%]	Wydłużenie po 28 dniach (PB/1/18) [%]	Wydłużenie po 365 dniach (ASTM C 1293) [%]	ln k	М
G1	0,05	0,10	0,036	-4,7	0,79
G2	0,05	0,10	0,030	-5,6	1,01
G3	0,08	0,13	0,047	-4,8	0,86
G4	0,06	0,11	0,047	-6,2	1,24
G5	0,07	0,11	0,037	-5,2	0,92
GD	0,06	0,10	0,034	-5,6	1,01
GA	0,01	0,02	0,023	-6,3	0,67

Tabela 7.1 Wydłużenie po 14 i 28 dniach wg PB/1/18, wydłużenie po 365 dniach wg metody ASTM C 1293, oraz obliczenia parametru ln k oraz M dla wszystkich analizowanych kruszyw (na czerwono oznaczono wyniki świadczące o reaktywności kruszywa wg danej metody)

7.2. Ekspansja betonu w warunkach eksploatacyjnych

Przedstawiono wpływ środków odladzających na mikrostrukturę i zagrożenie wystąpieniem reakcji alkalicznej kruszywa granitowego w betonie nawierzchniowym. Stwierdzono znaczny wpływ środków na bazie soli organicznych na tego rodzaju reakcję w postaci intensywnego wzrostu ekspansji próbek betonu w badaniach symulowanych warunków eksploatacyjnych oraz obecność żelu ASR. Ekspansja betonu przechowywanego w chlorku sodu była znacznie mniejsza niż w betonie narażonym na działanie mrówczanu sodu lub potasu. Różnica oddziaływania środków odladzających na bazie chloru oraz soli organicznych była związana z ich składem i właściwościami. Chlorek sodu powstaje w wyniku reakcji zobojętniania silnego kwasu (HCl) oraz silnej zasady (NaOH). Silny kwas oraz silna zasada w roztworze wodnym wzajemnie się neutralizują, tworząc obojętny produkt o pH równym 7. Natomiast mrówczan sodu i mrówczan potasu są solami słabego kwasu mrówkowego oraz silnej zasady (NaOH lub KOH), są silnymi elektrolitami, dysocjują w wodzie oraz ulegają hydrolizie. Roztwory mrówczanu sodu i potasu mają odczyn zasadowy (15% HCOONa: pH=11,2 - 12,2, 50% HCOOK: pH=10,2-11,2). Właściwości poszczególnych środków odladzających wpływają na wartość ekspansji betonu w symulowanych warunkach eksploatacyjnych, a także ekspansję zapraw w badaniach przyspieszonych.

Ekspansja betonów z kruszywami granitowymi oraz kruszywem granodiorytowym, które przechowywano w 10% chlorku sodu w badaniu symulowanych warunków eksploatacyjnych, przekroczyła dopuszczalną granicę 0,50 mm/m. Wyjątek stanowił beton

z kruszywem gabro, którego ekspansja była znacznie poniżej limitu i wynosiła 0,33 mm/m. Ekspansja betonów przechowywanych w 15% roztworze mrówczanu sodu była 2-3,5 krotnie większa niż odpowiednich betonów z tym samym kruszywem narażonych na działanie chlorku sodu. Zastosowanie mrówczanu sodu wywołało również znaczną ekspansję w betonie z kruszywem gabro, które charakteryzowało się największą odpornością na ASR w badaniach normowych (PB/1/18, ekspansja = 0,022%, ASTM C 1293, ekspansja = 0,023%). W przypadku zastosowania 50% roztworu mrówczanu potasu odnotowano najwyższą ekspansję spośród wszystkich analizowanych roztworów środków odladzających. Ekspansja betonu z zastosowaniem HCOOK była 5 do 8-krotnie wyższa od ekspansji wywołanej w betonie nasycanym chlorkiem sodu.

Można przypuszczać, że zastosowane w badaniu sole kwasów organicznych (mrówczan sodu, mrówczan potasu) wpłynęły na skokowy wzrost pH, w wyniku którego dysocjujące z roztworu alkalia były bardziej mobilne i w większej ilości dostępne dla reakcji ASR. Taki mechanizm zaobserwowano w przypadku użycia octanów [19][130] i przypisano zwiększonej rozpuszczalności kryształów portlandytu i uwalnianiu jonów OH⁻ do roztworu.

Chlorek sodu w odróżnieniu od mrówczanu sodu lub potasu nie ulega hydrolizie, więc mechanizm wpływu tego środka na ASR jest odmienny od soli kwasów organicznych. Roztwór chlorku sodu może przyczyniać się bezpośrednio do reakcji alkaliczno-krzemionkowej, jeśli zwiększa się dostępność jonów hydroksylowych w roztworze porowym [168][155]. Ma to miejsce w betonie, jeśli jony Cl⁻ zostaną związane przez fazy cementowe, pozostawiając w ten sposób nadmiar jonów Na⁺ w roztworze, które muszą być zrównoważone przez ujemnie naładowane jony, takie jak OH⁻. Jony chlorkowe mogą być wiązane przez fazy glinianu wapnia w betonie, tworząc sól Friedela i chloroglinian wapnia, zgodnie z następującym równaniem:

$$2Na^{+} + 2Cl^{-} + Ca(OH)_{2} + C_{3}A + 10H_{2}O \rightarrow C_{3}A \cdot CaCl_{2} \cdot H_{2}O + 2Na^{+} + 2OH^{-}$$
(13)

Zwiększone stężenie OH⁻ wynikające z powyższego równania podnosi pH i zwiększa szybkość rozpuszczania reaktywnej krzemionki, która będzie reagować ze zwiększoną ilością Na⁺ do wytworzenia większych ilości żelu alkaliczno-krzemionkowego. Bez reakcji jonów chlorkowych nie następuje wzrost pH, a zwiększone stężenie Na⁺ i Cl⁻ nie zwiększa potencjału do reakcji alkaliczno-krzemionkowej. Stopień, w jakim NaCl zwiększy uszkodzenia w wyniku ASR, jest w dużej mierze zależny od ilości obecnego C₃A.

Uzyskane wyniki wydłużenia próbek betonów po 10 cyklach badania symulowanych warunków eksploatacyjnych zestawiono z zawartością kwarcu zdeformowanego w kruszywach

wykorzystanych do przygotowania próbek. Zależności przedstawiono na Rys. 7.5. Nie uzyskano liniowych zależności wydłużenia od zawartości reaktywnych składników kruszywa. Dopasowanie o najmniejszym współczynniku determinacji stwierdzono dla próbek nasycanych roztworami chlorku sodu i mrówczanu potasu (R² odpowiednio 0,16 i 0,19). Najlepsze dopasowanie otrzymano dla próbek nasycanych roztworem mrówczanu sodu, współczynnik determinacji wynosił 0,63, jednak taki wynik nie jest wystarczający, aby wnioskować o liniowej zależności. Liniową zależność wielkości wydłużenia próbek od zawartości kwarcu zdeformowanego w kruszywie uzyskano w badaniach przyspieszonych (PB/1/18 [N21]). Brak dopasowania w przypadku badań symulowanych warunków eksploatacyjnych może wynikać z wpływu dodatkowych mechanizmów niszczących i czynników materiałowych (napowietrzanie betonu, odmienny stos okruchowy, wymiary próbek, itp.).

Rys. 7.5 Zależność wydłużenia próbek betonów po 140-dniowej ekspozycji w symulowanych warunkach eksploatacyjnych (PB/5/18) z zastosowaniem roztworu odladzającego: (a) 10% NaCl, (b) 15% HCOONa, (c) 50% HCOOK, od powierzchni kwarcu zdeformowanego wyznaczonego metodą analizy obrazu w kruszywie

W badaniach przyspieszonych próbki przechowywane były w stałej, wysokiej temperaturze (80°C) i wilgotności (RH=100%), a głównym czynnikiem wywołującym ekspansję było chemiczne oddziaływanie roztworów środków odladzających. Wymiary próbki zaprawy umożliwiły dostęp alkaliów na całym jej przekroju (25 x 25 mm). Zmiana warunków fizycznych w postaci cyklicznych zmian temperatury i wilgotności wpłynęła na nieliniowe zachowanie poszczególnych kruszyw w betonach. Nie stwierdzono zgodności wyników pomiędzy ekspansją zapraw uzyskaną z metody przyspieszonej (PB/1/18 [N21]) oraz jej modyfikacji z zastosowaniem środków odladzających a ekspansją betonów w symulowanych warunkach eksploatacyjnych (PB/5/18 [N22]). Próbki zapraw w metodzie przyspieszonej umieszczane są w roztworze NaOH (lub środku odladzającym) 2 dni po zaformowaniu, proces hydratacji nie jest jeszcze zakończony. Natomiast próbki betonów w metodzie symulowanych warunków eksploatacyjnych przed rozpoczęciem cykli zmiany wilgotności i temperatury dojrzewają przez 28 dni, a więc można założyć, że proces hydratacji jest bardziej zaawansowany i beton wykazuje większą wytrzymałość w porównaniu do 2-dniowej zaprawy. Fizyczne oddziaływanie zmian temperatury i wilgotności, a także obecność środków odladzających może powodować powstawanie mikro- i makropęknięć. Spękany beton staje się bardziej przepuszczalny, a w związku z tym bardziej narażony na wnikanie jonów powodujących chemiczną degradację [152]. W betonach przechowywanych w 10% roztworze chlorku sodu w symulowanych warunkach eksploatacyjnych stwierdzono obecność chloru do głębokości około 25 mm, na podstawie obserwacji mikroskopowych i punktowego pomiaru składu chemicznego SEM-EDS. Określenie podwyższonej zawartości potasu lub sodu w wyniku penetracji HCOOK lub HCOONa nie było możliwe ze względu na obecność zarówno sodu, jak i potasu w cemencie. Jednak wiadomo z literatury [176], że widoczne jest obniżenie koncentracji jonów potasu oraz chloru wraz z odległościa od powierzchni betonu. Penetracja środków odladzających jest ograniczona, choć powstające w trakcie cyklicznego namaczania-wysychania spękania ułatwiają ich dostęp na większe głębokości.

Rozcieńczenie zastosowanych roztworów mrówczanu sodu i potasu z odpowiednio 15% i 50% wag. do 10% i 25% wag. w badaniu betonów w symulowanych warunkach eksploatacyjnych nie spowodowało znacznego zmniejszenia ekspansji próbek betonu i mniejszej degradacji mikrostruktury. Podobną analizę na dwóch stężeniach roztworu octanu potasu wykonał Julio-Betancourt [73], badając wpływ roztworu dostarczonego przez producenta (50%) i rozcieńczonego (25%) na trwałość betonów w cyklicznym badaniu zamrażania-rozmrażania. Próbki narażone na działanie nierozcieńczonego roztworu wykazywały liczne ślady zniszczenia w postaci spadku wytrzymałości i odprysków, jednak zmniejszenie stężenia octanu potasu w pozytywny sposób wpłynęło na jego trwałość. Autorzy zauważyli wzrost pH roztworu z 9,4 do 13,3, jednak nie zaobserwowali istotnych uszkodzeń. W badaniach przedstawionych w niniejszej pracy efekt rozcieńczenia roztworu mrówczanu potasu nie był aż tak wyraźny. Zaobserwowano nieznaczne zmniejszenie ekspansji w kruszywie G1, natomiast w kruszywie G3 różnice pomiędzy stężeniem 25 a 50% były pomijalnie małe. Mogło to być związane z połączenia agresywnego środowiska chemicznego i oddziaływania fizycznego (głębsze wnikanie alkaliów przez mikrospękania wywołane cyklicznym namaczaniem i wysychaniem), w którym zmniejszenie dodatkowego źródła alkaliów o połowę nie było wystarczające, by ograniczyć szybkość postępowania reakcji.

Ekspansję betonu po badaniu symulowanych warunków eksploatacyjnych porównano z obliczoną wartością wskaźnika uszkodzenia betonu, DRI, Rys. 7.6. Uzyskano funkcję wykładniczą o dobrym dopasowaniu, $R^2 = 0,90$, im wyższa wartość ekspansji, tym wyższa wartość DRI.

Rys. 7.6 Zależność wydłużenia próbek betonów po 140-dniowej ekspozycji w symulowanych warunkach eksploatacyjnych (PB/5/18) od liczby DRI (wskaźnik uszkodzenia betonu)

Wyniki zmian długości próbek zapraw przechowywanych w różnych roztworach środków odladzających na podstawie zmodyfikowanej metody przyspieszonej AMBT porównano z zawartością kwarcu zdeformowanego w poszczególnych kruszywach. Wyniki 124

zależności zmiany długości po 28 dniach w 80°C i roztworze środka odladzającego od powierzchni kwarcu zdeformowanego wyznaczonego metodą analizy obrazu w kruszywie przedstawiono na Rys. 7.7 i Rys. 7.8.

Rys. 7.7 Zależność wydłużenia próbek zapraw po 28 dniach ekspozycji w 80°C w roztworze (a) 50% HCOOK, (b) 15% HCOONa, od powierzchni kwarcu zdeformowanego wyznaczonego metodą analizy obrazu w kruszywie

Rys. 7.8 Zależność wydłużenia próbek zapraw po 28 dniach ekspozycji w 80°C w roztworze (a) 10% NaCl, (b) 20% NaCl, od powierzchni kwarcu zdeformowanego wyznaczonego metodą analizy obrazu w kruszywie

Najlepsze dopasowanie liniowe zaobserwowano dla próbek przechowywanych w roztworze 50% mrówczanu potasu ($R^2 = 0,83$), a także w 20% roztworze chlorku sodu ($R^2 = 0,81$). Dopasowanie liniowe o mniejszym współczynniku determinacji stwierdzono dla próbek przechowywanych w 15% roztworze mrówczanu sodu ($R^2 = 0,62$), natomiast dla próbek badanych w 10% roztworze chlorku sodu nie stwierdzono zależności liniowej ($R^2 = 0,30$). Brak dopasowania liniowego zależności wydłużenia próbek w 10% roztworze NaCl od zawartości kwarcu zdeformowanego był związany z bardzo niskimi wartościami ekspansji próbek

badanych w tym roztworze, podobnie jak w 15% roztworze mrówczanu sodu. Niskie wartości ekspansji były związane z małą reaktywnością kruszyw w danych warunkach. Uzyskane wyniki były przez to obarczone większym błędem, który utrudnił porównywanie między sobą ekspansji próbek wykonanych z różnymi kruszywami, które były przechowywane w tych samych warunkach. W badaniach, w których uzyskano wyższe wartości ekspansji, wartość błędu względnego (względem uzyskanej ekspansji próbek) była znacznie niższa, dzięki temu możliwe było porównywanie wyników między sobą. Dlatego dopasowanie próbek poddanych działaniu roztworów 20% NaCl oraz 50% HCOOK miało charakter liniowy z wysokim współczynnikiem determinacji R² (powyżej 0,80).

7.3. Analiza składu chemicznego produktów ASR

Na podstawie analizy wyników składu chemicznego żelu ASR w badaniach SEM-EDS nie stwierdzono wpływu rodzaju zastosowanego kruszywa na skład chemiczny żelu ASR. W badaniach wykorzystano tylko kruszywa ze skał magmowych głębinowych, które charakteryzowały się zbliżonym składem chemicznym i właściwościami fizycznymi, co mogło być powodem braku zróżnicowania. Wpływ rodzaju kruszywa na zmienność składu chemicznego w swoich badaniach uzyskali Leemann i in. [93], jednak wykorzystali bardziej zróżnicowane mineralogicznie kruszywa w postaci naturalnych żwirów.

Żel ASR zidentyfikowany w spękaniach ziaren kruszywa charakteryzował się zbliżoną zawartością wapnia niezależnie od zastosowanego środka odladzającego oraz kruszywa. Wartość Ca/Si wynosiła od 0,26 do 0,45. Uzyskane w niniejszej pracy wartości Ca/Si w żelu zidentyfikowanym w spękaniach kruszywa w analizowanych próbkach betonu, mieszczą się w zakresie zwiększonej zdolności żelu do pęcznienia i absorpcji wody wg [43][90]. Natomiast żel ASR zidentyfikowany w porach powietrznych charakteryzował się zwiększoną zawartością wapnia i wartością Ca/Si w przedziale od 0,79 do 1,17, w zależności od zastosowanego kruszywa i środka odladzającego. Prawdopodobnie żel w porach powietrznych nie wykazywał już zdolności do pęcznienia, jednak w dalszym ciągu jego obecność była niekorzystna, ze względu na zaburzenie struktury porów powietrznych, warunkujących mrozoodporność betonu.

Stwierdzono duży wpływ rodzaju zastosowanego środka odladzającego na zawartość alkaliów w żelu ASR. Najmniej alkaliów w żelu zawierały próbki betonu poddane działaniu chlorku sodu (Na+K)/Si od 0,21 do 0,31, nieznacznie więcej zaobserwowano w próbkach betonu poddanych działaniu mrówczanu sodu (15% HCOONa) – od 0,28 od 0,35, natomiast

najwięcej w próbkach badanych w mrówczanie potasu (50% HCOOK) – od 0,51 do 0,63. Zwiększenie zawartości alkaliów w żelu ASR powoduje zwiększone pęcznienie żeli i absorpcję wody [43]. Tendencja wzrostowa zawartości alkaliów w żelu w betonach narażonych na działanie poszczególnych środków odladzających odpowiada wielkości ekspansji uzyskanej w badaniu symulowanych warunków eksploatacyjnych. Stanowi to pośredni dowód penetracji środków odladzających w głąb betonu. Na Rys. 7.9 przedstawiono zależność ekspansji betonu po cyklicznym badaniu symulowanych warunków eksploatacyjnych od zawartości alkaliów w żelu ASR w spękaniach kruszywa w betonie. Zaobserwowano zgodność liniową zależności: im wyższa zawartość alkaliów w żelu, tym większa ekspansja betonu, ze współczynnikiem determinacji R² równym 0,83.

Rys. 7.9 Zależność ekspansji betonu po badaniu symulowanych warunków eksploatacyjnych od zawartości alkaliów (Na+K)/Si w produktach reakcji wypełniających spękania w kruszywie

Próbki betonu poddanego działaniu mrówczanu potasu w składzie żelu nie zawierały sodu, 100% alkaliów stanowił potas. W próbkach betonu poddanych działaniu chlorku sodu i mrówczanu sodu obserwowano większą zawartość sodu, Na/K odpowiednio od 1,41 do 1,91 i od 1,63 do 2,03. Żel zawierający zwiększoną ilość sodu ma większą skłonność do pęcznienia w porównaniu do żelu bogatego w potas [91]. Nie można potwierdzić tego niniejszymi badaniami, ze względu na zróżnicowanie ilości alkaliów w zależności od zastosowanego środka odladzającego.

Na podstawie obserwacji mikroskopowych stwierdzono, że żel, który zidentyfikowano w próbkach betonów po badaniu symulowanych warunków eksploatacyjnych, w większości był amorficzny, a więc bardziej szkodliwy [43][81][94]. Jednak przeprowadzenie precyzyjnej oceny ilościowej nie było możliwe do wykonania. Na podstawie uzyskanych wyników stwierdzono, że żel powstały w spękaniach kruszywa był głównym powodem zniszczeń mikrostruktury betonu.

Pęcznienie żelu ASR nie było badane w pracy, jednak o jego właściwościach ekspansywnych można przypuszczać na podstawie znanych z literatury modeli mechanicznych [118]. Opisany przez Hansena [57] mechanizm pecznienia żelu zakłada, że zaczyn cementowy zachowuje się jak półprzepuszczalna błona, przez którą możliwe jest wnikanie wody z roztworu porowego do wewnątrz, natomiast jony alkaliczno-krzemionkowe nie mogą dyfundować z miejsc reaktywnych do zaczynu cementowego. Powoduje to wzrost ciśnienia hydrostatycznego, ze względu na absorbcję wody przez żel alkaliczno-krzemionkowy i jego pęcznienie, które wywiera naprężenie przewyższające wytrzymałość na rozciąganie zaczynu cementowego. Efektem tego jest pękanie zaczynu cementowego. Według Bazănta i Steffensa [7] ekspansja betonu związana jest z ciśnieniem pęcznienia nagromadzonym w strefie kontaktowej kruszywo - matryca cementowa. W wyniku absorpcji wody przez żel wytwarza się ciśnienie, które początkowo jest uwalniane poprzez wypychanie żelu do znajdujących się w pobliżu mikroporów. Gdy pory znajdujące się w sąsiedztwie reaktywnego ziarna kruszywa zostaną całkowicie wypełnione żelem, dalsze tworzenie się żelu powoduje wzrost ciśnienia, w wyniku którego powstają spękania w zaczynie cementowym. Natomiast wg Idorna [62], a także Garcia-Diaza i in. [37] ciśnienie związane z powstawaniem żelu rozwija się bezpośrednio w ziarnie kruszywa, co powoduje naprężenie rozciągające w kruszywie. Wzrost tego naprężenia jest ostatecznie uwalniany w wyniki pękania zarówno reaktywnego ziarna kruszywa, jak i zaczynu cementowego. Wszystkie zaproponowane mechanizmy pęcznienia żelu wskazują na jego niszczący charakter.

7.4. Podsumowanie

Określenie podatności kruszywa na reakcję alkalia-krzemionka metodami normowymi pozwoliło na zweryfikowanie metody ilościowej analizy obrazu do wyznaczenia powierzchniowej zawartości kwarcu zdeformowanego jako metody do oceny potencjału ASR. Na podstawie uzyskanych wyników otrzymano liniowe zależności wydłużenia w metodzie przyspieszonej od zawartości kwarcu zdeformowanego. Dopasowanie liniowe w przypadku

porównywania wydłużenia uzyskanego za pomocą metody długotrwałej z zawartością kwarcu zdeformowanego było mniejsze, jednak na zadowalającym poziomie w przypadku analizy wszystkich 7 kruszyw.

Na podstawie uzyskanych wyników wyznaczono również graniczną zawartość kwarcu zdeformowanego w kruszywach granitowych o wysokiej odporności na ASR na poziomie 2,1%.

Zaproponowana ilościowa ocena zawartości kwarcu zdeformowanego w kruszywach ze skał magmowych głębinowych jest dobrym narzędziem do wstępnej oceny potencjalnej reaktywności alkaliczno-krzemionkowej. Może być szczególnie przydatna do oceny reaktywności kruszyw wolno reagujących, takich jak kruszywa granitowe, które nie wykazują znaczącej ekspansji w badaniu metodami normowymi (AMBT w czasie 14 dni). Przedstawione wyniki analizy obrazu kruszyw na cienkich szlifach będą mogły być wykorzystane w dalszym udoskonalaniu metodyki oceny reaktywności ASR, jako uzupełnienie konwencjonalnych metod normowych. Metoda ta może być metodą wstępnej, szybkiej selekcji materiałów, a także stanowić uzupełnienie wyników metod normowych w przypadku kruszyw wolno reagujących, by w przyszłości zapewnić budowanie trwałych konstrukcji betonowych.

Nie uzyskano liniowej zależności ekspansji próbek betonów po badaniu symulowanych warunków eksploatacyjnych od zawartości kwarcu zdeformowanego w kruszywach. Nieliniowe zachowanie materiałów może być związane z wpływem dodatkowych mechanizmów niszczących (poza ASR) wynikających ze zmiennych warunków wilgotnościowo-temperaturowych.

Uzyskano liniowe zależności wydłużenia próbek zapraw po 28 dniach przechowywania w 80°C w roztworze 20% NaCl lub 50% HCOOK od zawartości kwarcu zdeformowanego, wyznaczonej metodą analizy obrazu.

Nie stwierdzono zgodności badań wykonanych metodą przyspieszoną (PB/1/18) oraz metodą symulowanych warunków eksploatacyjnych (PB/5/18), co było związane z innym rodzajem próbek (zaprawa, beton), wymiarami i związaną z nimi głębokością wynikania środków odladzających do wnętrza próbki, a także cyklicznie zmiennych warunków temperaturowo-wilgotnościowych w badaniu wg PB/5/18.

Zawartość alkaliów w żelu wpłynęła na jego ekspansywne właściwości. Stwierdzono liniową zależność ekspansji betonu po badaniu symulowanych warunków eksploatacyjnych od zawartości alkaliów w składzie chemicznym żelu ASR, wyznaczonej metodą EDS (Na+K)/Si.

Zależność ekspansji betonu od składu żelu ($R^2 = 0.83$) wyraźnie wskazywała, że zniszczenie nastąpiło w wyniku reakcji alkalia-krzemionka.

8. Zastosowanie metod ilościowej oceny mikrostruktury do analizy nawierzchni betonowych zniszczonych w wyniku ASR

8.1. Charakterystyka pobranych próbek

Opracowane metody wyznaczania zawartości reaktywnych form kwarcu w kruszywie oraz stopnia spękania betonu, wykorzystywane wcześniej w przypadku próbek laboratoryjnych, zostały też wykorzystane do oceny istniejących nawierzchni.

Przedmiotem badań były odwierty pochodzące z dwóch nawierzchni drogowych: droga ekspresowa położona w środkowej Polsce (zbudowana w latach 2002-2003) oraz autostrada z północy Niemiec (1996). W obu przypadkach po kilkunastu latach eksploatacji pojawiły się liczne uszkodzenia w postaci spękań i odspojeń. Na Rys. 8.1 przedstawiono zdjęcia nawierzchni, na Rys. 8.2 przykładowy odwiert z nawierzchni autostrady niemieckiej z widocznymi śladami produktów ASR w skali makro. Obie nawierzchnie drogowe w warunkach zimowych odladzane były przy wykorzystaniu chlorku sodu.

Rys. 8.1 Przykłady spękań zaobserwowanych na (a) drodze ekspresowej położonej w środkowej Polsce wybudowanej w latach 2002-2003, (b) autostradzie niemieckiej wybudowanej w 1996 roku

Rys. 8.2 Przykładowy odwiert z autostrady niemieckiej z widocznymi typowymi śladami ASR wokół ziaren kruszywa (białe otoczki)

Do betonu zastosowanego do wybudowania drogi ekspresowej położonej w centralnej Polsce wykorzystano cement Portlandzki CEM I 32,5 R, kruszywo drobne w postaci piasku płukanego oraz kruszywo grube: grys amfibolitowy frakcji 2/8 mm i 8/16 mm, grys kwarcytowy 16/31,5 mm. Na Rys. 8.3 przedstawiono zdjęcia ziaren kruszywa w świetle przechodzącym spolaryzowanym.

Rys. 8.3 Mikrostruktura betonu z drogi ekspresowej (PL), analiza cienkich szlifów w świetle przechodzącym, spolaryzowanym XPL, (a) kruszywo kwarcytowe – kwarc mikrokrystaliczny, (b) kruszywo kwarcytowe – kwarc mikro- i kryptokrystaliczny

Na podstawie analizy petrograficznej ziaren kruszywa betonu z drogi ekspresowej (PL) na cienkich szlifach stwierdzono liczną obecność reaktywnych minerałów w kruszywie kwarcytowym w postaci kwarcu mikro- i kryptokrystalicznego. W kruszywie amfibolitowym nie zidentyfikowano reaktywnych form krzemionki.

Skład mieszanki betonowej wykorzystanej do wybudowania autostrady niemieckiej nie był znany. Na podstawie analizy petrograficznej przeprowadzonej na cienkich szlifach stwierdzono obecność czterech frakcji: < 0,063 mm, 0,063 - 4 mm, 4 - 16 mm, > 16 mm. Skład mineralny poszczególnych frakcji był zróżnicowany, zidentyfikowano 8 różnych rodzajów skał, Tabela 8.1.

Tabela	8.1	Rodzaje	skał	zidentyfikowane	W	poszczególnych	frakcjach	kruszywa
wykorzy	ystane	go do bud	owy ai	itostrady niemiecki	ej			

Rozmiar frakcji/ rodzaj skały	< 0,063 mm	0,063 – 4 mm	4 – 16 mm	> 16 mm
Skały osadowe	wapień	wapień rogowiec	piaskowiec rogowiec zlepieniec wapienny	mułowiec
Skały metamorficzne	-	-	amfibolit gnejs słabo przeobrażony łupek mułowy	-
Klasty mineralne	kwarc skalenie alkaliczne muskowit amfibol	kwarc skalenie alkaliczne	kwarc	-

Rys. 8.4 Mikrostruktura kruszywa z betonu autostrady (DE), analiza cienkich szlifów w świetle spolaryzowanym XPL, przekroje ziaren kruszywa: (a) piasek kwarcowy: (1) kwarc mikrokrystaliczny, (2) kwarc mikro- i kryptokrystaliczny w kruszywie grubym (piaskowiec), (3) kwarc monokrystaliczny, (b) kwarc mikro- i kryptokrystaliczny w kruszywie grubym (piaskowiec)

Analiza petrograficzna cienkich szlifów wykonanych z autostrady (DE) ukierunkowana na rozpoznanie minerałów reaktywnych potwierdziła obecność szkodliwych składników w ziarnach kruszywa. Zidentyfikowano kwarc mikro- i kryptopkrystaliczny, jak również kwarc zdeformowany w ziarnach kruszywa drobnego (Rys. 8.4 a). W kruszywie grubym także stwierdzono obecność kwarcu mikro- i kryptokrystalicznego w ziarnach z piaskowca (szarogłazu), Rys. 8.4 b.

Wyznaczono ilościową zawartość mikro- i kryptokrystalicznego kwarcu w kruszywie grubym, wykorzystując metodykę przedstawioną w Rozdziale 4.5.1. Wyniki przedstawiono w Tabeli 8.2. Kruszywo drobne nie zostało zbadane w sposób ilościowy, ze względu na brak możliwości wyseparowania pojedynczych ziaren piasku kwarcowego w sposób automatyczny. Manualne oznaczanie ziaren kruszywa drobnego wiązałoby się ze zbyt dużym błędem eksperymentatora.

Tabela 8.2 Powierzchniowa zawartość kwarcu mikro- i kryptokrystalicznego w kruszywie grubym w betonach z nawierzchni drogowych

	Droga ekspresowa (PL)	Autostrada (DE)
Powierzchniowa zawartość kwarcu mikro- i kryptokrystalicznego w kruszywie grubym	$4,9 \pm 1,8\%$	$4,2 \pm 1,9\%$
Powierzchniowa zawartość kwarcu mikro- i kryptokrystalicznego w kruszywie reaktywnym	14,6 ± 5,7% (kwarcyt)	17,4 ± 7,5% (piaskowiec)

Całkowita zawartość reaktywnych form kwarcu w kruszywie grubym w obu nawierzchniach była wysoka i wynosiła odpowiednio 4,9 i 4,2% w nawierzchni z drogi ekspresowej (PL) i autostrady (DE). Ponieważ w kruszywie grubym stwierdzono występowanie różnych skał, wyniki przedstawiono także w przeliczeniu na ziarna kwarcytu (nawierzchnia PL) i piaskowca (nawierzchnia DE). Zawartość reaktywnych form kwarcu w badanych kruszywach była znacznie wyższa niż w analizowanym w rozprawie kruszywie granitowym (od 1,8 do 4,7%), 14,6 i 17,4% odpowiednio w kruszywie kwarcytowym i kruszywie z piaskowca. Dodatkowo kwarc mikro- i kryptokrystaliczny jest składnikiem, który wykazuje reaktywność znacznie szybciej niż kwarc zdeformowany. Duża zawartość reaktywnego kwarcu wpłynęła na ujawnienie się licznych spękań w nawierzchniach już po kilkunastu latach eksploatacji. Nawierzchnie odladzane były chlorkiem sodu, który w mniejszym stopniu wpływa na

przyspieszenie ASR w porównaniu do mrówczanów. Można przypuszczać, że nawierzchnie z kruszywem granitowym zawierającym kwarc zdeformowany w ilości 1,8-4,7% przy stosowaniu mrówczanu sodu lub potasu również wykazałyby zniszczenia wskutek ASR po krótkim czasie użytkowania.

8.2. Analiza mikrostruktury

Na podstawie analizy mikrostruktury za pomocą mikroskopu skaningowego SEM-EDS stwierdzono liczną obecność produktów reakcji ASR w próbkach pobranych zarówno z drogi ekspresowej (PL) jak i autostrady (DE). Na Rys. 8.5 - Rys. 8.10 przedstawiono przykłady produktów reakcji ASR w betonie z drogi ekspresowej (PL) i autostrady (DE).

Rys. 8.5 Mikrostruktura betonu pobranego z drogi ekspresowej (PL), żel ASR wypełniający spękanie w kruszywie (1) i przechodzący do matrycy cementowej (2), kwarc (3)

Rys. 8.6 Mikrostruktura betonu pobranego z drogi ekspresowej (PL), żel ASR w spękaniach matrycy cementowej (1) oraz wypełniający pory powietrzne (2), ettringit w porach powietrznych (3)

Rys. 8.7 Mikrostruktura betonu pobranego z drogi ekspresowej (PL), żel ASR w spękaniu kruszywa (1) oraz w porze powietrznym (2), kwarc (3)

Rys. 8.8 Mikrostruktura ziarna kruszywa grubego z piaskowca w betonie pobranym z autostrady (DE), spękanie wypłenione żelem ASR w postaci krystalicznej (1), kwarc (2), amfibol (3), wapień (4)

Rys. 8.9 Mikorstruktura betonu pobranego z autostrady (DE), żel ASR amorficzny (1) w spękaniu kruszywa grubego z piaskowca migrujący do matrycy cementowej, kwarc (2), amfibol (3), skaleń sodowy (4)

Rys. 8.10 Mikrostruktura betonu pobranego z autostrady (DE), pory powietrzne wypełnione produktem reakcji ASR (1)

Zniszczenia mikrostruktury w postaci spękań w kruszywie oraz matrycy cementowej, a także liczna obecność produktów reakcji ASR w postaci krzemianu wapniowo-potasowosodowego miały bardzo zbliżony charakter w obydwu analizowanych konstrukcjach nawierzchni drogowych. W matrycy cementowej stwierdzono obecność licznych niehydratyzowanych ziaren cementu. Część porów powietrznych wypełniona była ettringitem. Wszystkie analizowane próbki zawierały produkty reakcji ASR w postaci żelu Si-Ca-K-Na. Produkty reakcji zlokalizowane były przede wszystkim w spękaniach ziaren kruszywa, jednak stwierdzono również migrację żelu do matrycy cementowej oraz porów powietrznych. Obecność żelu Si-Ca-K-Na w spękaniach ziaren kruszywa stwierdzono tylko w kruszywie kwarcytowym (droga ekspresowa PL) oraz w kruszywie z piaskowca (autostrada DE). Obserwacje mikrostruktury SEM potwierdziły wyniki analizy petrograficznej i ilościowego oznaczenia zawartości kwarcu mikro- i kryptokrystalicznego. Spękania i żel ASR obecne były tylko w reaktywnym kruszywie.

Analizie poddano również skład chemiczny żelu ASR, wyniki przedstawiono w Tabeli 8.3.

Tabela 8.3 Skład chemiczny produktów reakcji alkalia-krzemionka w betonach pobranych ze zniszczonych konstrukcji nawierzchni drogowych: Ca/Si, (Na+K)/Si, Na/K (obliczone na podstawie % atomowych EDS)

Źródło	Miejsce występowania	Ca/Si	Na+K/Si	Na/K
Droga	Kruszywo	$0,\!46 \pm 0,\!36$	$0,26 \pm 0,11$	$0,\!29 \pm 0,\!15$
ekspresowa (PL)	Pory powietrzne	$1,\!34\pm0,\!97$	$0,\!32 \pm 0,\!16$	$0,74 \pm 0,17$
Autostrada (DE)	Kruszywo	$0,\!38 \pm 0,\!14$	$0,\!33\pm0,\!08$	$0,81 \pm 0,61$
	Pory powietrzne	$1,77 \pm 0,44$	$0,\!17 \pm 0,\!03$	$0,\!63 \pm 0,\!24$

Skład chemiczny żelu w obydwu nawierzchniach drogowych był zróżnicowany w zależności od miejsca występowania. Żel w porach powietrznych charakteryzował się zwiększoną zawartością wapnia (średnia wartość Ca/Si 1,34 i 1,77 dla nawierzchni PL i DE, odpowiednio). Dodatkowo żel niezależnie od źródła odwiertu betonu i miejsca występowania zawierał większą ilość potasu niż sodu. Skład był jest zgodny z danymi opublikowanymi w literaturze [60][167][139].

8.3. Ocena stopnia zniszczenia konstrukcji

Do oceny stopnia zniszczenia odwiertów betonu pobranych z autostrady (DE) oraz drogi ekspresowej z pasa wolnego (PL) wykorzystano metodę wskaźnika oceny uszkodzeń (DRI). Wyniki przedstawiono w Tabeli 8.4.

Rodzaj uszkodzenia	Oznaczenie	Wartość (autostrada DE)	Wartość (droga ekspresowa PL)
Spękanie zamknięte w kruszywie	CCA	14	18
Spękanie otwarte w kruszywie bez produktów reakcji	OCA	43	57
Spękanie otwarte w kruszywie wypełnione produktami reakcji	OCA + RP	60	28
Spękanie w matrycy cementowej	ССР	139	93
Spękanie w matrycy cementowej wypełnione produktami reakcji	CCP + RP	113	65
Odspojenie kruszywa grubego	Debon	12	135
Ziarno kruszywa przereagowane w produkt reakcji	RA	3	6
DRI		384	402

Tabela 8.4 Wyniki obliczeń wskaźnika oceny uszkodzeń (DRI)

Wartość wskaźnika DRI w analizowanych betonach była wysoka i wynosiła 384 i 402 odpowiednio w betonie z autostrady (DE) i drogi ekspresowej (PL). Sanchez i in. [143] oraz Fournier i in. [36] zaproponowali klasyfikację zniszczeń na skutek ASR w zależności od wielkości wskaźnika DRI. Na tej podstawie stwierdzono umiarkowane (3 w pięciostopniowej skali) zniszczenie nawierzchni betonowej związane z ASR.

Na podstawie uzyskanych wyników badań oraz danych literaturowych stwierdzono, że reakcja alkaliczna kruszywa miała znaczący wpływ na degradację betonowych nawierzchni drogowych. Największy wpływ na wysoką wartość DRI w nawierzchni z autostrady niemieckiej miały spękania w matrycy cementowej, natomiast w nawierzchni z polskiej drogi ekspresowej były to odspojenia kruszywa grubego, oba wynikające z reakcji alkalicznej kruszywa.

Przeprowadzono również ilościową analizę siatki spękań w próbkach z drogi ekspresowej (PL). Na jej podstawie określono:

- całkowitą długość dendrytyczną rys [mm] suma długości dendrytycznych wszystkich rys,
- całkowitą powierzchnię rys [mm²] suma powierzchni wszystkich rys,
- gęstość rys [mm⁻¹] iloraz całkowitej długości dendrytycznej rys do powierzchni analizowanego obrazu,

 udział powierzchniowy rys - iloraz całkowitej powierzchni rys do powierzchni analizowanego obrazu.

Wyniki analizy zarysowań, w zależności od miejsca pobrania odwiertu (pas wolny, pas awaryjny) przedstawiono w Tabeli 8.5 oraz w Tabeli 8.6.

Tabela 8.5 Wyniki analizy struktury zarysowań betonu z odwiertów pobranych z drogi ekspresowej (PL) na podstawie obserwacji cienkich szlifów w świetle UV

Domonota	Wartość		
Parametr	Pas awaryjny	Pas wolny	
Całkowita powierzchnia rys [mm ²]	$21,\!75\pm1,\!83$	$30,87 \pm 4,12$	
Długość dendrytyczna [mm]	$389,82 \pm 28,60$	$467,51 \pm 17,05$	
Gęstość rys [mm ⁻¹]	$0,\!39 \pm 0,\!03$	$0,\!47\pm0,\!02$	
Udział powierzchniowy rys [%]	$2,17 \pm 0,19$	$3,09 \pm 0,41$	

Tabela 8.6 Wyniki analizy struktury mikrozarysowań kruszywa kwarcytowego w betonie z odwiertów pobranych z drogi ekspresowej (PL) na podstawie obserwacji SEM

Deremetr	Wartość		
Faranieu	Pas awaryjny	Pas wolny	
Całkowita powierzchnia rys [mm ²]	$3,6 \pm 0,18$	$6,2 \pm 0,31$	
Długość dendrytyczna [mm]	$435\pm21{,}75$	$1815\pm90{,}75$	
Gęstość rys [mm ⁻¹]	$4,\!37 \pm 0,\!22$	$21,\!09\pm1,\!05$	
Udział powierzchniowy rys [%]	$1,\!03\pm0,\!05$	$3,32 \pm 0,17$	

Na podstawie przeprowadzonej analizy ilościowej stopnia zarysowania próbek betonowych zauważono, że dużo więcej rys znajduje się w próbkach pobranych z pasa wolnego niż z pasa awaryjnego. Średnia długość dendrytyczna zarysowań na pasie wolnym była o około 20% większa niż na pasie awaryjnym, natomiast udział powierzchniowy zarysowań był większy o około 40%. Podobne różnice zauważono w układzie mikrozarysowań kruszywa kwarcytowego na podstawie obserwacji SEM. Średnia długość dendrytyczna zarysowań na pasie wolnym była 4-krotnie większa niż na pasie awaryjnym, a udział powierzchniowy był większy 3-krotnie.

8.4. Podsumowanie

W odwiertach pobranych z dwóch nawierzchni drogowych szybkiego ruchu po kilkunastu latach eksploatacji stwierdzono zniszczenia będące wynikiem reakcji ASR w postaci mikroi makrospękań w kruszywie i matrycy cementowej oraz liczne przykłady obecności żelu ASR.

Na podstawie analizy petrograficznej na cienkich szlifach stwierdzono obecność reaktywnych składników mineralnych w kruszywie w postaci kwarcu mikroi kryptokrystalicznego, a także kwarcu zdeformowanego. W przypadku drogi ekspresowej (PL) reaktywnym kruszywem było grube kruszywo kwarcytowe, natomiast w przypadku autostrady (DE) kruszywo drobne w postaci piasku kwarcowego.

Występowanie charakterystycznego żelu ASR w spękaniach kruszywa wyraźnie wskazuje na związek spękań betonu z reakcją alkalia kruszywo w obydwu analizowanych nawierzchniach drogowych. Żel ASR występował zarówno w postaci krystalicznej, jak i amorficznej. Stwierdzono zróżnicowanie składu chemicznego żelu w zależności od miejsca występowania (kruszywo, pory powietrzne). Skład chemiczny żelu był zgodny z danymi literaturowymi.

Zastosowane metody analizy ilościowej w postaci wyznaczenia wskaźnika DRI lub analizy siatki spękań pozwoliły na dokładniejszą ocenę stopnia zniszczenia betonu. W obydwu przypadkach uznano badane konstrukcje za zniszczone na skutek reakcji alkalia-krzemionka w sposób znaczny.

W mikrostrukturze betonu nawierzchniowego stwierdzono obecność śladowych ilości NaCl, jednak nie miał on istotnego wpływu na uszkodzenia powstałe wskutek ASR.

Potwierdzono przydatność autorskich metod charakteryzacji materiałów pod kątem podatności na ASR w rzeczywistych obiektach drogowych.

Analiza betonów wykonanych około 15-20 lat temu pobranych ze zniszczonych konstrukcji nawierzchni drogowych udowodniła, że problem reakcji alkalicznej kruszywa w betonie występuje i konieczne jest stosowanie środków i metod, które pozwolą na uniknięcie uszkodzeń konstrukcji w przyszłości.

9. Wnioski końcowe

Celem przeprowadzonych badań było określenie reaktywności alkalicznej powszechnie stosowanego w nawierzchniach betonowych kruszywa granitowego oraz analiza wpływu środków odladzających na reakcję alkaliczno-krzemionkową w betonie z tym kruszywem.

Na podstawie ilościowej analizy obrazu oraz wyników badania reaktywności alkaliczno-krzemionkowej kruszyw stwierdzono, że:

- kruszywa ze skał granitowych z krajowych złóż wykazują reaktywność alkalicznokrzemionkową, pomimo zerowego stopnia reaktywności na podstawie metody szybkiej, co uzasadnia słuszność Tezy 1;
- istnieje korelacja między zawartością kwarcu zdeformowanego w kruszywie granitowym z krajowych złóż, a wielkością ekspansji próbek świadczącą o reaktywności kruszywa, co potwierdza Tezę 2.

Na podstawie przeprowadzonych badań ekspansji próbek zaprawy i betonu oraz modyfikacji metod z zastosowaniem roztworów środków odladzających i badań mikrostruktury stwierdzono, że:

- rodzaj zastosowanego środka odladzającego miał decydujący wpływ na wielkość ekspansji i degradację mikrostruktury powstałą w próbkach zapraw lub betonów z kruszywem granitowym; największe zniszczenia mikrostruktury betonu z kruszywem granitowym spowodowały środki odladzające w kolejności: mrówczan potasu, mrówczan sodu i chlorek sodu;
- zmodyfikowanie metody badawczej dotyczących oceny reaktywności alkalicznej kruszywa umożliwiło wyjaśnienie wpływu środków odladzających na podatność kruszywa granitowego na ASR.

Ponadto odnośnie do analizowanego kruszywa ze złóż krajowych, wykazano, że:

- kruszywa ze skał magmowych głębinowych, w tym kruszywa granitowe zawierały reaktywne składniki mineralne w postaci kwarcu zdeformowanego, którego zawartość wynosiła od 0,2 do 4,7%;
- istnieje graniczna zawartość kwarcu zdeformowanego; kruszywo granitowe uznaje się za reaktywne, jeśli zawiera powyżej 2,1% kwarcu zdeformowanego;

- ilościowa ocena zawartości kwarcu zdeformowanego w kruszywach ze skał magmowych głębinowych jest właściwym narzędziem do wstępnej oceny potencjalnej reaktywności alkaliczno-krzemionkowej;
- istnieje korelacja między ekspansją próbek zapraw przechowywanych w roztworach 20% NaCl lub 50% HCOOK od zawartości kwarcu zdeformowanego;
- stosowanie środków odladzających o stężeniu odpowiadającym warunkom rzeczywistym powoduje znaczącą ekspansję betonu w wyniku ASR;
- rodzaj źródła zewnętrznych alkaliów w postaci środka odladzającego w decydujący sposób wpłynął na mikrostrukturę i skład chemiczny powstałego żelu ASR;
- zawartość alkaliów (stosunek (Na+K)/Si) w żelu ASR była skorelowana z wielkością ekspansji betonu poddanego działaniu różnych środków odladzających, wraz ze wzrostem zawartości alkaliów w żelu liniowo wzrastała ekspansja betonu (Teza 3).

Wyniki uzyskane z analizy odwiertów pobranych z uszkodzonych nawierzchni drogowych potwierdziły przyczynę zniszczenia betonu w wyniku reakcji alkalicznokrzemionkowej kruszywa. Dowodzi to, że zagadnienie ASR jest aktualnym problemem i wymaga stałego monitorowania jakości kruszyw oraz składu betonu. Dodatkowo, zastosowane techniki badawcze (DRI, ilościowa analiza rys) do oceny stopnia zniszczenia mikrostruktury betonu stanowiły uzupełnienie przeprowadzonych analiz. Na podstawie analizy potwierdzono przydatność opracowanych, autorskich metod charakterystyki materiałów i betonu (zawartość reaktywnych form kwarcu, analiza stopnia spękania) pod kątem podatności na ASR w rzeczywistych nawierzchniach drogowych.

Przeprowadzone obserwacje i analizy pozwoliły na sformułowanie postulatów dotyczących kierunków dalszych badań w zakresie reaktywności alkalicznej kruszyw stosowanych na nawierzchnie betonowe dróg i lotnisk:

- przedstawiony wpływ środków odladzających na reaktywność kruszywa należy poszerzyć o badania mające na celu ograniczenie ekspansji betonu w postaci zastosowania dodatków mineralnych (popiół lotny, żużel wielkopiecowy, metakaolin);
- zastosowanie dedykowanego kruszywa do betonu nawierzchniowego wymaga przeprowadzenia dodatkowych badań w warunkach polowych, które pozwolą ocenić wpływ środków odladzających na trwałość tego betonu;
- biorąc pod uwagę stały dostęp alkaliów w postaci środków odladzających, interesujące jest pogłębienie wiedzy dotyczącej właściwości mechanicznych żelu ASR w zależności od jego składu chemicznego.
Literatura cytowana w pracy

- [1] Alaejos P., Lanza V., *Influence of equivalent reactive quartz content on expansion due to alkali silica reaction*, Cement and Concrete Research, 42 (2012) 99–104.
- [2] Ali A., Sajid M., Ali L., Usman M., Petrographic study of coarse aggregate to evaluate their susceptibility to Alkali Silica Reactivity in different rocks of District Shangla, Swat, Pakistan, Journal of Himalayan Earth Sciences, 47 (2014) 125-139.
- [3] Althoey F., Wisner B., Kontsos A., Farnam Y., *Cementitious materials exposed to high concentration of sodium chloride solution: Formation of a deleterious chemical phase change*, Construction and Building Materials, 167 (2018) 543–552.
- [4] Antolik A., Jóźwiak-Niedźwiedzka D., Assessment of the alkali-silica reactivity potential in granitic rocks, Construction and Building Materials, 295 (2021) 123690-1-12.
- [5] Antolik A., Jóźwiak-Niedźwiedzka D., Diederichs U., *Microstructural evaluation of the real concrete pavements with potential alkali aggregate reaction signs*, in: Proceedings of the 16th International Conference on Alkali-Aggregate Reaction in Concrete, Volume I edited by: A. L. Batista, A. S. Silva, I. Fernandes, L. O. Santos, J. Custódio, C. Serra, (2021).
- [6] Balachandran C., *Potential for inducing and accelerating alkali silica reaction in concretes exposed to potassium acetate deicer: laboratory and field structures*, Purdue University West Lafayette, Indiana (2009).
- [7] Bazănt Z P, Steffens A. *Mathematical model for kinetics of alkali–silica reaction in concrete*, Cement and Concrete Research, 30 (2000) 419–428
- [8] Bebłacz D., *Zimowe utrzymanie nawierzchni betonowych*, Budownictwo, Technologie, Architektura, 1 (2008) 45–47.
- [9] Berra M., Mangialardi T., Paolini A.E., *Alkali Release from Aggregates in Long-Service Concrete Structures : Laboratory Test Evaluation and ASR Prediction*, Materials (Basel), 11 (2018).
- [10] Berube M.A., Dorion J.F., Duchesne J., Fournier B., Vezina D., Laboratory and field investigations of the influence of sodium chloride on alkali – silica reactivity, Cement and Concrete Research, 33 (2003) 77–84.
- [11] Boehm-Courjault E., Barbotin S., Leemann A., Scrivener K., *Microstructure, crystallinity and composition of alkali-silica reaction products in concrete determined by transmission electron microscopy*, Cement and Concrete Research, 130 (2020) 105988.
- [12] Brandt A. M., Jóźwiak-Niedźwiedzka D., Uszkodzenia powierzchni betonu spowodowane cyklicznym zamrażaniem i odmrażaniem, XLVII Konferencja Naukowa Komitetu Inżynierii Lądowej i Wodnej PAN oraz Komitetu Nauki PZITB, Problemy Naukowo-Badawcze Budownictwa, (2001).
- [13] Broekmans M.A.T.M., *Deleterious reactions of aggregate with alkalis in concrete*, Reviews in Mineralogy and Geochemistry, 74 (2012) 279–364.
- [14] Castro N., Fernandes I., Santos Silva A., *Alkali reactivity of granitic rocks in Portugal: A case study.* 12th Euroseminar on Microscopy Applied to Building Material, Dortmund, Germany, (2009) 62-72.
- [15] Castro N., Wigum B.J., *Assessment of the potential alkali-reactivity of aggregates for concrete by image analysis petrography*, Cement and Concrete Research, 42 (2012) 1635–1644.
- [16] Chatterij S., Thaulow N., Jensen A.D., *Studies of alkali-silica reaction. Part 4. Effect of different alkali salt solutions on expansion*, Cement and Concrete Research, 17 (1987) 777–783.
- [17] Dąbrowski M., Glinicki M. A., *Charakterystyka porów powietrznych i mrozoodporność betonów napowietrzonych z popiołem lotnym wapiennym*, Roads and Bridges Drogi i Mosty, 12 (2013) 41-55.
- [18] Dent Glasser L.S., *Osmotic pressure and the swelling of gels*, Cement and Concrete Research, 9 (1979) 515-517.
- [19] Diamond, S., Kotwica, L., Olek, J., Rangaraju, P. R., and Lovell, J., *Chemical aspects of severe ASR induced by potassium acetate airfield pavement deicer solution* Proceedings of 8th CANMET International Conference on Recent Advances in Concrete Technology, Canada, (2006) 261-277.
- [20] Drolet C., Duchesne J., Fournier B., *Effect of alkali release by aggregates on alkali-silica reaction*, Construction and Building Materials, 157 (2017).

- [21] Du. H, Tan K. H., *Effect of particle size on alkali–silica reaction in recycled glass mortars*, Construction and Building Materials, 66 (2014) 275-285.
- [22] Dziedzic K., Dąbrowski M., Antolik A., Glinicki A., Charakterystyka napowietrzenia mieszanki betonowej metodą sekwencyjno-cioenieniową, Roads and Bridges Drogi i Mosty, 19 (2020) 107-118.
- [23] Fanijo E.O., Kolawole J.T., Almakrab A., Alkali-silica reaction (ASR) in concrete structures: Mechanisms, effects and evaluation test methods adopted in the United States, Case Studies in Construction Materials, 15 (2021).
- [24] Farny J.A., Kerkhoff B., *Concrete Technology: Diagnosis and Control of Alkali-Aggregate Reactions in Concrete*, (2007) http://www.cement.org/docs/default-source/fc_concrete_technology/is413-02—diagnosis-and-control-of-alkali-aggregate-reactions-in-concrete.pdf.
- [25] Fatt N. T., Beng Y. E., *Potential alkali-silica reaction in aggregate of deformed granite*, Bulletin of the Geological Society of Malaysia, 53 (2007) 81–88.
- [26] Fatt N. T., Raj J. K., Ghani A. A., *Potential Alkali-Reactivity of Granite Aggregates in the Bukit Lagong Area, Selangor, Peninsular Malaysia*, Sains Malaysiana, 42 (2013) 773–781.
- [27] Fernandes I., Broekmans M.A.T.M., *Alkali Silica Reactions: An Overview. Part I*, Metallography Microstructure and Analysis, 2 (2013) 257-267.
- [28] Fernandes I., dos Anjos Ribeiro M., Broekmans M.A.T.M., *Petrographic Atlas: Characterisation of Aggregates Regarding Potential Reactivity to Alkalis*, RILEM, Springer, Dordrecht, (2016).
- [29] Fernandes I., Noronha F., Teles M., *Examination of the concrete from an old Portuguese dam: Texture and composition of alkali-silica gel*, Materials Characterization 58 (2007) 1160–1170.
- [30] Fernandes I., Noronha F., Teles M., *Microscopic analysis of alkali-aggregate reaction products in a 50year-old concrete*, Materials Characterization 53 (2004) 295–306.
- [31] Fernandes I., *Role of granitic aggregates in the deterioration of a concrete dam*, Bulletin of Engineering Geology and the Environment, 74 (2014) 195–206.
- [32] Figueira R.B., Sousa R., Coelho L., Azenha M., de Almeida J.M., Jorge P.A.S., Silva C.J.R., Alkali-silica reaction in concrete: Mechanisms, mitigation and test methods, Construction and Building Materials, 222 (2019) 903–931.
- [33] Fischer K., Urbonas L., Heinz D., *Alkali-Silica Reaction in concrete with granite. Laboratory tests and real service conditions*, w: Proceedings of the 15th International Conference on Alkali-Aggregate Reaction in Concrete (2016).
- [34] Folliard K.J., Barborak R., Drimalas T., Du L., Garber S., Ideker J.H., Ley T., Williams S., Juenger M.C.G., Fournier B., Thomas M.D.A., *FHWA/TX-06/0-4085-5 Preventing ASR/DEF in New Concrete: Final Report*, ICAR Technical Reports, 7 (2006) 266.
- [35] Fournier B., Ideker J. H., Folliard K. J. Thomas M. D. A., Nkinamubanzie P-C., Chevrier R., *Effect of environmental conditions on expansion in concrete due to alkali–silica reaction (ASR)*, Materials Characterization, 60 (2009) 669-679.
- [36] Fournier B., Fecteau P. L., Villeneuve V., Tremblay S., Sanchez, L. *Description of petrographic features of damage in concrete used in the determination of the Damage Rating Index (DRI)*, Department of Geology and Geological Engineering, Laval University, (2015) 58.
- [37] Garcia-Diaz E., Riche J., Bulteel D., Vernet C., *Mechanism of damage for the alkali–silica reaction*, Cement and Concrete Research, 36 (2006) 395–400.
- [38] Gautam B.P., Panesar D.K., Sheikh S.A., Vecchio F.J., *Effect of coarse aggregate grading on the ASR expansion and damage of concrete*, Cement and Concrete Research, 95 (2017) 75–83.
- [39] Gautam B.P., Panesar D.K., The effect of elevated conditioning temperature on the ASR expansion, cracking and properties of reactive Spratt aggregate concrete, Construction and Building Materials, 140 (2017) 310–320.
- [40] Geng G., Barbotin S., Shakoorioskooie M., Shi Z., Leemann A., Sanchez D.F., Grolimund D., Wieland E., Dähn R., An in-situ 3D micro-XRD investigation of water uptake by alkali-silica-reaction (ASR) product, Cement and Concrete Research 141 (2021).
- [41] Gholizadeh Vayghan A., Rajabipour F., Rosenberger J.L., Composition-rheology relationships in alkalisilica reaction gels and the impact on the Gel's deleterious behavior, Cement and Concrete Research 83 (2016) 45–56.

- [42] Gholizadeh-Vayghan A., Rajabipour F., Quantifying the swelling properties of alkali-silica reaction (ASR) gels as a function of their composition, Journal of the American Ceramic Society, 100 (2017) 3801–3818.
- [43] Gholizadeh-Vayghan A., Rajabipour F., The influence of alkali–silica reaction (ASR) gel composition on its hydrophilic properties and free swelling in contact with water vapor, Cement and Concrete Research 94 (2017) 49–58.
- [44] Giebson C., Seyfarth K., Stark J., *Influence of acetate and formate-based deicers on ASR in airfield concrete pavements*, Cement and Concrete Research, 40 (2010) 537–545.
- [45] Gieras R., Adamczewski G., Woyciechowski P., *Mrozoodporność betonu wałowanego z kruszywem żwirowym*, IX Konferencja Dni betonu. Tradycja i nowoczesność. Monografie technologii betonu, vol. 1-2, Stowarzyszenie Producentów Cementu, (2016) 53-62.
- [46] Glinicki M. A., *Inżynieria betonowych nawierzchni drogowych*, PWN, (2019) 371.
- [47] Glinicki M. A., *Trwałość betonu w nawierzchniach drogowych*, Studia i Materiały, Zeszyt 66, Instytut Badawczy Dróg i Mostów, (2011), pp. 289.
- [48] Glinicki M.A., Jóźwiak-Niedźwiedzka D., Antolik A., Dziedzic K., Gibas K., Susceptibility of selected aggregates from sedimentary rocks to alkali-aggregate reaction, Roads and Bridges – Drogi i Mosty, 18 (2019) 5–24.
- [49] Glinicki M.A., Niedźwiedzka-Jóźwiak D., Antolik A., Dziedzic K., Dąbrowski M., Bogusz K., Diagnosis of ASR damage in highway pavement after 15 years of service in wet-freeze climate region, Case Studies in Construction Materials 17 (2022).
- [50] Gołaszewski, J., Szwabowski J., *Influence of Superplasticizers on Rheological Behaviour of Fresh Cement Mortars*, Cement and Concrete Research, 34 (2004) 235-248.
- [51] Gołaszewski, J., *Influence of Cement Properties on New Generation Superplasticizers Performance*, Construction and Building Materials, 35 (2012) 586-596.
- [52] Góra J., Piasta W., *Impact of mechanical resistance of aggregate on properies of concrete*, Case Studies in Construction Materials, 13 (2020), e00438.
- [53] Góralczyk S., Filipczyk M., Aktualne badania reaktywności alkalicznej polskich kruszyw część II, w: Kruszywa Mineralne t.2, Wydział Geoinżynierii, Górnictwa i Geologii Politechniki Wrocławskiej, Wrocław (2018) 37–48.
- [54] Góralczyk S., *Occurence and assessment of reactive aggregates in Poland*, Institute of Mechanized Construction and Rock Mining, Warsaw (2003).
- [55] Grattan-Bellew P.E., *Microcrystalline quartz, undulatory extinction the alkali-silica reaction*, w: Poole A.B. (Ed.), Proceedings of the 9th International Conference on Alkali-Aggregate Reaction in Concrete, London, UK (1992), 383-394.
- [56] Hagelia P., Fernandes I., On the AAR susceptibility of granitic and quartzitic aggregates in view of petrographic characteristics and accelerated testing, w: T. Drimalas, J. H. Ideker, B. Fournier (Eds.) 14th International Conference on Alkali-Aggregate Reactions in Concrete, Austin, Texas, USA, (2012) pp. 10.
- [57] Hansen, W. Studies Relating To the Mechanism by Which the Alkali-Aggregate Reaction Produces Expansion in Concrete. Journal of the American Concrete Institute, 40 (1944) 213–228.
- [58] Heisig A., Urbonas L., Beddoe R.E., Heinz D., *Ingress of NaCl in concrete with alkali reactive aggregate: effect on silicon solubility*, Materials and Structures, 49 (2016) 4291–4303.
- [59] Hobbs D.W., *History, the reaction, cracking and pessimum behaviour in alkali-silica reaction in concrete*, Rozdział 3, Thomas Telford, London (1988) 1-33.
- [60] Hou X., Kirkpatrick R.J., Struble L.J., Monteiro P.J.M., *Structural investigations of alkali silicate gels*, Journal of the American Ceramic Society, 88 (2005) 943–949.
- [61] Hou X., Struble L.J., Kirkpatrick R.J., *Formation of ASR gel and the roles of C-S-H and portlandite*, Cement and Concrete Research, 34 (2004) 1683–1696.
- [62] Idorn G. M., A discussion of the paper "Mathematical model forkinetics of alkali-silica reaction in concrete" by Zdenek P. Bazănt and Alexander Steffens. Cement and Concrete Research, 31 (2001) 1109– 1110.

- [63] Jackiewicz-Rek W., Woyciechowski P., Zmyślony M., Wpływ zawartości popiołów lotnych w betonie na jego wybrane cechy, Prace Naukowe Instytutu Budownictwa Politechniki Wrocławskiej. Studia i Materiały, 87, (2006) 39-46.
- [64] Jain J., Olek J., Janusz A., Jóźwiak-Niedźwiedzka D., *Effects of Deicing Salt Solutions on Physical Properties of Pavement Concretes*, Transportation Research Record, 2290 (2012) 69–75.
- [65] Johnston D., Fournier B., A kinetic-based method for interpreting accelerated mortar bar test (ASTM C1260) data, Proceedings of the 11th International Conference on Alkali-Aggregate Reaction, Québec, (2000) 355–364.
- [66] Johnston D., Stokes D., Surdahl R., *A kinetic-based method for interpreting ASTM C1260*, Cement, Concrete and Aggregates, 22 (2000) 142–149.
- [67] Jones T. .N., Poole A. B., Alkali-Silica Reaction in Several U. K. Concretes: The Effect of Temperature and Humidity on Expansion, and the Significance of Ettringite Development, in: Proceedings of the 7th International Conference on Concrete Alkali-Aggregate Reactions, edited by Grattan-Bellew P. E., Patrick E., Noyes Publications, Park Ridge, N.J., U.S.A., (1987).
- [68] Jones T. N., *Mechanism of reactions involving British chert and flint aggregates*, Proceedings of the 8th International Conference on Concrete Alkali-Aggregate Reactions, Kyoto (1989), 135-140.
- [69] Joźwiak-Niedźwiedzka D., Jaskulski R., Glinicki M.A., *Application of image analysis to identify quartz grains in heavy aggregates susceptible to ASR in radiation shielding concrete*, Materials (Basel), 9 (2016).
- [70] Jóźwiak-Niedźwiedzka D., Dąbrowski M., Gibas K., Antolik A., Glinicki M. A., Alkali-silica reaction and microstructure of concrete subjected to combined chemical and physical exposure conditions, MATEC Web of Conferences, 163 (2018) 05009.
- [71] Jóźwiak-Niedźwiedzka D., Gibas K., Glinicki M. A., Petrographic identification of reactive minerals in domestic aggregates and their classification according to RILEM and ASTM recommendations, Roads and Bridges - Drogi i Mosty 16 (2017) 223–239.
- [72] Juenger M.C.G., Siddique R., *Recent advances in understanding the role of supplementary cementitious materials in concrete*, Cement and Concrete Research 78 (2015) 71–80.
- [73] Julio-Betancourt G.A., *Effect of de-icer and anti-icer chemicals on the durability, microstructure and properties of cement-based materials*, (2009).
- [74] Kawabata Y., Dunant C., Yamada K., Scrivener K., Impact of temperature on expansive behavior of concrete with a highly reactive andesite due to the alkali–silica reaction, Cement and Concrete Research, 125 (2019).
- [75] Kawamura M., Fuwa H., *Effects of lithium salts on ASR gel composition and expansion of mortars*, Cement and Concrete Research, 33 (2003) 913–919.
- [76] Kawamura M., Iwahori K., *ASR gel composition and expansive pressure in mortars under restraint*, Cement and Concrete Composites, 26 (2004) 47–56.
- [77] Kawamura M., Takeuchi K., *Alkali-silica reaction and pore solution composition in mortars in sea water*, Cement and Concrete Research, 26 (1996) 1809–1819.
- [78] Kawamura M., Takeuchi K., Sugiyama A., *Mechanisms of expansion of mortars containing reactive aggregate in NaCl solution*, Cement and Concrete Research, 24 (1994) 621–632.
- [79] Kerrick D., Hooton R., *ASR of concrete aggregate quarried from a fault zone: results and petrographic interpretation of accelerated mortar bar tests*, Cement and Concrete Research, 22 (1992) 949–960.
- [80] Kępniak M., Woyciechowski P., Łukowski P., Kuziak J., Kobyłka R., *The durability of concrete modified* by waste limestone powder in the chemically aggressive environment, Materials, 12 (2019) 1693.
- [81] Kirkpatrick R.J., Kalinichev A.G., Hou X., Struble L., Experimental and molecular dynamics modeling studies of interlayer swelling: Water incorporation in kanemite and ASR gel, Materials and Structures, 38 (2005) 449–458.
- [82] Kleib J., Aouad G., Louis G., Zakhour M., Boulos M., Rousselet A., Bulteel D., *The use of calcium sulfoaluminate cement to mitigate the alkali silica reaction in mortars*, Construction and Building Materials, 184 (2018) 295–303.
- [83] Korentz J., Jurczak R., Szmatuła F., Rudnicki T., *Właściwości nawierzchni betonowej autostrady A18 po 82 latach eksploatacji*, Budownictwo-Technologie-Architektura, 4 (2021), 68-71.

- [84] Kowalska D., Pietruszewski P., Wpływ środków odladzających na beton przeznaczony na nawierzchnie lotniskowe, Dni Betonu, Monografie Technologii Betonu, Edycja 2, Stowarzyszenie Producentów Cementu, (2016), 1-19.
- [85] Kowalska D., Wesołowski M., Pajurek A., Poświata A., Zimowe utrzymanie nawierzchni lotniskowych z betonu cementowego w świetle wymagań normy NO-17-A205:2017, Dni Betonu, Monografie Technologii Betonu, Edycja 2, Stowarzyszenie Producentów Cementu, (2018), 111-128.
- [86] Kurdowski W., Chemia cementu i betonu, PWN, Kraków (2010).
- [87] Kwiecień A., Uszkodzenia betonowych nawierzchni lotniskowych, XXIV Konferencja Naukowo--Techniczna Szczecin-Międzyzdroje, Awarie Budowlane, (2009).
- [88] Lee H., Cody R. D., Cody A. M., Spry P. G, Effects of Various Deicing Chemicals on Pavement Concrete Deterioration. MID-Continent Transportation Symposium Proceedings, (200) 151-155.
- [89] Leemann A., Alkali-silica reaction sequence, products and possible mechanisms of expansion, in: Proceedings of the 16th International Conference on Alkali-Aggregate Reaction in Concrete, Volume II edited by: A. L. Batista, A. S. Silva, I. Fernandes, L. O. Santos, J. Custódio, C. Serra, (2022).
- [90] Leemann A., Le Saout G., Winnefeld F., Rentsch D., Lothenbach B., Alkali-Silica reaction: The Influence of calcium on silica dissolution and the formation of reaction products, Journal of the American Ceramic Society, 94 (2011).
- [91] Leemann A., Lothenbach B., *The influence of potassium-sodium ratio in cement on concrete expansion due to alkali-aggregate reaction*, Cement and Concrete Research 38 (2008) 1162–1168.
- [92] Leemann A., Munch B., The addition of caesium to concrete with alkali-silica reaction : implications on product identification and recognition of the reaction sequence, Cement and Concrete Research, 120 (2019) 27–35.
- [93] Leemann A., Shi Z., Lindgård J., *Characterization of amorphous and crystalline ASR products formed in concrete aggregates*, Cement and Concrete Research, 137 (2020) 106190.
- [94] Leemann A., Shi Z., Wyrzykowski M., Winnefeld F., *Moisture stability of crystalline alkali-silica* reaction products formed in concrete exposed to natural environment, Materials and Design, 195 (2020) 109066.
- [95] Linek M., Nita P., Wolka P., Żebrowski W., Wpływ rodzaju kruszywa grubego na nasiąkliwość i mrozoodporność betonu cementowego przeznaczonego na nawierzchnie lotniskowe, Dni Betonu, Monografie Technologii Betonu, Edycja 2, Stowarzyszenie Producentów Cementu, (2018) 1-14.
- [96] Luo S., Bai T., Guo M., Wei Y., W. Ma, Impact of Freeze Thaw Cycles on the Long-Term Performance of Concrete Pavement and Related Improvement Measures, Materials (Basel), 15 (2022) 4568.
- [97] Maclinnis C., Whiting J. D., *The frost resistance of concrete subjected to a deicing agent*, Cement and Concrete Research, 9 (1979) 325–336.
- [98] Malvar L.J., Cline G.D., Burke D.F., Rollings R., Sherman T.W., Greene J., *Alkali silica reaction mitigation: State-of-the-Art and recommendations*, Technical Report TR-2195-SHR, California (2002).
- [99] Malvar L.J., Lenke L.R., *Alkali Silica Reaction Criteria for Accelerated Mortar Bar Tests Based on Field Performance Data*, w: Proceedings of the 3rd World of Coal Ash, WOCA; Lexington, KY, USA. (2009).
- [100] Michaud V., Nonat A., Sorrentino D., Experimental simulation of mechanisms involved in the building of stresses in concerts subjected to alkali-silica reaction, Proceedings of the 10th International Congress on the Chemistry of Cement, Goetheburg (1997) 4.
- [101] Monteiro P.J.M., Shomglin K., Wenk H.R., Hasparyk N. P., *Effect of Aggregate Deformation on the Alkali-Silica Reaction*, ACI Materials Journal, 98 (2001) 179-183.
- [102] Moreira K., Oliveira P., Deus E., Cabral A., *Alkali-silica reaction: understanding the phenomenon*, Journal of Building Pathology and Rehabilitation, 6 (2021).
- [103] Multon S., Cyr M., Sellier A., Diederich P., Petit L., *Effects of aggregate size and alkali content on ASR expansion*, Cement and Concrete Research 40 (2010) 508–516.
- [104] Naziemiec Z., Garbacik A., Adamski G., *Długoterminowe badania reaktywności alkalicznej kajowych kruszyw*, w: Kruszywa Mineralne t.2, Wydział Geoinżynierii, Górnictwa i Geologii Politechniki Wrocławskiej, Wrocław (2018) 151–160.
- [105] Nita P., *Budowa i utrzymanie nawierzchni lotniskowych*, Wydanie 2, Wydawnictwa Komunikacji i Łączności, Warszawa (2008).

- [106] Nixon P.J., Bollinghaus R., Page C.L., Canham I., *Influence of sodium chloride on alkali-silica reaction*, Advances in Cement Research, 1 (1988) 99–106.
- [107] Nixon P.J., Sims I., *RILEM Recommendations for the Prevention of Damage by Alkali- Aggregate Reactions in New Concrete Structures*, Springer (2016).
- [108] Nowak-Michta A., *Influence of Superplasticizer on Porosity Structures in Hardened Concretes*, Procedia Engineering, 108 (2015) 262-269.
- [109] Nowak-Michta A., *Water-binder Ratio Influence on De-icing Salt Scaling of Fly Ash Concretes*, Procedia Engineering, 57 (2013) 823-829,
- [110] Nowoświat A., Gołaszewski J., Influence of the Variability of Calcareous Fly Ash Properties on Rheological Properties of Fresh Mortar with Its Addition, Materials (Basel), 12, (2019) 1942.
- [111] Olafsson, H. (1986). The effect of relative humidity and temperature on alkali expansion of mortar bars. In Proceedings of the 7th International Conference on Concrete Alkali Aggregate Reactions, (1986) 461–466.
- [112] Owens G., Fulton's Concrete Technology. 9th Edition, Cement and Concrete Institute, Midrand (2009).
- [113] Owsiak Z., *Alkali aggregate reaction in concrete containing high-alkali cement and granite aggregate*, Cement and Concrete Research, 34 (2004) 7–11.
- [114] Owsiak Z., Korozja wewnętrzna betonu, Kielce, (2015).
- [115] Owsiak Z., *Testing alkali-reactivity of selected concrete aggregates*, Journal of Civil Engineering and Management, *13* (2007) 201-207.
- [116] Owsiak Z., Zapała J., Czapik P., Sources of the gravel aggregate reaction with alkalis in concrete / Rozpoznanie przyczyn reakcji kruszywa żwirowego z alkaliami w betonie, Cement Wapno Beton, (3) (2012), 149-154.
- [117] Owsiak Z., Zapała-Sławeta J., Czapik P., *Diagnosis of concrete structures distress due to alkaliaggregate reaction*, Bulletin of the Polish Academy of Sciences: Technical Sciences, 63 (2015) 23–29.
- [118] Pan J. W., Feng Y. T., Wang J., Sun Q. C., Zhang C. H., Owen D. R. J., Modeling of alkali-silica reaction in concrete: A review, Frontiers of Structural and Civil Engineering, 6 (2012) 1–18.
- [119] Panesar D.K., *Supplementary cementing materials*, in: Developments in the Formulation and Reinforcement of Concrete, Second Edition, Mindess S. (Ed.), Elsevier LTD, (2019).
- [120] Pełczyński C., Nowacki T., Łukowski P., Woyciechowski P., Jaworski J., Porównanie metod badania mrozoodporności betonu oraz ocena wpływu zastosowanych składników mieszanki betonowej na wyniki badań, Reologia w technologii betonu : XVII konferencja naukowo-techniczna, Czeladź, (2017) 131-142.
- [121] Piasta W., Góra J., Turkiewicz T., *Properties and durability of coarse igneous rock aggregates and concretes*, Construction and Building Materials, 126 (2016) 119–129.
- [122] Pigeon M., Marchand J., Pleau R., Frost resistant concrete, Construction and Building Materials, 10 (1996) 339–348.
- [123] Ponikiewski, T., Gołaszewski J., *The Effect of High-Calcium Fly Ash on Selected Properties of Self-Compacting Concrete*, Archives of Civil and Mechanical Engineering, 14 (2014) 455-465.
- [124] Poole A. B., *Alkali-silica reactivity mechanisms of gel formation and expansion*, In: Proceedings of the 9th International Conference on Alkali-Aggregate Reaction, London (England), 104 (1992) 782–789
- [125] Poświata A., Wesołowski M., Kowalska D., *Współczesne Betonowe Nawierzchnie Lotniskowe w Polsce* – *Wybrane Problemy*, Konferencja Dni Betonu, (2014).
- [126] Poyet, S., Sellier, A., Capra, B., Thèvenin-Foray, G., Torrenti, J.-M., Tournier-Cognon, H., & Bourdarot, E., *Influence of water on alkali-silica reaction: Experimental study and numerical simulations*, Journal of Materials in Civil Engineering, 18 (2006) 588–596.
- [127] Prezi M., Monteiro P.J.M., Sposito G., *Alkali silica reaction: Part 1. Use of the double-layer theory to explain the behavior of the reaction product gels*, ACI Materials Journals 94 (1997) 10 17.
- [128] Radwański W., Pytlowany T., *Nawierzchnia z betonu walowanego jako alternatywa dla dróg lokalnych*, Zeszyty Naukowe Uniwersytetu Zielonogórskiego/Inżynieria Środowiska, 169 (2012) 52-60.
- [129] Rajabipour F., Giannini E., Dunant C., Ideker J.H., Thomas M.D.A., Alkali silica reaction : Current understanding of the reaction mechanisms and the knowledge gaps, Cement and Concrete Research, 76 (2015) 130–146.

- [130] Rangaraju, P. R., *Influence of airfield pavement deicing and anti-icing chemicals on durability of concrete*, FFA Worldwide Airport Technology Transfer Conference (2007).
- [131] Rangaraju P. R., Sompura P, K, Desai J., Olek J., Potential of Potassium Acetate Deicer to Induce ASR in Concrete, and its Mitigation, Airfield and Highway Pavements, (2006) 486–497.
- [132] Rangaraju P.R., Olek J., Summary Report: Performance of Concrete in the Presence of Airfield Pavement Deicers and Identification of Induced Distress Mechanisms, (2011).
- [133] Rangaraju P.R., Sompura K.R., Olek J., *Investigation into potential of alkali-acetate-based deicers to cause alkali-silica reaction in concrete*, Transportation Research Record, (2006) 69–78.
- [134] Ratnam M., *Monograph on Alkali Aggregate Reaction*, Central Soil & Materials Research Station, New Delhi (2008).
- [135] Report on Alkali-Aggregate Problems on Portland Cement Concrete Airfield Pavements subbmitted by U.S. Army Corps of Engineers Transportation Systems Center Omaha, NE; Naval Facilities Engineering Service Center Port Hueneme, CA; Air Force Civil Engineer Support Agency Tyndall AFB, FL; (2006).
- [136] Rodrigues F.A., Monterio P.J.M., Sposito G., *The alkali-silica reaction. The surface charge density of silica and its effect on expansive pressure*, Cement and Concrete Research, 29 (1999) 527-530.
- [137] Rößler C., Möser B., Giebson C., H.M. Ludwig, *Application of Electron Backscatter Diffraction to evaluate the ASR risk of concrete aggregates*, Cement and Concrete Research, 95 (2017) 47–55.
- [138] Šachlová Š., *Microstructure parameters affecting alkali-silica reactivity of aggregates*, Construction and Building Materials, 49 (2013) 604–610.
- [139] Šachlová Š., Přikryl R., Pertold Z., Alkali-silica reaction products: Comparison between samples from concrete structures and laboratory test specimens, Materials Characterization, 61 (2010) 1379–1393.
- [140] Saha A.K., Khan M.N.N., Sarker P.K., Shaikh F.A., Pramanik A., *The ASR mechanism of reactive aggregates in concrete and its mitigation by fly ash: A critical review*, Construction and Building Materials, 171 (2018) 743–758.
- [141] Sajid H.U., Jalal A., Kiran R., A Survey on the Effects of Deicing Materials on Properties of Cementbased Materials, Construction and Building Materials, 319 (2022) 126062.
- [142] Sanchez L. F. M., Contribution to the assessment of damage in aging concrete infrastructures affected by alkali-aggregate reaction, Québec, Canada. 2014.
- [143] Sanchez L. F. M., Fournier B., Jolin M., Mitchell D., Bastien J., Overall assessment of Alkali-Aggregate Reaction (AAR) in concretes presenting different strengths and incorporating a wide range of reactive aggregate types and natures, Cement and Concrete Research, 93 (2017) 17-31.
- [144] Sanchez L.F.M., Fournier B., Jolin M., Mitchell D., Bastien J., Overall assessment of Alkali-Aggregate Reaction (AAR) in concretes presenting different strengths and incorporating a wide range of reactive aggregate types and natures, Cement and Concrete Research, 93 (2017) 17–31.
- [145] Santagataa M.C., Collepardi M., *The effect of CMA deicers on concrete properties*, Cement and Concrete Research, 30 (2000) 1389–1394.
- [146] Sarkar S. L., Godiwalla A., Airport runway concrete, Concrete International, 25 (2003) 61-68.
- [147] Šernas O., Zofka A., Vaitkus A., Gražulytė J., *The effect of exposed aggregate concrete gradation on the texture characteristics and durability*, Construction and Building Materials, 261 (2020) 119921.
- [148] Shayan A., *Alkali reactivity of deformed granitic rocks: a case study*, Cement and Concrete Research, 23 (1993) 1229–1236.
- [149] Shayan A., Quick G. W., Microscopic Features of Cracked and Uncracked Concrete Railway Sleepers, Materials Journal, 89 (1992) 348–361.
- [150] Shayan A., Xu A., Chirgwin G., Morris H., *Effects of seawater on AAR expansion of concrete*, Cement and Concrete Research, 40 (2010) 563–568.
- [151] Shi X., Fay L., *Freeze-thaw damage and chemical change of a Portland cement concrete in the presence of diluted deicers*, Materials and Structures, 43 (2010) 933–946.
- [152] Shi X., Fay L., Gallaway C., Volkening K., Peterson M.M., Pan T., Creighton A., Lawlor C., Mumma S., Liu Y., Nguyen T.A., Evaluation of alternative anti-icing and de-icing compounds using sodium chloride and madnesium chloride as baseline deicers, Report No. CDOT-2009-1, Colorado Department of Transportation (2009).

- [153] Shi Z., Leemann A., Rentsch D., Lothenbach B., *Synthesis of alkali-silica reaction product structurally identical to that formed in field concrete*, Materials and Design 190 (2020) 108562.
- [154] Shon C.S., Abdigaliyev A., Bagitova S., Chung C.W., Kim D., Determination of air-void system and modified frost resistance number for freeze-thaw resistance evaluation of ternary blended concrete made of ordinary Portland cement/silica fume/class F fly ash, Cold Regions Science and Technology, 155 (2018) 127-136.
- [155] Sibbick R.G., Page C.L., *Mechanisms affecting the development of alkali-silica reaction in hardened concretes exposed to saline environments*, Magazine of Concrete Research, 50 (1998) 147–159.
- [156] Sibbick R.G., Page C.L., *Susceptibility of various UK aggregates to alkali-aggregate reaction*, The 9th International Conference on Alkali-Aggregate Reaction in Concrete, (1992) 584p.
- [157] Silva A.S., Fernandes I., Soares D., Custódio J., Ribeiro A.B., Portuguese Experience in Asr Aggregate Assessment, w: Proceedings of the 15th International Conference on Alkali-Aggregate Reaction in Concrete (2016).
- [158] Soltangharaei V., Anay R., Hayes N. W., Assi L., Le Pape Y., Ma Z. J., Ziehl P., Damage Mechanism Evaluation of Large-Scale Concrete Structures Affected by Alkali-Silica Reaction Using Acoustic Emission, Applied Sciences, 8 (2018) 2148.
- [159] Stanton T.E., *Expansion of concrete through reactionn between cement and aggregate*, Proceedings of the American Society of Civil Engineers, 66 (1940) 1781–1811.
- [160] Stark D., *The Moisture Condition of Field Concrete Exhibiting Alkali-Silica Reactivity*, CANMET/ACI Second International Conference on Durability of Concrete, SP-126, American Concrete Institute, Farmington Hills, Michigan, (1991) 973 – 987.
- [161] Stodolny C., Życiński A., Właściwości nawierzchni z betonu cementowego: jako alternatywa technologiczno-ekonomiczna budowy autostrad i dróg lokalnych, Magazyn Autostrady, 10 (2004) 16-21.
- [162] Struble L.J., Diamond S., Swelling Properties of Synthetic Alkali Silica Gels, Journal of the American Ceramic Society, 64 (1981) 652–655.
- [163] Swamy R.N., The Alkali-Silica Reaction in Concrete, Van Nostrand Reinhold, New York, (1992).
- [164] Szydło A., Nawierzchnie drogowe z betonu cementowego, Polski Cement Sp. z.o.o., (2004).
- [165] Szymański P., Pikos M., Nowotarski P., *Concrete road surface with the use of cement concrete selected results*, Procedia Engineering, 208 (2017) 166-173.
- [166] Tapas M.J., Sofia L., Vessalas K., Thomas P., Sirivivatnanon V., Scrivener K., Efficacy of SCMs to mitigate ASR in systems with higher alkali contents assessed by pore solution method, Cement and Concrete Research, 142 (2021) 106353.
- [167] Thaulow N., Jakobsen U.H., Clark B., *Composition of alkali silica gel and ettringite in concrete railroad ties: Sem-edx and x-ray diffraction analyses*, Cement and Concrete Research, 26 (1996) 309–318.
- [168] The Effects of Potassium Acetate De-Icing Chemicals on the Performance of Concrete Containing Fly Ash: A Literature Review. EPRI, Palo Alto, CA (2008) 1018167.
- [169] Thomas M. D. A., *The Role of Calcium Hydroxide in Alkali Recy-cling in Concrete* w: Materials Science of Concrete Special volume, J. Skalny, J. Gebouer, I. Odler (Eds.), American Ceramic Society, Westerville, OH, USA, (2001).
- [170] Thomas M., Folliard K., Fournier B., Rivard P., Drimalas T., Garber S., Methods for Evaluating and Treating ASR-Affected Structures: Results of Field Application and Demonstration Projects – Volume II: Summary of Findings and Recommendations, Final Report, (2013).
- [171] Thomas M., Fournier B., Folliard K., Ideker J., Shehata M., Test methods for evaluating preventive measures for controlling expansion due to alkali-silica reaction in concrete, Cement and Concrete Research, 36 (2006) 1842–1856.
- [172] Tiecher F., Gomes M.E.B., Molin D.C.C.D., Hasparyk N.P., Monteiro P.J.M., Relationship between Degree of Deformation in Quartz and Silica Dissolution for the Development of Alkali-Silica Reaction in Concrete, Materials (Basel), 10 (2017) 1022.
- [173] Velasco-Torres A., Alaejos P., Soriano J., *Comparative study of the alkali-silica reaction (ASR) in granitic aggregates*, Estudios Geologicos, 66 (2010) 105–114.

- [174] Villenneuve V., Fournier B., Duschene J., Determination of the damage in concrete affected by ASR The damage rating index (DRI), w: Proceedings of 14th ICAAR - International Conference on Alkali-Aggregate Reaction in Concrete, Austin, Texas, (2012).
- [175] Vivian H.E., *Studies in cement aggregate reaction XV. The reaction product of alkalis and opal*, Bulletin Common wealth Scientific and Industrial Research Organisation 256 (1950) 60-81.
- [176] Wang K., Nelsen D.E., Nixon W.A, *Damaging effects of deicing chemicals on concrete materials*, Cement and Concrete Composites, 28 (2006) 173–188.
- [177] Wenk H. R., Monteiro P. J. M., Shomglin K., *Relationship between aggregate microstructure and mortar expansion. A case study of deformed granitic rocks from Santa Rosa mylonite zone*. Journal of Materials and Science, 43 (2008) 1278–1285.
- [178] Wenk H.R., Monteiro P.J.M., Shomglin K., Relationship between aggregate microstructure and mortar expansion. A case study of deformed granitic rocks from the Santa Rosa mylonite zone, Journal of Materials Science, 43 (2008) 1278–1285.
- [179] Woyciechowski P. Kruszywa dla drogownictwa baza i wykorzystanie, Proceedings of XVI Slovak-Polish-Russian Seminar "Theoretical foundation of civil engineering", Lutomirski Szczepan, Szcześniak Wacław et al. (red.), Moscow State University of Civil Engineering, (2007) 339-408.
- [180] Woyciechowski P., Harat K., *Beton wałowany jako nawierzchnia dróg lokalnych*, Materiały Budowlane, 9 (2011) 67-69.
- [181] Woyciechowski P., Piotrowicz M., Ocena wpływu klasy pielęgnacji na wybrane właściwości eksploatacyjne betonu, Materiały Budowlane, 2 (2014) 14-16.
- [182] Wojtawicki J., *Przyczyny powstawania uszkodzeń nawierzchni z betonu cementowego*, Lotnisko, 3 (2008).
- [183] Wood J. G. M., Young J. S., Ward D. E., *The Structural Effects of AlkaliAggregate Reaction on Reinforced Concrete*," in: Proceedings of the 7th International Conference on Concrete Alkali-Aggregate Reactions, edited by Grattan-Bellew P. E., Patrick E., Noyes Publications, Park Ridge, N.J., U.S.A., (1987).
- [184] Xu G., Shi X., *Impact of Chemical Deicers on Roadway Infrastructure:* Risks and Best Management Practices, w: *Sustainable Winter Road Operations*, X. Shi, L. Fu (Eds), Wiley Blackwell, (2018).
- [185] Zapała-Sławeta J., Owsiak Z., *The use of lithium compounds for inhibiting alkali-aggregate reaction effects in pavement structures.* IOP Conference Series: Materials Science and Engineering, 356 (2018).
- [186] Zawół D., Trybalski P., Elert M., Betonowa nawierzchnia lotniskowa wymagania formalne i wyniki badań, na przykładzie rozbudowy Portu Lotniczego im. Fryderyka Chopina w Warszawie, Dni Betonu, Monografie Technologii Betonu, Edycja 2, Stowarzyszenie Producentów Cementu, (2014), 1-10.
- [187] Zhang C., Wang A., Tang M., Wu B., Zhang N., Influence of aggregate size and aggregate size grading on ASR expansion, Cement and Concrete Research, 29 (1999) 1393–1396.

Normy i zalecenia techniczne

- [N1] AASHTO PP 65-11 Standard Practice for Determining the Reactivity of Concrete Aggregates and Selecting Appropriate Measures for Preventing Deleterious Expansion in New Concrete Construction, (2016).
- [N2] ASTM C 1260-07, American Society for Testing and Materials, *Standard Test Method for Potential Reactivity of Aggregates (Mortar-Bar Method)*, (2007)
- [N3] ASTM C 1293-08b, American Society for Testing and Materials, *Standard Test Method for* Determination of Length Change of Concrete Due to Alkali-Silica Reaction, (2010).
- [N4] ASTM C 1778-20 Standard Guide For Reducing The Risk Of Deleterious Alkali-Aggregate Reaction In Concrete, (2020).
- [N5] ASTM C 227, Standard Test Method for Potential Alkali Reactivity of Cement-Aggregate Combinations. Annual Book of ASTM Standards, (1997).
- [N6] Borchers I., Recommendation of RILEM TC 258-AAA: RILEM AAR-12: determination of binder combinations for non-reactive mix design or the resistance to alkali-silica reaction of concrete mixes using concrete prisms – 60 °C test method with alkali supply, Materials and Structures, 54 (2021).
- [N7] Brazilian standard ABNT NBR 15577-3 Aggregados Reatividade álcali-agregado Parte 3: Análise petrográfica para verificação da potencialidade reativa de agregados em presença de álcalis do concreto.
- [N8] Garbacik A., Glinicki M.A., Jóźwiak-Niedźwiedzka D., Adamski G., Gibas K., Wytyczne techniczne klasyfikacji kruszyw krajowych i zapobiegania reakcji alkalicznej w betonie stosowanym w nawierzchniach dróg i drogowych obiektach inżynierskich, (2019) 2–38.
- [N9] NO-17-A204:2015 Nawierzchnie lotniskowe Nawierzchnie z betonu cementowego Wymagania i metody badań.
- [N10] PN-B-06714-46:1992 Kruszywa mineralne Badania Oznaczanie potencjalnej reaktywności alkalicznej metodą szybką.
- [N11] PN-EN 12350-2:2011 Badania mieszanki betonowej. Część 2: Badanie konsystencji metodą opadu stożka.
- [N12] PN-EN 12350-6:2011 Badania mieszanki betonowej. Część 6: Gęstość.
- [N13] PN-EN 12350-7:2011 Badania mieszanki betonowej. Część 7: Badanie zawartości powietrza metody ciśnieniowe.
- [N14] PN-EN 12390-3:2011 Badania betonu. Część 3: Wytrzymałość na ściskanie próbek do badań.
- [N15] PN-EN 12620+A1:2010, Kruszywa do betonu.
- [N16] PN-EN 13877, Nawierzchnie betonowe, Polski Komitet Normalizacyjny.
- [N17] PN-EN 196-2:2013 Metody badania cementu -- Część 2: Analiza chemiczna cementu
- [N18] PN-EN 197-1:2012 Cement -- Część 1: Skład, wymagania i kryteria zgodności dotyczące cementów powszechnego użytku.
- [N19] PN-EN 206+A2:2021-08, Beton -- Wymagania, właściwości użytkowe, produkcja i zgodność.
- [N20] PN-EN 480-11:2008, Domieszki do betonu, zaprawy i zaczynu -- Metody badań -- Część 11: Oznaczanie charakterystyki porów powietrznych w stwardniałym betonie.
- [N21] Procedura Badawcza GDDKiA PB/1/18 Instrukcja badania reaktywności kruszyw metodą przyspieszoną w 1M roztworze NaOH w temperaturze 80°C, (2018).
- [N22] Procedura Badawcza GDDKiA PB/5/18 Określenie potencjalnej reaktywności mieszaniny kruszyw mineralnych w betonie w warunkach cyklicznego oddziaływania temperatury 60C i zewnętrznego dostępu alkaliów, (2018).
- [N23] Szydło A., Mackiewicz P., Wardęga R., Krawczyk B., Katalog typowych konstrukcji nawierzchni sztywnych, Załącznik do zarządzenia Nr 30 Generalnego Dyrektora Dróg Krajowych i Autostrad z dnia 16.06.2014 r., GDDKiA, pp. 102.
- [N24] TI-B52 Petrographical Investigation of Sand, Technological Institute, Copenhagen, 1985 (in Danish), (1985).
- [N25] TP B-StB Technische Prüfvorschriften für Verkehrsflächenbefestigungen Betonbauweisen: Teil 1.1.09 AKR-Potenzial und Dauerhaftigkeit von Beton (60 -Betonversuch mit Alkalizufuhr), (2018).

[N26] WT D-05.03.04, *Warunki wykonania i odbioru robót budowlanych, Nawierzchnia z betonu cementowego*, Generalna Dyrekcja Dróg Krajowych i Autostrad, (2019).

Streszczenie

Rozprawa dotyczy zjawiska niszczenia nawierzchni betonowych dróg i lotnisk w Polsce w wyniku działania reakcji alkaliczno-krzemionkowej (*Alkali-Silica Reaction*, ASR) kruszywa granitowego w obecności środków odladzających. Celem pracy było określenie reaktywności alkalicznej powszechnie stosowanych w nawierzchniach betonowych kruszyw granitowych przy zastosowaniu środków odladzających oraz analiza wpływu tych środków na przebieg reakcji w betonie i jego mikrostrukturę. Główne tezy rozprawy dotyczą rozpoznania krajowych kruszyw granitowych odnośnie do podatności na reakcję alkaliczną w obecności środków odladzających, powiązania zawartości reaktywnych minerałów w kruszywie z podatnością na ASR oraz określenia zależności pomiędzy składem żelu alkaliczno-krzemionkowego a ekspansją betonu w symulowanych warunkach środowiska.

Podsumowano stan wiedzy na temat mechanizmów i czynników decydujących o reakcji alkaliczno-krzemionkowej. Scharakteryzowano beton stosowany na nawierzchnie drogowe i lotniskowe w kontekście odporności na ASR. Przedstawiono wyniki dotychczasowych badań przeprowadzonych z uwagi na reaktywność alkaliczną kruszyw granitowych w kraju i na świecie. Przeanalizowano dostępne wyniki badań dotyczące wpływu środków odladzających na trwałość betonu, ze szczególnym uwzględnieniem reakcji alkalia-krzemionka.

Wykazanie słuszności postawionych tez wymagało przeprowadzenia badań laboratoryjnych, wykorzystując wyselekcjonowane materiały oraz dobierając odpowiednie metody badawcze (w tym opracowanie nowej autorskiej metodyki). Badania obejmowały szczegółową analizę kruszyw (skład petrograficzny na cienkich szlifach, XRD, XRF) oraz zapraw i betonów (pomiar ekspansji oraz mikrostruktura na zgładach przy użyciu skaningowej mikroskopii elektronowej z analizą w mikroobszarach). Zasadniczą częścią rozprawy było opracowanie metodyki ilościowej analizy reaktywnych minerałów w kruszywie, określenie podatności kruszywa granitowego z krajowych złóż na reakcję alkaliczno-krzemionkową oraz zbadanie jednoczesnego wpływu zmiennych warunków wilgotnościowych i różnego stężenia środków odladzających (NaCl, HCOONa, HCOOK) na możliwość wystąpienia reakcji alkalicznej w tym kruszywie w betonie nawierzchniowym. Wyniki ilościowe analizy reaktywnych minerałów w ziarnach kruszywa oraz wyniki badań laboratoryjnych dotyczące ekspansji betonu stanowiły podstawę do poszukiwania korelacji między reaktywnością kruszywa a odpornością betonu na reakcję alkalia-krzemionka.

Wyniki badań potwierdziły słuszność tez rozprawy, co przedstawiono we wnioskach. Stwierdzono, że kruszywa granitowe z krajowych złóż są podatne na wystąpienie reakcji alkalicznej, zwłaszcza w obecności środków odladzających. Wykazano zależność podatności tych kruszyw na reakcję ASR od zawartości kwarcu zdeformowanego. Przedstawiono wpływ środków odladzających na przyspieszenie ASR w betonie nawierzchniowym. Stwierdzono zależność wielkości ekspansji betonu z kruszywem granitowym w badaniu symulowanych warunków eksploatacyjnych od składu żelu ASR w spękanych ziarnach kruszywa, co stanowiło pośredni dowód penetracji środków odladzających w głąb betonu. Potwierdzono także przydatność autorskich metod charakteryzacji materiałów pod kątem podatności kruszywa i występowania ASR w rzeczywistych obiektach drogowych.

Summary

This dissertation concerns the phenomenon of the destruction of highway and airfield concrete pavements in Poland as a result of alkali-silica reaction (ASR) of granite aggregate in the presence of de-icing agents. The aim of this paper was to determine the alkaline reactivity in the presence of de-icing agents of commonly used in concrete pavements granite aggregates and to analyze the effect of these agents on the course of the reaction. The main theses of the dissertation concern the recognition of domestic granite aggregates in terms of their susceptibility to ASR in the presence of de-icing agents, the relationship between the content of reactive minerals in the aggregate and its susceptibility to ASR, and the relationship between the composition of alkali-silica gel and the expansion of concrete under simulated environmental conditions.

The work summarizes the state of knowledge of the mechanisms and factors determining the alkali-silica reaction. The concrete used for road and airport pavements was characterized in terms of resistance to ASR. The dissertation presents the results of the research carried out to date with regard to the alkaline reactivity of granite aggregates in Poland and abroad. The available research results on the influence of de-icing agents on the durability of concrete were analyzed, with particular emphasis on the alkali-silica reaction.

To prove the validity of the theses, it was necessary to conduct laboratory tests, using selected materials and appropriate research methods (including the development of a new, original methodology). The research included detailed examination of aggregates (petrographic composition on thin sections, XRD, XRF), mortars and concretes (expansion measurements and microstructure on sections using SEM with analysis in micro-areas). The main part of the dissertation was to develop a methodology for the quantitative analysis of reactive minerals in aggregates, to determine the susceptibility of granite aggregates from domestic deposits to the alkali-silica reaction, and to examine the combined effects of variable humidity conditions and various concentrations of de-icing agents (NaCl, HCOONa, HCOOK) on the possibility of occurrence of the alkali-silica reaction in this aggregate in pavement concrete. The quantitative results of the analysis of reactive minerals in the aggregate grains and the results of laboratory tests on concrete expansion formed the basis for finding a correlation between aggregate reactivity and the resistance of the concrete to ASR.

The results of the research confirmed the validity of the dissertation's theses, which were presented in the conclusions. It has been found that granite aggregates from domestic deposits

are susceptible to the occurrence of alkali-silica reaction, especially in the presence of de-icing agents. The relationship between the content of deformed quartz in granite aggregate and the susceptibility to ASR reaction was demonstrated. Effect of de-icing agents on acceleration of ASR in pavement concrete was observed. The extent of the expansion of concrete with granite aggregate was found to be related to the composition of the ASR gel in the cracked aggregate grains in simulated operating conditions, which was an indirect proof of the penetration of de-icing agents into the concrete. The usefulness of original methods of material characterization in terms of susceptibility and occurrence of ASR in real pavement structures was also confirmed.

Załączniki

Załącznik 1 – Analiza sitowa kruszyw zastosowanych w badaniach

Rys. Z1.1 Krzywa przesiewu piasku naturalnego frakcji 0/2 mm

Rys. Z1.2 Krzywa przesiewu kruszywa granitowego G1 frakcji (a) 2/8, (b) 8/16 mm

Rys. Z1.3 Krzywa przesiewu kruszywa granitowego G2 frakcji (a) 2/8, (b) 8/16 mm

Rys. Z1.4 Krzywa przesiewu kruszywa granitowego G3 frakcji (a) 2/8, (b) 8/16, (c) 16/22 mm

Rys. Z1.5 Krzywa przesiewu kruszywa granitowego G4 frakcji (a) 2/8, (b) 8/16 mm

Rys. Z1.6 Krzywa przesiewu kruszywa granitowego G5 frakcji (a) 2/8, (b) 8/16, (c) 16/22 mm

Rys. Z1.7 Krzywa przesiewu kruszywa granodiorytowego GD frakcji (a) 2/8, (b) 8/16, (c) 16/22 mm

Rys. Z1.8 Krzywa przesiewu kruszywa gabro GA frakcji (a) 2/5, (b) 4/8, (c) 8/11, (d) 11/16, (e) 16/22 mm

Rys. Z1.9 Krzywa przesiewu kruszywa amfibolitowego frakcji (a) 2/8, (b) 8/16, (c) 16/22 mm

Załącznik 2 – Wyniki ekspansji wywołanej ASR

Tabela Z2.1 Zestawienie wyników badania belek zapraw w metodzie przyspieszonej (80°C), PB/1/18

Kruszywo	Roztwór					Eks	pansja [%]						
		Czas ekspozycji [dni]	0	3	7	10	14	17	21	28			
		G3-H2O-1	0.000	0.002	0.002	0.002	0.003	0.003	0.003	0.004			
		G3-H2O-2	0.000	0.002	0.001	0.002	0.002	0.003	0.003	0.004			
63	H2O	G3-H2O-3	0.000	0.002	0.002	0.002	0.003	0.003	0.003	0.004			
		Średnia [%]	0.000	0.002	0.002	0.002	0.003	0.003	0.003	0.004			
		Odch. Stand. [%]	0	0.000	0.000	0.000	0.000	0.000	0.000	0.000			
		Czas ekspozycji [dni]	0	3	7	10	14	17	21	28			
		G3-3NaCl-1	0.000	0.003	0.003	0.002	0.003	0.004	0.005	0.006			
C2	29/ NCI	G3-3NaCl-2	0.000	0.002	0.002	0.001	0.001	0.002	0.004	0.004			
65	5% NdCI	G3-3NaCl-3	0.000	0.002	0.003	0.002	0.002	0.004	0.004	0.004			
		Średnia [%]	0.000	0.002	0.003	0.002	0.002	0.004	0.004	0.005			
		Odch. Stand. [%]	0	0.001	0.002	0.001	0.001	0.001	0.001	0.001			
		Czas ekspozycji [dni]	0	3	7	10	14	17	21	28			
		G3-10NaCl-1	0.000	0.004	0.005	0.005	0.008	0.011	0.011	0.012			
63	10% NaCl	G3-10NaCl-2	0.000	0.005	0.006	0.006	0.010	0.012	0.012	0.012			
65	10% Naci	G3-10NaCl-3	0.000	0.004	0.005	0.006	0.009	0.010	0.010	0.012			
		Średnia [%]	0.000	0.004	0.005	0.006	0.009	0.011	0.011	0.012			
		Odch. Stand. [%]	0	0.001	0.001	0.001	0.001	0.001	0.001	0.000			
		Czas ekspozycji [dni]	0	3	7	10	14	17	21	28			
		G3-10NaCl-1	0.000	0.007	0.011	0.013	0.016	0.019	0.021	0.026			
63	20% NaCl	G3-20NaCl-2	0.000	0.008	0.010	0.012	0.018	0.020	0.022	0.025			
0.5	20/6 Naci	G3-20NaCl-3	0.000	0.009	0.011	0.013	0.017	0.021	0.022	0.027			
		Średnia [%]	0.000	0.008	0.011	0.013	0.017	0.020	0.022	0.026			
		Odch. Stand. [%]	0.000	0.001	0.001	0.001	0.001	0.001	0.001	0.001			
		Czas ekspozycji [dni]	0	2	5	8	12	14	16	19	23	26	28
		G3-NaOH-1	0.000	0.006	0.025	0.044	0.067	0.080	0.090	0.104	0.115	0.130	0.136
63	NaOH	G3-NaOH-2	0.000	0.008	0.027	0.044	0.068	0.081	0.091	0.106	0.114	0.128	0.134
	- Maon	G3-NaOH-3	0.000	0.007	0.030	0.046	0.064	0.078	0.085	0.101	0.113	0.126	0.132
		Średnia [%]	0.000	0.007	0.027	0.045	0.066	0.080	0.089	0.104	0.114	0.128	0.134
		Odch. Stand. [%]	0.000	0.002	0.002	0.001	0.002	0.001	0.003	0.002	0.001	0.002	0.002
		Czas ekspozycji [dni]	0	4	8	11	14	18	22	25	28		
		G3-50KF-1	0.000	0.105	0.220	0.324	0.409	0.567	0.725	0.839	0.921		
63	KE 50%	G3-50KF-2	0.000	0.098	0.241	0.328	0.426	0.587	0.709	0.825	0.914		
		G3-50KF-3	0.000	0.110	0.255	0.348	0.454	0.598	0.752	0.851	0.948		
		Średnia [%]	0.000	0.104	0.239	0.333	0.430	0.584	0.729	0.838	0.928		
		Odch. Stand. [%]	0.000	0.006	0.018	0.013	0.023	0.016	0.022	0.013	0.018		
		Czas ekspozycji [dni]	0	4	8	11	14	18	22	25	28		
		G3-25KF-1	0.000	0.009	0.024	0.036	0.046	0.070	0.079	0.104	0.111		
G3	KF 25%	G3-25KF-2	0.000	0.009	0.022	0.036	0.045	0.066	0.077	0.096	0.104		
		G3-25KF-3	0.000	0.008	0.020	0.035	0.044	0.061	0.075	0.087	0.097		
		Šrednia [%]	0.000	0.009	0.022	0.036	0.045	0.066	0.077	0.096	0.104		
		Odch. Stand. [%]	0.000	0.000	0.003	0.001	0.002	0.006	0.003	0.012	0.010		
		Czas ekspozycji [dni]	0	4	8	11	14	18	22	25	28		
		G3-15SF-1	0.000	0.002	0.005	0.007	0.008	0.011	0.012	0.011	0.013		
G3	SF 15%	G3-15SF-2	0.000	0.002	0.005	0.007	0.008	0.010	0.011	0.013	0.013		
		G3-15SF-3	0.000	0.003	0.006	0.008	0.009	0.010	0.011	0.012	0.014		
		Srednia [%]	0.000	0.002	0.005	0.007	0.008	0.010	0.011	0.012	0.013		
		Odch. Stand. [%]	0.000	0.000	0.000	0.000	0.000	0.000	0.001	0.001	0.001		

			1									
		Czas ekspozycji [dni]	0	4	8	11	14	18	22	25	28	
		G3-10SF-1	0.000	0.002	0.002	0.003	0.004	0.004	0.004	0.004	0.004	
C 2	3 SF 10%	G3-10SF-2	0.000	0.002	0.002	0.004	0.004	0.004	0.004	0.004	0.004	
65	SF 10%	G3-10SF-3	0.000	0.001	0.001	0.004	0.004	0.005	0.005	0.005	0.005	
		Średnia [%]	0.000	0.002	0.002	0.004	0.004	0.004	0.004	0.004	0.004	
		Odch. Stand. [%]	0.000	0.001	0.001	0.001	0.001	0.001	0.001	0.001	0.001	

t	1	0	-		-	-	4.0		10		25		t
		Czas ekspozycji	0	2	5	9	12	14	19	22	26	28	
		G1-H2O-1	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.001	0.001	0.001	
		G1-H2O-2	0.000	0.001	0.001	0.001	0.001	0.001	0.001	0.002	0.002	0.002	
GI	H2O	G1-H2O-3	0.000	0.001	0.001	0.001	0.001	0.001	0.001	0.002	0.002	0.002	
		Średnia [%]	0.000	0.000	0.001	0.001	0.001	0.001	0.001	0.002	0.002	0.002	
		Odeb Stand [%]	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	
		Odch. Stand. [%]	U	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	
		Czas ekspozycji	0	2	5	9	12	14	19	22	26	28	
		G1-3NaCl-1	0.000	0.003	0.003	0.003	0.004	0.005	0.007	0.006	0.006	0.006	
C1	20(N= C	G1-3NaCl-2	0.000	0.003	0.003	0.004	0.005	0.005	0.005	0.005	0.007	0.007	
GI	5% NaCi	G1-3NaCl-3	0.000	0.004	0.004	0.005	0.006	0.006	0.006	0.006	0.008	0.008	
		Średnia [%]	0.000	0.003	0.003	0.004	0.005	0.005	0.006	0.006	0.007	0.007	
		Odeb Stand [9/]	0.000	0.001	0.001	0.001	0.001	0.000	0.001	0.000	0.001	0.001	
		Ouch, Stand, [%]	0.000	0.001	0.001	0.001	0.001	0.000	0.001	0.000	0.001	0.001	
		Czas ekspozycji	0	2	5	9	12	14	19	22	26	28	
		G1-10NaCl-1	0.000	0.004	0.005	0.006	0.007	0.007	0.008	0.010	0.010	0.010	
61	10% NoCI	G1-10NaCl-2	0.000	0.004	0.005	0.008	0.008	0.008	0.009	0.011	0.011	0.011	
01	10/6 14001	G1-10NaCl-3	0.000	0.004	0.006	0.007	0.007	0.008	0.009	0.010	0.010	0.010	
		Średnia [%]	0.000	0.004	0.005	0.007	0.007	0.008	0.009	0.010	0.010	0.010	
		Odch Stand [%]	0.000	0.000	0.000	0.001	0.001	0.001	0.001	0.001	0.000	0.001	
		Cras eksnorycij	0.000	2	5.555	0.001	12	14	10	22	26	28	<u> </u>
		C2dS EKSp02yCji	0.000	2			12	14	15	22	20	20	
		G1-20NaCI-1	0.000	0.003	0.006	0.009	0.013	0.013	0.015	0.018	0.019	0.019	
G1	20% NaCl	G1-20NaCl-2	0.000	0.003	0.006	0.009	0.014	0.014	0.016	0.018	0.019	0.020	
		G1-20NaCl-3	0.000	0.003	0.007	0.009	0.014	0.014	0.016	0.017	0.018	0.018	
		Średnia [%]	0.000	0.003	0.006	0.009	0.014	0.014	0.016	0.018	0.018	0.019	
		Odch. Stand. [%]	0	0.000	0.000	0.000	0.000	0.001	0.001	0.001	0.001	0.001	
		Czas ekspozycii	0	2	5	9	12	14	19	23	26	28	
		G1-NaOH-1	0.000	0.006	0.015	0.034	0.049	0.056	0.075	0.087	0.096	0.000	
			0.000	0.000	0.010	0.034	0.045	0.050	0.075	0.007	0.030	0.000	
G1	NaOH	GI-NaOH-2	0.000	0.004	0.019	0.034	0.046	0.052	0.071	0.083	0.094	0.097	
		G1-NaOH-3	0.000	0.005	0.017	0.034	0.050	0.054	0.072	0.083	0.092	0.094	
		Šrednia [%]	0.000	0.005	0.017	0.034	0.048	0.054	0.072	0.085	0.094	0.097	
		Odch. Stand. [%]	0.000	0.001	0.002	0.000	0.002	0.002	0.002	0.002	0.002	0.002	
		Czas ekspozycji	0	2	5	9	12	14	19	23	26	28	
		G1-50KF-1	0.000	0.026	0.156	0.206	0.265	0.346	0.441	0.558	0.642	0.681	
		G1-50KE-2	0.000	0.022	0.117	0.191	0.246	0.321	0.420	0.532	0.601	0.634	
G1	KF 50%		0.000	0.024	0.110	0.177	0.227	0.201	0.201	0.497	0.001	0.601	
		GI-SUKF-S	0.000	0.024	0.119	0.1//	0.227	0.301	0.591	0.467	0.571	0.021	
		Srednia [%]	0.000	0.024	0.131	0.191	0.246	0.323	0.417	0.526	0.605	0.645	
		Odch. Stand. [%]	0.000	0.002	0.022	0.014	0.019	0.023	0.025	0.036	0.036	0.032	
		Czas ekspozycji	0	2	5	9	12	14	19	23	26	28	
		G1-15SF-1	0.000	0.001	0.001	0.001	0.004	0.004	0.005	0.005	0.007	0.008	
	05 4 5 4	G1-15SF-2	0.000	0.001	0.001	0.004	0.004	0.004	0.006	0.006	0.007	0.009	
GI	SF 15%	G1-15SF-3	0.000	0.002	0.002	0.002	0.003	0.004	0.006	0.006	0.008	0.009	
		Średnia [%]	0.000	0.001	0.001	0.002	0.004	0.004	0.006	0.006	0.007	0.009	
		Odch Stand [%]	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.001	
		Ouch, Stanu, [76]	•	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.001	
+	1												
		Czas ekspozycji	0	1	4	8	11	14	15	18	21	25	28
		G5-H2O-1	0.000	0.001	0.002	0.002	0.002	0.002	0.003	0.003	0.003	0.005	0.005
65	1120	G5-H2O-2	0.000	0.001	0.002	0.002	0.002	0.002	0.002	0.002	0.002	0.004	0.004
60	n20	G5-H2O-3	0.000	0.001	0.001	0.001	0.001	0.001	0.002	0.003	0.003	0.004	0.004
		Średnia [%]	0.000	0.001	0.002	0.002	0.002	0.002	0.003	0.003	0.003	0.004	0.004
		Odch Stand [%]	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000
<u> </u>		Czas eksnozycii	0.000	1	A	8	11	1/	15	1.2	21	25	2.000
			0.000	1 0.000	4	0.000	0.004	14	10 004	10	0.004	2.3	20
		GS-SINACI-1	0.000	0.002	0.002	0.002	0.004	0.004	0.004	0.002	0.004	0.004	0.005
G5	3% NaCl	G5-3NaCl-2	0.000	0.001	0.001	0.002	0.003	0.003	0.003	0.002	0.004	0.004	0.004
		G5-3NaCl-3	0.000	0.000	0.000	0.002	0.002	0.002	0.002	0.001	0.001	0.001	0.003
		Średnia [%]	0.000	0.001	0.001	0.002	0.003	0.003	0.003	0.002	0.003	0.003	0.004
		Odch. Stand. [%]	0.000	0.001	0.001	0.000	0.001	0.002	0.002	0.001	0.002	0.002	0.001
		Czas ekspozycij	0	1	4	8	11	14	15	18	21	25	28
		G5-10NaCl-1	0.000	0.002	0.002	0.009	0.010	0.011	0.012	0.012	0.014	0.018	0.020
		CE-10N-CLO	0.000	0.002	0.002	0.000	0.010	0.011	0.012	0.012	0.015	0.017	0.020
G5	10% NaCl	GD-10NACI-2	0.000	0.002	0.002	0.009	0.010	0.011	0.011	0.015	0.015	0.017	0.019
		GS-10NaCI-3	0.000	0.003	0.003	0.008	0.009	0.010	0.011	0.013	0.016	0.018	0.019
		Srednia [%]	0.000	0.002	0.002	0.009	0.010	0.011	0.011	0.013	0.015	0.018	0.019
L		Odch. Stand. [%]	0	0.000	0.000	0.000	0.001	0.001	0.001	0.001	0.001	0.001	0.001
		Czas ekspozycji	0	1	4	8	11	14	15	18	21	25	28
		G5-20NaCl-1	0.000	0.002	0.005	0.009	0.011	0.012	0.012	0.015	0.017	0.020	0.027
		G5-20NaCl-2	0.000	0.001	0.004	0.006	0.010	0.010	0.012	0.014	0.014	0.020	0.026
G5	20% NaCl	G5-20NaCl-3	0.000	0.002	0.006	0.009	0.009	0.011	0.013	0.014	0.015	0.020	0.025
		Średnia [9/]	0.000	0.002	0.005	0.009	0.010	0.011	0.013	0.014	0.015	0.020	0.025
		orden of the ford	0.000	0.002	0.005	0.008	0.010	0.011	0.012	0.014	0.015	0.020	0.020
L		Ouch, Stand, [%]	0.000	0.001	0.001	0.001	0.001	0.001	0.001	0.001	0.001	0.001	0.001

	1		-	_	-	40		47					
		Czas ekspozycji	0	3	7	10	14	17	21	24	28		
		G5-NaOH-1	0.000	0.015	0.039	0.061	0.086	0.109	0.124	0.142	0.155		
65	NEOH	G5-NaOH-2	0.000	0.014	0.040	0.061	0.083	0.105	0.122	0.138	0.153		
65	NaOn	G5-NaOH-3	0.000	0.018	0.044	0.064	0.088	0.105	0.125	0.141	0.158		
		Średnia [%]	0.000	0.016	0.041	0.062	0.086	0.106	0.124	0.140	0.155		
		Odch, Stand, [%]	0.000	0.00208	0.00265	0.00173	0.00252	0.00231	0.00153	0.00208	0.00252		
		Czas ekspozycij	0	2	5	9	12	14	19	23	26	28	
		G5-50KE-1	0.000	0.025	0.166	0.256	0 344	0.457	0.623	0.785	0.901	0.973	
		CE EOKE 2	0.000	0.025	0.100	0.250	0.252	0.450	0.025	0.700	0.001	0.072	
G5	KF 50%		0.000	0.024	0.1/1	0.202	0.332	0.400	0.020	0.700	0.902	0.975	
		GS-SUKF-S	0.000	0.029	0.166	0.256	0.346	0.460	0.626	0.790	0.906	0.975	
		Srednia [%]	0.000	0.026	0.167	0.258	0.347	0.459	0.625	0.788	0.903	0.974	
		Odch. Stand. [%]	0	0.003	0.003	0.003	0.004	0.002	0.002	0.002	0.002	0.001	
		Czas ekspozycji	0	1	4	8	11	14	18	22	25	28	
		G5-15SF-1	0.000	0.002	0.004	0.006	0.007	0.007	0.008	0.009	0.010	0.010	
65	SE 15%	G5-15SF-2	0.000	0.002	0.004	0.005	0.006	0.006	0.007	0.008	0.009	0.009	
	0. 15/0	G5-15SF-3	0.000	0.002	0.003	0.004	0.005	0.006	0.007	0.007	0.008	0.009	
		Średnia [%]	0.000	0.002	0.004	0.005	0.006	0.006	0.007	0.008	0.009	0.009	
		Odch. Stand. [%]	0.000	0.000	0.001	0.001	0.001	0.001	0.001	0.001	0.001	0.001	
		Czas ekspozycji	0	2	5	9	14	16	19	22	26	28	
		GD-H2O-1	0.000	0.000	0.001	0.001	0.002	0.002	0.002	0.003	0.003	0.004	
		GD-H2O-2	0.000	0.001	0.001	0.002	0.002	0.002	0.003	0.003	0.003	0.003	
GD	H2O	GD-H2O-3	0.000	0.001	0.001	0.001	0.002	0.003	0.003	0.004	0.004	0.004	
		Średnia [%]	0.000	0.001	0.001	0.001	0.002	0.002	0.003	0.003	0.003	0.004	
		Odch Stand [%]	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	
		Czas eksnozycii	0.000	2.000	5.000	0.000	1.4	16	10	2.000	26	28	
		CD 10N-CL1	0.000	4	0.002		14	10	13	0.004	20	20	
			0.000	0.002	0.003	0.003	0.003	0.004	0.004	0.004	0.004	0.005	
GD	10% NaCl	GD-10NaCI-2	0.000	0.001	0.002	0.003	0.003	0.003	0.003	0.003	0.003	0.004	
		GD-10NaCl-3	0.000	0.002	0.003	0.003	0.003	0.003	0.003	0.003	0.003	0.004	
		Srednia [%]	0.000	0.002	0.003	0.003	0.003	0.003	0.003	0.003	0.003	0.004	
		Odch. Stand. [%]	0	0.000	0.000	0.000	0.001	0.001	0.001	0.001	0.001	0.001	
		Czas ekspozycji	0	2	5	9	14	16	19	22	26	28	
		GD-20NaCl-1	0.000	0.002	0.003	0.009	0.010	0.010	0.011	0.013	0.015	0.017	
GD	20% NaCl	GD-20NaCl-2	0.000	0.001	0.002	0.009	0.011	0.011	0.012	0.014	0.016	0.019	
		GD-20NaCl-3	0.000	0.002	0.002	0.008	0.010	0.010	0.011	0.013	0.015	0.018	
		Średnia [%]	0.000	0.002	0.002	0.009	0.010	0.010	0.011	0.013	0.015	0.018	
		Odch. Stand. [%]	0.000	0.000	0.000	0.000	0.000	0.001	0.001	0.001	0.001	0.001	
		Czas eksnozycii	<u> </u>	2	5	0	14		10	22	26	20	
		czus ckspozycji	0	2		5	14	16	19	22	20	20	
		GD-NaOH-1	0.000	0.004	0.013	0.033	0.060	0.061	0.075	0.080	0.092	0.099	
GD	NaOH	GD-NaOH-1 GD-NaOH-2	0.000	0.004	0.013	0.033	0.060	0.061 0.064	0.075	0.080	0.092	0.099	
GD	NaOH	GD-NaOH-1 GD-NaOH-2 GD-NaOH-3	0.000 0.000 0.000	0.004 0.006 0.005	0.013 0.016 0.017	0.033 0.038 0.036	0.060 0.059 0.057	16 0.061 0.064 0.068	0.075 0.078 0.080	0.080 0.081 0.085	0.092 0.094 0.096	0.099 0.108 0.102	
GD	NaOH	GD-NaOH-1 GD-NaOH-2 GD-NaOH-3 Średnia [%]	0.000 0.000 0.000 0.000	2 0.004 0.006 0.005 0.005	0.013 0.016 0.017 0.015	0.033 0.038 0.036 0.036	0.060 0.059 0.057 0.059	16 0.061 0.064 0.068 0.064	0.075 0.078 0.080 0.078	0.080 0.081 0.085 0.082	0.092 0.094 0.096 0.094	0.099 0.108 0.102 0.103	
GD	NaOH	GD-NaOH-1 GD-NaOH-2 GD-NaOH-3 Średnia [%] Odch. Stand. [%]	0.000 0.000 0.000 0.000 0.000	2 0.004 0.006 0.005 0.005 0.001	0.013 0.016 0.017 0.015 0.002	0.033 0.038 0.036 0.036 0.003	0.060 0.059 0.057 0.059 0.002	16 0.061 0.064 0.068 0.064 0.003	0.075 0.078 0.080 0.078 0.003	0.080 0.081 0.085 0.082 0.003	0.092 0.094 0.096 0.094 0.092	0.099 0.108 0.102 0.103 0.005	
GD	NaOH	GD-NaOH-1 GD-NaOH-2 GD-NaOH-3 Średnia [%] Odch. Stand. [%] Czas ekspozycji	0.000 0.000 0.000 0.000 0.000 0.000	2 0.004 0.006 0.005 0.005 0.001 2	0.013 0.016 0.017 0.015 0.002 5	0.033 0.038 0.036 0.036 0.003 9	0.060 0.059 0.057 0.059 0.002 14	16 0.061 0.064 0.068 0.064 0.003 16	0.075 0.078 0.080 0.080 0.003 19	0.080 0.081 0.085 0.082 0.003 22	0.092 0.094 0.096 0.094 0.002 26	0.099 0.108 0.102 0.103 0.005 28	
GD	NaOH	GD-NaOH-1 GD-NaOH-2 GD-NaOH-3 Średnia [%] Odch. Stand. [%] Czas ekspozycji GD-50KF-1	0.000 0.000 0.000 0.000 0.000 0.000	2 0.004 0.005 0.005 0.005 0.001 2 0.016	0.013 0.016 0.017 0.015 0.002 5 0.140	0.033 0.038 0.036 0.036 0.003 9 0.246	0.060 0.059 0.057 0.059 0.002 14 0.336	16 0.061 0.064 0.068 0.064 0.003 16 0.484	0.075 0.078 0.080 0.080 0.003 19 0.616	0.080 0.081 0.085 0.085 0.082 0.003 22 0.785	0.092 0.094 0.096 0.094 0.002 26 0.897	0.099 0.108 0.102 0.103 0.005 28 0.999	
GD	NaOH	GD-NaOH-1 GD-NaOH-2 GD-NaOH-2 GD-NaOH-3 Średnia [%] Odch. Stand. [%] Czas ekspozycji GD-50KF-1 GD-50KF-2	0.000 0.000 0.000 0.000 0.000 0.000 0.000	2 0.004 0.005 0.005 0.001 2 0.016 0.014	0.013 0.016 0.017 0.015 0.002 5 0.140 0.140	0.033 0.038 0.036 0.036 0.003 9 0.246 0.250	0.060 0.059 0.057 0.059 0.002 14 0.336 0.337	16 0.061 0.068 0.068 0.003 16 0.484 0.493	0.075 0.078 0.080 0.080 0.003 19 0.616 0.623	0.080 0.081 0.085 0.082 0.003 22 0.785 0.791	0.092 0.094 0.096 0.094 0.002 26 0.897 0.901	0.099 0.108 0.102 0.103 0.005 28 0.999 1.005	
GD	NaOH KF 50%	GD-NaOH-1 GD-NaOH-2 GD-NaOH-2 GD-NaOH-3 Średnia [%] Odch. Stand. [%] Czas ekspozycji GD-50KF-1 GD-50KF-2 GD-50KF-3	0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000	2 0.004 0.005 0.005 0.001 2 0.016 0.014 0.013	0.013 0.016 0.017 0.002 5 0.140 0.140 0.142	0.033 0.038 0.036 0.036 0.003 9 0.246 0.250 0.249	0.060 0.059 0.057 0.059 0.002 14 0.336 0.337 0.331	16 0.061 0.064 0.068 0.064 0.003 16 0.484 0.493 0.481	0.075 0.078 0.080 0.003 19 0.616 0.623 0.609	0.080 0.081 0.085 0.085 0.082 0.003 22 0.785 0.791 0.773	0.092 0.094 0.096 0.094 0.002 26 0.897 0.901 0.885	0.099 0.108 0.102 0.103 0.005 28 0.999 1.005 0.988	
GD	NaOH KF 50%	GD-NaOH-1 GD-NaOH-2 GD-NaOH-2 GD-NaOH-3 Średnia [%] Odch. Stand. [%] Czas ekspozycji GD-50KF-1 GD-50KF-2 GD-50KF-3 Średnia [%]	0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000	2 0.004 0.005 0.005 0.001 2 0.016 0.014 0.013 0.015	0.013 0.016 0.017 0.002 5 0.140 0.140 0.142 0.141	0.033 0.038 0.036 0.036 0.003 9 0.246 0.250 0.249 0.248	0.060 0.059 0.057 0.059 0.002 14 0.336 0.337 0.331 0.335	16 0.061 0.064 0.068 0.064 0.003 16 0.484 0.493 0.481 0.486	0.075 0.078 0.080 0.003 19 0.616 0.623 0.609 0.616	0.080 0.081 0.085 0.085 0.082 0.003 22 0.785 0.791 0.773 0.783	0.092 0.094 0.096 0.094 0.002 26 0.897 0.901 0.885 0.894	0.099 0.108 0.102 0.103 0.005 28 0.999 1.005 0.988 0.997	
GD	NaOH KF 50%	GD-NaOH-1 GD-NaOH-2 GD-NaOH-2 GD-NaOH-3 Ś rednia [%] Odch. Stand. [%] Czas ekspozycji GD-50KF-1 GD-50KF-2 GD-50KF-3 Ś rednia [%] Odch. Stand. [%]	0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000	2 0.004 0.005 0.005 0.001 2 0.016 0.014 0.013 0.015 0.002	0.013 0.016 0.017 0.002 5 0.140 0.140 0.142 0.142 0.141 0.002	0.033 0.038 0.036 0.036 0.003 9 0.246 0.250 0.249 0.249 0.248 0.002	14 0.060 0.059 0.057 0.059 0.057 0.0537 0.336 0.337 0.331 0.335 0.004	16 0.061 0.064 0.068 0.064 0.003 16 0.484 0.493 0.481 0.486 0.006	0.075 0.078 0.080 0.003 19 0.616 0.623 0.609 0.616 0.007	0.080 0.081 0.085 0.085 0.003 22 0.785 0.791 0.773 0.783 0.009	0.092 0.094 0.096 0.094 0.002 26 0.897 0.901 0.885 0.894 0.008	0.099 0.108 0.102 0.103 0.005 28 0.999 1.005 0.988 0.997 0.009	
GD	NaOH KF 50%	GD-NaOH-1 GD-NaOH-2 GD-NaOH-2 GD-NaOH-3 Średnia [%] Odch. Stand. [%] Czas ekspozycji GD-50KF-1 GD-50KF-2 GD-50KF-3 Średnia [%] Odch. Stand. [%] Czas ekspozycji	0 0.000 0.000 0.000 0.000 0 0.000 0.000 0.000 0.000 0.000 0 0.000 0 0 0 0	2 0.004 0.005 0.005 0.001 2 0.016 0.014 0.013 0.015 0.002 2	0.013 0.016 0.017 0.002 5 0.140 0.140 0.142 0.141 0.002 5	9 0.033 0.036 0.036 0.036 0.036 0.037 9 0.246 0.250 0.249 0.248 0.002	14 0.060 0.059 0.057 0.002 14 0.336 0.337 0.331 0.335 0.004 14	16 0.061 0.064 0.068 0.003 16 0.484 0.493 0.481 0.486 0.006 16	0.075 0.078 0.080 0.003 19 0.616 0.623 0.609 0.616 0.007 19	22 0.080 0.081 0.085 0.082 0.003 22 0.785 0.791 0.773 0.773 0.773 0.773	20 0.092 0.094 0.096 0.094 0.002 26 0.897 0.901 0.885 0.894 0.008 26	28 0.099 0.108 0.102 0.103 0.005 28 0.999 1.005 0.988 0.997 0.009 28	
GD	NaOH KF 50%	GD-NaOH-1 GD-NaOH-2 GD-NaOH-3 Średnia [%] Odch. Stand. [%] Czas ekspozycji GD-50KF-1 GD-50KF-3 Średnia [%] Odch. Stand. [%] Czas ekspozycji GD-15SF-1	0 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000	2 0.004 0.005 0.005 0.001 2 0.016 0.014 0.013 0.015 0.002 2 0.002	0.013 0.016 0.017 0.002 5 0.140 0.140 0.142 0.141 0.002 5 0.004	9 0.033 0.036 0.036 0.003 9 0.246 0.250 0.249 0.249 0.249 0.249 0.249 0.249 0.249 0.249 0.249 0.202 9	14 0.060 0.059 0.057 0.002 14 0.336 0.337 0.331 0.335 0.004 14 0.006	16 0.061 0.064 0.068 0.064 0.003 16 0.484 0.493 0.481 0.481 0.485 0.006 16	0.075 0.078 0.080 0.078 0.003 0.003 19 0.616 0.623 0.609 0.616 0.609 0.616 0.007 19 0.006	22 0.080 0.081 0.085 0.082 0.785 0.791 0.773 0.773 0.773 0.773 0.773 0.773 0.791 0.773 0.791 0.773 0.791 0.773 0.791 0.773 0.791 0.773 0.791 0.773 0.791 0.793 0.791 0.793 0.791 0.793 0.791 0.793 0.799 0.791 0.793 0.799 0.799 0.791 0.7990000000000	20 0.092 0.094 0.096 0.094 0.002 26 0.897 0.901 0.885 0.894 0.088 26 0.010	28 0.099 0.108 0.102 0.005 28 0.999 1.005 0.988 0.997 0.009 28 0.010	
GD	NaOH KF 50%	GD-NaOH-1 GD-NaOH-2 GD-NaOH-3 Średnia [%] Odch. Stand. [%] Czas ekspozycji GD-50KF-1 GD-50KF-2 GD-50KF-3 Średnia [%] Odch. Stand. [%] Czas ekspozycji GD-15SF-1 GD-15SF-2	0 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0 0.000 0.000	2 0.004 0.006 0.005 0.005 0.001 2 0.016 0.014 0.013 0.015 0.002 2 0.002 0.002	0.013 0.016 0.017 0.002 5 0.140 0.140 0.142 0.142 0.141 0.002 5 0.004 0.000	3 0.033 0.036 0.036 0.036 0.036 0.037 9 0.246 0.250 0.249 0.248 0.002 9 0.001 0.003	14 0.060 0.059 0.057 0.002 14 0.336 0.337 0.331 0.335 0.004 14 0.006 0.004	16 0.061 0.064 0.068 0.064 0.003 16 0.484 0.493 0.481 0.481 0.486 0.006 16 0.006	0.075 0.078 0.080 0.080 0.003 19 0.616 0.623 0.609 0.616 0.007 19 0.006 0.008	22 0.080 0.081 0.085 0.082 0.003 22 0.785 0.791 0.773 0.783 0.009 22 0.009 0.009	20 0.092 0.094 0.096 0.094 0.002 26 0.897 0.901 0.885 0.894 0.008 26 0.010 0.011	28 0.099 0.108 0.102 0.005 0.999 1.005 0.988 0.999 0.098 0.997 0.009 28 0.010 0.011	
GD GD GD	NaOH KF 50% SF 15%	GD-NaOH-1 GD-NaOH-2 GD-NaOH-3 Średnia [%] Odch. Stand. [%] Czas ekspozycji GD-50KF-1 GD-50KF-2 GD-50KF-3 Średnia [%] Odch. Stand. [%] Czas ekspozycji GD-15SF-1 GD-15SF-1 GD-15SF-3	0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000	2 0.004 0.006 0.005 0.005 0.001 2 0.016 0.014 0.013 0.015 0.002 2 0.002 2 0.002 0.000 0.001	0.013 0.016 0.017 0.015 0.002 5 0.140 0.140 0.142 0.141 0.002 5 0.004 0.000 0.003	9 0.033 0.036 0.036 0.036 0.003 9 0.246 0.250 0.249 0.249 0.248 0.002 9 9 0.001 0.003 0.003 0.002	14 0.060 0.059 0.057 0.059 0.002 14 0.336 0.337 0.331 0.335 0.004 14 0.006 0.004 0.005	16 0.061 0.064 0.068 0.064 0.003 16 0.484 0.493 0.481 0.485 0.006 16 0.006 16 0.006	0.075 0.078 0.080 0.080 0.078 0.003 19 0.616 0.623 0.609 0.616 0.007 19 0.006 0.008 0.008 0.007	22 0.080 0.081 0.085 0.082 0.003 22 0.785 0.791 0.773 0.773 0.783 0.009 22 0.009 0.009 0.009	20 0.092 0.094 0.096 0.094 0.002 26 0.897 0.901 0.885 0.894 0.088 26 0.010 0.011 0.011	28 0.099 0.108 0.102 0.005 28 0.999 1.005 0.988 0.997 0.009 28 0.010 0.011 0.011	
GD GD GD	NaOH KF 50% SF 15%	GD-NaOH-1 GD-NaOH-2 GD-NaOH-3 średnia [%] Odch. Stand. [%] Czas ekspozycji GD-50KF-1 GD-50KF-2 GD-50KF-3 średnia [%] Odch. Stand. [%] Czas ekspozycji GD-15SF-1 GD-15SF-2 GD-15SF-3 średnia [%]	0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000	2 0.004 0.005 0.005 0.001 2 0.016 0.014 0.013 0.015 0.002 2 0.002 2 0.0002 0.000 0.001	0.013 0.016 0.017 0.015 0.002 5 0.140 0.140 0.142 0.141 0.002 5 0.004 0.000 0.003 0.003	9 0.033 0.036 0.036 0.036 0.036 0.003 9 0.246 0.250 0.249 0.249 0.249 0.248 0.002 9 0.001 0.003 0.002 0.002	14 0.060 0.059 0.057 0.059 0.002 14 0.336 0.337 0.331 0.335 0.004 14 0.006 0.004 0.005 0.005	16 0.061 0.064 0.003 16 0.484 0.493 0.481 0.485 0.005 16 0.006 0.007 0.007	0.075 0.078 0.080 0.080 0.078 0.003 19 0.616 0.623 0.609 0.616 0.007 19 0.006 0.008 0.008 0.007	22 0.080 0.081 0.085 0.082 0.003 22 0.785 0.791 0.773 0.783 0.009 22 0.009 22 0.009 0.009 0.009	20 0.092 0.094 0.096 0.094 0.002 26 0.897 0.901 0.885 0.894 0.008 26 0.010 0.011 0.011	28 0.099 0.108 0.102 0.005 28 0.999 1.005 0.988 0.997 0.009 28 0.010 0.011 0.011	
GD GD GD	NaOH KF 50% SF 15%	GD-NaOH-1 GD-NaOH-2 GD-NaOH-3 Średnia [%] Odch. Stand. [%] Czas ekspozycji GD-50KF-1 GD-50KF-2 GD-50KF-3 Średnia [%] Odch. Stand. [%] Czas ekspozycji GD-15SF-1 GD-15SF-1 GD-15SF-2 GD-15SF-3 Średnia [%] Odch. Stand. [%]	0 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000	2 0.004 0.005 0.005 0.001 2 0.016 0.014 0.013 0.015 0.002 2 0.002 2 0.000 0.001 0.001	0.013 0.016 0.017 0.015 0.002 5 0.140 0.140 0.142 0.141 0.002 5 0.004 0.000 0.003 0.000	9 0.033 0.038 0.036 0.036 0.036 0.003 9 0.246 0.250 0.249 0.249 0.249 0.249 0.249 0.248 0.002 9 0.001 0.003 0.002 0.002 0.0001	14 0.060 0.059 0.057 0.059 0.002 14 0.336 0.337 0.331 0.331 0.335 0.004 14 0.006 0.004 0.005 0.001	16 0.061 0.064 0.003 16 0.484 0.493 0.481 0.485 0.486 0.006 16 0.006 16 0.007 0.006 0.007	0.075 0.078 0.080 0.080 0.003 19 0.616 0.623 0.609 0.616 0.007 19 0.006 0.000 19 0.0006 0.0007 0.0007 0.0007	22 0.080 0.081 0.085 0.082 0.003 22 0.785 0.791 0.773 0.773 0.773 0.773 0.773 0.783 0.009 22 0.009 0.009 0.009 0.009	20 0.092 0.094 0.096 0.094 0.002 26 0.897 0.901 0.885 0.894 0.008 26 0.010 0.011 0.011 0.001	28 0.099 0.108 0.102 0.005 28 0.999 1.005 0.988 0.999 1.005 0.988 0.999 28 0.009 28 0.009 28 0.010 0.011 0.001	
GD GD GD	NaOH KF 50% SF 15%	GD-NaOH-1 GD-NaOH-2 GD-NaOH-2 GD-NaOH-3 Średnia [%] Odch. Stand. [%] Czas ekspozycji GD-50KF-1 GD-50KF-2 GD-50KF-3 Średnia [%] Odch. Stand. [%] Czas ekspozycji GD-15SF-1 GD-15SF-2 GD-15SF-3 Średnia [%] Odch. Stand. [%]	0 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000	2 0.004 0.005 0.005 0.001 2 0.016 0.014 0.013 0.015 0.002 2 0.002 2 0.002 0.000 0.001 0.0001 0.0001	0.013 0.016 0.017 0.015 0.002 5 0.140 0.140 0.142 0.141 0.002 5 0.004 0.000 0.000 0.000 0.000 4	9 0.033 0.038 0.036 0.036 0.036 0.037 9 0.246 0.250 0.249 0.249 0.249 0.249 0.249 0.248 0.002 9 0.001 0.0001 0.0002 0.0001 8	14 0.060 0.059 0.057 0.002 14 0.336 0.337 0.331 0.335 0.004 14 0.006 0.004 0.005 0.005 0.001 11	16 0.061 0.064 0.068 0.003 16 0.484 0.493 0.481 0.484 0.493 0.481 0.486 0.006 16 0.006 16 0.006 0.000 0.000 0.0001	19 0.075 0.078 0.080 0.078 0.003 19 0.616 0.623 0.609 0.616 0.007 19 0.006 0.007 19 0.006 0.007 0.007 0.007	22 0.080 0.081 0.085 0.082 0.003 22 0.785 0.791 0.773 0.773 0.773 0.773 0.773 0.773 0.773 0.773 0.773 0.773 0.009 22 0.009 0.0009 0.0009 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.000 0.000 0.000 0.000 0.773 0.7750 0.775 0.7750000000000	20 0.092 0.094 0.096 0.094 0.002 26 0.897 0.901 0.885 0.894 0.008 26 0.010 0.011 0.011 0.011 0.001 26	28 0.099 0.108 0.102 0.102 28 0.999 1.005 0.998 0.999 1.005 0.988 0.999 28 0.009 28 0.010 0.011 0.011 0.001 28	
GD GD GD	NaOH KF 50% SF 15%	GD-NaOH-1 GD-NaOH-2 GD-NaOH-2 GD-NaOH-3 Średnia [%] Odch. Stand. [%] Czas ekspozycji GD-50KF-1 GD-50KF-2 GD-50KF-3 Średnia [%] Odch. Stand. [%] Czas ekspozycji GD-15SF-1 GD-15SF-3 Średnia [%] Odch. Stand. [%] Odch. Stand. [%]	0 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000	2 0.004 0.005 0.005 0.001 2 0.016 0.014 0.013 0.015 0.002 2 0.002 2 0.002 0.000 0.001 0.001 0.001	0.013 0.016 0.017 0.015 0.002 5 0.140 0.140 0.142 0.142 0.141 0.002 5 0.004 0.000 0.000 0.000 0.000 0.000 0.000 0.000	9 0.033 0.036 0.036 0.036 0.003 9 0.246 0.250 0.249 0.249 0.249 0.249 0.249 0.249 0.249 0.249 0.002 9 0.001 0.003 0.002 0.002 0.002 0.002 0.002	14 0.060 0.059 0.057 0.002 14 0.336 0.337 0.331 0.335 0.004 14 0.006 0.004 14 0.006 0.004 0.005 0.005 0.001 11	16 0.061 0.064 0.068 0.003 16 0.484 0.493 0.481 0.484 0.493 0.481 0.486 0.006 16 0.006 16 0.006 0.007 0.006 0.0001 14 0.001	19 0.075 0.078 0.003 19 0.616 0.623 0.609 0.616 0.007 19 0.006 0.007 19 0.006 0.008 0.007 0.001 18 0.003	22 0.080 0.081 0.085 0.082 0.003 22 0.785 0.791 0.773 0.773 0.773 0.773 0.773 0.773 0.773 0.773 0.773 0.773 0.791 0.773 0.009 0.009 0.009 0.009 0.009 0.0001 22 0.0001 22 0.0001	200 0.092 0.094 0.096 0.094 0.002 26 0.897 0.901 0.885 0.894 0.008 26 0.010 0.011 0.011 0.011 0.001 26 0.004	28 0.099 0.108 0.102 0.005 28 0.999 1.005 0.988 0.997 0.009 28 0.010 0.011 0.011 0.011 0.001 28 0.004	
GD GD GD	NaOH KF 50% SF 15%	GD-NaOH-1 GD-NaOH-2 GD-NaOH-2 GD-NaOH-3 Średnia [%] Odch. Stand. [%] Czas ekspozycji GD-50KF-1 GD-50KF-2 GD-50KF-3 Średnia [%] Odch. Stand. [%] Czas ekspozycji GD-15SF-1 GD-15SF-3 Średnia [%] Odch. Stand. [%] Czas ekspozycji GD-15SF-3	0 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000	2 0.004 0.005 0.005 0.001 2 0.016 0.014 0.013 0.015 0.002 2 0.002 2 0.002 0.000 0.001 0.001 0.001 0.001	0.013 0.016 0.017 0.015 0.002 5 0.140 0.140 0.142 0.142 0.041 0.002 5 0.004 0.000 0.003 0.000 0.000 4 0.001	9 0.033 0.036 0.036 0.036 0.037 9 0.246 0.250 0.249 0.249 0.249 0.249 0.248 0.002 9 0.001 0.003 0.002 0.002 0.001 8 0.001 8 0.001	14 0.060 0.059 0.057 0.002 14 0.336 0.337 0.331 0.335 0.004 14 0.006 0.004 0.005 0.005 0.005 0.001 11 0.001	16 0.061 0.064 0.068 0.068 0.033 16 0.484 0.493 0.481 0.486 0.006 16 0.006 0.006 0.006 0.007 0.006 0.006 0.001 14 0.002	19 0.075 0.078 0.003 19 0.616 0.623 0.609 0.616 0.623 0.609 0.616 0.007 19 0.006 0.007 19 0.006 0.008 0.007 0.007 0.001 18 0.003 0.003	22 0.080 0.081 0.085 0.082 0.003 22 0.785 0.791 0.773 0.773 0.773 0.773 0.773 0.773 0.773 0.773 0.773 0.773 0.791 0.773 0.791 0.009 0.009 0.009 0.009 0.009 0.000 0.001 22 0.000 0.001 0.005	20 0.092 0.094 0.096 0.094 0.002 26 0.897 0.901 0.885 0.894 0.008 26 0.010 0.011 0.011 0.011 0.011 0.001 26 0.004	28 0.099 0.108 0.102 0.005 28 0.999 1.005 0.988 0.997 0.009 28 0.010 0.011 0.011 0.011 0.011 28 0.004 0.005	
GD GD GD GA	NaOH KF 50% SF 15% H2O	GD-NaOH-1 GD-NaOH-2 GD-NaOH-3 Šrednia [%] Odch. Stand. [%] Czas ekspozycji GD-50KF-1 GD-50KF-3 Šrednia [%] Odch. Stand. [%] Czas ekspozycji GD-15SF-1 GD-15SF-2 GD-15SF-3 Šrednia [%] Odch. Stand. [%] Czas ekspozycji GA-12O-1 GA-H2O-1 GA-H2O-2	0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000	2 0.004 0.006 0.005 0.001 2 0.016 0.014 0.013 0.013 0.002 2 0.002 0.000 0.001 0.000 1 0.000 1 0.000	0.013 0.016 0.017 0.002 5 0.140 0.140 0.140 0.140 0.142 0.002 5 0.004 0.002 0.003 0.000 0.003 0.000 4 0.000 4 0.001 0.001	9 0.033 0.036 0.036 0.036 0.036 0.036 0.037 9 0.246 0.250 0.249 0.249 0.001 0.002 0.002 0.001 8 0.002 0.002	14 0.060 0.057 0.057 0.002 14 0.336 0.337 0.331 0.335 0.004 14 0.006 0.004 0.005 0.001 11 0.001 0.002	16 0.061 0.064 0.068 0.064 0.064 0.064 0.064 0.064 0.064 0.064 0.064 0.064 0.064 0.064 0.063 0.484 0.484 0.484 0.484 0.484 0.484 0.006 0.006 0.006 0.001 14 0.002	19 0.075 0.078 0.080 0.003 19 0.616 0.623 0.609 0.616 0.007 0.006 0.007 0.006 0.007 0.000 19 0.006 0.007 0.001 18 0.003 0.003	22 0.080 0.081 0.085 0.003 22 0.785 0.791 0.773 0.783 0.009 0.009 0.009 0.009 0.000 0.000 0.000 0.001 22 0.004 0.003	20 0.092 0.094 0.096 0.094 0.002 26 0.897 0.901 0.885 0.894 0.008 26 0.010 0.011 0.011 0.011 0.001 26 0.004 0.003	28 0.099 0.108 0.102 0.005 28 0.999 1.005 0.988 0.999 0.005 28 0.999 0.009 28 0.010 0.011 0.011 0.011 0.001 28 0.004 0.005	
GD GD GD	NaOH KF 50% SF 15% H2O	GD-NaOH-1 GD-NaOH-2 GD-NaOH-3 Šrednia [%] Odch. Stand. [%] Czas ekspozycji GD-50KF-1 GD-50KF-2 GD-50KF-3 Šrednia [%] Odch. Stand. [%] Czas ekspozycji GD-15SF-1 GD-15SF-2 GD-15SF-2 GD-15SF-3 Šrednia [%] Odch. Stand. [%] Czas ekspozycji GA-H2O-1 GA-H2O-1 GA-H2O-2 GA-H2O-2 GA-H2O-3	0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000	2 0.004 0.006 0.005 0.001 2 0.016 0.014 0.013 0.015 0.002 2 0.002 0.000 0.001 0.000 1 0.000 1 0.000 1 0.001 0.001	0.013 0.016 0.017 0.015 0.002 5 0.140 0.140 0.142 0.142 0.041 0.002 5 0.004 0.000 0.003 0.000 0.000 0.000 4 0.001 0.001 0.001	9 0.033 0.036 0.036 0.036 0.036 0.036 0.036 0.036 0.036 0.036 0.036 0.036 0.037 0.249 0.249 0.249 0.001 0.003 0.002 0.001 0.002 0.001 8 0.001 0.002 0.002	14 0.060 0.059 0.057 0.002 14 0.336 0.337 0.331 0.335 0.004 14 0.006 0.004 0.005 0.001 11 0.001 0.002 0.002	16 0.061 0.064 0.068 0.064 0.003 16 0.484 0.493 0.481 0.486 0.006 0.006 0.006 0.006 0.007 0.006 0.007 0.006 0.001 14 0.002 0.002	19 0.075 0.078 0.080 0.003 19 0.616 0.623 0.609 0.616 0.007 0.007 0.006 0.008 0.007 0.000 19 0.006 0.007 0.000 19 0.000 19 0.000 19 0.000 19 0.000 0.000 19 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.00000 0.0000 0.0000 0.0000 0.0000 0.000000	22 0.080 0.081 0.085 0.082 0.003 22 0.785 0.791 0.773 0.783 0.791 0.773 0.783 0.009 0.009 0.009 0.009 0.009 0.009 0.009 0.000 22 0.009 0.000 22 0.009 0.000 0.001 22 0.004 0.001 0.002	20 0.092 0.094 0.096 0.094 0.002 26 0.897 0.901 0.885 0.894 0.008 26 0.010 0.011 0.011 0.011 0.011 0.001 26 0.004 0.002	28 0.099 0.108 0.102 0.005 28 0.999 1.005 0.988 0.997 0.009 28 0.009 28 0.010 0.011 0.011 0.011 0.001 28 0.004 0.004	
GD GD GA	NaOH KF 50% SF 15% H2O	GD-NaOH-1 GD-NaOH-2 GD-NaOH-3 Średnia [%] Odch. Stand. [%] Czas ekspozycji GD-50KF-1 GD-50KF-2 GD-50KF-3 Średnia [%] Odch. Stand. [%] Czas ekspozycji GD-15SF-1 GD-15SF-2 GD-15SF-3 Średnia [%] Odch. Stand. [%] Czas ekspozycji GA-H2O-1 GA-H2O-2 GA-H2O-3 Średnia [%]	0,000 0,000	2 0.004 0.006 0.005 0.005 0.001 2 0.014 0.013 0.014 0.013 0.015 0.002 2 0.002 2 0.002 0.000 0.001 0.000 1 0.000 1 0.000 0.001 0.001 0.001	0.013 0.016 0.017 0.015 0.002 5 0.140 0.140 0.142 0.141 0.022 5 5 0.004 0.000 0.003 0.000 0.000 0.000 4 0.000 4 0.001 0.001 0.001 0.001	9 0.033 0.036 0.036 0.036 0.036 0.03 9 0.246 0.250 0.249 0.249 0.249 0.249 0.249 0.248 0.002 9 9 0.001 0.003 0.002 0.001 8 0.001 0.002 0.002 0.002 0.002	14 0.060 0.059 0.057 0.002 14 0.336 0.337 0.331 0.335 0.004 14 0.006 0.004 14 0.006 0.004 0.005 0.001 11 0.001 0.002 0.002 0.002	16 0.061 0.064 0.068 0.064 0.003 16 0.484 0.493 0.481 0.484 0.493 0.481 0.486 0.006 16 0.006 16 0.006 0.007 0.000 0.000 14 0.001 0.002 0.002 0.002	0.075 0.078 0.080 0.003 19 0.616 0.623 0.609 0.616 0.007 19 0.006 0.008 0.007 0.000 19 0.006 0.008 0.007 0.001 18 0.003 0.003 0.003 0.003	22 0.080 0.081 0.085 0.082 0.003 22 0.785 0.791 0.773 0.783 0.791 0.773 0.783 0.009 22 0.009 0.009 0.009 0.000 0.000 22 0.000 0.001 22 0.004 0.003 0.002 0.003	200 0.092 0.094 0.096 0.094 0.002 26 0.897 0.901 0.885 0.894 0.088 26 0.010 0.011 0.011 0.011 0.011 0.001 26 0.000 26 0.004 0.003 0.002 0.003	28 0.099 0.108 0.102 0.005 28 0.999 1.005 0.988 0.997 0.009 28 0.010 0.011 0.011 0.011 0.011 28 0.004 0.005 0.004 0.004 0.004	
GD GD GA	NaOH KF 50% SF 15% H2O	GD-NaOH-1 GD-NaOH-1 GD-NaOH-3 Średnia [%] Odch. Stand. [%] Czas ekspozycji GD-SOKF-1 GD-SOKF-2 GD-SOKF-3 Średnia [%] Odch. Stand. [%] Czas ekspozycji GD-SOKF-3 Średnia [%] Odch. Stand. [%] Czas ekspozycji GD-ISSF-1 GD-ISSF-3 Średnia [%] Odch. Stand. [%] Czas ekspozycji GA-H2O-1 GA-H2O-2 GA-H2O-3 Średnia [%] Odch. Stand. [%]	0 0.000 0.000 0.000 0 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.000000	2 0.004 0.006 0.005 0.005 0.001 2 0.014 0.013 0.015 0.002 2 0.002 2 0.002 2 0.002 0.000 0.001 0.000 1 0.000 1 0.000 0.001 0.000	0.013 0.016 0.017 0.015 0.002 5 0.140 0.140 0.142 0.142 0.141 0.022 5 0.004 0.000 0.003 0.000 0.000 4 0.000 4 0.001 0.001 0.001 0.001 0.001	9 0.033 0.036 0.036 0.036 0.036 0.037 0.049 0.246 0.250 0.249 0.249 0.248 0.022 9 9 0.001 0.003 0.002 0.001 8 0.001 8 0.001 0.002 0.002 0.002	14 0.060 0.059 0.057 0.059 14 0.336 0.337 0.331 0.335 0.004 14 0.004 14 0.004 0.004 0.004 0.005 0.000 11 0.001 0.002 0.002 0.002	16 0.061 0.064 0.003 16 0.484 0.493 0.481 0.486 0.006 0.006 0.006 0.007 0.007 0.007 0.007 0.001 14 0.001 0.002 0.002	13 0.075 0.078 0.0080 0.0078 0.003 19 0.616 0.609 0.616 0.007 0.007 0.007 0.008 0.007 0.008 0.007 0.007 0.007 0.001 18 0.003 0.003 0.002 0.003	22 0.080 0.081 0.085 0.082 0.003 22 0.785 0.791 0.773 0.783 0.791 0.773 0.783 0.009 22 0.009 22 0.009 0.009 0.000 0.000 0.000 0.001 22 0.004 0.003 0.002 0.003 0.002	200 0.092 0.094 0.096 0.094 0.002 26 0.897 0.901 0.885 0.894 0.088 26 0.010 0.011 0.011 0.011 0.011 0.011 0.011 0.001 26 0.004 0.003 0.002 0.003 0.000	28 0.099 0.108 0.102 0.005 28 0.999 1.005 0.988 0.997 0.009 28 0.009 28 0.010 0.011 0.011 0.011 0.001 28 0.004 0.005 0.004 0.004 0.000	
GD GD GA	NaOH KF 50% SF 15% H2O	GD-NaOH-1 GD-NaOH-2 GD-NaOH-3 Średnia [%] Odch. Stand. [%] Czas ekspozycji GD-50KF-1 GD-50KF-2 GD-50KF-3 Średnia [%] Odch. Stand. [%] Czas ekspozycji GD-150KF-3 Średnia [%] Odch. Stand. [%] Czas ekspozycji GD-15SF-2 GD-15SF-3 Średnia [%] Odch. Stand. [%] Czas ekspozycji GA-H2O-1 GA-H2O-2 GA-H2O-3 Średnia [%] Odch. Stand. [%] Czas ekspozycji	0 0.000 0.000 0.000 0 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.000000	2 0.004 0.006 0.005 0.005 0.001 2 0.016 0.014 0.013 0.015 0.002 2 0.002 2 0.002 0.000 0.001 0.000 1 0.000 1 0.000 1 0.000 1 0.000 1 0.000 1 0.000 1 0.000 1 0.000 1 0.000 1 0.000 1 0.000 1 0.000 1 0.000 1 0.005 0.002 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.00000 0.000000	0.013 0.016 0.017 0.015 0.002 5 0.140 0.140 0.142 0.141 0.002 5 0.004 0.000 0.003 0.000 0.000 4 0.000 4 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 4 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.002 0.000 0.002 0.0000 0.000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.000000	9 0.033 0.036 0.036 0.036 0.036 0.036 0.036 0.036 0.036 0.036 0.036 0.036 0.036 0.036 0.246 0.250 0.249 0.248 0.002 9 0.001 0.002 0.002 0.001 8 0.001 8 0.001 8 0.002 0.002 0.002 0.002 0.002 0.002 0.002 0.002 0.002 0.002 0.002 0.002 0.002 0.002 0.002 0.002	14 0.060 0.059 0.057 0.059 0.002 14 0.336 0.337 0.331 0.335 0.004 14 0.004 14 0.006 0.004 14 0.005 0.005 0.005 0.005 0.005 0.001 11 0.001 0.002 0.002 0.002 0.002 0.002 0.002 0.002 0.002 0.002 0.002 0.002 0.002 0.002 0.002 0.002 0.005 0.000 0.005 0.000 0.005 0.000 0.005 0.000 0.005 0.000 0.005 0.0000 0.00000 0.00000 0.0000 0.0000 0.00000 0.0000 0.0000 0.000000	16 0.061 0.064 0.068 0.068 0.068 0.484 0.493 0.481 0.486 0.006 16 0.006 0.006 0.006 0.007 0.006 0.007 0.006 0.007 0.006 0.001 14 0.001 14 0.002 0.002 0.002 0.000 14	13 0.075 0.078 0.080 0.003 19 0.616 0.623 0.609 0.616 0.007 19 0.006 0.007 0.006 0.007 0.000 18 0.003 0.003 0.003 0.003 0.003 0.003 0.000 18 0.003 0.003 0.003 0.003 0.003 0.003 0.003 0.003 0.003 0.003 0.003 0.003 0.003 0.003 0.003 0.003 0.005 0.0	22 0.080 0.081 0.085 0.082 0.003 22 0.785 0.791 0.773 0.783 0.009 22 0.009 22 0.009 0.009 0.009 0.009 0.009 0.000 0.000 0.000 22 0.000 0.000 0.000 22 0.000 0.773 0.785 0.000 0.773 0.785 0.000 0.000 0.773 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.000000	200 0.092 0.094 0.096 0.094 0.002 26 0.897 0.901 0.885 0.894 0.008 26 0.010 0.011 0.011 0.011 0.011 0.011 0.001 26 0.004 0.003 0.002 0.003 0.000 0.000 0.000	28 0.099 0.108 0.102 0.005 28 0.999 1.005 0.988 0.997 0.009 28 0.009 28 0.010 0.011 0.011 0.011 28 0.004 0.005 0.004 0.005 0.004 0.000 0.004	
GD GD GA	NaOH KF 50% SF 15% H2O	GD-NaOH-1 GD-NaOH-2 GD-NaOH-3 Średnia [%] Odch. Stand. [%] Czas ekspozycji GD-50KF-1 GD-50KF-2 GD-50KF-3 Średnia [%] Odch. Stand. [%] Czas ekspozycji GD-15SF-1 GD-15SF-2 GD-15SF-3 Średnia [%] Odch. Stand. [%] Czas ekspozycji GA-H2O-1 GA-H2O-2 GA-H2O-3 Średnia [%] Odch. Stand. [%] Czas ekspozycji GA-10NaCl-1	0.000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.000000	2 0.004 0.005 0.005 0.001 2 0.016 0.014 0.013 0.015 0.002 2 0.002 2 0.002 0.000 0.001 0.000 1 0.000 1 0.000 1 0.000 1 0.000 1 0.000 1 0.000 1 0.000 1 0.000 1 0.000 1 0.000 1 0.000 0.005 0.002 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.00000 0.000000	0.013 0.016 0.017 0.015 0.002 5 0.140 0.140 0.142 0.141 0.002 5 0.004 0.000 0.003 0.000 4 0.000 4 0.001 0.001 0.000 4 0.000 4 0.001	9 0.033 0.036 0.036 0.036 0.036 0.036 0.036 0.036 0.036 0.036 0.036 0.036 0.036 0.036 0.249 0.249 0.249 0.001 0.002 0.002 0.001 8 0.002 0.000 8 0.000 8 0.000 8 0.000	14 0.060 0.059 0.057 0.059 0.002 14 0.336 0.337 0.331 0.335 0.004 14 0.004 14 0.006 0.004 14 0.005 0.000 11 0.002 0.002 0.002 0.002 0.002 0.002 0.002 0.002 0.002 0.002 0.002 0.002 0.002 0.002 0.005 0.000 0.005 0.005	16 0.061 0.064 0.068 0.068 0.068 0.003 16 0.484 0.493 0.481 0.486 0.006 0.006 0.006 0.007 0.006 0.007 0.006 0.001 14 0.002 0.000 14 0.000 14 0.000	13 0.075 0.078 0.080 0.080 0.078 0.003 19 0.616 0.623 0.609 0.616 0.007 19 0.006 0.007 19 0.006 0.007 0.007 0.000 18 0.003 0.000 18 0.000 18 0.000 18 0.000 18 0.000 18 0.000 18 0.000 18 0.000 18 0.000 18 0.000 18 0.000 18 0.000 18 0.000 18 0.000 18 0.000 18 0.000 19 0.005 19 0.616 0.007 19 0.005 0.007 0.000 0.007 0.000 0.007 0.000 0.007 0.000 0.000 0.000 0.007 0.000 0.000 0.007 0.0000 0.000 0.000 0.00000 0.00000 0.0000 0.0000 0.0000 0.00000 0.0000 0.0000 0.0	22 0.080 0.081 0.085 0.082 0.003 22 0.785 0.791 0.773 0.783 0.791 0.773 0.783 0.009 22 0.009 0.009 0.009 0.009 0.009 0.000 0.000 22 0.004 0.003 0.002 0.003 0.000 22 0.000 22 0.004	200 0.092 0.094 0.096 0.094 0.002 26 0.897 0.901 0.885 0.894 0.008 26 0.010 0.011 0.011 0.011 0.011 0.011 0.001 26 0.004 0.003 0.002 0.003 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.00000 0.00000 0.000000	28 0.099 0.108 0.102 0.005 28 0.999 1.005 0.988 0.997 0.009 28 0.009 28 0.009 28 0.010 0.011 0.011 0.011 0.001 28 0.004 0.005 0.004 0.005 0.004 0.005	
GD GD GA GA	NaOH KF 50% SF 15% H2O	GD-NaOH-1 GD-NaOH-2 GD-NaOH-3 Średnia [%] Odch. Stand. [%] Czas ekspozycji GD-50KF-1 GD-50KF-2 GD-50KF-3 Średnia [%] Odch. Stand. [%] Czas ekspozycji GD-15SF-1 GD-15SF-3 Średnia [%] Odch. Stand. [%] Czas ekspozycji GA-H2O-1 GA-H2O-2 GA-H2O-3 Średnia [%] Odch. Stand. [%] Czas ekspozycji GA-H2O-3 Średnia [%] Odch. Stand. [%] Czas ekspozycji GA-H2O-1 GA-H2O-2 GA-H2O-3	0.000 0.0000 0.0000 0.0000 0.0000 0.000000	2 0.004 0.005 0.005 0.001 2 0.016 0.014 0.013 0.015 0.002 2 0.002 2 0.002 0.000 0.001 0.000 1 0.000 1 0.000 1 0.000 1 0.000 1 0.000 1 0.000 1 0.000 1 0.000 1 0.000 1 0.000 1 0.000 1 0.000 1 0.000 1 0.000 1 0.000 1 0.000 1 0.000 1 0.005 0 0.002 0 0.000 0 0 0.000 0 0.000 0 0.000 0 0.000 0 0 0.000 0 0 0.000 0 0 0.000 0 0 0.000 0 0.000 0 0.000 0 0.000 0 0.000 0 0.000 0 0.000 0 0.000 0 0.000 0 0.000 0 0.000 0 0.000 0 0.000 0 0.0000 0 0.000 0 0.0000 0 0.000 0 0.000 0 0.0000 0 0.0000 0 0.0000 0 0.0000 0 0.0000 0 0.0000 0 0.0000 0 0.0000 0 0.0000 0 0.0000 0 0 0.0000 0 0 0.0000 0 0 0 0.0000 0 0.0000 0 0 0.0000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0.013 0.016 0.017 0.015 0.002 5 0.140 0.140 0.142 0.141 0.002 5 0.004 0.000 0.000 0.000 4 0.001 0.001 0.001 0.001 0.000 4 0.001 0.000 4 0.001 0.000 4 0.001 0.000 4 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.002 0.001 0.001 0.001 0.002 0.002 0.002 0.002 0.002 0.002 0.002 0.002 0.140 0.140 0.140 0.0140 0.140 0.0140 0.0140 0.0140 0.0140 0.0140 0.0140 0.0140 0.0140 0.0140 0.0140 0.0140 0.0140 0.0140 0.0140 0.002 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.000000	9 0.033 0.036 0.036 0.036 0.036 0.036 0.036 0.036 0.036 0.036 0.036 0.036 0.036 0.036 0.249 0.249 0.249 0.002 9 0.001 0.002 0.002 0.002 0.002 0.002 0.002 0.002 0.002 0.002 0.002 0.002 0.002	14 0.060 0.059 0.057 0.059 0.002 14 0.336 0.337 0.331 0.331 0.335 0.004 14 0.004 14 0.006 0.004 14 0.005 0.000 11 0.001 0.002 0.002 0.002 0.002 0.002 0.002 0.002 0.002 0.002 0.002 0.002 0.005	16 0.061 0.064 0.068 0.068 0.068 0.031 16 0.484 0.493 0.481 0.486 0.006 16 0.006 0.006 0.006 0.006 0.006 0.006 0.006 0.006 0.001 0.002 0.002 0.002 0.000 14 0.002 0.002 0.002 0.004 0.004	19 0.075 0.078 0.080 0.080 0.078 0.003 19 0.616 0.623 0.609 0.616 0.007 19 0.006 0.007 19 0.006 0.007 0.000 18 0.003 0.002 0.003 0.002 0.003 0.000 18 0.003 0.000 18 0.003 0.000 18 0.004	22 0.080 0.081 0.085 0.082 0.003 22 0.785 0.791 0.773 0.783 0.791 0.773 0.783 0.009 22 0.009 22 0.009 0.009 0.009 0.009 0.009 0.009 0.009 0.009 0.009 0.009 0.009 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.00000 0.0000 0.0000 0.00000 0.00000 0.00000 0.00000 0.000000	200 0.092 0.094 0.096 0.094 0.002 26 0.897 0.901 0.885 0.894 0.008 26 0.010 0.011 0.011 0.011 0.011 0.011 0.001 26 0.004 0.003 0.002 0.003 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.00000 0.0000 0.00000 0.000000	28 0.099 0.108 0.102 0.005 28 0.999 1.005 0.988 0.997 0.009 28 0.010 0.011 0.011 0.011 0.011 28 0.004 0.001 28 0.004 0.005 0.004 0.005 0.000 28 0.005 0.005 0.005	
GD GD GA GA	NaOH KF 50% SF 15% H2O 10% NaCl	GD-NaOH-1 GD-NaOH-2 GD-NaOH-2 GD-NaOH-2 GD-NaOH-3 Średnia [%] Odch. Stand. [%] Czas ekspozycji GD-50KF-1 GD-50KF-2 GD-50KF-3 Średnia [%] Odch. Stand. [%] Czas ekspozycji GD-15SF-3 Średnia [%] Odch. Stand. [%] Czas ekspozycji GA-H2O-1 GA-H2O-2 GA-H2O-3 Średnia [%] Odch. Stand. [%] Czas ekspozycji GA-H2O-3 Średnia [%] Odch. Stand. [%] Czas ekspozycji GA-H2O-1 GA-H2O-2 GA-H2O-3 Średnia [%]	0.000 0.0000 0.000 0.000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.000000	2 0.004 0.005 0.005 0.001 2 0.016 0.014 0.013 0.015 0.002 2 0.002 2 0.002 2 0.002 2 0.002 0.001 0.001 0.000 1 0.000 1 0.000 1 0.000 1 0.000 1 0.000 1 0.000 1 0.000 1 0.000 1 0.000 0.001 0.000 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.005 0.001 0.005 0.005 0.001 0.001 0.005 0.001 0.001 0.001 0.001 0.001 0.001 0.002 0.000 0.000 0.000 0.000 0.000 0.001 0.001 0.002 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.000000	0.013 0.016 0.017 0.015 0.002 5 0.140 0.140 0.142 0.141 0.002 5 0.004 0.000 0.000 0.000 4 0.001 0.001 0.001 0.001 0.000 4 0.001 0.000 4 0.001 0.000 4 0.001 0.000 4 0.001 0.001 0.000 4 0.001 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.00000 0.00000 0.000000	9 0.033 0.038 0.036 0.036 0.036 0.036 0.037 0.249 0.249 0.249 0.249 0.249 0.249 0.249 0.249 0.249 0.249 0.249 0.001 0.002 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.00000 0.00000 0.000000	14 0.060 0.059 0.057 0.002 14 0.336 0.337 0.331 0.335 0.004 14 0.006 0.004 14 0.006 0.004 14 0.006 0.004 14 0.005 0.005 0.005 0.001 11 0.002 0.002 0.002 0.002 0.002 0.002 0.002 0.002 0.005 0.055 0.	16 0.061 0.064 0.068 0.068 0.044 0.033 16 0.484 0.493 0.481 0.486 0.006 16 0.006 0.006 0.006 0.006 0.006 0.006 0.006 0.006 0.001 0.002 0.002 0.002 0.002 0.002 0.002 0.002 0.003 0.004	19 0.075 0.078 0.080 0.003 19 0.616 0.623 0.609 0.616 0.007 19 0.066 0.007 19 0.006 0.007 19 0.006 0.007 19 0.006 0.007 19 0.006 0.007 0.007 18 0.003 0.003 0.003 0.002 0.003 0.000 18 0.000 18 0.0000 0.0000 0.0000 0.0000 0.0000 0.000000	22 0.080 0.081 0.085 0.082 0.003 22 0.785 0.791 0.773 0.783 0.791 0.773 0.783 0.009 22 0.009 22 0.009 0.009 0.009 0.009 0.009 0.009 0.009 0.009 0.009 0.009 0.009 0.009 0.009 0.009 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.000000	200 0.092 0.094 0.096 0.094 0.002 26 0.897 0.901 0.885 0.894 0.008 26 0.010 0.011 0.011 0.011 0.011 0.011 0.001 26 0.004 0.003 0.002 0.003 0.000 26 0.005 0.005 0.005 0.005	28 0.099 0.108 0.102 0.005 28 0.999 1.005 0.988 0.997 0.009 28 0.010 0.011 0.011 0.011 0.011 0.001 28 0.004 0.005 0.004 0.005 0.005 0.005 0.005 0.005	
GD GD GA GA	NaOH KF 50% SF 15% H2O 10% NaCl	GD-NaOH-1 GD-NaOH-2 GD-NaOH-3 Šrednia [%] Odch. Stand. [%] Czas ekspozycji GD-50KF-1 GD-50KF-2 GD-50KF-3 Šrednia [%] Odch. Stand. [%] Czas ekspozycji GD-15SF-1 GD-15SF-1 GD-15SF-2 GD-15SF-3 Šrednia [%] Odch. Stand. [%] Czas ekspozycji GA-H2O-1 GA-H2O-1 GA-H2O-2 GA-H2O-3 Šrednia [%] Odch. Stand. [%] Czas ekspozycji GA-H2O-3 Šrednia [%] Odch. Stand. [%] Czas ekspozycji GA-10NaCl-1 GA-10NaCl-2 GA-10NaCl-3 Šrednia [%]	0.000 0.0000 0.000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.000000	2 0.004 0.006 0.005 0.001 2 0.016 0.014 0.013 0.013 0.002 2 0.002 0.000 0.001 0.000 1 0.000 1 0.000 1 0.000 1 0.000 1 0.000 1 0.000 1 0.000 1 0.000 0.001 0.000 1 0.000 0.001	0.013 0.016 0.017 0.002 5 0.140 0.140 0.140 0.140 0.140 0.140 0.002 5 0.004 0.002 0.003 0.000 4 0.000 4 0.001 0.001 0.001 0.001 0.001 0.000 4 0.001 0.000 4 0.001 0.000 4 0.001 0.000 4 0.001 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.00000 0.000000	9 0.033 0.036 0.036 0.036 0.036 0.036 0.036 0.036 0.036 0.036 0.036 0.036 0.036 0.246 0.250 0.249 0.249 0.248 0.001 0.002 0.002 0.002 0.002 0.002 0.002 0.002 0.002 0.002 0.002 0.002 0.002 0.002 0.002 0.002 0.003 0.003 0.003	14 0.060 0.059 0.057 0.059 0.002 14 0.336 0.337 0.331 0.331 0.335 0.004 14 0.006 0.004 0.005 0.001 11 0.005 0.001 11 0.002 0.002 0.002 0.002 0.002 0.002 0.002 0.002 0.002 0.003 0.0	16 0.061 0.064 0.068 0.068 0.044 0.033 16 0.484 0.493 0.484 0.493 0.481 0.486 0.006 16 0.006 0.007 0.006 0.007 0.006 0.001 0.002 0.002 0.002 0.002 0.002 0.002 0.002 0.002 0.002 0.002 0.002 0.004 0.004	19 0.075 0.078 0.080 0.003 19 0.616 0.623 0.609 0.616 0.007 0.007 0.006 0.007 0.007 0.000 18 0.000 18 0.003 0.003 0.003 0.003 0.000 18 0.000 18 0.000 18 0.000 18 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.000000	22 0.080 0.081 0.085 0.082 0.003 22 0.785 0.791 0.773 0.783 0.009 0.009 0.009 0.009 0.009 0.009 0.009 0.009 0.009 0.0000 0.0000 0.0000 0.0000 0.00000 0.0000 0.0000 0.000000	200 0.092 0.094 0.096 0.094 0.002 26 0.897 0.901 0.885 0.894 0.008 26 0.010 0.011 0.011 0.011 0.011 0.011 0.011 0.011 0.001 26 0.003 0.002 0.003 0.000 0.003 0.000 0.005 0.005 0.005	28 0.099 0.108 0.102 0.005 28 0.999 1.005 0.988 0.997 0.099 28 0.010 0.011 0.011 0.011 0.011 0.011 0.011 0.001 28 0.004 0.005 0.004 0.005 0.005 0.005 0.005 0.005	
GD GD GA GA	NaOH KF 50% SF 15% H2O 10% NaCl	GD-NaOH-1 GD-NaOH-2 GD-NaOH-3 Šrednia [%] Odch. Stand. [%] Czas ekspozycji GD-50KF-1 GD-50KF-2 GD-50KF-3 Šrednia [%] Odch. Stand. [%] Czas ekspozycji GD-15SF-1 GD-15SF-1 GD-15SF-2 GD-15SF-3 Šrednia [%] Odch. Stand. [%] Czas ekspozycji GA-H2O-1 GA-H2O-1 GA-H2O-2 GA-H2O-3 Šrednia [%] Odch. Stand. [%] Czas ekspozycji GA-10NaCl-1 GA-10NaCl-2 GA-10NaCl-3 Šrednia [%] Odch. Stand. [%]	0,000 0,000000	2 0.004 0.006 0.005 0.005 0.001 2 0.014 0.013 0.015 0.002 2 0.002 0.000 0.001 0.000 1 0.001 0.001 0 0.005 0 0.014 0.014 0.015 0.000 0.005 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.00000 0.00000 0.000000	0.013 0.016 0.017 0.015 0.002 5 0.140 0.140 0.140 0.140 0.140 0.02 5 0.004 0.002 0.000 4 0.000 4 0.001 0.001 0.001 0.001 0.001 0.001 0.000 4 0.001 0.001 0.000 4 0.001 0.002 0.002 0.002 0.002 0.002 0.002	9 0.033 0.036 0.036 0.036 0.036 0.036 0.036 0.036 0.036 0.036 0.036 0.036 0.036 0.249 0.249 0.249 0.248 0.001 0.002 0.002 0.001 8 0.001 0.002 0.002 0.002 0.002 0.002 0.002 0.002 0.002 0.002 0.002 0.002 0.002 0.003 0.003 0.003 0.003 0.003 0.003 0.003	14 0.060 0.059 0.057 0.02 14 0.336 0.337 0.331 0.331 0.335 0.004 14 0.006 0.004 0.005 0.004 0.005 0.001 11 0.001 0.002 0.002 0.002 0.002 0.002 0.002 0.002 0.002 0.002 0.003 0.003 0.003 0.003 0.003 0.003 0.003 0.003 0.000 0.003 0	16 0.061 0.064 0.068 0.064 0.031 16 0.484 0.493 0.481 0.484 0.006 0.006 0.006 0.006 0.007 0.006 0.007 0.006 0.007 0.006 0.001 14 0.002 0.002 0.002 0.002 0.002 0.002 0.002 0.004 0.004 0.0004	19 0.075 0.078 0.080 0.003 19 0.616 0.623 0.609 0.616 0.007 0.007 0.007 0.006 0.008 0.007 0.000 19 0.006 0.007 0.007 0.000 18 0.003 0.000 18 0.003 0.000 18 0.003 0.000 18 0.004 0.004 0.005 0.004 0.000	22 0.080 0.081 0.085 0.082 0.003 22 0.785 0.791 0.773 0.783 0.791 0.773 0.783 0.009 0.009 0.009 0.009 0.009 0.009 0.009 0.009 0.009 0.000 0.000 0.001 22 0.004 0.002 0.002 0.000 0.000 0.005 0.005 0.000	200 0.092 0.094 0.096 0.094 0.002 26 0.897 0.901 0.885 0.894 0.088 0.008 26 0.010 0.011 0.011 0.011 0.011 0.011 0.011 0.011 0.001 26 0.004 0.003 0.002 0.003 0.000 26 0.005 0.005 0.005 0.005	28 0.099 0.108 0.102 0.005 28 0.999 1.005 0.988 0.997 0.009 28 0.009 28 0.000 28 0.000 28 0.010 0.011 0.011 0.011 0.011 0.011 0.001 28 0.004 0.005 0.004 0.000 28 0.005 0.005 0.005 0.005 0.005	
GD GD GA GA	NaOH KF 50% SF 15% H2O 10% NaCl	GD-NaOH-1 GD-NaOH-2 GD-NaOH-3 Średnia [%] Odch. Stand. [%] Czas ekspozycji GD-SOKF-1 GD-SOKF-2 GD-SOKF-3 Średnia [%] Odch. Stand. [%] Czas ekspozycji GD-SOKF-3 Średnia [%] Odch. Stand. [%] Czas ekspozycji GD-1SSF-1 GD-1SSF-2 GD-1SSF-3 Średnia [%] Odch. Stand. [%] Czas ekspozycji GA-H2O-1 GA-H2O-2 GA-H2O-3 Średnia [%] Odch. Stand. [%] Czas ekspozycji GA-10NaCl-2 GA-10NaCl-2 GA-10NaCl-3 Średnia [%] Odch. Stand. [%] Czas ekspozycji	0.000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.000000	2 0.004 0.006 0.005 0.001 2 0.016 0.014 0.013 0.015 0.002 2 0.002 2 0.002 0.000 0.001 0.000 1 0.000 1 0.000 1 0.000 0.001 0.000 0.001 0.000 0.001 0.000 0.001 0.000 0.001 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.001 0.001 0.005 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.000 0.001 0.0000 0.0000 0.0000 0.000000	0.013 0.016 0.017 0.002 5 0.140 0.140 0.142 0.142 0.141 0.002 5 5 0.004 0.000 0.003 0.000 0.000 4 0.001 0.001 0.001 0.001 0.000 4 0.001 0.000 4 0.001 0.000 4 0.001 0.002 0.002 0.002 0.002 0.002 0.000 5 5	9 0.033 0.036 0.036 0.036 0.036 0.037 9 0.246 0.250 0.249 0.249 0.248 0.002 0.249 0.248 0.002 0.003 0.002 0.001 8 0.001 0.002 0.002 0.002 0.002 0.002 0.002 0.002 0.002 0.002 0.000 8 0.002 0.000 0.000 8 0.002 0.0000 0.000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.00000 0.0000 0.0000 0.0000 0.0000 0.00000 0.00000 0.00000 0.00000 0.000000	14 0.060 0.059 0.057 0.059 14 0.336 0.337 0.331 0.331 0.335 0.004 14 0.005 0.004 14 0.006 0.004 0.005 0.005 0.001 11 0.001 0.002 0.002 0.002 0.002 0.002 0.003 0.003 0.003 0.003 0.003 0.003 0.003 0.000 10 0.003 0.000 0.003 0.000 0.003 0.000 0.003 0.000 0.003 0.003 0.000 0.003 0.000 0.000 0.003 0.000 0.003 0.000 0.003 0.000 0.003 0.000 0.003	16 0.061 0.064 0.068 0.064 0.003 16 0.484 0.493 0.481 0.485 0.006 16 0.006 16 0.006 0.007 0.006 0.007 0.006 0.001 14 0.001 0.002 0.002 0.002 0.002 0.000 14 0.003 0.004 0.004 0.004	19 0.075 0.078 0.080 0.003 19 0.616 0.623 0.609 0.616 0.007 19 0.006 0.008 0.007 0.001 18 0.003 0.003 0.003 0.003 0.003 0.003 0.003 0.003 0.003 0.003 0.000 18 0.004 0.004 0.004 0.004 0.000	22 0.080 0.081 0.085 0.082 0.003 22 0.785 0.791 0.773 0.783 0.791 0.773 0.783 0.009 22 0.009 0.009 0.009 0.009 0.009 0.009 0.009 0.000 0.000 0.001 22 0.004 0.003 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.0005 0.0005 0.0005	200 0.092 0.094 0.096 0.094 0.002 26 0.897 0.901 0.885 0.894 0.088 26 0.010 0.011 0.011 0.011 0.011 0.011 0.011 0.011 0.011 0.011 0.001 26 0.003 0.003 0.000 0.000 0.005 0.005 0.005 0.005	28 0.099 0.108 0.102 0.005 28 0.999 1.005 0.988 0.997 0.009 28 0.097 0.009 28 0.010 0.011 0.011 0.011 0.011 0.011 0.011 0.001 28 0.004 0.005 0.004 0.000 28 0.005 0.005 0.005 0.005	
GD GD GA GA	NaOH KF 50% SF 15% H2O 10% NaCl	GD-NaOH-1 GD-NaOH-2 GD-NaOH-3 Średnia [%] Odch. Stand. [%] Czas ekspozycji GD-50KF-1 GD-50KF-2 GD-50KF-3 Średnia [%] Odch. Stand. [%] Czas ekspozycji GD-150KF-3 Średnia [%] Odch. Stand. [%] Czas ekspozycji GD-15SF-1 GD-15SF-2 GD-15SF-3 Średnia [%] Odch. Stand. [%] Czas ekspozycji GA-H2O-1 GA-H2O-2 GA-H2O-3 Średnia [%] Odch. Stand. [%] Czas ekspozycji GA-10NaCl-1 GA-10NaCl-2 GA-10NaCl-3 Średnia [%] Odch. Stand. [%] Czas ekspozycji GA-10NaCl-3 Średnia [%] Odch. Stand. [%] Czas ekspozycji GA-10NaCl-3 Średnia [%] Odch. Stand. [%] Czas ekspozycji GA-20NaCl-1 <	0,000 0,000000	2 0.004 0.006 0.005 0.005 0.001 2 0.014 0.013 0.015 0.002 2 0.002 2 0.002 0.000 0.001 0.000 1 0.000 1 0.000 1 0.000 1 0.000 1 0.000 1 0.000 1 0.000 1 0.000 1 0.000 3 0.000 1 0.000 3 0.000 1 0.000 1 0.000 1 0.000 1 0.000 1 0.000 1 0.000 1 0.000 1 0.000 1 0.001 0 0.005 1 0.001 1 0.001 0 0.000 0 0.001 0 0.000 0 0.001 0 0.000 0.000 0 0 0.000 0 0.0000 0 0.0000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0.013 0.016 0.017 0.002 5 0.140 0.140 0.142 0.142 0.141 0.002 5 5 0.004 0.000 0.003 0.000 0.003 0.000 0.000 4 0.000 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 5 0.002 0.002 0.002 0.002 0.002 0.002 0.000 5 0.000 0.002	9 0.033 0.036 0.036 0.036 0.036 0.036 0.036 0.036 0.036 0.036 0.036 0.036 0.249 0.249 0.249 0.001 0.002 9 0.001 8 0.001 8 0.002 0.002 0.002 0.002 0.002 0.002 0.002 0.002 0.002 0.002 0.002 0.002 0.003 0.003 0.003 0.003 0.003 0.003 0.003 0.003 0.003 0.003 0.004	14 0.060 0.059 0.057 0.059 14 0.336 0.337 0.331 0.331 0.335 0.004 14 0.006 0.004 14 0.006 0.004 0.005 0.004 0.005 0.005 0.001 11 0.001 0.002 0.002 0.002 0.002 0.002 0.003 0.0	16 0.061 0.064 0.063 0.481 0.483 0.481 0.481 0.480 0.006 16 0.001 16 0.005 0.006 0.007 0.006 0.001 14 0.002 0.002 0.002 0.003 0.004 0.000 14 0.003 0.004 0.004 0.005	19 0.075 0.078 0.080 0.003 19 0.616 0.623 0.609 0.616 0.007 19 0.006 0.008 0.007 0.000 19 0.006 0.008 0.007 0.000 18 0.003 0.003 0.003 0.003 0.003 0.003 0.003 0.003 0.000 18 0.004 0.004 0.004 0.004 0.004 0.000 17 0.006	22 0.080 0.081 0.085 0.082 0.003 22 0.785 0.791 0.773 0.783 0.009 22 0.009 0.009 0.009 0.009 0.009 0.009 0.009 0.009 0.009 0.009 0.009 0.000 0.000 22 0.004 0.003 0.002 0.003 0.000 22 0.004 0.003 0.000 22 0.004 0.005 0.005 0.005 0.000 22 0.000 22 0.005	200 0.092 0.094 0.096 0.094 0.002 26 0.897 0.901 0.885 0.894 0.088 26 0.010 0.011 0.011 0.011 0.011 0.011 0.011 0.011 0.011 0.011 0.011 0.001 26 0.005 0.000 26 0.005 0.005 0.005 0.005	28 0.099 0.108 0.102 0.005 28 0.999 1.005 0.988 0.997 0.009 28 0.009 28 0.010 0.011 0.011 0.011 0.011 0.011 0.011 0.001 28 0.004 0.005 0.004 0.004 0.005 0.005 0.005 0.005 0.005	
GD GD GA GA	NaOH KF 50% SF 15% H2O 10% NaCl	GD-NaOH-1 GD-NaOH-2 GD-NaOH-3 Średnia [%] Odch. Stand. [%] Czas ekspozycji GD-SOKF-1 GD-SOKF-2 GD-SOKF-3 Średnia [%] Odch. Stand. [%] Czas ekspozycji GD-SOKF-3 Średnia [%] Odch. Stand. [%] Czas ekspozycji GD-1SSF-1 GD-1SSF-2 GD-1SSF-3 Średnia [%] Odch. Stand. [%] Czas ekspozycji GA-H2O-1 GA-H2O-2 GA-H2O-3 Średnia [%] Odch. Stand. [%] Czas ekspozycji GA-10NaCl-1 GA-10NaCl-2 GA-10NaCl-2 GA-10NaCl-3 Średnia [%] Odch. Stand. [%] Czas ekspozycji GA-10NaCl-1 GA-10NaCl-2 GA-10NaCl-1 GA-20NaCl-1 GA-20NaCl-1 GA-20NaCl-1	0.000 0.0000 0.0000 0.0000 0.0000 0.00000 0.0000 0.00000 0.000000	2 0.004 0.006 0.005 0.005 0.001 2 0.014 0.013 0.015 0.002 2 0.002 2 0.002 0.000 0.001 0.000 1 0.000 1 0.000 1 0.000 1 0.000 1 0.000 1 0.000 1 0.000 1 0.000 1 0.000 3 0.000 1 0.000 1 0.000 1 0.000 1 0.000 1 0.000 1 0.000 1 0.000 1 0.000 1 0.000 1 0.001 0.001 0.001 0.001 0.001 0.005 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.0002 0.0000 0.0001 0.0002 0.0000 0.0001 0.0000 0.0001 0.0002 0.0000 0.0001 0.0000 0.0001 0.0000 0.0001 0.0000 0.0001 0.0000 0.0001 0.0000 0.0001 0.0000 0.0001 0.0000 0.0001 0.0000 0.0001 0.0000 0.0001 0.0000 0.0001 0.00000 0.00000 0.00000 0.000000	0.013 0.016 0.017 0.015 0.002 5 0.140 0.140 0.142 0.141 0.022 5 0.004 0.000 4 0.000 4 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.000 4 0.001 0.000 4 0.001 0.000 5 0.002 0.002 0.002 0.002 0.002 0.002	9 0.033 0.036 0.036 0.036 0.036 0.036 0.036 0.036 0.036 0.036 0.036 0.036 0.036 0.249 0.249 0.249 0.020 0.001 0.002 0.002 0.001 8 0.002 0.002 0.002 0.002 0.002 0.002 0.002 0.002 0.002 0.002 0.002 0.002 0.002 0.003 0.003 0.003 0.003 0.004 7 0.005	14 0.060 0.059 0.057 0.059 0.002 14 0.336 0.337 0.331 0.335 0.004 14 0.004 14 0.006 0.005 0.001 11 0.001 0.002 0.002 0.002 0.002 0.002 0.002 0.002 0.002 0.003 0.003 0.003 0.003 0.003 0.003 0.003 0.003 0.003 0.000 11 0.003 0.003 0.003 0.003 0.000 11 0.005 0.055 0.	16 0.061 0.064 0.068 0.068 0.044 0.493 0.481 0.483 0.484 0.005 0.006 0.006 0.006 0.007 0.007 0.000 14 0.000 14 0.000 14 0.000 14 0.000 14 0.000 14 0.000 14 0.000 14 0.000 14 0.000 14 0.000	19 0.075 0.078 0.080 0.003 19 0.616 0.623 0.609 0.616 0.007 19 0.006 0.008 0.007 0.000 19 0.006 0.008 0.007 0.001 18 0.003 0.003 0.003 0.003 0.003 0.000 18 0.000 18 0.000 18 0.000 18 0.000 18 0.000 17 0.000 17 0.006 0.005	22 0.080 0.081 0.085 0.082 0.003 22 0.785 0.791 0.773 0.783 0.791 0.773 0.783 0.009 22 0.009 0.009 0.009 0.009 0.009 0.009 0.009 0.009 0.000 0.000 0.000 0.000 0.000 22 0.0000 0.0000 0.0000 0.00000 0.00000 0.00000 0.000000	200 0.092 0.094 0.096 0.094 0.002 26 0.897 0.901 0.885 0.894 0.088 26 0.010 0.011 0.011 0.011 0.011 0.011 0.011 0.011 0.011 0.011 0.011 0.011 0.011 0.011 0.011 0.001 26 0.003 0.000 26 0.005 0.005 0.005 0.005 0.005 0.005	28 0.099 0.108 0.102 0.005 28 0.999 1.005 0.988 0.997 0.009 28 0.010 0.011 0.011 0.011 0.011 0.011 0.011 0.001 28 0.004 0.005 0.005 0.005 0.005 0.005 0.005 0.005	
GD GD GA GA	NaOH KF 50% SF 15% H2O 10% NaCl 20% NaCl	GD-NaOH-1 GD-NaOH-2 GD-NaOH-3 Średnia [%] Odch. Stand. [%] Czas ekspozycji GD-SOKF-1 GD-SOKF-2 GD-SOKF-3 Średnia [%] Odch. Stand. [%] Czas ekspozycji GD-SOKF-3 Średnia [%] Odch. Stand. [%] Czas ekspozycji GD-1SSF-1 GD-1SSF-2 GD-1SSF-3 Średnia [%] Odch. Stand. [%] Czas ekspozycji GA-H2O-1 GA-H2O-2 GA-H2O-3 Średnia [%] Odch. Stand. [%] Czas ekspozycji GA-10NaCl-1 GA-10NaCl-2 GA-10NaCl-3 Średnia [%] Odch. Stand. [%] Czas ekspozycji GA-10NaCl-1 GA-10NaCl-2 GA-10NaCl-3 Średnia [%] Odch. Stand. [%] Czas ekspozycji GA-20NaCl-1 GA-20NaCl-2 GA-20NaCl-2 GA-	0.000 0.0000 0.0000 0.0000 0.0000 0.00000 0.0000 0.00000 0.000000	2 0.004 0.006 0.005 0.005 0.001 2 0.014 0.013 0.015 0.002 2 0.002 2 0.002 0.000 0.001 0.000 1 0.000 1 0.000 1 0.000 1 0.000 1 0.000 1 0.000 0.001 0.000 0.001 0.000 0.001 0.000 0.001 0.000 0.001 0.000 0.001 0.000 0.001 0.000 0.001 0.000 0.001 0.002 0.002 0.000 0.001 0.002 0.005 0.001 0.001 0.001 0.000 0.001 0.000 0.001 0.0000 0.0000 0.0000 0.00000 0.00000 0.000000	0.013 0.016 0.017 0.015 0.002 5 0.140 0.140 0.142 0.142 0.141 0.022 5 0.004 0.000 4 0.000 4 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.000 4 0.001 0.001 0.000 4 0.001 0.000 5 0.002 0.002 0.002 0.002 0.002	9 0.033 0.036 0.036 0.036 0.036 0.036 0.036 0.036 0.036 0.036 0.036 0.036 0.036 0.249 0.249 0.249 0.249 0.001 0.002 0.002 0.001 8 0.001 8 0.002 0.002 0.002 0.002 0.002 0.002 0.002 0.002 0.002 0.002 0.002 0.002 0.003 0.003 0.004 7 0.005 0.005	14 0.060 0.059 0.057 0.059 0.002 14 0.336 0.337 0.331 0.335 0.004 14 0.004 14 0.006 0.005 0.001 11 0.001 0.002 0.002 0.002 0.002 0.002 0.000 11 0.003 0.003 0.003 0.003 0.003 0.003 0.000 11 0.003 0.003 0.000 11 0.000 0.005 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.00000 0.0000 0.0000 0.00000 0.00000 0.00000 0.0000 0.00000000	16 0.061 0.064 0.068 0.068 0.484 0.493 0.481 0.486 0.006 0.006 0.006 0.006 0.006 0.007 0.008 0.001 14 0.002 0.002 0.002 0.002 0.003 14 0.004 0.000 14 0.001 14 0.002 0.004 0.000 14 0.000 14 0.000 14 0.000	19 0.075 0.078 0.080 0.003 19 0.616 0.623 0.609 0.616 0.007 19 0.006 0.008 0.007 0.007 0.007 0.007 0.007 0.007 0.007 0.007 0.003 0.003 0.003 0.003 0.002 0.003 0.000 18 0.000 18 0.000 18 0.000 17 0.000 17 0.000 17 0.000 0.005 0.005	22 0.080 0.081 0.085 0.082 0.003 22 0.785 0.791 0.773 0.783 0.099 22 0.009 22 0.009 0.009 0.009 0.009 0.009 0.009 0.009 0.009 0.009 0.009 0.009 0.0000 0.0000 0.0000 0.0000 0.00000 0.000000	200 0.092 0.094 0.096 0.094 0.002 26 0.897 0.901 0.885 0.894 0.008 26 0.010 0.011 0.011 0.011 0.011 0.011 0.011 0.011 0.011 0.011 0.011 0.011 0.011 0.011 0.011 0.001 26 0.003 0.005 0.005 0.005 0.005 0.005 0.005 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.00000 0.00000 0.00000 0.000000	28 0.099 0.108 0.102 0.005 28 0.999 1.005 0.988 0.997 0.009 28 0.010 0.011 0.011 0.011 0.011 0.011 0.011 0.011 0.011 0.001 28 0.004 0.005 0.005 0.005 0.005 0.005 0.005 0.000 28 0.000	
GD GD GA GA	NaOH KF 50% SF 15% H2O 10% NaCl 20% NaCl	GD-NaOH-1 GD-NaOH-2 GD-NaOH-3 Średnia [%] Odch. Stand. [%] Czas ekspozycji GD-SOKF-1 GD-SOKF-2 GD-50KF-3 Średnia [%] Odch. Stand. [%] Czas ekspozycji GD-15SF-2 GD-15SF-1 GD-15SF-2 GD-15SF-3 Średnia [%] Odch. Stand. [%] Czas ekspozycji GA-H2O-1 GA-H2O-2 GA-H2O-3 Średnia [%] Odch. Stand. [%] Czas ekspozycji GA-10NaCl-1 GA-10NaCl-2 GA-10NaCl-3 Średnia [%] Odch. Stand. [%] Czas ekspozycji GA-10NaCl-3 Średnia [%] Odch. Stand. [%] Czas ekspozycji GA-10NaCl-3 Średnia [%] Odch. Stand. [%] Czas ekspozycji GA-20NaCl-1 GA-20NaCl-2 GA-20NaCl-2 GA-20NaCl-2 GA-	0.000 0.0000 0.000 0.0000 0.0000 0.0000 0.00000 0.0000 0.00000 0.000000	2 0.004 0.005 0.005 0.005 0.001 2 0.014 0.013 0.015 0.002 2 0.002 2 0.002 0.000 0.001 0.001 0.000 1 0.000 1 0.000 1 0.000 1 0.000 1 0.000 1 0.000 0.001 0.000 0.001 0.000 0.001 0.000 0.001 0.000 0.001 0.000 0.001 0.000 0.001 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.001 0.000 0.001 0.000 0.001 0.000 0.001 0.000 0.001 0.000 0.001 0.000 0.001 0.000 0.001 0.000 0.001 0.000 0.001 0.000 0.001 0.000 0.001 0.000 0.001 0.000 0.001 0.000 0.001 0.000 0.001 0.000 0.001 0.000 0.001 0.000 0.001 0.000 0.001 0.000 0.000 0.001 0.000 0.000 0.000 0.001 0.0000 0.0000 0.0000 0.0000 0.00000 0.00000 0.000000	0.013 0.016 0.017 0.015 0.002 5 0.140 0.140 0.142 0.141 0.002 5 0.004 0.000 4 0.000 4 0.000 4 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.000 4 0.001 0.001 0.002 0.002 0.002 0.002 0.002 0.002 0.002 0.002 0.002 0.002	9 0.033 0.038 0.036 0.036 0.036 0.036 0.036 0.036 0.036 0.036 0.036 0.036 0.036 0.249 0.249 0.249 0.249 0.001 0.002 0.002 0.002 0.002 0.002 0.002 0.002 0.002 0.002 0.002 0.002 0.002 0.002 0.002 0.003 0.003 0.003 0.005 0.005 0.005	14 0.060 0.059 0.059 0.02 14 0.336 0.337 0.331 0.331 0.335 0.004 14 0.004 14 0.005 0.005 0.001 11 0.002 0.002 0.002 0.002 0.002 0.002 0.002 0.003 0.003 0.003 0.003 0.003 0.003 0.003 0.003 0.003 0.003 0.003 0.005 0.055 0.05	16 0.061 0.064 0.068 0.068 0.484 0.493 0.481 0.486 0.005 16 0.006 0.005 16 0.005 0.481 0.482 0.005 0.006 0.006 0.007 0.002 0.002 0.002 0.002 0.002 0.002 0.002 0.002 0.004 0.004 0.004 0.005 14 0.007 0.006 0.006 0.006	19 0.075 0.078 0.080 0.078 0.003 19 0.616 0.623 0.609 0.616 0.007 19 0.006 0.007 0.007 0.006 0.007 0.001 18 0.003 0.003 0.003 0.002 0.003 0.000 18 0.004 0.004 0.004 0.004 0.005 0.05 0.	22 0.080 0.081 0.085 0.082 0.003 22 0.785 0.791 0.773 0.783 0.009 22 0.009 22 0.009 0.009 0.009 0.009 0.009 0.009 0.0000 0.0000 0.0000 0.0000 0.00000 0.00000 0.000000	200 0.092 0.094 0.096 0.094 0.002 26 0.897 0.901 0.885 0.894 0.008 26 0.010 0.011 0.011 0.011 0.011 0.011 0.011 0.011 0.011 0.011 0.001 0.001 0.003 0.000 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005	28 0.099 0.108 0.102 0.005 28 0.999 1.005 0.988 0.997 0.009 28 0.009 28 0.010 0.011 0.011 0.011 0.011 0.011 0.011 0.011 0.001 28 0.004 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005	

		Czas ekspozycji	0	3	5	7	10	12	14	17	19	21	24	28
		GA-NaOH-1	0.000	0.003	0.007	0.009	0.013	0.016	0.018	0.022	0.022	0.022	0.024	0.024
GA	NEOH	GA-NaOH-2	0.000	0.003	0.007	0.010	0.013	0.013	0.015	0.017	0.019	0.020	0.022	0.022
GA	Naon	GA-NaOH-3	0.000	0.003	0.006	0.009	0.015	0.016	0.017	0.018	0.019	0.020	0.020	0.020
		Średnia [%]	0.000	0.003	0.007	0.009	0.014	0.015	0.017	0.019	0.020	0.021	0.022	0.022
		Odch. Stand. [%]	0.000	0.000	0.001	0.001	0.001	0.002	0.001	0.002	0.002	0.001	0.002	0.002
		Czas ekspozycji	0	1	4	8	11	14	18	22	26	28		
		GA-50KF-1	0.000	0.006	0.055	0.104	0.111	0.120	0.143	0.153	0.159	0.167		
C A	KE EOW	GA-50KF-2	0.000	0.006	0.055	0.097	0.109	0.115	0.126	0.138	0.149	0.155		
GA	KF DU%	GA-50KF-3	0.000	0.007	0.056	0.100	0.109	0.119	0.129	0.139	0.150	0.155		
		Średnia [%]	0.000	0.006	0.055	0.100	0.110	0.118	0.133	0.143	0.152	0.159		
		Odch. Stand. [%]	0	0.001	0.000	0.003	0.001	0.002	0.009	0.008	0.005	0.007		
		Czas ekspozycji	0	1	4	8	11	14	18	22	26	28		
		GA-15SF-1	0.000	0.003	0.003	0.003	0.004	0.005	0.007	0.007	0.009	0.009		
	05 1 50/	GA-15SF-2	0.000	0.001	0.002	0.003	0.005	0.006	0.006	0.006	0.009	0.009		
GA	SF 15%	GA-15SF-3	0.000	0.001	0.002	0.003	0.004	0.006	0.007	0.007	0.010	0.010		
		Średnia [%]	0.000	0.001	0.002	0.003	0.004	0.006	0.007	0.007	0.009	0.009		
		Odch. Stand. [%]	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000		
		Czas ekspozycji	0	4	8	11	14	18	22	25	28			
		G2-NaOH-1	0.000	0.007	0.024	0.039	0.049	0.06	0.079	0.087	0.098			
		G2-NaOH-2	0.000	0.009	0.025	0.039	0.052	0.064	0.08	0.085	0.099			
GZ	NaOH	G2-NaOH-3	0.000	0.008	0.027	0.041	0.054	0.065	0.083	0.09	0.105			
		Średnia [%]	0.000	0.008	0.025	0.040	0.052	0.063	0.080	0.087	0.101			
		Odch. Stand. [%]	0.000	0.001	0.002	0.001	0.003	0.003	0.002	0.002	0.004			
		Czas ekspozycji	0	3	6	10	14	17	21	24	28			
		G4-NaOH-1	0.000	0.011	0.023	0.043	0.061	0.071	0.083	0.098	0.112			
		G4-NaOH-2	0.000	0.015	0.02	0.042	0.061	0.073	0.082	0.098	0.112			
G4	NaOH	G4-NaOH-3	0.000	0.013	0.018	0.04	0.061	0.075	0.082	0.098	0.112			
		Średnia [%]	0.000	0.013	0.020	0.042	0.061	0.073	0.082	0.098	0.112			
		Odch, Stand, [%]	0.000	0.003	0.004	0.002	0.000	0.003	0.000	0.000	0.000			

		Czas ekspozycji	0	3	5	7	12	14	20	21	24	28
		P-NaOH-1	0.000	0.009	0.02	0.025	0.035	0.039	0.049	0.048	0.052	0.061
piasek	NaOU	P-NaOH-2	0.000	0.011	0.018	0.023	0.035	0.04	0.051	0.052	0.054	0.06
kwarcowy	NaOn	P-NaOH-3	0.000	0.01	0.018	0.024	0.035	0.039	0.049	0.05	0.054	0.06
		Średnia [%]	0.000	0.010	0.019	0.024	0.035	0.039	0.050	0.050	0.053	0.060
		Odch. Stand. [%]	0.000	0.001	0.001	0.001	0.000	0.001	0.001	0.002	0.001	0.001
		Czas ekspozycji	2	5	8	12	14	16	19	21	23	28
		A-NaOH-1	0.004	0.013	0.023	0.028	0.036	0.041	0.043	0.049	0.053	0.056
grys	NaOH	A-NaOH-2	0.003	0.012	0.022	0.028	0.036	0.041	0.044	0.050	0.054	0.057
annibolito	NdOH	A-NaOH-3	0.003	0.012	0.023	0.028	0.037	0.041	0.043	0.049	0.053	0.056
vvy		Średnia [%]	0.003	0.012	0.023	0.028	0.036	0.041	0.043	0.049	0.053	0.056
		Odch. Stand. [%]	0.001	0.001	0.001	0.000	0.001	0.000	0.001	0.001	0.001	0.001

Tabela Z2.2 Zestawienie wyników badania ekspansij belek betonów w metodzie długotrwałej (38°C), ASTM C 1293

liczba dni	G1		G2		G3		G4		G5		GD		GA	
	G1-1	0.000	G2-1	0.000	G3-1	0.000	G4-1	0.000	G5-1	0.000	GD-1	0.000	GA-1	0.000
	G1-2	0.000	G2-2	0.000	G3-2	0.000	G4-2	0.000	G5-2	0.000	GD-2	0.000	GA-2	0.000
0	G1-3	0.000	G2-3	0.000	G3-3	0.000	G4-3	0.000	G5-3	0.000	GD-3	0.000	GA-3	0.000
v	Średnia [%]	0.000	Średnia [%]	0.000	Średnia [%]	0.000	Średnia [%]	0.000	Średnia [%]	0.000	Średnia [%]	0.000	Średnia [%]	0.000
	Odch. Stand. [%]	0.000	Odch. Stand. [%]	0.000	Odch. Stand. [%]	0.000	Odch. Stand. [%]	0.000	Odch. Stand. [%]	0.000	Odch. Stand. [%]	0.000	Odch. Stand. [%]	0.000
	G1-1	0.001	G2-1	-0.002	G3-1	0.001	G4-1	-0.001	G5-1	0.006	GD-1	0.000	GA-1	0.000
	G1-2	0.003	G2-2	0.001	G3-2	0.000	G4-2	0.000	G5-2	0.007	GD-2	-0.001	GA-2	0.001
7	G1-3	0.002	G2-3	0.001	G3-3	0.006	G4-3	0.000	G5-3	0.004	GD-3	-0.001	GA-3	-0.001
'	Średnia [%]	0.002	Średnia [%]	0.000	Średnia [%]	0.002	Średnia [%]	-0.001	Średnia [%]	0.006	Średnia [%]	-0.001	Średnia [%]	0.000
	Odch. Stand. [%]	0.001	Odch. Stand. [%]	0.001	Odch. Stand. [%]	0.003	Odch. Stand. [%]	0.001	Odch. Stand. [%]	0.001	Odch. Stand. [%]	0.001	Odch. Stand. [%]	0.001
	G1-1	0.006	G2-1	-0.002	G3-1	0.003	G4-1	0.003	G5-1	0.008	GD-1	0.001	GA-1	0.004
	G1-2	0.007	G2-2	0.002	G3-2	0.001	G4-2	0.002	G5-2	0.011	GD-2	0.002	GA-2	0.004
28	G1-3	0.005	G2-3	0.001	G3-3	0.005	G4-3	0.000	G5-3	0.007	GD-3	0.001	GA-3	0.001
20	Średnia [%]	0.006	Średnia [%]	0.000	Średnia [%]	0.003	Średnia [%]	0.002	Średnia [%]	0.009	Średnia [%]	0.001	Średnia [%]	0.003
	Odch. Stand. [%]	0.001	Odch. Stand. [%]	0.002	Odch. Stand. [%]	0.002	Odch. Stand. [%]	0.001	Odch. Stand. [%]	0.002	Odch. Stand. [%]	0.001	Odch. Stand. [%]	0.002
	G1-1	0.008	G2-1	-0.002	G3-1	0.006	G4-1	0.004	G5-1	0.011	GD-1	0.004	GA-1	0.005
	G1-2	0.010	G2-2	0.002	G3-2	0.006	G4-2	0.005	G5-2	0.015	GD-2	0.005	GA-2	0.007
56	G1-3	0.008	G2-3	0.005	G3-3	0.008	G4-3	0.003	G5-3	0.009	GD-3	0.005	GA-3	0.003
50	Średnia [%]	0.009	Średnia [%]	0.002	Średnia [%]	0.006	Średnia [%]	0.004	Średnia [%]	0.011	Średnia [%]	0.005	Średnia [%]	0.005
	Odch. Stand. [%]	0.001	Odch. Stand. [%]	0.004	Odch. Stand. [%]	0.001	Odch. Stand. [%]	0.001	Odch. Stand. [%]	0.003	Odch. Stand. [%]	0.001	Odch. Stand. [%]	0.002

	G1-1	0.010	G2-1	0.005	G3-1	0.012	G4-1	0.011	G5-1	0.015	GD-1	0.010	GA-1	0.007
	G1-2	0.009	G2-2	0.009	G3-2	0.013	G4-2	0.013	G5-2	0.019	GD-2	0.009	GA-2	0.010
00	G1-3	0.008	G2-3	0.009	G3-3	0.015	G4-3	0.010	G5-3	0.014	GD-3	0.009	GA-3	0.004
30	Średnia [%]	0.009	Średnia [%]	0.008	Średnia [%]	0.013	Średnia [%]	0.011	Średnia [%]	0.016	Średnia [%]	0.009	Średnia [%]	0.007
	Odch.	0.001	Odch.	0.000	Odch.	0.001	Odch.	0.001	Odch.	0.000	Odch. Stand.	0.001	Odch.	0.000
	Stand. [%]	0.001	Stand. [%]	0.003	Stand. [%]	0.001	Stand. [%]	0.001	Stand. [%]	0.002	[%]	0.001	Stand. [%]	0.003
	G1-1	0.017	G2-1	0.015	G3-1	0.021	G4-1	0.021	G5-1	0.023	GD-1	0.015	GA-1	0.012
	G1-2	0.019	G2-2	0.021	G3-2	0.023	G4-2	0.022	G5-2	0.025	GD-2	0.016	GA-2	0.012
190	G1-3	0.015	G2-3	0.020	G3-3	0.024	G4-3	0.018	G5-3	0.021	GD-3	0.016	GA-3	0.011
100	Średnia [%]	0.017	Średnia [%]	0.019	Średnia [%]	0.023	Średnia [%]	0.020	Średnia [%]	0.023	Średnia [%]	0.016	Średnia [%]	0.012
	Odch.	0.000	Odch. Stand.	0.001	Odch.	0.001								
	Stand. [%]	0.002	Stand. [%]	0.003	Stand. [%]	0.002	Stand. [%]	0.002	Stand. [%]	0.002	[%]	0.001	Stand. [%]	0.001
	G1-1	0.025	G2-1	0.018	G3-1	0.032	G4-1	0.037	G5-1	0.023	GD-1	0.025	GA-1	0.019
	G1-2	0.028	G2-2	0.021	G3-2	0.036	G4-2	0.039	G5-2	0.027	GD-2	0.026	GA-2	0.018
270	G1-3	0.027	G2-3	0.023	G3-3	0.032	G4-3	0.036	G5-3	0.026	GD-3	0.026	GA-3	0.019
270	Średnia [%]	0.026	Średnia [%]	0.021	Średnia [%]	0.033	Średnia [%]	0.037	Średnia [%]	0.025	Średnia [%]	0.026	Średnia [%]	0.018
	Odch.	0.001	Odch.	0.000	Odch.	0.000	Odch.	0.000	Odch.	0.000	Odch. Stand.	0.001	Odch.	0.001
	Stand. [%]	0.001	Stand. [%]	0.003	Stand. [%]	0.003	Stand. [%]	0.002	Stand. [%]	0.002	[%]	0.001	Stand. [%]	0.001
	G1-1	0.038	G2-1	0.031	G3-1	0.043	G4-1	0.049	G5-1	0.032	GD-1	0.035	GA-1	0.024
	G1-2	0.037	G2-2	0.028	G3-2	0.044	G4-2	0.047	G5-2	0.039	GD-2	0.034	GA-2	0.022
265	G1-3	0.034	G2-3	0.032	G3-3	0.053	G4-3	0.043	G5-3	0.041	GD-3	0.034	GA-3	0.023
505	Średnia [%]	0.036	Średnia [%]	0.030	Średnia [%]	0.047	Średnia [%]	0.047	Średnia [%]	0.037	Średnia [%]	0.034	Średnia [%]	0.023
	Odch.	0.000	Odch.	0.000	Odch.	0.005	Odch.	0.000	Odch.	0.004	Odch. Stand.	0.001	Odch.	0.001
	Stand. [%]	0.002	Stand. [%]	0.002	Stand. [%]	0.006	Stand. [%]	0.003	Stand. [%]	0.004	[%]	0.001	Stand. [%]	0.001

Tabela Z2.3 Zestawienie wyników badania ekspansji belek betonów w metodzie symulowanych warunków eksploatacyjnych, PB/5/18

Kruszywo	Roztwór		-			Ekspan	sja [%]						
		Czas ekspozycji [dni]	0	14	28	42	56	70	84	98	112	126	140
		G3-H2O-1	0.00	0.09	0.11	0.16	0.17	0.18	0.20	0.21	0.21	0.22	0.23
63	Woda	G3-H2O-2	0.00	0.10	0.12	0.17	0.17	0.19	0.20	0.21	0.21	0.23	0.24
63	destylowana	G3-H2O-3	0.00	0.09	0.11	0.17	0.18	0.19	0.21	0.21	0.22	0.23	0.24
1		Średnia [%]	0.00	0.09	0.11	0.17	0.17	0.19	0.20	0.21	0.21	0.23	0.24
		Odch. Stand. [%]	0.00	0.00	0.01	0.01	0.01	0.01	0.01	0.00	0.01	0.00	0.01
		Czas ekspozycji [dni]	0	14	28	42	56	70	84	98	112	126	140
		G3-10NaCl-1	0.00	0.16	0.20	0.27	0.29	0.33	0.39	0.37	0.43	0.47	0.52
62	10% NaCl	G3-10NaCl-2	0.00	0.18	0.21	0.28	0.30	0.34	0.40	0.40	0.47	0.50	0.55
63	10% NaCi	G3-10NaCl-3	0.00	0.17	0.21	0.28	0.30	0.34	0.41	0.40	0.44	0.49	0.52
		Średnia [%]	0	0.17	0.21	0.27	0.30	0.34	0.40	0.39	0.44	0.49	0.53
		Odch. Stand. [%]	0	0.01	0.00	0.00	0.01	0.01	0.01	0.01	0.02	0.01	0.01
		Czas ekspozycji [dni]	0	14	28	42	56	70	84	98	112	126	140
		G3-50KF-1	0.00	0.28	0.43	0.66	1.04	1.49	1.98	2.47	2.97	3.49	4.10
62	50% KE	G3-50KF-2	0.00	0.27	0.44	0.69	1.12	1.63	2.15	2.68	3.20	3.71	4.34
65	30% KF	G3-50KF-3	0.00	0.29	0.44	0.66	1.04	1.48	1.97	2.47	2.96	3.47	4.06
		Średnia [%]	0.00	0.28	0.44	0.67	1.07	1.53	2.04	2.54	3.04	3.56	4.17
		Odch. Stand. [%]	0.00	0.01	0.00	0.02	0.05	0.08	0.10	0.12	0.14	0.14	0.15
		Czas ekspozycji [dni]	0	14	28	42	56	70	84	98	112	126	140
		G3-25KF-1	0.00	0.19	0.30	0.37	0.64	1.01	1.40	1.98	2.63	3.29	4.05
62	25% //E	G3-25KF-2	0.00	0.17	0.28	0.40	0.68	1.01	1.38	1.96	2.65	3.36	4.16
05	2370 KF	G3-25KF-3	0.00	0.18	0.29	0.41	0.68	1.05	1.45	2.04	2.73	3.44	4.25
		Średnia [%]	0.00	0.18	0.29	0.39	0.67	1.02	1.41	1.99	2.67	3.36	4.15
		Odch. Stand. [%]	0.00	0.01	0.01	0.02	0.02	0.02	0.04	0.04	0.06	0.08	0.10
		Czas ekspozycji [dni]	0	14	28	42	56	70	84	98	112	126	140
		G3-15SF-1	0.00	0.17	0.25	0.33	0.49	0.65	0.83	1.01	1.26	1.48	1.75
63	15% SE	G3-15SF-2	0.00	0.16	0.23	0.29	0.52	0.69	0.87	1.09	1.33	1.56	1.84
	1370 31	G3-15SF-3	0.00	0.17	0.25	0.32	0.51	0.67	0.87	1.08	1.32	1.54	1.78
		Średnia [%]	0.00	0.17	0.24	0.31	0.51	0.67	0.86	1.06	1.31	1.53	1.79
		Odch. Stand. [%]	0.00	0.01	0.01	0.02	0.01	0.02	0.02	0.04	0.04	0.04	0.04
		Czas ekspozycji [dni]	0	14	28	42	56	70	84	98	112	126	140
		G3-10SF-1	0.00	0.11	0.19	0.25	0.41	0.54	0.70	0.83	1.00	1.17	1.29
63	10% SE	G3-10SF-2	0.00	0.14	0.24	0.29	0.44	0.57	0.72	0.84	0.99	1.16	1.34
	10/001	G3-10SF-3	0.00	0.14	0.23	0.30	0.46	0.58	0.74	0.87	1.04	1.26	1.33
		Średnia [%]	0.00	0.13	0.22	0.28	0.44	0.56	0.72	0.85	1.01	1.20	1.32
		Odch. Stand. [%]	0.00	0.02	0.02	0.03	0.03	0.02	0.02	0.02	0.03	0.06	0.03
		Czas ekspozycji [dni]	0	14	28	42	56	70	84	98	112	126	140
		G1-50KF-1	0.00	0.32	0.52	0.77	1.25	1.73	2.26	2.88	3.44	4.12	4.80
61	50% KE	G1-50KF-2	0.00	0.30	0.51	0.79	1.31	1.87	2.44	3.10	3.69	4.36	5.08
01	3070 101	G1-50KF-3	0.00	0.32	0.55	0.80	1.33	1.65	2.45	3.12	3.73	4.41	5.12
		Średnia [%]	0.00	0.31	0.53	0.79	1.30	1.75	2.38	3.03	3.62	4.30	5.00
		Odch. Stand. [%]	0.00	0.01	0.02	0.02	0.04	0.11	0.11	0.13	0.16	0.16	0.17

Case kepsory(1 fm1) 0 14 28 42 56 70 84 98 112 126 61 25% KF 61:28K-1 0.00 0.21 0.42 0.45 0.69 1.01 1.68 1.53 1.52 2.64 3.31 61 61:28K-2 0.00 0.20 0.31 0.44 0.68 0.99 1.68 1.33 2.66 3.38 61 0.00 0.00 0.01 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.03 0.04 0.03 0.04 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 <th>G1 25% e7 0 0 1</th> <th>Case else percy (1 w) 0 14 2 6 70 84 98 12</th> <th>L</th> <th>1</th> <th></th> <th>I</th> <th></th> <th></th> <th></th> <th>I</th> <th></th> <th>l</th> <th></th> <th></th> <th></th> <th>t</th>	G1 25% e7 0 0 1	Case else percy (1 w) 0 14 2 6 70 84 98 12	L	1		I				I		l				t
G1 25% KF	G1 SKNT 0.00 0.30 0.43 0.87 0.88 1.87 1.92 2.48 3.37 4.3 G1 25K +7 0.00 0.20 0.31 0.44 0.86 0.83 1.36 1.38 1.68 1.38 4.4 G1 25K +7 0.00 0.01	G1 25% -F 0.00 0.10 0.20 <th< td=""><td></td><td></td><td>Czas ekspozycji [dni]</td><td>0</td><td>14</td><td>28</td><td>42</td><td>56</td><td>70</td><td>84</td><td>98</td><td>112</td><td>126</td><td>140</td></th<>			Czas ekspozycji [dni]	0	14	28	42	56	70	84	98	112	126	140
G1 25% FF G1:287-2 0.00 0.22 0.43 0.44 0.68 0.99 1.38 1.33 2.68 1.41 Sechia [5] 0.00 0.20 0.31 0.44 0.68 0.99 1.36 1.33 1.33 2.68 1.43 G1 0.05 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.02 0.03 0.44 0.68 0.99 1.32 1.25 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.02 <	G1 S256 (F) G1 S267 (F) G0	G1 25% KF G1.2567-3 0.00 0.20 0.21 0.44 0.68 0.99 1.36 1.30 2.68 1.30 4.33 4.33 G0.5 Nom.1(5) 0.00 0.00 0.01			G1-25KF-1	0.00	0.19	0.30	0.43	0.67	0.98	1.35	1.92	2.64	3.37	4.30
G1 25%.4* G1:2867-3 0.00 2.20 0.31 0.44 0.68 98 1.36 1.39 2.66 3.89 0dch, Stand [S] 0.00 0.20 0.31 0.44 0.68 99 1.15 1.39 2.66 3.89 0dch, Stand [S] 0.00 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.44 0.88 9.9 1.12 1.12 1.25 0.25 0.31 0.47 0.61 0.77 0.85 1.17 1.39 0.61 0.52 0.27 0.42 0.54 0.63 0.64 0.69 0.16 0.66 0.65 0.65 0.65 0.65 0.65 0.65 0.65 0.65 0.65 0.65 0.65 0.65 0.66 0.66 0.61 0.61 0.61 0.61 0.61 0.61 0.61 0.61 0.61 0.61 0.61 0.61 0.61 0.61 0.61 0.61 0.61<	61 25% 61.2 SF-3 0.00 0.30 0.31 0.44 0.88 0.89 1.36 1.38 2.48 2.48 64 564 0.00 0.01	61 298,4* 61-324-5-3 0.00 0.20 0.31 0.44 0.68 0.99 3.64 3.84 6.20 Gets 500-05, stand, [8] 0.00 0.01			G1-25KF-2	0.00	0.21	0.32	0.45	0.69	1.01	1.36	1.95	2.66	3.38	4.33
Seedini 191 0.00 0.20 0.21 0.24 0.84 0.89 1.26 1.29 2.26 1.39 Odr. Stand. [N] 0.00 0.01 0.02 0.02 0.021 0.021 0.021 0.021 0.02 0.021 0.02 0.021 0.02 0.021 0.021 0.021 0.021 0.021 0.021 0.021 0.021 0.021 0.021 0.021 0.021 0.021 0.021 0.021 0.021 0.021 0.021 0.021 0.02 0.021 0.021 0.02 0.021 0.02 0.021 0.02 0.021 0.02 0.021 0.02 <	Section (%) 000 0.00	Sechia (b) Oct Dot Dot <thdot< th=""> Dot <thdot< th=""> <thdot< td=""><td>G1</td><td>25% KF</td><td>G1-25KE-3</td><td>0.00</td><td>0.20</td><td>0.31</td><td>0.44</td><td>0.68</td><td>0.98</td><td>1 36</td><td>1 93</td><td>2.68</td><td>3 4 3</td><td>4 4 2</td></thdot<></thdot<></thdot<>	G1	25% KF	G1-25KE-3	0.00	0.20	0.31	0.44	0.68	0.98	1 36	1 93	2.68	3 4 3	4 4 2
Section 1/20 Coord	General (N) Ood Ood <tho< th=""> <thood< td=""><td>Image is a strate is a stra strate strate strate is strate is a strate is a strate is a str</td><td></td><td></td><td>Érodaia [%]</td><td>0.00</td><td>0.20</td><td>0.31</td><td>0.44</td><td>0.69</td><td>0.00</td><td>1.36</td><td>1.02</td><td>2.00</td><td>2 20</td><td>4.95</td></thood<></tho<>	Image is a strate is a stra strate strate strate is strate is a strate is a strate is a str			Érodaia [%]	0.00	0.20	0.31	0.44	0.69	0.00	1.36	1.02	2.00	2 20	4.95
G1 0000 0.01 0.01 0.01 0.01 0.01 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.03 0.01 0.02 0.03 0.04 0.02 0.03 0.01 0.00 0.01 0.00 0.01 0.00 0.01 0.00 0.01 0.00 0.01 0.00 0.00 0.01 0.00 0.01 0.00 0.00 0.01 0.00 0.00 0.01 0.00 0.01 0.00 0.01 0.00 0.01 0.00 0.01 0.01 0.01 0.01 0.00 0.01 0.01 0.02 0.02 0.02 0.02 0.03 0.04 0.04 0.08 0.03 0.01 0.01 0.01 0.01 0.01 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0	G1 Oddr. Stand. [%] 0.00 0.01 0.00	Gate Cate Stand D <thd< th=""> D <thd< th=""> D D D</thd<></thd<>			Srednia [76]	0.00	0.20	0.31	0.44	0.08	0.99	1.30	1.93	2.00	3.39	4.35
Case ekspory() [chi] 0 14 28 42 56 70 84 89 112 126 61 15% 57 0.00 0.16 0.25 0.33 0.49 0.62 0.78 0.89 1.10 1.32 Sectin [N] 0.00 0.15 0.25 0.20 0.22 0.24 0.54 0.69 0.89 1.10 1.32 Sectin [N] 0.00 0.01 0.02 0.30 0.46 0.59 0.50 0.06 0.05 0.05 0.06 0.05 0.06 0.05 0.06 0.05 0.06 0.06 0.01 0.21 0.31 0.40 0.48 0.99 0.01 <td< td=""><td>G1 C2x elegory(1 (u) 0 14 28 42 56 70 64 67 64 67 68 17 138 14 G1<55F-1</td> 0.00 0.15 0.20 0.31 0.40 0.64 0.78 0.89 1.12 1.11 1.11 1.11 1.11 1.11 1.11 1.11 1.11 1.11 1.11 1.11 1.11 1.11</td<>	G1 C2x elegory(1 (u) 0 14 28 42 56 70 64 67 64 67 68 17 138 14 G1<55F-1	61. Care ekspoxy(16h) 0 14 20 42 36 70 84 36 112 1.30 1.57 61. 1557-1 0.00 0.16 0.25 0.31 0.47 0.64 0.75 0.87 1.11 1.12 1.61 61. 1557-3 0.00 0.15 0.25 0.20 0.24 0.68 0.61 0.68 0.61 0.63 0.64 0.68 0.68 0.61 0.60 0.68 0.61 0.60 0.61 0.61 0.60 0.61 0.61 0.63 0.64 0.64 0.63 0.61 0.63			Odch. Stand. [%]	0.00	0.01	0.01	0.01	0.01	0.01	0.00	0.02	0.02	0.03	0.06
G1 15% 5F 0.00 0.16 0.25 0.31 0.47 0.81 0.77 0.98 1.21 1.42 G1 15% 5F 0.00 0.15 0.25 0.27 0.42 0.24 0.89 1.10 1.32 1.42 G1 15% 5F G1 0.00 0.01 0.25 0.20 0.46 0.59 0.94 1.16 1.38 G1 10% 5F G1 0.00 0.13 0.21 0.25 0.35 0.46 0.56 0.66 0.68 0.59 G1 10% 5F G1 0.00 0.13 0.21 0.25 0.35 0.46 0.56 0.66 0.80 0.82 1.00 G1 10% 5F G1 0.00 0.00 0.01 0.10 0.35 0.17 0.48 0.53 0.44 0.56 0.69 0.82 1.02 0.20 0.21 0.21 0.22 0.21 0.23 0.21 0.21 0.21	G1 555-7 0.00 0.15 0.25 0.31 0.47 0.40 0.58 0.32 1.21 1.42 1.42 1.47 G1.155-72 0.00 0.15 0.22 0.22 0.24 0.44 0.49 0.49 1.41 1.42 1.47 G1.155-72 0.00 0.15 0.22 0.20	61 555-2 0.00 0.15 0.25 0.31 0.47 0.58 1.21 1.40 1.72 61 1555-2 0.00 0.15 0.25 0.20 0.42 0.58 0.58 1.21 1.40 1.32 1.61 61 1555-2 0.00 0.15 0.25 0.25 0.26 0.58 0.64 0.68 0.41 1.83 1.62 0cdt, Stand, [N] 0.00 0.11 0.01 0.02 0.21 <			Czas ekspozycji [dni]	0	14	28	42	56	70	84	98	112	126	140
G1 15% 5* G1-155-2 0.00 0.15 0.23 0.27 0.42 0.44 0.69 0.81 1.13 1.13 Srednis [N] 0.00 0.15 0.25 0.27 0.42 0.44 0.69 0.81 1.01 1.32 Odth 1.05 0.00 0.15 0.25 0.30 0.46 0.99 0.55 0.66 0.66 0.68 0.06 10% SP G1-105F-2 0.00 0.11 0.21 0.22 0.21 0.31 0.44 0.55 0.67 0.82 0.09 61-105F-2 0.00 0.11 0.16 0.24 0.31 0.44 0.55 0.67 0.82 0.09 0.06 0.11 0.13 0.31 0.44 0.55 0.67 0.82 0.09 0.06 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.02 0.22 0.22 0.22 0.22 0.22 0.22 0.22 </td <td>Birship Girl 15F-2 0.00 0.15 0.20 0.20 0.24 0.40 0.80 1.01 1.20 1.6 Srednia [M1 0.00 0.15 0.25 0.20 0.40 0.80 0.81 1.01 1.81 1.60 Gale Many [M1] 0.00 0.01 0.02 0.20 0.20 0.80 0.</td> <td>61 15% 61 1557-3 0.00 0.15 0.25 0.20 0.44 0.49 0.49 1.10 1.81 1.</td> <td></td> <td></td> <td>G1-15SF-1</td> <td>0.00</td> <td>0.16</td> <td>0.25</td> <td>0.31</td> <td>0.47</td> <td>0.61</td> <td>0.77</td> <td>0.95</td> <td>1.17</td> <td>1.39</td> <td>1.67</td>	Birship Girl 15F-2 0.00 0.15 0.20 0.20 0.24 0.40 0.80 1.01 1.20 1.6 Srednia [M1 0.00 0.15 0.25 0.20 0.40 0.80 0.81 1.01 1.81 1.60 Gale Many [M1] 0.00 0.01 0.02 0.20 0.20 0.80 0.	61 15% 61 1557-3 0.00 0.15 0.25 0.20 0.44 0.49 0.49 1.10 1.81 1.			G1-15SF-1	0.00	0.16	0.25	0.31	0.47	0.61	0.77	0.95	1.17	1.39	1.67
G1 L3% SF G1-1557-3 0.00 0.15 0.25 0.20 0.46 0.59 0.57 0.94 1.16 1.38 Odth, Stand, [%] 0.00 0.11 0.25 0.23 0.23 0.24 0.25 0.23 0.24 0.25 0.24 0.25 0.26 0.26 0.25 0.26 0.26 0.25 0.26 0.26 0.25 0.26 0.22 0.26 0.22 0.26 0.22 0.26 0.26 0.22 0.26 0.22 0.26 0.26 0.26 0.22 0.26 0.26 0.22 0.26 0.26 0.26 0.26 0.26 0.26 0.26 0.26 0.26 0.26 0.26 0.26 0.26 <td>Diam Diam Circle ison Circle</td> <td>61 Liss 5 6.1.10 <</td> <td>C1</td> <td>150/ 05</td> <td>G1-15SF-2</td> <td>0.00</td> <td>0.16</td> <td>0.25</td> <td>0.33</td> <td>0.49</td> <td>0.62</td> <td>0.78</td> <td>0.98</td> <td>1.21</td> <td>1.42</td> <td>1.72</td>	Diam Diam Circle ison Circle	61 Liss 5 6.1.10 <	C1	150/ 05	G1-15SF-2	0.00	0.16	0.25	0.33	0.49	0.62	0.78	0.98	1.21	1.42	1.72
Sectar [9] 0.00 0.15 0.25 0.30 0.46 0.94 1.16 1.38 Odch. Stand. [%] 0.00 0.01 0.03 0.03 0.04 0.05 0.06 0.01 </td <td>second (b) Second (b) Ood Second (b) Ood Second (b) Second (b)</td> <td>Seedia [9] 0.00 0.01 0.02 0.02 0.02 0.00 0.01 0.00 0.01</td> <td>GI</td> <td>15% SF</td> <td>G1-15SF-3</td> <td>0.00</td> <td>0.15</td> <td>0.25</td> <td>0.27</td> <td>0.42</td> <td>0.54</td> <td>0.69</td> <td>0.89</td> <td>1.10</td> <td>1.32</td> <td>1.61</td>	second (b) Second (b) Ood Second (b) Ood Second (b)	Seedia [9] 0.00 0.01 0.02 0.02 0.02 0.00 0.01 0.00 0.01	GI	15% SF	G1-15SF-3	0.00	0.15	0.25	0.27	0.42	0.54	0.69	0.89	1.10	1.32	1.61
International constraints In	Ode, Stand [N] Out Out <	Ode, Stand, [%] Oace			Środnia [%]	0.00	0.15	0.25	0.30	0.46	0.50	0.75	0.04	1 16	1 38	1.67
G1 0.01 0.02 0.02 0.03 0	Gale Code Code <th< td=""><td>Gale Costs Costs</td><td></td><td></td><td>Odeb Stand [%]</td><td>0.00</td><td>0.01</td><td>0.00</td><td>0.02</td><td>0.02</td><td>0.04</td><td>0.05</td><td>0.05</td><td>0.05</td><td>0.06</td><td>0.05</td></th<>	Gale Costs			Odeb Stand [%]	0.00	0.01	0.00	0.02	0.02	0.04	0.05	0.05	0.05	0.06	0.05
G1 10% SF	G1 Case exponyi (Im) 0 14 28 42 36 70 84 98 112 120	G1 10 ⁶ S4 ⁷ S4 10 ⁷ S4 ⁷ S4 10 ⁷ S4 ⁷ S4 10 ⁸ S4 10 ⁸ S4 0.83 0.83 0.84 0.83 0.83 0.84 0.83 0.80 0.83 0.80 0.80 0.80 0.80 0.89 1.10 10 ¹ S4 0.24 0.07 0.01 <			Ouch. Stand. [%]	0.00	0.01	0.00	0.03	0.03	0.04	0.05	0.05	0.05	0.00	0.05
G1 10% SF 61:105F-1 0.00 0.13 0.21 0.25 0.35 0.46 0.56 0.69 0.83 0.99 G1 10% SF 61:105F-3 0.00 0.11 0.18 0.24 0.35 0.44 0.55 0.67 0.82 1.00 Srednia [%] 0.00 0.01 0.02 0.02 0.03 0.04 0.08 0.88 0.89 0.88 0.08 0.88 0.89 0.88 0.02 0.23 0.03 0.00 0.01 0.01 0.01 0.01 0.01 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02	G1 G1 G13 G.21 G.25 G.35 G.46 G.56 G.63 G.83 G.95 L<1 G1 G15F-2 G.00 G.11 G.13 G.24 G.33 G.44 G.45 G.75 G.75 G.82 LO0 L<1	G1 061-05F-1 0.00 0.13 0.21 0.25 0.31 0.46 0.65 0.87 0.98 1.13 G1 10% 5F G1:105F-3 0.00 0.11 0.18 0.24 0.33 0.44 0.53 0.66 0.88 1.08 0.08 0.01 1.19 G1 0.07 0.00 0.00 0.00 0.01 0.02 0.02 0.03 0.04 0.06 0.08 0.01 0.03 0.04 0.06 0.06 0.01 0.13 0.15 0.17 0.18 0.20 0.22 0.26 0.28 0.22 0.25 0.25 0.27 0.26 0.22 0.25 0.27 0.26 0.23 0.21 0.21 0.21 0.21 0.21 0.22 0.22 0.25 0.27 0.26 0.23 0.25 0.27 0.26 0.23 0.25 0.26 0.23 0.25 0.26 0.23 0.25 0.26 0.23 0.25 0.26 <td< td=""><td></td><td></td><td>Czas ekspozycji [dni]</td><td>0</td><td>14</td><td>28</td><td>42</td><td>56</td><td>/0</td><td>84</td><td>98</td><td>112</td><td>126</td><td>140</td></td<>			Czas ekspozycji [dni]	0	14	28	42	56	/0	84	98	112	126	140
G1 10% SF G1:10SF-2 0.00 0.12 0.20 0.24 0.31 0.48 0.61 0.76 0.84 G1:0SF-3 0.00 0.11 0.18 0.24 0.35 0.44 0.55 0.67 0.82 1.00 G1:0SF-3 0.00 0.11 0.18 0.24 0.35 0.44 0.55 0.67 0.82 1.00 G1:0SF-2 0.00 0.01 0.12 0.14 0.84 0.81 0.01 0.02 0.02 0.03 0.04 0.04 0.03 0.04 0.01 0.01 0.15 0.14 0.15 0.17 0.18 0.20 0.22 0.22 0.25 0.02 0.22 0.25 0.02 0.22 0.25 0.02 0.22 0.25 0.02 0.22 0.25 0.02 0.25 0.25 0.24 0.35 0.44 0.43 0.55 0.65 G1 0.00 0.21 0.22 0.25 0.32 0.35	G1 10% SF G1-105F-3 0.00 0.11 0.18 0.24 0.35 0.44 0.55 0.67 0.52 1.00 G1 0.05 0.00 0.11 0.00 0.01 0.01 0.02 0.02 0.02 0.02 0.02 0.04 0.04 0.04 0.04 0.04 0.04 0.04 0.04 0.04 0.04 0.04 0.04 0.04 0.04 0.01 <th< td=""><td>61 10% 5 + 61:105 + 6:105 + 0:000 0:10 0 0:11 0.18 0:24 0.35 0.44 0.55 0.67 0.52 0.00 0.10 0 61 0:000 0:000 0:01 0.02 0.02 0.02 0.03 0.04 0.06 0.08 0.08 0.08 1.16 0.000 61 0:050 0:000 0:01 0.02 0.02 0.02 0:02 0.04 0.03 0.04 0:00 0.08 0.08 0.10 0.03 61 0:140 - 2 0:00 0.06 0:11 0.13 0.15 0.17 0.18 0.20 0.22 0.22 0.25 0.22 0.22 0.25 0.22 0.22 0.25 0.22 0.22 0.25 0.22 0.22 0.25 0.22 0.22 0.25 0.22 0.22 0.25 0.22 0.22 0.25 0.22 0.22 0.25 0.22 0.20 0.20 0.25 0.27 0.46 0.00 0.01 0.01 0.00 0.01 0.00 0.01 0.01 0.00 0.01 0.01 0.00 0.01 0.01 0.00 0.01 0.01 0.00 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01</td><td></td><td></td><td>G1-10SF-1</td><td>0.00</td><td>0.13</td><td>0.21</td><td>0.25</td><td>0.35</td><td>0.46</td><td>0.56</td><td>0.69</td><td>0.83</td><td>0.99</td><td>1.18</td></th<>	61 10% 5 + 61:105 + 6:105 + 0:000 0:10 0 0:11 0.18 0:24 0.35 0.44 0.55 0.67 0.52 0.00 0.10 0 61 0:000 0:000 0:01 0.02 0.02 0.02 0.03 0.04 0.06 0.08 0.08 0.08 1.16 0.000 61 0:050 0:000 0:01 0.02 0.02 0.02 0:02 0.04 0.03 0.04 0:00 0.08 0.08 0.10 0.03 61 0:140 - 2 0:00 0.06 0:11 0.13 0.15 0.17 0.18 0.20 0.22 0.22 0.25 0.22 0.22 0.25 0.22 0.22 0.25 0.22 0.22 0.25 0.22 0.22 0.25 0.22 0.22 0.25 0.22 0.22 0.25 0.22 0.22 0.25 0.22 0.22 0.25 0.22 0.20 0.20 0.25 0.27 0.46 0.00 0.01 0.01 0.00 0.01 0.00 0.01 0.01 0.00 0.01 0.01 0.00 0.01 0.01 0.00 0.01 0.01 0.00 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01			G1-10SF-1	0.00	0.13	0.21	0.25	0.35	0.46	0.56	0.69	0.83	0.99	1.18
G1 G1:108:-3 0.00 0.11 0.12 0.23 0.44 0.43 0.55 0.67 0.52 1.07 G1 Srednia [K] 0.00 0.01 0.02 0.02 0.03 0.04 0.01 0.01 0.02 0.02 0.03 0.04 0.04 0.04 0.03 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.02	GL Low 3 G1-105-3 0.00 0.11 0.18 0.24 0.35 0.44 0.57 0.67 0.82 1.00 0.11 Odch. Stand. [%] 0.00 0.01 0.02 0.02 0.02 0.03 0.44 0.48 0.48 0.48 0.48 0.04 0.04 0.00 0.08 0.11 0.13 0.11 0.13 0.15 0.17 0.18 0.22 0.22 0.22 0.22 0.22 0.25 0.2 0.26 0.21 0.13 0.15 0.17 0.18 0.21 0.23 0.23 0.23 0.23 0.25 0.23 0.25 0.28 0.00 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.01 0.02 0.01 0.01 0.02 0.02 0.02 0.02 0.02 </td <td>GA G1:105:-3 0.00 0.11 0.18 0.24 0.35 0.66 0.82 1.00 1.13 Odch.Stand.[%] 0.00 0.01 0.02 0.02 0.02 0.02 0.03 0.04 0.06 0.06 0.08 0.01 Odch.Stand.[%] 0.00 0.02</td> <td>61</td> <td>10% SE</td> <td>G1-10SF-2</td> <td>0.00</td> <td>0.12</td> <td>0.20</td> <td>0.21</td> <td>0.31</td> <td>0.40</td> <td>0.48</td> <td>0.61</td> <td>0.76</td> <td>0.94</td> <td>1.11</td>	GA G1:105:-3 0.00 0.11 0.18 0.24 0.35 0.66 0.82 1.00 1.13 Odch.Stand.[%] 0.00 0.01 0.02 0.02 0.02 0.02 0.03 0.04 0.06 0.06 0.08 0.01 Odch.Stand.[%] 0.00 0.02	61	10% SE	G1-10SF-2	0.00	0.12	0.20	0.21	0.31	0.40	0.48	0.61	0.76	0.94	1.11
Sredna [%] 0.00 0.12 0.19 0.23 0.34 0.64 0.69 0.69 0dch. stand. [%] 0.00 0.01 0.02 0.02 0.03 0.04 0.04 0.03 0.04 0.04 0.03 61 Cas ekspory[16n] 0 14 28 0.02 0.02 0.03 0.04 0.04 0.03 0.14 0.18 0.16 0.18 0.16 0.18 0.16 0.18 0.16 0.18 0.16 0.18 0.16 0.18 0.16 0.18 0.16 0.18 0.16 0.18 0.16 0.18 0.18 0.20 0.22 0.25 0.25 0.25 0.17 0.18 0.20 0.23 0.25 0.31 0.16 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.02 0.23 0.25 0.34 0.37 0.44 0.43 0.45 0.45 0.45 0.45 0.45 0.45 0.45 </td <td>Section [3] 0.00 0.12 0.92 0.23 0.34 0.43 0.53 0.64 0.06 0.00 0.01 Odd: Stand, [3] 0.00 0.01 0.02 0.02 0.03 0.04 0.04 0.04 0.04 0.04 0.04 0.04 0.04 0.03 0.01 0.13 0.15 0.17 0.18 0.13 0.23 0.23 0.23 0.23 0.23 0.23 0.23 0.23 0.23 0.23 0.23 0.23 0.21 0.31 0.13 0.13 0.13 0.13 0.13 0.13 0.13 0.01</td> <td>Sectial (\$\2) 0.00 0.10 0.21 0.20 0.21</td> <td></td> <td>10/0 51</td> <td>G1-10SF-3</td> <td>0.00</td> <td>0.11</td> <td>0.18</td> <td>0.24</td> <td>0.35</td> <td>0.44</td> <td>0.55</td> <td>0.67</td> <td>0.82</td> <td>1.00</td> <td>1.19</td>	Section [3] 0.00 0.12 0.92 0.23 0.34 0.43 0.53 0.64 0.06 0.00 0.01 Odd: Stand, [3] 0.00 0.01 0.02 0.02 0.03 0.04 0.04 0.04 0.04 0.04 0.04 0.04 0.04 0.03 0.01 0.13 0.15 0.17 0.18 0.13 0.23 0.23 0.23 0.23 0.23 0.23 0.23 0.23 0.23 0.23 0.23 0.23 0.21 0.31 0.13 0.13 0.13 0.13 0.13 0.13 0.13 0.01	Sectial (\$\2) 0.00 0.10 0.21 0.20 0.21		10/0 51	G1-10SF-3	0.00	0.11	0.18	0.24	0.35	0.44	0.55	0.67	0.82	1.00	1.19
Odds. Stand. [%] 0.00 0.01 0.02 0.02 0.02 0.03 0.04 0.04 0.04 0.03 G1 G1-H2O-1 0.00 0.08 0.11 0.13 0.15 0.17 0.18 0.20 0.22 0.22 0.22 0.22 0.22 0.22 0.22 0.22 0.22 0.22 0.25 G1 <h2o-3< td=""> 0.00 0.09 0.11 0.13 0.15 0.17 0.18 0.00 0.02 0.22 0.22 0.25 G1<h2o-3< td=""> 0.00 0.09 0.11 0.13 0.15 0.17 0.18 0.00 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.02 0.25 0.26 0.26 0.26 0.44 0.49 0.55 0.64 G1 10% NaCI G1 0.01 0.02 0.02 0.22 0.26</h2o-3<></h2o-3<>	Odd:Stand[%] 0.00 0.01 0.02 0.02 0.03 0.04 <td>Order, Stand, [%] O.O.O. O.O.O.O. O.O.O.O. O.O.O.O.O.O.O.O.O.O.O.O.O.O.O.O.O.O.O.</td> <td></td> <td></td> <td>Średnia [%]</td> <td>0.00</td> <td>0.12</td> <td>0.19</td> <td>0.23</td> <td>0.34</td> <td>0.43</td> <td>0.53</td> <td>0.66</td> <td>0.80</td> <td>0.98</td> <td>1.16</td>	Order, Stand, [%] O.O.O. O.O.O.O. O.O.O.O. O.O.O.O.O.O.O.O.O.O.O.O.O.O.O.O.O.O.O.			Średnia [%]	0.00	0.12	0.19	0.23	0.34	0.43	0.53	0.66	0.80	0.98	1.16
G1 Cras eksporycji (dni) 0 14 28 42 56 70 84 98 112 126 G1 Gi-H2O-1 0.00 0.06 0.11 0.13 0.15 0.17 0.18 0.02 0.22 0.25 G1+H2O-3 0.00 0.09 0.11 0.13 0.15 0.17 0.18 0.20 0.22 0.25 G1+H2O-3 0.00 0.09 0.11 0.13 0.15 0.17 0.18 0.20 0.22 0.25 Odch: Stand. [%] 0.00 0.00 0.01 0.02 0.25 0.32 0.38 0.42 0.48 0.55 0.64 G1 10% NaCI G1:10NaCI-3 0.00 0.21 0.25 0.28 0.23	G1 Case eksporycji (dni) 0 14 28 42 56 70 84 98 112 126 14 G1 G1+420-1 0.00 0.06 0.11 0.13 0.15 0.17 0.18 0.20 0.22 0.26 0.2 0.25 0.2 0.26 0.2 0.25 0.2 0.25 0.2 0.22 0.25 0.2 0.22 0.25 0.2 0.25 0.2 0.25 0.25 0.25 0.26 0.34 0.37 0.44 0.48 0.49 0.66 0.66 0.06 0.26 0.25 0.25 0.26 0.26 0.34 0.36 0.44 0.49 0.55 0.644 0.07 0.36 0.41 0.48 0.49 0.55 0.644 0.07 0.36 0.41 0.26 0.26 0.26 0.26 0.26 0.26 0.26 0.26 0.26 0.26 0.26 0.26 0.26 0.26 0.26 0.26 0.26	G1 Case eksporyej [dni] 0 14 28 42 56 70 84 98 112 126 140 G1 G1+12O-1 0.00 0.08 0.11 0.13 0.15 0.17 0.18 0.20 0.22 0.25 0.22 0.25 0.22 0.25 0.22 0.25 0.22 0.25 0.22 0.25 0.22 0.25 0.22 0.25 0.22 0.25 0.22 0.25 0.22 0.25 0.22 0.25 0.22 0.25 0.22 0.25 0.22 0.25 0.22 0.25 0.22 0.25 0.22 0.26 0.01 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 </td <td></td> <td></td> <td>Odch, Stand, [%]</td> <td>0.00</td> <td>0.01</td> <td>0.02</td> <td>0.02</td> <td>0.02</td> <td>0.03</td> <td>0.04</td> <td>0.04</td> <td>0.04</td> <td>0.03</td> <td>0.04</td>			Odch, Stand, [%]	0.00	0.01	0.02	0.02	0.02	0.03	0.04	0.04	0.04	0.03	0.04
G1 Cost Scipper (1) Cost O Cost O <thcost o<="" th=""> Cost O <thcos< td=""><td>Gal Cal <thcal< th=""> Cal <thcal< th=""></thcal<></thcal<></td><td>Bit State Bit State <t< td=""><td></td><td></td><td>Czas eksnozycii [dni]</td><td>0</td><td>14</td><td>28</td><td>42</td><td>56</td><td>70</td><td>84</td><td>98</td><td>112</td><td>126</td><td>140</td></t<></td></thcos<></thcost>	Gal Cal Cal <thcal< th=""> Cal <thcal< th=""></thcal<></thcal<>	Bit State Bit State <t< td=""><td></td><td></td><td>Czas eksnozycii [dni]</td><td>0</td><td>14</td><td>28</td><td>42</td><td>56</td><td>70</td><td>84</td><td>98</td><td>112</td><td>126</td><td>140</td></t<>			Czas eksnozycii [dni]	0	14	28	42	56	70	84	98	112	126	140
G1 Woda destylowana G1:H20-1 G1:H20-2 0.00 0.09 0.11 0.13 0.14 0.16 0.12 0.22 0.22 0.23 G1 destylowana G1:H20-3 0.00 0.09 0.11 0.13 0.15 0.17 0.18 0.20 0.22 0.25 Odch. Stand. [%] 0.00 0.00 0.01 0.02 0.22 0.23 0.34 0.39 0.43 0.49 0.55 0.66 G1 0.00 0.21 0.24 0.22 0.25 0.28 0.33 0.33 0.43 0.49 0.55 0.66 G1 0.01 0.02 0.22 0.22 0.23	G1 Woda destylowan G1:H2O-1 0.00 0.00 0.01 0.11 0.13 0.17 0.18 0.21 0.22 0.23 0.23 0.23 0.23 0.23 0.23 0.23 0.24 0.24 0.24 0.25 0.55 0.55 0.55 0.55 0.55 0.55 0.55 0.55 0.55 0.56 0.77 0.31 <td>G1 G1:H20-1 0.00 0.08 0.11 0.13 0.17 0.18 0.02 0.23 0.33 0.41 0.44 0.49 0.22 0.22 0.23 0.31 0.41 0.41 0.41 0.22 0.23 0.31 0.43 0.49 0.43 0.44 0.49 0.55 0.65 0.77 G1 I0% NCI 0.00 0.01 0.02 0.02 0.03 0.03 0.43 0.44 0.49 0.55 0.64 0.70 G1 I0% NCI 0.00 0.021</td> <td></td> <td></td> <td>C2d3 EKSp02ycji [dilij</td> <td>0.00</td> <td>14</td> <td>20</td> <td>42</td> <td>0.15</td> <td>0.17</td> <td>0.10</td> <td>0.00</td> <td>0.00</td> <td>0.20</td> <td>140</td>	G1 G1:H20-1 0.00 0.08 0.11 0.13 0.17 0.18 0.02 0.23 0.33 0.41 0.44 0.49 0.22 0.22 0.23 0.31 0.41 0.41 0.41 0.22 0.23 0.31 0.43 0.49 0.43 0.44 0.49 0.55 0.65 0.77 G1 I0% NCI 0.00 0.01 0.02 0.02 0.03 0.03 0.43 0.44 0.49 0.55 0.64 0.70 G1 I0% NCI 0.00 0.021			C2d3 EKSp02ycji [dilij	0.00	14	20	42	0.15	0.17	0.10	0.00	0.00	0.20	140
G1 Woda destylowana G1+420-2 G1+420-2 0.00 0.09 0.11 0.13 0.14 0.16 0.18 0.21 0.23 0.22 0.25 destylowana G1+420-2 0.00 0.09 0.11 0.13 0.15 0.17 0.18 0.20 0.22 0.25 S0 Odch. Stand. [%] 0.00 0.01 0.00 0.01 0.02 0.25 0.23 0.24 0.39 0.43 0.49 0.55 0.64 G1<10NaCL-1	G1 Woda destylowana destyl	G1 Woos G1+120-2 0.00 0.09 0.11 0.13 0.14 0.16 0.18 0.19 0.21 0.25 0.27 0.28 0.25 0.27 0.28 0.25 0.27 0.28 0.27 0.18 0.21 0.21 0.21 0.21 0.21 0.21 0.21 0.21 0.21 0.21 0.21 0.21 0.21 0.21 0.21 0.25 0.27 0.28 0.20 0.22 0.25 0.27 0.21 <th0.21< th=""> 0.21 0.21 <t< td=""><td></td><td></td><td>G1-H2O-1</td><td>0.00</td><td>0.08</td><td>0.11</td><td>0.13</td><td>0.15</td><td>0.17</td><td>0.18</td><td>0.20</td><td>0.22</td><td>0.26</td><td>0.28</td></t<></th0.21<>			G1-H2O-1	0.00	0.08	0.11	0.13	0.15	0.17	0.18	0.20	0.22	0.26	0.28
destylowana G1:H2O-3 0.00 0.09 0.11 0.13 0.15 0.17 0.18 0.21 0.23 0.22 0.25 Odch. Stand.[%] 0.00 0.00 0.00 0.01 0.01 0.01 0.00 0.01 0.01 0.00 0.01 0.01 0.00 0.01 0.01 0.00 0.01 0.01 0.00 0.01 0.02 0.	destylowana G1.H2O.3 0.00 0.09 0.11 0.13 0.17 0.18 0.20 0.22 0.22 0.22 0.22 0.22 0.22 0.22 0.22 0.22 0.22 0.22 0.22 0.22 0.22 0.22 0.22 0.22 0.23 0.24 0.24 0.24 0.24 0.24 0.23 0.23 0.23 0.23 0.23 0.23 0.23 0.23 0.23 0.24 0.23 0.24 0.24 0.24 0.24 0.24 0.23 0.23 0.23 0.23 0.23 0.23 0.23 0.23 0.23 0.24 0.24 0.25 0.33 0.44 0.44 0.44 65-10NaC1-1 </td <td>destylowana G.H. 4CO-3 0.00 0.09 0.11 0.13 0.15 0.17 0.18 0.20 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.01 0.02 0.22 0.23 0.22 0.23 0.22 0.23 0.22 0.23 0.22 0.23 0.22 0.23 0.22 0.23 0.22 0.23 0.22 0.23<td>G1</td><td>Woda</td><td>G1-H2O-2</td><td>0.00</td><td>0.09</td><td>0.10</td><td>0.13</td><td>0.14</td><td>0.16</td><td>0.18</td><td>0.19</td><td>0.21</td><td>0.25</td><td>0.26</td></td>	destylowana G.H. 4CO-3 0.00 0.09 0.11 0.13 0.15 0.17 0.18 0.20 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.01 0.02 0.22 0.23 0.22 0.23 0.22 0.23 0.22 0.23 0.22 0.23 0.22 0.23 0.22 0.23 0.22 0.23 0.22 0.23 <td>G1</td> <td>Woda</td> <td>G1-H2O-2</td> <td>0.00</td> <td>0.09</td> <td>0.10</td> <td>0.13</td> <td>0.14</td> <td>0.16</td> <td>0.18</td> <td>0.19</td> <td>0.21</td> <td>0.25</td> <td>0.26</td>	G1	Woda	G1-H2O-2	0.00	0.09	0.10	0.13	0.14	0.16	0.18	0.19	0.21	0.25	0.26
Second 10 (%) 0.00 0.00 0.11 0.13 0.15 0.17 0.18 0.20 0.22 0.25 Odch. Stand. [%) 0.00 0.01 0.00 0.01 0.01 0.00 0.01 0.02 0.2	Sredni [%] 0.00 0.09 0.11 0.13 0.15 0.17 0.18 0.20 0.20 0.20 0.20 0.20 0.00 0.00 0.01 0.00 0.01 0.00 0.01 0.00 0.01 0.00 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.02 0.23 0.32 0.33 0.44 0.49 0.55 0.64 0.70 0.101 0.02 0.02 0.02 0.01 0.02 0.02 0.01 0.02 0.02 0.01 0.02	Second 1% 0.00 0.09 0.11 0.13 0.15 0.17 0.18 0.20 0.21 0.18 0.20 0.01 0.01 0.00 0.01 0.02 0.23 0.23 0.23 0.23 0.23 0.23 0.23 0.23 0.24 0.26 0.26 0.21 0.22 0.22 0.22 0.23 0.23 0.23 0.23 0.23 0.23 0.23 0.23 0.22 0.23 0.21 0.24 0.23		destylowana	G1-H2O-3	0.00	0.09	0.11	0.13	0.15	0.17	0.18	0.21	0.23	0.25	0.27
Oddh. Stand. [%] 0.00 0.01 0.00 0.01 0.01 0.00 0.01 0.01 0.01 0.01 61 00% NaCl G1.0NaCl-1 0.00 0.02 0.25 0.29 0.34 0.37 0.44 0.49 0.56 0.65 G1.10NaCl-2 0.00 0.22 0.25 0.29 0.34 0.37 0.44 0.49 0.56 0.61 G1.10NaCl-3 0.00 0.22 0.25 0.29 0.34 0.39 0.43 0.44 0.49 0.55 0.64 G1.10NaCl-3 0.00 0.01 0.02 0.02 0.01 0.02 0.02 0.01 0.02 0.02 0.02 0.01 0.02 0.03 0.05	Oddh. Stand. [%] 0.00 0.01 0.02 0.22 0.23 0.32 0.32 0.33 0.43 0.49 0.55 0.66 0.7 61 :01NaC1-3 0.00 0.02 0.22 0.25 0.32 0.33 0.42 0.43 0.43 0.49 0.55 0.64 0.7 04th Stand. [%] 0.00 0.01 0.02 0.02 0.03 0.38 0.43 0.43 0.43 0.43 0.43 0.43 0.43 0.43 0.43 0.43 0.44 0.43 0.43 0.44 0.43 0.44 0.43 0.44 0.43 0.44 0.43 0.44 0.43 0.44 <t< td=""><td>Odds. Stand. [%] 0.00 0.01 0.02 0.22 0.23</td><td></td><td></td><td>Średnia [%]</td><td>0.00</td><td>0.09</td><td>0.11</td><td>0.13</td><td>0.15</td><td>0.17</td><td>0.18</td><td>0.20</td><td>0.22</td><td>0.25</td><td>0.27</td></t<>	Odds. Stand. [%] 0.00 0.01 0.02 0.22 0.23			Średnia [%]	0.00	0.09	0.11	0.13	0.15	0.17	0.18	0.20	0.22	0.25	0.27
G1 Cras ekspozycji (dni) 0 14 28 42 56 70 84 98 112 126 G1 10% NaCl G1-10NaCl-1 0.00 0.22 0.25 0.32 0.33 0.44 0.49 0.56 0.65 G1 10NaCl-3 0.00 0.22 0.25 0.29 0.34 0.33 0.44 0.49 0.56 0.64 G1 10NaCl-3 0.00 0.21 0.25 0.28 0.34 0.39 0.43 0.49 0.55 0.64 Odch. Stand. [%] 0.00 0.01 0.02 0.01 0.02 0.02 0.01 0.02 0.02 0.01 0.02 0.02 0.01 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.03 0.38 0.44 0.43 0.44 0.43 0.44 0.43 0.44 0.43 0.44 0.43 0.44 0.43 0.44 0.45	G1 Case ekspozycji (dni) 0 14 28 42 56 70 84 98 112 126 14 G1 10% NaCl G1:10NaCl-1 0.00 0.22 0.25 0.29 0.34 0.37 0.44 0.49 0.55 0.66 0.7 G1:10NaCl-3 0.00 0.22 0.26 0.29 0.34 0.39 0.43 0.49 0.55 0.64 0.7 G4 Osch.stand. [%] 0.00 0.21 0.24 0.28 0.30 0.38 0.44 0.48 0.55 0.64 0.7 G5:10NaCl-1 0.00 0.21 0.24 0.28 0.30 0.36 0.38 0.44 0.48 0.49 0.55 0.64 0.7 0.44 0.49 0.55 0.64 0.7 0.44 0.49 0.43 0.49 0.43 0.47 0.43 0.47 0.43 0.47 0.43 0.47 0.43 0.47 0.43 0.47 0.43	G1 Case eksporycji (dni) 0 14 28 42 56 70 84 98 112 126 140 G1 10% Nacl G1-10Nacl-1 0.00 0.22 0.25 0.29 0.34 0.37 0.44 0.49 0.55 0.65 0.07 0.38 0.48 0.49 0.55 0.65 0.07 0.38 0.39 0.43 0.49 0.55 0.64 0.77 0.56 0.64 0.77 0.65 0.64 0.70 0.07 0.02 0.02 0.02 0.02 0.01 0.02 0.02 0.02 0.01 0.02 0.02 0.02 0.01 0.02 <t< td=""><td></td><td></td><td>Odch. Stand. [%]</td><td>0.00</td><td>0.01</td><td>0.00</td><td>0.00</td><td>0.01</td><td>0.01</td><td>0.00</td><td>0.01</td><td>0.01</td><td>0.01</td><td>0.01</td></t<>			Odch. Stand. [%]	0.00	0.01	0.00	0.00	0.01	0.01	0.00	0.01	0.01	0.01	0.01
G1 LCase explosing (Ling) 0 14 28 42 30 70 84 98 112 126 G1 10% NaCl G1-10NaCl-2 0.00 0.22 0.25 0.29 0.34 0.37 0.44 0.49 0.56 0.65 G1-10NaCl-3 0.00 0.22 0.26 0.29 0.34 0.37 0.44 0.49 0.56 0.66 G1-10NaCl-3 0.00 0.21 0.25 0.28 0.33 0.38 0.42 0.48 0.55 0.64 G5 0.00 0.01 0.02 0.02 0.01 0.02 0.02 0.01 0.02	G1 L2s L2s <thl2s< th=""> L2s <thl2s< th=""> <thl2s< th=""> <thl2s< th=""></thl2s<></thl2s<></thl2s<></thl2s<>	G1 10% 126 120		-	Case altere and file 1	- -	14	20	42	-	70	0.4	-	110	120	140
G1 I0% NaCl I0% NaCl G1:10NaCl-2 0.00 G1:10NaCl-2 0.00 0.00 0.22 0.23 0.23 0.23 0.37 0.33 0.44 0.49 0.56 0.49 0.61 0.47 G1:10NaCl-3 0.00 0.21 0.22 0.22 0.32 0.33 0.43 0.49 0.53 0.61 G1:10NaCl-3 0.00 0.21 0.22 0.22 0.26 0.31 0.33 0.42 0.48 0.55 0.64 G1:10NaCl-3 0.00 0.01 0.02 0.02 0.01 0.02 0.02 0.01 0.02 0.03 0.38 0.44 0.47 0.44 G5 0.01 0.00 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02	G1 G1<	G1 10% NaCl G1:10Ma:1-2 0.00 0.22 0.23 0.23 0.32 0.33 0.44 0.47 0.53 0.61 0.06 0.01 0.02 0.22 0.25 0.32 0.33 0.43 0.47 0.53 0.64 0.77 Seedina [M] 0.00 0.00 0.02 0.02 0.02 0.01 0.02 0.02 0.01 0.02 0.02 0.01 0.02 0.02 0.01 0.02 0.02 0.01 0.02 0.02 0.01 0.02 0.02 0.01 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.03 0.04 0.01 0.01 0.01 0.01 0.02 0.02 0.02 0.02 <td></td> <td></td> <td>czas ekspozycji [dni]</td> <td>0</td> <td>14</td> <td>28</td> <td>42</td> <td>50</td> <td>/0</td> <td>84</td> <td>98</td> <td>112</td> <td>126</td> <td>140</td>			czas ekspozycji [dni]	0	14	28	42	50	/0	84	98	112	126	140
G1 10% Nacl G1-10NaCl-2 0.00 0.22 0.25 0.25 0.34 0.49 0.47 0.53 0.61 G1-10NaCl-3 0.00 0.21 0.25 0.28 0.33 0.43 0.49 0.56 0.64 G1-0NaCl-3 0.00 0.21 0.25 0.28 0.33 0.41 0.48 0.55 0.64 Odch. Stand. [%] 0.00 0.01 0.02 0.02 0.01 0.02 0.02 0.01 0.02 0.02 0.01 0.02 0.02 0.01 0.02 0.02 0.01 0.02 0.02 0.03 0.36 0.41 0.47 0.44 0.43 0.43 0.47 0.44 0.43 0.43 0.41 0.47 0.44 0.43 0.43 0.41 0.43 0.43 0.41 0.43 0.43 0.47 0.44 0.47 0.44 0.47 0.44 0.47 0.44 0.47 0.44 0.47 0.44 0.47 0.44	G1 10% NACI G1-10NaCI-2 0.00 0.20 0.22 0.22 0.28 0.33 0.40 0.49 0.55 0.64 0.7 Section [%] 0.00 0.21 0.22 0.28 0.33 0.38 0.42 0.49 0.55 0.64 0.7 Section [%] 0.00 0.01 0.02 0.02 0.01 0.02 0.02 0.01 0.02 0.02 0.01 0.02 0.01 0.02 0.02 0.03 0.36 0.38 0.45 0.49 0.49 0.45 0.49 0.55 0.66 0.44 0.43 0.44 0.43 0.44 0.43 0.44 0.43 0.44 0.43 0.44 0.43 0.47 0.47 0.55 0.56 0.61 0.01 0.01 0.01 0.01 0.01 0.02 0.22 0.22 0.22 0.24 0.25 0.25 0.25 0.25 0.25 0.25 0.25 0.25 0.25 0.25 0.25 </td <td>G1 10% NACI G1:10NaCi-2 0.00 0.20 0.22 0.22 0.22 0.23 0.33 0.40 0.49 0.53 0.64 0.70 Srednia [%] 0.00 0.21 0.25 0.28 0.33 0.38 0.42 0.48 0.55 0.64 0.70 G1:10NaCi-2 0.00 0.01 0.02 0.02 0.01 0.02 0.02 0.01 0.02 0.02 0.01 0.02 0.02 0.01 0.02 0.02 0.03 0.38 0.48 0.43 0.44 0.43 0.43 0.48 0.43 0.48 0.43 0.43 0.48</td> <td></td> <td></td> <td>G1-10NaCl-1</td> <td>0.00</td> <td>0.22</td> <td>0.25</td> <td>0.29</td> <td>0.34</td> <td>0.37</td> <td>0.44</td> <td>0.49</td> <td>0.56</td> <td>0.65</td> <td>0.71</td>	G1 10% NACI G1:10NaCi-2 0.00 0.20 0.22 0.22 0.22 0.23 0.33 0.40 0.49 0.53 0.64 0.70 Srednia [%] 0.00 0.21 0.25 0.28 0.33 0.38 0.42 0.48 0.55 0.64 0.70 G1:10NaCi-2 0.00 0.01 0.02 0.02 0.01 0.02 0.02 0.01 0.02 0.02 0.01 0.02 0.02 0.01 0.02 0.02 0.03 0.38 0.48 0.43 0.44 0.43 0.43 0.48 0.43 0.48 0.43 0.43 0.48			G1-10NaCl-1	0.00	0.22	0.25	0.29	0.34	0.37	0.44	0.49	0.56	0.65	0.71
GL IOWARCE GI-10NaCl-3 0.00 0.22 0.25 0.28 0.33 0.38 0.43 0.49 0.56 0.64 Srednia [%] 0.00 0.01 0.02 0.02 0.03 0.38 0.42 0.48 0.55 0.64 Odch. Stand. [%] 0.00 0.01 0.02 0.02 0.01 0.02 0.02 0.01 0.02 0.02 0.01 0.02 0.02 0.01 0.02 0.02 0.01 0.02 0.02 0.02 0.02 0.02 0.23 0.25 0.28 0.34 0.36 0.41 0.47 0.44 0.43 0.44 0.43 0.44 0.43 0.44 0.43 0.44 0.43 0.44 0.43 0.44	G1 G1-10N-Cl-3 0.00 0.22 0.26 0.28 0.33 0.33 0.43 0.49 0.56 0.64 0.7 G5 Seednia [X] 0.00 0.21 0.25 0.28 0.33 0.38 0.43 0.49 0.55 0.64 0.7 G5 J0% N201 Case eksporycij [dni] 0 14 28 42 55 70 84 98 112 126 14 G5-10NaCI-1 0.00 0.21 0.24 0.28 0.30 0.36 0.34 0.44	GA Lonkel G1-10NaC1-3 0.00 0.22 0.26 0.29 0.34 0.38 0.42 0.48 0.55 0.64 0.70 Srednia [%] 0.00 0.01 0.02 0.02 0.01 0.02 0.02 0.01 0.02 0.02 0.01 0.02 0.02 0.01 0.02 0.02 0.01 0.02 0.02 0.01 0.02 0.02 0.01 0.02 0.02 0.01 0.02 0.02 0.02 0.02 0.03 0.36 0.36 0.44 0.45 0.44 0.45 0.44 0.45 0.44 0.47 0.44 0.48 0.53 0.38 0.37 0.48 0.44 0.47 0.47 0.47 0.47 0.47 0.47 0.47 0.47 0.47 0.47 0.47 0.44 0.48 0.51 0.50 0.35 0.38 0.37 0.48 0.47 0.47 0.47 0.47 0.47 0.47 0.47 0.47 0.47	61	10% NaCl	G1-10NaCl-2	0.00	0.20	0.23	0.25	0.32	0.36	0.40	0.47	0.53	0.61	0.69
Srednia [%] 0.00 0.21 0.25 0.28 0.33 0.38 0.42 0.48 0.55 0.64 Odch, Stand, [%] 0.00 0.01 0.02 0.01 0.02 0.02 0.01 0.02 0.01 0.02 0.01 0.02 0.01 0.02 0.02 0.01 0.02 0.01 0.02 0.02 0.01 0.02<	Sechal (%)Sechal (%)0.000.010.020.020.030.030.040.050.040.07Odch. Stand. (%)0.000.010.020.010.020.020.020.020.020.020.020.020.020.020.020.020.020.020.020.020.020.020.020.030.030.040.040.040.040.040.050.020.020.020.020.030.030.040.040.040.040.040.040.040.020.020.020.020.030.030.040.040.040.040.050.020.020.030.040.01 <td>Second [%] 0.00 0.21 0.28 0.33 0.38 0.42 0.58 0.55 0.64 0.70 Odch. Stand. [%] 0.00 0.01 0.02 0.01 0.02 0.01 0.02 0.02 0.01 0.02 0.02 0.01 0.02 0.02 0.01 0.02<!--</td--><td>01</td><td>10/01/04/01</td><td>G1-10NaCl-3</td><td>0.00</td><td>0.22</td><td>0.26</td><td>0.29</td><td>0.34</td><td>0.39</td><td>0.43</td><td>0.49</td><td>0.56</td><td>0.64</td><td>0.70</td></td>	Second [%] 0.00 0.21 0.28 0.33 0.38 0.42 0.58 0.55 0.64 0.70 Odch. Stand. [%] 0.00 0.01 0.02 0.01 0.02 0.01 0.02 0.02 0.01 0.02 0.02 0.01 0.02 0.02 0.01 0.02 </td <td>01</td> <td>10/01/04/01</td> <td>G1-10NaCl-3</td> <td>0.00</td> <td>0.22</td> <td>0.26</td> <td>0.29</td> <td>0.34</td> <td>0.39</td> <td>0.43</td> <td>0.49</td> <td>0.56</td> <td>0.64</td> <td>0.70</td>	01	10/01/04/01	G1-10NaCl-3	0.00	0.22	0.26	0.29	0.34	0.39	0.43	0.49	0.56	0.64	0.70
Odch. Stand. [%] 0.00 0.01 0.02 0.01 0.02 0.01 0.02 0.01 0.02 0.01 0.02 0.01 0.02 0.01 0.02 0.01 0.02 0.01 0.02 0.01 0.02 0.02 0.01 0.02 0.02 0.01 0.02 0.02 0.02 0.02 0.03 0.36 0.38 0.45 0.43 0.43 0.44 0.43 0.48 0.47 0.447 0.44 0.43 0.43 0.43 0.47 0.447 0.44 0.43 <td>Gode Odeh. Stand. [%] 0.00 0.01 0.02 0.02 0.01 0.02 0.02 0.01 0.02 0.03 0.03 0.03 0.04 <th0.04< th=""> <th0.04< th=""> 0.04</th0.04<></th0.04<></td> <td>Odch. Stand. [%] 0.00 0.01 0.02 0.02 0.01 0.02 0.02 0.01 0.02 0.02 0.01 0.02 0.02 0.01 0.02 0.02 0.01 0.02</td> <td></td> <td></td> <td>Średnia [%]</td> <td>0.00</td> <td>0.21</td> <td>0.25</td> <td>0.28</td> <td>0.33</td> <td>0.38</td> <td>0.42</td> <td>0.48</td> <td>0.55</td> <td>0.64</td> <td>0.70</td>	Gode Odeh. Stand. [%] 0.00 0.01 0.02 0.02 0.01 0.02 0.02 0.01 0.02 0.03 0.03 0.03 0.04 <th0.04< th=""> <th0.04< th=""> 0.04</th0.04<></th0.04<>	Odch. Stand. [%] 0.00 0.01 0.02 0.02 0.01 0.02 0.02 0.01 0.02 0.02 0.01 0.02 0.02 0.01 0.02 0.02 0.01 0.02			Średnia [%]	0.00	0.21	0.25	0.28	0.33	0.38	0.42	0.48	0.55	0.64	0.70
G5 I0% Nacl Czas ekspozycji [dni] 0 14 28 42 56 70 84 98 112 126 G5 I0% Nacl G5-I0Nacl-1 0.00 0.21 0.24 0.28 0.30 0.36 0.38 0.45 0.45 0.49 G5-I0Nacl-2 0.00 0.20 0.23 0.28 0.28 0.34 0.36 0.41 0.47 0.44 0.44 G5-I0Nacl-3 0.00 0.20 0.23 0.28 0.29 0.35 0.38 0.44 0.43 0.48 G5-I0Nacl-3 0.00 0.01 0.00 0.01 0.01 0.01 0.01 0.02 0.2	G5 10% Nacl Czas ekspozycji [dni] 0 14 28 42 56 70 84 98 112 126 14 G5 10% Nacl G5-10Nacl-2 0.00 0.21 0.24 0.28 0.36 0.36 0.36 0.45 0.44 0.43 0.48 0.55 0.28 0.29 0.35 0.38 0.44 0.43 0.48 0.55 0dch, Stand, [%] 0.00 0.00 0.00 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.02 0.22 0.24 0.25 0.28 0.33 0.46 0.40 0.5 0.63 0.63 0.64 0.61 0.61 0.51 0.62 0.62<	G5			Odch, Stand, [%]	0.00	0.01	0.02	0.02	0.01	0.02	0.02	0.01	0.02	0.02	0.01
G5 10% NaCl G5-10NaCl-1 0.00 1.20 1.20 0.20 0.36 0.36 0.45 0.44 0.44 G5-10NaCl-3 0.00 0.20 0.23 0.25 0.28 0.34 0.36 0.44 0.43 0.44 0.43 0.44 0.43 0.44 0.43 0.44 0.43 0.44 0.43 0.44 0.43 0.44 0.43 0.44 0.43 0.44 0.43 0.44 0.43 0.44 0.43 0.44 0.43 0.47 0.47 0.47 0.47 0.47 0.47 0.47 0.47 0.47 0.44 0.43 0.44 0.43 0.47 0.47 0.47 0.47 0.44 0.43 0.44 0.43 0.47 0.47 0.44 0.43 0.44 0.43 0.47 0.42 0.55 0.52 0.52 0.52 0.52 0.52 0.52 0.52 0.52 0.52 0.52 0.52 0.52 0.52 0.52 0.52 <td>G5 10% Nacl 10% OA 10</td> <td>G5 Line Act <thlineact< th=""> <thline act<="" th=""> <thlinea< td=""><td></td><td></td><td>Czas eksnozycii [dni]</td><td>0</td><td>14</td><td>28</td><td>42</td><td>56</td><td>70</td><td>84</td><td>98</td><td>112</td><td>126</td><td>140</td></thlinea<></thline></thlineact<></td>	G5 10% Nacl 10% OA 10	G5 Line Act Line Act <thlineact< th=""> <thline act<="" th=""> <thlinea< td=""><td></td><td></td><td>Czas eksnozycii [dni]</td><td>0</td><td>14</td><td>28</td><td>42</td><td>56</td><td>70</td><td>84</td><td>98</td><td>112</td><td>126</td><td>140</td></thlinea<></thline></thlineact<>			Czas eksnozycii [dni]	0	14	28	42	56	70	84	98	112	126	140
G5 10% NaCl G5-10NaCl-2 0.00 0.11 0.24 0.25 0.28 0.36 0.43 0.43 0.44 0.44 G5-10NaCl-2 0.00 0.20 0.23 0.27 0.29 0.35 0.38 0.44 0.43 0.44 G5-10NaCl-3 0.00 0.20 0.23 0.27 0.29 0.35 0.38 0.44 0.43 0.48 G5-10NaCl-3 0.00 0.20 0.23 0.27 0.29 0.35 0.37 0.43 0.47 0.44 G5-10NaCl-1 0.00 0.01 0.00 0.01 0.01 0.01 0.01 0.02	G5 10% ACI G5-10NaCi-1 0.00 0.11 0.24 0.23 0.25 0.36 0.36 0.43 0.43 0.43 0.43 0.44	G5 I0% NaCl G5-10NaCl-2 0.00 0.21 0.23 0.33 0.41 0.43 0.44 0.44 0.43 0.44 0.44 0.44 0.43 0.44 0.43 0.43 0.43 0.43 0.43 0.43 0.43 0.43 0.43 0.43 0.43 0.43			CE 10N-CL1	0.00	0.01	20	42	0.00	0.00	0.20	0.45	0.45	120	140
G5 10% Nacl G5-10Nacl-2 0.00 0.19 0.23 0.25 0.28 0.34 0.35 0.41 0.47 0.43 G5 10% Nacl G5-10Nacl-3 0.00 0.20 0.23 0.27 0.29 0.35 0.38 0.44 0.43 0.47 0.47 0.47 G5 media firedinia 1/0 0.00 0.01 0.01 0.01 0.01 0.01 0.01 0.02 </td <td>G5 10% NaCl G5-10NaCl-2 0.00 0.19 0.23 0.27 0.29 0.35 0.38 0.44 0.47 0.44 0.47 0.44 0.43 0.41 0.10 0.10 0.11 0.11 0.11 0.11 0.12 0.22 0.22 0.24 0.25 0.28</td> <td>G5 10% NaCl G5:10NaCl-3 0.00 G5:10NaCl-3 0.00 0.00 0.20 0.23 0.23 0.28 0.29 0.20 0.35 0.38 0.44 0.47 0.44 0.48 0.48 0.48 0.50 G5:10NaCl-3 0.00 0.20 0.23 0.28 0.29 0.35 0.37 0.43 0.47 0.47 0.48 0.58 G6:10NaCl-3 0.00 0.01 0.01 0.01 0.01 0.01 0.01 0.02</td> <td></td> <td></td> <td>G5-10NaCI-1</td> <td>0.00</td> <td>0.21</td> <td>0.24</td> <td>0.28</td> <td>0.30</td> <td>0.36</td> <td>0.38</td> <td>0.45</td> <td>0.45</td> <td>0.49</td> <td>0.55</td>	G5 10% NaCl G5-10NaCl-2 0.00 0.19 0.23 0.27 0.29 0.35 0.38 0.44 0.47 0.44 0.47 0.44 0.43 0.41 0.10 0.10 0.11 0.11 0.11 0.11 0.12 0.22 0.22 0.24 0.25 0.28	G5 10% NaCl G5:10NaCl-3 0.00 G5:10NaCl-3 0.00 0.00 0.20 0.23 0.23 0.28 0.29 0.20 0.35 0.38 0.44 0.47 0.44 0.48 0.48 0.48 0.50 G5:10NaCl-3 0.00 0.20 0.23 0.28 0.29 0.35 0.37 0.43 0.47 0.47 0.48 0.58 G6:10NaCl-3 0.00 0.01 0.01 0.01 0.01 0.01 0.01 0.02			G5-10NaCI-1	0.00	0.21	0.24	0.28	0.30	0.36	0.38	0.45	0.45	0.49	0.55
G5-10NaCl-3 0.00 0.20 0.23 0.27 0.29 0.35 0.38 0.44 0.43 0.43 Średnia [%] 0.00 0.20 0.23 0.28 0.29 0.35 0.37 0.43 0.47 0.47 Odch. Stand, [%] 0.00 0.01 0.02 0.22 0	G5-10NaCl-3 0.00 0.20 0.23 0.23 0.29 0.35 0.38 0.44 0.43 0.47 0.53 G5 rednia [%] 0.00 0.00 0.01 0.00 0.01 0.01 0.01 0.01 0.01 0.02 0.03 0.03 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.02 0.22 0.22	G5 IONC1-3 0.00 0.20 0.23 0.27 0.29 0.35 0.38 0.44 0.43 0.48 0.53 G65 Serdnia [%] 0.00 0.01 0.01 0.01 0.01 0.01 0.01 0.02 0.02 0.035 0.37 0.43 0.47 0.52 G65 Case ekspozycij (dni) 0 14 28 42 55 70 84 98 112 126 140 G5 Case ekspozycij (dni) 0 14 28 42 55 70 84 98 112 126 126 128 121 126 128 121 126 128 133 130 1	G5	10% NaCl	G5-10NaCI-2	0.00	0.19	0.23	0.25	0.28	0.34	0.36	0.41	0.47	0.44	0.49
Srednia [%] 0.00 0.20 0.23 0.28 0.29 0.35 0.37 0.43 0.47 0.47 Odch. Stand. [%] 0.00 0.01 0.00 0.01 0.01 0.01 0.02 0.25 0.25 0.25 0.25 0.28 0.05 0.02 0.24 0.25 0.28 G5 Moch. Stand. [%] 0.00 0.01 0.01 0.01 0.01 <t< td=""><td>Seedna [%] 0.00 0.20 0.23 0.28 0.29 0.35 0.37 0.43 0.47 0.47 0.57 Odch. Stand. [%] 0.00 0.01 0.01 0.01 0.01 0.01 0.02 0.00 0.00 0.00 0.00 0.01 0.01 0.01 0.00 0.00 0.01 0.01 0.01 0.00 0.01 0.01 0.00 0.01 0.01 0.01 0.00 0.01 0.01 0.01 0.01<!--</td--><td>Seedma [%] 0.00 0.20 0.23 0.28 0.29 0.35 0.37 0.43 0.47 0.47 0.52 Odch. Stand. [%] 0.00 0.01 0.01 0.01 0.01 0.01 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.03 0.01 0.01 0.01 0.01 0.01 0.01 0.02 0.22 0.22 0.22 0.22 0.24 0.25 0.28 0.33 G5 G5+12O-1 0.00 0.09 0.13 0.16 0.19 0.22 0.22 0.24 0.25 0.28 0.33 G5 Moda 0.65 0.00 0.01 0.01 0.01 0.01 0.01 0.00 0.03 0.48 0.48 0.49 0.11 0.00 0.00 0.33 0.48 0.61 0.81 1.08 1.41 1.88 2.27 2.69 3.29 G5 SofKF1 0.00 0.34 0.47</td><td></td><td></td><td>G5-10NaCl-3</td><td>0.00</td><td>0.20</td><td>0.23</td><td>0.27</td><td>0.29</td><td>0.35</td><td>0.38</td><td>0.44</td><td>0.43</td><td>0.48</td><td>0.53</td></td></t<>	Seedna [%] 0.00 0.20 0.23 0.28 0.29 0.35 0.37 0.43 0.47 0.47 0.57 Odch. Stand. [%] 0.00 0.01 0.01 0.01 0.01 0.01 0.02 0.00 0.00 0.00 0.00 0.01 0.01 0.01 0.00 0.00 0.01 0.01 0.01 0.00 0.01 0.01 0.00 0.01 0.01 0.01 0.00 0.01 0.01 0.01 0.01 </td <td>Seedma [%] 0.00 0.20 0.23 0.28 0.29 0.35 0.37 0.43 0.47 0.47 0.52 Odch. Stand. [%] 0.00 0.01 0.01 0.01 0.01 0.01 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.03 0.01 0.01 0.01 0.01 0.01 0.01 0.02 0.22 0.22 0.22 0.22 0.24 0.25 0.28 0.33 G5 G5+12O-1 0.00 0.09 0.13 0.16 0.19 0.22 0.22 0.24 0.25 0.28 0.33 G5 Moda 0.65 0.00 0.01 0.01 0.01 0.01 0.01 0.00 0.03 0.48 0.48 0.49 0.11 0.00 0.00 0.33 0.48 0.61 0.81 1.08 1.41 1.88 2.27 2.69 3.29 G5 SofKF1 0.00 0.34 0.47</td> <td></td> <td></td> <td>G5-10NaCl-3</td> <td>0.00</td> <td>0.20</td> <td>0.23</td> <td>0.27</td> <td>0.29</td> <td>0.35</td> <td>0.38</td> <td>0.44</td> <td>0.43</td> <td>0.48</td> <td>0.53</td>	Seedma [%] 0.00 0.20 0.23 0.28 0.29 0.35 0.37 0.43 0.47 0.47 0.52 Odch. Stand. [%] 0.00 0.01 0.01 0.01 0.01 0.01 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.03 0.01 0.01 0.01 0.01 0.01 0.01 0.02 0.22 0.22 0.22 0.22 0.24 0.25 0.28 0.33 G5 G5+12O-1 0.00 0.09 0.13 0.16 0.19 0.22 0.22 0.24 0.25 0.28 0.33 G5 Moda 0.65 0.00 0.01 0.01 0.01 0.01 0.01 0.00 0.03 0.48 0.48 0.49 0.11 0.00 0.00 0.33 0.48 0.61 0.81 1.08 1.41 1.88 2.27 2.69 3.29 G5 SofKF1 0.00 0.34 0.47			G5-10NaCl-3	0.00	0.20	0.23	0.27	0.29	0.35	0.38	0.44	0.43	0.48	0.53
Odch. Stand. [%] 0.00 0.01 0.01 0.01 0.01 0.02 0.02 0.02 G5 Czas ekspozycji [dni] 0 14 28 42 56 70 84 98 112 126 G5-H2O-1 0.00 0.08 0.12 0.15 0.20 0.22 0.22 0.22 0.22 0.22 0.24 0.25 0.28 G5-H2O-2 0.00 0.00 0.01 0.13 0.16 0.19 0.22 0.22 0.24 0.25 0.28 G5-H2O-3 0.00 0.09 0.13 0.16 0.19 0.22 0.22 0.24 0.25 0.28 G5-H2O-3 0.00 0.01 0.01 0.01 0.00 0.00 0.01 0.01 0.00 0.01 0.00 0.01 0.01 0.00 0.01 0.01 0.00 0.13 0.16 1.38 1.83 2.20 2.58 G5 50% KF G5-50KF-1 0.00	(n) (n) <td>Odeh, Stand. [%] 0.00 0.01 0.00 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.03</td> <td></td> <td></td> <td>Średnia [%]</td> <td>0.00</td> <td>0.20</td> <td>0.23</td> <td>0.28</td> <td>0.29</td> <td>0.35</td> <td>0.37</td> <td>0.43</td> <td>0.47</td> <td>0.47</td> <td>0.52</td>	Odeh, Stand. [%] 0.00 0.01 0.00 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.03			Średnia [%]	0.00	0.20	0.23	0.28	0.29	0.35	0.37	0.43	0.47	0.47	0.52
G5 Woda destylowana Czas ekspozycji [dni] 0 14 28 42 56 70 84 98 112 126 G5 Moda destylowana G5-H2O-1 0.00 0.08 0.12 0.15 0.20 0.22 0.22 0.22 0.25 0.25 0.28 0.22 0.24 0.25 0.28 0.22 0.24 0.25 0.28 0.22 0.22 0.24 0.25 0.28 0.28 0.22 0.24 0.25 0.28 0.28 0.22 0.24 0.25 0.28 0.28 0.22 0.24 0.25 0.28 0.28 0.22 0.24 0.25 0.28 0.28 0.28 0.22 0.22 0.24 0.25 0.28 0.28 0.28 0.28 0.28 0.28 0.22 0.22 0.24 0.25 0.28 0.28 0.28 0.28 0.28 0.28 0.28 0.28 0.28 0.28 0.28 0.28 0.28 0.28 0.	G5 Czas ekspozycji [dni] 0 14 28 42 56 70 84 98 112 126 14 G5-H2O-1 0.00 0.08 0.12 0.15 0.20 0.22 0.22 0.22 0.22 0.24 0.25 0.28 0.33 G5-H2O-3 0.00 0.09 0.13 0.16 0.19 0.22 0.24 0.25 0.28 0.33 Odch.Stand.[%] 0.00 0.09 0.13 0.16 0.19 0.22 0.24 0.25 0.28 0.33 Odch.Stand.[%] 0.00 0.01 0.01 0.01 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.01 0.01 0.00 0.00 0.01 0.00 0.03 0.48 0.65 0.81 1.08 1.41 1.88 2.20 2.58 3.0 G5 50% KF 0.00 0.34	G5 Case ekspozycji [dni] 0 14 28 42 56 70 84 98 112 126 140 G5+H2O-1 0.00 0.08 0.12 0.15 0.20 0.22 0.22 0.25 0.25 0.28 0.33 0.31 0.16 0.19 0.22 0.24 0.25 0.28 0.33 0.31 0.16 0.19 0.22 0.24 0.25 0.28 0.33 0.31 0.31 0.16 0.19 0.22 0.24 0.25 0.28 0.33 0.31 0.3			Odch. Stand. [%]	0.00	0.01	0.00	0.01	0.01	0.01	0.01	0.02	0.02	0.02	0.03
G5 Woda destylowana G6-H2O-1 G5-H2O-2 0.00 0.08 0.12 0.15 0.20 0.22 0.22 0.25 0.28 G5 G5-H2O-2 0.00 0.10 0.13 0.16 0.19 0.22 0.22 0.24 0.25 0.28 G5-H2O-3 0.00 0.09 0.13 0.16 0.19 0.22 0.22 0.24 0.25 0.28 Srednia [%] 0.00 0.09 0.13 0.16 0.19 0.22 0.22 0.24 0.25 0.28 G6-H2O-1 0.00 0.01 0.01 0.01 0.01 0.00 0.01 0.00 0.01 0.00 0.01 0.00 0.00 0.01 0.01 0.01 0.00 0.01 0.01 0.00 0.01 0.01 0.01 0.01 0.00 0.01 0.01 0.02 0.22 0.22 0.22 0.24 0.25 0.28 G5 50% KF Czas ekspozycji [dni] 0 1.4<	G5 Moda destylowana G5+H2O-1 G5+H2O-2 0.00 0.08 0.12 0.15 0.20 0.22 0.22 0.22 0.24 0.25 0.28 0.33 G5+H2O-3 0.00 0.00 0.01 0.13 0.16 0.19 0.22 0.22 0.24 0.25 0.28 0.33 G6+H2O-3 0.00 0.09 0.13 0.16 0.19 0.22 0.24 0.25 0.28 0.33 Odch. Stand.[%] 0.00 0.01 0.01 0.01 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.01 0.01 0.00 0.00 0.01 0.01 0.00 0.01 0.00 0.01 0.02 0.02 0.02 0.22 0.22 0.22 0.22 0.22 0.22 0.22 0.22 0.22 0.22 0.22 0.22 0.22	G5 Horar Labora 0.00 0.08 0.12 0.15 0.20 0.22 0.22 0.22 0.25 0.28 0.31 G5 H2O-1 0.00 0.00 0.13 0.16 0.19 0.22 0.22 0.24 0.25 0.28 0.33 G5 H2O-3 0.00 0.09 0.13 0.16 0.19 0.22 0.22 0.24 0.25 0.28 0.33 G5 H2O-3 0.00 0.01 0.01 0.01 0.01 0.00 0.03 0.04 0.00 0.01 0.01 0.00 0.03 0.04 0.06 0.03 0.04 0.00 0.03 0.04 0.03 0.04 0.04 0.01 0.01 0.02 0.02 0.06 0.09 0.13 G5 50%KF 0.00 0.34 0.44 0.65 0.82 1.08 1.41 1.88 2.20 2.58 3.24 G5 50%KF 0.00 0.34			Czas ekspozycii [dni]	0	14	28	42	56	70	84	98	112	126	140
G5 Woda destylowana G5-H2O-2 0.00 0.00 0.01 0.01 0.012 0.02 <th0.02< th=""> 0.02 0.02 0.02 0.02 0.02 0.02 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.03 <th0.03< th=""> <th0.03< th=""> 0.03</th0.03<></th0.03<></th0.02<>	G5 Woda G5/H2O-1 O.00 O.10 O.13 O.12 O.12 <tho.12< th=""> O.11 O.11 <t< td=""><td>G5 Woda G5-H2O-2 0.00 0.01 0.11 0.10 0.12 0.13 0.11 0.11 0.11 0.12 0.13 0.14 0.14 0.18 0.11 0.11 0.12 0.12 0.13 0.14 <</td><td></td><td></td><td>G5-H2O-1</td><td>0.00</td><td>0.08</td><td>0.12</td><td>0.15</td><td>0.20</td><td>0.22</td><td>0.22</td><td>0.25</td><td>0.25</td><td>0.28</td><td>0.31</td></t<></tho.12<>	G5 Woda G5-H2O-2 0.00 0.01 0.11 0.10 0.12 0.13 0.11 0.11 0.11 0.12 0.13 0.14 0.14 0.18 0.11 0.11 0.12 0.12 0.13 0.14 <			G5-H2O-1	0.00	0.08	0.12	0.15	0.20	0.22	0.22	0.25	0.25	0.28	0.31
G5 Woda G5+12.0-2 0.00 0.10 0.13 0.16 0.19 0.22 0.22 0.24 0.25 0.28 G5+120-3 0.00 0.09 0.13 0.16 0.19 0.22 0.22 0.24 0.25 0.28 G65 Šrednia [%] 0.00 0.01 0.01 0.01 0.00 0.01 0.00 0.00 0.01 0.00 0.03 0.45 0.63 0.81 1.08 1.41 1.88 2.32 2.77 G5 50% KF G5-50KF-2 0.00 0.33 0.45 0.63 0.81 1.07 1.40 1.82 2.26 2.69 G5 G5-50KF-3	G5 Woda G5-H2O-2 0.00 0.10 0.13 0.13 0.13 0.12 0.22 0.24 0.23 0.23 0.28 0.33 destylowana G5-H2O-3 0.00 0.09 0.13 0.16 0.19 0.22 0.24 0.25 0.28 0.33 Odch. Stand. [%] 0.00 0.01 0.01 0.01 0.00 0.01 0.00 0.01 0.02 0.02 1.08 1.41 1.88 2.22 2.77 3.2 G5 50% KF 0.00 0.33 0.43 0.64 0.80 1.01 1.40 1.88 2.22 2.68 3.1 G5 50K F.1 0.00 0.33 0.47	G5 wdds G5/H2O-2 0.00 0.10 0.13 0.13 0.13 0.12 0.22 0.24 0.23 0.28 0.33 destylowana G5+H2O-3 0.00 0.09 0.13 0.16 0.19 0.22 0.24 0.25 0.28 0.33 0dch.stand.[%] 0.00 0.01 0.01 0.01 0.00 0.01 0.00 0.00 0.01 0.00 0.00 0.01 0.00 0.03 0.48 0.65 0.81 1.00 1.40 1.48 2.32 2.77 3.29 G5 50% kF G5:50KF-3 0.00 0.34 0.47 0.66 0.81 1.07 1.40 1.48 2.32 2.77 3.29 3.23 1.		Woda	G5 H2O 1	0.00	0.00	0.12	0.15	0.10	0.22	0.22	0.20	0.25	0.20	0.31
Gestylowana GS-H2O-3 0.00 0.09 0.13 0.16 0.19 0.22 0.22 0.24 0.25 0.28	Gestylowana GS-H2D-3 0.00 0.09 0.13 0.16 0.19 0.22 0.22 0.24 0.25 0.28 0.33 Gestylowana Srednia [%] 0.00 0.09 0.13 0.16 0.19 0.22 0.22 0.24 0.25 0.28 0.33 Odch. Stand. [%] 0.00 0.01 0.01 0.01 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.01 0.01 0.00 0.02 0.22 0.24 0.25 0.22 0.22 0.22 0.24 0.25 0.25 0.25 0.25 0.25 0.25 0.25 0.25 0.25 0.25 0.25 0.25 0.22 0.22 0.24 0.25 0.22 0.22 0.22 0.22 0.22 0.22 0.22 0.22 0.22 0.22 0.22 0.22 0.22 0.22 0.22 0.22 <th0.23< th=""> 0.33 0.33</th0.23<>	Gestylowara GS-H2O-3 0.00 0.09 0.13 0.16 0.19 0.22 0.24 0.25 0.28 0.31 GS Srednia [%] 0.00 0.00 0.01 0.01 0.01 0.00 0.00 0.00 0.01 0.00 0.01 0.02 0.02 0.02 0.02 0.22 0.22 0.24 0.25 0.28 0.33 0.49 0.00 0.00 0.01 0.02 0.02 0.02 0.22 0.22 0.22 0.22 0.22 0.22 0.23 0.23 0.44 0.81 1.01 1.48 2.32 2.77 3.32 3.31 0.32 0.73 <td>G5</td> <td>woua</td> <td>G3-H20-2</td> <td>0.00</td> <td>0.10</td> <td>0.15</td> <td>0.10</td> <td>0.19</td> <td>0.22</td> <td>0.22</td> <td>0.24</td> <td>0.25</td> <td>0.20</td> <td>0.51</td>	G5	woua	G3-H20-2	0.00	0.10	0.15	0.10	0.19	0.22	0.22	0.24	0.25	0.20	0.51
G5 Srednia [%] 0.00 0.09 0.13 0.16 0.19 0.22 0.22 0.24 0.25 0.28 G5 Odch. Stand. [%] 0.00 0.01 0.01 0.01 0.00 0.01 0.00 0.01 0.02 0.00 1.38 1.83 2.20 2.58 65 50KF-1 0.00 0.33 0.45 0.63 0.81 1.08 1.41 1.88 2.22 2.69 Średnia [%] 0.00 0.01 0.02 0.04 0.01 0.01 0.02 0.02 0.06 0.09 1.24 G5 15% SF Czas ekspoz	G5 Srednia [%] 0.00 0.00 0.01 0.16 0.19 0.22 0.22 0.24 0.25 0.28 0.33 Odch. Stand. [%] 0.00 0.01 0.01 0.00 0.01 0.00 0.01 0.00 0.01 0.00 0.00 0.01 0.00 0.01 0.00 0.03 0.48 0.64 0.80 1.06 1.38 1.83 2.20 2.58 3.0 G5 50% KF G5-50KF-2 0.00 0.34 0.48 0.65 0.82 1.08 1.41 1.88 2.22 2.69 3.2 G5 frednia [%] 0.00 0.14 0.28 0.26 0.70 84 98 112 126 14 G5 15% SF G5-155F-1 0.00	G5 Srednia [%] 0.00 0.09 0.13 0.16 0.19 0.22 0.24 0.25 0.28 0.03 0.00 0.01 0.00 0.01 0.00 0.01 0.00 0.00 0.01 0.02 0.00 0.01 0.02 0.02 0.01 0.02 0.01 0.01 0.02 0.01 0.02		destylowana	G5-H2U-3	0.00	0.09	0.13	0.16	0.19	0.22	0.22	0.24	0.25	0.28	0.31
G5 Odch. Stand. [%] 0.00 0.01 0.01 0.01 0.00 0.00 0.01 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.01 0.01 0.00 0.00 0.01 0.00 0.01 0.00 0.01 0.00 0.00 0.03 0.48 0.64 0.80 1.06 1.38 1.83 2.20 2.58 G5 50% KF G5-50KF-2 0.00 0.33 0.45 0.63 0.81 1.08 1.41 1.88 2.32 2.77 G5 50% KF G5-50KF-3 0.00 0.34 0.47 0.66 0.81 1.07 1.40 1.86 2.26 2.68 G5 0dch. Stand. [%] 0.00 0.01 0.02 0.04 0.01 0.02 0.02 0.02 0.02 0.06 0.09 1.24 G5 15% SF G5-15SF-1 <t< td=""><td>Gb Odch. Stand. [%] 0.00 0.01 0.01 0.01 0.00 0.00 0.01 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.01 0.01 0.00 0.00 0.01 0.00 0.00 0.01 0.00 0.00 0.01 0.00 0.00 0.03 0.04 0.00 0.00 0.03 0.04 0.00 0.00 0.03 0.04 0.00 0.00 0.01 0.00 0.01 0.02 0.00 0.01 0.02 0.00 0.01 0.01 0.01 0.02</td><td>Gene Odeh, Stand. [%] 0.00 0.01 0.01 0.01 0.00 0.03 0.048 0.64 0.80 0.06 1.83 1.20 2.28 3.29 65 50KF-3 0.00 0.34 0.48 0.65 0.81 1.07 1.40 1.88 2.27 2.69 3.23 50% KF 0.00 0.01 0.02 0.04 0.01 0.01 0.02</td><td></td><td></td><td>Srednia [%]</td><td>0.00</td><td>0.09</td><td>0.13</td><td>0.16</td><td>0.19</td><td>0.22</td><td>0.22</td><td>0.24</td><td>0.25</td><td>0.28</td><td>0.30</td></t<>	Gb Odch. Stand. [%] 0.00 0.01 0.01 0.01 0.00 0.00 0.01 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.01 0.01 0.00 0.00 0.01 0.00 0.00 0.01 0.00 0.00 0.01 0.00 0.00 0.03 0.04 0.00 0.00 0.03 0.04 0.00 0.00 0.03 0.04 0.00 0.00 0.01 0.00 0.01 0.02 0.00 0.01 0.02 0.00 0.01 0.01 0.01 0.02	Gene Odeh, Stand. [%] 0.00 0.01 0.01 0.01 0.00 0.03 0.048 0.64 0.80 0.06 1.83 1.20 2.28 3.29 65 50KF-3 0.00 0.34 0.48 0.65 0.81 1.07 1.40 1.88 2.27 2.69 3.23 50% KF 0.00 0.01 0.02 0.04 0.01 0.01 0.02			Srednia [%]	0.00	0.09	0.13	0.16	0.19	0.22	0.22	0.24	0.25	0.28	0.30
G5 Czas ekspozycji [dni] 0 14 28 42 56 70 84 98 112 126 G5 G5*50KF-1 0.00 0.35 0.48 0.64 0.80 1.06 1.38 1.83 2.20 2.58 G5*50KF-2 0.00 0.33 0.45 0.63 0.81 1.08 1.41 1.88 2.32 2.77 G5*50KF-3 0.00 0.34 0.48 0.65 0.82 1.08 1.41 1.88 2.27 2.69 \$\$\$\$ \$	G5 C2as ekspozycji [dni] 0 14 28 42 56 70 84 98 112 126 14 G5-50KF-1 0.00 0.35 0.48 0.64 0.80 1.06 1.38 1.38 2.20 2.58 3.0 G5-50KF-2 0.00 0.33 0.45 0.63 0.81 1.08 1.41 1.88 2.32 2.77 3.2 G5-50KF-3 0.00 0.34 0.47 0.66 0.81 1.07 1.40 1.88 2.32 2.77 3.2 G5-50KF-3 0.00 0.34 0.47 0.66 0.81 1.07 1.40 1.88 2.26 2.68 3.2 Odch.Stand.[%] 0.00 0.11 0.28 0.37 0.49 0.58 0.82 0.99 1.24 1.5 G5-155F-3 0.00 0.15 0.21 0.28 0.37 0.48 0.57 0.79 0.31 1.41 1.4 G5-155F-3	G5 C2as ekspozycji [dni] 0 14 28 42 56 70 84 98 112 126 140 G5-50KF-1 0.00 0.33 0.48 0.64 0.80 1.06 1.38 1.83 2.20 2.58 3.20 G5-50KF-2 0.00 0.33 0.45 0.63 0.81 1.08 1.41 1.88 2.32 2.77 3.29 G5-50KF-3 0.00 0.34 0.47 0.66 0.81 1.07 1.40 1.86 2.26 2.68 3.19 Odch.Stand.[%] 0.00 0.01 0.02 0.04 0.01 0.01 0.02 0.02 0.06 0.09 0.13 Odch.Stand.[%] 0.00 0.13 0.20 0.28 0.37 0.48 0.57 0.93 1.14 1.41 1.41 G5 5155-1 0.00 0.15 0.21 0.28 0.37 0.48 0.57 0.79 1.24 1.26 1.00			Odch. Stand. [%]	0.00	0.01	0.01	0.01	0.01	0.00	0.00	0.01	0.00	0.00	0.00
G5 G5-50KF-1 0.00 0.35 0.48 0.64 0.80 1.06 1.38 1.83 2.20 2.58 G5 G5-50KF-2 0.00 0.33 0.45 0.63 0.81 1.08 1.41 1.88 2.32 2.77 G5-50KF-3 0.00 0.34 0.48 0.65 0.82 1.08 1.41 1.88 2.20 2.69 Średnia [%] 0.00 0.34 0.47 0.66 0.81 1.07 1.40 1.88 2.20 2.69 Ódch. Stand. [%] 0.00 0.01 0.02 0.04 0.01 0.01 0.02 0.02 0.02 0.06 0.09 C2as ekspozycji [dni] 0 14 28 42 56 70 84 98 112 126 G5-155F-1 0.00 0.13 0.20 0.28 0.37 0.48 0.57 0.79 0.93 1.14 G5 65-155F-3 0.00 0.15 0.21 </td <td>G5 G5:50KF-1 0.00 0.35 0.48 0.64 0.80 1.06 1.38 1.83 2.20 2.58 3.0 G5:50KF-2 0.00 0.33 0.45 0.63 0.81 1.08 1.41 1.88 2.32 2.77 3.2 G5:50KF-3 0.00 0.34 0.48 0.65 0.82 1.08 1.41 1.88 2.27 2.69 3.2 G5:50KF-3 0.00 0.34 0.47 0.66 0.81 1.07 1.40 1.86 2.26 2.68 3.1 G5:50KF-3 0.00 0.01 0.02 0.04 0.01 0.01 0.02 0.02 0.02 0.02 0.06 0.99 0.14 1.44 1.48 1.43 1.43 1.44 1.44 G5:155F-1 0.00 0.15 0.21 0.28 0.37 0.48 0.57 0.79 0.33 1.41 1.44 G5:155F-3 0.00 0.15 0.21 0.28</td> <td>G5 S0% KF G5-50KF-1 0.00 0.35 0.48 0.64 0.80 1.06 1.38 1.83 2.20 2.58 3.04 G5 50% KF G5-50KF-2 0.00 0.33 0.45 0.63 0.81 1.08 1.41 1.88 2.32 2.77 3.29 G5-50KF-3 0.00 0.34 0.48 0.65 0.82 1.08 1.41 1.88 2.26 2.68 3.19 Odch. Stand [%] 0.00 0.01 0.02 0.04 0.01 0.02 0.02 0.02 0.06 0.99 1.12 126 140 G5-155F-1 0.00 0.13 0.20 0.28 0.37 0.49 0.58 0.82 0.99 1.24 1.53 G5 15% SF G5-15SF-1 0.00 0.15 0.21 0.29 0.38 0.49 0.51 0.82 0.97 1.19 1.44 1.41 G5 15% F-3 0.00 0.01 0.00</td> <td></td> <td></td> <td>Czas ekspozycji [dni]</td> <td>0</td> <td>14</td> <td>28</td> <td>42</td> <td>56</td> <td>70</td> <td>84</td> <td>98</td> <td>112</td> <td>126</td> <td>140</td>	G5 G5:50KF-1 0.00 0.35 0.48 0.64 0.80 1.06 1.38 1.83 2.20 2.58 3.0 G5:50KF-2 0.00 0.33 0.45 0.63 0.81 1.08 1.41 1.88 2.32 2.77 3.2 G5:50KF-3 0.00 0.34 0.48 0.65 0.82 1.08 1.41 1.88 2.27 2.69 3.2 G5:50KF-3 0.00 0.34 0.47 0.66 0.81 1.07 1.40 1.86 2.26 2.68 3.1 G5:50KF-3 0.00 0.01 0.02 0.04 0.01 0.01 0.02 0.02 0.02 0.02 0.06 0.99 0.14 1.44 1.48 1.43 1.43 1.44 1.44 G5:155F-1 0.00 0.15 0.21 0.28 0.37 0.48 0.57 0.79 0.33 1.41 1.44 G5:155F-3 0.00 0.15 0.21 0.28	G5 S0% KF G5-50KF-1 0.00 0.35 0.48 0.64 0.80 1.06 1.38 1.83 2.20 2.58 3.04 G5 50% KF G5-50KF-2 0.00 0.33 0.45 0.63 0.81 1.08 1.41 1.88 2.32 2.77 3.29 G5-50KF-3 0.00 0.34 0.48 0.65 0.82 1.08 1.41 1.88 2.26 2.68 3.19 Odch. Stand [%] 0.00 0.01 0.02 0.04 0.01 0.02 0.02 0.02 0.06 0.99 1.12 126 140 G5-155F-1 0.00 0.13 0.20 0.28 0.37 0.49 0.58 0.82 0.99 1.24 1.53 G5 15% SF G5-15SF-1 0.00 0.15 0.21 0.29 0.38 0.49 0.51 0.82 0.97 1.19 1.44 1.41 G5 15% F-3 0.00 0.01 0.00			Czas ekspozycji [dni]	0	14	28	42	56	70	84	98	112	126	140
G5 50% KF G5-50KF-2 0.00 0.33 0.45 0.63 0.81 1.08 1.41 1.88 2.32 2.77 G5-50KF-3 0.00 0.34 0.48 0.65 0.82 1.08 1.41 1.88 2.27 2.69 Średnia [%] 0.00 0.34 0.47 0.66 0.81 1.07 1.40 1.86 2.26 2.68 Odch. Stand. [%] 0.00 0.01 0.02 0.04 0.01 0.01 0.02 0.02 0.02 0.06 0.09 G5 55 70 84 98 112 126 65-155F-1 0.00 0.13 0.20 0.28 0.37 0.49 0.58 0.82 0.99 1.24 G5 155F-1 0.00 0.15 0.21 0.28 0.37 0.48 0.57 0.79 0.93 1.14 G5 155F-3 0.00 0.15 0.21 0.28 0.37 0.48 0.57	G5 50% KF G5-50KF-2 0.00 0.33 0.45 0.63 0.81 1.08 1.41 1.88 2.32 2.77 3.2 G5 50% KF G5-50KF-3 0.00 0.34 0.48 0.65 0.82 1.08 1.41 1.88 2.32 2.69 3.2 G6 50% KF Srednia [%] 0.00 0.01 0.02 0.04 0.01 0.01 0.02 0.02 0.02 0.06 0.99 0.1 Odch. Stand. [%] 0.00 0.01 0.02 0.04 0.01 0.01 0.02 0.02 0.02 0.06 0.99 0.1 G5 0.55 0.71 0.00 0.13 0.20 0.28 0.37 0.49 0.58 0.82 0.99 1.24 1.55 G5 0.55 0.00 0.15 0.21 0.28 0.37 0.49 0.58 0.82 0.99 1.24 1.55 G5 55 0.00	G5 50% KF G5-50KF-2 0.00 0.33 0.45 0.63 0.81 1.08 1.41 1.88 2.32 2.77 3.29 G5 50% KF G5-50KF-3 0.00 0.34 0.48 0.65 0.82 1.08 1.41 1.88 2.32 2.69 3.23 G6 Stordial [%] 0.00 0.34 0.47 0.66 0.81 1.07 1.40 1.86 2.26 2.68 3.19 Odch. Stand. [%] 0.00 0.01 0.02 0.04 0.01 0.01 0.02 0.06 0.09 0.13 C2as ekspozycji [dni] 0 14 28 42 56 70 84 98 112 126 140 G5-155F-1 0.00 0.13 0.20 0.28 0.37 0.49 0.58 0.82 0.97 1.41 1.41 G5 S5F-3 0.00 0.15 0.21 0.28 0.38 0.49 0.59 0.82			G5-50KF-1	0.00	0.35	0.48	0.64	0.80	1.06	1.38	1.83	2.20	2.58	3.04
G5 50% KF G5-50KF-3 0.00 0.34 0.48 0.65 0.82 1.08 1.41 1.88 2.27 2.69 Šrednia [%] 0.00 0.34 0.47 0.66 0.81 1.07 1.40 1.88 2.27 2.69 Odch. Stand. [%] 0.00 0.34 0.47 0.66 0.81 1.07 1.40 1.86 2.26 2.68 Odch. Stand. [%] 0.00 0.01 0.02 0.04 0.01 0.01 0.02 0.02 0.06 0.09 G5 15% SF Czas ekspozycji [dni] 0 14 28 42 56 70 84 98 112 126 G5 15% SF G5-15SF-1 0.00 0.15 0.21 0.28 0.37 0.48 0.57 0.79 0.93 1.14 G5 155F-3 0.00 0.15 0.21 0.28 0.38 0.49 0.61 0.84 1.00 1.21 1.9	G5 50% KF G5-50KF-3 0.00 0.34 0.48 0.65 0.82 1.08 1.41 1.88 2.27 2.69 3.2 G6 Srednia [%] 0.00 0.34 0.47 0.66 0.81 1.07 1.40 1.86 2.26 2.68 3.1 Odch. Stand. [%] 0.00 0.01 0.02 0.04 0.01 0.01 0.02 0.02 0.02 0.06 0.09 0.1 Odch. Stand. [%] 0.00 0.11 0.22 0.04 0.01 0.01 0.02 0.02 0.02 0.06 0.09 0.1 G5 0.55F-1 0.00 0.13 0.20 0.28 0.37 0.48 0.57 0.79 0.93 1.14 1.4 G5-15SF-3 0.00 0.15 0.21 0.29 0.38 0.49 0.61 0.84 1.00 1.21 1.44 G5 0.55 0.00 0.14 0.28 0.38 0.49 0.61 </td <td>G5 50% KF G5-50KF-3 0.00 0.34 0.48 0.65 0.82 1.08 1.41 1.88 2.27 2.69 3.23 G6 Simedia Mail 0.00 0.34 0.47 0.66 0.81 1.07 1.40 1.86 2.26 2.68 3.19 Odch. Stand. [%] 0.00 0.01 0.02 0.04 0.01 0.01 0.02 0.02 0.06 0.09 0.13 G5 T5% SF Czas ekspozycji [dni] 0 14 28 42 56 70 84 98 112 126 140 G5-15SF-1 0.00 0.13 0.20 0.28 0.37 0.49 0.58 0.82 0.99 1.24 1.53 G5-15SF-2 0.00 0.14 0.21 0.28 0.38 0.49 0.59 0.82 0.97 1.14 1.44 G5-15SF-2 0.00 0.14 0.21 0.28 0.38 0.49 0.59</td> <td></td> <td></td> <td>G5-50KF-2</td> <td>0.00</td> <td>0.33</td> <td>0.45</td> <td>0.63</td> <td>0.81</td> <td>1.08</td> <td>1.41</td> <td>1.88</td> <td>2.32</td> <td>2.77</td> <td>3.29</td>	G5 50% KF G5-50KF-3 0.00 0.34 0.48 0.65 0.82 1.08 1.41 1.88 2.27 2.69 3.23 G6 Simedia Mail 0.00 0.34 0.47 0.66 0.81 1.07 1.40 1.86 2.26 2.68 3.19 Odch. Stand. [%] 0.00 0.01 0.02 0.04 0.01 0.01 0.02 0.02 0.06 0.09 0.13 G5 T5% SF Czas ekspozycji [dni] 0 14 28 42 56 70 84 98 112 126 140 G5-15SF-1 0.00 0.13 0.20 0.28 0.37 0.49 0.58 0.82 0.99 1.24 1.53 G5-15SF-2 0.00 0.14 0.21 0.28 0.38 0.49 0.59 0.82 0.97 1.14 1.44 G5-15SF-2 0.00 0.14 0.21 0.28 0.38 0.49 0.59			G5-50KF-2	0.00	0.33	0.45	0.63	0.81	1.08	1.41	1.88	2.32	2.77	3.29
G5 Infer In	G5 Grednia [%] 0.00 0.01 0.02 0.04 0.01 0.01 0.02 0.01 0.02 0.02 0.02 0.06 0.01 0.02 0.02 0.06 0.09 0.1 G5 0dch. Stand. [%] 0.00 0.01 0.02 0.02 0.06 0.09 0.1 G5 15% SF Czas ekspozycji [dni] 0 14 28 42 56 70 84 98 112 126 14 G5-15SF-1 0.00 0.13 0.20 0.28 0.37 0.49 0.58 0.82 0.99 1.24 1.5 G5-15SF-1 0.00 0.15 0.21 0.28 0.37 0.48 0.57 0.79 0.93 1.14 1.4 G5-15SF-2 0.00 0.14 0.21 0.28 0.38 0.49 0.61 0.84 1.00 1.21 1.4 G5 G5-15SF-3 0.00 0.01 0.00 0.01 0.00	G5 G6 G7 G7<	G5	50% KF	G5-50KF-3	0.00	0.34	0.48	0.65	0.82	1.08	1.41	1.88	2.27	2.69	3.23
G5 Bit Call [N] Cloce	G5 G5 G7 G7<	G5 G5 G7 G7<			Średnia [%]	0.00	0.34	0.47	0.66	0.81	1.07	1.40	1.86	2,26	2,68	3,19
G5 15% SF Ccas ekspozycji [dni] 0 14 28 42 56 70 84 98 112 126 G5 15% SF G5-15SF-1 0.00 0.11 0.21 0.28 0.37 0.49 0.58 0.82 0.99 1.24 G5-15SF-1 0.00 0.15 0.21 0.28 0.37 0.49 0.58 0.82 0.99 1.24 G5-15SF-2 0.00 0.15 0.21 0.28 0.37 0.48 0.57 0.79 0.93 1.14 G5-15SF-3 0.00 0.15 0.21 0.28 0.37 0.48 0.57 0.79 0.93 1.14 G5-15SF-3 0.00 0.15 0.21 0.28 0.38 0.49 0.61 0.84 1.00 1.21 G6 515SF-3 0.00 0.01 0.00 0.01 0.00 0.00 0.01 0.00 0.02 0.30 0.32 0.33 0.32 0.33	G5 Code: Co	G5 Cordin Stand, [A] 0.00 0.01 0.01 0.01 0.02 0.03 0.04 0.03 1.14 1.41			Odch Stand [%]	0.00	0.01	0.02	0.04	0.01	0.01	0.02	0.02	0.06	0.09	0.12
G5 15% SF Czas ekspozycji (anij) 0 14 28 42 56 70 84 98 112 126 G5 15% SF G5-15SF-1 0.00 0.13 0.20 0.28 0.37 0.49 0.58 0.82 0.99 1.24 G5-15SF-2 0.00 0.15 0.21 0.28 0.37 0.48 0.57 0.79 0.93 1.14 G5-15SF-3 0.00 0.15 0.21 0.28 0.38 0.49 0.61 0.84 1.00 1.21 Šrednia [%] 0.00 0.15 0.21 0.28 0.38 0.49 0.61 0.84 1.00 1.21 Šrednia [%] 0.00 0.01 0.00 0.01 0.00 0.00 0.01 0.00 0.00 0.01 0.00 0.00 0.01 0.00 0.01 0.00 0.02 0.03 0.04 0.05 G5 G5 70 84 98 112	G5 C2as exspo2y() [0n1] 0 14 28 42 56 70 84 98 112 126 14 G5-15SF-1 0.00 0.13 0.20 0.28 0.37 0.49 0.58 0.82 0.99 1.24 1.5 G5-15SF-2 0.00 0.15 0.21 0.28 0.37 0.48 0.57 0.79 0.93 1.14 1.4 G5-15SF-3 0.00 0.15 0.21 0.29 0.38 0.49 0.61 0.84 1.00 1.21 1.4 G5-15SF-3 0.00 0.14 0.21 0.28 0.38 0.49 0.61 0.84 1.00 1.21 1.4 G5 0.00 0.01 0.00 0.01 0.00 <td>G5 C2as ekspozycji (dnij) 0 14 28 42 56 70 84 98 112 126 140 G5 15% SF G5-15SF-1 0.00 0.13 0.20 0.28 0.37 0.49 0.58 0.82 0.99 1.24 1.53 G5 15% SF G5-15SF-3 0.00 0.15 0.21 0.29 0.38 0.49 0.61 0.84 1.00 1.21 1.49 G5-15SF-3 0.00 0.15 0.21 0.29 0.38 0.49 0.61 0.84 1.00 1.21 1.49 G5 15% SF 0.00 0.14 0.29 0.38 0.49 0.61 0.84 1.00 1.21 1.49 G5 70 84 98 112 126 140 G6-120-1 0 0.15 0.21 0.24 0.26 0.29 0.30 0.32 0.33 0.32 0.34 G5+120-4 0</td> <td></td> <td></td> <td>Ouch, Stand, [76]</td> <td>0.00</td> <td>0.01</td> <td>0.02</td> <td>0.04</td> <td>0.01</td> <td>0.01</td> <td>0.02</td> <td>0.02</td> <td>0.00</td> <td>0.09</td> <td>0.13</td>	G5 C2as ekspozycji (dnij) 0 14 28 42 56 70 84 98 112 126 140 G5 15% SF G5-15SF-1 0.00 0.13 0.20 0.28 0.37 0.49 0.58 0.82 0.99 1.24 1.53 G5 15% SF G5-15SF-3 0.00 0.15 0.21 0.29 0.38 0.49 0.61 0.84 1.00 1.21 1.49 G5-15SF-3 0.00 0.15 0.21 0.29 0.38 0.49 0.61 0.84 1.00 1.21 1.49 G5 15% SF 0.00 0.14 0.29 0.38 0.49 0.61 0.84 1.00 1.21 1.49 G5 70 84 98 112 126 140 G6-120-1 0 0.15 0.21 0.24 0.26 0.29 0.30 0.32 0.33 0.32 0.34 G5+120-4 0			Ouch, Stand, [76]	0.00	0.01	0.02	0.04	0.01	0.01	0.02	0.02	0.00	0.09	0.13
G5 G5-155F-1 0.00 0.13 0.20 0.28 0.37 0.49 0.58 0.82 0.99 1.24 G5 15% SF G5-155F-2 0.00 0.15 0.21 0.28 0.37 0.49 0.58 0.82 0.99 1.24 G5-155F-2 0.00 0.15 0.21 0.28 0.37 0.48 0.57 0.79 0.93 1.14 G5-155F-3 0.00 0.15 0.21 0.29 0.38 0.49 0.61 0.84 1.00 1.21 Średnia [%] 0.00 0.14 0.21 0.28 0.38 0.49 0.61 0.84 1.00 1.21 Ódch. Stand. [%] 0.00 0.01 0.00 0.01 0.00 0.00 0.02 0.03 0.04 0.05 GD Moda GD-H2O-1 0 0.15 0.21 0.24 0.26 0.29 0.30 0.32 0.33 0.32 GD H2O-2 0	G5 G5-155F-1 0.00 0.13 0.20 0.28 0.37 0.49 0.58 0.82 0.99 1.24 1.55 G5 15% SF G5-155F-2 0.00 0.15 0.21 0.28 0.37 0.48 0.57 0.79 0.93 1.14 1.4 G5-155F-3 0.00 0.15 0.21 0.29 0.38 0.49 0.61 0.84 1.00 1.21 1.4 G5-155F-3 0.00 0.14 0.21 0.29 0.38 0.49 0.61 0.84 1.00 1.21 1.4 G5-155F-3 0.00 0.14 0.21 0.28 0.38 0.49 0.59 0.82 0.97 1.19 1.4 G0 0.01 0.00 0.01 0.00 0.01 0.00 0.00 0.02 0.03 0.03 0.33 0.32 0.3 GD G2 0.11 0.15 0.17 0.18 0.20 0.21 0.22 0.26<	G5 G5-155F-1 0.00 0.13 0.20 0.28 0.37 0.49 0.58 0.82 0.99 1.24 1.53 G5 15% SF G5-155F-2 0.00 0.15 0.21 0.28 0.37 0.48 0.57 0.79 0.93 1.14 1.41 G5-155F-3 0.00 0.15 0.21 0.29 0.38 0.49 0.61 0.84 1.00 1.21 1.49 S6 5155F-3 0.00 0.14 0.21 0.28 0.38 0.49 0.61 0.84 1.00 1.21 1.49 Srednia [%] 0.00 0.01 0.00 0.01 0.00 0.00 0.02 0.03 0.04 0.05 0.06 G5 70 84 98 112 126 140 140 144 14 14 14 14 14 14 14 14 14 14 14 14 14 14 15 14			czas ekspozycji [dni]	0	14	28	42	56	70	84	98	112	126	140
G5 15% SF G5-15SF-2 0.00 0.15 0.21 0.28 0.37 0.48 0.57 0.79 0.93 1.14 G5-15SF-3 0.00 0.15 0.21 0.29 0.38 0.49 0.61 0.84 1.00 1.21 Šrednia [%] 0.00 0.14 0.21 0.28 0.38 0.49 0.61 0.84 1.00 1.21 Šrednia [%] 0.00 0.14 0.21 0.28 0.38 0.49 0.59 0.82 0.97 1.19 Odch. Stand. [%] 0.00 0.01 0.00 0.01 0.00 0.00 0.02 0.03 0.04 0.05 GD Moda GD-H2O-1 0 0.15 0.21 0.24 0.26 0.29 0.30 0.32 0.33 0.32 0.33 0.32 0.33 0.32 0.33 0.32 0.33 0.32 0.33 0.32 0.33 0.32 0.33 0.32 0.33 0.32 0	G5 15% SF G5-15SF-2 0.00 0.15 0.21 0.28 0.37 0.48 0.57 0.79 0.93 1.14 1.4 G5-15SF-3 0.00 0.15 0.21 0.29 0.38 0.49 0.61 0.84 1.00 1.21 1.4 Średnia [%] 0.00 0.14 0.21 0.28 0.38 0.49 0.61 0.84 1.00 1.21 1.4 Órednia [%] 0.00 0.14 0.21 0.28 0.38 0.49 0.59 0.82 0.97 1.19 1.4 Odch. Stand. [%] 0.00 0.01 0.00 0.01 0.00 0.00 0.02 0.03 0.04 0.05 0.00 Woda GD-H2O-1 0 0.15 0.21 0.24 0.26 0.29 0.30 0.31 0.32 0.33 0.32 0.33 0.32 0.33 0.32 0.33 0.32 0.33 0.32 0.33 0.32 0.33 0.3	G5 15% SF G5-15SF-2 0.00 0.15 0.21 0.28 0.37 0.48 0.57 0.79 0.93 1.14 1.41 G5-15SF-3 0.00 0.15 0.21 0.29 0.38 0.49 0.61 0.84 1.00 1.21 1.49 Średnia [%] 0.00 0.14 0.21 0.28 0.38 0.49 0.61 0.84 1.00 1.21 1.49 Ódch. Stand. [%] 0.00 0.01 0.00 0.01 0.00 0.01 0.00 0.01 0.00 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0			G5-15SF-1	0.00	0.13	0.20	0.28	0.37	0.49	0.58	0.82	0.99	1.24	1.53
G5 G5-15SF-3 0.00 0.15 0.21 0.29 0.38 0.49 0.61 0.84 1.00 1.21 Średnia [%] 0.00 0.14 0.21 0.28 0.38 0.49 0.61 0.84 1.00 1.21 Odch. Stand. [%] 0.00 0.14 0.21 0.28 0.38 0.49 0.59 0.82 0.97 1.19 Odch. Stand. [%] 0.00 0.01 0.00 0.01 0.00 0.00 0.02 0.03 0.04 0.05 GD Woda GD-H2O-1 0 0.15 0.21 0.24 0.26 0.29 0.30 0.32 0.33 0.32 GD H2O-1 0 0.15 0.21 0.24 0.26 0.29 0.30 0.32 0.33 0.32 GD H2O-2 0 0.11 0.15 0.17 0.18 0.19 0.20 0.21 0.22 0.26 0.29 0.30 0.31 0.32	G5 G5-15SF-3 0.00 0.15 0.21 0.29 0.38 0.49 0.61 0.84 1.00 1.21 1.4 Średnia [%] 0.00 0.14 0.21 0.28 0.38 0.49 0.61 0.84 1.00 1.21 1.4 Ódeh. Stand. [%] 0.00 0.01 0.00 0.01 0.00 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 <td>GD LS/031 G5-15SF-3 0.00 0.15 0.21 0.29 0.38 0.49 0.61 0.84 1.00 1.21 1.49 Średnia [%] 0.00 0.14 0.21 0.28 0.38 0.49 0.59 0.82 0.97 1.19 1.48 Odch. Stand. [%] 0.00 0.01 0.00 0.01 0.00 0.00 0.02 0.03 0.04 0.05 0.06 Odch. Stand. [%] 0.00 0.01 0.00 0.01 0.00 0.00 0.02 0.03 0.04 0.05 0.06 GD GD-H2O-1 0 0.15 0.21 0.24 0.26 0.29 0.30 0.32 0.33 0.32 0.33 0.32 0.33 0.32 0.33 0.32 0.33 0.32 0.33 0.32 0.33 0.32 0.33 0.32 0.33 0.32 0.33 0.32 0.33 0.32 0.33 0.32 0.33 0.32 0.33 <t< td=""><td>65</td><td>15% 95</td><td>G5-15SF-2</td><td>0.00</td><td>0.15</td><td>0.21</td><td>0.28</td><td>0.37</td><td>0.48</td><td>0.57</td><td>0.79</td><td>0.93</td><td>1.14</td><td>1.41</td></t<></td>	GD LS/031 G5-15SF-3 0.00 0.15 0.21 0.29 0.38 0.49 0.61 0.84 1.00 1.21 1.49 Średnia [%] 0.00 0.14 0.21 0.28 0.38 0.49 0.59 0.82 0.97 1.19 1.48 Odch. Stand. [%] 0.00 0.01 0.00 0.01 0.00 0.00 0.02 0.03 0.04 0.05 0.06 Odch. Stand. [%] 0.00 0.01 0.00 0.01 0.00 0.00 0.02 0.03 0.04 0.05 0.06 GD GD-H2O-1 0 0.15 0.21 0.24 0.26 0.29 0.30 0.32 0.33 0.32 0.33 0.32 0.33 0.32 0.33 0.32 0.33 0.32 0.33 0.32 0.33 0.32 0.33 0.32 0.33 0.32 0.33 0.32 0.33 0.32 0.33 0.32 0.33 0.32 0.33 <t< td=""><td>65</td><td>15% 95</td><td>G5-15SF-2</td><td>0.00</td><td>0.15</td><td>0.21</td><td>0.28</td><td>0.37</td><td>0.48</td><td>0.57</td><td>0.79</td><td>0.93</td><td>1.14</td><td>1.41</td></t<>	65	15% 95	G5-15SF-2	0.00	0.15	0.21	0.28	0.37	0.48	0.57	0.79	0.93	1.14	1.41
Średnia [%] 0.00 0.14 0.21 0.28 0.38 0.49 0.59 0.82 0.97 1.19 Odch. Stand. [%] 0.00 0.01 0.00 0.01 0.00 0.00 0.02 0.03 0.04 0.05 GD Voda GD-H2O-1 0 0.15 0.21 0.24 0.26 0.29 0.30 0.32 0.33 0.32 GD H2O-1 0 0.15 0.21 0.24 0.26 0.29 0.30 0.32 0.33 0.32 GD-H2O-1 0 0.15 0.21 0.24 0.26 0.29 0.30 0.32 0.33 0.32 GD-H2O-3 0 0.12 0.18 0.20 0.24 0.27 0.28 0.30 0.31 0.32 GD-H2O-3 0 0.12 0.18 0.20 0.24 0.27 0.28 0.30 0.31 0.32 GD-H2O-3 0 0.12 0.18 0.20 0.	Średnia [%] 0.00 0.14 0.21 0.28 0.38 0.49 0.59 0.82 0.97 1.19 1.4 Odch. Stand. [%] 0.00 0.01 0.00 0.01 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.02 0.03 0.04 0.05 0.00 GD Czas ekspozycji [dni] 0 14 28 42 56 70 84 98 112 126 14 GD-H2O-1 0 0.15 0.21 0.24 0.26 0.29 0.30 0.32 0.33 0.32 0.33 0.32 0.33 0.32 0.33 0.32 0.33 0.32 0.33 0.32 0.33 0.32 0.33 0.32 0.33 0.32 0.33 0.32 0.33 0.32 0.33 0.32 0.33 0.32 0.33 0.32 0.33 0.32 0.33 0.32 0.33 0.32 0.33 0.32 0.33 0.32	Średnia [%] 0.00 0.14 0.21 0.28 0.38 0.49 0.59 0.82 0.97 1.19 1.48 Odch. Stand. [%] 0.00 0.01 0.00 0.01 0.00 0.00 0.02 0.03 0.04 0.05 0.06 GD Czas ekspozycji [dni] 0 14 28 42 56 70 84 98 112 126 140 GD-H2O-1 0 0.15 0.21 0.24 0.26 0.29 0.30 0.32 0.33 0.32 0.34 GD-H2O-2 0 0.11 0.15 0.17 0.18 0.19 0.20 0.21 0.22 0.26 0.27 destylowana GD-H2O-3 0 0.12 0.18 0.20 0.24 0.27 0.28 0.30 0.31 0.32 0.34 GD 0.20 0.21 0.21 0.28 0.20 0.22 0.26 0.28 0.29 0.30 0.31	35	1370 31	G5-15SF-3	0.00	0.15	0.21	0.29	0.38	0.49	0.61	0.84	1.00	1.21	1.49
GD Woda GD-H2O-1 0 0.11 0.11 0.11 0.00 0.02 0.03 0.04 0.05 GD Woda GD-H2O-1 0 0.15 0.21 0.24 0.26 0.29 0.30 0.04 0.05 GD Woda GD-H2O-1 0 0.15 0.21 0.24 0.26 0.29 0.30 0.32 0.33 0.32 GD-H2O-1 0 0.15 0.21 0.24 0.26 0.29 0.30 0.32 0.33 0.32 0.32 0.33 0.32 0.33 0.32 0.32 0.33 0.32 0.32 0.33 0.32 0.32 0.33 0.32 0.32 0.33 0.32 0.32 0.33 0.32 0.32 0.33 0.32 0.32 0.33 0.32 0.33 0.32 0.33 0.32 0.33 0.32 0.33 0.32 0.33 0.32 0.33 0.32 0.33 0.32 0.33 0.32	GD Odch. Stand. [%] 0.00 0.01 0.00 0.01	GD Odch. Stand. [%] 0.00 0.01 0.00 0.01 0.00 0.02 0.03 0.04 0.05 0.06 GD Odch. Stand. [%] 0.00 0.01 0.00 0.00 0.02 0.03 0.04 0.05 0.06 GD Czas ekspozycji [dni] 0 14 28 42 56 70 84 98 112 126 140 GD-H2O-1 0 0.15 0.21 0.24 0.26 0.29 0.30 0.32 0.33 0.32 0.34 GD-H2O-1 0 0.11 0.15 0.17 0.18 0.19 0.20 0.21 0.22 0.26 0.27 GD+H2O-3 0 0.12 0.18 0.20 0.24 0.27 0.28 0.30 0.31 0.32 0.34 GD+H2O-3 0 0.12 0.18 0.20 0.24 0.27 0.28 0.30 0.31 0.32 0.34 GD-H2O-3 <			Średnia [%]	0.00	0.14	0.21	0.28	0.38	0.49	0.59	0.82	0.97	1.19	1.48
GD Woda Czas ekspozycji [dni] 0 14 28 42 56 70 84 98 112 126 GD Woda GD-H2O-1 0 0.15 0.21 0.24 0.26 0.29 0.30 0.32 0.33 0.32 GD H2O-1 0 0.15 0.21 0.24 0.26 0.29 0.30 0.32 0.33 0.32 GD-H2O-1 0 0.15 0.21 0.24 0.26 0.29 0.30 0.32 0.33 0.32 0.33 0.32 0.33 0.32 0.26 0.29 0.30 0.32 0.33 0.32 0.26 0.29 0.20 0.21 0.22 0.26 0.29 0.30 0.31 0.32 0.32 0.33 0.32 0.33 0.32 0.33 0.32 0.22 0.26 0.28 0.29 0.30 0.31 0.32 0.30 0.31 0.32 0.30 0.31 0.32 0.30	GD Other Hand [N]	GD Oto Note O			Odch, Stand, [%]	0.00	0.01	0.00	0.01	0.00	0.00	0.02	0.03	0.04	0.05	0.06
GD Woda GD-H2O-1 0 14 20 42 50 70 64 98 112 120 GD Moda GD-H2O-1 0 0.15 0.21 0.24 0.26 0.29 0.30 0.32 0.33 0.32 GD GD-H2O-2 0 0.11 0.15 0.17 0.18 0.19 0.20 0.21 0.22 0.26 GD-H2O-3 0 0.12 0.18 0.20 0.24 0.27 0.28 0.30 0.31 0.32 GD-H2O-3 0 0.12 0.18 0.20 0.24 0.27 0.28 0.30 0.31 0.32 GD-H2O-3 0 0.12 0.18 0.20 0.22 0.25 0.26 0.28 0.29 0.30 GD-H2O-3 0 0.12 0.18 0.20 0.22 0.25 0.26 0.28 0.29 0.30 GD-H2O-3 0 0.12 0.18 0.20	GD Ccase exsporying (and) co 14 26 42 36 70 64 56 112 126 14 GD Moda GD-H2O-1 0 0.15 0.21 0.24 0.26 0.29 0.30 0.32 0.33 0.33 0.32 0.33 0.33 0.32 0.33 0.33 <td>GD Crastespory(finity) Constrainty Constrainty</td> <td></td> <td></td> <td>Czas eksnozycii [dpi]</td> <td>0</td> <td>14</td> <td>200</td> <td>12</td> <td>56</td> <td>70</td> <td>84</td> <td>00</td> <td>110</td> <td>126</td> <td>1/10</td>	GD Crastespory(finity) Constrainty			Czas eksnozycii [dpi]	0	14	200	12	56	70	84	00	110	126	1/10
GD Woda GD-H2O-1 0 0.15 0.21 0.24 0.26 0.29 0.30 0.32 0.33 0.32 GD GD-H2O-2 0 0.11 0.15 0.17 0.18 0.19 0.20 0.21 0.22 0.26 destylowana GD-H2O-3 0 0.12 0.18 0.20 0.24 0.27 0.28 0.30 0.31 0.32 0.30 0.31 0.32 0.26 0.26 0.29 0.20 0.21 0.22 0.26 0.26 0.29 0.30 0.31 0.32 0.30 0.31 0.32 0.26 0.26 0.29 0.20 0.21 0.22 0.26 0.28 0.30 0.31 0.32 0.30 0.31 0.32 0.30 0.31 0.32 0.30 0.31 0.32 0.30 0.31 0.32 0.30 0.31 0.32 0.30 0.31 0.32 0.30 0.31 0.32 0.30 0.31 0.32 <td< td=""><td>GD H2C-1 C 0.15 0.21 0.26 0.29 0.30 0.32 0.33 0.33 0.33 0.32 0.33 0.33 0.33 0.33 0.33 0.33 0.33 0.33 0.33 0.33 0.33 0.33 0.33 0.33 0.33 0.33 0.33 0.33 0.33 0.3</td><td>GD H2O-1 0 0.15 0.21 0.24 0.26 0.29 0.30 0.32 0.33 0.32 0.34 GD Moda destylowana GD-H2O-2 0 0.11 0.15 0.17 0.18 0.19 0.20 0.21 0.22 0.26 0.27 GD H2O-3 0 0.12 0.18 0.20 0.24 0.27 0.28 0.30 0.31 0.32 0.34 Moda destylowana GD-H2O-3 0 0.12 0.18 0.20 0.24 0.27 0.28 0.30 0.31 0.32 0.34 Moda GD-H2O-3 0 0.12 0.18 0.20 0.24 0.27 0.28 0.30 0.31 0.32 0.34 Odch. Stand. [%] 0 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01</td><td></td><td></td><td>CD U20 4</td><td></td><td>14</td><td>20</td><td>42</td><td>0.00</td><td>0.00</td><td>0.20</td><td>0.00</td><td>0.00</td><td>0.00</td><td>140</td></td<>	GD H2C-1 C 0.15 0.21 0.26 0.29 0.30 0.32 0.33 0.33 0.33 0.32 0.33 0.33 0.33 0.33 0.33 0.33 0.33 0.33 0.33 0.33 0.33 0.33 0.33 0.33 0.33 0.33 0.33 0.33 0.33 0.3	GD H2O-1 0 0.15 0.21 0.24 0.26 0.29 0.30 0.32 0.33 0.32 0.34 GD Moda destylowana GD-H2O-2 0 0.11 0.15 0.17 0.18 0.19 0.20 0.21 0.22 0.26 0.27 GD H2O-3 0 0.12 0.18 0.20 0.24 0.27 0.28 0.30 0.31 0.32 0.34 Moda destylowana GD-H2O-3 0 0.12 0.18 0.20 0.24 0.27 0.28 0.30 0.31 0.32 0.34 Moda GD-H2O-3 0 0.12 0.18 0.20 0.24 0.27 0.28 0.30 0.31 0.32 0.34 Odch. Stand. [%] 0 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01			CD U20 4		14	20	42	0.00	0.00	0.20	0.00	0.00	0.00	140
GD Woda destylowana GD-H2O-2 0 0.11 0.15 0.17 0.18 0.19 0.20 0.21 0.22 0.26 GD destylowana GD-H2O-3 0 0.12 0.18 0.20 0.24 0.27 0.28 0.30 0.31 0.32 Średnia [%] 0 0.12 0.18 0.20 0.22 0.25 0.26 0.28 0.29 0.30 Odch. Stand. [%] 0 0.01	GD wood destylowana GD-H2O-2 0 0.11 0.15 0.17 0.18 0.19 0.20 0.21 0.22 0.26 0.22 destylowana GD-H2O-3 0 0.12 0.18 0.20 0.21 0.28 0.30 0.31 0.32 0.33 0.33 0.33 0.33 0.33 0.33 0.33 0.33 0.33 0.33 0.33 0.33 0.33 0.33 0.33 0.33 0.33 0.34 0.33 0.33 0.34 0.33 0.33 0.34 0.34 0.33 0.33 0.34 0.34 0.33 0.33 0.34 0.34 0.34 0.33 0.33 0.34 0.34 0.34 0.33 0.33 0.34<	GD Wooa destylowana GD-H2O-2 (GD-H2O-3) 0 0.11 0.15 0.17 0.18 0.19 0.20 0.21 0.22 0.26 0.27 GD destylowana GD-H2O-3 0 0.12 0.18 0.20 0.24 0.27 0.28 0.30 0.31 0.32 0.34 Matrix Stednia [%] 0 0.12 0.18 0.20 0.24 0.27 0.28 0.30 0.31 0.32 0.34 Odch. Stand. [%] 0 0.12 0.18 0.20 0.22 0.25 0.26 0.28 0.29 0.30 0.32 0.34 GD Odch. Stand. [%] 0 0.01<			GD-H2O-1	U	0.15	0.21	0.24	0.26	0.29	0.30	0.32	0.33	0.32	0.34
destylowana GD-H2O-3 0 0.12 0.18 0.20 0.24 0.27 0.28 0.30 0.31 0.32 Średnia [%] 0 0.12 0.18 0.20 0.22 0.25 0.26 0.28 0.29 0.30 Odch. Stand. [%] 0 0.01 </td <td>destylowana GD-H2O-3 0 0.12 0.18 0.20 0.24 0.27 0.28 0.30 0.31 0.32 0.33 0.32 0.33 Średnia [%] 0 0.12 0.18 0.20 0.22 0.25 0.26 0.28 0.30 0.31 0.32 0.33 0.33 Odch. Stand. [%] 0 0.01<!--</td--><td>destylowana GD-H2O-3 0 0.12 0.18 0.20 0.24 0.27 0.28 0.30 0.31 0.32 0.34 Średnia [%] 0 0.12 0.18 0.20 0.24 0.27 0.28 0.30 0.31 0.32 0.34 Odch. Stand. [%] 0 0.12 0.18 0.20 0.22 0.25 0.26 0.28 0.29 0.30 0.32 0.34 Odch. Stand. [%] 0 0.01</td><td>GD</td><td>Woda</td><td>GD-H2O-2</td><td>0</td><td>0.11</td><td>0.15</td><td>0.17</td><td>0.18</td><td>0.19</td><td>0.20</td><td>0.21</td><td>0.22</td><td>0.26</td><td>0.27</td></td>	destylowana GD-H2O-3 0 0.12 0.18 0.20 0.24 0.27 0.28 0.30 0.31 0.32 0.33 0.32 0.33 Średnia [%] 0 0.12 0.18 0.20 0.22 0.25 0.26 0.28 0.30 0.31 0.32 0.33 0.33 Odch. Stand. [%] 0 0.01 </td <td>destylowana GD-H2O-3 0 0.12 0.18 0.20 0.24 0.27 0.28 0.30 0.31 0.32 0.34 Średnia [%] 0 0.12 0.18 0.20 0.24 0.27 0.28 0.30 0.31 0.32 0.34 Odch. Stand. [%] 0 0.12 0.18 0.20 0.22 0.25 0.26 0.28 0.29 0.30 0.32 0.34 Odch. Stand. [%] 0 0.01</td> <td>GD</td> <td>Woda</td> <td>GD-H2O-2</td> <td>0</td> <td>0.11</td> <td>0.15</td> <td>0.17</td> <td>0.18</td> <td>0.19</td> <td>0.20</td> <td>0.21</td> <td>0.22</td> <td>0.26</td> <td>0.27</td>	destylowana GD-H2O-3 0 0.12 0.18 0.20 0.24 0.27 0.28 0.30 0.31 0.32 0.34 Średnia [%] 0 0.12 0.18 0.20 0.24 0.27 0.28 0.30 0.31 0.32 0.34 Odch. Stand. [%] 0 0.12 0.18 0.20 0.22 0.25 0.26 0.28 0.29 0.30 0.32 0.34 Odch. Stand. [%] 0 0.01	GD	Woda	GD-H2O-2	0	0.11	0.15	0.17	0.18	0.19	0.20	0.21	0.22	0.26	0.27
Średnia [%] 0 0.12 0.18 0.20 0.22 0.25 0.26 0.28 0.29 0.30 Odch. Stand. [%] 0 0.01	Średnia [%] 0 0.12 0.18 0.20 0.22 0.26 0.28 0.29 0.30 0.3 Odch. Stand. [%] 0 0.01	Średnia [%] 0 0.12 0.18 0.20 0.22 0.25 0.26 0.28 0.29 0.30 0.32 Odch. Stand. [%] 0 0.01 0.02 0.28 0.32 0.38 0.41 0.47 0.53 GD-10NaCl-30.000.180.220.240.25 <td></td> <td>destylowana</td> <td>GD-H2O-3</td> <td>0</td> <td>0.12</td> <td>0.18</td> <td>0.20</td> <td>0.24</td> <td>0.27</td> <td>0.28</td> <td>0.30</td> <td>0.31</td> <td>0.32</td> <td>0.34</td>		destylowana	GD-H2O-3	0	0.12	0.18	0.20	0.24	0.27	0.28	0.30	0.31	0.32	0.34
Odch. Stand. [%] 0 0.01	GD Odch. Stand. [%] 0 0.01	GD Odch. Stand. [%] 0 0.01			Średnia [%]	0	0.12	0.18	0.20	0.22	0.25	0.26	0.28	0.29	0.30	0.32
	GD 10% NaCl Czas ekspozycji [dni] 0 14 28 42 56 70 84 98 112 126 14 GD-10NaCl-1 0.00 0.17 0.21 0.23 0.25 0.28 0.32 0.38 0.41 0.45 0.55 GD-10NaCl-2 0.00 0.18 0.22 0.24 0.26 0.29 0.32 0.38 0.41 0.47 0.55 GD-10NaCl-3 0.00 0.19 0.24 0.25 0.28 0.32 0.34 0.42 0.45 0.50 0.55 Srednja [%] 0.00 0.18 0.22 0.24 0.25 0.28 0.32 0.34 0.42 0.45 0.50 0.55	GD Czasekspozycji [dni] 0 14 28 42 56 70 84 98 112 126 140 GD 10% NaCl GD-10NaCl-1 0.00 0.17 0.21 0.23 0.25 0.28 0.32 0.38 0.41 0.45 0.50 GD-10NaCl-2 0.00 0.18 0.22 0.24 0.26 0.29 0.32 0.38 0.41 0.47 0.53 GD-10NaCl-2 0.00 0.19 0.24 0.25 0.28 0.32 0.38 0.41 0.47 0.53 GD-10NaCl-3 0.00 0.19 0.24 0.25 0.28 0.32 0.34 0.42 0.45 0.50 0.55 Średnia [%] 0.00 0.18 0.22 0.24 0.26 0.30 0.33 0.39 0.42 0.47 0.52 Ordeb Stand [%] 0.00 0.01 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 <			Odch. Stand. [%]	0	0.01	0.01	0.01	0.01	0.01	0.01	0.01	0.01	0.01	0.01
Czas ekspozycji juniji U I 14 I 28 I 42 I 50 I 70 I 84 I 98 I 117 I 126 I	GD 10% NaCl GD-10NaCl-1 0.00 0.17 0.21 0.23 0.25 0.28 0.32 0.38 0.41 0.45 0.5 GD-10NaCl-1 0.00 0.17 0.21 0.25 0.28 0.32 0.38 0.41 0.45 0.55 GD-10NaCl-2 0.00 0.18 0.22 0.24 0.26 0.29 0.32 0.38 0.41 0.47 0.55 GD-10NaCl-3 0.00 0.19 0.24 0.25 0.28 0.32 0.38 0.41 0.47 0.55 GD-10Nacl-3 0.00 0.19 0.24 0.25 0.28 0.32 0.38 0.41 0.47 0.55 Grednia [%] 0.00 0.19 0.24 0.25 0.28 0.32 0.34 0.42 0.45 0.50 0.55	GD 10% NaCl GD-10NaCl-1 0.00 0.17 0.21 0.23 0.25 0.28 0.32 0.38 0.41 0.45 0.50 GD-10NaCl-1 0.00 0.17 0.21 0.23 0.25 0.28 0.32 0.38 0.41 0.45 0.50 GD-10NaCl-2 0.00 0.18 0.22 0.24 0.26 0.29 0.32 0.38 0.41 0.47 0.53 GD-10NaCl-3 0.00 0.19 0.24 0.25 0.28 0.32 0.34 0.42 0.45 0.50 0.55 Srednia [%] 0.00 0.18 0.22 0.24 0.26 0.30 0.33 0.39 0.42 0.47 0.52 Odeb Stand [%] 0.00 0.01 0.02 0.02 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.03			Czas ekspozycii [dni]	0	14	28	42	56	70	84	98	112	126	140
GD-10NaCl-1 0.00 0.17 0.21 0.23 0.25 0.28 0.32 0.38 0.41 0.45	GD 10% NaCl GD-10NaCl-2 0.00 0.18 0.22 0.24 0.25 0.20 0.32 0.38 0.41 0.45 0.5 GD-10NaCl-2 0.00 0.18 0.22 0.24 0.26 0.29 0.32 0.38 0.41 0.47 0.5 GD-10NaCl-3 0.00 0.19 0.24 0.25 0.28 0.32 0.34 0.42 0.45 0.50 0.5 Średnia [%] 0.00 0.18 0.22 0.24 0.25 0.20 0.32 0.34 0.42 0.45 0.50 0.5	GD 10% NaCl GD-10NaCl-2 0.00 0.18 0.22 0.23 0.12 0.12 0.12 0.12 0.12 0.13 0.141 0.151 0.131 0.1			GD-10NaCl-1	0.00	0.17	0.21	0.23	0.25	0.28	0.32	0.38	0.41	0.45	0.50
	GD 10% NaCl GD-10NaCl-2 0.00 0.10 0.22 0.24 0.20 0.29 0.32 0.38 0.41 0.47 0.5 GD-10NaCl-3 0.00 0.19 0.24 0.25 0.28 0.32 0.34 0.42 0.45 0.50 0.5 Średnia [%] 0.00 0.18 0.22 0.24 0.25 0.28 0.32 0.34 0.42 0.45 0.50 0.5	GD 10% NaCl GD-10NaCl-2 0.00 0.18 0.22 0.24 0.25 0.32 0.38 0.41 0.47 0.53 GD-10NaCl-3 0.00 0.19 0.24 0.25 0.32 0.34 0.42 0.45 0.55 Średnia [%] 0.00 0.18 0.22 0.24 0.26 0.30 0.33 0.42 0.42 0.47 0.53 Órednia [%] 0.00 0.18 0.22 0.24 0.26 0.30 0.33 0.39 0.42 0.47 0.52 Odch Stand [%] 0.00 0.18 0.22 0.24 0.26 0.30 0.33 0.39 0.42 0.47 0.52			CD 10NoCL 2	0.00	0.10	0.22	0.24	0.25	0.20	0.32	0.30	0.41	0.47	0.50
GD 10% NaCl GD-10143C1-2 0.00 0.18 0.22 0.24 0.26 0.29 0.32 0.38 0.41 0.47	GD-10NaCl-3 0.00 0.19 0.24 0.25 0.28 0.32 0.34 0.42 0.45 0.50 0.5 Średnia [%] 0.00 0.18 0.22 0.24 0.25 0.20 0.22 0.20 0.42 0.45 0.50 0.5	GD-10NaCI-3 0.00 0.19 0.24 0.25 0.28 0.32 0.34 0.42 0.45 0.50 0.55 Średnia [%] 0.00 0.18 0.22 0.24 0.26 0.30 0.33 0.39 0.42 0.47 0.52 Odch Stand [%] 0.00 0.01 0.02 0.01 0.02 0.01 0.02 0.03 0.33 0.39 0.42 0.47 0.52	GD	10% NaCl	GD-10NaCI-2	0.00	0.18	0.22	0.24	0.20	0.29	0.32	0.38	0.41	0.47	0.53
GD-10NaCI-3 0.00 0.19 0.24 0.25 0.28 0.32 0.34 0.42 0.45 0.50	Srednja [%] 0.00 0.18 0.22 0.24 0.26 0.20 0.22 0.20 0.42 0.47 0.6	Srednia [%] 0.00 0.18 0.22 0.24 0.26 0.30 0.33 0.39 0.42 0.47 0.52 Odeb Stand [%] 0.00 0.01 0.02 0.01 0.02 0.01 0.02 0.01 0.02 0.01 0.02 0.01 0.02 0.02 0.01 0.02 0.02 0.03 0.03 0.03 0.02 0.02 0.03 <td></td> <td></td> <td>GD-10NaCl-3</td> <td>0.00</td> <td>0.19</td> <td>0.24</td> <td>0.25</td> <td>0.28</td> <td>0.32</td> <td>0.34</td> <td>0.42</td> <td>0.45</td> <td>0.50</td> <td>0.55</td>			GD-10NaCl-3	0.00	0.19	0.24	0.25	0.28	0.32	0.34	0.42	0.45	0.50	0.55
Srednia [%] 0.00 0.18 0.22 0.24 0.26 0.30 0.33 0.39 0.42 0.47	Sredna [70] 0.00 0.10 0.22 0.24 0.20 0.30 0.35 0.39 0.42 0.47 0.5				Srednia [%]	0.00	0.18	0.22	0.24	0.26	0.30	0.33	0.39	0.42	0.47	0.52
					Odch. Stand. [%]	0.00	0.01	0.02	0.01	0.02	0.02	0.01	0.02	0.02	0.02	0.02

		Czas ekspozycji [dni]	0	14	28	42	56	70	84	98	112	126	140
		GD-50KF-1	0.00	0.29	0.38	0.51	0.67	0.88	1.17	1.49	1.82	2.24	2.61
GD	50% KE	GD-50KF-2	0.00	0.30	0.40	0.55	0.74	1.01	1.34	1.69	2.06	2.44	2.82
00	3070 KF	GD-50KF-3	0.00	0.29	0.38	0.52	0.67	0.89	1.19	1.51	1.91	2.21	2.54
		Średnia [%]	0.00	0.29	0.39	0.52	0.70	0.93	1.23	1.56	1.93	2.30	2.66
		Odch. Stand. [%]	0.00	0.00	0.01	0.02	0.04	0.07	0.09	0.11	0.12	0.13	0.15
		Czas ekspozycji [dni]	0	14	28	42	56	70	84	98	112	126	140
		GD-15SF-1	0.00	0.19	0.25	0.32	0.45	0.60	0.76	0.96	1.19	1.41	1.71
CD	15% 65	GD-15SF-2	0.00	0.21	0.26	0.34	0.46	0.61	0.80	1.01	1.27	1.48	1.79
GD	1370 5F	GD-15SF-3	0.00	0.20	0.25	0.32	0.47	0.63	0.81	1.02	1.26	1.47	1.75
		Średnia [%]	0.00	0.20	0.25	0.33	0.46	0.61	0.79	1.00	1.24	1.45	1.75
		Odch. Stand. [%]	0.00	0.01	0.01	0.01	0.01	0.01	0.02	0.03	0.05	0.04	0.04
		Czas ekspozycji [dni]	0	14	28	42	56	70	84	98	112	126	140
		GA-H2O-1	0.00	0.11	0.15	0.14	0.17	0.17	0.20	0.19	0.19	0.22	0.23
C 1	Woda	GA-H2O-2	0.00	0.11	0.12	0.13	0.15	0.14	0.17	0.16	0.16	0.19	0.20
GA	destylowana	GA-H2O-3	0.00	0.12	0.14	0.15	0.18	0.17	0.21	0.20	0.20	0.22	0.25
		Średnia [%]	0.00	0.11	0.14	0.14	0.17	0.18	0.19	0.19	0.19	0.21	0.23
		Odch. Stand. [%]	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.01	0.01	0.01	0.01
		Czas ekspozycji [dni]	0	14	28	42	56	70	84	98	112	126	140
		GA-10NaCl-1	0.00	0.17	0.19	0.21	0.22	0.22	0.26	0.25	0.26	0.28	0.32
C A	10% NoCl	GA-10NaCl-2	0.00	0.20	0.21	0.24	0.24	0.25	0.27	0.27	0.28	0.30	0.34
GA	10% NaCi	GA-10NaCl-3	0.00	0.20	0.22	0.24	0.25	0.25	0.27	0.26	0.28	0.30	0.34
		Średnia [%]	0.00	0.19	0.20	0.23	0.23	0.24	0.27	0.26	0.27	0.30	0.33
		Odch. Stand. [%]	0.00	0.02	0.02	0.02	0.02	0.02	0.01	0.01	0.01	0.01	0.02
		Czas ekspozycji [dni]	0	14	28	42	56	70	84	98	112	126	140
		GA-50KF-1	0.00	0.26	0.33	0.42	0.52	0.69	0.86	1.15	1.38	1.69	1.94
C A	E0% KE	GA-50KF-2	0.00	0.27	0.34	0.45	0.56	0.74	0.95	1.27	1.53	1.85	2.17
GA	30% KF	GA-50KF-3	0.00	0.29	0.37	0.47	0.59	0.79	0.99	1.31	1.56	1.88	2.18
		Średnia [%]	0.00	0.27	0.35	0.45	0.55	0.74	0.93	1.24	1.49	1.81	2.10
		Odch. Stand. [%]	0.00	0.01	0.02	0.03	0.03	0.05	0.07	0.08	0.10	0.11	0.14
		Czas ekspozycji [dni]	0	14	28	42	56	70	84	98	112	126	140
		GA-15SF-1	0.00	0.25	0.25	0.30	0.35	0.43	0.45	0.62	0.76	1.01	1.29
C A	15% 65	GA-15SF-2	0.00	0.15	0.22	0.22	0.27	0.39	0.43	0.59	0.70	0.96	1.20
GA	10% 5F	GA-15SF-3	0.00	0.18	0.21	0.26	0.31	0.34	0.37	0.55	0.66	0.91	1.17
		Średnia [%]	0.00	0.19	0.23	0.26	0.31	0.39	0.42	0.59	0.71	0.96	1.22
		Odch. Stand. [%]	0.00	0.05	0.02	0.04	0.04	0.05	0.04	0.04	0.05	0.05	0.06

Tabela Z2.4 Zestawienie wyników badania zmiany masy belek betonów w metodzie symulowanych warunków eksploatacyjnych, PB/5/18

											1		
Kruszywo	Roztwór					Zmiana	masy [%]					
		Czas ekspozycji [dni]	0	14	28	42	56	70	84	98	112	126	140
		G3-H2O-1	0.00	0.62	0.60	0.65	0.47	0.60	0.66	0.62	0.78	0.78	0.71
62	Woda	G3-H2O-2	0.00	0.67	0.60	0.70	0.55	0.81	0.81	0.81	0.86	0.99	0.78
65	destylowana	G3-H2O-3	0.00	0.66	0.55	0.79	0.50	0.71	0.74	0.86	0.79	0.81	0.80
		Średnia [%]	0.00	0.65	0.58	0.71	0.50	0.70	0.74	0.76	0.81	0.86	0.76
		Odch. Stand. [%]	0.00	0.02	0.03	0.07	0.04	0.10	0.08	0.13	0.04	0.11	0.04
		Czas ekspozycji [dni]	0	14	28	42	56	70	84	98	112	126	140
		G3-10NaCl-1	0.00	1.03	1.21	1.37	1.34	1.45	1.56	1.66	1.68	1.71	1.73
C 2	10% No.Cl	G3-10NaCl-2	0.00	1.00	1.19	1.37	1.32	1.50	1.60	1.66	1.76	1.73	1.69
63	10% NaCi	G3-10NaCl-3	0.00	1.05	1.26	1.42	1.39	1.55	1.67	1.70	1.73	1.84	1.76
		Średnia [%]	0.00	1.03	1.22	1.39	1.35	1.50	1.61	1.67	1.72	1.76	1.72
		Odch. Stand. [%]	0.00	0.02	0.03	0.03	0.04	0.05	0.06	0.03	0.04	0.07	0.04
		Czas ekspozycji [dni]	0	14	28	42	56	70	84	98	112	126	140
		G3-50KF-1	0.00	1.70	2.06	2.39	2.62	2.99	3.28	3.57	3.81	4.00	4.23
C 2	E0% KE	G3-50KF-2	0.00	1.48	1.85	-0.05	2.46	2.84	3.05	3.30	3.65	3.85	3.97
63	50% KF	G3-50KF-3	0.00	1.70	2.11	4.53	2.73	3.14	3.36	3.64	3.95	4.15	4.34
		Średnia [%]	0.00	1.63	2.01	2.29	2.60	2.99	3.23	3.50	3.81	4.00	4.18
		Odch. Stand. [%]	0.00	0.13	0.14	2.29	0.14	0.15	0.16	0.18	0.15	0.15	0.19

1													i
		Czas ekspozycji [dni]	0	14	28	42	56	70	84	98	112	126	140
1		G3-25KF-1	0.00	1.27	1.50	1.70	2.04	2.20	2.34	2.65	2.98	3.37	3.62
1		G3-25KF-2	0.00	1.09	1.35	1.53	1.76	1.87	1.99	2.27	2.70	3.10	3.28
G3	25% KF	G3-25KF-3	0.00	1.11	1.42	1.65	1.81	2.01	2.23	2.47	2.90	3.16	3.48
		Średnia [%]	0.00	1.16	1.42	1.63	1.87	2.03	2.19	2.47	2.86	3.21	3.46
1		Odch, Stand, [%]	0.00	0.10	0.08	0.09	0.15	0.17	0.17	0.19	0.14	0.14	0.17
		Czas eksnozycii [dni]	0.00	14	28	42	56	70	8/	98	112	126	1/0
		G2-155E-1	0.00	1.05	1 27	1 5 9	1.92	1 92	2.09	2.15	2.24	2.49	2.52
		G3-135F-1 C2 155F 2	0.00	1.05	1.57	1.30	1.02	1.50	2.05	2.15	2.34	2.45	2.52
G3	15% SF	03-135F-2	0.00	1.00	1.20	1.47	1.72	1.05	1.50	2.04	2.15	2.27	2.54
		G3-155F-3	0.00	1.03	1.30	1.54	1.07	1.80	1.97	2.11	2.27	2.41	2.37
		Sreania [%]	0.00	1.03	1.31	1.53	1.74	1.8/	1.99	2.10	2.25	2.39	2.41
		Odch. Stand. [%]	0.00	0.03	0.06	0.06	0.08	0.10	0.10	0.05	0.11	0.11	0.09
-		Czas ekspozycji [dni]	0	14	28	42	56	/0	84	98	112	126	140
-		G3-10SF-1	0.00	0.85	1.13	1.34	1.45	1.68	1.72	1.90	2.03	2.18	1.99
G3	10% SF	G3-10SF-2	0.00	0.98	1.39	1.62	1.65	1.88	1.89	2.05	2.18	2.40	2.41
		G3-10SF-3	0.00	0.98	1.25	1.36	1.67	1.75	1.83	1.98	2.15	2.20	2.10
		Średnia [%]	0.00	0.94	1.26	1.44	1.59	1.77	1.81	1.98	2.12	2.26	2.17
		Odch. Stand. [%]	0.00	0.07	0.13	0.16	0.12	0.10	0.09	0.08	0.08	0.12	0.22
		Czas ekspozycji [dni]	0	14	28	42	56	70	84	98	112	126	140
		G1-50KF-1	0.00	1.75	2.09	2.42	2.81	3.09	3.42	3.68	3.94	4.14	4.39
C1	50% 25	G1-50KF-2	0.00	1.53	2.00	2.22	2.60	2.88	3.15	3.48	3.76	3.92	4.15
61	50% KF	G1-50KF-3	0.00	1.63	2.07	2.36	2.72	3.00	3.32	3.54	3.86	4.00	4.26
1		Średnia [%]	0.00	1.64	2.05	2.33	2.71	2.99	3.29	3.57	3.86	4.02	4.26
		Odch. Stand. [%]	0.00	0.11	0.05	0.11	0.11	0.11	0.14	0.11	0.09	0.11	0.12
		Czas ekspozycii (dni)	0	14	28	42	56	70	84	98	112	126	140
		G1-25KF-1	0.00	1.40	1.62	1.86	2.02	2.28	2.41	2.60	3.02	2.25	3.59
-		G1-25KE-2	0.00	1 32	1 49	1 71	1.97	2.20	2.73	2.50	2 90	3 20	3.40
G1	25% KF	G1-25KF-2	0.00	1.52	1.45	1.71	1.97	2.23	2.23	2.01	2.50	3.08	2 / 2
		Środnia [%]	0.00	1.27	1.47	1.05	1.00	2.10	2.21	2.40	2.01	2.94	2.49
		Odeb Stand [%]	0.00	1.55	1.55	1.75	1.99	2.20	0.11	2.50	2.91	2.04	0.10
		Coos alveranusii [dui]	0.00	0.00	0.08	0.09	0.03	0.09	0.11	0.10	112	1.52	0.10
		Czas ekspozycji [dni]	0	14	28	42	20	/0	84	98	112	120	140
		G1-155F-1	0.00	1.15	1.02	0.87	1.69	1.79	1.96	2.04	2.20	2.38	2.36
G1	15% SF	G1-155F-2	0.00	1.05	0.91	1.49	1.65	1.72	1.84	2.00	2.19	2.28	2.33
-		G1-15SF-3	0.00	1.01	2.00	2.14	1.57	1.70	1.80	1.94	2.09	2.23	2.30
		Srednia [%]	0.00	1.07	1.31	1.50	1.64	1.74	1.87	1.99	2.16	2.30	2.33
		Odch. Stand. [%]	0.00	0.08	0.60	0.63	0.06	0.05	0.08	0.05	0.06	0.08	0.03
		Czas ekspozycji [dni]	0	14	28	42	56	70	84	98	112	126	140
		G1-10SF-1	0.00	0.82	1.09	1.24	1.39	1.60	1.64	1.78	1.90	2.01	2.18
61	10% SE	G1-10SF-2	0.00	0.74	1.03	1.17	1.38	1.51	1.52	1.65	1.79	2.00	1.98
, GI	1070 51	G1-10SF-3	0.00	0.76	0.98	1.23	1.36	1.44	1.56	1.66	1.84	1.92	2.00
		Średnia [%]	0.00	0.77	1.03	1.21	1.38	1.51	1.58	1.70	1.84	1.98	2.05
		Odch. Stand. [%]	0.00	0.04	0.06	0.04	0.01	0.08	0.06	0.07	0.06	0.05	0.11
		Cras oksporusii [d=:]	0	14	20	42	54	70	04	0.0	112	106	140
-		czas ekspozycji [dňi]	0.00	14	28	42	0.42	01	0.50	98	0.75	120	140
-	Mand -	G1-H2O-1	0.00	0.20	0.43	0.44	0.43	0.57	0.59	0.60	0.75	0.83	0.94
G1	vvoda	G1-H2O-2	0.00	0.47	0.40	0.57	0.34	0.45	0.41	0.55	0.55	0.90	0.87
	destylowana	G1-H2O-3	0.00	0.47	0.48	0.62	0.45	0.63	0.46	0.74	0.80	0.67	0.69
-		Srednia [%]	0.00	0.38	0.43	0.54	0.40	0.55	0.49	0.63	0.70	0.80	0.83
		Odch. Stand. [%]	0.00	0.15	0.04	0.09	0.06	0.09	0.09	0.10	0.13	0.12	0.13
-		Czas ekspozycji [dni]	0	14	28	42	56	70	84	98	112	126	140
		G1-10NaCl-1	0.00	1.32	1.54	1.66	1.73	1.74	1.93	1.90	1.99	2.02	2.06
61	10% NaCl	G1-10NaCl-2	0.00	1.32	1.45	1.50	1.64	1.62	1.74	1.87	1.81	1.86	1.94
	TOTOTACI	G1-10NaCl-3	0.00	1.36	1.63	1.69	1.70	1.79	1.92	1.93	1.97	2.00	2.02
		Średnia [%]	0.00	1.33	1.54	1.62	1.69	1.72	1.86	1.90	1.92	1.96	2.00
		Odch. Stand. [%]	0.00	0.02	0.09	0.10	0.05	0.09	0.11	0.03	0.09	0.09	0.06
		Czas ekspozycji [dni]	0	14	28	42	56	70	84	98	112	126	140
		G5-10NaCl-1	0.00	1.49	1.73	1.90	1.99	2.04	2.05	2.17	2.20	1.95	2.18
		G5-10NaCl-2	0.00	1.25	1.65	1.71	1.91	1.92	1.95	1.95	1.97	1.86	2.02
G5	10% NaCl	G5-10NaCl-3	0.00	1.46	1.72	1.89	2.01	2.01	2,04	2,10	2,12	1.98	2,19
		Średnia [%]	0.00	1.40	1 70	1.84	1 97	1 99	2.01	2.07	2.00	1.03	2.13
		Odch Stand [%]	0.00	0.12	0.04	0.10	0.05	0.06	0.05	0.11	0.12	0.06	0.10
	1	ouch stand, [70]	0.00	0.10	0.04	0.10	0.00	0.00	0.00	0.11	U.12	0.00	0.10

		Czas ekspozycji [dni]	0	14	28	42	56	70	84	98	112	126	140
		G5-H2O-1	0.00	0.43	0.50	0.83	1.05	0.95	1.03	1.20	1.11	1.08	1.26
	Woda	G5-H2O-2	0.00	0.69	0.59	0.55	0.87	0.94	1.14	1.16	1.05	1.18	1.20
G5	destylowana	G5-H2O-3	0.00	0.58	0.71	0.69	0.81	0.88	0.90	1 13	1 13	1.09	1 20
	acstylenana	Érodnia [%]	0.00	0.50	0.60	0.60	0.01	0.00	1.02	1.17	1 10	1.05	1.20
		Odah Stand [9/]	0.00	0.50	0.00	0.09	0.91	0.95	1.02	1.17	1.10	1.12	1.22
		Odch. Stand. [%]	0.00	0.13	0.11	0.14	0.12	0.04	0.12	0.04	0.04	0.05	0.03
		Czas ekspozycji [dni]	0	14	28	42	56	70	84	98	112	126	140
		G5-50KF-1	0.00	2.24	2.88	3.40	3.64	3.98	4.21	4.23	4.59	4.63	4.99
65	50% KE	G5-50KF-2	0.00	2.08	2.56	2.98	3.32	3.60	3.86	3.87	4.22	4.34	4.68
	00701	G5-50KF-3	0.00	2.19	2.83	3.27	3.60	3.76	4.15	4.12	4.48	4.59	4.90
		Średnia [%]	0.00	2.17	2.76	3.21	3.52	3.78	4.07	4.07	4.43	4.52	4.86
		Odch. Stand. [%]	0.00	0.08	0.18	0.22	0.17	0.19	0.19	0.19	0.19	0.16	0.16
		Czas ekspozycji [dni]	0	14	28	42	56	70	84	98	112	126	140
		G5-15SF-1	0.00	1.14	1.51	1.75	1.93	2.08	2.00	2.33	2.44	2.48	2.81
		G5-155E-2	0.00	1.24	1.61	1.72	2.02	2.14	1.82	2.20	2.35	2.38	2.79
G5	15% SF	G5-155E-3	0.00	1 27	1.55	1 72	1.87	2.08	2.18	2.20	2.55	2.00	2.78
		Érodnia [%]	0.00	1.27	1.55	1.72	1.07	2.00	2.10	2.30	2.01	2.41	2.70
		Sieunia [76]	0.00	1.22	1.50	1./3	1.94	2.10	2.00	2.30	2.44	2.42	2.79
		Odch. Stand. [%]	0.00	0.06	0.05	0.02	0.07	0.04	0.18	0.09	0.08	0.05	0.02
		Czas ekspozycji [dni]	0	14	28	42	56	70	84	98	112	126	140
		GD-H2O-1	0.00	0.93	0.72	0.95	0.73	1.15	1.21	1.31	1.43	1.31	1.36
GD	Woda	GD-H2O-2	0.00	0.61	0.77	1.12	0.72	0.93	0.96	0.91	1.20	1.38	1.09
00	destylowana	GD-H2O-3	0.00	0.65	0.68	0.83	0.71	1.10	1.18	1.18	1.36	1.30	1.51
		Średnia [%]	0.00	0.73	0.72	0.97	0.72	1.06	1.12	1.13	1.33	1.33	1.32
		Odch. Stand. [%]	0.00	0.17	0.05	0.14	0.01	0.12	0.13	0.20	0.12	0.05	0.21
		Czas ekspozycii [dni]	0	14	28	42	56	70	84	98	112	126	140
		GD-10NaCl-1	0.00	1.39	1.57	1.62	1.69	1.79	1.89	1.97	2.00	1.94	2.02
		GD-10NaCl-2	0.00	1 29	1.63	1.57	1.80	1.86	1.93	1.90	1.93	1.98	1.98
GD	10% NaCl	GD-10NaCl-2	0.00	1.25	1.00	1.70	1.00	1.00	1.00	1.50	1.00	2.06	2.07
		GD-10NdCI-5	0.00	1.41	1.05	1.70	1.02	1.05	1.07	1.37	1.55	2.00	2.07
		Srednia [%]	0.00	1.37	1.03	1.03	1.//	1.85	1.90	1.95	1.97	2.00	2.02
		Odch. Stand. [%]	0.00	0.06	0.06	0.07	0.07	0.05	0.03	0.04	0.04	0.06	0.05
		Czas ekspozycji [dni]	0	14	28	42	56	70	84	98	112	126	140
		GD-50KF-1	0.00	2.38	3.01	3.41	3.80	4.18	4.22	4.39	4.63	4.81	5.01
GD	50% KE	GD-50KF-2	0.00	2.49	3.30	3.70	4.09	4.56	4.68	4.73	5.03	5.31	5.42
00	3070 KI	GD-50KF-3	0.00	-0.18	3.03	3.52	3.91	4.21	4.38	4.46	4.75	4.95	5.10
		Średnia [%]	0.00	1.56	3.11	3.54	3.93	4.32	4.43	4.53	4.81	5.03	5.17
		Odch. Stand. [%]	0.00	1.51	0.16	0.15	0.15	0.21	0.23	0.18	0.21	0.26	0.22
	1			1			1			1			<u> </u>
		Czas ekspozycji [dni]	0	14	28	42	56	70	84	98	112	126	140
		GD-15SF-1	0.00	1.56	1.94	2.13	2.45	2.62	2.77	2.97	3.10	3.34	3.38
GD	15% SE	GD-15SF-2	0.00	1.57	1.91	2.07	2.35	2.57	2.83	2.94	3.14	3.27	3.34
00	1370 31	GD-15SF-3	0.00	1.52	1.87	2.03	2.40	2.65	2.84	3.02	3.21	3.33	3.42
		Średnia [%]	0.00	1.55	1.91	2.08	2.40	2.61	2.81	2.98	3.15	3.31	3.38
1		Odch. Stand. [%]	0.00	0.03	0.03	0.05	0.05	0.04	0.04	0.04	0.05	0.04	0.04
		Czas ekspozycii [dni]	0	14	28	42	56	70	84	98	112	126	140
		GA-H2O-1	0.00	0.62	0.82	0.86	0.98	1.12	1.11	1.24	1.14	1 19	1.12
	Woda	GA-H20-2	0.00	0.90	0.72	0.00	0.97	0.95	1.02	1.27	1 1 2	1 22	0.98
GA	dostylowana	GA-1120-2	0.00	0.50	0.73	0.51	0.07	0.00	1.00	1.22	1.12	0.90	1.20
1	Gestylowalla	GA-H2U-3	0.00	0.80	0.77	0.03	0.90	0.91	1.09	1.2/	1.19	0.09	1.29
		Sreania [%]	0.00	0.77	0.77	0.87	0.94	0.99	1.08	1.24	1.15	1.13	1.13
	+	Odch. Stand. [%]	0.00	0.14	0.04	0.03	0.06	0.11	0.04	0.02	0.04	0.22	0.16
		Czas ekspozycji [dni]	0	14	28	42	56	70	84	98	112	126	140
		GA-10NaCl-1	0.00	1.43	1.86	1.94	1.96	2.02	2.16	2.14	2.14	2.23	2.19
GA	10% NoCl	GA-10NaCl-2	0.00	1.48	1.73	1.85	1.91	2.00	2.05	2.10	2.09	2.17	2.17
GA	10/0 INACI	GA-10NaCl-3	0.00	1.52	1.75	1.76	1.92	1.90	1.97	2.01	2.09	2.08	2.11
		Średnia [%]	0.00	1.48	1.78	1.85	1.93	1.97	2.06	2.08	2.10	2.16	2.16
1		Odch. Stand. [%]	0.00	0.04	0.07	0.09	0.03	0.06	0.09	0.07	0.03	0.07	0.04
		Czas ekspozycii [dni]	0	14	28	42	56	70	84	98	112	126	140
1		GA-50KF-1	0.00	2.31	2.96	3.34	3.55	3.89	4.09	4.30	4.58	4.54	4.95
		GA SOVE 2	0.00	2.01	2.50	2 20	2.60	2.07	1.05	1 22	4.50	1.04	4.00
GA	50% KF		0.00	2.15	2.07	3.50	3.05	3.0/	4.11	4.33	4.00	4.45	4.72
		GA-SUKF-3	0.00	2.13	2.78	3.23	3.47	3.//	4.07	4.22	4.40	4.39	4.70
		Srednia [%]	0.00	2.21	2.87	3.29	3.57	3.84	4.09	4.28	4.55	4.47	4.88
		Odch. Stand. [%]	0.00	0.09	0.09	0.06	0.11	0.06	0.02	0.06	0.08	0.08	0.10
		Czas ekspozycji [dni]	0	14	28	42	56	70	84	98	112	126	140
		GA-15SF-1	0.00	1.39	1.73	1.91	2.03	2.23	2.16	2.28	2.43	2.60	2.85
64	15% 05	GA-15SF-2	0.00	1.44	1.63	1.86	2.08	2.26	1.99	2.16	2.29	2.59	2.87
GA	1370 5F	GA-15SF-3	0.00	1.24	1.57	1.79	1.95	2.10	1.94	2.13	2.27	2.45	2.71
1		Średnia [%]	0.00	1.36	1.64	1.85	2.02	2.19	2.03	2.19	2.33	2.55	2.81
1		Odch. Stand. [%]	0.00	0.11	0.08	0.06	0.06	0.08	0.12	0.08	0.09	0.08	0.09
L													

Kruszywo	Roztwór	Moduł sprężystości [MPa]											
		Czas ekspozycji [dni]	0	14	28	42	56	70	84	98	112	126	140
		G3-H2O-1	29.18	29.16	28.95	28.97	28.71	28.74	28.76	28.75	28.80	28.80	28.78
	Woda	G3-H2O-2	29.16	29.15	28.93	28.96	28.92	28.99	28.99	28.78	28.80	28.63	28.56
G3	destylowana	G3-H2O-3	29.01	29.00	28.97	29.04	28.75	28.60	28.41	28.44	28.42	28.43	28.42
		Średnia [MPa]	29.12	29.11	28.95	28.99	28.79	28.78	28.72	28.66	28.67	28.62	28.59
		Odch. Stand. [MPa]	0.09	0.09	0.34	0.31	0.18	0.21	0.29	0.17	0.13	0.10	0.39
		Czas ekspozycji [dni]	0	14	28	42	56	70	84	98	112	126	140
		G3-10NaCl-1	29.27	28.95	28.59	28.23	28.22	28.05	28.08	27.90	27.71	27.31	27.12
62	10% NoCl	G3-10NaCl-2	29.94	29.41	29.25	28.68	28.67	28.51	28.33	28.14	28.18	27.96	27.75
65	10/0 NaCi	G3-10NaCl-3	29.03	28.93	28.58	28.63	28.41	28.46	28.29	28.09	27.90	27.93	27.71
		Średnia [MPa]	29.41	29.10	28.81	28.51	28.43	28.34	28.24	28.05	27.93	27.74	27.52
		Odch. Stand. [MPa]	0.47	0.46	0.33	0.22	0.22	0.23	0.34	0.51	0.46	0.55	1.38
		Czas ekspozycji [dni]	0	14	28	42	56	70	84	98	112	126	140
		G3-50KF-1	30.88	29.49	27.94	26.62	25.50	24.25	23.39	22.35	22.24	21.21	20.03
62	50% KE	G3-50KF-2	32.06	30.79	29.19	27.22	26.28	25.20	24.10	23.22	22.95	21.70	20.65
65	30% KF	G3-50KF-3	30.25	29.29	27.76	27.60	23.79	23.53	22.85	21.28	21.54	20.52	19.35
		Średnia [MPa]	31.06	29.86	28.29	27.14	25.19	24.33	23.45	22.28	22.24	21.14	20.01
1		Odch. Stand. [MPa]	0.92	0.81	0.78	0.49	1.27	0.84	0.63	0.98	0.70	0.59	0.65
		Czas ekspozycji [dni]	0	14	28	42	56	70	84	98	112	126	140
		G3-25KF-1	29.72	29.06	28.30	27.75	26.05	24.75	23.85	21.90	21.46	19.80	19.01
	250(145	G3-25KF-2	32.34	30.52	29.96	29.38	28.00	26.42	25.28	24.40	24.54	21.64	20.98
63	25% KF	G3-25KF-3	31.17	30.01	28.63	29.12	27.11	25.97	25.06	23.98	21.84	20.66	19.51
		Średnia [MPa]	31.08	29.86	28.96	28.75	27.06	25.71	24.73	23.43	22.61	20.70	19.84
		Odch. Stand. [MPa]	1.32	0.74	0.88	0.88	0.98	0.87	0.77	1.34	1.68	0.92	1.02
		Czas ekspozycji [dni]	0	14	28	42	56	70	84	98	112	126	140
		G3-15SF-1	30.52	29.58	28.43	28.08	28.16	28.00	27.64	27.26	27.32	26.97	26.79
	459/ 05	G3-15SF-2	32.53	31.76	30.75	31.26	30.27	30.31	30.34	30.18	29.58	29.20	28.82
63	15% SF	G3-15SF-3	31.08	30.54	29.55	29.84	29.89	29.94	29.57	29.20	29.26	29.31	29.32
		Średnia [MPa]	31.38	30.63	29.58	29.73	29.44	29.42	29.18	28.88	28.72	28.50	28.31
		Odch. Stand. [MPa]	1.04	1.09	1.16	1.59	1.17	0.40	1.39	1.49	1.89	2.10	1.34
		Czas ekspozycji [dni]	0	14	28	42	56	70	84	98	112	126	140
		G3-10SF-1	30.71	30.34	29.78	29.21	29.46	28.28	28.30	28.36	28.40	28.04	27.99
	10% 55	G3-10SF-2	30.54	29.56	28.84	29.33	28.93	28.58	28.17	27.81	27.85	27.51	27.52
63	10% SF	G3-10SF-3	32.30	31.52	30.52	28.65	28.96	28.99	29.02	28.44	28.50	28.73	28.92
		Średnia [MPa]	31.18	30.47	29.72	29.06	29.12	28.61	28.50	28.20	28.25	28.09	28.15
		Odch. Stand. [MPa]	0.97	0.99	0.84	0.36	0.30	0.35	0.46	0.34	0.35	0.61	0.71
		Czas ekspozycji [dni]	0	14	28	42	56	70	84	98	112	126	140
		G1-50KF-1	35.20	33.76	32.53	30.45	29.73	28.35	26.61	24.90	24.40	23.31	21.33
61	50% KE	G1-50KF-2	37.03	35.25	34.03	32.08	30.25	28.86	28.12	24.96	25.06	23.37	21.18
01	5070 KI	G1-50KF-3	35.29	33.82	33.07	30.75	29.17	28.22	26.70	24.98	23.72	22.84	20.52
		Średnia [MPa]	35.84	34.28	33.21	31.09	29.72	28.48	27.14	24.95	24.39	23.17	21.01
		Odch. Stand. [MPa]	1.03	0.84	0.76	0.87	0.54	0.34	0.85	0.04	0.67	0.29	0.43
		Czas ekspozycji [dni]	0	14	28	42	56	70	84	98	112	126	140
		G1-25KF-1	34.66	34.93	33.42	33.05	31.56	31.22	29.98	27.96	25.86	24.14	22.58
61	25% KE	G1-25KF-2	35.52	35.77	34.68	32.95	32.16	32.04	31.84	28.51	26.80	25.31	23.64
	2.370 KF	G1-25KF-3	35.67	35.21	33.69	32.87	31.87	31.49	30.03	28.63	26.92	25.22	23.03
		Średnia [MPa]	35.29	35.31	33.93	32.96	31.86	31.58	30.62	28.37	26.53	24.89	23.09
		Odch. Stand. [MPa]	0.54	0.43	0.67	0.09	0.30	0.42	1.06	0.36	0.58	0.65	0.53
		Czas ekspozycji [dni]	0	14	28	42	56	70	84	98	112	126	140
		G1-15SF-1	37.76	37.48	36.02	34.12	33.49	33.99	33.15	32.51	32.35	31.53	31.32
G1	15% CE	G1-15SF-2	36.31	37.18	35.95	34.53	33.68	33.72	32.86	31.81	33.00	31.26	31.30
GI	13/0 SL	G1-15SF-3	37.08	37.23	35.94	34.59	33.50	33.55	32.92	32.31	31.70	31.32	30.92
		Średnia [MPa]	37.05	37.30	35.97	34.42	33.56	33.75	32.98	32.21	32.35	31.37	31.18
		Odch. Stand. [MPa]	0.72	0.16	0.04	0.26	0.11	0.22	0.15	0.36	0.65	0.14	0.23

Tabela Z2.5 Zestawienie wyników badania modułu sprężystości belek betonów w metodzie symulowanych warunków eksploatacyjnych, PB/5/18

		Czas ekspozycji [dni]	0	14	28	42	56	70	84	98	112	126	140
1		G1-10SF-1	37.62	37.70	35.91	34.80	34.40	33.79	32.69	32.51	32.56	32.39	31.34
		G1-10SF-2	37.27	37.56	36.01	34.66	34.04	33.18	33.42	33.02	32.85	31.80	32.26
G1	10% SF	G1-10SF-3	37.88	39.15	37.78	35.96	35.54	35.11	34.46	34.27	33.42	33.92	32.81
		Średnia [MPa]	37.59	38.14	36.56	35.14	34.66	34.03	33.52	33.27	32.94	32.70	32.14
		Odch, Stand, [MPa]	0.30	0.88	1.05	0.72	0.78	0.98	0.89	0.90	0.44	1.09	0.74
		Czas ekspozycii [dni]	0.50	14	28	42	56	70	84	98	112	126	140
		G1_H2O_1	26.42	25.02	25 42	24.00	24.52	24.57	24.50	24.59	24.64	24.67	24.04
	Woda	G1-H2O-1	30.43	35.82	35.43	34.98	34.52	34.57	34.38	34.58	34.04	34.07	34.94
G1	woda	G1-H2O-2	35.59	35.31	35.06	34.44	34.13	34.17	33.93	33.98	34.21	34.33	34.55
	uestylowalla	G1-H2O-3	35.83	36.51	35.08	35.37	34.62	34.01	34.18	34.27	34.52	34.25	34.49
		Srednia [MPa]	35.95	35.88	35.19	34.93	34.42	34.25	34.23	34.28	34.45	34.42	34.66
		Odch. Stand. [MPa]	0.43	0.60	0.21	0.47	0.26	0.29	0.33	0.30	0.22	0.22	0.24
		Czas ekspozycji [dni]	0	14	28	42	56	70	84	98	112	126	140
		G1-10NaCl-1	35.45	35.70	34.63	33.54	33.56	33.57	33.19	33.18	32.77	32.78	32.80
61	10% NaCl	G1-10NaCl-2	36.47	35.80	34.69	34.26	33.63	33.63	33.45	33.27	33.25	33.28	33.08
01	10/01/0001	G1-10NaCl-3	34.80	35.06	33.36	32.93	32.94	32.31	32.14	32.14	32.16	32.18	32.19
		Średnia [MPa]	35.57	35.52	34.23	33.58	33.38	33.17	32.92	32.86	32.73	32.75	32.69
1		Odch. Stand. [MPa]	0.84	0.40	0.75	0.66	0.38	0.74	0.69	0.69	1.54	0.55	0.46
		Czas ekspozycji [dni]	0	14	28	42	56	70	84	98	112	126	140
		G5-10NaCl-1	31.97	31.59	31.24	30.86	30.68	30.70	30.49	30.53	30.54	30.46	30.54
		G5-10NaCl-2	33.35	33.11	33.24	32.82	32,89	32.67	32.46	32.02	31.60	31.13	30.96
G5	10% NaCl	G5-10NaCl-3	32.64	32.90	32.55	32.17	31 77	31.56	31.35	31.37	30.73	30.69	30.76
		Środnia [MBa]	32.64	32.50	32.55	31.05	21.77	21.50	21.42	31.37	20.05	20.76	30.70
1			32.03	32.34	32.34	1.01	0.77	0.50	51.45	0.75	0.12	30.70	30.75
		Cras ekseerusii [dei]	0.80	0.62	1.72	1.21	0.77	0.36	0.44	0.75	0.15	1.50	140
		Czas ekspozycji [dni]	0	14	28	42	00	70	84	98	112	120	140
		G5-H2O-1	32.17	31.88	31.69	31.58	31.43	31.62	31.65	31.70	31.89	32.10	31.72
G5	Woda	G5-H2O-2	33.13	33.15	32.89	32.66	32.55	32.80	32.64	32.87	32.83	32.21	32.22
	destylowana	G5-H2O-3	32.34	32.31	32.36	32.13	32.39	32.20	32.42	32.28	32.28	32.27	32.09
		Srednia [MPa]	32.55	32.44	32.31	32.12	32.12	32.21	32.24	32.29	32.33	32.19	32.01
		Odch. Stand. [MPa]	0.52	0.64	0.61	0.52	0.60	0.59	0.52	0.58	0.48	0.09	0.26
		Czas ekspozycji [dni]	0	14	28	42	56	70	84	98	112	126	140
		G5-50KF-1	32.97	30.88	29.17	28.08	27.74	27.85	26.51	24.95	22.76	22.23	20.87
65	50% KE	G5-50KF-2	33.41	31.46	30.53	29.17	28.86	28.95	28.00	26.59	23.56	22.66	21.46
65	30% KF	G5-50KF-3	32.30	31.06	30.40	28.64	28.32	28.80	28.93	24.70	23.26	22.00	20.82
1		Średnia [MPa]	32.89	31.13	30.03	28.63	28.31	28.53	27.81	25.41	23.19	22.30	21.05
1		Odch. Stand. [MPa]	0.56	0.30	0.75	0.55	0.56	0.60	1.22	1.03	0.40	0.33	0.36
		Czas ekspozycji [dni]	0	14	28	42	56	70	84	98	112	126	140
1		G5-15SF-1	32.23	31.95	31.41	30.85	30.91	30.96	31.37	30.63	29.18	27.96	27.45
		G5-15SF-2	33.52	32.83	31.64	30.81	31.56	31.82	30.86	30.56	29.13	28.73	28.45
GS	15% SF	G5-15SF-3	33.21	33.42	31.75	31.59	31.65	31.50	31.11	30.54	29.10	29.09	29.00
1		Średnia [MPa]	32.99	32.73	31.60	31.08	31.37	31.43	31.11	30.57	29.14	28.59	28.30
		Odch. Stand. [MPa]	0.68	0.74	0.17	0.44	0.40	0.44	0.26	0.05	0.04	0.58	0.78
		Czas ekspozycii [dni]	0	14	28	42	56	70	84	98	112	126	140
1		GD-H2O-1	32.71	33.48	33.19	33.04	32.75	32.66	32,68	32.72	32.53	33.17	32.96
-	Woda	GD-H2O-2	31.86	32.06	31.89	31.57	31.01	31.07	31.09	31.07	31.38	31.44	31.78
GD	destylowana	GD-H2O-2	22.15	32.00	32 72	32.57	32.20	32.64	32.44	32.44	32.30	32.92	33.00
	acstylowand	GD-H2O-S	33.13	33.13	32.72	52.77	32.23	52.04	52.44	52.44	52.72	52.55	33.00
		Sreunia [IVIPa]	32.57	32.89	32.00	32.40	32.02	32.13	32.07	32.08	32.21	32.51	32.58
		Constand. [MPa]	0.66	0.74	0.66	0.78	0.90	0.91	0.86	0.88	0.73	0.94	0.69
-		czas ekspozycji [dni]	U	14	28	42	56	/0	84	98	112	126	140
		GD-10NaCl-1	32.95	32.75	31.93	31.72	31.74	31.78	31.59	31.62	31.63	31.62	31.65
GD	10% NaCl	GD-10NaCl-2	33.68	33.67	33.33	33.31	33.16	32.96	32.98	32.98	32.77	32.79	32.79
		GD-10NaCl-3	31.72	31.31	30.97	30.97	31.01	30.82	30.81	30.63	30.64	30.67	30.67
		Średnia [MPa]	32.78	32.58	32.07	32.00	31.97	31.85	31.80	31.74	31.68	31.69	31.70
		Odch. Stand. [MPa]	0.99	1.19	1.07	0.93	1.19	1.06	0.98	1.18	1.18	0.65	1.08
		Czas ekspozycji [dni]	0	14	28	42	56	70	84	98	112	126	140
		GD-50KF-1	33.69	33.14	30.90	30.15	28.56	28.04	26.62	25.06	23.95	22.86	21.41
CD.	50% VF	GD-50KF-2	31.99	32.59	29.37	28.24	27.53	26.64	25.29	22.82	23.28	21.31	20.27
GD	50% KF	GD-50KF-3	33.44	32.07	28.95	29.31	28.58	27.84	26.66	24.89	23.61	22.15	22.01
1		Średnia [MPa]	33.04	32.60	29.74	29.23	28.22	27.51	26.19	24.26	23.61	22.11	21.23
1	1		0.00	0.54	1.00	0.00	0.60	0.76	0.70	1.05	0.24	0.77	0.00
		Odch. Stand. [MPa]	0.92	0.54	1.02	0.96	0.00	0.70	0.78	1.25	0.34	0.77	0.88

Aneta Antolik

		Czas ekspozycji [dni]	0	14	28	42	56	70	84	98	112	126	140
		GD-15SF-1	32.06	31.26	31.38	30.79	30.25	29.67	29.09	28.32	27.95	28.24	26.62
GD	15% SF	GD-15SF-2	31.61	30.18	31.58	30.55	30.00	29.22	28.47	27.89	27.97	27.81	27.23
		GD-15SF-3	31.91	31.74	31.86	31.04	32.04	29.53	28.55	28.19	27.64	28.10	26.70
]		Średnia [MPa]	31.86	31.06	31.61	30.80	30.76	29.48	28.70	28.14	27.85	28.05	26.85
		Odch. Stand. [MPa]	0.23	0.80	0.24	0.25	1.11	0.23	0.33	0.22	0.18	0.22	0.33
]		Czas ekspozycji [dni]	0	14	28	42	56	70	84	98	112	126	140
		GA-H2O-1	40.65	40.15	39.98	39.75	39.55	39.35	39.60	39.40	39.61	39.88	40.11
	Woda	GA-H2O-2	39.69	39.80	39.73	39.31	39.29	39.07	39.11	39.18	39.39	39.47	39.84
J GA	destylowana	GA-H2O-3	40.31	40.90	39.87	40.66	40.46	40.44	40.51	40.58	40.81	39.17	40.85
		Średnia [MPa]	40.22	40.28	39.86	39.91	39.77	39.62	39.74	39.72	39.94	39.51	40.27
		Odch. Stand. [MPa]	0.49	0.56	0.13	0.69	0.61	0.72	0.71	0.75	0.76	0.36	0.52
		Czas ekspozycji [dni]	0	14	28	42	56	70	84	98	112	126	140
]		GA-10NaCl-1	39.63	39.21	39.13	38.91	38.67	38.69	38.49	38.49	38.24	38.27	38.26
GA	10% NoCl	GA-10NaCl-2	39.94	40.04	39.63	39.18	38.70	38.48	38.51	38.52	38.27	38.30	38.06
GA	10/0 NaCi	GA-10NaCl-3	39.81	39.67	39.51	39.26	39.07	38.82	38.59	38.36	38.14	37.89	37.66
1		Średnia [MPa]	39.79	39.64	39.42	39.11	38.81	38.66	38.53	38.46	38.22	38.16	37.99
		Odch. Stand. [MPa]	3.45	0.24	1.28	0.43	0.27	0.48	0.17	0.11	0.58	1.84	0.49
]		Czas ekspozycji [dni]	0	14	28	42	56	70	84	98	112	126	140
		GA-50KF-1	38.62	37.07	36.35	35.05	34.89	34.55	33.22	31.25	28.27	27.64	26.50
	E0% KE	GA-50KF-2	38.31	36.73	35.77	34.74	34.65	33.78	32.26	30.32	26.76	24.91	24.03
GA	30% KF	GA-50KF-3	38.60	36.03	35.55	34.06	34.15	32.87	32.06	30.33	28.88	25.93	25.23
		Średnia [MPa]	38.51	36.61	35.89	34.62	34.56	33.73	32.51	30.64	27.97	26.16	25.25
		Odch. Stand. [MPa]	0.17	0.53	0.41	0.51	0.38	0.84	0.62	0.53	1.09	1.38	1.24
		Czas ekspozycji [dni]	0	14	28	42	56	70	84	98	112	126	140
1		GA-15SF-1	40.12	39.95	38.59	37.18	38.71	38.79	37.78	36.62	34.54	33.21	31.73
	15% 65	GA-15SF-2	39.47	39.55	38.13	38.47	38.56	38.13	38.04	36.64	35.26	32.80	31.08
GA	15% 5F	GA-15SF-3	39.51	39.01	37.90	37.50	37.80	37.62	37.32	35.00	34.58	32.80	31.31
1		Średnia [MPa]	39.70	39.50	38.21	37.72	38.36	38.18	37.71	36.09	34.79	32.94	31.38
1		Odch. Stand. [MPa]	0.37	0.47	0.35	0.68	0.48	0.59	0.36	0.94	0.40	0.24	0.33

Załącznik 3 – Wyniki ubytku masy – metoda szybka

Tabela Z3.1 Ubytek masy kruszywa po 1h ekspozycji w 90°C i 4% NaOH (kruszywo drobne) lub 10% NaOH (kruszywo grube)

1/	Name	Fachala	Masa kruszywa	Masa po 1h	Ubytek	Ubytek	Średnia	Odchylenie
Kruszywo	Nr probki	Frakcja	"0" [g]	w NaOH [g]	masy [g]	masy [%]	[%]	standardowe
	1	24	200.02	199.99	0.03	0.02	0.00	0.000
63	2	24	200.01	199.98	0.03	0.02	0.02	0.000
CE	1	24	200.01	199.96	0.05	0.02	0.02	0.007
65	2	24	200.04	200.01	0.03	0.02	0.02	0.007
C4	1	24	200.02	200	0.02	0.01	0.01	0.000
64	2	24	200.02	200	0.02	0.01	0.01	0.000
62	1	24	200.03	200.01	0.02	0.01	0.01	0.000
02	2	24	200.04	200.02	0.02	0.01	0.01	0.000
61	1	24	200.04	200.04	0	0.00	0.00	0.000
01	2	24	200.02	200.02	0	0.00	0.00	0.000
GA	1	24	200.05	200.05	0	0.00	0.00	0.000
UA	2	24	200.05	200.05	0	0.00	0.00	0.000
GD	1	24	200.02	199.98	0.04	0.02	0.02	0.004
00	2	24	200	199.97	0.03	0.02	0.02	0.004
62	1	12	200.02	200.02	0	0.00	0.00	0.000
02	2	12	200.03	200.03	0	0.00	0.00	0.000
GA	1	12	200	200	0	0.00	0.00	0.000
GA	2	12	200.01	200.01	0	0.00	0.00	0.000
CD	1	12	200.05	200.01	0.04	0.02	0.02	0.004
GD	2	12	200.01	199.96	0.05	0.02	0.02	0.004
65	1	12	200.03	199.96	0.07	0.03	0.02	0.004
65	2	12	200.03	199.97	0.06	0.03	0.05	0.004
GA	1	12	200.04	200.01	0.03	0.02	0.02	0.004
04	2	12	200.04	200	0.04	0.02	0.02	0.004
61	1	12	200.04	200.01	0.03	0.02	0.01	0.004
	2	12	200.01	199.99	0.02	0.01	0.01	0.004
				100.00	0.00			
G3	1	12	200.02	199.99	0.03	0.02	0.01	0.004
	2	12	200	199.98	0.02	0.01		
G3	1	48	500.79	500.71	0.08	0.02	0.01	0.003
	2	48	500.21	500.15	0.06	0.01		
G2	1	48	500.26	500.2	0.06	0.01	0.01	0.001
	2	48	500.34	500.27	0.07	0.01		
GA	1	48	500.54	500.54	0	0.00	0.00	0.000
	2	48	500.68	500.68	0	0.00		
GD	1	48	500.71	500.63	0.08	0.02	0.02	0.006
	2	48	500.62	500.5	0.12	0.02		
G5	1	48	500.21	500.07	0.14	0.03	0.03	0.001
	2	48	500.12	499.97	0.15	0.03		
G4	1	48	500.62	500.55	0.07	0.01	0.02	0.008
L	2	48	500.43	500.3	0.13	0.03		
G1	1	48	500.27	500.27	0	0.00	0.00	0.000
	2	48	500.12	500.12	0	0.00		

Załącznik 4 – Wyniki wytrzymałości na ściskanie

Tabela Z4.1 Wytrzymałość na ściskanie próbek betonowych wykonanych do badania symulowanych warunków eksploatacyjnych, PB/5/18, po 28 dniach dojrzewania

Rodzaj kruszywa			Granit	Granodioryt	Gabro		
Oznaczenie	G1	G2	G3	G4	G5	GD	GA
		Wytrz	zymałość r	na ściskani	e [MPa]		
1	51,0	52,0	49,4	46,2	51,8	45,2	47,9
2	47,1	51,2	49,1	48,5	50,4	48,2	50,2
3	50,1	50,9	47,2	49,6	49,9	51,9	53,7
Średnia	49,4	51,4	48,6	48,1	50,7	48,4	50,6
Odch. Stand.	2,1	0,6	1,2	1,7	1,0	3,4	2,9

Tabela Z4.2 Wytrzymałość na ściskanie próbek betonowych wykonanych do badania metodą długotrwałą (38°C), ASTM C 1293, po 28 dniach dojrzewania

Rodzaj kruszywa			Granit	Granodioryt	Gabro		
Oznaczenie	G1	G2	G3	G4	G5	GD	GA
		Wytrz	zymałość n	na ściskani	e [MPa]		
1	53,9	58,9	59,3	51,5	57,2	55,2	60,2
2	51,3	56,8	57,0	54,9	55,1	53,8	57,2
3	55,6	59,2	58,6	54,0	54,2	54,7	58,3
Średnia	53,6	58,3	58,3	53,5	55,5	54,6	58,6
Odch. Stand.	2,2	1,3	1,2	1,8	1,5	0,7	1,5

Załącznik 5 – Wyniki zawartości minerałów reaktywnych w kruszywie

Tabela Z5.1 Zawartość reaktywnych składników mineralnych (analiza obrazu; szacowana niepewność pomiaru do 5% wartości wyznaczonej: tj0,1 - 0,2% w skali bezwzględnej) w kruszywie ze skał magmowych głębinowych

			Powierzchniowa
Kruszywo	Frakcja	Nr preparatu	zawartość kwarcu
_			odkształconego [%]
		1	1.79
	2/8	2	1.71
	-	Średnia	1.75
G1		1	1.87
	8/16	2	1.96
	-	Średnia	1.92
	Średnia		1.83
		1	1.87
	2/8	2	1.98
	_, _	Średnia	1.93
G2		1	2.15
	0/16	2	2.13
	6/10	Z	2.14
	é a data	Srednia	2.15
	Srednia	-	2.04
		1	4.61
	2/8	2	4.55
63		Średnia	4.58
		1	4.74
	8/16	2	4.71
		Średnia	4.73
	Średnia	•	4.65
		1	3.16
	2/8	2	3.20
		Średnia	3.18
G4		1	3 31
	8/16	2	2.26
	0,10	Érodaia	3.30
	Érodnia	Sieunia	3.34
	Sieuma		3.20
	2/2	1	2.87
	2/8	2	2.93
G5		Srednia	2.90
		1	3.04
	8/16	2	2.94
		Średnia	2.99
	Średnia		2.95
<u> </u>			
	a /-	1	1.18
	2/8	2	1.42
GD		Średnia	1.30
	[1	1.36
]	8/16	2	1.25
		Średnia	1.31
	Średnia		1.30
		1	0.42
1	2/8	2	0.51
1		Średnia	0.47
GA		1	0,58
1	8/16	2	0.53
-	-, 20	Średnia	0.55
	Środnia	Jiedina	0.50
	sreunia	0.51	

Tabela	Z5.2	Zawarto	ść 1	reakt	ywnych	składników	mine	ralnych	(anali	za (obrazu	; szaco	wana
niepew	ność	pomiaru	do	5%	wartości	wyznaczon	ej: tj	0,1 -	0,2%	w sł	kali be	zwzglę	dnej)
w krusz	zywie	grubym i	naw	ierzc	hni beto	nowych							

Rodzaj nawierzchni	Rodzaj kruszywa grubego	Nr preparatu	Powierzchniowa zawartość kwarcu mikro-			
betonowej	0 0 -		i kryptokrystalicznego			
	kwarcyt		20.5			
	całe kruszywo grube	1	6.8			
	kwarcyt		14.2			
Droga	całe kruszywo grube	2	4.7			
ekspresowa	kwarcyt		9.1			
(PL)	całe kruszywo grube	3	3.2			
		kwarcyt	14.6			
		odch. stand.	5.7			
	Średnia	całe kruszywo grube	4.9			
		odch. stand.	1.8			
	piaskowiec		25.8			
	całe kruszywo grube	1	6.3			
	piaskowiec		11.4			
	całe kruszywo grube	2	2.6			
Autostrada	piaskowiec		15.1			
(DE)	całe kruszywo grube	3	3.7			
		piaskowiec	17.4			
		odch. stand.	7.5			
	Średnia	całe kruszywo grube	4.2			
		odch. stand.	1.9			
Załącznik 6 – Wyniki charakterystyki porów w betonie metodą trawersową

		Zasto	sowane krus	szywo	
	G1	G3	G5	GD	GA
Zawartość zaczynu cementowego w betonie P [%]	27,5	27,5	27,5	27,5	27,5
Całkowita długość cięciw przypadająca na pory T _a [mm]	60,492	57,282	60,344	66,993	57,370
Całkowita zawartość powietrza A [%]	4,75	4,49	4,73	5,26	4,50
Całkowita liczba mierzonych cięciw N	510	514	449	614	497
Powierzchnia właściwa porów a [mm ⁻¹]	33,72	35,89	29,76	36,66	34,65
Stosunek zaczyn/powietrze R	5,795	6,120	5,809	5,233	6,110
Wskaźnik rozmieszczenia <i>L</i> [mm]	0,15	0,14	0,17	0,13	0,15
Zawartość mikroporów A300 [%]	3,01	2,89	2,82	3,35	2,91

Tabela Z6.1 Zestawienie wyników analizy porów powietrznych w betonie do badań symulowanych warunków eksploatacyjnych wg PB/5/18

Tabela Z6.2 Rozkład porów powietrznych w betonie z granitem G1

	Calkowita	a dlugosc lini po	omiarowej, T _{tot} =	1274.75	mm					
Kolumna	1	2	3	4	5	6	7	8	9	10
Przedmiot	Klasa	Granice klasy	Liczba cieciw zarejestrowan a w klasie	Czestosc wystepowania cieciw	Udzial porow zliczonych	Potencjalna liczba cieciw	Liczba porow w klasie	Objetosc pojedynczego pora	Zawartosc powietrza	Skumulowana zawartosc powietrza
Jednostki		μm		mm ⁻¹	mm ²	mm ⁻³	mm ⁻³	mm ³	%	%
	1	0 do 10	11	0.008629177	0.0001178	73.25277433	-18.0642858	0.00000524	-0.0009	0.00
	2	15 do 20	32	0.02510306	0.0002749	91.31706012	25.94450849	0.000004190	0.0109	0.01
	3	25 do 30	36	0.028240942	0.000432	65.37255163	24.08462429	0.000014100	0.0340	0.04
	4	35 do 40	31	0.024318589	0.000589	41.28792735	1.333653732	0.000033500	0.0045	0.05
	5	45 do 50	38	0.029809884	0.0007461	39.95427362	1.738255832	0.000065400	0.0114	0.06
	6	55 do 60	44	0.034516707	0.0009032	38.21601778	10.32219856	0.000113000	0.1166	0.18
	7	65 do 80	81	0.06354212	0.002278	27.89381922	8.457520319	0.000268000	0.2267	0.40
	8	85 do 100	72	0.056481885	0.002906	19.4362989	10.33519664	0.000524000	0.5416	0.94
	9	105 do 120	41	0.032163295	0.003534	9.101102265	4.767010444	0.000905000	0.4314	1.38
	10	125 do 140	23	0.018042824	0.004163	4.334091821	-0.08684467	0.001440000	-0.0125	1.36
	11	145 do 160	27	0.021180707	0.004791	4.420936491	2.828543648	0.002140000	0.6053	1.97
	12	165 do 180	11	0.008629177	0.005419	1.592392843	0.035800569	0.003050000	0.0109	1.98
	13	185 do 200	12	0.009413647	0.0060476	1.556592274	1.204074021	0.004190000	0.5045	2.48
	14	205 do 220	3	0.002353412	0.006676	0.352518253	-0.07709326	0.005580000	-0.0430	2.44
	15	225 do 240	4	0.003137882	0.007304	0.429611511	-0.55925855	0.007240000	-0.4049	2.04
	16	245 do 260	10	0.007844706	0.007933	0.988870061	0.530704765	0.009200000	0.4882	2.52
	17	265 do 280	5	0.003922353	0.008561	0.458165296	0.287424058	0.011500000	0.3305	2.86
	18	285 do 300	2	0.001568941	0.009189	0.170741238	0.109740413	0.014100000	0.1547	3.01
	19	305 do 350	2	0.001568941	0.02572	0.061000826	-0.07128764	0.022400000	-0.1597	2.85
	20	355 do 400	5	0.003922353	0.02965	0.132288469	0.108927223	0.033500000	0.3649	3.22
	21	405 do 450	1	0.000784471	0.03358	0.023361245	-0.08123484	0.047700000	-0.3875	2.83
	22	455 do 500	5	0.003922353	0.0375	0.104596083	0.09264983	0.065400000	0.6059	3.43
	23	505 do 1000	9	0.007060236	0.591	0.011946253	0.010351314	0.524000000	0.5424	3.98
	24	1005 do 1500	2	0.001568941	0.9837	0.001594939	0.001594939	1.770000000	0.2823	4.26
	25	1505 do 2000	0	0	1.376	0	-0.00133036	4.190000000	-0.5574	3.70
	26	2005 do 2500	3	0.002353412	1.769	0.001330363	0.001330363	8.180000000	1.0882	4.79
	27	2505 do 3000	0	0	2.162	0	0	14.10000000	0.0000	4.79
	28	3005 do 4000	0	0	5.502	0		33.500000000	0.0000	4.79

	Calkowita	a dlugosc lini po	omiarowej, T _{tot} =	1274.75	mm					
Kolumna	1	2	3	4	5	6	7	8	9	10
Przedmiot	Klasa	Granice klasy	Liczba cieciw zarejestrowan a w klasie	Czestosc wystepowania cieciw	Udzial porow zliczonych	Potencjalna liczba cieciw	Liczba porow w klasie	Objetosc pojedynczego pora	Zawartosc powietrza	Skumulowana zawartosc powietrza
Jednostki		μm		mm ⁻¹	mm ²	mm ⁻³	mm ⁻³	mm ³	%	%
	1	0 do 10	13	0.010198118	0.0001178	86.57146057	18.08366548	0.000000524	0.0009	0.00
	2	15 do 20	24	0.018827295	0.0002749	68.48779509	1.299339245	0.000004190	0.0005	0.00
	3	25 do 30	37	0.029025413	0.000432	67.18845585	5.922499136	0.000014100	0.0084	0.01
	4	35 do 40	46	0.036085649	0.000589	61.26595671	3.437402791	0.000033500	0.0115	0.02
	5	45 do 50	55	0.043145884	0.0007461	57.82855392	20.48108199	0.000065400	0.1339	0.16
	6	55 do 60	43	0.033732237	0.0009032	37.34747193	13.24170223	0.000113000	0.1496	0.30
	7	65 do 80	70	0.054912943	0.002278	24.1057697	11.41818569	0.000268000	0.3060	0.61
	8	85 do 100	47	0.036870119	0.002906	12.68758401	2.254613117	0.000524000	0.1181	0.73
	9	105 do 120	47	0.036870119	0.003534	10.43297089	2.895419896	0.000905000	0.2620	0.99
	10	125 do 140	40	0.031378825	0.004163	7.537550993	3.771568056	0.001440000	0.5431	1.53
	11	145 do 160	23	0.018042824	0.004791	3.765982937	2.463116066	0.002140000	0.5271	2.06
	12	165 do 180	9	0.007060236	0.005419	1.302866871	-0.2537254	0.003050000	-0.0774	1.98
	13	185 do 200	12	0.009413647	0.0060476	1.556592274	0.734049683	0.004190000	0.3076	2.29
	14	205 do 220	7	0.005491294	0.006676	0.822542591	0.715139713	0.005580000	0.3990	2.69
	15	225 do 240	1	0.000784471	0.007304	0.107402878	-0.38703215	0.007240000	-0.2802	2.41
	16	245 do 260	5	0.003922353	0.007933	0.494435031	0.127902794	0.009200000	0.1177	2.53
	17	265 do 280	4	0.003137882	0.008561	0.366532237	-0.06032086	0.011500000	-0.0694	2.46
	18	285 do 300	5	0.003922353	0.009189	0.426853096	0.304851444	0.014100000	0.4298	2.89
	19	305 do 350	4	0.003137882	0.02572	0.122001652	-0.01028682	0.022400000	-0.0230	2.87
	20	355 do 400	5	0.003922353	0.02965	0.132288469	0.038843487	0.033500000	0.1301	3.00
	21	405 do 450	4	0.003137882	0.03358	0.093444981	0.009768115	0.047700000	0.0466	3.04
	22	455 do 500	4	0.003137882	0.0375	0.083676866	0.077040059	0.065400000	0.5038	3.55
	23	505 do 1000	5	0.003922353	0.591	0.006636807	0.005839338	0.524000000	0.3060	3.85
	24	1005 do 1500	1	0.000784471	0.9837	0.000797469	-0.00034275	1.770000000	-0.0607	3.79
	25	1505 do 2000	2	0.001568941	1.376	0.001140219	0.000696765	4.190000000	0.2919	4.08
	26	2005 do 2500	1	0.000784471	1.769	0.000443454	0.000443454	8.180000000	0.3627	4.45
	27	2505 do 3000	0	0	2.162	0	0	14.10000000	0.0000	4.45
	28	3005 do 4000	0	0	5.502	0		33.500000000	0.0000	4.45

Tabela Z6.3 Oznaczanie rozkładu porów powietrznych w betonie z granitem G3

Tabela Z6.4 Oznaczanie rozkładu porów powietrznych w betonie z granitem G5

	Calkowita	a dlugosc lini po	omiarowej, T _{tot} =	1274.75	mm					
Kolumna	1	2	3	4	5	6	7	8	9	10
Przedmiot	Klasa	Granice klasy	Liczba cieciw zarejestrowan a w klasie	Czestosc wystepowania cieciw	Udzial porow zliczonych	Potencjalna liczba cieciw	Liczba porow w klasie	Objetosc pojedynczego pora	Zawartosc powietrza	Skumulowana zawartosc powietrza
Jednostki		μm		mm ⁻¹	mm ²	mm ⁻³	mm ⁻³	mm ³	%	%
	1	0 do 10	13	0.010198118	0.0001178	86.57146057	23.79098173	0.000000524	0.0012	0.00
	2	15 do 20	22	0.017258354	0.0002749	62.78047883	30.09420302	0.000004190	0.0126	0.01
	3	25 do 30	18	0.014120471	0.000432	32.68627582	-1.94230841	0.000014100	-0.0027	0.01
	4	35 do 40	26	0.020396236	0.000589	34.62858423	9.394306154	0.000033500	0.0315	0.04
	5	45 do 50	24	0.018827295	0.0007461	25.23427807	0.04644817	0.000065400	0.0003	0.04
	6	55 do 60	29	0.022749648	0.0009032	25.1878299	3.837005313	0.000113000	0.0434	0.09
	7	65 do 80	62	0.048637178	0.002278	21.35082459	7.5834462	0.000268000	0.2032	0.29
	8	85 do 100	51	0.040008002	0.002906	13.76737839	6.886057165	0.000524000	0.3608	0.65
	9	105 do 120	31	0.024318589	0.003534	6.881321225	-0.46779099	0.000905000	-0.0423	0.61
	10	125 do 140	39	0.030594354	0.004163	7.349112218	1.945745396	0.001440000	0.2802	0.89
	11	145 do 160	33	0.02588753	0.004791	5.403366823	1.78429218	0.002140000	0.3818	1.27
	12	165 do 180	25	0.019611765	0.005419	3.619074643	2.062482369	0.003050000	0.6291	1.90
	13	185 do 200	12	0.009413647	0.0060476	1.556592274	0.029013176	0.004190000	0.0122	1.91
	14	205 do 220	13	0.010198118	0.006676	1.527579098	0.990564708	0.005580000	0.5527	2.46
	15	225 do 240	5	0.003922353	0.007304	0.537014389	0.042579358	0.007240000	0.0308	2.49
	16	245 do 260	5	0.003922353	0.007933	0.494435031	0.219535853	0.009200000	0.2020	2.70
	17	265 do 280	3	0.002353412	0.008561	0.274899178	0.189528558	0.011500000	0.2180	2.91
	18	285 do 300	1	0.000784471	0.009189	0.085370619	-0.06713145	0.014100000	-0.0947	2.82
	19	305 do 350	5	0.003922353	0.02572	0.152502064	-0.08561718	0.022400000	-0.1918	2.63
	20	355 do 400	9	0.007060236	0.02965	0.238119244	0.097951771	0.033500000	0.3281	2.96
	21	405 do 450	6	0.004706824	0.03358	0.140167472	0.056490606	0.047700000	0.2695	3.23
	22	455 do 500	4	0.003137882	0.0375	0.083676866	0.06907589	0.065400000	0.4518	3.68
	23	505 do 1000	11	0.008629177	0.591	0.014600976	0.013803507	0.524000000	0.7233	4.40
	24	1005 do 1500	1	0.000784471	0.9837	0.000797469	0.000797469	1.770000000	0.1412	4.54
	25	1505 do 2000	0	0	1.376	0	0	4.190000000	0.0000	4.54
	26	2005 do 2500	0	0	1.769	0	-0.00036284	8.180000000	-0.2968	4.25
	27	2505 do 3000	1	0.000784471	2.162	0.000362845	0.000362845	14.100000000	0.5116	4.76
	28	3005 do 4000	0	0	5.502	0		33.500000000	0.0000	4.76

Calkowit	a dlugosc lini po	omiarowej, T _{tot} =	1274.75	mm					
1	2	3	4	5	6	7	8	9	10
Klasa	Granice klasy	Liczba cieciw zarejestrowan a w klasie	Czestosc wystepowania cieciw	Udzial porow zliczonych	Potencjalna liczba cieciw	Liczba porow w klasie	Objetosc pojedynczego pora	Zawartosc powietrza	Skumulowana zawartosc powietrza
	μm		mm ⁻¹	mm ²	mm ⁻³	mm ⁻³	mm ³	%	%
1	0 do 10	17	0.013336001	0.0001178	113.2088331	-15.2057827	0.000000524	-0.0008	0.00
2	15 do 20	45	0.035301178	0.0002749	128.4146158	50.33073468	0.000004190	0.0211	0.02
3	25 do 30	43	0.033732237	0.000432	78.08388112	19.48166166	0.000014100	0.0275	0.05
4	35 do 40	44	0.034516707	0.000589	58.60221946	13.39080458	0.000033500	0.0449	0.09
5	45 do 50	43	0.033732237	0.0007461	45.21141488	-6.03279078	0.000065400	-0.0395	0.05
6	55 do 60	59	0.046283767	0.0009032	51.24420567	20.59544133	0.000113000	0.2327	0.29
7	65 do 80	89	0.069817885	0.002278	30.64876433	9.862722448	0.000268000	0.2643	0.55
8	85 do 100	77	0.060404238	0.002906	20.78604188	9.243180473	0.000524000	0.4843	1.03
9	105 do 120	52	0.040792472	0.003534	11.54286141	4.382187966	0.000905000	0.3966	1.43
10	125 do 140	38	0.029809884	0.004163	7.160673444	3.394690507	0.001440000	0.4888	1.92
11	145 do 160	23	0.018042824	0.004791	3.765982937	1.739301137	0.002140000	0.3722	2.29
12	165 do 180	14	0.010982589	0.005419	2.0266818	0.210657481	0.003050000	0.0643	2.36
13	185 do 200	14	0.010982589	0.0060476	1.816024319	1.110987813	0.004190000	0.4655	2.82
14	205 do 220	6	0.004706824	0.006676	0.705036507	0.382827873	0.005580000	0.2136	3.04
15	225 do 240	3	0.002353412	0.007304	0.322208633	-0.76554843	0.007240000	-0.5543	2.48
16	245 do 260	11	0.008629177	0.007933	1.087757067	0.81285789	0.009200000	0.7478	3.23
17	265 do 280	3	0.002353412	0.008561	0.274899178	0.01878732	0.011500000	0.0216	3.25
18	285 do 300	3	0.002353412	0.009189	0.256111858	0.07310938	0.014100000	0.1031	3.35
19	305 do 350	6	0.004706824	0.02572	0.183002477	-0.00220138	0.022400000	-0.0049	3.35
20	355 do 400	7	0.005491294	0.02965	0.185203856	0.138481365	0.033500000	0.4639	3.81
21	405 do 450	2	0.001568941	0.03358	0.046722491	-0.05787359	0.047700000	-0.2761	3.54
22	455 do 500	5	0.003922353	0.0375	0.104596083	0.096631914	0.065400000	0.6320	4.17
23	505 do 1000	6	0.004706824	0.591	0.007964169	0.007166699	0.524000000	0.3755	4.54
24	1005 do 1500	1	0.000784471	0.9837	0.000797469	0.00022736	1.770000000	0.0402	4.58
25	1505 do 2000	1	0.000784471	1.376	0.000570109	-0.0003168	4.190000000	-0.1327	4.45
26	2005 do 2500	2	0.001568941	1.769	0.000886909	0.000886909	8.180000000	0.7255	5.18
27	2505 do 3000	0	0	2.162	0	0	14.100000000	0.0000	5.18
28	3005 do 4000	0	0	5.502	0		33.500000000	0.0000	5.18

Tabela Z6.5 Oznaczanie rozkładu porów powietrznych w betonie z granodiorytem GD

Tabela Z6.6 Oznaczanie rozkładu porów powietrznych w betonie z gabrem GA

	Calkowita	a dlugosc lini po	omiarowej, T _{tot} =	1274.75	mm					
Kolumna	1	2	3	4	5	6	7	8	9	10
Przedmiot	Klasa	Granice klasy	Liczba cieciw zarejestrowan a w klasie	Czestosc wystepowania cieciw	Udzial porow zliczonych	Potencjalna liczba cieciw	Liczba porow w klasie	Objetosc pojedynczego pora	Zawartosc powietrza	Skumulowana zawartosc powietrza
Jednostki		μm		mm ⁻¹	mm ²	mm ⁻³	mm ⁻³	mm ³	%	%
	1	0 do 10	9	0.007060236	0.0001178	59.93408809	-25.6756558	0.000000524	-0.0013	0.00
	2	15 do 20	30	0.023534119	0.0002749	85.60974386	32.94852171	0.000004190	0.0138	0.01
	3	25 do 30	29	0.022749648	0.000432	52.66122215	-0.61352282	0.000014100	-0.0009	0.01
	4	35 do 40	40	0.031378825	0.000589	53.27474497	13.32047135	0.000033500	0.0446	0.06
	5	45 do 50	38	0.029809884	0.0007461	39.95427362	10.42371442	0.000065400	0.0682	0.12
	6	55 do 60	34	0.026672001	0.0009032	29.5305592	2.325476252	0.000113000	0.0263	0.15
	7	65 do 80	79	0.061973179	0.002278	27.20508295	10.7382186	0.000268000	0.2878	0.44
	8	85 do 100	61	0.047852708	0.002906	16.46686435	5.589937251	0.000524000	0.2929	0.73
	9	105 do 120	49	0.03843906	0.003534	10.8769271	5.600641402	0.000905000	0.5069	1.24
	10	125 do 140	28	0.021965177	0.004163	5.276285695	2.328994701	0.001440000	0.3354	1.57
	11	145 do 160	18	0.014120471	0.004791	2.947290994	1.210135166	0.002140000	0.2590	1.83
	12	165 do 180	12	0.009413647	0.005419	1.737155829	0.180563555	0.003050000	0.0551	1.89
	13	185 do 200	12	0.009413647	0.0060476	1.556592274	-0.08849291	0.004190000	-0.0371	1.85
	14	205 do 220	14	0.010982589	0.006676	1.645085182	0.893265037	0.005580000	0.4984	2.35
	15	225 do 240	7	0.005491294	0.007304	0.751820145	0.455159126	0.007240000	0.3295	2.68
	16	245 do 260	3	0.002353412	0.007933	0.296661018	-0.52803651	0.009200000	-0.4858	2.19
	17	265 do 280	9	0.007060236	0.008561	0.824697533	0.739326913	0.011500000	0.8502	3.04
	18	285 do 300	1	0.000784471	0.009189	0.085370619	-0.09763186	0.014100000	-0.1377	2.91
	19	305 do 350	6	0.004706824	0.02572	0.183002477	0.050714009	0.022400000	0.1136	3.02
	20	355 do 400	5	0.003922353	0.02965	0.132288469	0.085565978	0.033500000	0.2866	3.31
	21	405 do 450	2	0.001568941	0.03358	0.046722491	0.025803274	0.047700000	0.1231	3.43
	22	455 do 500	1	0.000784471	0.0375	0.020919217	0.012955048	0.065400000	0.0847	3.51
	23	505 do 1000	6	0.004706824	0.591	0.007964169	0.007166699	0.524000000	0.3755	3.89
	24	1005 do 1500	1	0.000784471	0.9837	0.000797469	-0.00034275	1.770000000	-0.0607	3.83
	25	1505 do 2000	2	0.001568941	1.376	0.001140219	0.000696765	4.190000000	0.2919	4.12
	26	2005 do 2500	1	0.000784471	1.769	0.000443454	0.000443454	8.180000000	0.3627	4.48
	27	2505 do 3000	0	0	2.162	0	0	14.100000000	0.0000	4.48
	28	3005 do 4000	0	0	5.502	0		33.500000000	0.0000	4.48

Załącznik 7 – Wyniki XRD

Rys. Z7.1 Dyfraktogram kruszywa granitowego G1

Rys. Z7.2 Dyfraktogram kruszywa granitowego G2

Rys. Z7.3 Dyfraktogram kruszywa granitowego G3

Rys. Z7.4 Dyfraktogram kruszywa granitowego G4

Rys. Z7.5 Dyfraktogram kruszywa granitowego G5

Rys. Z7.6 Dyfraktogram kruszywa granodiorytowego GD

Rys. Z7.7 Dyfraktogram kruszywa gabro GA

Załącznik 8 – Mikroskopowa analiza struktury betonu metodą SEM

Rys. Z8.1 Mikrostruktura betonu z kruszywem G1 po badaniu symulowanych warunków eksploatacyjnych (namaczanie w wodzie destylowanej), (a) ettringit w porach powietrznych, (b) spękania w kruszywie grubym i drobnym

Rys. Z8.2 Mikrostruktura betonu z kruszywem G1 po badaniu symulowanych warunków eksploatacyjnych (namaczanie w 10% NaCl), spękania w ziarnach kruszywa grubego przy powierzchni próbki – odległość około 1 mm od powierzchni, (b) w środku próbki – odległość około 37,5 mm od powierzchni

Rys. Z8.3 Mikrostruktura ziarna kruszywa G1 w betonie po badaniu symulowanych warunków eksploatacyjnych (namaczanie w 10% NaCl), żel ASR (1) w spękaniach kruszywa grubego

Rys. Z8.4 Ziarno kruszywa G1 po badaniu symulowanych warunków eksploatacyjnych (namaczanie w 10% NaCl), żel ASR wypełniający spękanie (1), skaleń potasowy (2) skaleń sodowy (3)

Rys. Z8.5 Mikrostruktura betonu z kruszywem G1 po badaniu symulowanych warunków eksploatacyjnych (namaczanie w 15% HCOONa), pory powietrzne wypełnione żelem ASR (1)

Rys. Z8.6 Mikrostruktura betonu z kruszywem G1 po badaniu symulowanych warunków eksploatacyjnych (namaczanie w 15% HCOONa), spękanie w ziarnie kruszywa grubego wypełnione żelem ASR (1), skaleń potasowy (2), skaleń sodowy (3)

Rys. Z8.7 Mikrostruktura betonu z kruszywem G1 po badaniu symulowanych warunków eksploatacyjnych (namaczanie w 15% HCOONa), żel ASR w porze powietrznym (1), żel ASR w kruszywie (2), skaleń sodowy (3), skaleń potasowy (4)

Rys. Z8.8 Mikrostruktura betonu z kruszywem G1 po badaniu symulowanych warunków eksploatacyjnych (namaczanie w 50% HCOOK), spękania w kruszywie grubym wypełnione żelem ASR (1), kwarc (2)

Rys. Z8.9 Mikrostruktura betonu z kruszywem G1 po badaniu symulowanych warunków eksploatacyjnych (namaczanie w 50% HCOOK), spękania w kruszywie grubym wypełnione żelem ASR (1), kwarc (2)

Rys. Z8.10 Mikrostruktura betonu z kruszywem G3 po badaniu symulowanych warunków eksploatacyjnych (namaczanie w wodzie destylowanej), niewielkie spękania w matrycy cementowej oraz odspojenie kruszywa w strefie kontaktowej z matrycą cementową, przy powierzchni próbki – odległość około 1 mm od powierzchni, (b) w środku próbki – odległość około 37,5 mm od powierzchni

Rys. Z8.11 Mikrostruktura betonu z kruszywem G3 po badaniu symulowanych warunków eksploatacyjnych (namaczanie w 15% HCOONa), (a) spękania w ziarnie kruszywa grubego, (b) por powietrzny wypełniony żelem ASR (1)

Rys. Z8.12 Mikrostruktura betonu z kruszywem G3 po badaniu symulowanych warunków eksploatacyjnych (namaczanie w 50% HCOOK), spękania w kruszywie grubym wypełnione żelem ASR (1) oraz w strefie kontaktowej kruszywo – matryca cementowa

Rys. Z8.13 Mikrostruktura betonu z kruszywem G3 po badaniu symulowanych warunków eksploatacyjnych (namaczanie w 50% HCOOK), spękania w kruszywie grubym wypełnione żelem ASR (1)

Rys. Z8.14 Mikrostruktura betonu z kruszywem G3 po badaniu symulowanych warunków eksploatacyjnych (namaczanie w 50% HCOOK), spękania w kruszywie grubym wypełnione żelem ASR (1)

Rys. Z8.15 Mikrostruktura betonu z kruszywem G5 po badaniu symulowanych warunków eksploatacyjnych (namaczanie w wodzie destylowanej), niewielkie spękania w matrycy cementowej, przy powierzchni próbki – odległość około 1 mm od powierzchni, (b) w środku próbki – odległość około 37,5 mm od powierzchni

Rys. Z8.16 Mikrostruktura betonu z kruszywem G5 po badaniu symulowanych warunków eksploatacyjnych (namaczanie w 10% NaCl), spękania ziarna kruszywa grubego wypełnione żelem ASR (1)

Rys. Z8.17 Mikrostruktura betonu z kruszywem G5 po badaniu symulowanych warunków eksploatacyjnych (namaczanie w 10% NaCl), spękania ziarna kruszywa grubego wypełnione żelem ASR (1), kwarc (2)

Rys. Z8.18 Mikrostruktura betonu z kruszywem G5 po badaniu symulowanych warunków eksploatacyjnych (namaczanie w 10% NaCl), żel ASR ze śladami chloru (1), kwarc (2)

Rys. Z8.19 Ziarno kruszywa G5 w betonie po badaniu symulowanych warunków eksploatacyjnych (namaczanie w 10% NaCl), spękanie w kruszywie wypełnione żelem ASR ze śladami chloru (1), skaleń potasowy (2)

Rys. Z8.20 Mikrostruktura betonu z kruszywem G5 po badaniu symulowanych warunków eksploatacyjnych (namaczanie w 15% HCOONa), żel ASR (1) wypełniajacy pory powietrzne

Rys. Z8.21 Mikrostruktura betonu z kruszywem G5 po badaniu symulowanych warunków eksploatacyjnych (namaczanie w 15% HCOONa), żel ASR (1) w strefie kontaktowej kruszywo – matryca cementowa oraz w porze powietrznym

Rys. Z8.22 Mikrostruktura betonu z kruszywem G5 po badaniu symulowanych warunków eksploatacyjnych (namaczanie w 15% HCOONa), spękania w kruszywie grubym wypełnione żelem ASR (1)

194

Rys. Z8.23 Mikrostruktura betonu z kruszywem G5 po badaniu symulowanych warunków eksploatacyjnych (namaczanie w 50% HCOOK), żel ASR (1) w strefie kontaktowej kruszywomatryca cementowa, kwarc (2)

Rys. Z8.24 Mikrostruktura betonu z kruszywem G5 po badaniu symulowanych warunków eksploatacyjnych (namaczanie w 50% HCOOK), żel ASR (1) w strefie kontaktowej kruszywo – matryca cementowa, skaleń potasowy (2), kwarc (3)

Rys. Z8.25 Mikrostruktura betonu z kruszywem G5 po badaniu symulowanych warunków eksploatacyjnych (namaczanie w 50% HCOOK), żel ASR (1) w spękaniu kruszywa, kwarc (2)

Rys. Z8.26 Ziarno kruszywa G5 w betonie po badaniu symulowanych warunków eksploatacyjnych (namaczanie w 50% HCOOK), żel ASR (1) w spękaniu kruszywa, kwarc (2)

Rys. Z8.27 Mikrostruktura betonu z kruszywem G5 po badaniu symulowanych warunków eksploatacyjnych (namaczanie w 15% HCOONa), spękanie w kruszywie wypełnione żelem ASR (3), kwarc (1) skaleń sodowy (2)

Rys. Z8.28 Mikrostruktura betonu z kruszywem G5 po badaniu symulowanych warunków eksploatacyjnych (namaczanie w 50% HCOOK), por powietrzny wypełniony żelem ASR (1)

Rys. Z8.29 Mikrostruktura betonu z kruszywem G5 po badaniu symulowanych warunków eksploatacyjnych (namaczanie w 50% HCOOK), żel ASR (1) w strefie kontaktowej kruszywo – matryca cementowa

Rys. Z8.30 Mikrostruktura betonu z kruszywem GD po badaniu symulowanych warunków eksploatacyjnych (namaczanie w wodzie destylowanej), niewielkie spękania w ziarnach kruszywa, przy powierzchni próbki – odległość około 1 mm od powierzchni, (b) w środku próbki – odległość około 37,5 mm od powierzchni

Rys. Z8.31 Mikrostruktura betonu z kruszywem GD po badaniu symulowanych warunków eksploatacyjnych (namaczanie w wodzie destylowanej), spękania w kruszywie grubym

Rys. Z8.32 Mikrostruktura betonu z kruszywem GD po badaniu symulowanych warunków eksploatacyjnych (namaczanie w 10% NaCl), spękanie w kruszywie wypełnione żelem ASR (1), kwarc (2) skaleń potasowy (3), amfibol Si-Mg-Ca-Al-Fe (4)

Rys. Z8.33 Mikrostruktura betonu z kruszywem GD po badaniu symulowanych warunków eksploatacyjnych (namaczanie w 10% NaCl), spękania ziarna kruszywa grubego, pory powietrzne wypełnione żelem ASR (1)

Rys. Z8.34 Mikrostruktura betonu z kruszywem GD po badaniu symulowanych warunków eksploatacyjnych (namaczanie w 15% HCOONa), żel ASR (1) w porze powietrznym

Rys. Z8.35 Mikrostruktura betonu z kruszywem GD po badaniu symulowanych warunków eksploatacyjnych (namaczanie w 15% HCOONa), żel ASR (1), skaleń sodowy (2)

Rys. Z8.36 Mikrostruktura betonu z kruszywem GD po badaniu symulowanych warunków eksploatacyjnych (namaczanie w 15% HCOONa), żel ASR (1) wypełniajacy pory powietrzne

Rys. Z8.37 Mikrostruktura betonu z kruszywem GD po badaniu symulowanych warunków eksploatacyjnych (namaczanie w 15% HCOONa), spękania w kruszywie grubym wypełnione żelem ASR (1)

Rys. Z8.38 Mikrostruktura betonu z kruszywem GD po badaniu symulowanych warunków eksploatacyjnych (namaczanie w 50% HCOOK), żel ASR (1) w strefie kontaktowej kruszywo – matryca cementowa, kwarc (2)

Rys. Z8.39 Mikrostruktura betonu z kruszywem GD po badaniu symulowanych warunków eksploatacyjnych (namaczanie w 50% HCOOK), żel ASR (1) w spękaniu kruszywa, kwarc (2) skaleń potasowy (3)

Rys. Z8.40 Mikrostruktura betonu z kruszywem GD po badaniu symulowanych warunków eksploatacyjnych (namaczanie w 50% HCOOK), żel ASR (1) w spękaniu kruszywa, kwarc (2), nowa faza "ettringite-like" (3)

Rys. Z8.41 Mikrostruktura betonu z kruszywem GD po badaniu symulowanych warunków eksploatacyjnych (namaczanie w 50% HCOOK), spękanie kruszywa grubego wypełnione żelem ASR (1)

Rys. Z8.42 Mikrostruktura betonu z kruszywem GD po badaniu symulowanych warunków eksploatacyjnych (namaczanie w 50% HCOOK), spękanie kruszywa grubego wypełnione żelem ASR (1)

Rys. Z8.43 Mikrostruktura betonu z kruszywem GA po badaniu symulowanych warunków eksploatacyjnych (namaczanie w wodzie destylowanej), mikrospękania matrycy i kruszywa grubego, niewypełnione produktem reakcji ASR

Rys. Z8.44 Mikrostruktura betonu z kruszywem GA po badaniu symulowanych warunków eksploatacyjnych (namaczanie w wodzie destylowanej), niewielkie spękania w matrycy cementowej i ziarnach kruszywa, przy powierzchni próbki – odległość około 1 mm od powierzchni, (b) w środku próbki – odległość około 37,5 mm od powierzchni

Rys. Z8.45 Mikrostruktura betonu z kruszywem GA po badaniu symulowanych warunków eksploatacyjnych (namaczanie w 10% NaCl), żel ASR (1), wapień (2), kwarc (3)

Rys. Z8.46 Mikrostruktura betonu z kruszywem GA po badaniu symulowanych warunków eksploatacyjnych (namaczanie w 10% NaCl), ettringit (1)

Rys. Z8.47 Mikrostruktura betonu z kruszywem GA po badaniu symulowanych warunków eksploatacyjnych (namaczanie w 10% NaCl), spękania ziarna kruszywa grubego oraz matrycy cementowej, przy powierzchni próbki – odległość około 1 mm od powierzchni, (b) w środku próbki – odległość około 37,5 mm od powierzchni

Rys. Z8.48 Mikrostruktura betonu z kruszywem GA po badaniu symulowanych warunków eksploatacyjnych (namaczanie w 15% HCOONa), żel ASR (1) w porze powietrznym, żel ASR (2) w kruszywie, kwarc (3)

Rys. Z8.49 Ziarno kruszywa GA po badaniu symulowanych warunków eksploatacyjnych (namaczanie w 15% HCOONa), żel ASR (1) w spękaniu, skaleń potasowo-sodowy (2)

Rys. Z8.50 Mikrostruktura betonu z kruszywem GA po badaniu symulowanych warunków eksploatacyjnych (namaczanie w 15% HCOONa), żel ASR (1) wypełniajacy pory powietrzne

Rys. Z8.51 Mikrostruktura betonu z kruszywem GA po badaniu symulowanych warunków eksploatacyjnych (namaczanie w 15% HCOONa), spękania w kruszywie grubym wypełnione żelem ASR (1)

Rys. Z8.52 Mikrostruktura betonu z kruszywem GA po badaniu symulowanych warunków eksploatacyjnych (namaczanie w 50% HCOOK), spękanie w strefie kontaktowej kruszywo – matryca cementowa, niewypełnione żelem ASR

Rys. Z8.53 Mikrostruktura betonu z kruszywem GA po badaniu symulowanych warunków eksploatacyjnych (namaczanie w 50% HCOOK), żel ASR (1) wychodzący z kruszywa do matrycy cementowej, kwarc (2)

Rys. Z8.54 Mikrostruktura betonu z kruszywem GA po badaniu symulowanych warunków eksploatacyjnych (namaczanie w 50% HCOOK), spękanie w strefie kontaktowej kruszywo – matryca cementowa

Rys. Z8.55 Mikrostruktura betonu z kruszywem G3 po 28 dniach przechowywania w 50% roztworze HCOOK w 80°C w spękanie w kruszywie wypełnione żelem ASR (1)

Rys. Z8.56 Mikrostruktura betonu z kruszywem G3 po 28 dniach przechowywania w 50% roztworze HCOOK w 80°C w spękanie w kruszywie wypełnione żelem ASR (1)

Rys. Z8.57 Mikrostruktura betonu z kruszywem G3 po 28 dniach przechowywania w 50% roztworze HCOOK w 80°C w spękanie w kruszywie wypełnione żelem ASR (1)

Rys. Z8.58 Mikrostruktura betonu z kruszywem G3 po 28 dniach przechowywania w 15% roztworze HCOONa w 80°C w spękanie w kruszywie wypełnione żelem ASR (1)

Rys. Z8.59 Mikrostruktura betonu z kruszywem G3 po 28 dniach przechowywania w 15% roztworze HCOONa w 80°C w spękanie w kruszywie wypełnione żelem ASR (1)

Rys. Z8.60 Mikrostruktura betonu z kruszywem G3 po 28 dniach przechowywania w 15% roztworze HCOONa w 80°C w spękanie w kruszywie wypełnione żelem ASR (1)

Rys. Z8.61 Mikrostruktura betonu z kruszywem G3 po 28 dniach przechowywania w 15% roztworze HCOONa w 80°C w spękanie w kruszywie wypełnione żelem ASR (1)

Rys. Z8.62 Mikrostruktura betonu z kruszywem G3 po 28 dniach przechowywania w 10% roztworze HCOONa w 80°C w spękanie w kruszywie wypełnione żelem ASR (1)

Załącznik 9 – Wyniki pomiarów do wyznaczenia DRI

Tabela Z9.1 Wyniki pomiarów DRI betonów po badaniu wg PB/5/18, próbka 75 x 75 mm

_			Rodzaj uszkodzenia							
Rodzaj betonu	Nr próbki	CCA	OCA	OCA + RP	ССР	CCP + RP	Debon	RA	DRI	
	1	11	15	0	20	0	82	0		
1	2	8	17	0	16	0	96	0		
C1 W	3	17	10	0	34	0	71	0	242	
G1-VV	4	7	21	0	27	0	95	0	245	
1	Suma	43	63	0	97	0	344	0		
-	na 100 cm2	19	28	0	43	0	153	0		
	1	21	9	11	25	21	117	0		
	2	18	6	8	37	15	137	0		
G1 NoCl	3	19	11	5	17	32	110	0	276	
GI-INACI	4	25	12	12	25	22	131	0	570	
	Suma	83	38	36	104	90	495	0		
	na 100 cm2	37	17	16	46	40	220	0		
	1	25	27	31	52	41	109	0		
1	2	37	26	26	59	48	94	0		
	3	21	36	31	42	50	102	0		
GI-HCOONa	4	36	28	25	38	41	80	0	491	
1	Suma	119	117	113	191	180	385	0		
	na 100 cm2	53	52	50	85	80	171	0		
	1	27	18	14	26	21	194	0		
	2	31	15	21	28	37	185	0		
	3	37	20	17	30	20	203	0		
G1-HCOOK	4	24	17	16	24	35	217	0	567	
-	Suma	119	70	68	108	113	799	0		
	na 100 mm2	53	31	30	48	50	355	0		
	1	15	11	0	21	0	57	0		
	2	13	9	0	25	0	63	0		
	3	11	12	0	17	0	61	0		
G3-W	4	11	13	0	20	0	67	0	189	
	Suma	50	45	0	83	0	248	0		
	na 100 cm2	22	20	0	37	0	110	0		
	1	21	20	9	31	14	83	0		
	2	22	19	11	29	12	87	0		
-	3	18	23	12	29	18	93	0		
G3-NaCl	4	22	21	11	30	19	95	0	333	
	Suma	83	83	43	119	63	358	0		
	na 100 cm2	37	37	19	53	28	159	0		
ļ	4	20	22		74		70	0		
	1	29	32	35	74	55	72	0		
	2	30	29	36	65	52	/5	0		
G3-HCOONa	3	28	34	29	/1	51	/4	0	512	
	4	28	40	31	69	45	69	0		
	Suma	115	135	131	279	203	290	0		
	na 100 cm2	51	60	58	124	90	129	0		
	1	15	27	22	39	35	188	0		
	2	16	31	24	41	32	179	0		
G3-HCOOK	3	17	29	23	38	30	211	0	583	
	4	15	23	23	42	31	180	0		
	Suma	63	110	92	160	128	758	0		
	na 100 cm2	28	49	41	71	57	337	0		

	_	-	-	-		-	-	-	
	1	17	9	0	28	0	67	0	
_	2	15	8	0	31	0	69	0	
G5-W	3	16	11	0	27	0	71	0	217
-	4	17	8	0	24	0	70	0	
_	Suma	65	36	0	110	0	277	0	
	na 100 cm2	29	16	0	49	0	123	0	
_	1	14	9	11	30	21	88	0	
_	2	17	10	12	36	25	83	0	
G5-NaCl	3	16	8	10	33	21	71	0	304
	4	18	11	12	32	23	73	0	304
_	Suma	65	38	45	131	90	315	0	
	na 100 cm2	29	17	20	58	40	140	0	
_	1	25	26	21	52	55	94	0	
_	2	27	24	19	54	57	101	0	
G5 HCOONS	3	26	28	20	41	53	94	0	192
	4	26	26	21	47	56	96	0	40.5
	Suma	104	104	81	194	221	385	0	
	na 100 cm2	46	46	36	86	98	171	0	
	1	25	15	12	26	35	157	0	
]	2	26	17	12	31	39	167	0	
	3	31	15	11	35	36	154	0	500
GS-HCOOK	4	24	16	12	25	34	170	0	500
-	Suma	106	63	47	117	144	648	0	
-	na 100 cm2	47	28	21	52	64	288	0	
	1	5	1	0	21	0	78	0	
-	2	7	4	0	17	0	82	0	
1	3	5	3	0	23	0	62	0	400
GA-W	4	6	1	0	22	0	68	0	180
-	Suma	23	9	0	83	0	290	0	
-	na 100 cm2	10	4	0	37	0	129	0	
	1	8	4	2	24	17	83	0	
-	2	7	3	3	28	11	101	0	
	3	8	4	2	32	12	82	0	
GA-NaCI	4	9	5	4	31	12	78	0	253
-	Suma	32	16	11	115	52	344	0	
-	na 100 cm2	14	7	5	51	23	153	0	
	1	8	11	9	42	32	73	0	
-	2	7	12	10	38	27	82	0	
	3	11	9	11	39	31	96	0	225
GA-HCOONa	4	10	13	8	43	38	93	0	335
-	Suma	36	45	38	162	128	344	0	
-	na 100 cm2	16	20	17	72	57	153	0	
	4	10	0	10	24	- 21	100	0	
-	1	18	9	12	21	21	132	U	
-	2	17	10	12	18	20	121	0	
GA-HCOOK	3	21	9	13	22	23	147	0	380
-	4	18	13	15	20	19	124	0	
-	Suma	74	41	52	81	83	524	0	
	na 100 cm2	33	18	23	36	37	233	0	
	1	11	2	6	11	15	98	0	
-	2	15	3	2	12	11	116	0	
GD-W	3	8	5	3	6	8	82	0	234
	4	11	4	3	9	11	75	0	
	Suma	45	14	14	38	45	371	0	
	na 100 cm2	20	6	6	17	20	165	0	

	1	11	6	5	15	25	125	0	
]	2	12	7	8	14	22	119	0	
CD NoCl	3	16	8	7	21	31	102	0	224
GD-NaCi	4	11	8	7	18	19	136	0	334
	Suma	50	29	27	68	97	482	0	
	na 100 cm2	22	13	12	30	43	214	0	
	1	19	16	20	52	54	112	0	
	2	17	12	19	69	67	92	0	
	3	15	21	22	47	51	83	0	лго
GD-HCOONa	4	21	19	18	57	44	84	0	430
]	Suma	72	68	79	225	216	371	0	
	na 100 cm2	32	30	35	100	96	165	0	
	1	20	15	26	25	31	117	0	
]	2	25	18	18	29	25	152	0	
	3	23	23	19	31	32	142	0	474
GD-RCOOK	4	31	12	25	23	25	181	0	4/4
]	Suma	99	68	88	108	113	592	0	
]	na 100 cm2	44	30	39	48	50	263	0	

Tabela Z9.2 Wyniki pomiarów DRI nawierzchni drogowych, próbka 100 x 100 mm

Dedeet				Rodz	aj uszkod:	zenia			
betonu	Nr próbki	ССА	OCA	OCA + RP	ССР	CCP + RP	Debon	RA	DRI
	1	14	42	62	142	115	10		
	2	12	43	64	134	126	12	5	
	3	15	52	57	125	111	11	4	
Autostrada	4	13	38	55	153	107	8	2	294
DE	5	15	42	65	125	101	17	3	304
	6	15	41	57	155	118	14	4	
	Suma	84	258	360	834	678	72	18	
	na 100 cm2	14	43	60	139	113	12	3	
Droga	1	19	52	29	101	62	138	5	
ekspresowa	2	17	62	27	85	68	132	7	402
DI	Suma	36	114	56	186	130	270	12	-102
PL	na 100 cm2	18	57	28	93	65	135	6	

Załącznik 10 – Wyniki składu chemicznego produktów reakcji ASR

Tabela Z10.1 Zestawienie wyników składu chemicznego (EDS, punktowo) żelu w próbkach betonu po badaniu symulowanych warunków eksploatacyjnych

Kruszywo	Boztwór	Miejsce	Si	Ca	Na+K	Na	ĸ	Ca/Si	Na+K/Si	Na/K
KTUSZYWO	NOZUWOI	występowania	5	Ca	INGUN	ING	ĸ	Cayor	ING INCISI	INd/ K
	HCOOK	kruszywo	29.17	7.82	13.91	0	13.91	0.27	0.48	0.00
	HCOOK	kruszywo	28.52	9.21	14.11	0	14.11	0.32	0.49	0.00
	HCOOK	kruszywo	28.9	10.64	17.88	0	17.88	0.37	0.62	0.00
	HCOOK	kruszywo	24.63	9.32	14.91	0	14.91	0.38	0.61	0.00
	HCOOK	kruszywo	30.07	6.17	11.2	0	11.2	0.21	0.37	0.00
	HCOOK	kruszywo	26.45	6.88	15.94	0	15.94	0.26	0.60	0.00
	HCOOK	kruszywo	20.54	10.78	16.54	0	16.54	0.52	0.81	0.00
	HCOOK	kruszywo	24.03	9.54	19.28	0	19.28	0.40	0.80	0.00
G1	HCOOK	kruszywo	25.78	10.86	19.42	0	19.42	0.42	0.75	0.00
	HCOOK	kruszywo	24.53	7.58	14.46	0	14.46	0.31	0.59	0.00
	HCOOK	kruszywo	14.23	4.52	9.54	0	9.54	0.32	0.67	0.00
	HCOOK	kruszywo	18.53	10.17	11.09	0	11.09	0.55	0.60	0.00
	HCOOK	kruszywo	22.89	13.68	15.85	0	15.85	0.60	0.69	0.00
	HCOOK	kruszywo	25.32	8.03	15.32	0	15.32	0.32	0.61	0.00
	HCOOK	kruszywo	21.83	7.66	12.93	0	12.93	0.35	0.59	0.00
						Śre	dnia	0.37	0.62	0.00
						Odch.	Stand.	0.11	0.12	0.00
	NaCl	kruszywo	22.01	6.31	8.19	4.67	3.52	0.29	0.37	1.33
	NaCl	kruszywo	21.26	9.19	7.43	4.72	2.71	0.43	0.35	1.74
	NaCl	kruszywo	44.65	6.56	12.97	7.46	5.51	0.15	0.29	1.35
	NaCl	kruszywo	29.34	2.25	7.24	3.98	3.26	0.08	0.25	1.22
	NaCl	kruszywo	18.20	1.49	3.96	2.52	1.44	0.08	0.22	1.75
	NaCl	kruszywo	26.63	3.89	7.78	4.77	3.01	0.15	0.29	1.58
	NaCl	kruszywo	24.94	9.06	9.13	5.69	3.44	0.36	0.37	1.65
	NaCl	kruszywo	27.58	6.83	9.23	5.28	3.95	0.25	0.33	1.34
G1	NaCl	kruszywo	26.78	10.66	9.52	5.84	3.68	0.40	0.36	1.59
	NaCl	kruszywo	28.31	9.85	9.11	5.87	3.24	0.35	0.32	1.81
	NaCl	kruszywo	29.59	10.02	10.64	6.31	4.33	0.34	0.36	1.46
	NaCl	kruszywo	21.35	5.22	5.92	2.73	3.19	0.24	0.28	0.86
	NaCl	kruszywo	24.48	2.40	6.37	3.83	2.54	0.10	0.26	1.51
	NaCl	kruszywo	26.00	9.45	8.65	4.82	3.83	0.36	0.33	1.26
	NaCl	kruszywo	27.20	10.07	9.05	5.79	3.26	0.37	0.33	1.78
		-				Śre	dnia	0.26	0.31	1.48
						Odch.	Stand.	0.12	0.05	0.26
	HCOONa	kruszywo	29.63	8 60	8 74	5 31	3 43	0.29	0.29	1 55
	HCOONa	kruszywo	29.60	7.64	9.24	5.32	3.86	0.25	0.25	1.35
	HCOONa	kruszywo	27.31	8 71	11.42	7 39	4.03	0.20	0.42	1.83
	HCOONa	kruszywo	23.23	9.31	7.64	4.63	3.01	0.32	0.33	1.03
	HCOONa	kruszywo	25.40	6.42	8 17	5.17	3.00	0.25	0.32	1.72
	HCOONa	kruszywo	35.00	15.23	8 98	5.22	3.76	0.25	0.32	1 30
	HCOONa	kruszywo	31.12	15.20	12.89	7.42	5.47	0.49	0.41	1.35
	HCOONa	kruszywo	27.32	14.23	9 19	5.36	3.83	0.52	0.34	1.30
G1	HCOON=	kruszywo	32.98	11 32	11 17	7,21	3,96	0.34	0.34	1.82
	HCOONs	kruszywo	36 34	15 23	11 79	6.02	5.77	0.42	0.32	1.04
	HCOONa	kruszywo	30.15	9.87	10.28	6.25	4.03	0.33	0.34	1.55
	HCOONa	kruszywo	25.33	8.54	7.56	4.33	3.23	0.34	0.30	1.34
	HCOONa	kruszywo	22.95	7.65	7 74	5.02	2 72	0.33	0.34	1.85
	HCOONa	kruszywo	22.46	6.23	9.23	7.23	2.00	0.28	0.41	3.62
	HCOONa	kruszywo	31.67	12.34	10.23	6.28	3.95	0.39	0.32	1.59
		in use i no	51.07	12101	10.20	Śre	dnia	0.36	0.34	1.67
						Odch.	Stand.	0.08	0.05	0.58
	нсоок	por powietrzny	19.05	17.69	15.25	0.00	15.25	0.93	0.80	0.00
	нсоок	por powietrzny	18.37	12.73	14.85	0.00	14.85	0.69	0.81	0.00
	нсоок	por powietrzny	19.90	18.20	14.52	0.00	14.52	0.91	0.73	0.00
	нсоок	por powietrzpy	11.45	9,39	8,87	0.00	8,82	0.82	0.77	0.00
G1	нсоок	por powietrzpy	11.93	17 76	8,21	0.00	8.21	1.49	0.69	0.00
	нсоок	por powietrzny	11.08	13.63	4.96	0.00	4.96	1.23	0.45	0.00
	нсоок	por powietrzny	12.76	19.88	9,84	0.00	9,84	1.56	0.77	0.00
	11000K	porporticulty	12.70	19100	5104	Śrei	dnia	1.09	0.72	0.00
						Odch	Stand	0.3/	0.12	0.00
						200011		0.04	0.10	0.00

i										
	NaCl	por powietrzny	16.21	22.69	3.08	2.43	0.65	1.40	0.19	3.74
1	NaCl	por powietrzny	18.58	22.51	1.94	1.75	0.19	1.21	0.10	9.21
	NaCl	por powietrzny	18/18	19.77	2.75	2.60	0.15	1.07	0.15	17.33
C1	Naci	porpowietizity	10.40	10.71	2.75	2.00	0.15	1.07	0.13	17.55
GI	NaCi	por powietrzny	23.30	12.71	3.10	2.67	0.43	0.55	0.13	6.21
	NaCl	por powietrzny	19.67	19.78	3.76	3.51	0.25	1.01	0.19	14.04
						Sre	dnia	1.06	0.14	9.12
						Odch.	Stand.	0.37	0.04	5.91
	HCOONa	por powietrzny	21.69	17.22	8.12	7.04	1.08	0.79	0.37	6.52
1	HCOONa	por powietrzny	24.91	15.31	8.90	8.03	0.87	0.61	0.36	9.23
1	HCOONa	por powietrzny	13.44	14,46	7.52	6.28	1.24	1.08	0.56	5.06
61	HCOONa	por powietrzny	17.93	17.49	6.85	5.92	0.92	0.08	0.38	6.45
		porpowietrzny	10.44	22.02	5.16	4.25	0.92	0.50	0.38	5.45
	HCOONa	por powietrzny	19.44	22.93	5.10	4.35	0.81	1.18	0.27	5.37
						Sre	ania	0.93	0.39	6.53
						Odch.	Stand.	0.23	0.11	1.64
	нсоок	kruszywo	29.08	5.49	13.83	0.00	13.83	0.19	0.48	0.00
	нсоок	kruszywo	28.55	7.74	13.44	0.00	13.44	0.27	0.47	0.00
	нсоок	kruszywo	20100	0 00	12.27	0.00	12.27	0.22	0.49	0.00
	HCOOK	Kruszywo	27.77	0.00	15.27	0.00	15.27	0.32	0.48	0.00
	HCOOK	kruszywo	26.11	8.22	14.86	0.00	14.80	0.31	0.57	0.00
	нсоок	kruszywo	14.76	2	8.24	0.00	8.24	0.14	0.56	0.00
	HCOOK	kruszywo	13.85	4.42	7.93	0.00	7.93	0.32	0.57	0.00
	HCOOK	kruszywo	20.61	6.88	14.24	0.00	14.24	0.33	0.69	0.00
	HCOOK	kruszywo	23.92	7.25	13.7	0.00	13.7	0.30	0.57	0.00
G3	HCOOK	, kruszvwo	24.69	7,61	13.59	0.00	13.59	0.31	0.55	0.00
	HCOOK	kruszywyo	30.52	8.91	15.62	0.00	15.62	0.20	0.51	0.00
	HCOOK	kruszywo	30.32	7.01	12.42	0.00	12.42	0.29	0.51	0.00
	HCOOK	kruszywo	27.12	7.65	13.43	0.00	13.43	0.28	0.50	0.00
	HCOOK	kruszywo	28.64	7.49	13.09	0.00	13.09	0.26	0.46	0.00
	HCOOK	kruszywo	26.78	6.74	13.46	0.00	13.46	0.25	0.50	0.00
	HCOOK	kruszywo	27.67	6.69	13.43	0.00	13.43	0.24	0.49	0.00
1	HCOOK	kruszywo	25.65	7.43	13.05	0.00	13.05	0.29	0.51	0.00
		,				Śre	dnia	0.27	0.53	0.00
						Odch	Stand	0.05	0.05	0.00
	Necl	l	46.00	0.50	10.54	6 07	3tanu.	0.05	0.00	0.00
	Naci	kruszywo	46.33	9.59	10.54	6.37	4.17	0.21	0.23	1.53
	NaCl	kruszywo	19.71	3.64	5.45	3.06	2.39	0.18	0.28	1.28
	NaCl	kruszywo	25.95	6.06	7.14	3.87	3.27	0.23	0.28	1.18
	NaCl	kruszywo	23.33	5.4	6.1	3.83	2.27	0.23	0.26	1.69
1	NaCl	kruszywo	26.15	7.16	8.93	4.96	3.97	0.27	0.34	1.25
	NaCl	kruszywo	24.24	8.87	7.17	3.62	3.55	0.37	0.30	1.02
	NaCl	kruszywo	20.12	12.96	7.62	2.04	2.69	0.07	0.36	1.02
	Naci	Kiuszywo	23.12	12.50	7.02	3.54	3.00	0.45	0.20	1.07
	Naci	kruszywo	22.12	9.39	6.19	4.49	1./	0.42	0.28	2.64
G3	NaCl	kruszywo	20.87	2.39	3.65	2.09	1.56	0.11	0.17	1.34
	NaCl	kruszywo	24.49	4.94	5.01	3.28	1.73	0.20	0.20	1.90
	NaCl	kruszywo	26.01	6.23	4.76	2.57	2.19	0.24	0.18	1.17
	NaCl	kruszywo	29.8	10.04	5.65	3.04	2.61	0.34	0.19	1.16
	NaCl	kruszywo	25.01	7.54	7.26	3.85	3.41	0.30	0.29	1.13
	NaCl	kruszywo	26.98	8.22	6.23	2 77	2.46	0.31	0.23	1.53
	Naci	kruszywo	20.50	7.22	0.23	2.64	2.40	0.31	0.23	1.35
	Naci	kruszywo	20.15	7.23	4.07	2.04	2.03	0.28	0.18	1.30
						Sre	dnia	0.28	0.24	1.41
						Odch.	Stand.	0.09	0.05	0.42
	HCOONa	kruszywo	29.6	7.64	7.66	5.85	1.81	0.26	0.26	3.23
	HCOONa	kruszywo	26.93	8.6	8.74	6.39	2.35	0.32	0.32	2.72
1	HCOONa	kruszywo	29,25	6,19	8,97	4,82	4,15	0.21	0.31	1,16
	HCOONIA	kruszywo	37 / 7	8 29	13.07	8 22	4.84	0.22	0.35	1 70
	HCOON	kruszywo	37.47	0.00	13.07	5.00	2.04	0.22	0.33	4 77
	HCOONA	KruszyWO	27.31	ő./1	ö.42	3.38	3.04	0.32	0.31	1.//
	HCOONa	kruszywo	24.86	/.88	/.48	4.17	3.31	0.32	0.30	1.26
	HCOONa	kruszywo	23.23	9.31	7.64	4.03	3.61	0.40	0.33	1.12
	HCOONa	kruszywo	25.4	6.42	9.28	5.62	3.66	0.25	0.37	1.54
G3	HCOONa	kruszywo	25.93	7.51	8.4	5.19	3.21	0.29	0.32	1.62
	HCOONa	kruszywo	30.34	17.56	7.23	4.17	3.06	0.58	0.24	1.36
	HCOON ₂	kruszywo	27.12	10.43	8.23	4,73	3.5	0.38	0.30	1.35
	HCOONIG	kruszywo	26.50	20.43	0.16	6.00	2.02	0.30	0.30	2.55
	HCOONA	KLUSZYWO	20.09	6.94	9.10	0.23	2.93	0.34	0.34	2.13
	HCOONa	kruszywo	30.23	14.21	/.56	4.1	3.46	0.47	0.25	1.18
	HCOONa	kruszywo	25.85	9.61	8.1	5.34	2.76	0.37	0.31	1.93
	HCOONa	kruszywo	27.49	8.72	9.49	5.45	4.04	0.32	0.35	1.35
						Śrec	dnia	0.34	0.31	1.69
						Odch.	Stand.	0.10	0.04	0.60
	NaCl	por powietrzpy	16.21	22.69	3.08	2.36	0.72	1.40	0.19	3,28
	NaCl	por powietrany	10.50	22.05	2 17	1.0/	0.22	1 31	0.12	9 /12
	NdCl	por powietrzny	10.38	22.31	2.17	1.94	0.23	1.21	0.12	0.43
-	NaCl	por powietrzny	18.48	19.77	3.42	2.75	0.67	1.07	0.19	4.10
G3	NaCl	por powietrzny	23.3	12.71	3.1	2.3	0.8	0.55	0.13	2.88
	NaCl	por powietrzny	19.07	18.39	3.97	2.95	1.02	0.96	0.21	2.89
						Śrec	dnia	1.04	0.17	4.32
						Odch.	Stand.	0.32	0.04	2.36

	HCOONa	por powietrzny	23.28	19	2.66	2.32	0.34	0.82	0.11	6.82
1	HCOONa	por powietrzny	24 42	19.16	2.03	1 93	0.1	0.78	0.08	19 30
	neoonu	porpowiedzity	24.42	15.10	2.05	1.55	0.1	0.70	0.00	15.50
	HCOONa	por powietrzny	21.45	20	4.61	4.07	0.54	0.93	0.21	7.54
G3	HCOONa	por powietrzny	25.67	18.36	4	3.9	0.1	0.72	0.16	39.00
	UCOONIA		22.02	17.00	4.76	4.11	0.65	0.70	0.20	6.22
	HCOONA	por powietrzny	25.52	17.20	4.70	4.11	0.05	0.72	0.20	0.52
						Sree	dnia	0.79	0.15	15.80
						Odch.	Stand.	0.09	0.06	14.05
						0.000	o can an	0.05	0.00	14.00
	нсоок	por powietrzny	18.26	13.62	13.05	0.00	13.05	0.75	0.71	0.00
1	нсоок	por powietrzny	20.87	19.06	14.37	0.00	14.37	0.91	0.69	0.00
		perpendently	45.05	44.95	44.94	0.00	44.04	0.02	0.05	0.00
	HCOOK	por powietrzny	15.35	14.26	11.81	0.00	11.81	0.93	0.77	0.00
G3	нсоок	por powietrzny	14.27	13.51	10.29	0.00	10.29	0.95	0.72	0.00
		perpetiteiting	10.77	10.01	20125	0.00	20125	0.55	0.72	0.00
	HCOOK	por powietrzny	19.77	18.24	15.6	0.00	15.6	0.92	0.79	0.00
						Śreo	dnia	0.89	0.74	0.00
						Odeb Stand		0.00	0.04	0.00
	HCOOK	kruszowo	25 72	10.94	24.52	0.00	24.52	0.21	0.60	0.00
-	HCOOK	KIUSZYWU	33.73	10.54	24.32	0.00	24.32	0.31	0.05	0.00
	HCOOK	kruszywo	31.57	9.74	17.58	0.00	17.58	0.31	0.56	0.00
	нсоок	kruszywo	34.39	10.48	19.89	0.00	19.89	0.30	0.58	0.00
-		1	01.00	10.10	10.00	0.00	10.00	0.50	0.00	0.00
_	нсоок	kruszywo	34.02	13.95	10.14	0.00	10.14	0.41	0.30	0.00
	нсоок	kruszywo	25.73	6.25	17.94	0.00	17.94	0.24	0.70	0.00
	HCOOK	krusznawo	20.55	11.22	12 77	0.00	12 77	0.55	0.67	0.00
-	HCOOK	kruszywo	20.55	11.32	13.77	0.00	13.77	0.55	0.07	0.00
	HCOOK	kruszywo	22.27	9.17	16.53	0.00	16.53	0.41	0.74	0.00
	HCOOK	kruszywo	31.23	11 23	16 34	0.00	16 34	0.36	0.52	0.00
	10000	N G J Z Y W O	01.20	44.20	10.04	0.00	10.04	0.50	0.52	0.00
G5	HCOOK	kruszywo	20.55	11.32	15.2	0.00	15.2	0.55	0.74	0.00
	HCOOK	kruszvwo	30.89	9.89	12.3	0.00	12.3	0.32	0.40	0.00
1	UCOOK	keye	21.04	0.10	12.01	0.00	12.01	0.37	0.62	0.00
-	HCOOK	kruszywo	21.94	8.19	13.81	0.00	13.81	0.37	0.03	0.00
1	HCOOK	kruszywo	19.97	9.01	15.82	0.00	15.82	0.45	0.79	0.00
	HCOOK	krucznawo	21.29	0.00	14.16	0.00	14.16	0.46	0.67	0.00
-	HCOOK	KIUSZYWU	21.20	5.05	14.10	0.00	14.10	0.40	0.07	0.00
	HCOOK	kruszywo	18.99	14.4	11.69	0.00	11.69	0.76	0.62	0.00
	нсоок	kruszywo	17.08	12.28	14 33	0.00	14 33	0.72	0.84	0.00
	HEOOK	Ridszywo	17.00	12.20	14.00	0.00	14.55	0.72	0.04	0.00
						Srednia		0.44	0.63	0.00
						Odch.	Stand.	0.15	0.14	0.00
	Nacl	lunum uum	25.07	6.70	12.00	7.00	47	0.27	0.40	4.57
-	Naci	kruszywo	25.07	6.72	12.09	7.39	4.7	0.27	0.48	1.57
	NaCl	kruszywo	20.88	5.05	10.05	6.38	3.67	0.24	0.48	1.74
	NaCl	krusznavo	24.22	1 10	9.41	6.2	2 21	0.17	0.20	1.02
-	INACI	kruszywo	24.55	4.19	5.41	0.2	5.21	0.17	0.59	1.95
	NaCl	kruszywo	23.98	7.21	9	5.38	3.62	0.30	0.38	1.49
	NaCl	kruszywo	25.97	6.43	8	5.62	2 38	0.25	0.31	2 36
-	- Nucl		23.57	0.45		5.02	2.50	0.25	0.51	2.50
	NaCl	kruszywo	25.26	4.31	7.27	4.75	2.52	0.17	0.29	1.88
	NaCl	kruszywo	21.74	11.55	7.14	4.38	2.76	0.53	0.33	1.59
-	NaCl	krusznawa	20.0	0.66	5.40	2.27	2.15	0.22	0.10	1.52
-	INACI	kruszywo	29.9	9.00	5.42	3.27	2.15	0.32	0.18	1.52
G5	NaCl	kruszywo	40.4	9.65	6.34	3.85	2.49	0.24	0.16	1.55
	NaCl	kruszywo	43.52	11 59	7 84	4 59	3 25	0.27	0.18	1 /1
-	INACI	KIUSZYWU	43.32	11.55	7.04	4.55	3.23	0.27	0.10	1.41
	NaCl	kruszywo	25	5.1	5.2	3.04	2.16	0.20	0.21	1.41
	NaCl	kruszywo	28.77	8,76	5.44	3,93	1.51	0.30	0.19	2.60
-	Necl	line and prove	42.00	10.04	6.07	5.01	1.00	0.22	0.40	2.56
-	Naci	kruszywo	42.86	10.04	6.97	5.01	1.96	0.23	0.16	2.50
	NaCl	kruszywo	41.2	10.3	7.34	5.37	1.97	0.25	0.18	2.73
	NaCl	krusznawo	20.52	10.12	2.24	1 76	1 5 0	0.22	0.11	1 11
-	INACI	KIUSZYWO	50.55	10.12	5.54	1.70 1.38		0.55	0.11	1.11
						Srednia		0.27	0.27	1.83
						Odch, Stand		0.09	0.12	0.50
L	1			-						
	HCOONa	kruszywo	41.73	13.99	13.22	8.18	5.04	0.34	0.32	1.62
	HCOONIC	kruczawa	20.25	16.02	6 07	1 22	2.55	0.70	0.24	1.60
	neooliva	KIUSZYWU	20.20	10.02	0.07	4.52	2.33	0.79	0.54	1.09
	HCOONa	kruszywo	23.64	13.24	7.7	5.39	2.31	0.56	0.33	2.33
	HCOON a	kruszywo	34.15	14.9	11.09	6.73	4.36	0.44	0.32	1.54
	11000110	has a set of the	00.00	40.47	44.47	0.70		0.77	0.02	
	HCOONa	kruszywo	38.58	19.17	11.82	8.74	3.08	0.50	0.31	2.84
	HCOON a	kruszywo	43.88	11.36	11.98	7.53	4.45	0.26	0.27	1.69
G5	HCOON	krucznawa	20.15	11 50	11.40	764	2 05	0.40	0.20	1.00
	псоома	KruszyW0	29.15	11.53	11.49	7.04	3.83	0.40	0.39	1.98
	HCOONa	kruszywo	43.58	11.51	13.63	8.86	4.77	0.26	0.31	1.86
	HCOONIA	kruszowo	32 /17	11.90	12.91	8 83	2 0.0	0.36	0.30	2.22
	neoond		32.47	11.02	12.01	0.00	3.30	0.30	0.39	2.22
	HCOONa	kruszywo	37.07	16.19	10.86	7.39	3.47	0.44	0.29	2.13
	HCOONa	kruszywo	32,51	19.02	10.18	6.49	3,69	0.59	0.31	1.76
	Heesett	lances in the	00.10	45.04	0.05	5.00	0.05	0.55	0.01	4.55
	HCOONa	ĸruszywo	26.12	15.34	8.95	5.38	3.57	0.59	0.34	1.51
	HCOONa	kruszywo	33.12	10.93	10.24	6.69	3.55	0.33	0.31	1.88
	HCOONIC	kruczawa	20	171	12.09	7 07	A 26	0.44	0.21	1 0/
	ncooliva	KLUSZYWO	37	1/.1	12.08	7.02	4.20	0.44	0.51	1.04
	HCOONa	kruszywo	31	9.65	9.98	6.73	3.25	0.31	0.32	2.07
						Śrei	dnia	0.44	0.33	1 93
						510		0.444	0.55	1.55
						Odch.	Stand.	0.15	0.03	0.35
	HCOOK	por powietrzny	18.8	13.26	11.83	0.00	11.83	0.71	0.63	0.00
	HODON		14.45	10.00	0.00	0.00	0.00		0.05	0.00
	HCOOK	por powietrzny	14.43	16.83	8.01	0.00	8.01	1.1/	0.56	0.00
	HCOOK	por powietrzny	21.22	10.9	14.04	0.00	14.04	0.51	0.66	0.00
G5	HCOOK	por powietrary	10.00	17.20	14.01	0.00	14.21	0.99	0.73	0.00
GS	HCOOK	por powietrzny	17.85	11.33	14.21	0.00	14.21	0.88	0.72	0.00
	HCOOK	por powietrzny	18.62	16.26	13.48	0.00	13.48	0.87	0.72	0.00
						Śred	dnia	0.83	0.66	0.00
						Siedilla		0.05	0.00	0.00
						Odch. Stand.		0.24	0.07	0.00

Aneta Antolik	
	_

1										
	NaCl	por powietrzny	17.54	15.38	3.58	2.76	0.82	0.88	0.20	3.37
G5	NaCl	por powietrzny	16.84	17.21	4,98	3.87	1.11	1.02	0.30	3.49
	NaCl	por powietrzny	19.2	16.44	4.27	2.95	1.42	0.96	0.22	2.01
	Naci	por powietizity	13.2	17.00	4.27	2.05	1.42	0.80	0.22	2.01
	NaCI	por powietrzny	21.82	17.09	3.05	2.61	1.04	0.78	0.17	2.51
	NaCl	por powietrzny	15.64	16.2	3.01	2.28	0.73	1.04	0.19	3.12
						Śre	dnia	0.91	0.22	2.90
						Odch.	Stand.	0.11	0.05	0.62
	HCOONa	por powietrzny	15.29	14.45	7.13	6.25	0.88	0.95	0.47	7.10
	HCOONa	nor nowietrzny	20.91	18.82	8.87	7 25	1.62	0.90	0.42	4 48
		por powietrzny	10.12	20.52	6.0	4.20	2.62	1.12	0.42	1.64
G5	HCOONA	por powietrzny	10.15	20.52	0.5	4.25	2.01	1.15	0.58	1.04
	HCOONa	por powietrzny	17.86	18.78	6.78	5.72	1.06	1.05	0.38	5.40
	HCOONa	por powietrzny	19.43	21.91	6.62	4.87	1.75	1.13	0.34	2.78
						Śre	dnia	1.03	0.40	4.28
						Odeh Stand		0.11	0.05	0.15
	HCOOK	kruszywo	27.76	9.25	16.46	0.00	16.46	0.33	0.59	0.00
	HCOOK	kruszywo	29.4	9.87	13.56	0.00	13.56	0.34	0.46	0.00
	HCOOK	kruszywo	25.07	9.43	16.29	0.00	16.29	0.38	0.65	0.00
	нсоок	kruszywo	26.87	7.47	17.61	0.00	17.61	0.28	0.66	0.00
	нсоок	kruszywo	27.5	11 76	13 12	0.00	13 12	0.43	0.48	0.00
	нсоок	kruszywo	27.5	12.22	14.50	0.00	14.50	0.49	0.40	0.00
	HCOUK	kruszywo	25.94	12.33	14.52	0.00	14.52	0.48	0.50	0.00
	HCOOK	kruszywo	20.37	7.15	14.62	0.00	14.62	0.35	0.72	0.00
	HCOOK	kruszywo	25.11	11.02	11.07	0.00	11.07	0.44	0.44	0.00
GD	HCOOK	kruszywo	29	10.2	12.89	0.00	12.89	0.35	0.44	0.00
	нсоок	kruszywo	22.51	6.26	6.77	0.00	6.77	0.28	0.30	0.00
	нсоок	kruszywo	32.98	5.79	8.78	0.00	8.78	0.18	0.27	0.00
	нсоок	kruszywo	20.87	7.97	17	0.00	17	0.38	0.81	0.00
	HCOOK	kruszywo	15.64	5.04	10.01	0.00	10.01	0.30	0.61	0.00
	HCOOK	kruszywo	15.04	5.24	10.31	0.00	10.31	0.34	0.00	0.00
	HCOOK	kruszywo	20.25	8.43	8.23	0.00	8.23	0.42	0.41	0.00
	HCOOK	kruszywo	26.76	8.43	10.25	0.00	10.25	0.32	0.38	0.00
						Średnia		0.35	0.52	0.00
						Odch. Stand.		0.07	0.16	0.00
	NaCl	kruszywo	26.68	8 48	11 74	6 78	4 96	0.32	0.44	1 37
	NaCl	kruszywo	20.00	6.22	5.1	2.25	1.05	0.31	0.25	1.57
	Naci	KIUSZYWO	20.30	0.23	3.1	5.25	1.05	0.31	0.23	1.70
	Naci	kruszywo	18.56	5.21	9.8	5.49	4.31	0.28	0.53	1.2/
	NaCl	kruszywo	31.26	4.33	7.33	5.28	2.05	0.14	0.23	2.58
	NaCl	kruszywo	33.91	7.16	8.93	5.37	3.56	0.21	0.26	1.51
	NaCl	kruszywo	25.98	7.47	8.01	5.03	2.98	0.29	0.31	1.69
1	NaCl	kruszywo	30.17	11.83	7.93	4.62	3.31	0.39	0.26	1.40
	NaCl	kruszywo	25.76	9 39	6 19	4 28	1 91	0.36	0.24	2.24
GD	NaCl	kruszywo	20170	5.05	4 76	2.96	1.01	0.37	0.21	1.64
00	Naci	KIUSZYWO	22.55	5.55	4.70	2.50	1.0	0.27	0.21	1.04
	Naci	kruszywo	23.92	5.93	5.01	3.11	1.9	0.25	0.21	1.64
	NaCl	kruszywo	25.52	6.63	4.76	2.76	2	0.26	0.19	1.38
	NaCl	kruszywo	26.17	9.83	7.42	4.2	3.22	0.38	0.28	1.30
	NaCl	kruszywo	28.25	8.53	8.03	5.49	2.54	0.30	0.28	2.16
	NaCl	kruszywo	27.12	9.63	6.83	5.07	1.76	0.36	0.25	2.88
	NaCl	kruszywo	27.04	6.23	5.08	3,87	1.21	0.23	0.19	3,20
		in use in o	2/101	0.20	5100	Śroj	dnia	0.20	0.29	1 97
						Odet	Stand	0.25	0.20	0.01
						Ouch.	stanu.	0.07	0.09	0.01
	HCOONa	kruszywo	24.27	10.85	12.97	7.46	5.51	0.45	0.53	1.35
GD	HCOON a	kruszvwo	23.72	6.98	12.5	8.02	4.48	0.29	0.53	1.79
	HCOONS	kruszywo	24.61	10.68	12.08	8.58	35	0.43	0.49	2.45
	HCOONI-	kruczywo	10.42	656	10.42	6.30	4.05	0.45	0.45	1.50
	HCOONA	kruszywo	17.43	0.50	10.43	0.38	4.05	0.34	0.54	1.58
	HCOONa	kruszywo	23.68	12.15	8.59	5.09	3.5	0.51	0.36	1.45
	HCOONa	kruszywo	23.28	13.41	4.21	2.79	1.42	0.58	0.18	1.96
	HCOONa	kruszywo	24.84	9.38	9.79	5.28	4.51	0.38	0.39	1.17
	HCOONa	kruszywo	23.48	10.33	6.72	4.11	2.61	0.44	0.29	1.57
	HCOON a	kruszvwo	38.54	12.34	7,34	4,46	2,88	0.32	0.19	1.55
	HCOONS	kruszywo	28.46	9.59	8.29	5.2	3.09	0.34	0.20	1.69
		keyessee	20.40	0.14	7.24	4.22	3.05	0.34	0.23	1.00
	HCOONA	kruszywo	27.11	0.14	7.24	4.23	5.01	0.30	0.27	1.41
	HCOONa	kruszywo	20.43	6.02	7.45	4.45	3	0.29	0.36	1.48
	HCOONa	kruszywo	28.99	8.44	10.21	6.29	3.92	0.29	0.35	1.60
-	HCOON a	kruszywo	21.84	6.24	7.23	4.23	3	0.29	0.33	1.41
	HCOONa	kruszywo	17.41	4.59	6.33	4.21	2.12	0.26	0.36	1.99
						Śre	dnia	0.37	0.36	1.63
						Odch	Stand	0.00	0.12	0.22
						Odch. Stand.		0.09	0.12	0.32
·										
----	--------	----------------	-------	-------	-------	--------------	--------	------	------	-------
	NaCl	por powietrzny	20.26	20.39	4.85	3.84	1.01	1.01	0.24	3.80
GD	NaCl	por powietrzny	16.2	21.47	4.75	3.75	1	1.33	0.29	3.75
	NaCl	por powietrzny	26.07	16.53	7.14	5.35	1.79	0.63	0.27	2.99
	NaCl	por powietrzny	22	14.86	7.52	5.77	1.75	0.68	0.34	3.30
	NaCl	por powietrzny	14.07	18.87	4.4	3.58	0.82	1.34	0.31	4.37
	NaCl	por powietrzny	16.31	21.12	4.71	3.78	0.93	1.29	0.29	4.06
	NaCl	por powietrzny	12.13	9.36	9.2	8.46	0.74	0.77	0.76	11.43
	NaCl	por powietrzny	24.46	16.46	7.08	5.57	1.51	0.67	0.29	3.69
		porponiculary	2	20110	7100	Śrei	Inia	0.07	0.35	4.67
						Odch	Stand	0.22	0.33	2.76
		nor nowistrany	27.06	16.05	0.00	5 77	2.51	0.52	0.17	2.70
	HCOONA	por powietrzny	27.90	10.05	8.28	5.77	2.51	0.57	0.30	2.30
	HCOONa	por powietrzny	18.18	23.50	5.95	5.07	0.88	1.30	0.33	5.70
	HCOONa	por powietrzny	15.3	20.05	5.83	5.73	0.1	1.31	0.38	57.30
	HCOONa	por powietrzny	20.38	22.49	5	4.9	0.1	1.10	0.25	49.00
GD	HCOONa	por powietrzny	19.87	23.29	6.07	5.17	0.9	1.17	0.31	5.74
	HCOONa	por powietrzny	16.49	19.7	6.24	6.04	0.2	1.19	0.38	30.20
	HCOONa	por powietrzny	18.49	24.28	5.61	4.41	1.2	1.31	0.30	3.68
	HCOONa	por powietrzny	18.65	26.23	5.92	4.86	1.06	1.41	0.32	4.58
						Śre	dnia	1.17	0.32	19.82
1						Odch.	Stand.	0.26	0.04	22.55
	НСООК	por powietrzny	20.76	16.43	14.72	0.00	14.72	0.79	0.71	0.00
1	нсоок	por powietrzny	19.68	18.45	11.54	0.00	11.54	0.94	0.59	0.00
1	HCOOK	por powietrzny	15.34	17.26	9.03	0.00	9.03	1.13	0.59	0.00
GD	нсоок	por powietrzny	14.28	15.93	11.08	0.00	11.08	1 12	0.78	0.00
	нсоок	por powietrzny	19.52	10.00	15.0	0.00	15.2	0.02	0.78	0.00
	HCOOK	porpowietizity	15.52	10.11	1.5.2	0.00 Śroj	dnia	0.93	0.78	0.00
						510		0.98	0.09	0.00
	HCOOK	kruszywo	39.78	15.46	22.67	0.00	22.67	0.39	0.57	0.00
	нсоок	kruszywo	36.2	11.08	16.93	0.00	16.93	0.31	0.47	0.00
	нсоок	kruszywo	36.13	12.53	23.5	0.00	23.5	0.35	0.65	0.00
	нсоок	kruszywo	24.2	7.19	12.78	0.00	12.78	0.30	0.53	0.00
	нсоок	kruszywo	25.87	8.28	7.64	0.00	7.64	0.32	0.30	0.00
	нсоок	kruszywo	22.92	9.91	2 21	0.00	8.91	0.02	0.38	0.00
	нсоок	kruszywo	22.52	0.20	0.01	0.00	0.01	0.40	0.30	0.00
	HCOOK	kruszywo	23.24	12.09	0.75	0.00	0.75	0.40	0.30	0.00
GA	HCOOK	kruszywo	22.01	16.10	9.10	0.00	9.10	0.55	0.40	0.00
GA	HCOOK	kruszywo	22.00	10.13	9.54	0.00	9.54	0.71	0.42	0.00
-	нсоок	kruszywo	22.81	14.93	8.08	0.00	8.08	0.65	0.35	0.00
-	НСООК	kruszywo	14.23	4.52	9.54	0.00	9.54	0.32	0.67	0.00
	нсоок	kruszywo	19.59	10.17	11.09	0.00	11.09	0.52	0.57	0.00
_	нсоок	kruszywo	22.54	13.68	14.75	0.00	14.75	0.61	0.65	0.00
	HCOOK	kruszywo	22.05	9.38	15.03	0.00	15.03	0.43	0.68	0.00
	HCOOK	kruszywo	22.45	10.27	13.02	0.00	13.02	0.46	0.58	0.00
						Śre	dnia	0.45	0.51	0.00
						Odch.	Stand.	0.13	0.13	0.00
	NaCl	kruszywo	32.11	10.25	2.9	1.92	0.98	0.32	0.09	1.96
	NaCl	kruszywo	27.77	11.67	5.96	4.00	1.96	0.42	0.21	2.04
	NaCl	kruszywo	22.4	9.64	8.27	5.06	3.21	0.43	0.37	1.58
1	NaCl	kruszywo	21.64	9.04	7.27	5.02	2.22	0.42	0.34	2.26
1	NaCl	kruszywo	44.19	13.5	9.32	6.27	3.05	0.31	0.21	2.06
1	NaCl	kruszywo	43.38	14.78	10.46	6,23	4,23	0.34	0.24	1.47
	NaCl	kruszywo	27.33	8,87	5,71	3,87	1.84	0.32	0.21	2,10
	NaCl	kruszywo	42 74	11 92	7.9/1	4.91	3.03	0.28	0.18	1 50
GA	Naci	kruszywo	72.74	7 22	5.04	2.02	2.05	0.20	0.10	1.35
GA	Naci	kruszywo	20	0.70	5.25	3.23	2.00	0.29	0.21	1.57
-	NaCl	kruszywo	33.02	0.70	5.49	3.8/	1.02	0.20	0.10	2.39
-	NaCl	kruszywo	43.02	7.28	/	4.18	2.82	0.1/	0.16	1.48
-	NaCl	kruszywo	41.2	8.83	7.02	3.92	3.1	0.21	0.17	1.26
-	NaCl	kruszywo	31.29	9.23	4.97	3.01	1.96	0.29	0.16	1.54
-	NaCl	kruszywo	37.29	7.26	7.29	5.17	2.12	0.19	0.20	2.44
	NaCl	kruszywo	38.12	7.38	6.92	5.13	1.79	0.19	0.18	2.87
						Śre	dnia	0.30	0.21	1.91
						Odch.	Stand.	0.08	0.07	0.45

	HCOONa	kruszywo	30.92	10.82	13.39	8.29	5.1	0.35	0.43	1.63
	HCOONa	kruszywo	23.22	8.72	9.02	5.02	4	0.38	0.39	1.26
	HCOONa	kruszywo	18.9	7.3	7.51	5.18	2.33	0.39	0.40	2.22
	HCOONa	kruszywo	21.64	13.26	10.18	6.73	3.45	0.61	0.47	1.95
	HCOONa	kruszywo	22.09	12.53	8.58	5.18	3.4	0.57	0.39	1.52
	HCOONa	kruszywo	24.2	10.28	9.26	6.19	3.07	0.42	0.38	2.02
	HCOONa	kruszywo	25.19	10.12	9.19	6.61	2.58	0.40	0.36	2.56
GA	HCOONa	kruszywo	38.33	16.94	12.8	9.07	3.73	0.44	0.33	2.43
	HCOONa	kruszywo	34.89	16.32	13	9.62	3.38	0.47	0.37	2.85
	HCOONa	kruszywo	38.33	15.33	13.46	8.98	4.48	0.40	0.35	2.00
	HCOONa	kruszywo	44.39	10.19	11.61	8.75	2.86	0.23	0.26	3.06
	HCOONa	kruszywo	38.34	17.22	13.74	9.11	4.63	0.45	0.36	1.97
	HCOONa	kruszywo	26.49	10.35	8.89	5.01	3.88	0.39	0.34	1.29
	HCOONa	kruszywo	28.85	9.88	6.29	4.26	2.03	0.34	0.22	2.10
	HCOONa	kruszywo	28.85	12.65	5.27	3.26	3.26 2.01		0.18	1.62
						Śre	Średnia		0.35	2.03
						Odch.	Stand.	0.09	0.08	0.53
	HCOOK	por powietrzny	18.72	16.76	11.55	0.00	11.55	0.90	0.62	0.00
	HCOOK	por powietrzny	16.54	17.32	8.72	0.00	8.72	1.05	0.53	0.00
	HCOOK	por powietrzny	19.32	18.04	9.12	0.00	9.12	0.93	0.47	0.00
GA	HCOOK	por powietrzny	15.11	14.88	7.32	0.00	7.32	0.98	0.48	0.00
	HCOOK	por powietrzny	18.29	17.32	10.15	0.00	10.15	0.95	0.55	0.00
						Średnia		0.96	0.53	0.00
						Odch. Stand.		0.06	0.06	0.00
	HCOONa	por powietrzny	21.09	18.09	8.3	6.45	1.85	0.86	0.39	3.49
	HCOONa	por powietrzny	14.23	13.75	7.87	5.86	2.01	0.97	0.55	2.92
	HCOONa	por powietrzny	15.83	12.83	6.72	5.22	1.5	0.81	0.42	3.48
GA	HCOONa	por powietrzny	19.46	18.76	8.5	6.73	1.77	0.96	0.44	3.80
	HCOONa	por powietrzny	14.24	11.17	6.21	5.26	0.95	0.78	0.44	5.54
	HCOONa	por powietrzny	15.25	14.14	6.32	4.96	1.36	0.93	0.41	3.65
						Śre	dnia	0.89	0.44	3.81
						Odch.	Stand.	0.08	0.06	0.90
	NaCl	por powietrzny	17.34	16.18	4.28	3.16	1.12	0.93	0.25	2.82
	NaCl	por powietrzny	18.97	20.73	5.51	3.58	1.93	1.09	0.29	1.85
	NaCl	por powietrzny	16.31	15.89	3.91	3.07	0.84	0.97	0.24	3.65
GA	NaCl	por powietrzny	17.72	16.25	5.23	4.12	1.11	0.92	0.30	3.71
	NaCl	por powietrzny	18.9	19.88	6.53	4.71	1.82	1.05	0.35	2.59
						Śre	dnia	0.99	0.28	2.93
						Odch. Stand.		0.08	0.04	0.78

							· · · · ·
Kruszywo	Roztwór	Rodzaj żelu	Si	Ca	Na+K	Ca/Si	Na+K/Si
	HCOOK	krystaliczny	23.68	8.61	10.61	0.36	0.45
	HCOOK	krystaliczny	22.36	9.04	9.84	0.40	0.44
G5	HCOOK	krystaliczny	24.4	10.99	10.67	0.45	0.44
	HCOOK	krystaliczny	23.14	9.39	10.02	0.41	0.43
	HCOOK	krystaliczny	23.8	10.16	10.53	0.43	0.44
	HCOOK	krystaliczny	22.31	12.03	9.87	0.54	0.44
	HCOOK	krystaliczny	22.09	13.46	9.69	0.61	0.44
	HCOOK	krystaliczny	23.79	8.69	9.22	0.37	0.39
	HCOOK	krystaliczny	24.45	11.46	10.34	0.47	0.42
	HCOOK	krystaliczny	24.1	8.64	12.55	0.36	0.52
	HCOOK	krystaliczny	22.84	8.52	13.12	0.37	0.57
	HCOOK	krystaliczny	24.63	9.28	12.12	0.38	0.49
	HCOOK	krystaliczny	24.46	9.36	11.67	0.38	0.48
	HCOOK	krystaliczny	25.31	9.09	12.56	0.36	0.50
	HCOOK	krystaliczny	25.43	8.24	11.39	0.32	0.45
					dnia	0.41	0.46
				Odch.	Stand.	0.08	0.05
	HCOOK	amorficzny	20.83	15.33	9.35	0.74	0.45
	HCOOK	amorficzny	25.25	11.86	8.18	0.47	0.32
	HCOOK	amorficzny	24.82	11.73	7.79	0.47	0.31
	HCOOK	amorficzny	20.04	10.55	8.81	0.53	0.44
	HCOOK	amorficzny	23.73	12.56	8.28	0.53	0.35
	HCOOK	amorficzny	21.03	11.46	8.54	0.54	0.41
	HCOOK	amorficzny	18.47	15.34	7.48	0.83	0.40
	HCOOK	amorficzny	18.41	13.79	7.08	0.75	0.38
	HCOOK	amorficzny	19.71	16.65	7.75	0.84	0.39
	HCOOK	amorficzny	17.09	13.24	5.83	0.77	0.34
	HCOOK	amorficzny	20.43	14.86	7.71	0.73	0.38
	HCOOK	amorficzny	22.81	12.08	9.18	0.53	0.40
	HCOOK	amorficzny	22.66	16.13	9.54	0.71	0.42
	HCOOK	amorficzny	22.81	14.93	8.08	0.65	0.35
	НСООК	amorficzny	22.4	14.84	7.41	0.66	0.33
		,		Śrec	dnia	0.65	0.38
				Odch.	Stand.	0.13	0.04

Tabela Z10.2 Zestawienie wyników składu chemicznego (EDS, punktowo) żelu w próbkach zapraw z kruszywem G3 po badaniu w 80°C wg RILEM AAR-2

Źródło	Miejsce	Si	Ca	Na	к	Na+K	Ca/Si	Na+K/Si	Na/K
	występowania						02.01	1.4.12.01	
Autostrada (DE)	kruszywo	19.79	9.07	3.64	3.13	6.77	0.46	0.34	1.16
Autostrada (DE)	kruszywo	13.79	7.05	3.49	2.02	5.51	0.51	0.40	1.73
Autostrada (DE)	kruszywo	23.20	10.31	2.80	3.47	6.27	0.44	0.27	0.81
Autostrada (DE)	kruszywo	40.63	18.59	8.30	6.82	15.12	0.46	0.37	1.22
Autostrada (DE)	kruszywo	12.65	5.46	5.48	2.31	7.79	0.43	0.62	2.37
Autostrada (DE)	kruszywo	45.96	13.63	2.60	11.81	14.41	0.30	0.31	0.22
Autostrada (DE)	kruszywo	26.53	8.09	0.10	6.06	6.16	0.30	0.23	0.02
Autostrada (DE)	kruszywo	26.29	6.83	0.10	5.35	5.45	0.26	0.21	0.02
Autostrada (DE)	kruszywo	24.29	6.09	1.14	5.61	6.75	0.25	0.28	0.20
Autostrada (DE)	kruszywo	20.26	5.50	1.43	4.77	6.20	0.27	0.31	0.30
Autostrada (DE)	kruszywo	21.87	6.12	1.52	4.94	6.46	0.28	0.30	0.31
Autostrada (DE)	kruszywo	18.59	5.44	1.89	4.42	6.31	0.29	0.34	0.43
Autostrada (DE)	kruszywo	17.25	3.57	2.34	3.65	5.99	0.21	0.35	0.64
Autostrada (DE)	kruszywo	21.68	5.94	1.45	5.04	6.49	0.27	0.30	0.29
Autostrada (DE)	kruszywo	24.39	6.19	1.30	5.42	6.72	0.25	0.28	0.24
Autostrada (DE)	kruszywo	42.99	12.36	4.86	11.74	16.60	0.29	0.39	0.41
Autostrada (DE)	kruszywo	22.73	6.68	2.62	5.24	7.86	0.29	0.35	0.50
Autostrada (DE)	kruszywo	18.65	3.69	1.54	3.82	5.36	0.20	0.29	0.40
Autostrada (DE)	kruszywo	24.76	4.76	1.82	5.54	7.36	0.19	0.30	0.33
Autostrada (DE)	kruszywo	23.56	6.75	1.60	5.40	7.00	0.29	0.30	0.30
Autostrada (DE)	kruszywo	22.42	7.41	2.32	5.31	7.63	0.33	0.34	0.44
Autostrada (DE)	kruszywo	21.65	5.29	2.76	5.16	7.92	0.24	0.37	0.53
Autostrada (DE)	kruszywo	20.67	5.20	2.29	4.85	7.14	0.25	0.35	0.47
Autostrada (DE)	kruszywo	27.15	13.55	1.56	5.07	6.63	0.50	0.24	0.31
Autostrada (DE)	kruszywo	18.83	8.55	2.94	3.98	6.92	0.45	0.37	0.74
Autostrada (DE)	kruszywo	20.97	9.47	2.46	3.85	6.31	0.45	0.30	0.64
Autostrada (DE)	kruszywo	16.30	15.29	2.78	1.38	4.16	0.94	0.26	2.01
Autostrada (DE)	kruszywo	22.90	8.98	2.49	3.28	5.77	0.39	0.25	0.76
Autostrada (DE)	kruszywo	40.41	21.89	7.75	7.75	15.50	0.54	0.38	1.00
Autostrada (DE)	kruszywo	39.64	18.01	3.84	6.71	10.55	0.45	0.27	0.57
Autostrada (DE)	kruszywo	34.31	15.35	3.05	5.44	8.49	0.45	0.25	0.56
Autostrada (DE)	kruszywo	22.87	10.14	4.45	3.93	8.38	0.44	0.37	1.13
Autostrada (DE)	kruszywo	20.07	9.58	4.18	3.27	7.45	0.48	0.37	1.28
Autostrada (DE)	kruszywo	20.14	8.16	5.04	3.50	8.54	0.41	0.42	1.44
Autostrada (DE)	kruszywo	19.64	8.71	4.46	3.25	7.71	0.44	0.39	1.37
Autostrada (DE)	kruszywo	14.85	7.35	4.46	2.02	6.48	0.49	0.44	2.21
Autostrada (DE)	kruszywo	33.80	14.46	3.50	5.88	9.38	0.43	0.28	0.60
Autostrada (DE)	kruszywo	15.46	7.37	5.29	2.57	7.86	0.48	0.51	2.06
Autostrada (DE)	kruszywo	18.28	8.26	4.05	2.91	6.96	0.45	0.38	1.39
					Śrec	dnia	0.38	0.33	0.81
					Odch.	Stand.	0.14	0.08	0.63
Autostrada (DE)	por powietrzny	13.31	26.99	1.26	1.11	2.37	2.03	0.18	1.14
Autostrada (DE)	por powietrzny	13.81	22.01	1.04	1.59	2.63	1.59	0.19	0.65
Autostrada (DE)	por powietrzny	13.56	31.81	0.87	1.83	2.70	2.35	0.20	0.48
Autostrada (DE)	por powietrzny	14.11	22.79	0.74	1.94	2.68	1.62	0.19	0.38
Autostrada (DE)	por powietrzny	14.15	26.43	1.19	1.54	2.73	1.87	0.19	0.77
Autostrada (DE)	por powietrzny	21.65	18.43	1.12	2.43	3.55	0.85	0.16	0.46
Autostrada (DE)	por powietrzny	14.33	26.44	0.71	1.16	1.88	1.85	0.13	0.61
Autostrada (DE)	por powietrzny	13.15	26.62	0.57	1.09	1.66	2.02	0.13	0.52
					Śre	dnia	1.77	0.17	0.63
					Odch.	Stand.	0.44	0.03	0.24
Droga ekspresowa (PL)	kruszywo	24.28	8.88	0.94	7.32	8.26	0.37	0.34	0.13
Droga ekspresowa (PL)	kruszywo	21.37	6.29	0.86	7.32	8.18	0.29	0.38	0.12
Droga ekspresowa (PL)	kruszywo	20.09	10.77	1.72	7.16	8.88	0.54	0.44	0.24
Droga ekspresowa (PL)	kruszywo	20.34	11.39	1.87	7.04	8.91	0.56	0.44	0.27

Tabela Z10.3 Zestawienie wyników składu chemicznego (EDS, punktowo) żelu w próbkach odwiertów pobranych ze zniszczonych nawierzchni drogowych

Droga ekspresowa (PL)	kruszywo	22.21	13.50	1.25	5.62	6.87	0.61	0.31	0.22
Droga ekspresowa (PL)	kruszywo	21.31	9.22	1.32	8.48	9.80	0.43	0.46	0.16
Droga ekspresowa (PL)	kruszywo	22.06	9.50	1.50	8.40	9.90	0.43	0.45	0.18
Droga ekspresowa (PL)	kruszywo	21.31	13.07	2.10	6.63	8.73	0.61	0.41	0.32
Droga ekspresowa (PL)	kruszywo	19.04	18.89	1.37	4.07	5.44	0.99	0.29	0.34
Droga ekspresowa (PL)	kruszywo	24.64	9.30	0.89	5.02	5.92	0.38	0.24	0.18
Droga ekspresowa (PL)	kruszywo	27.39	7.17	0.66	4.26	4.91	0.26	0.18	0.15
Droga ekspresowa (PL)	kruszywo	24.74	7.14	0.97	5.44	6.42	0.29	0.26	0.18
Droga ekspresowa (PL)	kruszywo	31.35	3.33	0.60	3.06	3.66	0.11	0.12	0.20
Droga ekspresowa (PL)	kruszywo	29.95	5.19	0.35	3.48	3.83	0.17	0.13	0.10
Droga ekspresowa (PL)	kruszywo	28.63	6.59	0.31	4.00	4.31	0.23	0.15	0.08
Droga ekspresowa (PL)	kruszywo	27.30	5.79	1.43	5.47	6.90	0.21	0.25	0.26
Droga ekspresowa (PL)	kruszywo	25.04	5.34	1.48	5.90	7.38	0.21	0.29	0.25
Droga ekspresowa (PL)	kruszywo	24.58	6.32	1.83	5.74	7.57	0.26	0.31	0.32
Droga ekspresowa (PL)	kruszywo	23.72	7.02	2.04	6.09	8.13	0.30	0.34	0.34
Droga ekspresowa (PL)	kruszywo	23.22	7.31	2.18	5.79	7.98	0.31	0.34	0.38
Droga ekspresowa (PL)	kruszywo	25.29	5.81	1.79	5.58	7.37	0.23	0.29	0.32
Droga ekspresowa (PL)	kruszywo	24.30	6.80	2.44	6.46	8.90	0.28	0.37	0.38
Droga ekspresowa (PL)	kruszywo	23.79	6.00	2.31	6.66	8.97	0.25	0.38	0.35
Droga ekspresowa (PL)	kruszywo	25.04	4.75	1.33	5.58	6.90	0.19	0.28	0.24
Droga ekspresowa (PL)	kruszywo	25.17	6.19	2.27	6.46	8.73	0.25	0.35	0.35
Droga ekspresowa (PL)	kruszywo	32.06	2.72	0.67	2.79	3.45	0.08	0.11	0.24
Droga ekspresowa (PL)	kruszywo	23.02	6.55	2.54	7.02	9.55	0.28	0.42	0.36
Droga ekspresowa (PL)	kruszywo	23.45	6.40	2.62	6.06	8.68	0.27	0.37	0.43
Droga ekspresowa (PL)	kruszywo	25.43	6.84	2.55	6.89	9.44	0.27	0.37	0.37
Droga ekspresowa (PL)	kruszywo	23.71	6.82	3.08	6.84	9.92	0.29	0.42	0.45
Droga ekspresowa (PL)	kruszywo	25.73	6.52	2.35	5.84	8.19	0.25	0.32	0.40
Droga ekspresowa (PL)	kruszywo	18.24	7.78	0.31	4.45	4.76	0.43	0.26	0.07
Droga ekspresowa (PL)	kruszywo	17.37	11.23	0.22	4.24	4.46	0.65	0.26	0.05
Droga ekspresowa (PL)	kruszywo	16.06	11.08	0.15	5.20	5.34	0.69	0.33	0.03
Droga ekspresowa (PL)	kruszywo	15.77	12.30	0.17	4.59	4.76	0.78	0.30	0.04
Droga ekspresowa (PL)	kruszywo	22.83	1.93	0.26	4.58	4.84	0.08	0.21	0.06
Droga ekspresowa (PL)	kruszywo	19.45	6.48	0.39	4.27	4.67	0.33	0.24	0.09
Droga ekspresowa (PL)	kruszywo	13.67	27.42	0.10	1.36	1.46	2.01	0.11	0.07
Droga ekspresowa (PL)	kruszywo	22.67	8.49	1.75	6.83	8.57	0.37	0.38	0.26
Droga ekspresowa (PL)	kruszywo	20.62	10.15	1.93	6.94	8.87	0.49	0.43	0.28
Droga ekspresowa (PL)	kruszywo	21.36	9.54	2.21	6.33	8.55	0.45	0.40	0.35
Droga ekspresowa (PL)	kruszywo	26.22	0.30	2.21	4.83	7.04	0.24	0.27	0.40
Droga ekspresowa (PL)	kruszywo	22.87	13.48	0.35	5.22	2.28	0.59	0.24	0.07
Droga ekspresowa (PL)	kruszywo	10.02	28.51	0.04	1.42	2.00	1.72	0.12	0.45
Droga ekspresowa (PL)	kruszywo	28.40	20.02	1.00	2.48	3.49	0.20	0.12	0.40
Droga ekspresowa (PL)	kruszywo	23.37	10.22	2.46	6.28	8.73	0.44	0.37	0.39
Droga ekspresowa (PL)	kruszywo	32,45	2,96	1.28	2.63	3,91	0.09	0.12	0.49
Droga ekspresowa (PL)	kruszywo	26,15	6.24	2.83	5.15	7,98	0.24	0.31	0.55
Droga ekspresowa (PL)	kruszywo	32.88	5.06	0.91	2.66	3.57	0.15	0.11	0.34
Droga ekspresowa (PL)	kruszywo	28.58	9.90	1.13	4.53	5.66	0.35	0.20	0.25
Droga ekspresowa (PL)	kruszywo	31.68	4.43	0.79	2.12	2.91	0.14	0.09	0.37
Droga ekspresowa (PL)	kruszywo	26.75	10.42	1.16	4.51	5.67	0.39	0.21	0.26
Droga ekspresowa (PL)	kruszywo	32.65	3.11	0.72	1.56	2.27	0.10	0.07	0.46
Droga ekspresowa (PL)	kruszywo	27.20	11.19	1.09	4.76	5.84	0.41	0.21	0.23
Droga ekspresowa (PL)	kruszywo	29.67	9.16	0.59	3.81	4.40	0.31	0.15	0.16
Droga ekspresowa (PL)	kruszywo	33.79	3.32	0.72	1.61	2.33	0.10	0.07	0.45
Droga ekspresowa (PL)	kruszywo	26.06	10.38	1.28	4.33	5.61	0.40	0.22	0.30
Droga ekspresowa (PL)	kruszywo	30.18	7.71	0.72	3.24	3.97	0.26	0.13	0.22
Droga ekspresowa (PL)	kruszywo	25.53	10.79	1.07	3.99	5.06	0.42	0.20	0.27
Droga ekspresowa (PL)	kruszywo	25.14	12.71	1.24	5.25	6.49	0.51	0.26	0.24
Droga ekspresowa (PL)	kruszywo	31.88	6.36	0.61	2.30	2.91	0.20	0.09	0.27
Droga ekspresowa (PL)	kruszywo	21.88	16.54	1.14	3.47	4.62	0.76	0.21	0.33
						-			

Droga ekspresowa (PL)	kruszywo	23.28	16.30	1.07	3.72	4.79	0.70	0.21	0.29
Droga ekspresowa (PL)	kruszywo	22.00	20.25	0.83	2.29	3.12	0.92	0.14	0.36
Droga ekspresowa (PL)	kruszywo	17.03	22.76	0.72	1.55	2.28	1.34	0.13	0.47
Droga ekspresowa (PL)	kruszywo	19.27	21.99	0.96	1.70	2.66	1.14	0.14	0.57
Droga ekspresowa (PL)	kruszywo	17.45	25.49	0.67	1.13	1.81	1.46	0.10	0.59
Droga ekspresowa (PL)	kruszywo	22.25	8.54	0.63	7.92	8.55	0.38	0.38	0.08
Droga ekspresowa (PL)	kruszywo	23.03	10.30	0.57	9.63	10.20	0.45	0.44	0.06
Droga ekspresowa (PL)	kruszywo	22.70	10.78	0.60	9.03	9.63	0.47	0.42	0.07
Droga ekspresowa (PL)	kruszywo	23.52	9.05	0.87	7.49	8.35	0.38	0.36	0.12
Droga ekspresowa (PL)	kruszywo	20.80	14.50	1.96	3.94	5.90	0.70	0.28	0.50
Droga ekspresowa (PL)	kruszywo	22.42	12.30	2.36	4.20	6.56	0.55	0.29	0.56
Droga ekspresowa (PL)	kruszywo	23.55	12.47	1.97	4.28	6.25	0.53	0.27	0.46
Droga ekspresowa (PL)	kruszywo	22.48	12.68	1.72	3.27	4.99	0.56	0.22	0.53
					Śre	dnia	0.46	0.26	0.29
					Odch.	Stand.	0.36	0.11	0.15
Droga ekspresowa (PL)	por powietrzny	13.32	28.43	0.57	0.57	1.15	2.13	0.09	1.00
Droga ekspresowa (PL)	por powietrzny	13.22	28.97	0.44	0.65	1.09	2.19	0.08	0.69
Droga ekspresowa (PL)	por powietrzny	12.75	28.42	0.47	0.57	1.03	2.23	0.08	0.82
Droga ekspresowa (PL)	por powietrzny	19.37	14.49	2.05	5.31	7.35	0.75	0.38	0.39
Droga ekspresowa (PL)	por powietrzny	23.81	5.77	3.65	6.17	9.82	0.24	0.41	0.59
Droga ekspresowa (PL)	por powietrzny	18.64	7.34	4.22	4.55	8.76	0.39	0.47	0.93
Droga ekspresowa (PL)	por powietrzny	24.36	4.02	4.38	4.97	9.35	0.16	0.38	0.88
Droga ekspresowa (PL)	por powietrzny	8.13	28.43	1.69	2.08	3.77	3.50	0.46	0.81
Droga ekspresowa (PL)	por powietrzny	19.27	11.40	2.86	5.07	7.93	0.59	0.41	0.56
Droga ekspresowa (PL)	por powietrzny	18.87	14.29	2.60	4.87	7.47	0.76	0.40	0.53
Droga ekspresowa (PL)	por powietrzny	23.65	5.24	5.08	6.15	11.23	0.22	0.47	0.83
Droga ekspresowa (PL)	por powietrzny	19.10	8.34	4.33	4.88	9.21	0.44	0.48	0.89
Droga ekspresowa (PL)	por powietrzny	19.25	13.08	3.49	4.90	8.39	0.68	0.44	0.71
Droga ekspresowa (PL)	por powietrzny	14.20	27.48	1.02	1.22	2.24	1.94	0.16	0.84
Droga ekspresowa (PL)	por powietrzny	14.61	26.70	1.14	1.40	2.54	1.83	0.17	0.82
Droga ekspresowa (PL)	por powietrzny	13.35	26.63	1.01	1.25	2.26	2.00	0.17	0.81
Droga ekspresowa (PL)	por powietrzny	11.27	22.77	2.45	2.85	5.30	2.02	0.47	0.86
Droga ekspresowa (PL)	por powietrzny	14.33	30.03	0.63	1.40	2.02	2.10	0.14	0.45
					Śre	dnia	1.34	0.32	0.74
					Odch.	Stand.	0.97	0.16	0.17

Aneta Antolik