
Institute of Fundamental Technological Research 
Polish Academy of Sciences 

 
Department of Intelligent Technologies 

 

 

 

 

 

 

A method for predicting the size of damage 
to gas turbine components based on 

machine learning algorithms, applicable at 
the early stages of parts’ lifetime 

 

 

Ph.D. dissertation 

Maciej Badora, M.Sc.Eng. 

 

 

 

 

Supervisor: Prof. Tomasz Szolc, Ph.D., D.Sc., Mech.Eng. 

 

 

 

 

 

Warsaw, 2024  



2 
 

This research was cofounded by the Ministry of Science and Education and conducted under 
the “Industrial Doctorate” program (decision number 0080/DW/2018/02) in cooperation 

between the Institute of Fundamental Technological Research Polish Academy of Sciences 
and BH Poland sp. z o.o. (Baker Hughes Company). 

 

Assistant advisor designated by the entrepreneur, in accordance with the rules of the 
“Industrial Doctorate” program: Przemysław Bartosik, M.Sc.Eng. 

 



 

 

 

 

 

 

 

 

 

 

 

 

Special thanks 
I express my sincere gratitude to Professor Tadeusz Burczyński 

for his invaluable remarks and suggestions, which significantly improved this dissertation. 

 

 

 

 

Acknowledgments 
I want to express my gratitude to the supervisor, Professor Tomasz Szolc, 

for his guidance, continuous support, optimism and motivation to work. 

I also want to thank the co-supervisor, Przemysław Bartosik, M.Sc.Eng., 
for the effective collaboration and help offered in the most difficult stages of this research. 

I want to acknowledge Antonino Graziano, Marcin Bielecki and Marzia Sepe, 
my colleagues from Baker Hughes Company, for mentoring and challenging me and for the many 

discussions and guidance that helped me overcome countless technical difficulties. 

I thank my managers, Fausto Carlevaro, Katarzyna Przybyłowicz and Leszek Torbicz, 
for creating a comfortable research environment and their care and patience. 

I want to give special thanks to my parents, Małgorzata and Zbigniew, 
for the effort put into my education, constant help and teaching me that hard work pays off. 

Above all, I would like to thank my wife, Anna. 
These have been exhausting years for both of us. Thank you for your constant support, patience, 

strength and caring for our family during this period. 

 



4 
 

Contents 

ABSTRACT 6 

STRESZCZENIE 7 

LIST OF ABBREVIATIONS 9 

1. INTRODUCTION 10 

2. OBJECTIVES, THESES AND SCOPE OF THE DISSERTATION 13 

2.1 Objectives of the dissertation .............................................................................................. 13 
2.2 Theses of the dissertation .................................................................................................... 13 
2.3 Scope and structure of the dissertation ............................................................................... 14 
2.4 Data availability statement .................................................................................................. 16 

3. BACKGROUND 17 

3.1 Maintenance of gas turbines ............................................................................................... 17 
3.2 Methods for predicting damage to gas turbine components ............................................... 20 
3.3 Applications of machine learning for predicting damage to gas turbine components ........ 26 
3.4 Physics-informed neural networks ...................................................................................... 31 
3.5 Transferring knowledge in machine learning projects ........................................................ 36 

4. PREDICTING LENGTH OF FATIGUE CRACKS USING MACHINE LEARNING METHODS 41 

4.1 The analyzed object and problem setup .............................................................................. 42 
4.2 An overview of available empirical data ............................................................................ 45 
4.3 Feature selection ................................................................................................................. 48 
4.4 Training, tuning and testing of the models ......................................................................... 51 
4.5 An overview of utilized machine learning algorithms ........................................................ 55 

4.5.1 Multiple linear regression ............................................................................................ 55 
4.5.2 Polynomial regression ................................................................................................. 55 
4.5.3 Support vector regression ............................................................................................ 56 
4.5.4 Kernel ridge regression ................................................................................................ 57 
4.5.5 Random forest algorithm ............................................................................................. 58 
4.5.6 AdaBoost.R2 algorithm ............................................................................................... 58 
4.5.7 Extreme gradient boosting algorithm .......................................................................... 59 
4.5.8 Artificial neural network .............................................................................................. 59 

4.6 Results of the regression analysis ....................................................................................... 61 
4.7 Conclusions concerning this stage of the research .............................................................. 69 

5. PREDICTING FATIGUE CRACKS GROWTH BY PHYSICS-INFORMED NEURAL NETWORKS 71 

5.1 The architecture of the hybrid model .................................................................................. 72 
5.2 Configuration and execution of the training process .......................................................... 79 
5.3 Results of the regression analysis ....................................................................................... 84 
5.4 The novel method of domain generalization and knowledge transfer ................................ 94 
5.5 Application of the proposed method for predicting fatigue cracks growth ...................... 108 
5.6 Conclusions concerning this stage of the research ............................................................ 114 



5 
 

6. PREDICTING METAL LOSS DUE TO OXIDATION BY PHYSICS-INFORMED NEURAL NETWORKS 118 

6.1 The analyzed object, problem setup and an overview of available empirical data ........... 118 
6.2 The architecture of the hybrid model ................................................................................ 125 
6.3 Configuration and execution of the training process ......................................................... 128 
6.4 Results of the regression analysis ...................................................................................... 131 
6.5 Application of the proposed method for predicting metal loss due to oxidation .............. 137 
6.6 Conclusions concerning this stage of the research ............................................................ 144 

7. SUMMARY AND CONCLUSIONS 147 

7.1 Conclusions ....................................................................................................................... 147 
7.2 Novelties resulting from this research ............................................................................... 151 
7.3 Future research .................................................................................................................. 152 

BIBLIOGRAPHY 153 

 

 



6 
 

Abstract 

This dissertation focuses on the problem of effectively predicting damage size to gas 
turbine components using machine learning algorithms when the availability of empirical data 
on damage size measurements is limited or the data are missing. This research addresses the 
problems of estimating the maximal length of fatigue cracks found on the trailing edges of high-
pressure nozzles and predicting the wall thickness reduction due to the oxidation of transition 
pieces. The analyzed objects are the components of the turbine and combustion systems of two 
different heavy-duty gas turbines manufactured by Baker Hughes Company. The research 
objective is to formulate a method based on machine learning algorithms for predicting the 
damage growth that can be applied for various types of failures, regardless of the empirical data 
limitations, allowing to obtain estimates consistent with prior knowledge and physical laws 
about the analyzed phenomena. 

The first stage of the research focuses on the application of popular statistical learning 
algorithms to the problem of fatigue crack propagation using a sample comprising 25 damage 
size measurements. A custom cost function and a controlled approach to preparing the training, 
test and validation sets are applied. The final predictions based on actual operational data can 
be accurate despite the limited sample size. In the following research stage, physics-informed 
neural networks are applied to the same technical problem to build predictive models with better 
generalization and extrapolation capabilities and obtain estimates consistent with the relevant 
equations describing crack growth due to low cycle fatigue. A recurrent neural network with an 
embedded multilayer perceptron is trained using a dynamically changing custom cost function, 
which coefficients depend on the consistency with the underlying physical laws. The obtained 
predictions are accurate regardless of training based on ten, two, or only one observation. A 
normalized error evaluated against unseen data and characteristics of the perceptron were used 
to evaluate the predictions’ credibility. The novel method of single-source domain 
generalization and cross-domain knowledge transfer in regression analysis based on physics-
informed neural networks is proposed. It enables the effective application of an unchanged 
cumulative damage model built using a physics-informed neural network, which was trained in 
a domain where measurement data on damage size are available in domains, where such data 
are unavailable. The procedure consists of eight steps, but the so-called shifting of the 
operational data and neural network’s inputs is essential. It is applied to predict fatigue crack 
growth in a simulated scenario where damage size measurements are unavailable. The final 
predictions are similar to those obtained using a predictive model trained from the ground up 
in the target domain. In the last research stage, physics-informed neural networks and the 
proposed method are applied to estimate the metal loss due to oxidation. The obtained results 
are satisfactory and provide evidence that this method has a universal character. 

The main novelty of this research is the method of single-source domain generalization 
and cross-domain knowledge transfer based on physics-informed neural networks. It allows for 
predicting the size of damage to gas turbine parts in domains without any measurements, 
applying appropriately a physics-informed neural network trained in a source domain where 
damage size measurements are available. It is intended to make predictions for fielded products, 
but it can also provide valuable outcomes to support the design phase, combining knowledge 
extracted from historical empirical data and numerical simulation results.  
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Streszczenie 

Niniejsza rozprawa doktorska poświęcona jest problemom związanym ze skutecznym 
przewidywaniem rozmiaru uszkodzeń komponentów turbin gazowych za pomocą algorytmów 
uczenia maszynowego, gdy liczba danych dotyczących pomiarów uszkodzeń jest ograniczona 
lub są one niedostępne. Zrealizowane prace badawcze dotyczą estymacji maksymalnej długości 
pęknięć zmęczeniowych występujących na łopatkach kierowniczych wysokiego ciśnienia oraz 
przewidywania redukcji grubości ścianki elementu łączącego komorę spalania z sekcją turbiny 
w wyniku utleniania. Analizowane obiekty to części systemów turbiny oraz spalania dwóch 
różnych przemysłowych turbin gazowych wytwarzanych przez firmę Baker Hughes Company. 
Celem badań jest opracowanie metody predykcji rozmiaru uszkodzeń bazującej na algorytmach 
uczenia maszynowego, którą można zastosować do różnego rodzaju defektów, niezależnie od 
liczby dostępnych pomiarów uszkodzeń. Rezultaty wyznaczone za pomocą tej metody powinny 
być zgodne ze stanem wiedzy na temat badanego zjawiska i jego opisem teoretycznym. 

Pierwszy etap prac badawczych dotyczy szacowania długości pęknięć zmęczeniowych 
za pomocą popularnych algorytmów uczenia maszynowego, bazując na próbce zawierającej 25 
pomiarów uszkodzeń. Utworzono niestandardową funkcję kosztu, a elementy zbioru uczącego, 
testowego oraz walidacyjnego dobrano w sposób nadzorowany. Rzeczywiste dane operacyjne 
są użyte do wyznaczenia końcowych rezultatów, które mogą być dokładne pomimo nielicznej 
próbki. Kolejny etap badań dotyczy tego samego problemu technicznego, ale w celu uzyskania 
lepszej generalizacji i zdolności do ekstrapolacji oraz otrzymania przewidywań zgodnych z 
równaniami opisującymi wzrost długości pęknięć zmęczeniowych, zastosowano sztuczną sieć 
neuronową opartą na prawach fizyki (ang. physics-informed neural network). Źródło tego 
tłumaczenia stanowi opublikowana w 2021 roku praca zbiorowa1, lecz może ono budzić pewne 
kontrowersje, gdyż sztuczne sieci neuronowe mają inspirację biologiczną, a nie fizyczną. 
Utworzony model bazuje na rekurencyjnej sieci neuronowej, w którą wbudowano perceptron 
wielowarstwowy. W trakcie trwania procesu uczenia współczynniki funkcji kosztu zmieniają 
się dynamicznie zależnie od zgodności otrzymanego rozwiązania z równaniem teoretycznym 
opisującym badane zjawisko. Dokładność końcowych rezultatów jest satysfakcjonująca mimo 
zbiorów uczących składających się z dziesięciu, dwóch czy jednego elementu. Wiarygodność 
tych wyników oceniano na podstawie wartości znormalizowanego błędu wyznaczonego na 
zbiorach walidacyjnych, które nie służyły do uczenia sieci neuronowych, oraz na podstawie 
zgodności charakterystyk perceptronu z prawami fizyki opisującymi analizowany problem. W 
pracy tej zaproponowano nową metodę generalizacji dziedziny oraz transferu wiedzy pomiędzy 
dziedzinami w analizie regresji, która wykorzystuje sieci neuronowe oparte na prawach fizyki. 
Umożliwia ona skuteczne zastosowanie modelu predykcyjnego bazującego na wspomnianych 
sieciach neuronowych i wyuczonego w dziedzinie, gdzie dane pomiarowe dotyczące rozmiaru 
uszkodzeń są dostępne, w dziedzinach, w których takich danych brakuje. Całość procedury 
stanowi osiem kroków, lecz najistotniejszym z nich jest translacja wartości danych 
operacyjnych i danych wejściowych do sieci neuronowej. Metodę tą zastosowano do predykcji 
długości pęknięć zmęczeniowych, symulując brak pomiarów uszkodzeń. Otrzymane rezultaty 
są zgodne z obliczeniami modelu predykcyjnego, który został wyuczony od podstaw w 
dziedzinie docelowej. W ostatnim etapie badań, sztuczne sieci neuronowe oparte na prawach 
fizyki wraz z proponowaną metodą użyto do szacowania ubytku materiału w wyniku utleniania. 
Uzyskane rezultaty są satysfakcjonujące i potwierdzają uniwersalny charakter tej metody. 

 
1 Moszyński, M., Borzyszkowski, B., Damaszke, K., Romankiewicz, J., and Świniarski, M., 2021, “Sieci neuronowe oparte na prawach 

fizyki,” Uczenie maszynowe i systemy rozproszone, Wydawnictwo Politechniki Gdańskiej, Gdańsk, pp. 110–119. 
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Proponowana metoda generalizacji dziedziny i transferu wiedzy pomiędzy dziedzinami 
w analizie regresji, która wykorzystuje sieci neuronowe oparte na prawach fizyki, jest 
oryginalnym rozwiązaniem problemu naukowego i stanowi główny element nowości. Metoda 
ta umożliwia przewidywanie rozmiaru uszkodzeń komponentów turbin gazowych w przypadku 
braku pomiarów w wybranej dziedzinie, poprzez odpowiednie wykorzystanie sieci neuronowej 
opartej na prawach fizyki, którą wyuczono na podstawie danych empirycznych z innej 
dziedziny. Poza zastosowaniami do już pracujących turbin gazowych, metoda ta może posłużyć 
do wsparcia procesu projektowania, umożliwiając skuteczne łączenie danych empirycznych z 
rezultatami symulacji numerycznych.
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1. Introduction 

Global energy demand grew by 1% in 2022, exceeding the 2019 pre-pandemic levels 
by around 3% [1]. In 2022, global electricity generation increased by 2.3%, oil consumption 
raised by 3% and global natural gas production was constant compared to 2021. Petrochemical 
and power plant operators are forced to maximize production due to constantly growing energy 
needs. Concerning turbomachinery, this target can be achieved by investing in state-of-the-art 
rotating equipment with the highest efficiency and long mean time between maintenance, 
improving the performance of currently available assets through uprates, or optimizing their 
operation without significant capital expenditures on modernization. The latter may include 
analyses aimed at maximizing uptime and availability without jeopardizing reliability. Such 
requests concerning gas turbines are often raised by operators of natural gas liquefaction 
facilities, where the production process has a continuous character, and each hour of downtime 
results in a notable revenue loss. Such optimization may be related to single or multiple 
extensions of time between maintenance, shortening the duration of overhauls and inspections, 
alignment of a maintenance schedule with production plans, or applying modern strategies like 
predictive or prescriptive maintenance instead of traditional ones like corrective and preventive 
maintenance. Other requests relate to the feasibility of gas turbine output increase remaining 
the mean time between maintenance unchanged or the ability to compensate service at peak 
load by the operation with lower loads in other periods. Such requirements exert pressure on 
turbomachinery manufacturers, which must constantly push the boundaries of their products. 

Gas turbines are continuous-flow internal combustion engines comprising the following 
main sections: a compressor system, a combustion system and a turbine system. These devices 
are complicated in terms of design and maintenance mainly, but not exclusively, due to the high 
temperatures of gases in the combustor and turbine sections. Components that operate in such 
temperatures or are subjected to significant temperature changes will deteriorate due to thermo-
mechanical fatigue, oxidation, overheating, or creep, which are the most common causes of 
failures of gas turbine parts. Therefore, the turbine’s mean time between maintenance results 
from the endurance and maximum capabilities of combustion and turbine section components. 
These parts’ capabilities are mainly determined during the design process, the selection of 
materials, protective coatings and manufacturing methods. Nevertheless, also a lot can be done 
to optimize the engine’s operation after the design phase, when the units are deployed in the 
field and some empirical data are already available. Gas turbines are equipped with numerous 
sensors recording selected operating parameters. These large volumes of data are primarily used 
for monitoring, diagnostics and anomaly prediction purposes. Moreover, one of the most 
important data relates to the technical condition of hardware after service. This information is 
recorded during disassembly inspections, including visual, dimensional and non-destructive 
checks preceding repair activities. Considering a certain number of parts for which the damage 
size measurements and the historical operational data are available, these two datasets can be 
combined in order to approximate the damage size by means of a function of selected operating 
parameters. Such models allow departing from fixed intervals between planned outages 
enabling predictive and prescriptive maintenance. They can be applied to estimate the damage 
growth, the percentage of components expected to pass an inspection without a need to be 
repaired, the probability of an unplanned outage, or the expected percentage of items scrapped 
during the repair. The data-driven insights are used to support decisions on the operation and 
maintenance of a single unit and the entire fleet, helping to maximize revenues while assuring 
the highest availability and reliability levels. Therefore, original equipment manufacturers 
(OEMs) invest in remote monitoring systems, their predictive capabilities and platforms for 
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asset performance management and optimization to satisfy their customers. Advanced machine 
learning (ML) and artificial intelligence techniques are applied in each of these areas. 

 Machine learning algorithms are utilized to predict future data based on the knowledge 
extracted from historical data. These algorithms are applied for classification or regression 
problems, depending on the output variable type (i.e. whether categorical or continuous, 
respectively). Concerning gas turbines, machine learning methods are used to detect anomalies 
and faults based on recorded operating parameters, create synthetic sensors, predict degradation 
and damage to components due to various failure types, evaluate residual useful life of parts 
and the entire engine, or adjust gas turbine controls in real time. Despite many successful 
applications of these methods available in the literature, the most visible limitations are related 
to the lack of use of actual operational data, a limited number of papers focusing on finding root 
causes of damage and modeling the deterioration of engine parts due to them, a small number 
of studies about heavy-duty gas turbines and the lack of deployment of the proposed solutions 
in industrial applications. Moreover, many of these methods require much historical data to 
extract the knowledge effectively, may give results inconsistent with prior knowledge about the 
analyzed phenomenon and cannot be used to extrapolate. However, combining machine 
learning algorithms with theoretical knowledge into a hybrid model can be effective even if the 
availability of empirical data is significantly limited. Generally, a model represents numbers, 
structures, mathematical operations, rules and other algorithm-specific attributes required to 
make predictions given proper input data. These attributes are determined during training by 
applying the specific machine learning algorithm to the historical data. In this research, hybrid 
models are based on physics-informed neural networks (PINNs), which are neural networks 
with embedded equations describing the analyzed problem. The equations limit the space of 
allowable solutions and should improve the quality and accuracy of the final estimates. The 
effectiveness of PINNs and several data-driven machine learning algorithms is evaluated 
concerning the problem of fatigue crack propagation found on the trailing edges of high-
pressure nozzles of a heavy-duty gas turbine. Furthermore, a PINN is applied to predict the wall 
thickness reduction due to oxidation in industrial engine transition pieces (TPs). The predictions 
are based on actual operational data and refer to gas turbines manufactured by Baker Hughes 
Company. Considering the limitations in the quantity and quality of the operational data and 
damage size measurements, the accuracy of the obtained damage size predictions is satisfactory 
for both problems. 

In case of limited availability of training data, transfer learning methods can be applied 
to improve prediction capabilities in the so-called target domain by using knowledge about the 
source domain, empirical data available there and the predictive function (i.e. the model) 
created based on that data. Generally, the analyzed object, the damage type and its location and 
the entire data set available to create a new model or apply an existing one are referred to as a 
domain. The most popular form of transfer learning, widely used for deep neural networks, 
applies a valid model trained in the source domain and fine-tunes it in the target domain. This 
approach assumes the availability of data in the target domain necessary to adjust the neural 
network weights. However, in practical applications, this assumption may not be satisfied. In 
such cases, domain generalization methods are used to extract domain-invariant representations 
from multiple source domains and achieve good out-of-distribution generalization capabilities. 
Nevertheless, studies on domain generalization focus mainly on classification problems, with a 
limited number of papers related to rotating equipment. This research addresses this gap. The 
primary novelty resulting from this study is a method of single-source domain generalization 
and cross-domain knowledge transfer in regression analysis, which is based on physics-
informed neural networks. The method aims to effectively apply a cumulative damage model 
built using a PINN, i.e. the so-called source hybrid model, which was trained in a source domain 
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where measurement data on damage size are available, in a target domain, where such data are 
unavailable. This method can be applied if the damage type in the target domain, the physical 
phenomena causing it and the applicable theoretical or experimentally determined equations for 
estimating the damage increment in a single time step are the same as in the source domain. 
The so-called shifting of the operational data and PINN’s input variables in the target domain 
is the essential step that enables an effective application of the unchanged source hybrid model 
in the target domain. The predictions in the target domain for the original set of operational data 
are obtained by applying the source hybrid model to the set of shifted operational data. The 
proposed method is effectively applied for the analyzed problems of fatigue crack growth and 
wall thickness reduction due to oxidation, assuming no damage size measurements are available 
in the target domains. The results obtained using the proposed method are comparable with the 
predictions determined by means of hybrid models trained from the ground up in the target 
domains, i.e. with the same structure as the source PINNs, and are considered satisfactory. 

 The proposed method can be applied effectively at the early stages of the part’s lifetime 
when the availability of damage size measurements is limited and the number of observations 
is small. It has a universal character and can be used for modeling damage due to various failure 
types found on the main components of gas turbines. Nevertheless, this method can also be 
applied to other turbomachinery assets, including compressors, pumps or steam turbines, if the 
minimal requirements for data availability are satisfied (i.e. they are listed in Chapter 4). 
Experience gained during this research will be used in order to optimize the operation of 
rotating equipment manufactured by Baker Hughes Company, assuring the highest levels of 
safety and reliability.  
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2. Objectives, theses and scope of the dissertation 

An ability to estimate in real-time and predict damage to critical components of gas 
turbines is crucial to ensuring the reliability and availability targets are met. Empirical data 
describing the extent of damage and operating conditions under which parts worked may be 
utilized to build a purely empirical model, or to adjust a physics-based model of the analyzed 
phenomenon. However, the availability of data may be limited due to various reasons. Building 
a credible model based on a small sample is challenging, particularly if the applied algorithm 
performs well in an abundance of data, like in the case of many machine learning methods. 
Nevertheless, hybrid models that combine such algorithms with theoretical knowledge about 
the analyzed failure type may provide valuable results even in the small data regime. The 
effectiveness of selected machine learning algorithms in such scenarios has been evaluated and 
presented in this dissertation. 

2.1 Objectives of the dissertation 

The main objective of this research is to create a method based on machine learning 
algorithms to predict the size of damage to gas turbine parts. The specific aims are as follows: 

- models created by means of this method shall respect prior knowledge and physical laws 
that govern the analyzed phenomenon; 

- the proposed method shall be universal and applicable for modeling damage due to 
various failure types found on the main components of gas turbines; 

- the method shall be applicable at the early stages of the components’ lifetime, e.g. 
during the design phase, first tests of the part, or first uses in the market before the 
product reaches maturity; 

- application of the proposed method shall be possible and provide valuable insights even 
if the availability of damage measurements is limited and the number of observations is 
small, i.e. less than 30 data points to train and test the model. 

These objectives were achieved by creating hybrid models based on physics-informed neural 
networks combined with a novel method of domain generalization. 

This research was conducted in cooperation between BH Poland sp. z o.o. (Baker 
Hughes Company) and the Institute of Fundamental Technological Research of the Polish 
Academy of Sciences. The objectives defined by the company reflect the voice of its customers. 
Increasing energy demands require higher availability of gas turbines and longer intervals 
between planned outages without jeopardizing reliability. The application of machine learning 
algorithms in maintenance optimization aligns with state-of-the-art solutions applied in the 
industry and the company’s digital strategy. 

2.2 Theses of the dissertation 

The research presented in this dissertation was aimed at proving the following theses: 

1) Models based on machine learning algorithms can accurately predict the size of damage 
to gas turbine parts in domains characterized by the limited availability of damage 
measurements or lack of them using the proposed method of domain generalization. 
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2) Damage accumulation models (DAMs) based on machine learning algorithms can be 
trained effectively, generalize well and provide accurate estimates even if the sample is 
composed of several observations only, e.g. less than or equal to 10 data points. 

3) The extent of damage to gas turbine parts can be predicted accurately by hybrid models 
combining machine learning algorithms with theoretical knowledge about the analyzed 
failure type, even if the time series of turbine operating parameters are incomplete. 

2.3 Scope and structure of the dissertation 

The research was divided into the following subprojects: 

- Prediction of the length of fatigue cracks found on the trailing edges of high-pressure 
nozzles of a heavy-duty gas turbine manufactured by Baker Hughes Company. 

- Prediction of the wall thickness reduction due to oxidation in transition pieces of 
industrial gas turbines manufactured by Baker Hughes Company. 

The analyzed objects, i.e. the high-pressure nozzles and transition pieces, are the parts of two 
different models of heavy-duty gas turbines, two separate systems (i.e. combustion system and 
high-pressure turbine system, respectively), perform different functions and are subjected to 
different loads. Moreover, the analyzed failure types, i.e. cracks due to low cycle fatigue (LCF) 
and base material depletion due to oxidation, are governed by different physical laws. Such 
objects and failure types were chosen intentionally to demonstrate that the proposed predictive 
method gives satisfactory results for various problems and setups. Nevertheless, a mandatory 
prerequisite to applying this method is the availability of damage measurements and the 
corresponding gas turbine operational data captured by a data acquisition system. 

The first stage of this research focused on the fatigue cracks of the 1st stage nozzles 
(S1N). The scope was to apply several popular statistical learning algorithms (i.e. multiple 
linear regression, polynomial regression, kernel-based methods, random forest, AdaBoost and 
extreme gradient boosting and artificial neural networks) on a small dataset composed of 31 
observations and understand if those methods are sufficient to achieve the objectives of this 
research. The most important contributions of this part of the research are as follows: 

- Selection of operating parameters, i.e. time series captured by the Remote Monitoring 
and Diagnostics (RM&D) system, that are meaningful in the process of modeling the 
growth of fatigue cracks. 

- A fully controlled manner of splitting the small dataset into training, validation and test 
subsets was applied, which reduced ambiguity during the cross-validation, testing and 
interpretation of results. 

- A custom cost function that favors solutions that accurately predict the longest cracks 
was created and applied. 

- The obtained results confirm that some of these algorithms can accurately predict the 
length of analyzed cracks, even if the sample is composed of 31 data points only. 

A detailed description of this part of the research is given in Chapter 4. 

The second stage of this research was related to the same object and failure type. 
However, the objectives evolved and were about building models based on machine learning 
algorithms with better generalization and extrapolation capabilities, which are more consistent 
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with theoretical formulations describing the propagation of fatigue cracks. Therefore, it was 
decided to proceed with physics-informed neural networks, considering the many advantages 
this class of algorithms may offer in the analyzed scenario. The most important contributions 
of this part of the research are as follows: 

- An approach was proposed and applied to calculate thermal stresses at shutdown based 
on operating parameters at steady-state conditions and by using selected results of the 
numerical analysis. 

- A custom cost function was created with a variable parameter regulating the balance 
between empirical data and physical laws during the training process. 

- An approach to expand the source domain with synthetically created data was proposed 
and applied, thus, enlarging the subspace in which the hybrid model based on the 
physics-informed neural network obeys the theoretical formulations. 

- The results prove that PINNs can be trained effectively and provide credible estimates 
when the training subset comprises ten, two, or only one observation. 

This part of the research is described in the first three sections of Chapter 5. 

The first application of the proposed method for predicting the size of damage to gas 
turbine components is documented in the remaining sections of Chapter 5. The analyzed object 
and the failure type remained the same. The main objective of this stage of the research was to 
train a model and extract knowledge in the source domain, in which damage measurements are 
available, and apply this knowledge in the target domain to obtain accurate and credible 
estimates of the damage size, despite the lack of observations in that domain. Both domains 
refer to the same nozzle segment but two different positions on the airfoils’ trailing edges. The 
most important contributions of this part of the research are as follows: 

- Formulation of the method for predicting the size of damage to gas turbine parts, which 
is based on building physics-based dependency between the source and target domains 
for domain generalization purposes coupled with a physics-informed neural network. 

- Prediction of the nozzles fatigue crack lengths by means of the proposed method in case 
of the absence of crack length measurements in the target domain. 

- The obtained results prove that the method is effective and enables predicting in the 
target domain, even if damage size measurements are unavailable. 

The third stage of this research focused on modeling the reduction of transition pieces’ 
wall thickness due to oxidation. It is described in Chapter 6. The main objective was to evaluate 
the flexibility and versatility of the proposed method when applied to a different object and 
failure type. The scope was to create a model based on a PINN, considering only a small dataset 
of 11 observations. Subsequently, the method of domain generalization and knowledge transfer 
was applied. In this case, the source and target domains refer to two different areas of the same 
component. The most important contributions of this part of the research are as follows: 

- Creation of a hybrid model based on a physics-informed neural network that is capable 
of accurately estimating material depletion due to oxidation using the actual operational 
data captured by the Remote Monitoring & Diagnostics system. 

- The results prove that such a PINN based on a recurrent neural network (RNN) with an 
embedded feedforward neural network (FNN) can be trained effectively and provide 
consistent outputs even when the training set has only seven or two observations. 
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- Prediction of the Transition Pieces’ wall thickness reduction due to oxidation using the 
proposed method based on machine learning algorithms in case of the absence of wall 
thickness measurements in the target domain. 

- The results prove that the proposed method of domain generalization and knowledge 
transfer is robust and versatile, with successful applications to different kinds of gas 
turbine parts and failure types, even though it is not free of disadvantages. 

2.4 Data availability statement 

Data supporting this research are confidential and are the proprietary property of Baker 
Hughes Company. Due to these reasons, the data cannot be shared openly and were anonymized 
in this dissertation. Nevertheless, the anonymized published data are sufficient to describe the 
analyzed technical problems and characteristics of input, intermediate and output variables and 
to understand the context of various decisions taken during the research.  
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3. Background 

3.1 Maintenance of gas turbines 

Gas turbines are internal combustion engines that work according to the Brayton 
thermodynamic cycle. Their efficiency depends on the maximum cycle temperature, the so-
called firing temperature, which is the average temperature of exhaust gases at the outlet of 
high-pressure nozzles. However, the maximum temperature cannot exceed specific values due 
to limitations imposed by the resistance of available materials. The most severe operating 
conditions are in the combustion and high-pressure turbine systems. Thus, the endurance of 
components from these sections determines the frequency of planned maintenance activities. 

A well-designed maintenance program reduces operating costs while maintaining the 
high availability of the equipment. Maintenance of heavy-duty gas turbines is typically based 
on fixed intervals between planned outages. Such a strategy based on regularly executed 
inspections is known as preventive maintenance. It is a proactive approach to asset life 
optimization, which results in fewer maintenance events, increased performance of the fleet and 
lower and more predictable operating expenses in the long term in comparison with the reactive 
approach known as corrective maintenance. The scheduled outages vary in terms of work scope, 
but the most common types of disassembly inspections are as follows: 

- combustion inspection, 
- liners and transition pieces inspection, 
- hot gas path inspection, 
- major inspection, 
- modular replacement. 

Time until the upcoming planned outage may be reduced based on many criteria influencing 
the equipment's life. The most common hours- and starts-based maintenance factors concern 
the following: 

- fuel type, 
- peak load operation, 
- operation above 100% of the nominal speed, 
- injection of steam or water for emissions reduction or power augmentation, 
- operation in suboptimal combustion mode, 
- startup type, i.e. standard or peaking-fast, 
- startup load (i.e. part, base, or peak load achieved during the startup), 
- shutdown type, i.e. normal or emergency. 

These factors are applied to calculate so-called factored hours and factored starts based on the 
actual hours and starts and the unit’s operational profile. Detailed considerations regarding the 
operation and maintenance of heavy-duty gas turbines are available in [2]. In addition, examples 
of upgrade packages that may extend the baseline inspection intervals are provided in [3]. 

Aeroderivative gas turbines are composed of an aircraft engine serving as a gas 
generator coupled with a non-aviation power turbine. Such units are widely applied for marine 
propulsion, power generation or mechanical drive applications, e.g. as drivers of compressors 
or pumps. The maintenance philosophy of such units is different compared to heavy-duty gas 
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turbines. The disassembly inspections, i.e. a hot section inspection or major inspection, are 
performed when needed, based on the actual technical condition of internal parts determined 
during periodical borescope inspections. Some factors may influence the components’ life, but 
maintenance factors are generally not defined and do not impact the frequency of teardown 
inspections. Additionally, the lightweight construction enables on-site replacement of the entire 
package within 48 hours. A general description of aeroderivative gas turbines manufactured by 
General Electric is available in [4]. 

Nevertheless, such an on-condition concept is also applied to heavy-duty gas turbines. 
A condition-based maintenance approach aims to make data-driven decisions based on 
collected and appropriately processed information about the analyzed object’s health [5,6]. 
Components eligible for condition-based maintenance at outage (CBMO) are subjected to 
detailed visual, dimensional and non-destructive checks during disassembly inspections. The 
obtained data are compared with the service limits defined based on engineering models and 
knowledge of subject-matter experts. The parts that satisfy all the acceptance criteria do not 
require repair and can remain in the gas turbine until the next planned outage. For clarity, the 
eligibility is evaluated based on predefined policies, an analysis of past repairs and the 
components' residual life, and an analysis of operational data describing the parts and the unit. 
The same concept can be extended to repair activities aiming at scrapping only components that 
do not satisfy the acceptance criteria, i.e. condition-based replacement life (CBRL). Summaries 
of numerous papers about gas turbine condition-based maintenance and gas path diagnostics 
are available in [7,8]. Based on them, the following areas need continuous research and further 
improvements: 

- Creation of effective hybrid methods for performance degradation and gas path analysis 
that can provide both qualitative and quantitative estimates of the fault level. 

- Data-efficient, accurate prognostics methods in health monitoring, including multiple 
and combined failure types scenarios. 

- Standardization in terms of the definition of problems, principles and terminologies 
related to gas path diagnostics. 

- Development of monitoring and diagnostics platforms capable of integrating various 
techniques applied in this area, including machine learning algorithms and providing 
actionable insights to the end-users. 

The research described in this dissertation addresses these needs. 

A maintenance strategy designed for the prevention of failures based on continuous 
monitoring and prognosis of hardware degradation is known as predictive maintenance. A 
thorough literature review on predictive maintenance in Industry 4.0 is available in [9]. In the 
context of gas turbines maintenance, such a strategy brings the following advantages over the 
preventive maintenance approach: 

- Continuous monitoring, evaluation of the assets’ health status and rapid remediation 
assured by the Remote Monitoring & Diagnostic services. 

- Real-time evaluation and prediction of damage to gas turbine parts and the associated 
failure probability based on actual operational data. 

- Making knowledgeable, data-driven decisions or building autonomous expert systems 
based on the result given by various models fed by data gathered by the RM&D system. 
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- Resignation from the fixed intervals between planned inspections in favor of a flexible 
maintenance strategy with variable intervals between the outages based on the actual 
and foreseen status of the fleet. 

- Optimization of the work scope executed during planned shutdowns focusing mainly 
on the components indicated by the diagnostics and prognostics models. 

- Optimization of capital and operating expenses related to spare parts management. 

Finally, a combination of predictive capabilities with descriptive analytics is the main concept 
behind prescriptive maintenance. It is an extension of the predictive maintenance approach and 
is known as the highest maturity level of knowledge-based maintenance [10]. This strategy does 
not focus on predictive performance only but attempts to prescribe the optimal decision based 
on historical and real-time data [11]. The recommendations drawn from the comprehensive 
analysis and optimization of maintenance measures may be especially relevant in the case of 
complex systems composed of many elements. Automated agents could be effective in 
situations where a variety of actions need to be taken quickly or repeatedly. The paper [12] 
shows an application of deep reinforcement learning to train a decision-making agent in a 
simulated industrial plant of 100 machines. The study [13] describes an extreme, entirely data-
driven maintenance strategy that learns the maintenance effects based on machine 
characteristics without any upfront assumptions based on expertise. 

Original equipment manufacturers use the available in-house knowledge and build 
software platforms to optimize the performance of their fleet. The paper [14] presents an 
example of a physics-informed analytics framework created by Baker Hughes Company for the 
predictive maintenance of gas turbines. Combining data-driven techniques with physics-based 
modeling improves the prognostic capabilities and allows for an accurate description of these 
complex systems. Such high-fidelity virtual representations of physical assets capable of 
replicating original physical processes with abilities to optimize and predict are known as digital 
twins. This term was first introduced in 2003, [15], and has gained great popularity in industry 
and science, especially since 2015 [16]. Creating an accurate replica in the digital space is 
enabled by continuous data transfer and synchronization between the two counterparts. The 
benefits of such a virtual representation span the entire life of a product, starting from the design 
and manufacturing phases through service and disposal [17]. Therefore, a digital twin can 
enable predictive or prescriptive maintenance strategies for fielded products. The study [18] 
provides a systematic literature review on digital twins, while [19] reviews their applications 
for maintenance. Digital twins can be grouped into three classes depending on their magnitude 
[20]. The smallest replicas represent individual materials, products or units that cannot be 
further divided. They can be combined into system replicas to represent complex products, 
production lines or factories. The most extensive replicas are the system of systems, which 
refers to an enterprise-wide integration of multiple systems or even cross-enterprise exchange 
of information and optimization of different plants or factories. Such a bottom-up approach 
provides a comprehensive and holistic overview and allows for optimizing actions considering 
each piece of equipment. Several examples of unit digital replicas aimed at monitoring and 
optimizing gas turbine maintenance (e.g. adjusting the axial compressor water wash frequency 
of aeroderivative engines or estimating the next inspection of fuel nozzles in heavy-duty gas 
turbines) are presented in [21]. The paper [22] presents a digital twin for rotating machinery 
designed to quantify and localize rotor unbalance. In [23] a multilayer digital representation of 
a two-spool high bypass turbofan engine was presented. The top layer is the cycle model 
adapted to test data of the engine, the intermediate layer models the modules (i.e. the fan and 
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booster section, high-pressure compressor, combustion chamber and turbine section) using one-
dimensional (1D) mean line models to extend the component digital replicas from the third 
layer, which is based on three-dimensional computational fluid dynamic models. The study  
[24] presents a digital system of systems for diagnostics, monitoring and prognostics of the 
health of a synthetically created fleet of 1000 aircraft engines. Of course, such studies are not 
limited only to scientific research. Integrated solutions for asset performance management and 
process optimization are commercially offered by the leading manufacturers of gas turbines in 
oil & gas and energy sectors, including Baker Hughes Company [25], General Electric [26] or 
Siemens Energy [27]. 

3.2 Methods for predicting damage to gas turbine components 

An analysis and prediction of the life of gas turbine parts starts at the design phase and 
continues for the entire lifetime of the hardware. Manufacturers of turbomachinery equipment 
apply standardized processes for predicting damage and evaluating the life of critical parts. For 
example, the life expectancy of the main combustion and hot gas path (HGP) components is 
defined by the repair (or inspection) and replacement intervals, the percentage of items expected 
to pass the inspection without a need to be repaired and the expected percentage of items 
scrapped during the repair. Typically, the damage observed on those parts is due to one of the 
following failure types or combinations of them: 

- thermo-mechanical, low cycle fatigue; 
- oxidation of coatings and base material; 
- plastic deformation due to creep; 
- wear; 
- corrosion due to fuel or air contaminants; 
- others, like indentations, damage due to inappropriate disassembly or assembly, or 

nonconformities related to the manufacturing or repair. 

According to [28], more than 60% of damage observed in aircraft engines was due to cracks, 
while almost 7% was caused by material overheating. It shows the importance of the capability 
to accurately model and predict the life of gas turbine components subjected to damage due to 
low cycle fatigue or oxidation. This research is focused on both failure types. Additionally, it 
provides evidence that the proposed method of domain generalization and knowledge transfer 
can also be applied to predict the size of damage due to the remaining failure types. 

Following the standard process, designing and predicting the life of gas turbine components is 
an interdisciplinary project which integrates numerous efforts, e.g.: 

1) Definition of operating characteristics of loading, steady-state operation and unloading 
of the gas turbine and estimation of performance parameters during such cycles. 

2) Execution of a thermal analysis aimed at the calculation of metal temperatures of the 
analyzed object. 

3) Execution of a structural analysis aimed at the calculation of stresses, strains and fatigue 
life prediction of each critical location. 

4) Selection of materials, coatings, and methods of manufacturing. 
5) Definition of limits in terms of damage detectability, serviceability and repairability of 

the analyzed object. 
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6) Estimation of costs associated with the manufacturing and repair of the part. 

The structural analysis combines the inputs related to the operational parameters, material 
properties and thermal maps to estimate the extent of damage due to thermo-mechanical fatigue, 
creep and oxidation. The use of finite element analysis (FEA) in the stress analysis process is a 
standard approach in industry and academia. In some cases, a two-dimensional (2D) model may 
be sufficiently accurate and simultaneously reduce the computational cost. For example, in [29] 
a 2D axisymmetric model for the prediction of metal temperatures of the whole engine during 
a transient state was proposed. The paper [30] presents a method to predict the burst speed of a 
turbine disk made of Inconel 718 nickel-based superalloy based on two-dimensional finite 
element simulations. Nevertheless, for complex geometries, three-dimensional loading, or both, 
a 2D analysis may be inaccurate. The study [31] describes an approach that combines three-
dimensional FEA with multiple attribute decision-making methods to select materials for 
combustor liners. In [32] the authors integrated a thermal analysis with a 3D finite element 
model to perform a life assessment on the combustor liner. In [33] the finite element method 
was applied to calculate the stress concentration factor for a turbine blade of an aircraft engine 
with an indentation due to foreign object damage (FOD). A hybrid approach that merges FEA 
with the Monte Carlo method [34] to predict the life of a single-crystal gas turbine blade made 
of CMSX-4 nickel-based superalloy was presented in [35]. Based on the literature review, it is 
visible that the most common application of finite element analysis for designing gas turbines 
is related to the prediction of life due to low cycle fatigue. Such focus is consistent with the 
statistics of damage observed in commercially operating engines, as already described. LCF 
life prediction of rotor blades is the most common research area [36,37], including interactions 
with other failure types, like creep [38] or high cycle fatigue (HCF) and creep [39]. Other 
examples of using FEA for predicting the LCF life of gas turbine parts are related to a 
compressor disc [40], turbine section disc [41] or turbine casing [42]. Finally, the finite element 
method was applied to model thermal barrier coatings (TBCs), starting from the design of TBC 
thickness distribution on a rotor blade [43] through the prediction of deformation near cooling 
holes of a blade [44] and the estimation of TBC life on a combustor liner of an aircraft engine 
[45]. 

Detecting and identifying cracks in rotating machinery components has been and still is 
a significant area of basic and applied research. Transverse cracks in rotor shafts play a 
particularly important role. So many works have been devoted to this research area that it is 
almost impossible to cite in this dissertation, even those considered the most representative. In 
addition to various data-driven statistical approaches used to detect this type of cracks, it is 
common to use methods based on physical and computer models of the tested object, where the 
cause-and-effect relationships between the crack impact and the dynamic response of the rotor 
system result from the physical properties of the mechanical vibration phenomenon 
accompanying the rotational motion of the rotor shaft with at the same time possibly accurate 
knowledge of the structure properties and numerical parameters of the machine under study. In 
most cases of these methods, the symptom of a crack occurrence is a change in the natural and 
forced vibration parameters of such an object, which, due to the generally low sensitivity of this 
change to the depth of cracks, especially in their initial stages, makes this type of approaches 
not always completely satisfactory for practical purposes. 

A quite original alternative to the above-mentioned commonly used methods of detection, 
positioning and depth identification of transverse cracks in rotor shafts is an application of the 
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phenomenon of propagation and reflection of elastic waves in these elements, described, among 
others, in the paper [46]. In turn, in works [47,48], an identification of transverse cracks in rotor 
shafts is carried out using a stochastic approach when solving the model-based inverse problem. 
Namely, by means of an advanced structural mathematical model of the tested rotating system 
using Monte-Carlo computer simulations, a cloud of the most probable impact scenarios caused 
by the crack with different depths and positions on the rotor shaft is generated. Then, during 
on-line monitoring of an operation of the real rotating machine, by the use of the probability 
density functions, the most similar theoretical scenario of the impact of a given crack in relation 
to the scenario recorded by measurements is successfully identified. 

Continuous diagnostics of gas turbine performance is one of the enablers of predictive 
maintenance. Gas path analysis (GPA) is the most popular data-driven diagnostic method for 
monitoring the health of gas turbines. Introduced 50 years ago as described in [49], this model-
based method relies on a thermodynamic model of a gas turbine. According to this approach, 
explicit mathematical and thermodynamic equations determine the relationship between the 
gas-path measurements (e.g. temperatures, pressures, flow rates, positions and rotational 
speeds) and the performance parameters, such as pressure ratio, firing temperature, power 
output and component efficiencies. The method assumes that physical faults, like erosion, 
foreign object damage of turbine blades, or axial compressor fouling, result in measured 
parameters deviation. Therefore, it is possible to identify the faulty component by knowing the 
relationship between the measured variables and the performance parameters. Initially, a linear 
dependency between the vector of health parameters ݔሬሬ⃗  and the vector of measurements zሬ⃗  was 
proposed: 

 ,z x H   (1) 

where H is known as the influence coefficient matrix (ICM). The deviations of components’ 
performance parameters from their reference values corresponding to the new and clean engine 

x  can be calculated as follows: 

 1 ,x z  H   (2) 

where 1H  is the inverted ICM, known as the fault coefficient matrix (FCM), while z  
represents the deviations of measurements from their reference values. This simple linear model 
can detect and isolate faults, handling multiple fault diagnostics. Nevertheless, its reliability 
depends on the accuracy of the influence coefficient matrix, the measurement system’s setup 
and the sensors’ accuracy [50]. Additionally, the inversion of the ICM matrix requires that the 
number of measurements is higher than or equal to the number of performance parameters to 
get a unique solution. 

In reality, the assumption of linearity is correct only for small deviations from the reference 
state and becomes invalid as the engine deteriorates and the number of faults increases [51]. 
Therefore, in [52] the iterative Newton-Raphson algorithm was applied to eliminate the linear 
method’s drawbacks and solve a nonlinear relationship between the health parameters and 
measurements. Furthermore, to overcome the limitations resulting from the quantity and quality 
of available measurements, weighted linear regression, linear quadratic estimation (known as 
Kalman filter), or their variants were applied by OEMs. 
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Kalman filter is a model-based iterative algorithm to estimate the state of the analyzed system 
based on uncertain measurements and the system’s previous state. This predictor-corrector 
method was proposed in 1960 [53] and has numerous industrial applications, including real-
time control of systems, signal processing, robotics and data fusion techniques or applications 
for distributed generation and energy storage systems [54]. The original concept applies to 
problems with linear state transition and linear measurements characterized by a Gaussian 
distribution. In the prediction step, the algorithm estimates the state along with the associated 
uncertainties as follows: 

  
1 ,k k kk kx x u F B    (3) 

 1 ,T
k k k k k P F P F Q  (4) 

where vector x⃗෠k is the estimate of the system state at time k, uሬ⃗  is the control vector, F is the 
state-transition matrix, B is the control matrix, P is the covariance matrix of state variables and 
Q is the covariance matrix of the system noise. Once the estimates are available, a measurement 
is taken: 

 ,k k k kz x v 
  H  (5) 

where z⃗ is the measurement vector, H is the model matrix and v⃗ is the measurement noise vector. 
In the corrector step, the estimates are updated utilizing a weighted average, with less emphasis 
on the estimates with higher uncertainty: 

   1
,T T

k k k k k k k


 K P H H P H R  (6) 

    ' ,k k k kk kx x z x  K H    (7) 

 ' ,k k k k k P P K H P  (8) 

where K is the Kalman gain that determines how much the filter follows the measurements or 
the model, R is the covariance matrix of measurement noise, vector  'kx  represents the corrected 
state of the system at time k and the matrix 'kP  stores the corrected covariances. Since it is a 
recursive algorithm, the corrected estimates serve as the input data at the next time step k + 1. 

An extension of this concept applicable to nonlinear systems, where nonlinear functions 
describe the state transition and measurement equations, is known as the extended Kalman 
filter. Following the modified algorithm, these functions are linearized by taking the first-order 
Taylor approximation around the current mean and covariance. Subsequently, the linear filter 
can be applied. Nevertheless, if the analyzed system is highly nonlinear or the local linearity 
assumptions are violated, even the extended Kalman filter may result in suboptimal estimates 
[55]. Moreover, when applied to model non-Gaussian processes, the algorithm’s performance 
is unsatisfactory [56]. Finally, the Taylor expansion requires deriving the Jacobian matrices, 
which may be challenging and computationally expensive. Modifications of the Kalman filter 
algorithm to reduce the limitations and improve its performance are presented in [57]. 

Along with expanding the installed fleet and gathering experience, the technical 
condition of gas turbine components can be recorded during the disassembly inspections, 
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including visual, dimensional and non-destructive checks preceding the repair activities. With 
the availability of empirical data, statistical methods can be applied. Survival analysis is a part 
of statistics focusing on the analysis and prediction of time until a failure occurs. One of the 
most popular survival analysis approaches is the Weibull analysis. Since its introduction in 
1951 [58], it has been successfully applied in various industries, like aerospace, automotive, 
materials and composites research, military, power generation, oil & gas and many others. The 
main advantages of Weibull analysis are as follows [59]: 

- The capability to provide accurate estimates with small datasets composed of two or 
three failed data points or even without failures if the Weibayes method is applied. 

- The output of the analysis is a Weibull plot which gives a concise representation of the 
inputs and outputs, allowing to assess the correctness and quality of the model and 
quickly interpret the results. 

- The value of the shape parameter (or the slope) β provides information concerning the 
physics of failure (i.e. β < 1 describes early failures and so-called infant mortality, β = 1 
is valid for randomly occurring failure types that are independent of time and β > 1 
describes late failures due to wear of the analyzed object). 

- The Weibull probability distribution can accurately describe many different types of 
data distributions. 

The cumulative distribution function (CDF) of a three-parameter Weibull distribution has the 
following form: 

   1 ,
t

F t e



  

    (9) 

where F(t) is the cumulative probability of failure up to time t, η is the scale parameter or the 
characteristic life when 63.2% of units are expected to fail and γ is the location parameter that 
determines the shift of the distribution, i.e. a positive value of γ represents the duration of a 
failure-free period. In the case of small samples, unreasonable values of the slope, or lack of 
failed data points, the value of β parameter can be assumed, and the characteristic life can be 
derived using the maximum likelihood method. The assumption can be based on historical data 
or models, design practices or literature, physics-based models or material properties or the 
experts’ knowledge. The resultant one-parameter distribution is expected to have a narrower 
confidence interval than a two-parameter Weibull model based on just a few failures. 

In order to take into consideration the impact of operational parameters on the probability of 
failure, Eq. (9) can be modified as follows: 

    0 1 1

1 exp ,
exp K K

tF t
z z




  

            


 (10) 

where the characteristic life  0 1 1exp K Kz z        depends on the covariates z, 
1,2, ,k K …  is the ordinal number assigned to each covariate and α denotes the coefficients. 

Usually, the maximum likelihood method is utilized to estimate the model’s parameters. Such 
an extended model is known as the Weibull proportional hazards model. This technique always 
yields a reasonable measure of the importance of covariates but does not explain the failure 
mechanism. Thereby, it can be effectively applied for data exploration [60]. 
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Finally, Eq. (10) can be reformulated to model the extent of damage as a function of time and 
other independent variables: 

    0 1 1

1 exp ,
exp K K

lF l
z z



  

  
          


 (11) 

where l is a continuous variable that describes the damage size, e.g. the length of cracks or the 
reduction of wall thickness due to oxidation. Such a model provides a distribution of damage 
size for each combination of the covariates. With a defined limit, which discriminates failed 
parts from acceptable ones, this model can be utilized to predict the probability of failure. 

The most valuable and informative way to execute Weibull analysis is to split the failure data 
into distinct classes and prepare separate Weibull plots for each failure type. There are multiple 
examples of such analysis applied to turbomachinery assets. In [61] a Weibull distribution was 
fit to field data describing the fatigue life of a high-pressure turbine disc of an aeroderivative 
gas turbine. Another application of Weibull analysis for predicting the probability of failure due 
to low cycle fatigue is presented in [62]. The model was prepared based on data describing 520 
gas turbine blades subjected to a time-truncated fatigue test. The study [63] describes a 
statistical analysis of empirical data related to the 1st stage nozzles of MS9001F gas turbines. 
Fatigue cracks are found in many locations of this stationary component because of high 
thermal stresses during engine shutdowns and tensile stresses during steady-state operation. The 
authors created a separate Weibull model describing crack dimensions for each critical location. 
In [64] Johnson-Weibull analysis of inspection data describing 1312 high-pressure turbine 
blades of aircraft engines was executed. Three separate models with the same slope were 
created, i.e. for failures due to thermo-mechanical fatigue, due to oxidation or erosion or both, 
and a model which pools the remaining failure types, e.g. creep, wear, rubbing and indentations. 
Another example of Weibull analysis applied to aircraft engines is presented in [65], where the 
authors used a three-parameter Weibull distribution to predict the reliability of a high-pressure 
compressor subjected to degradation. The item [66] describes applications of Weibull analysis 
for predicting failures due to a manufacturing process change and estimating thrust bearing 
wear rate on an industrial gas turbine. An unusual way to apply the Weibull distribution is 
presented in [67,68], where it was used to model the performance and predict the reliability of 
MS5002C and PGT10/2 gas turbines installed in a gas compression station without extracting 
the individual failure types. In the first paper, the authors proposed a model with a variable 
slope β, which gradually increases with time. In comparison, the reliability assessment 
presented in the second paper was based on the modified Weibull distribution [69]. It should 
be clarified that this dissertation did not cite many older papers about the application of Weibull 
analysis for predicting the life and damage to gas turbine parts. Nevertheless, it is still a widely 
applied standard in the reliability analysis of rotating equipment. However, in the era of big 
data, most state-of-the-art techniques for data-driven inference rely on machine learning 
algorithms.  
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3.3 Applications of machine learning 
for predicting damage to gas turbine components 

Machine learning could be defined as a set of methods and algorithms that can learn and 
extract knowledge from historical data to predict future data. Such algorithms can be utilized 
to support decisions under uncertainty or even to make data-driven decisions. The theoretical 
background of many of these algorithms was formulated decades ago, but they gained enormous 
popularity with the exponential growth of the computational power of modern computers. This 
technological progress resulted in advanced low-cost sensors installed in each Internet of 
Things (IoT) object, continuously generating data and exchanging them with a remotely 
accessed server, commonly called a cloud. Such quantities of data hold many valuable, often 
unexpected relationships. Specific techniques should be applied to extract as many of them as 
possible, which is the objective of machine learning algorithms. A comprehensive literature 
review on machine learning applications within the industry field is provided in [70]. 

Depending on the learning approach, machine learning is typically classified into the following 
categories: 

- supervised learning, 
- unsupervised learning, 
- reinforcement learning. 

The objective of supervised learning is to learn and approximate the relationship between the 
input data X and the output Y based on some observations that represent the actual mapping 
f:X→Y: 

 ˆ : ,f X Y  (12) 

where f̂  is the learned function. If Y is a categorical variable, such a problem is a classification 
task (multiclass classification, if the number of classes is higher than two). If the output variable 
is continuous, it is known as regression analysis. In a simplified case, the analyzed dataset with 
observed input-output pairs is split into two subsets. The training set is used to extract the 
approximated relationship f̂  during the learning process aimed at optimizing a predetermined 
cost function. In contrast, the test set is utilized to assess the accuracy and generalization 
capabilities of the extracted function f̂ , when applied to data not used during the training. The 
number of algorithms and their variations applied in supervised learning constantly increases. 
Some of the most popular (i.e. multiple linear regression, polynomial regression, kernel-based 
methods, random forest, AdaBoost and extreme gradient boosting and artificial neural 
networks) are described in detail in the next chapter concerning predicting the length of fatigue 
cracks found on the high-pressure nozzles. 

The objective of unsupervised learning is to detect and extract patterns from the analyzed set 
of unlabeled data, i.e. there are no input-output pairs, and the Y matrix does not exist. According 
to [71], typical applications of unsupervised learning are related to clustering, dimensionality 
reduction, learning sparse graphs and imputation. Clustering aims to detect similar observations 
in the analyzed dataset and group them into clusters. A comprehensive review of clustering 
methods is given in [72]. The goal of dimensionality reduction is to project high-dimensional 
data to a lower-dimensional space to reduce the complexity and extract the most meaningful 
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information. In [73] the authors explained how feature extraction algorithms work and 
evaluated their performance on binary and multiclass datasets. They observed higher accuracy 
of the classifiers after applying dimensionality reduction techniques, especially in the case of 
nonlinear algorithms. The main applications for learning sparse graphs are related to 
discovering correlated variables or modeling correlations and making estimations of the joint 
probability. Finally, in the case of imputation, unsupervised learning is applied to extract the 
latent variables and complete missing entries of the analyzed matrix. 

The objective of reinforcement learning is to create an automated agent or a set of agents 
capable of making good decisions, considering the current state of the environment and their 
experience from previous interactions with it. During interactions with the environment, the 
agent acts as specified by the predefined policy. Modifications of the system’s state due to 
actions taken by the agent are quantified and provided as feedback to the agent. Each good 
decision of the agent which results in achieving the goal is rewarded. During the training, the 
agent aims to maximize the cumulative reward. Additionally, the process of exploration and 
exploitation of the environment can be optimized using supervised or unsupervised machine 
learning algorithms or both. It is essential to balance these characteristics properly since too 
much focus on the exploration may result in difficulties in converging to the optimal solution. 
At the same time, overexploitation may result in too much focus on a local, suboptimal solution. 
This autonomous, iterative trial-and-error learning concept is general and applied in many areas. 
A comprehensive literature review of applications of reinforcement learning for predictive 
maintenance is available in [74]. 

In addition, a hybrid approach, known as semi-supervised learning, should be mentioned. This 
branch of machine learning is dedicated to problems where only a small fraction of the analyzed 
dataset is labeled. During the training, large quantities of unlabeled data are combined with the 
labeled data under certain assumptions. Researchers have found that such an approach improves 
the results compared to the training based only on the small labeled dataset. The paper [75] 
provides an overview of semi-supervised learning algorithms, focusing mainly on classification 
problems. 

The second part of this section presents the latest applications of machine learning 
methods for the predictive maintenance of turbomachinery assets. In [76] the authors applied 
the extreme gradient boosting algorithm (XGBoost) [77] to predict the damage of high-pressure 
turbine blades due to creep based on engine operational data. A hybrid approach was proposed 
that combines a physics-based model of the engine, a finite element analysis of the blade aimed 
at evaluating stress and strain fields and identifying the critical zones as well as a nonlinear 
regression model estimating the residual useful life. Such a surrogate model can be expanded 
to consider the effects of cyclic loads or vibrations, but they were not analyzed in that study. 
Additionally, the analysis was limited to steady-state conditions only. Another hybrid approach 
to predict the residual useful life of high-pressure gas turbine blades due to creep is described 
in [78]. The proposed framework comprises a two-shaft aircraft engine performance model, 
analytical models for calculating stresses and temperatures in critical locations and a prediction 
module based on the Larson-Miller parameter. Actual operational data describing 300 flight 
missions were processed through the framework and used to predict the creep rupture life based 
on gas temperatures at the exhaust section by means of a random forest algorithm. It was 
observed that the inclusion of categorical features describing environmental conditions 
increased the prediction accuracy significantly. Nevertheless, further improvements could be 
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achieved by utilizing computational fluid dynamics and finite element methods to precisely 
compute the stress and temperature fields. In [79] a convolutional neural network was trained 
based on blade tip timing (BTT) measurement data to predict the presence, position and depth 
of gas turbine blade cracks. BBT method is used for non-contact measuring and characterizing 
rotor blade vibration. A numerical model was used to generate the data utilized to train the 
neural network. Subsequently, the data-driven model was validated on measurement data 
recorded during a test of real cracked blades. The blades were machined accordingly on the 
root, mid or top span to simulate the presence of cracks. The proposed neural network provided 
more accurate predictions than the models based on other machine learning algorithms, i.e. 
support vector machine, extreme gradient boosting, K-nearest neighbor and random forest. 
However, the test and the validation would be more meaningful if real gas turbine blades were 
analyzed. In [80] a hybrid model to detect lean blowout in Dry Low NOx combustors was 
presented. It is composed of a physics-based model for detecting power output drop coupled 
with a binary, data-driven classifier to detect the loss of flame based on measurements of gas 
temperatures at the exhaust section. The authors applied dimensionality reduction techniques 
followed by two types of classifiers, employing linear regression and decision tree algorithms. 
The latter model performed better concerning all the analyzed metrics, i.e. accuracy, precision, 
recall and the F-score. The final model was deployed in Baker Hughes’ monitoring and 
diagnostics platform. In [81] stacked denoising autoencoders [82] were applied for feature 
engineering, and the extreme machine learning classifier [83] was used to detect combustor 
anomalies in heavy-duty gas turbines manufactured by General Electric. The authors observed 
that the classifications based on extracted features are more accurate than those based on raw 
operational data. Therefore, an unsupervised machine learning method was applied to generate 
the features in an automated manner. As a result, the classifier’s accuracy improved compared 
to the model based on knowledge-driven, handcrafted features. Another industrial application 
of machine learning methods to classify the state of a combustion system is described in [84]. 
Logistic regression and artificial neural networks were applied to detect anomalies and split 
them into three classes, i.e. sensor fault, cold spot, or hot spot. The latter two classes correspond 
to uneven distribution of gas temperatures at the exhaust section, with at least two readings far 
from the mean temperature. The data-driven algorithms achieved better performance compared 
to the physics-based model. In both papers, the authors emphasized that expanding the features’ 
space should improve the models’ capabilities. In [85] exhaust thermocouple readings were 
used to detect faults in combustor chambers by means of a model based on a convolutional 
neural network. It was trained based on abundant fault data related to Solar Turbines’ Taurus 
70 industrial gas turbine. Then, transfer learning was applied to retrain the last layers of the 
model in the target domain related to the Titan 130 units, where the availability of fault data 
was limited. The study successfully applies transfer learning and knowledge sharing between 
two similar domains. The performance of the retrained neural network was better compared to 
the models trained in the target domain only or trained based on a mixed dataset. However, the 
paper does not address the issue of fault isolation and does not explain what kind of faults were 
analyzed, which is a drawback of this study. In [86] a system based on a convolutional neural 
network for the real-time detection and prioritization of aircraft engine anomalies was proposed. 
Compared to recurrent neural networks, this class of ANNs requires less computational power 
during the forward pass. Thus, the proposed solution can run on low-power devices, and it was 
deployed on Rolls Royce Pearl 15 engines. An application of deep recurrent neural networks to 
evaluate and predict the residual useful life of a turbofan engine, expressed by a health indicator, 
is presented in [87]. The authors analyzed two datasets published by the National Aeronautics 
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and Space Administration (NASA) describing the degradation of aircraft engines. This 
regression analysis aimed at predicting the health status based on multivariate time series 
describing operational settings and sensor readings. The proposed model based on a deep RNN 
returned more accurate estimates compared to a nonlinear autoregressive neural network with 
exogenous inputs (NARX), multilayer perceptron (MLP) and cascade forward neural network. 
Such an approach may be applied for high-level fleet monitoring. However, it should be 
combined with a fault identification module to provide more specific suggestions about the 
required maintenance activities. In [88] the authors applied a convolutional neural network with 
long short-term memory (LSTM) layers to analyze the same dataset and predict the residual 
useful life of aircraft engines. In the proposed approach, relationships between the sensors were 
represented as flow charts and transformed into embedding vectors guiding the construction of 
the deep learning model and the arrangement of its input space. Similar embedding vectors 
were merged into a cluster representing the physical significance of the measuring instruments. 
Combining the knowledge about sensor relationships with a deep neural network was effective. 
The prediction accuracy was similar to or even better compared to other deep learning models 
trained on that dataset and reported in the literature. In [89] five different classification methods 
were applied for detecting and isolating faults due to the fouling and erosion of a three-shaft 
gas turbine. Single and multiple simultaneous faults were analyzed during the study. The faults’ 
presence was simulated using an engine performance model, and the input data were generated, 
which is a shortcoming of this analysis. Models based on the K-nearest neighbor algorithm and 
an artificial neural network obtained the highest faults detection and isolation accuracy. Another 
study aimed at predicting aircraft engine degradation due to compressor fouling and turbine 
erosion is described in [90]. The goal was to predict the engine’s health status expressed by the 
turbine output temperature up to 12 flights ahead using a nonlinear autoregressive neural 
network with exogenous inputs and an Elman neural network. The most significant limitation 
of this study, also mentioned by the authors, is related to the use of synthetic data for training 
and validation purposes. Nevertheless, multiple network structures were created to analyze 
various degradation scenarios. Regardless of the simulated setup, the Elman neural networks 
were more accurate and required less time to execute the training. In [91] a multilayer 
perceptron, gradient boosting regression, decision tree and random forest algorithms were 
applied to model the erosion of thermal barrier coatings, i.e. air plasma spray and electron beam 
physical vapor deposition TBCs, of gas turbine hot gas path components at elevated 
temperatures. The authors extracted the experimental data utilized to create the models from 
the literature, creating a dataset with 245 samples. The erosion rate, expressed in g/kg, was the 
output being modeled in the function of five input variables. The prediction accuracy was 
similar regardless of the applied algorithm and considered satisfactory. Additionally, it was 
observed that training the models on a merged dataset related to both coating types had a 
detrimental effect on the accuracy. In [92] the authors applied several popular algorithms (e.g. 
support vector regression (SVR), random forest, extreme gradient boosting, or feedforward 
neural networks) to predict the length of fatigue cracks found on high-pressure nozzles of 
heavy-duty gas turbines. They got accurate estimates even if the dataset was composed of only 
31 observations. However, it was underlined that the responses from those data-driven models 
were inconsistent with the underlying physical laws and that the extrapolation capabilities were 
unsatisfactory. A comprehensive comparison of various machine learning methods (e.g. linear 
regression with its variants, SVR, random forest, gradient boosting decision trees or artificial 
neural networks) applied to predict the high-pressure compressor recoup pressure of 
aeroderivative gas turbines is presented in [93]. This parameter provides information about 
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axial loads acting on the engine’s thrust bearing. It is not directly measured, but the capability 
to estimate it based on other operational parameters was proved in that study. The most accurate 
predictions were obtained using the tree-based algorithms, i.e. random forests and gradient 
boosting regression. However, despite a large number of operational data, the generalization 
capabilities of those data-driven models were not understood completely. Additionally, the 
authors admitted that a different way to process the data, treating them as sequences of discrete-
time data, should raise the accuracy. A comparison of several machine learning methods with 
a particular emphasis on deep neural networks applied to predict the condition of a turbofan 
engine component is presented in [94]. Actual operational data, environmental data and outputs 
of thermodynamic models related to over 150 units under monitoring were used to train and 
test data-driven models. A 10-grade scale was used to evaluate the technical condition of the 
analyzed hot gas path part due to the analyzed failure type and reflect the life consumption. The 
models were built to predict these ranks based on the available input data. The best results on 
the validation subset were obtained using a multilayer perceptron and an ensemble of such 
neural networks. Depending on the algorithm, the authors applied some actions to prevent 
overfitting, but they were not always successful. The models based on extreme gradient 
boosting, extremely randomized trees and support vector regression had unsatisfactory 
generalization capabilities. In [95] three different classification methods (i.e. decision tree, 
random forest and the C5.0 decision tree algorithm) were utilized to determine and predict the 
state of gas control valves of MS7001FA gas turbines. Actual operational data related to more 
than 500 units were used to train these binary classifiers. The best results in terms of precision, 
recall and the F-score were obtained with the random forest classifier. Nevertheless, the C5.0 
model was deployed in a production environment due to better scalability and interpretability. 
This model is capable of raising an alert even four months before an emergency shutdown 
caused by the valve. However, the classifier’s performance and generalization capabilities were 
not evaluated against other than F-class gas turbines. 

The most visible limitations of the reviewed papers about the application of machine 
learning algorithms for predicting damage to gas turbine components could be summarized as 
follows: 

- Numerous studies are based on data generated by means of thermodynamic models. 
However, even though noise is added to the synthetic time series, such datasets may not 
reflect the complexity of actual operational data and various relationships between 
measured and calculated parameters. Thus, the simulated scenarios may be an 
oversimplified representation of the reality. 

- Most papers aim to detect and predict anomalies based on a time series analysis. 
Classifiers are created to estimate an entire gas turbine's health status, but faults are 
often not isolated, and the root cause is not highlighted. Such an output is too general to 
plan precisely the required maintenance activities. 

- Lack of studies dedicated only to a specific component and failure type, focusing on the 
accumulation of damage during part lifetime due to that failure type and evaluation of 
residual useful life. With the exception of rotating blades, the remaining life-limited 
parts from combustion and turbine sections are rarely studied. 

- The number of papers related to heavy-duty gas turbines is significantly smaller than 
the number of studies about aircraft engines. The likely reason for this is the availability 
of operational data on industrial gas turbines. 
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- Despite the good performance of predictive models based on machine learning methods, 
most of the reviewed solutions have not been implemented in industrial applications. 

The research described in this dissertation addresses all these limitations. 

3.4 Physics-informed neural networks 

Numerous successful applications of machine learning algorithms for the predictive 
maintenance of gas turbines were referenced in the previous section. Such methods are applied 
to build data-driven models capable of approximating complex relationships between the input 
data X and the output Y. In several cases, more complex hybrid structures were proposed using 
physics-based models to prepare input data for a data-driven predictive model. Nevertheless, 
typically the latter does not take directly into account the underlying physical laws or prior 
knowledge, including empirical rules and experts’ knowledge about the analyzed phenomenon. 
It is a significant shortcoming because such validated information could be used during the 
training to process data in a specific manner, limit the space of allowable solutions, guide the 
algorithm in the right direction during the cost function optimization and improve the 
generalization capabilities of the model thanks to the physics-based backbone. The advantages 
of including additional knowledge will be particularly visible when analyzing small datasets. 
Despite the digital transformation arising from the fourth industrial revolution, the small data 
regime is still a common problem, especially in the case of complex problems, where data 
gathering requires much time and cost or when the analyzed events rarely occur. 

Artificial neural networks proved their effectiveness in various disciplines, but typically 
large quantities of data are required to achieve satisfactory accuracy, especially in the case of 
deep learning. However, ANNs can be successfully applied in the small data regime if they are 
appropriately combined with physical laws that describe the analyzed phenomenon. Neural 
networks with embedded equations governing the studied problem, like partial differential 
equations (PDEs), are known as physics-informed neural networks. This class of machine 
learning algorithms was introduced in 2017 [96] and applied to approximate solutions of 
nonlinear PDEs of the following form: 

   0 ,tu N u   (13) 

where  ,u t x  is the state of the system, Ν is a nonlinear differential operator and the subscripts 

symbolize partial differentiation in time t or space x. Subsequently,  ,f t x  given as the left 
side of Eq. (13) is defined as follows: 

  : .tf u N u   (14) 

Since artificial neural networks are known as universal function approximators [97], the latent 
solution  ,u t x  can be estimated by means of a neural network. The learning objective is to 
minimize the cost function that could be represented by the mean squared error MSE: 

 ,u fMSE MSE MSE   (15) 

where MSEu is the error related to the initial and boundary training data, while MSEf relates to 
the collocation points sampled from the solution domain. In [96] this approach was applied to 
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get data-driven solutions of the one-dimensional Burgers’ equation, the one-dimensional 
Schrödinger equation and the Allen-Cahn equation. In the second part of the study [98], the 
authors focused on the data-driven discovery of PDEs given some scattered measurement data 
 ,u t x  across the analyzed domain. Solving these inverse problems was aimed at learning the 

parameters of partial differential equations and predicting the solution in the entire spatio-
temporal domain. The one-dimensional Burgers’ and Korteweg-de Vries equations and two-
dimensional Navier-Stokes equations were presented as the examples. The obtained predictions 
were very accurate for both the forward and the inverse problems. The success of the authors 
of [96,98] can be represented by the constantly growing number of citations of these papers and 
the number of studies and successful applications of physics-informed neural networks in many 
disciplines. It can be thought as a mesh-free approach for finding PDE solutions by changing it 
to an optimization problem. However, from another perspective, it can be considered as an 
unsupervised learning algorithm that assures consistency with the underlying physical laws 
described by PDEs when labeled data are unavailable, or their availability is limited. Such 
models should have good generalization capabilities and return credible estimates in other 
domains governed by the same equations. Therefore, validated physics-informed kernels could 
serve as a medium to transfer knowledge between two domains. Nevertheless, this class of 
algorithms has certain limitations. A physics-informed neural network does not guarantee a 
unique solution since the analyzed task is converted to a non-convex optimization problem. The 
results depend on the neural network's structure and hyperparameters. Thus, choosing the 
optimal parameters and training the neural network may be more time-consuming compared to 
other methods. Additionally, the effects of weight initialization, loss estimation and the 
assignment of weights to the loss terms should also be considered. A comprehensive literature 
review on physics-informed neural networks is provided in [99]. 

The majority of PINNs described in the literature were based on a multilayer perceptron. 
However, applications of multiple feedforward neural networks [100], single hidden layer 
neural networks [101], convolutional neural networks [102] and recurrent neural networks 
[103] can be found in the literature. During the training, automatic differentiation is applied to 
adjust the neural network weights. This technique applies the chain rule to calculate derivatives 
iterating through layers of the neural network from the last layer to the input layer. The most 
popular deep learning libraries, like TensorFlow [104] or PyTorch [105], support the automatic 
calculation of gradients for any computational graph representing a neural network. Therefore, 
the default practice is to apply automatic differentiation during the learning process of artificial 
neural networks. Initial and boundary constraints can be implemented in a soft manner with an 
additional loss term defined on collocation points sampled from the boundaries. However, this 
approach does not guarantee that the boundary conditions are satisfied accurately, and it 
requires assigning a proper weight to the additional loss component. In the alternative, i.e. the 
so-called hard approach, a specific component is embedded into the custom structure of the 
neural network, which assures that the boundary condition is satisfied [106]. The approach to 
selecting collocation points and enforcing the initial and boundary constraints may affect the 
solution’s accuracy and generalization error. Besides PDEs, physics-informed neural networks 
were applied to approximate solutions of ordinary differential equations [107], integro-
differential equations [108] and stochastic differential equations [109]. The popularity of 
PINNs is also visible in the number of dedicated software packages and libraries created during 
recent years. They were summarized and concisely described in [99]. 
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The second part of this section presents examples of industrial applications of physics-
informed neural networks that could be adopted for the predictive maintenance of gas turbines. 
In [103] the Euler method was applied to approximate the solution of an ordinary differential 
equation describing the fatigue crack growth. The authors created a recurrent neural network 
with an embedded multilayer perceptron estimating the stress intensity range based on available 
values of cyclic stresses. In this setup, the MLP can compensate for some inaccuracies related 
to the values of stresses resulting from a simplified modeling approach or assumptions made. 
The crack length increments were evaluated after each cycle based on the stress intensity range 
estimates, applying the empirical equation. The effectiveness of this framework was shown in 
the paper, but the analyzed dataset was relatively large and synthetically generated. In [107] the 
same authors expanded the physics-informed neural network cell with an additional MLP to 
account for the impact of corrosion on the fatigue crack growth rate. The objective of this data-
driven element was to capture the contribution of corrosion to the damage size and compensate 
for the fact that corrosion is not modeled using any empirical or theoretical equation. Such a 
structure allows for isolating failure types and quantifying their impact on the damage 
accumulation rate. The addition of the data-driven element significantly increased the 
prediction accuracy if the operation in a corrosive environment was simulated. In [101] the 
authors applied that hybrid framework based on a recurrent neural network to create a nonlinear 
damage accumulation model of a wind turbine main bearing. In this case, a reduced-order 
physics-based model in the form of an ordinal differential equation was embedded in the RNN’s 
cell to estimate the damage increments due to fatigue. A multilayer perceptron was applied to 
model grease degradation, including the impact of the degraded properties on the bearing’s 
fatigue life directly. The data-driven component was designed to model the contributions that 
are difficult to describe by means of simple mathematical equations. However, it was integrated 
with a physics-based component into the hybrid model. Additionally, purely data-driven models 
with a long short-term memory cell were prepared, but they performed poorly in that simulated 
scenario compared to the hybrid model. In [110] the authors applied a physics-informed 
recurrent neural network to predict the propagation of fatigue cracks observed on high-pressure 
nozzles made of FSX-414 cobalt-based superalloy of an industrial gas turbine manufactured by 
Baker Hughes Company. A feedforward neural network embedded into the RNN was utilized 
to estimate the stress intensity factor based on actual operational data and selected outcomes of 
a numerical simulation. An attempt was made to capture the contribution of creep on the crack 
propagation rate. The analyzed sample comprised only 13 crack length measurements, with the 
operational data available for just 54% of startup-shutdown cycles. Regardless of the limited 
dataset, three hybrid models sharing the same architecture were trained respectively based on 
ten, two and only one observation. A custom cost function was created, which changes 
dynamically during the training process in how the physical and empirical terms contribute to 
the final cost value. The fully-specified hybrid models had good generalization capabilities and 
satisfactory accuracy, also outside the original training domain. Moreover, the authors proposed 
a novel method of single-source domain generalization and cross-domain knowledge transfer 
in regression analysis leveraging physics-informed neural networks. The method’s purpose is 
to effectively use a cumulative damage model based on a physics-informed neural network, i.e. 
the so-called source hybrid model, which was trained in a domain, where measurement data on 
damage size are available, in another domain, where such data are unavailable. This method 
was successfully applied, providing accurate damage size predictions in a simulated scenario, 
where damage size measurements were unavailable. In [111] a PINN based on a multilayer 
perceptron with two hidden layers was utilized to predict the fatigue life of AMS 5707 nickel-
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based superalloy and 2024-T4 aluminum alloy in the small data regime. The maximum number 
of training observations was equal to 31, i.e. experimental data extracted from the literature 
were used. Furthermore, physical models describing the analyzed phenomenon were embedded 
into the neural network as the activation functions of some hidden neurons, referred to as 
physical neurons. These nodes yielded low-fidelity results, which were subsequently adjusted 
by the outputs of the remaining hidden neurons with the sigmoid activation function, using the 
training data that relate the fatigue life with the stress amplitude and ratio. As a result, the 
PINN's prediction accuracy was higher compared to several data-driven models trained on the 
same input data. A similar problem related to the fatigue life prediction of different metallic 
materials using a physics-informed neural network is described in [112]. The objective was to 
approximate a relationship between the stress amplitude and fatigue life expressed by the mean 
and standard deviation parameters, assuming that a normal distribution could describe the log-
transformed fatigue life. The PINN was based on a feedforward neural network with one hidden 
layer and an output layer with two nodes. Thus, during the learning process, the parameters of 
the continuous probability distribution are extracted from available experimental data while 
satisfying several physics-based constraints reflected by additional loss terms in the cost 
function. However, the simultaneous minimization of the physics-related loss terms was 
observed to be difficult. Therefore, modifying the proposed architecture by directly embedding 
the constraints using the hard approach may help to overcome this problem. In [113] a PINN 
based on a feedforward neural network with five hidden layers was applied to predict the creep-
fatigue life of 316 austenitic stainless steel at high temperatures. The authors extracted 145 
datasets of strain-controlled creep-fatigue data from the literature, including loading 
characteristics and chemical composition. Feature engineering was performed to extract more 
significant variables based on the input data while using knowledge about the analyzed 
phenomenon. Physics-based constraints were enforced in a soft manner by expanding the cost 
function with two additional loss terms limiting the estimates to the range from 0 to 105. As a 
result, the proposed PINN’s prediction accuracy was higher compared to the purely data-driven 
models based on support vector regression or random forest algorithms, or a multilayer 
perceptron with the same structure as the PINN. In [114] six different problems of the growth 
and propagation of cracks in brittle materials were solved using a physics-informed neural 
network based on a multilayer perceptron with three or four hidden layers. Instead of 
minimizing the residuals of the underlying differential equations, the authors proposed 
minimizing the system's total variational energy. This approach requires less computational 
power since lower-order derivatives are used. Furthermore, the boundary conditions were 
enforced in a hard manner by modifying the neural network’s output. Consequently, no 
additional terms related to the boundary losses are present in the cost function. Additionally, 
transfer learning was applied during the retraining of the physics-informed neural network after 
each load step. The estimates of the hybrid models were satisfactory and comparable with those 
available in the literature. Finally, the authors concluded that such an approach could be used 
to create efficient low-fidelity surrogate models for high-fidelity numerical simulations. In 
[115] given some operational parameters' measurements, a PINN was built to monitor diesel 
engine dynamics. Empirical, engine-specific first-order differential equations describe the 
output variables representing the dynamics. Solutions to these equations were approximated 
using feedforward neural networks composed of two or three hidden layers. The cost function 
is a weighted sum of multiple loss terms using the self-adaptive weights [116]. The neural 
networks were pre-trained based on synthetic data and embedded into the physics-informed 
neural network to mimic the empirical equations. The results obtained by means of the model 
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were satisfactory, even when Gaussian noise was added to the measurement data. Using these 
estimates to monitor and predict the engines' health status could significantly improve this 
study. Applications of physics-informed neural networks to solve several heat transfer problems 
are presented in [117]. The objective was to predict temperature, velocity and pressure fields in 
the case of forced and mixed convection with thermal boundary conditions not fully known and 
for the two-phase Stefan problem with a moving phase-change boundary. Depending on the 
analyzed problem, the PINNs were based on fully-connected neural networks composed of ten 
or five hidden layers. It was assumed that some measurement data were available. Their values 
were obtained by means of numerical simulations. Using the conservation laws embedded in 
the neural network structure and the limited number of measurements, the proposed PINNs 
could accurately estimate the output variables on the boundaries and in the entire domain. In 
[118] the capabilities of the NVIDIA Modulus framework [119], previously known as SimNet, 
were shown for solving conjugate heat transfer problems related to integrated circuits' heat 
sinks. The PINNs were based on deep neural networks composed of six layers. No training data 
were used in the analyzed examples. The first problem aimed at predicting pressure, velocity 
and temperature fields with the Fourier feature network [120] and its modification. In the 
second problem, a fully-connected neural network was used to estimate the same outputs and 
optimize the heat sink design under a specific constraint, considering more than half a million 
heat sink configurations. Two separate neural networks estimated the temperature and flow 
fields in both cases. The obtained results were aligned with the results of numerical simulations. 
Furthermore, the application of PINN significantly reduced the time required for the design 
optimization. In [121] a physics-informed neural network was applied to predict the fatigue life 
of additively manufactured samples. The samples made of AlSi10Mg aluminum alloy were 
produced by selective laser melting. Experimental data related to 12 samples were used to train 
and validate the model. The PINN was based on a multilayer perceptron with two hidden layers. 
The prior knowledge embedded in the model was based on semi-empirical laws of linear elastic 
fracture mechanics. The hybrid model's prediction capabilities were significantly better 
compared to an equivalent MLP without the physics-based constraints, i.e. the coefficient of 
determination was around 83% higher. Concerning gas turbines, future research should focus 
on applying this framework for fatigue life modeling of nickel- and cobalt-based alloys, which 
are used to manufacture combustion and hot gas path components. In [122] a PINN based on a 
multilayer perceptron with five hidden layers was used to predict the melt pool dynamics and 
temperature field during selective laser melting of Inconel 625 nickel-based superalloy. Due to 
the limited availability of experimental data, a finite element analysis was used to generate 
additional data to train the neural network. The conservation laws of energy, mass and 
momentum in the form of partial differential equations were integrated into the model. A 
Heaviside function was used to enforce the Dirichlet boundary conditions in a hard manner, 
resulting in faster optimization compared to the soft approach. The proposed hybrid model 
accurately predicted the pressure, temperature and velocity fields regardless of the number of 
experimental data. A similar study about the application of PINN for predicting a three-
dimensional temperature field during the laser metal deposition process, but in the absence of 
labeled data, is presented in [123]. Such studies are of great importance, considering the 
growing number of additively manufactured gas turbine components. In [124] physics-
informed neural networks were applied to model one- and two-dimensional high-speed 
aerodynamic flows described by the Euler equations, which consist of the equations for the 
conservation of energy, mass and momentum for compressible flow. In the forward problem, 
the boundary constraints were enforced in a soft manner through additional loss terms in the 
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cost function. Two PINNs based on multilayer perceptrons with seven and four hidden layers 
were created to predict the density, pressure and velocity fields. The training points were limited 
to the initial and boundary conditions only. In the inverse problem, given the density gradient 
and some pressure measurements in the analyzed spatio-temporal domain, the hybrid model 
estimated the density, pressure and velocity fields with no initial or boundary conditions. It is 
explained in the paper that the position of points for which the measurements are available has 
an impact on the learning process. The advantages of such hybrid models were especially 
visible for the inverse problems, where PINNs could accurately approximate based on a few 
observations only. However, the hybrid models were less accurate for the forward problems 
compared to numerical simulations. In [125] a physics-informed neural network was applied to 
approximate the solution of the Reynolds partial differential equation and estimate the pressure 
field and gas film thickness of a gas bearing. The proposed PINN was based on a fully-
connected neural network with ten linear and nonlinear layers. The boundary constraints were 
enforced in a soft manner by expanding the cost function with an additional loss term. Three 
different scenarios were considered in the study, dependent on the availability of measurement 
data, namely unsupervised, semi-supervised and supervised learning. Regardless of the learning 
approach, estimates from the neural networks were comparable with the results of numerical 
simulation. In case of the purely data-driven supervised learning approach, the conservation 
equations were not satisfied. Finally, certain limitations of PINNs are described in [126]. The 
authors applied a multilayer perceptron with four hidden layers to approximate solutions of 
linear and nonlinear partial differential equations of one-dimensional convection and reaction-
diffusion problems. In this unsupervised learning setup, the collocation points were randomly 
sampled while the boundary constraints were enforced using the soft approach. It was observed 
that increasing or adding physics-based regularization constraints makes the optimization 
problem challenging and may result in learning failure. In order to overcome these difficulties, 
the authors proposed pre-training of the neural network for proper initialization of the weights 
and predicting in a step-by-step manner instead of predicting all timesteps at once. 

3.5 Transferring knowledge in machine learning projects 

The effectiveness of physics-informed neural networks in combining machine learning 
methods with prior knowledge about the analyzed phenomenon was described in the previous 
section. The embedded equations regularize the neural network. Thus, the resultant models have 
good generalization capabilities, even if the number of training observations is limited or they 
are unavailable. Thereby, PINNs can be considered as a method to extract knowledge in one 
domain, transfer it, and apply it in another domain for a problem governed by the same set of 
equations. However, the mathematical description can be imperfect due to the complexity of 
the problem or assumptions taken during the analysis. In such situations, the model may predict 
accurately in the source domain in which it was trained, but the generalization capabilities and 
accuracy in other domains will be worse. Transfer learning methods can be applied to address 
these concerns and effectively share knowledge between similar domains. 

Transfer learning aims at improving the learning of the target predictive function  T̂f   
in the target domain DT leveraging knowledge about the source domain DS and the task in the 
source domain TS, given that S TD D  or S TT T . Here, the notion of “leveraging” can be 
defined as the action of using something already available in order to achieve something new 
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or better and maximize advantages. A domain   ,D P XX  consists of the n-dimensional 

feature space X  and the probability distribution  P X , where X X  [127]. A task 

  ˆ,T f Y  consists of the n-dimensional output space Y  and the predictive function  f̂  , 

which relates the inputs X with the outputs Y, where Y Y .  f̂   can be seen as the conditional 

probability distribution  |P Y X . Following these definitions, the difference between the two 
domains relates either to the selected features, i.e. S TX X , or to their marginal distributions, 

i.e.    S TP PX X . While the difference between the tasks relates either to the output spaces 
(i.e. S TY Y , for example, due to different dimensions) or to the conditional probability 

distributions (i.e.    S S T TP | P |Y X Y X , for example, due to different proportions of 
classes). Despite differences, some similarities between the domains or tasks must be present 
and measured to apply transfer learning. 

Depending on the availability of labeled data in the source and target domains, the 
strategies of transfer learning can be categorized as follows: 

- inductive transfer learning, 
- transductive transfer learning, 
- unsupervised transfer learning. 

In the first scenario, the learning tasks are different between the domains, but labeled data in 
the target domain are available and utilized to induce the target predictive function  T̂f  . If 
labeled data are available in the source domain, this setup is similar to multi-task learning when 
the source and target tasks are learned simultaneously. If labeled data are unavailable in the 
source domain, this setup is similar to self-taught learning [128]. In the second scenario, the 
learning tasks are the same, but the domains are different, with labeled data available only in 
the source domain. However, some unlabeled data are required in the target domain at training 
time to find the marginal probability distribution  TP X . If the feature spaces are the same, i.e. 

S TX X , then the difference between the domains is due to the different marginal probability 

distributions, i.e.    S TP PX X . For such problems, domain adaptation methods are applied, 
which are described in more detail later in this section. The last scenario is similar to the first 
one, except that no labeled data are available for training in both domains. Applications of 
unsupervised transfer learning are related to clustering or dimensionality reduction. 

According to [129], studies about the application of transfer learning for machinery diagnostics 
and prognostics can be grouped as follows: 

1) Transfer of knowledge between domains related to different operating conditions of the 
same unit, which can be referred to as cross-domain transfer. 

2) Transfer of knowledge between different parts with unique characteristics, which can 
be seen as a more challenging type of cross-domain transfer. 

3) Transfer of knowledge from a simulated environment to real objects and installations. 
In this scenario, the difficulty results from an incomplete description of reality in the 
simulated environment. 



38 
 

The most popular approach of cross-domain transfer leverages models pre-trained in the source 
domain, which are subsequently fine-tuned in the target domain. This method is most widely 
used for deep neural networks since their layered structure allows for simple implementation. 
For example, weights of a pre-trained network can be utilized to set the starting point for the 
optimization in the target domain [130]. Alternatively, the first layers with the corresponding 
weights can be fixed, while the training process in the target domain could be aimed at fine-
tuning the last layers only [131,132]. Thus, knowledge from the source domain can be leveraged 
for the weights initialization, reduction of the number of trainable parameters and time required 
for the training and creation of effective models even if the number of labeled data in the target 
domain is limited. Nevertheless, retraining the last layers may be insufficient if the difference 
between the marginal probability distributions is significant. In such situations, the source or 
the target features can be transformed to match each other better and reduce the difference 
between the distributions. Distribution adaptation described in [133] and feature subspace 
learning are the most popular methods for shallow-structured architectures. The first method 
aims at minimizing the distance between the marginal probability distributions, conditional 
probability distributions, or both by some transformations, e.g. applying a kernel function. 
Maximum mean discrepancy (MMD) defined in [134] is the most widely used statistical test to 
determine the distance between two probability distributions in a universal reproducing kernel 
Hilbert space. The second method assumes that the source and target data are similarly 
distributed in some subspace. Therefore, data from both domains can be projected into a shared 
subspace to align their statistical distributions, as considered in [135–137]. Alternatively, 
manifold learning [138] can be used, which is a nonlinear dimensionality reduction technique. 
This method generates a set of intermediate data representations and identifies the shortest path 
that connects both subspaces. These feature-matching methods applied to shallow-structured 
architectures can be leveraged in the case of deep neural networks. Such neural networks 
comprise additional adaptation layers to reduce the difference between the source and target 
data distributions and transfer knowledge between the domains. Thus, the subdomain in which 
the model can be effectively utilized is enlarged. 

As previously written, deep neural networks require large quantities of data to achieve 
satisfactory accuracy, which may be unavailable in practical applications. Additionally, the 
assumption of independent and identically distributed training and testing data is considered for 
most machine learning algorithms. In reality, this assumption can be false, for example, due to 
different operating conditions or characteristics of the target object. Domain adaptation tackles 
the problem of the data distribution shift between the source and target domains and reduces 
limitations resulting from the assumption of independent and identically distributed datasets. It 
aims at maximizing the performance in the target domain by leveraging knowledge from the 
source domain and reducing the distribution differences between the domains. However, most 
domain adaptation methods assume access to either sparsely labeled or unlabeled target data. 
Thus, the knowledge of the marginal probability distribution of target data  TP X  is used for 
the model adaptation. According to [139], the major advantages resulting from the use of 
domain adaptation methods are related to the high effectiveness of training and accuracy 
obtained with small datasets, increased generalization capabilities of models and low 
computational costs. Nevertheless, a negative transfer may occur if the domains differ 
significantly or the selected domain adaptation method is insufficient. Thus, leveraging 
knowledge from the source domain may undesirably reduce the model’s performance in the 
target domain. A survey on negative transfer is available in [140]. Domain adaptation methods 
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can be divided into adversarial-based methods, reconstruction-based methods and discrepancy-
based methods. The latter one, aimed at minimizing the distance between the distributions of 
source and target data, was mentioned in the case of shallow-structured architectures. 
Nevertheless, considering deep neural networks, the first two methods gained popularity and 
are described in more detail below. 

Adversarial learning is utilized to extract domain-invariant features. It is inspired by generative 
adversarial networks (GANs) proposed in [141], which attracted many researchers in recent 
years, as follows from [142]. GAN comprises a generator and a discriminator, i.e. a generative 
and discriminative network. The former aims to learn the input data distribution and generates 
fake samples that are as close as possible to the real data. The latter is a classifier that tries to 
distinguish whether a sample is real or created by the generator. The training objectives are 
adversarial since the two neural networks have competing goals and try to confuse each other. 
Such architectures are mainly utilized to create synthetic data that plausibly come from the 
distribution of real input data, with numerous applications in image generation, processing and 
reconstruction. However, the adversarial structure can be used for transfer learning. In such a 
setup, the generator serves as a feature extractor, while the discriminator classifies whether the 
extracted features come from the source or target domain. The objective of the generative 
network is to learn such features which the discriminative network cannot distinguish if they 
come from one domain or another. Therefore, the loss function l may have the following form: 

      , , ,S T S S D S Tl D D l D l D D   (16) 

where lS is the loss related to the source model’s performance on data from the source domain, 
lD is the discriminative loss reflecting the discriminator’s capabilities to distinguish the domains 
and α coefficient sets the importance of the second loss term. The two neural networks with 
competing goals are an example of a zero-sum game where an increase in the generator’s 
performance harms the discriminator’s performance. The training objective is to reach the Nash 
equilibrium. Nevertheless, applying commonly used gradient descent methods might make the 
training process unstable compared to the traditional approach of training artificial neural 
networks. 

Reconstruction-based methods use encoder-decoder neural network architectures to reconstruct 
the input data based on latent feature representations. Such a neural network can be embedded 
into a generative adversarial network and serve as the feature extractor. An encoder, which is 
shared between the source and target domains, assures that the domain-invariant features are 
extracted while keeping the domain-specific feature representations needed to reconstruct the 
available source and target data. An example of this approach is the domain separation networks 
proposed in [143]. The authors showed that separating information unique to each domain may 
improve the network’s capabilities to extract domain-invariant features. 

As already described, most domain adaptation methods assume the availability of data 
from the target domain and knowledge of the marginal probability distribution  TP X . 
However, in practical applications, this assumption may not be satisfied. For example, this may 
happen in the case of newly introduced products for which no operational data is available until 
the first tests and commissioning of the unit. It is a significantly more challenging situation than 
typical domain adaptation problems. Domain generalization methods are applied to achieve 
out-of-distribution generalization and accurately predict in unseen target domains. In a typical 
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scenario, known as multi-source domain generalization, the training is based on several distinct 
but related domains. The objective is to leverage knowledge from multiple domains, extract 
domain-invariant representations and train a model with good generalization capabilities. The 
most difficult situation assumes a single source domain with homogenous data. Such a setup, 
known as single-source domain generalization, is less commonly studied in literature but is 
present in practical applications. The proposed solutions focus on applying data generation 
methods to make the training data more heterogeneous and informative, as follows from [144]. 
A comprehensive literature review on domain generalization methods is provided in [145]. 

In accordance with [144], domain generalization methods can be classified into the following 
three groups: 

- methods focusing on data augmentation [146,147] and data generation [148]; 
- methods applying specific learning strategies to obtain better generalization capabilities, 

e.g. ensemble learning [149,150], meta-learning [151] or self-supervised learning [152]; 
- methods focusing on the extraction of domain-invariant representations [153,154] or 

learning disentangled representations, i.e. identifying domain-specific and domain-
invariant features [155]. 

Most of the papers referenced here are related to rotating equipment. Nevertheless, the majority 
of studies about domain generalization refer to computer vision, natural language processing or 
speech recognition. Additionally, most of them focus on classification problems with limited 
applications to regression analysis [156], which is a gap that should be addressed appropriately. 
Naturally, data limitations and a desire to utilize knowledge from other sources do not concern 
classification problems only. Domain shifts are frequent in actual applications of regression 
analysis,  and they can be related to dependent variables, independent variables, or both of them. 
The research presented in this dissertation contributes to the advancement of domain 
generalization methods in regression problems. In the proposed method, a physics-based 
relationship between the source and target domains is built and coupled with a physics-informed 
neural network to get accurate estimates on unseen data. The research works leading to the 
creation of this method with the applications to predict the size of damage to selected gas turbine 
components and the analysis of results are described in the following chapters.  
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4. Predicting length of fatigue cracks 
using machine learning methods 

The main objective of this research is to successfully apply machine learning algorithms 
for predicting the size of damage to gas turbine components, considering the limited availability 
of damage measurements. The so-called small data regime is a common problem in practical 
applications, including the maintenance of aeroderivative and heavy-duty gas turbines. In that 
field, the limited availability of empirical data is due to rare inspection opportunities resulting 
from the extended intervals between planned maintenance activities, a rare occurrence of 
failures and high costs associated with the data gathering. Regardless of the data limitations, 
there is a need to leverage the gathered experience and create data-driven predictive models to 
continuously optimize the operation and maintenance of the fleet, assuring the highest levels of 
reliability and availability. Additionally, accurate predictive models are expected to provide 
unit-specific predictions using actual operational data of each engine recorded by a data 
acquisition system. Therefore, taking into account the need to predict the size of damage to gas 
turbine parts accurately, the minimal requirements for data availability are as follows: 

- A certain number of damage measurements must be available. 
- The operational history of the components with the damage observed and measured 

must be restored, considering the scope of past repair activities and the number of fired 
hours, fired starts and emergency shutdowns accumulated. 

- Operational data captured by the data acquisition system should be available for the 
historical service periods of the analyzed components. 

- Basic characteristics of the analyzed parts must be restored, e.g. component codes or 
drawing numbers. 

- Configuration details describing the gas turbines, where the analyzed hardware 
operated, must be restored. 

It is necessary to satisfy these requirements to begin creating a predictive model. Nevertheless, 
it does not guarantee that the model will have satisfactory accuracy and provide valuable and 
credible insights that may impact the maintenance planning. However, considering these 
constraints, it was decided to select a high-pressure nozzle of a heavy-duty gas turbine as the 
analyzed object, focusing on predicting the length of fatigue cracks. The additional arguments 
in favor of this choice are as follows: 

- Problems related to thermo-mechanical, low cycle fatigue are common for all types of 
gas turbines (as already described, over 60% of damage observed in aircraft engines 
was due to cracks [28]). 

- Considering hot gas path components, first stage nozzles of a high-pressure turbine 
section are subjected to the highest temperatures of exhaust gases and limit the time 
between planned maintenance activities, especially in the case of the analyzed family 
of heavy-duty gas turbines. 

- The investigated family of industrial gas turbines represents the second most numerous 
group of units covered by long-term service agreements (LTSAs) offered by Baker 
Hughes Company. 
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- Low cycle fatigue is the leading cause of the analyzed cracks, but the contributions of 
oxidation and creep should not be neglected. Previous attempts to model this scenario 
with multiple combined failure types were unsuccessful. 

- The input data needed to create the model are available, and no additional efforts and 
costs are required to gather them. 

Details of this part of the research are provided in the following sections of this chapter. At the 
outset, it should be highlighted that the study and the results were described in [92]. 

4.1 The analyzed object and problem setup 

Gas turbines generally are composed of the following three systems: a compressor, a 
combustor and a turbine section. Depending on the number of shafts, the compressors and 
turbine sections can be further divided into high- and low-pressure sections. Single-shaft heavy-
duty gas turbines installed in stationary applications typically serve as generator drivers to 
produce electrical energy. In comparison, two-shaft units in stationary applications are mainly 
utilized as drivers of compressors or pumps. Gas turbines operate according to the Brayton 
thermodynamic cycle, which is based on the following four processes: 

1) The compressor draws air from the surrounding environment and raises its pressure. 
2) The energy level of the compressed air is increased in the combustor, where fuel is 

injected and burned. 
3) The hot gases are directed to the turbine section, where thermal energy is converted 

to mechanical energy by means of stationary vanes, also known as nozzles, and 
rotating blades, known as buckets. 

4) The expansion in the turbine section reduces the pressure and temperature of the 
exhaust gases, which are expelled into the atmosphere. 

The compressor absorbs more than 50% of the mechanical energy created during the expansion. 
The efficiency of modern heavy-duty gas turbines may be higher than 37% when operating in 
the simple cycle, higher than 62% in the combined cycle coupled with a steam turbine [157], 
and up to 84% of thermal efficiency in combined heat and power [158]. 

The analyzed high-pressure nozzles come from two-shaft heavy-duty gas turbines 
offered by Baker Hughes Company, specifically designed for mechanical drive applications. 
The installed fleet comprises more than 400 units worldwide (status of 06-Jun-2023). Over the 
years, multiple upgrades were offered for this class of engines. The analyzed sample comprises 
three different models, which are referenced as Type A, Type B and Type C. It should be noted 
that the latter has a higher firing temperature, i.e. the average temperature of exhaust gases at 
the outlet of high-pressure nozzles, than the first two. The entire 1st stage nozzle assembly 
comprises 18 segments, each with two airfoils. The segments are single-piece castings from 
FSX-414 cobalt-based superalloy. A single segment is presented in Fig. 1 and Fig. 2 [159]. The 
component is cooled using pressurized air discharged from the compressor. Inside each airfoil, 
a cooling insert enables internal impingement cooling, while the cooling holes on the leading 
and trailing edges enable film cooling of the external surfaces. The number of cooling holes on 
the trailing edge may vary depending on the component code. Additionally, a thermal barrier 
coating may be applied on the airfoils’ pressure side, but such a configuration is not included 
in the analyzed sample. Based on the applicable maintenance policy, the nozzles are expected 
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to be disassembled and repaired during each major inspection. The part should be repaired just 
once, and it should be scrapped after the second interval. Nevertheless, the OEM may propose 
less stringent maintenance rules for units covered by the long-term service agreement. 

Based on data gathered during visual and dimensional inspections executed during 
disassembly inspections and subsequent repair activities, the following failure types can be 
found on the airfoils and platforms of the analyzed nozzles: 

- cracks and craze cracks, 
- oxidation or erosion, 
- corrosion due to fuel or air contaminants, 
- deformation of the airfoils caused by creep, 
- indentation due to domestic object damage. 

 

Fig. 1 Suction (convex) side view of the analyzed high-pressure nozzle. 

 

Fig. 2 Pressure (concave) side view of the analyzed high-pressure nozzle. 
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An overview of failure types observed on the first stage nozzle of a heavy-duty gas turbine is 
available in [160]. Due to the high temperatures of exhaust gasses surrounding the nozzles, this 
damage is not monitored nor directly measured continuously during the service. Nevertheless, 
as the number of service hours increases, the gradual degradation of the component (e.g. due to 
oxidation, erosion, or corrosion of the airfoils, inner/ outer platforms or both) should be 
reflected in gas turbine performances. It is possible to detect and isolate the fault based on 
operational data gathered by the data acquisition system and applying, for example, the gas path 
analysis. Based on this knowledge extracted from the data, a cross-functional team may decide 

 

Fig. 3 Examples of cracks found on the analyzed high-pressure nozzles after service. 
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on the required corrective actions and further operation of the unit. However, the standard set 
of instruments cannot provide any direct or indirect indications about the presence and size of 
cracks. Examples of trailing edge cracks recorded on the analyzed high-pressure nozzles are 
shown in Fig. 3. It should be clearly stated that if a gas turbine is not maintained following the 
OEM standards, cracks of the nozzle may lead even to unplanned maintenance, for instance, if 
a piece of the airfoil is liberated due to converging cracks. Therefore, the ability to estimate the 
growth of nozzle cracks is of great importance for the availability and reliability of the analyzed 
unit. The potential advantages of such a capability are the same as the benefits of the predictive 
maintenance approach. It can be used to optimize the maintenance plan by applying data-driven 
insights from the model, e.g. continuous evaluation of the nozzles’ health status, damage size 
and the associated failure probability based on actual operational data. Thus, it can support 
decisions related to the extension of repair or replacement interval, reduction of the work scope 
of a disassembly inspection or repair activity, or elimination of the need to repair the 
component. 

Based on the above considerations, this part of the research aims to estimate the length of cracks 
found on the airfoils’ trailing edges of the analyzed high-pressure nozzles, depicted in Fig. 3. 
Considering the airfoils' trailing edges, in accordance with the dedicated thermal analysis the 
highest metal temperatures are expected in locations where the cracks are found. The cracks are 
caused mainly by thermal stresses, which take the highest values during engine shutdowns. 
Additionally, based on the structural analysis, some of these locations are subjected to tensile 
stresses during steady-state operation, with the stresses acting in the direction perpendicular to 
the crack propagation plane. Furthermore, the crack growth rate may be affected by the base 
material thickness reduction due to oxidation. Therefore, considering the analyzed problem's 
complexity and the minimum requirements for data availability are met, it was decided to build 
data-driven models using several popular statistical learning algorithms and assess their 
performance in this scenario. 

4.2 An overview of available empirical data 

Data supporting this research are confidential and are the proprietary property of Baker 
Hughes Company. Due to these reasons, the data cannot be shared openly and were anonymized 
in this dissertation. The analyzed positions on the trailing edges of the nozzles are referenced 
as Positions 1, 2, 3 and 4 without disclosing further details. 

Input data used to train and test the predictive models comes from three different 
databases of Baker Hughes Company. The first set is extracted from the Parts Life Database 
(PLDB) and contains the following information separately for each nozzle segment: 

- The operational history of the analyzed components, including the scope of historical 
repair activities and the numbers of fired hours (FH), fired starts (FS) and emergency 
shutdowns (ESD) accumulated since the last repair (commonly referred as to interval 
counters) and since the part was manufactured (commonly referred as to total counters). 

- Measurements of the cracks observed on the used components, which were subjected to 
a visual inspection preceding repair activities. 

- The component codes and drawing numbers required to distinguish different nozzle 
configurations. 
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The repository contains 865 records with complete (i.e. data about the crack presence and size 
available for all four positions) and credible measurements of the analyzed cracks, where each 
record corresponds to a single nozzle segment. Only 13% of the parts, i.e. 114 out of 865 
segments, did not have cracks in the analyzed locations. Considering the damaged components, 
the longest cracks, or less than 5 mm shorter than the longest, were observed at Position 2 in 
85% of the cases (see Fig. 4). Therefore, the regression analysis focuses on this position and 
the maximal crack length at Position 2 is considered as the dependent variable, estimated by 
the models. Additionally, since the analyzed subsets are not normally distributed, a 
nonparametric Mood’s median test was used to test the equality of the samples’ medians. The 
resultant p-value equal to zero indicated that the null hypothesis should be rejected and that the 
medians are not equal. The median of measurements at Position 2 is several times higher than 
the remaining positions, as shown in Fig. 4. 

The second set of inputs contains operational data recorded by the Remote Monitoring & 
Diagnostics system. The system collects measurement data from gas turbine instrumentation 
about temperatures, translational displacements (vibrations), linear or angular positions, 
pressure and pressure differences, speeds, flows and others. Besides raw measurements, outputs 
of synthetic sensors and calculated parameters are also available. The following time series 
were utilized to create the models: 

- position of the inlet guide vanes and nozzle guide vanes, 
- pressure, temperature and relative humidity of ambient air, 
- pressure and temperature of the air at the axial compressor’s discharge, 
- pressure losses in the inlet and exhaust ducts, 
- rotational speeds of the high-pressure and low-pressure rotors, 
- the axial compressor pressure ratio, 
- the average temperature of exhaust gases at the inlet and outlet of the nozzles and the 

gas turbine’s output (these three parameters are calculated based on other signals), 
- temperatures of exhaust gases and their spread. 

 

Fig. 4 Variation of the analyzed crack length measurements. The data normalized by dividing 
each value by the maximal measured crack length to protect proprietary information. 
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Components with low availability of the operational data, covering less than 25% of service 
hours since the last repair, i.e. interval fired hours (IFH), are excluded from further processing. 
Thus, the sample is reduced to 555 segments out of 31 nozzle sets. The sampling interval of the 
data extracted from the RM&D system can be as short as one second, meaning that the interval 
between two consecutive samples equals one second. Because some of the analyzed parts 
accrued more than 50 000 fired hours since the last repair, a very short sampling interval would 
increase the dataset significantly. Additionally, the analyzed problem is not characterized by 
such dynamic changes. Therefore, the sampling interval is equal to one hour, allowing to model 
the failure type accurately and simultaneously keeping the dataset size reasonable. Raw data 
downloaded from the system must be preprocessed to handle measurement errors, 
inconsistencies and incomplete data. The objectives of the data cleansing are as follows: 

- Complete the data on ambient pressure and relative humidity based on the data related 
to other units from the same locations or using the data from the public repository [161]. 

- Complete the data on inlet and exhaust pressure losses using a regression model based 
on a random forest algorithm or information available in gas turbines’ data sheets. 

- Verify the data on high- and low-pressure shaft speeds. 
- Remove the non-numerical data from the dataset, including strings, NaN (i.e. Not a 

Number) and positive or negative INF (i.e. infinity). 
- Calculate the missing values of the compressor pressure ratio and corrected speed of the 

high-pressure shaft based on analytical formulas. 
- Considering the previously accomplished tasks listed above, remove from the dataset 

records containing erroneous values outside the acceptable ranges and records related 
to the transient states, i.e. startup, acceleration, load step, load rejection, deceleration or 
shutdown. A range of acceptable values was defined for each analyzed operational 
parameter. Records with values outside these ranges are excluded from the dataset. 

- Estimate values of the calculated parameters, i.e. the average temperature of exhaust 
gases at the inlet and outlet of the nozzles and the gas turbine’s output. An in-house 
estimator based on an artificial neural network that rebuilds the thermodynamic cycle 
of the analyzed gas turbines is applied for this task. 

Finally, the preprocessed dataset of the operational data comprises 1 029 215 records in total. 
Nevertheless, the data is incomplete for most of the 31 analyzed nozzle sets. The coverage, 
defined as the percentage of service hours with the operational data available, ranges from 26% 
to 100% depending on a particular set, with the mean coverage equal to only 73%. Therefore, 
the fraction of missing data is not insignificant. Fortunately, the analyzed gas turbines have a 
very stable operating profile. They are the drivers of centrifugal compressors in several natural 
gas liquefaction facilities worldwide. The units typically operate with their nominal power in 
continuous duty, with a high number of fired hours per each startup-shutdown cycle. 
Consequently, it is assumed that the available operational data could also be utilized to describe 
the missing periods. 

The third set of inputs contains mainly categorical data describing the following configuration 
details of the analyzed gas turbines: 

- the model, i.e. Type A, Type B or Type C; 
- the type of combustion system, i.e. either Standard or Lean Head End combustor; 
- primary and secondary fuel (if any) types, including the lower heating values; 
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- the geographical position of each unit. 

The database also contains basic identification details, including serial numbers of the assets 
and customer names. Parameters that do not differentiate the investigated units or should not 
have any impact on the analyzed phenomenon were identified but not listed above. 

The final set of input data comprises 32 variables. 21 out of 32 are the time series recorded by 
the RM&D system or calculated based on data from the system. 8 out of 32 were extracted from 
the Parts Life Database (i.e. two discrete variables describing the nozzle configuration and the 
number of past repairs, and six continuous variables with the interval and total counters). The 
remaining three discrete variables describe the engines’ configuration details. 

 Concerning the dependent variable, it should be made clear that considering a particular 
set of nozzles, the crack lengths at Position 2 vary and are not the same for all 18 segments. 
Some differences in the base material properties may cause it. However, it cannot be ruled out 
that segments at a specific angular position may suffer more due to temperature pattern factors 
at the high-pressure turbine section’s inlet. Thus, the dependent variable is distributed for a 
particular nozzle set, but the explanatory variables are the same for all segments within that set. 
Nevertheless, viewing the reliability and availability of the analyzed gas turbines, it should be 
enough to focus on the worst segment and accurately estimate the size of the longest crack. 
Therefore, to simplify the problem, the maximal crack size at Position 2 is chosen as the 
response variable. Thus, each set of the nozzles is described by a single value, composing the 
set of observations with 31 elements. 

4.3 Feature selection 

The set of features comprises 32 variables, but only 31 observations are available. In 
this case, it is necessary to reduce the dimension of the feature space to make the models more 
interpretable and avoid overfitting [162,163]. This process is known as feature selection. Many 
recommendations regarding the number of observations per feature to do a regression analysis 
are summarized in [164,165]. However, these suggestions vary significantly, from two hundred 
subjects (observations) per feature to just two. Considering these studies, the complexity of the 
analyzed phenomenon and the number of exploratory and response variables, it is decided to 
create the models using five features at the most, i.e. it gives around six subjects per feature. 
The models will share the same predictors regardless of the applied machine learning algorithm. 
Such an approach should allow for a direct comparison of the effectiveness of the algorithms 
and make it easier to interpret the obtained results. Filter and wrapper methods will be utilized 
during the feature selection process. 

In order to combine the inputs from the PLDB, the gas turbines’ configuration details 
and the time series recorded by the RM&D system, the latter is simplified to medians for each 
observation separately (i.e. considering a selected operating parameter, if 10 000 measurements 
are available for a particular observation, they are reduced to a single value, which is the median 
of that sample composed of 10 000 values; it is executed for each parameter separately). This 
transformation unifies the dimension of inputs and significantly reduces the quantity of data 
that will be processed during the training of the models. Such an approach is justified in the 
analyzed case since the investigated gas turbines operate continuously at their nominal power. 
Nevertheless, this assumption would not be valid for units characterized by a high load variance. 
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A filter method is applied in the first phase of the feature selection process. The goal is 
to remove the least important variables and intercorrelated features based on a simultaneous 
analysis of Pearson’s and Spearman’s correlation coefficients and the mutual information. The 
first is a measure of a linear relationship between two variables, while the second measures if 
the variables are monotonically related. The mutual information  ;I X Y  is a measure of the 
dependence between two variables X and Y, defined as the reduction in uncertainty of a single 
random variable due to another random variable [166]: 

          
   ,

,
; | , log ,

x y

p x y
I X Y H X H X Y p x y

p x p y
    (17) 

where  H X  is the measure of the average uncertainty in the random variable X (i.e. it is the 

entropy of that random variable),  |H X Y  is the conditional entropy of X given the knowledge 
of Y and p represents a (joint) probability mass function. This measure is symmetric in X and 
Y, takes nonnegative values only, and equals zero if and only if the two random variables are 
independent. The scikit-learn Python library [167] is utilized to calculate the three measures. 
Additionally, assuming that the response variable is categorical, a chi-square test is applied to 
examine whether there is a dependency between the target and the categorical input variables. 
The least important variables are identified and removed iteratively, eliminating around 20% 
of the remaining covariates during each iteration until ten variables with the best measures are 
identified. As a result of the filtering, the following independent variables are identified: 

- number of interval fired starts; 
- numbers of total fired starts and emergency shutdowns; 
- temperature and relative humidity of ambient air; 
- the fuel stroke reference, which represents the amount of fuel supplied to the combustion 

chambers; 
- the axial compressor pressure ratio; 
- the average temperature of gases at the inlet of the nozzles and the gas turbine’s output; 
- the average temperature of gases measured in the exhaust duct. 

The first two positions from the above list refer to the variables from the Parts Life Database, 
while the remainder represents the time series reduced to median values. 

The next phase of the process aimed to identify the final set of predictors is known as 
feature engineering. The objective is to create new, calculated parameters based on the existing 
ones. The dependence between these new variables and the response may be higher compared 
to the measures obtained during the filtering. However, considering that the filtered independent 
variables correspond to physical quantities that are either measured or calculated, the new 
variables should also have a physics-based meaning and be easy to interpret. Only the 
previously filtered operating data are considered during the feature engineering, excluding the 
fuel stroke reference and relative humidity of ambient air. The new variables shall reflect the 
distributions of those operating parameters in a simplified way. Based on the entire operational 
data set with 1 029 215 records, certain statistical measures (i.e. 50th, 70th and 90th percentile) 
are calculated for each parameter separately. Based on these measures, four new variables are 
introduced per each operating parameter and observation, i.e.: 
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- the number of service hours with the reading lower than the 50th percentile; 
- the number of service hours with the reading between the 50th and 70th percentiles; 
- the number of service hours with the reading between the 70th and 90th percentiles; 
- the number of service hours with the reading higher than or equal to the 90th percentile. 

This procedure temporarily increases the number of exploratory variables to 30, but by applying 
the same approach of filtering as previously, the list is limited as follows: 

- number of total fired starts; 
- temperature and relative humidity of ambient air; 
- the axial compressor pressure ratio; 
- the average temperature of gases at the inlet of the nozzles and the gas turbine’s output; 
- the average temperature of gases measured in the exhaust duct. 

Finally, a wrapper method is utilized in the last phase of the feature selection process. 
The objective is to find the optimal combination of independent variables, given the previously 
defined limit of five predictors at the most, using a specific machine learning algorithm to select 
them. A random forest is chosen, considering the high prediction capabilities of an ensemble of 
decorrelated decision trees [168] and applying the law of large numbers. Features are removed 
recursively based on the importance described in [169] and defined as the total decrease in node 
impurity, weighted by the proportion of samples reaching that node in each decision tree and 
averaged over all 100 trees of the random forest. Additionally, a 5-fold cross-validation (CV) 
with 50 repetitions is applied during each iteration. Therefore, the feature importance values 
are also averaged over 250 random forests trained on different subgroups of the dataset. Such 
an approach could be applied and is not computationally expensive due the effective filtration 
of features at the previous phases of the feature selection process. As a results, the following 
independent variables are selected for the modeling purposes: 

- number of total fired starts TFS, 
- median ambient air temperature TAMB෫  , 
- number of service hours with the average temperature of gases at the inlet of the nozzles 

between the 50th and 70th percentiles TINLET P50-P70, 
- median gas turbine’s output P෩, 
- median average temperature of gases measured in the exhaust duct TEXH෫ . 

The set of predictors is very diverse in terms of the source. It pools the information from the 
Parts Life Database, i.e. TFS, the variables based on the operational parameters recorded by the 
RM&D system, i.e. TAMB෫  and TEXH෫ , the variable based on the parameter calculated using an 
artificial neural network, i.e. P෩, and the variable created during the feature engineering, i.e. 
TINLET P50-P70. Even though the predictors were determined based on the analysis of statistical 
measures, they reflect well knowledge about the causes of the analyzed phenomenon. The 
temperatures of the nozzles’ base material on the hot and cold sides (i.e. on the external surface 
of the airfoils and from the inside of the cooling cavity) can be approximated as follows: 

   ,HOT INLET HOT INLET COOLT T T T    (18) 

   ,COLD INLET COLD INLET COOLT T T T    (19) 
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where THOT and TCOLD are the metal temperatures on the hot and cold sides, ϕHOT and ϕCOLD 
are the cooling effectiveness coefficients on both sides and TCOOL is the air temperature at the 
axial compressor discharge. The thermal stresses   resulting from the difference in material 
temperatures between both sides MATLT  can be estimated as follows: 

      ,MATL HOT COLD COLD HOT INLET COOLE T E T T E T T             (20) 

where E is the Young’s modulus and   is the thermal expansion coefficient. It should be noted 
that one of the selected predictors is calculated based on the values of TINLET, while the values 
of gas turbines output are correlated with the values of TCOOL. Furthermore, the number of fired 
starts accumulated since the manufacturing can represent the number of load cycles, an essential 
term of any crack propagation rate equation. Such consistency between these basic equations 
describing the analyzed problem and the feature selection process results can be thought of as 
a confirmation that the process was executed correctly and that the set of predictors is composed 
optimally, considering all data limitations. 

4.4 Training, tuning and testing of the models 

Creating models using machine learning algorithms is strictly connected with the bias-
variance tradeoff. The bias error is introduced in the case of an oversimplified approximation 
of the analyzed real-life problem, failing to capture the relationship between the input and 
output variables resulting in inaccurate estimates, so-called underfitting. The variance error is 
introduced in the case of models sensitive to peculiarities of the training subset, which perform 
well on the training data but have poor generalization capabilities and low prediction accuracy 
when applied to previously unseen data. This phenomenon is known as overfitting. According 
to [170], given a test value x, the expected mean squared error can be expressed as the sum of 
variance of  f̂ x , the squared bias of  f̂ x  and variance of the irreducible error ε: 

         
22ˆ ˆ ˆ ,E y f x Var f x bias f x Var               (21) 

where f̂  is the learned function and y is the observation corresponding to the input variable x. 
Based on Eq. (21), it is visible that during the error minimization, values of the variance and 
bias terms are reduced simultaneously to find a trade-off between them. Therefore, to create 
models that generalize well and have optimized values of hyperparameters, a robust approach 
is to split the sample into the following three subsets: 

- the training set utilized to fit the trainable model’s parameters; 
- the validation set utilized to tune hyperparameters of the model, which values are set by 

the modeler and used to control the training process; 
- the testing set utilized to assess the model’s performance on the unseen data. 

In the analyzed case, the sample comprises just 31 data points. It should be split cautiously to 
balance the number of elements in each subset appropriately and to prevent errors that may 
negatively impact the entire analysis. As part of preparations to divide the sample, the available 
crack measurements are split into three classes based on the threshold values, LLOW and LHIGH: 
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- “short” class comprising the measurements lower than LLOW (9 observations out of 31, 
which is 29% of the sample); 

- “medium” class comprising the measurements that are higher than or equal to LLOW and 
lower than LHIGH (10 observations, 32%); 

- “long” class comprising the measurements that are higher than or equal to LHIGH (12 
observations, 39%). 

Considering these clusters, the sample’s composition can be described as follows: 

- 24 observations out of 31 (77%) correspond to a natural gas liquefaction facility located 
in a marine, salty environment. 95% of records from the “short” and “medium” classes 
are related to that plant, i.e. 18 observations out of 19. 

- 6 observations out of 12 (50%) classified as “long” correspond to units installed in two 
other gas liquefaction facilities located in a tropical, humid environment. 

- 19 records out of 31 (61%) are related to Type C gas turbines making up the majority 
of the “medium” and “long” classes (i.e. 90% and 58%, respectively). 

- 7 records out of 31 (23%) are related to Type A units making up 33% of the “short” and 
“long” classes. 

- 5 records out of 31 (16%) are related to Type B units making up 33% of the “short” 
class and minorities of the remaining two classes. 

In summary, the available dataset is imbalanced, with an overrepresentation of records related 
to just one facility and a high number of data points corresponding to Type C units. However, 
regardless of the limited and imbalanced sample, the models should be capable of providing 
accurate estimates across the entire range of observations. In general, the composition of the 
training, validation and testing subsets should reflect the structure of the available sample. 
Therefore, the test set is composed considering the following constraints: 

- The proportions between the “short”, “medium” and “long” classes valid for the sample 
are applied to select elements of the test subset. Thus, each of the classes constitutes 1/3 
of the test set. 

- In order to avoid a significant reduction of the training and validation subsets, the test 
set comprises six elements. 81% of the data will be used to train the models and optimize 
their hyperparameters, while the remainder will be utilized to assess the generalization 
capabilities. 

- 5 observations out of 6 (83%) correspond to the gas liquefaction facility located in a 
marine, salty environment. 

- 4 observations out of 6 (67%) are related to Type C gas turbines. The remaining test 
data points correspond to Type A and Type B units. 

- In order to enlarge the training subspace, records for which the predictors take moderate 
values are preferred to be assigned to the test set. The remainder, characterized by higher 
variance, is used to train and validate the models. 

As described in the previous chapter, the relationship between the inputs and outputs is 
approximated during the learning process aimed at optimizing a predetermined cost function. 
This function represents the prediction error aggregated for all elements of the training dataset, 
while for a single element, a loss function is used to calculate the error. The squared error is 
frequently selected as the loss function in regression analysis. Consequently, the mean squared 
error (MSE) or root mean squared error (RMSE) is commonly chosen as the cost function. 
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Nevertheless, their popularity does not mean nor assure that their use will lead to optimal results 
always. The way the cost function is structured defines what the model will attempt to learn. 
Consistently, it significantly impacts the results determined by a fully-specified model, can 
even determine whether the model is valuable, and provides credible data-driven insights to 
support, e.g. business decisions. Therefore, a deep understanding of the analyzed problem and 
expectations of future users of the predictive model is a mandatory requirement to define the 
cost function appropriately. Due to the various peculiarities of many practical problems, 
creating a customized cost function may be necessary to obtain satisfactory results. 

As already described, in the analyzed case of fatigue cracks found on the nozzles, the capability 
to accurately estimate the size of the longest cracks is the most important in ensuring that the 
reliability and availability targets are not compromised. In practice, a certain value of absolute 
error is allowed for the “short” class since such cracks do not jeopardize the part’s integrity or 
require immediate corrective maintenance. Simultaneously, the same absolute error cannot be 
accepted for the “long” class, which pools the cracks that should be carefully examined. All 
these considerations should be better captured and reflected in a custom cost function compared, 
for example, to the (root) mean squared error. The proposed loss function is based on a variable-
width scoring interval defined by two scoring bounds, presented in Fig. 5. Estimates falling 
within the scoring interval are considered successful predictions with sufficient accuracy. The 
lower bound  b x  and the upper bound  t x  get closer to each other as the crack size increases. 
The minimum distance between the bounds, corresponding to the “long” class, equals around 
40% of the maximal one, related to the “short” class. The loss function takes discrete values 
and is defined as follows: 
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 (22) 

If the crack length predicted by the model is within the scoring interval, the loss function has a 
positive value. It should be emphasized that accurate predictions of the cracks classified as 
“long” with the length higher than or equal to LHIGH get a two-times higher score than accurate 
predictions of cracks classified as “short” or “medium”. This bonus aims to promote solutions 
capable of accurately predicting the length of the longest cracks. Nevertheless, the magnitude 
of the bonus should not be raised artificially, as it is a quantitative representation of the higher 
importance of some attributes over others. During the creation of the predictive models, it was 
observed that raising the bonus too high results in models providing heavily biased predictions 
for the “short” and “medium” classes, regardless of their excellent capabilities to predict the 
longest cracks accurately. Finally, the cost function is defined as the average loss: 

      
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where 1,2, ,i N …  is the observation’s ordinal number, N is the total number of observations 
utilized in the training set. The objective of the optimization problem is to maximize the cost 
function's value by adjusting the model's trainable parameters. 
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The validation set is composed considering the following constraints: 

- The proportions between the “short”, “medium” and “long” classes valid for the sample 
are applied to select elements of the validation set. Thus, each of the classes constitutes 
1/3 of the validation subset. 

- In order to avoid a significant reduction of the training set, the validation set comprises 
only three elements, one from each class, i.e. it represents 10% of the sample. Thus, in 
the case of validation, the codomain of the cost function is a set composed of five 
elements, i.e. ቄ0, 1

3
, 2

3
, 3

3
, 4

3
ቅ. 

Due to the low cardinality of the validation set, a modified leave-one-out cross-validation 
procedure will be applied, considering all the possible train-validation splits. Cross-validation 
is necessary in this situation to avoid drawing conclusions based on the results obtained from a 
few randomly chosen data points. In the proposed approach, 560 distinct train-validation splits 
are generated based on the available data since the dataset comprises seven elements from the 
“short” class, eight elements from the “medium” class and ten elements from the “long” class. 
Values of hyperparameters controlled by the modeler are fixed for all 560 repetitions. Unique 
datasets are used for the training and validation (i.e. they comprise 22 and 3 observations, 
respectively) during each iteration. The final cross-validation score is the arithmetic average of 
the cost values from all the repetitions. The set of hyperparameters with the highest average CV 
score is considered optimal. Finally, the parameters are fixed, the model is trained on the train-
validation set with 25 observations and is evaluated against the unseen data from the test subset. 

 

Fig. 5 The two scoring bounds composing the variable-width scoring interval of the custom 
cost function presented on the predicted vs. observed plot. 
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The training, validation and test sets were not drawn randomly. They were prepared in 
a controlled manner considering multiple constraints, which were defined based on the analysis 
of the composition and clusters of the available sample. This approach is expected to improve 
the training effectiveness and the models’ accuracy and simplify the interpretation of obtained 
results. Additionally, the proposed customized loss and cost functions reflect the peculiarities 
of the objectives better than the commonly utilized metrics, like MSE or RMSE. Therefore, the 
use of these functions should increase the models' usefulness and the chances of deploying them 
in real applications. 

4.5 An overview of utilized machine learning algorithms 

The following methods will be applied to create the data-driven models predicting the 
maximal length of fatigue cracks at Position 2 of the analyzed high-pressure nozzles: 

1. multiple linear regression, 
2. polynomial regression, 
3. support vector regression, 
4. kernel ridge regression, 
5. random forest algorithm, 
6. AdaBoost.R2 algorithm, 
7. Extreme Gradient Boosting algorithm, 
8. artificial neural network. 

A concise overview of the theoretical foundations of these methods is given in this section. 

4.5.1 Multiple linear regression 

The key assumption of models based on multiple linear regression is that the target 
variable is linearly dependent on the predictors. Given the multiple inputs 1 2, , , Kx x x…  and the 
output y, the linear relationship between them has the following scalar form: 

 0 1 1 2 2 ,i i i K iKy x x x           (24) 

where 1,2, ,i N …  is the observation’s ordinal number, 1,2, ,k K …  is the ordinal number 
assigned to each predictor, β0 is the intercept, βk are the coefficients of the regression equation 
and ε is the error term. It is assumed that 0 0   for the analyzed problem since the nozzles do 
not have any cracks at the beginning of the service period. Then, using matrix notation, Eq. (24) 
can be simplified as follows: 

 ,y   X
   (25) 

where vector βሬ⃗  comprises the equation coefficients and X is a K N  matrix of the input data. 

4.5.2 Polynomial regression 

The key assumption of models based on polynomial regression is that the target variable 
is nonlinearly dependent on the predictors. The relationship between the inputs and the output 
has the following scalar form: 
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 (26) 

where p is the degree of the polynomial equation. Assuming 0 0  , Eq. (26) in matrix notation 
is the same as Eq. (25). However, the size of matrix X depends on the degree of the polynomial 
and on the number of interaction features of the degree 1,2, ,d p … . These additional features 
are calculated as products of several independent variables, which are distinct from each other 
(i.e. terms used to compute the interaction features have different values of the subscript k). The 
degree of the polynomial  2,3,4p  is the only parameter assigned by the modeler and tuned 
during this analysis. 

4.5.3 Support vector regression 

Support vector regression generalizes the concept of support vector machines [171], 
which is frequently applied to solve classification problems. The SVR algorithm formulates Eq. 
(25) as an optimization task to find the narrowest margin around the approximated surface while 
minimizing the distance between the predictions and observations [172]. The maximum error ε 
determines the width of the interval of acceptable error and is a hyperparameter tuned during 
the cross-validation. The optimization is aimed at minimizing the Euclidean norm of the 
coefficients vector βሬ⃗ , i.e. the magnitude of the normal vector to the approximated surface, 
subjected to i iy x  

  : 

 
21min .

2



 (27) 

The algorithm penalizes only those predictions that are outside the ε-insensitive region, which 
are referred to as support vectors. Consequently, smaller values of ε result in more support 
vectors, while increasing the error has the opposite effect. This constrained optimization 
problem has the following solution: 
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where αi and αi
* are Lagrange multipliers and · denotes the scalar product in the space of input 

data X . The coefficients vector βሬ⃗  is expressed as a linear combination of the training vectors 
x⃗i and it is not required to compute βሬ⃗  explicitly. Therefore, the so-called support vector 
expansion does not depend on the dimension of the input space X , but it is driven by the 
number of support vectors only [173]. In the case of nonlinear relationships between the input 
and output variables, the data can be mapped into a higher dimensional feature space F , to 
make them linearly separable in that space and to apply the SVR algorithm. In space F , the 
scalar product of the vectors visible in Eq. (28) can be expressed using a similarity function 
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called a kernel function  ,ik x x  . Thus, the explicit mapping : X F , requiring high 
computational power in the case of multidimensional problems, is not needed if the kernel 
satisfies: 

      , : .T
i ik x x x x  
     (29) 

The solution to this constrained optimization problem in the feature space F  is as follows: 
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The kernel type may significantly impact the model’s performance and is considered one of the 
hyperparameters being tuned during the training. The SVR class of the scikit-learn Python 
library is used to create the model, which has the linear, polynomial, radial basis function and 
sigmoid kernels embedded. 

4.5.4 Kernel ridge regression 

The kernel ridge regression combines the ridge regression algorithm, which is a linear 
model with one regularization parameter, with a kernel function. The inclusion of the 
regularization parameter in the cost function 2 0   reduces the chances of overfitting and the 
impact of insignificant features or eliminates such input variables from the regression equation 
(i.e. the latter could be achieved with the lasso regression method). The objective function 
minimized during the training process has the following form: 

  2 2

2min ,y    X
   (31) 

where the first term is the squared error and the second is the ridge penalty. In this case, the 
vector of coefficients can also be expressed as a linear combination of the training vectors x⃗i: 
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where TG XX  is the Gram matrix, IN is the N×N identity matrix and   1
2 y  G I 

N  is 
the dual variable. For a test vector of input data x⃗, the prediction is calculated as follows: 

     1
2

1

ˆ ,
i N

T T T
i i

i
f x x x x y k  






     G I
    

N  (33) 

where T
i ik x x 
  . For nonlinear relations, the predictive function involves the Gram matrix 

with elements    T
ij i jx x  G    and the vector k⃗ containing values    T

i ik x x  
  . The 

explicit mapping into the higher dimensional feature space : X F  is unnecessary if the 
kernel satisfies Eq. (29). Similar to the support vector regression, the kernel type is one of the 
tuned hyperparameters. The KernelRidge class has the same kernels as the SVR class, plus the 
(additive) chi-squared, cosine and Laplacian kernel functions. 
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4.5.5 Random forest algorithm 

A random forest is an ensemble of decision trees. A single decision tree partitions the 
features space X  into J high-dimensional rectangles Rj trying to minimize the sum of squared 
residuals (RSS) at each split of the tree: 
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where 1,2, ,j J …  is the rectangles’ ordinal number and yොRj
 is the mean of the predictions in 

the Rj rectangle. Decision trees are created in the top-down approach, meaning that the features 
at the top of the tree minimize the RRS better than the remaining variables and determine the 
high-level divisions of the dataset. Nevertheless, a single decision tree may have a too simple 
structure to model more complex problems accurately. An ensemble of trees is created to raise 
the accuracy and generalization capabilities of the model. Each split of each decision tree is 
determined based on a random subsample of available data. Therefore, trees composing the 
random forest are not correlated with each other. The final output of the model is obtained by 
averaging the responses of all the decision trees: 
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where 1,2, ,m M …  is the decision tree’s ordinal number, M is the number of trees in the 

random forest and  m̂f x  is the prediction of the mth decision tree given the input data x⃗. 

4.5.6 AdaBoost.R2 algorithm 

The utilized AdaBoost.R2 algorithm described in [174] is a modification of the original 
AdaBoost.R presented in [175]. In this method, the predictive model is an ensemble of decision 
stumps, i.e. one-level decision trees. The responses of these weak learners are combined into a 
weighted median to get the final output of the model. Each new decision stump added to the 
ensemble focuses on training observations with the most inaccurate estimates obtained at the 
previous iteration. Based on the algorithm, higher weights are assigned to such observations, 
thus increasing the probability of selecting them into a new training dataset used to train a weak 
learner during the next iteration. The weights depend on the confidence in the decision stump 
Θ, which is a function of the average loss arising from the use of that one-level decision tree. 
For a test vector of input data x⃗, the prediction is calculated as the weighted median: 
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where 1,2, ,m M …  is the weak learner’s ordinal number, M represents their total number in 

the ensemble and  m̂f x  is the prediction of the mth decision stump given the input data x⃗. 
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4.5.7 Extreme gradient boosting algorithm 

The extreme gradient boosting algorithm [77] is another approach based on an ensemble 
of decision trees. In this method, the responses from gradient-boosted decision trees are added 
up to obtain the final output of the model: 
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where the meanings of m, M and  m̂f x  are the same as in Eq. (35). A characteristic feature of 
these decision trees is a similarity score assigned to each tree leaf. During the learning process, 
the following cost function is minimized at each iteration t: 
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where 1,2, ,l T …  is the leaf’s ordinal number, T is the number of leaves in the tree, Gl and Hl 
represent the first and second-order derivatives of the loss function (i.e. the gradient and the 
Hessian), wl is the similarity score assigned to each leaf, λ2 is the regularization parameter and 
γ is the minimum loss reduction required to make a further partition of a node. The structure 
and size of decision trees are reduced in order to lower the likelihood of overfitting and improve 
the generalization capabilities of the final model. For the XGBoost algorithm, the so-called 
decision tree pruning is based on the value of gain, which is defined as follows: 
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where L is the score on the new left leaf, R is the score on the new right leaf and N is the score 
on the new node, which was the original leaf. The new branch is pruned if the gain is negative. 

4.5.8 Artificial neural network 

Artificial neural networks are nonlinear statistical models whose structure is inspired by 
how human brains analyze and process information. A typical graphical representation of an 
artificial neural network is depicted in Fig. 6, where the units 1 2, , , MZ Z Z…  of the single hidden 
layer mimic neurons, while connections between neurons of the input, hidden and output layers 
represent synapses. The output from a single hidden neuron Zm is a linear combination of the 
input variables: 

  0 ,T
m m mZ a x  

   (40) 

where 1,2, ,m M …  is the neuron’s ordinal number,   is the neuron’s activation function, 
α0m is the bias term and αሬ⃗ m is the vector of K weights used to multiply each input variable. 
Consistently, results obtained by means of the model are a linear combination of the outputs 
determined by the hidden neurons: 
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where 1,2, ,h H …  is the output’s ordinal number, H is the dimension of the output space, β0h 

is the bias term and βሬ⃗ h is the vector of weights comprising M elements. The activation function 
g is typically an identity function for regression problems. 

If the cost function is based on the squared error, the objective function minimized during the 
training process has the following form: 
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where θ is the complete set of weights composed of two subsets  0 , ; 1, 2, ,m m m M   …  and 

 0 , ; 1, 2, ,h h h H   …  for the structure presented in Fig. 6. The objective function is 

nonconvex with many local minima. The predictions  ĥ if x  are calculated during a forward 
pass through the network, while a backward pass is used to compute the errors and propagate 
them to the hidden layer. The backpropagation algorithm, being a special case of reverse 
accumulation technique of automatic differentiation, is applied to minimize  R  . As already 
described in the previous chapter, this algorithm applies the chain rule to calculate gradients of 
 R   with respect to the networks’ weights, iterating backward through the layers from the 

output to the input layer. The adjusted weights at the t + 1 iteration are calculated as follows: 
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Fig. 6 A feedforward neural network with K input variables, a single hidden layer with M
neurons and H output variables. 
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where η is the learning rate and the subscripts denote the ordinal numbers of the nodes 
connected by a synapse. The simplicity and local nature are the main advantages of this two-
pass procedure. Nevertheless, the algorithm can be very slow in the case of multidimensional 
input data with numerous observations or extensive neural network structure. The state-of-the-
art optimization algorithms are based on (stochastic) gradient descent. 

The predictive models will be prepared using Python programming language. The most 
important open-source libraries that are needed for the study are as follows: 

- Numpy [176] and Pandas [177] for data manipulation; 
- Keras [178] application programming interface for the TensorFlow library will be used 

to create the structure and train the model based on an artificial neural network; 
- Scikit-learn for the creation and training of the remaining models; 
- SciPy [179] for solving the optimization problem utilizing the differential evolution 

method [180] in the case of models based on multiple linear and polynomial regression. 

Finally, before starting the training process, the features and the target variable are standardized 
using the standard score: 
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where 1,2, ,k K …  is the features’ ordinal number, 1,2, ,i N …  is the observation’s ordinal 
number, xk,i is the raw value, k  is the mean value of a particular variable (i.e. either 
independent or dependent one) and k  is the corresponding value of standard deviation. 

4.6 Results of the regression analysis 

The performance of the data-driven models created to predict the maximal length of 
fatigue cracks found on the analyzed high-pressure nozzles is described in this section. The 
following set of information is provided for each data-driven predictive model: 

- A list of optimized hyperparameters, including an interval or set of analyzed values. 
- A plot presenting the model’s performance on the entire train-validation set comprising 

25 observations and the unseen data from the test set composed of six elements. 
- A concise description of the obtained results. 

In order to protect proprietary information, the data presented in the plots were normalized by 
dividing each value by the maximal measured crack length. 

The results determined by the models based on multiple linear and polynomial 
regression are presented in Fig. 7 and Fig. 8, respectively. The most important considerations 
regarding the obtained results are as follows: 

- It was decided to proceed with a quadratic polynomial, i.e. 2p  , since the final cross-
validation score was equal to 1.200 regardless of the polynomial’s degree, where 
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 2,3, 4p . Therefore, the simplest expression was selected due to the lack of 
significant differences. However, since all the possible interaction features are included 
in the final regression equation, the polynomial can be simplified by removing the least 
important predictors, e.g. based on an analysis of variance or focusing on the variables 

 

Fig. 7 Evaluation of the multiple linear regression model against the training and test data
presented on the predicted vs. observed plot. 

 

Fig. 8 Evaluation of the polynomial regression model against the training and test data 
presented on the predicted vs. observed plot. 
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with the regression equation coefficients close to zero. In the case of multiple linear 
regression, the final cross-validation score is equal to 1.133. 

- Based on an analysis of the regression equation coefficients stored in the βሬ⃗  vector, the 
median average temperature of gases measured in the exhaust duct TEXH෫  and the number 
of service hours with the average temperature of gases at the inlet of the nozzles between 
the 50th and 70th percentiles TINLET P50-P70 are the most important variables in the 
multiple linear regression model. The product of these features and the squared number 
of total fired starts are the most significant variables in the polynomial model. 

- The normalized root mean squared error (NRMSE) evaluated against the test data equals 
0.529 for the polynomial model and 0.612 for the multiple linear regression model. 
Nevertheless, with all the interaction features, the original version of the former has a 
more complex structure and is less interpretable than the latter. RMSE values are 
normalized by dividing them by the maximal value of RMSE, which was obtained for 
the model based on extreme gradient boosting (i.e. NRMSE = 0.529 means that the error 
evaluated against the test data represents 52.9% of the error obtained in the case of 
XGBoost-based regression). 

- The accuracy of these models is satisfactory only for observations from the “medium” 
class, where  ,LOW HIGHy L L . The models tend to overestimate the shortest cracks, but 
the estimates are within the scoring interval for most data points. The lowest prediction 
accuracy concerns the longest observations, with several predictions underestimated and 
below the lower scoring bound. 

The results determined by the models based on support vector and kernel ridge 
regression are presented in Fig. 9 and Fig. 10, respectively. The list of hyperparameters 
optimized during the training process is as follows: 

- the maximum error  0,1  ; 

- the regularization parameters  2, 0.001,100C   ; 

- the kernel function, the degree of the polynomial kernel  2,3,4,5p  and the kernel 

function coefficients  , 0.001,1r  ; 

- the tolerance for stopping criterion from the interval  0,1 . 

Firstly, applying the RandomizedSearchCV class from the scikit-learn library, a predetermined 
number of combinations of hyperparameter values is drawn and evaluated. The objective is to 
limit the hyperparameters' space to subspaces, where the cost function takes the maximal 
values. Thus, it should reduce computational costs associated with the next cross-validation 
step. After the preliminary filtering, all the remaining combinations are evaluated using the 
GridSearchCV class. The highest mean cross-validation score is obtained using the polynomial 
kernel defined as    ,

pT
i ik x x x x r  
    . The most important considerations regarding the 

obtained results are as follows: 

- The final cross-validation score of these models is comparable to the model based on 
multiple linear regression. It equals 1.126 for support vector regression and 1.097 for 
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kernel ridge regression. The NRMSE values are also comparable (i.e. 0.635 and 0.611, 
respectively). 

- An extensive hyperparameters optimization can be executed since training a single 
model is very short. 

 

Fig. 10 Evaluation of the kernel ridge regression model against the training and test data 
presented on the predicted vs. observed plot. 

 

Fig. 9 Evaluation of the support vector regression model against the training and test data 
presented on the predicted vs. observed plot. 
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- Estimates determined by these models are in the same range as the observations. The 
models are capable of capturing the impact of input data variation on the target variable. 
Nevertheless, despite high accuracy for the observations from the “low” and “medium” 
classes, these models gave significantly underestimated predictions for several data 
points from the “long” class. 

In the case of decision tree-based methods (i.e. random forest, AdaBoost.R2 and 
extreme gradient boosting algorithms), there is a set of common hyperparameters optimized 
during the training process, which comprises the following parameters: 

- the maximum number of decision trees M and their maximum depth; 
- whether to apply random sampling with replacement or not; 
- the number of independent variables utilized during each split; 
- the minimum decrease in impurity, or the minimum loss reduction required to make a 

further partition of a node γ; 
- the minimum number of samples or the instance weight required to split a node, or the 

minimum number of observations remaining on the leaf after the split; 
- the learning rate η, in the case of AdaBoost.R2 and XGBoost algorithms. 

Concerning these parameters, the analyzed intervals were not unified for these three models. 
The additional hyperparameters considered in the case of XGBoost algorithm are as follows: 

- the booster type, which is either gbtree or dart; 
- the 1L  and 2L  regularization parameters  1 0,5   and  2 0,500  ; 
- the percentage of decision trees ignored, i.e. dropped out, during each boosting step 

 0.2,0.4,0.6,0.8rated  , which applies to the dart booster only to reduce overfitting; 

- the probability of skipping the dropout procedure  0,0.2,0.4,0.6skipd  . 

The results determined by these models are presented in Fig. 11, Fig. 12 and Fig. 13. The most 
important considerations regarding the obtained results are as follows: 

- The median average temperature of gases measured in the exhaust duct TEXH෫  is the most 
important independent variable in these models. The Gini importance (i.e. the mean 
decrease in impurity) for random forest and AdaBoost.R2 regression and the values of 
gain for each decision tree in the case of XGBoost are used to calculate the importance. 

- The normalized root mean squared error evaluated against the test data equals 0.544 in 
the case of random forest regression and 0.500 for the model based on the AdaBoost.R2. 
The latter is the lowest value obtained during the analysis and can be considered 
satisfactory. However, these models may have worse generalization capabilities than 
the remaining ones since the obtained final cross-validation scores are one of the lowest, 
i.e. 0.962 and 0.980, respectively. 

- The model built using the XGBoost algorithm achieved a better score during the cross-
validation, i.e. equal to 1.096, but it has the highest error when evaluated against the test 
set, NRMSE = 1.000, due to the significantly underestimated prediction for the longest 
observation in the test subset (Fig. 13). Efforts aimed at reducing the error related to that 
data point by tuning of hyperparameters of the model result in substantial lowering of 
the average cross-validation score. Additionally, even though several regularization 
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parameters have nonnegative values, it is visible that the model’s accuracy evaluated 
against the training set is exceptionally high, indicating possible overfitting. However, 
attempts to apply stronger regularization or reduce the number of decision trees have a 
negative impact on the final CV score and do not reduce the normalized error. 

 

Fig. 11 Evaluation of the random forest regression model against the training and test data 
presented on the predicted vs. observed plot. 

 

Fig. 12 Evaluation of the AdaBoost.R2 regression model against the training and test data 
presented on the predicted vs. observed plot. 
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- Compared to the previously described algorithms, tuning of hyperparameters takes more 
time since these tree-based models have more parameters controlled by the modeler. 

- Estimates determined by these models are in the same range as the observations. The 
models are capable of capturing the impact of input data variation on the target variable. 
Nevertheless, despite high accuracy for the observations from the “low” and “medium” 
classes, these models tend to underestimate the longest cracks and have one of the worst 
cross-validation scores, indicating potentially lower generalization capabilities. 

For the model based on a feedforward neural network, the list of hyperparameters tuned 
during the training process is as follows: 

- the number of hidden layers of the network from the set  2,3,4,5,6,8,10  and the 

number of neurons in the input and hidden layers  , 5,10,15, 20inputM M  ; 
- the optimization algorithm from the set {Adadelta, Adam, Adamax, Nadam}, the 

learning rate  0.0001,0.1   and the number of training epochs (i.e. an epoch refers to 

one complete pass of the algorithm through the data) from the interval  100,1300 ; 
- the activation function for the hidden layers  {relu, exponential, hard sigmoid, 

sigmoid, sofplus, tanh}; 
- the initializer used to determine the initial weights of the model from the set {he_normal, 

he_uniform, GlorotNormal, GlorotUniform, lecun_normal, lecun_uniform}; 
- the number of training samples presented to the neural network before each update of 

the weights from the interval  4,10 ; 

 

Fig. 13 Evaluation of the extreme gradient boosting regression model against the training and 
test data presented on the predicted vs. observed plot. 
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- the percentage of hidden neurons dropped out during each update of the weights 
 0,0.2,0.25,0.3,0.4rated  ; 

- the maximum norm of the weights vector  , 3, 4,5m ha  
 ; 

- in the case of Adamax optimizer, the exponential decay rates for the 1st and 2nd moment 
estimates from the interval  0,0.999 . 

The highest averaged cross-validation score equal to 0.910 is obtained with an architecture 
comprising three hidden layers with 15 neurons each, the weights initialized using the Lecun 
initializer that draws them from the uniform distribution  3 / , 3 /input inputU M M , the 

rectifier linear unit (ReLU) activation function defined as    max 0,x x   and the Adamax 
optimization algorithm [181]. The results obtained by means of this model are presented in Fig. 
14. The most important considerations regarding the obtained results are as follows: 

- The normalized root mean squared error evaluated against the test data equals 0.519, 
the lowest of all the prepared models. However, simultaneously it has the worst final 
cross-validation score, indicating potentially lower generalization capabilities. 

- The importance of the independent variables is unknown since artificial neural networks 
are so-called black boxes whose internal operations are difficult to be interpreted. 

- Due to the number of parameters configured by the modeler and the time needed to train 
a single model, an extensive optimization of the hyperparameters requires much time. 

- Estimates determined by this model are in the same range as the observations, and the 
model can capture the impact of input data variation on the target variable. Nevertheless, 

 

Fig. 14 Evaluation of the feedforward neural network regression model against the training and 
test data presented on the predicted vs. observed plot. 
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as for the previously described models, the outputs corresponding to the longest cracks 
are underestimated. 

The results of the regression analysis are summarized in Table 1. 

4.7 Conclusions concerning this stage of the research 

The purpose of the first stage of this research was to apply several machine learning 
algorithms on a small sample comprising 31 observations and assess whether the objectives of 
this research, described in Section 2.1, can be achieved through these methods. The primary 
outcomes of this study are as follows: 

- Five independent variables, essential in modeling the maximal length of fatigue cracks 
recorded on the analyzed 1st stage nozzles, were identified during the selection and 
extraction of features. The operating parameters used to create the models are related to 
gas temperatures at the gas turbine’s inlet, exhaust and inlet of the nozzles, the engine’s 
output and the number of total fired starts. The median average temperature of gases 
measured in the exhaust duct TEXH෫  was the most important predictor in the case of 
polynomial and multiple linear regression and for the tree-based models. 

- Based on the metrics used to evaluate the models' performance (i.e. the averaged cross-
validation score and the normalized RMSE evaluated against the test observations), the 
polynomial model is characterized by the lowest error and should generalize the best. 
However, this model does not capture sufficiently precisely the impact of input data 
variation on the dependent variable, tending to overestimate the shortest cracks and 
underestimate some of the longest observations. The latter is a common drawback of all 
the models created, but it applies only to single data points from the “long” class. The 
model based on the AdaBoost.R2 algorithm can be considered an alternative. However, 
before considering it a valid source of data-driven insights to support decisions, it should 

Table 1 A summary of metrics describing the models based on machine learning algorithms 
created to predict the length of fatigue cracks found on the high-pressure nozzles. 

Algorithm type Averaged cross-
validation score 

Normalized RMSE 
evaluated against the test set 

Polynomial regression 1.200 0.529 
Multiple linear regression 1.133 0.612 
Support vector regression 1.126 0.635 
Kernel ridge regression 1.097 0.611 

XGBoost regression 1.096 1.000 
AdaBoost.R2 regression 0.980 0.500 
Random forest regression 0.962 0.544 
Feedforward neural network 
regression 

0.910 0.519 
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be subjected to additional validation to evaluate mainly its generalization capabilities. 
For example, the predictions can be compared with the results obtained using a different 
approach, e.g. a finite element analysis. Additionally, a staggered deployment linked 
with intermediate visual inspections of the hardware, e.g. by means of a borescope, 
acquisition of new measurement data and cyclic updates of the model are suggested. 

- It was proved that these machine learning algorithms could be applied at the early stages 
of the component’s lifetime when the availability of damage measurements is limited, 
and the number of observations is small. It was confirmed that the length of analyzed 
fatigue cracks could be predicted accurately using some of these methods. Additionally, 
the applied algorithms are universal and can be utilized for modeling damage due to 
various failure types found on the main parts of gas turbines. However, even though the 
predictors reflect well knowledge about the cause of the analyzed phenomenon, the 
predictive models are not aligned with any fatigue crack growth equation. In the worst-
case scenario, it may happen that a model characterized by high prediction accuracy is 
not entirely consistent with the underlying physical laws. In practice, it eliminates the 
possibility of using such a model to extrapolate and generates doubts regarding the 
interpolation capabilities in the entire training domain. 

- Because of the limited number of observations, the training, validation and test subsets 
were not drawn randomly. These sets were prepared in a controlled manner considering 
multiple constraints resulting from the analysis of the composition and clusters of the 
sample. As a result, each set represents the entire dataset in a quantitative and qualitative 
way. This approach was applied to improve the training effectiveness, make the cross-
validation more meaningful and simplify the evaluation and interpretation of results. 

- Customized loss and cost functions were created and used during the training process. 
Compared to the (root) mean squared error, the utilized cost function more directly 
reflects the particular objective to accurately predict the longest cracks, which may 
jeopardize the part’s integrity if not appropriately maintained. Therefore, according to 
the definition of the loss function, the prediction accuracy should rise as the crack 
lengths increase, which is represented by the variable-width scoring interval defined by 
two scoring bounds. Additionally, accurate predictions of the cracks classified as “long” 
are rewarded with a bonus, promoting models with specific demanded characteristics. 

During this part of the research, it was proved that the models based on machine learning 
methods can provide accurate predictions, even if the available sample is small. Despite several 
advantages, those data-driven models have restricted extrapolation capabilities, mainly because 
of the lack of direct representation of the underlying physical laws in the model. These 
drawbacks are addressed in the second stage of this research.  
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5. Predicting fatigue cracks growth 
by physics-informed neural networks 

As described in Section 3.4, physics-informed neural networks can be considered a 
method of unsupervised learning that assures consistency with physical laws describing the 
analyzed problem, which are embedded into the cost function, even when the available number 
of observations is limited. Many successful applications of such networks, combining data with 
underlying theoretical equations, were referenced. The main benefits resulting from the use of 
physics-informed neural networks are as follows: 

- A PINN can be trained effectively if the training subset comprises only a few elements 
or even when no observations exist. 

- Prior knowledge about the analyzed phenomenon is integrated into the neural network’s 
structure and utilized to regularize the training process and limit the output space only 
to solutions consistent with the embedded physical laws. Thus, compared to purely data-
driven models, PINNs should be more robust in the small data regime and have better 
generalization and extrapolation capabilities. 

- A validated physics-informed neural network can be used as a source model adjusted in 
the target domain. Otherwise, if the governing equation is the same in both domains, 
applying the source model directly in the target domain is possible. Therefore, from this 
perspective, PINNs can be considered a means to transfer knowledge between domains. 

- PINNs are universal function approximators applied to problems described mainly by 
partial or ordinary differential equations. Regardless of the mathematical description’s 
complexity, a physics-informed neural network can be built and trained using open-
source software and popular, easy-to-use libraries. 

Considering the limitations of the predictive models created during the first stage of the research 
and the advantages of PINNs, it is decided to apply physics-informed neural networks to the 
analyzed problem of fatigue crack length prediction. The dependent variable remains the same: 
it is the maximal crack size at Position 2 on the nozzle’s trailing edge. Nevertheless, the sample 
is reduced again and limited only to Type C gas turbines, for which numerical analysis results 
are available. Thus, the sample comprises 19 observations, for which 584 434 records with the 
operating parameters are available. The set of operational data is again incomplete. Fig. 15 
presents the values of the coverage, defined as the percentage of startup-shutdown cycles for 
which at least one complete record is available. Its values range from 10% to 100%, with the 
mean coverage equal to only 54%. The highest absolute value of cycles with the operational 
data available equals 48 (~81% of 59 interval fired starts) for the nozzle set with id. S1N_5. 
The approach applied for the data imputation is described in the next section. The operating 
parameters utilized to prepare the input of the physics-informed neural network are as follows: 

- the ambient air temperature TAMB, 
- the average air temperature at the axial compressor’s discharge TCOOL, 
- the average temperature of gases at the outlet of the nozzles TFIRE, which is calculated 

based on other signals the data acquisition system recorded. 

Moreover, the fuel stroke reference, the mean air pressure at the axial compressor’s discharge, 
the high-pressure shaft’s rotational speed and the gas temperatures measured in the exhaust duct 
are used to identify startups and shutdowns of the analyzed gas turbines. 
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Details of this research stage are provided in the following sections of this chapter. At the outset, 
it should be highlighted that a significant part of the conducted research and obtained results 
were described in [110]. 

5.1 The architecture of the hybrid model 

In [182] the authors applied a PINN based on a recurrent neural network for modeling 
the propagation of fatigue cracks in a corrosive environment. The model’s structure was simple, 
but the obtained estimates were accurate despite this. Consequently, based on these promising 
results, it is decided to apply a similar architecture based on a recurrent neural network. RNNs 
are suitable for processing variable-length time series, allowing to use as the input at the current 
time step t, the output of the previous time step t - 1. Such a layer can be presented as a for loop 
that iterates through the series of data points while keeping information from the previous time 
step in the internal state. In the case of progressive, irreversible damage accumulation, for 
example, caused by fatigue, oxidation, creep, wear, corrosion, or erosion, a recurrent neural 
network is a logical choice for building cumulative damage models. Equations that describe the 
damage increment during a single cycle or time step can be applied multiple times for all records 
in the sequence. Consequently, the total damage to a component at time t is represented as the 
sum of damage increments until that moment. 

The equations describing the damage increment, which are utilized to process the data 
during each time step, are embedded inside the recurrent neural network’s cell. Fig. 16 presents 
the custom RNN cell designed to approximate the solution to the analyzed problem. The cell 
comprises the following major elements: 

- The data-driven layer is based on a feedforward neural network estimating values of the 
stress intensity factor range at engine shutdown ∆Kshdn and the stress intensity factor 
during steady-state operation Kss. The multilayer perceptron takes shdn  as the input, 

 

Fig. 15 The number of fired starts accumulated since the last repair IFS for each nozzle set and 
the percentage of startup-shutdown cycles, for which at least one complete record with 
the operational data is available. 
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which is the value of maximum thermal stresses at each shutdown, then the median of 
thermal stresses at steady-state operation conditions for each startup-shutdown cycle 


ss , and the estimated crack length at the previous time step at-1. Simultaneously, it is 
assumed that for each cycle, the minimum value of thermal stresses MIN  equals zero. 
Consequently, the corresponding value of the stress intensity factor 0MINK   and the 
stress intensity factor range at shutdown can be evaluated as follows: 

    , , .shdn shdn MIN shdn shdn
K K a K K a K       (46) 

- The cyclic part is based on the Paris’ law [183], which is used to calculate the crack 
length increment ∆ac during each startup-shutdown cycle using the following formula: 

   ,m
c c shdn

da a C K
dN

     (47) 

where Cc is the linear function of ,S ssT , which is the mean temperature of the trailing 
edge tip at steady-state operating conditions and m has a constant value. The results of 
fatigue tests conducted at Baker Hughes Company were used to determine the formulas 
utilized to estimate these material parameters. 

- The time-dependent part, which is used to calculate the crack length increment due to 
creep ∆ah following the British Standard BS 7910:2013+A1:2015 [184]: 

  


0.852

5 ,ss

h ss R

Kda
dt t

 
  

  
 (48) 

 ,h h
h

daa t
dt

   (49) 

 

Fig. 16 The custom cell of the recurrent neural network applied to estimate crack length increments. 
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where tR is the time to rupture (i.e. at ss  and ,S ssT ) estimated by means of the Larson-
Miller parameter and th is the duration of a startup-shutdown cycle expressed in fired 
hours. The standard does not provide a specific formula for FSX-414 or other cobalt-
based superalloys. Therefore, Eq. (48) is a universal formula applicable to various 
materials and temperature ranges. 

Predicting accurately and effectively the initiation and propagation of cracks in areas of stress 
concentrations is one of the main objectives of fracture mechanics. This problem is of primary 
importance to ensure the reliable operation of structural elements and machines under 
multiaxial loading, including various components of gas turbines. In 1957, Irwin [185] 
introduced the stress intensity factor parameter, which characterizes the stress field near the tip 
of a tensile fracture of a linear elastic material. Since then, the stress intensity factor has become 
one of the most essential parameters for crack propagation analysis. Many different methods 
were proposed to determine the parameter’s value. The propagation of cracks with singular 
concentrations at their tip can be estimated by applying, e.g. the strain energy density criterion 
[186], the crack tip opening displacement approach [187], or the criterion of critical value of 
the elastic energy release. At the regular areas of stress concentrations, like holes, grooves, or 
notches, the material strength is typically estimated based on the local stress conditions. In 
[188,189] the authors proposed a non-local stress criterion for determining the initiation and 
propagation of cracks, which can be applied to regular and singular stress concentrations. This 
brittle failure criterion is represented by a non-local measure of stress intensity over the finite 
damage zone, which the material grain size can specify. Since this condition can be employed 
to determine the crack initiation, the growth rate, or propagation direction, it can significantly 
simplify the theoretical description of the problem under analysis. Moreover, in the case of 
small stress gradients, this non-local condition can be converted to local stress criteria or, in the 
case of singular stress distributions, to energy criteria. The authors successfully applied the 
proposed condition, considering that the analyzed object was a plate subjected to tension with 
a wedge-shaped notch, an elliptical hole, or hyperbolic notches. In the case of multiaxial fatigue 
loading, the non-local stress criterion is applied together with a local failure function, which is 
a homogeneous function of non-dimensional values of the normal and shear stresses on the 
physical plane. In this setup, the same type of non-local condition is utilized to generate the 
initiation and propagation rules for cyclic loading. The crack growth condition due to low cycle 
tensile stresses was generated based on the crack initiation condition. Moreover, as emphasized 
in the paper [189], the former condition has a form similar to the Paris’ law, i.e. Eq. (47), which 
is used to determine the crack length increment ∆ac during each startup-shutdown cycle in the 
recurrent neural network presented in Fig. 16. However, an important reason that contributed 
to the decision to choose the Paris’ law relates to the availability of fatigue crack growth rates 
of FSX-414 cobalt-based superalloy. The raw data were recorded during fatigue tests performed 
at two distinct material temperatures and subsequently have been approximated and described 
by means of a power function. Only the final, post-processed values of the stress intensity factor 
range and the corresponding crack growth rates are available. Therefore, these data can be 
directly used to determine the material-specific coefficients m and Cc of the Paris’ equation, 
where the latter depends on the nozzle’s trailing edge tip temperature at steady-state operating 
conditions. 

Conditions of crack initiation and propagation, which were established 50 years ago or more, 
are a point of reference often used by today’s researchers. In [190] the authors applied the strain 
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energy density criterion and the theory of critical distances, which is concisely described in 
[191], combining them with the equivalent material concept. In accordance with this concept 
introduced in [192], a virtual brittle linear elastic material and brittle fracture conditions can be 
applied to analyze fractures of ductile materials showing elasto-plastic behavior. Therefore, by 
employing the equivalent material concept, the strain energy density criterion and the theory of 
critical distances can be applied to objects with nonlinear elastic behavior. According to [190], 
such a combined approach provides accurate predictions of fracture loads for large radii of the 
notch, but it underestimates them when the radii are small. Nevertheless, a significant drawback 
of purely theoretical methods for predicting the stress intensity factor is their limited 
applicability related to several examples of crack types and loadings, which do not reflect the 
wide range of cases observed in engineering practice. Similar limitations characterize 
traditional experimental methods, which are insufficient for components with complex shapes 
and multiaxial loadings. In such situations, a numerical simulation can be run and solved by 
employing the boundary element method or finite element method. Application of the latter is 
the most popular approach. However, special techniques and a properly created mesh in the 
crack tip vicinity are required to estimate the stress intensity factor accurately. Increasing the 
mesh density makes the simulation more computationally expensive and time-consuming. 
Thus, multiple variations of the finite element method for estimating the stress intensity factor 
have been proposed. A concise overview of these methods is given in [193]. As with many 
other scientific and engineering challenges, applying machine learning algorithms to determine 
the stress intensity factor is an alternative to computationally expensive numerical simulations. 
These data-driven approaches may require substantial time to create, tune, train and test the 
predictive model. However, a fully-specified model does not require much computational 
power to be applied and provides results significantly faster than a numerical simulation. 
Numerous studies on the prediction of stress intensity factors by means of machine learning 
methods are available, including the use of multiple linear regression [194], support vector 
regression [195], extreme gradient boosting [196], artificial neural networks [197], or deep 
convolutional neural networks [198]. Models based on such algorithms allow for continuous 
estimation of the stress intensity factor using the gas turbine operational data or digital images 
of the analyzed object and location. As already described, for the analyzed problem of fatigue 
cracks observed on the high-pressure nozzles, the stress intensity factor is estimated using the 
feedforward neural network, whose input data are calculated based on the selected operating 
parameters of gas turbines. The structure of this multilayer perceptron, being the data-driven 
layer, is as follows: 

- A data normalization layer, where the min-max normalization is applied. The 
predictions’ accuracy was lower when the input data was standardized using the 
standard score instead of normalized. 

- The input layer comprises 16 neurons with the Scaled Exponential Linear Unit (SELU) 
activation function and the lecun_normal initialization function. Reducing the number 
of neurons to eight, four, or even two results in longer cost function optimization. The 
activation function returns λx if 0x   or  1xe   if 0x  , where λ = 1.05070098 

and α = 1.67326324. Attempts to use the hyperbolic tangent activation function reduce 
the effectiveness of the training process and extend its duration. The initial weights are 
drawn from a truncated normal distribution centered on zero with a standard deviation 

1 _ln fan in   , where fan_in is the number of input units in the weight tensor.  
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- Two hidden layers comprising nine neurons, with the SELU activation function and the 
lecun_normal initialization function. During the optimization of the neural network’s 
structure, the numbers of hidden layers and the corresponding neurons were drawn from 
sets {1, 2, 4, 8} and {2, 3, 5, 9}, respectively. Considering the accuracy of the predictive 
model and the time required to execute the learning process, the selected configuration 
is the optimal one. 

- The output layer comprises one neuron with the rectifier linear unit activation function 
to ensure that the stress intensity factor estimates are nonnegative. 

The feedforward neural network requires information about the stress and actual crack length 
to estimate the stress intensity factor. However, based on the feature selection process described 
in Chapter 4, also the following variables were previously chosen as the predictors: 

- median gas turbine’s output P෩, 
- median average temperature of gases measured in the exhaust duct TEXH෫ . 

The latter was the most important independent variable in the case of polynomial and multiple 
linear regression and for the tree-based data-driven models. Although these parameters should 
not affect the stress intensity factor, an attempt was made to consider them as inputs of the 
feedforward neural network. The objective was to check if their inclusion could increase the 
accuracy of the final estimates determined by the physics-informed neural network. 
Unfortunately, the prediction error did not decrease while the model’s complexity increased. 
Therefore, these two parameters are not included in the input data set for the final, fully-
specified model. An alternative approach is to include in the RNN’s cell an additional block to 
correct the crack length estimates based on values of P෩ and TEXH෫ , i.e.: 

  1 1 , , ,t t c corrector t c c EXHa a a a a a f a P T             (50) 

where ∆acorrector is the correction applied to the crack length increment estimation ∆ac. The set 
of values the correction function may take should be constrained to keep the model 
interpretable. Physics-based equations embedded in the cost function can be used to restrict the 
space of allowable solutions. Additionally, the time-dependent part is excluded from the RNN’s 
cell. With the time-dependent part included, it was impossible to simultaneously reduce the 
error related to the theoretical equation embedded in the cost function and the error associated 
with the empirical data. The resultant models estimated high crack length increments due to 
creep, but the contribution of fatigue was negligible due to low estimates of the stress intensity 
factor (i.e. compared to models with the cyclic part only). Consequently, those models did not 
reflect prior knowledge about the analyzed problem and provided very inaccurate estimates of 
the final crack lengths. Thus, the RNN’s cell of the final model comprises only the data-driven 
layer and the cyclic part. It should be highlighted that no element is intended to model the crack 
initiation process in the structure. However, on the basis of the available empirical data, the 
analyzed cracks should be visible after the first few startup-shutdown cycles. Therefore, such a 
simplification should not affect the model’s accuracy significantly. The initial crack length a0 
is assumed in accordance with the company’s standard. It has to be explained that the analyzed 
component is subjected to a non-destructive penetrant inspection after manufacture and each 
repair. Therefore, the initial length of the analyzed edge crack is approximately equal to the 
length of the smallest indication that can be detected using a fluorescent penetrant inspection. 
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Finally, with the architecture of the hybrid model determined, it has to be explained how 
the thermal stresses at shutdown shdn  are estimated based on the gas turbine operational data, 
i.e. TAMB, TCOOL and TFIRE. During engine shutdowns the nozzle’s trailing edge cools down 
faster than the inner and outer platforms. These changes in the base material temperature create 
tensile thermal stresses and open the analyzed cracks. Concerning the analyzed Position 2, the 
tensile stresses in the direction perpendicular to the crack propagation plane are nearly five 
times higher at the emergency shutdown from full load in comparison with the stresses at the 
steady-state operating conditions, as shown in Fig. 17. It confirms that the analyzed cracks are 
mainly caused by low cycle fatigue. In addition, it should be clarified that the utilized numerical 
simulation dedicated to the high-pressure nozzles of Type C gas turbines was not prepared 
specifically for this research, as it was prepared a few years earlier for a different New Product 
Development program. A particular limitation resulting from this decision is that the transient 
analysis was executed assuming only an emergency shutdown from the full load, and no results 

 

Fig. 17 The numerical simulation results for Position 2. Distribution of the base material temperature 
at steady-state operating conditions (a) and emergency shutdown from the full load (b) for a 
time step, when the thermal stresses take the maximum value. The temperatures were 
normalized by dividing each value by ,HOT ssT . (c) Thermal stress field in the direction 
perpendicular to the crack propagation plane at emergency shutdown from the full load 
(tensile stresses are marked in red and compressive stresses are in blue). The stresses were 
normalized by dividing each value by the maximum value of the thermal stresses. 
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are available for a normal shutdown mission. Consequently, the temperature and stress fields 
corresponding to the emergency shutdown from the full load are assumed for each cycle that 
the analyzed parts accumulated, even though a substantial number of them finished with a 
normal shutdown. 

The thermal stresses are estimated based on the difference in thermal growths of the two cross-
sections of the airfoil close to Position 2. The smaller area is around the trailing edge tip (marked 
by the blue dotted line in Fig. 17), while the larger area spans from the tip to the cooling cavity 
(marked by the pink dotted line in the same figure). The thermal stresses are calculated based 
on the following formulas: 

      , ,
, , , ,

L shdn S shdnshdn L S AMB AMBT T T TS shdn L shdn S shdn S shdn
E T T T T E            

 (51) 

and 

  , ,1 1 3 , 3 ,1 ,L shdn L ss HOT ss COLD ssT T T T          (52) 

  , ,2 2 4 , ,S shdn S ss HOT ssT T T     (53) 

  , ,HOT ss FIRE HOT FIRE COOLT T T T    (54) 

  , ,COLD ss FIRE COLD FIRE COOLT T T T    (55) 

where the large and small areas are denoted by subscripts L and S, respectively. Subscripts ss 
and shdn refer to the operation in steady-state and transient (i.e. at shutdown) operating 
conditions, respectively. The strain due to thermal expansion is denoted as ε, E is the Young’s 
modulus, α is the thermal expansion coefficient, T  is the mean material temperature calculated 
over the area indicated in the subscript, ,HOT ssT  and ,COLD ssT  are computed in the nodes shown 
in Fig. 17 (a). The coefficients λ1, λ2, λ3 and λ4, which are necessary to calculate material 
temperatures at shutdown based on the temperatures during steady-state operation, and the 
cooling effectiveness coefficients ϕHOT and ϕCOLD were determined based on the numerical 
simulation. For clarity, for each cycle, the temperatures at shutdown are computed considering 
only the last timestamp, which was recorded at steady-state operating conditions. For cycles 
without at least one complete record with the required operational data, values of shdn  and Cc 
are calculated as an arithmetic average of the values describing the adjacent cycles (i.e. if the 
operational data are available for the preceding and subsequent cycles) or all cycles with the 
required operating parameters available. Values of the modulus of elasticity and the thermal 
expansion coefficient are determined on the basis of the FSX-414 characteristics, created based 
on the results of material properties tests at various temperatures. 

In accordance with Equation (51), the thermal stresses at shutdown are calculated assuming a 
purely elastic deformation. The obtained stress values fluctuate around the 0.2% yield strength 
values estimated for the same material temperatures. Nevertheless, for some startup-shutdown 
cycles, the stresses exceed the 0.2% proof stress, which contradicts the assumption applied. 
Additionally, it should be considered that the yield strength of FSX-414 cobalt-based superalloy 
decreases under cyclic loading. Therefore, an attempt was made to account for plasticity and 
determine the true stress by applying the Neuber’s correction method [199], which is often used 
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for monitoring thermal stresses and fatigue life prediction of steam turbine rotors [200–202]. 
This method relates the nominal elastic stress and the corresponding strain with the elasto-
plastic stress and strain at the notch root, applying a function referred to as Neuber’s hyperbola. 
It can be easily employed in the analyzed case but is also known to overestimate the notch tip 
stress distribution [203]. The corrected thermal stress values were insignificantly lower, on 
average, by 5%, compared to the elastic stresses. Simultaneously, the variation of the stress 
values for a single set of nozzles has considerably reduced after applying the Neuber’s rule, 
which resulted in assigning a nearly constant value to each operating cycle. This more complex 
way of preparing input data for the hybrid model did not improve the accuracy of the final crack 
length estimates. Because of the lack of tangible benefits, it was decided to follow the initial 
approach, assuming a linear elastic behavior of the analyzed object. 

5.2 Configuration and execution of the training process 

Leveraging Eq. (15), the custom cost function, which is minimized during the learning 
process, is defined as follows: 

  1 ,PHY EMPc RMSE RMSE     (56) 

where RMSEPHY is referred to as the physical term, which represents how well the hybrid model 
respects a theoretical relationship embedded in the cost function, RMSEEMP is referred to as the 
empirical term representing the model’s capability to predict the final length of the analyzed 
fatigue cracks accurately and  0,1   determines how these terms contribute to the cost value. 
Considering the function’s structure and the values that γ coefficient can take, the physical and 
empirical terms must have the same magnitude. In this regard, the root mean squared error is 
better than the mean squared error or the normalized metrics, i.e. NRMSE or NMSE. 

The physical term is based on the load ratio R, which for a specific geometry and size 
of a crack a = const is defined as follows: 
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where K is the stress intensity factor and the minimal and maximal values of thermal stresses 
are denoted by min and max subscripts, respectively. In the created structure of the hybrid 
model, the stress intensity factor is estimated using the data-driven layer based on a multilayer 
perceptron. Equation (57) can be rearranged as follows: 
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and modified, assuming that estimates of the feedforward neural network  ,shdnFNN a  are 
perfectly accurate: 
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Based on Eq. (59), the physical term is defined as follows: 
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where 1,2, ,j J …  is the ordinal number of triples created synthetically to train the multilayer 
perceptron, J = 15 125 is the number of triples and ˆ

jR  is the load ratio calculated based on the 
estimates determined by the feedforward neural network. The triples are created based on the 
available empirical data, with each triple comprising a, ,shdn min  and ,shdn max . The entire set is 
created as follows: 

- The unique values of shdn  are the basis for creating the first 375 records. ,shdn min  takes 
these values, which subsequently are randomly permutated to determine the values of 

,shdn max . The crack lengths associated with them are drawn from the uniform 

distribution     min ,maxU a a . 
- The next 1 000 triples are outside the space composed of the available empirical data. 

The values of ,shdn min  are randomly drawn from     9 11
10 10min , maxshdn shdnU   , the 

corresponding values of ,shdn max  are drawn from   11
, 10, maxshdn min shdnU    and the 

crack lengths are randomly sampled from   5
0 4, maxU a a . Training on these triples 

expands the original space of features and the output space. Thus, the space where the 
hybrid model can be applied effectively and safely, satisfying Eq. (59), enlarges. 

- For each of 1 375 values of ,shdn min  determined during the two previous steps, ten values 

of ,shdn max  are randomly drawn from     9 11
10 10min , maxshdn shdnU   , while the 

associated crack lengths are drawn from   5
0 4, maxU a a . In this way, additional 13 

750 triples are created. 

The value of the physical term is calculated based on all the triples. Therefore, the constraints 
resulting from Eq. (57) are implemented in a soft manner through the additional term in the cost 
function. Attempts to reduce the number of triples and execute the training process using only 
the first subset, comprising 375 triplets, were unsuccessful. The stress intensity factor estimates 
were inconsistent with the results calculated using the theoretical formulation (65), and the 
predictions for particular combinations of input data were equal to zero, i.e. a minor change of 
the input variables resulted in a significant drop in the FNN’s output. Thus, the remaining two 
subsets of triples are necessary to train the feedforward neural network to respect the theoretical 
relationship embedded in the cost function, i.e. Eq. (57). The additional triplets are not created 
randomly but in a way to improve the effectiveness of the training process and the multilayer 
perceptron's extrapolation capabilities. The process applied to generate these additional training 
data can be adjusted depending on particular objectives. Finally, it should be remembered that 
the physical term's impact on the cost value depends on the γ coefficient, which should be set 
based on the evaluation of the quantity and quality of empirical data and the accuracy of the 
theoretical description of the analyzed problem, which is embedded into the physics-informed 
neural network. If γ equals one, the cost reduces to the physical term only, while with γ equal 
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to zero the learning objective is to minimize only the empirical term, limiting the extrapolation 
capabilities of the model, ignoring consistency with the theoretical relationship and resulting in 
unreliable and erratic predictions. 

The empirical term of the custom cost function is calculated in the following way: 

  2
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1 ˆ ,
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EMP i i
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



   (61) 

where 1,2, ,i N …  is the observation’s ordinal number, N is the total number of observations 
in the training set and ˆia  is the final crack length estimate obtained using the hybrid model. 

An attempt was made to embed into the cost function an additional physical term, which 
is based on the following inequality: 
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This mathematical relationship is valid for a specific stress value shdn  = const, and when amin 
< amax. Based on Inequality (62), the additional physical term is defined as follows: 
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where 1,2, ,h H …  is the ordinal number of triples created synthetically to train the multilayer 

perceptron, H = 13 750 is the number of triples and ˆ
hR  is the load ratio calculated based on the 

estimates determined by the feedforward neural network. With RMSEPHY,ADD defined, the cost 
function is modified in the following way: 

     , 1 1 ,PHY ADD PHY EMPc RMSE RMSE RMSE         (64) 

where  0,1   determines how RMSEPHY,ADD contributes to the final cost value with reference 
to RMSEPHY. The expansion of the cost function was aimed at changing the inclination of 

 ,shdnshdn
K FNN const a    characteristics, which should be monotonically increasing 
functions according to the theoretical Equation (65). Including the additional physical term in 
the cost function helped to modify the characteristics. Nevertheless, the slopes were 
significantly smaller compared to the theoretical curves, and the empirical term increased 
considerably. In this setup, the final crack length estimates obtained by means of the hybrid 
model were inaccurate, and the FNN’s characteristics were not completely consistent with the 
theoretical ones. Therefore, following Eq. (56), RMSEPHY,ADD is not included in the custom cost 
function used to train the physics-informed neural network. 

As explained in [182], starting the learning process with poorly initialized neural 
network weights may increase the time required to train the model or even cause a divergence 
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of the optimization. Thus, the feedforward neural network composing the data-driven layer is 
pre-trained using the results determined by the following empirical formula as the reference 
that applies to a single-notch test specimen subjected to tension: 
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where Y is the geometrical factor and W is the specimen width assumed to be equal to the nozzle 
airfoil’s chord length. This equation connecting the stress intensity factor with the specific type 
of loading and the specimen dimensions is based on the report [204], the results of which are 
also published in [205]. The authors of the report used the boundary value collocation procedure 
applied to the Williams stress function, which was proposed by Gross et al. [206]. However, 
this analytical method assumes that the specimen is uniformly loaded across the width and that 
the distance between the loaded cross-section and the notch plane is not shorter than the width. 
One thousand records were generated for the pretraining. The crack lengths and stresses are 
evenly spaced numbers over    min , maxtrain traina a    and    , ,min , maxshdn train shdn train     

intervals, respectively. Additionally, the former are randomly permutated. The mean squared 
error is considered as the cost function. Typically, less than 300 epochs are required to achieve 
satisfactory accuracy, and the training process duration is shorter than 20 seconds. 

During the main part of the training process the value of γ, which determines how the 
physical and empirical terms contribute to the final cost value, is not constant and changes 
depending on the mean absolute error value defined by means of Eq. (67). Attempts to train the 
hybrid model using a fixed value of the coefficient resulted in biased estimates. Due to a lack 
of balance between the RMSEPHY and RMSEEMP, the predictions were either inaccurate but with 
very low values of the physical term or very accurate but with high values of the physical term, 
indicating poor generalization capabilities of the model. Therefore, to find a proper balance 
between both terms and reduce their values during the training simultaneously, the value of γ 
coefficient changes dynamically during the learning process using the following formula: 
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where the mean absolute error MAEPHY is defined as follows: 
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where the meanings of j, J and ˆ
jR  are the same as in Eq. (60). Fig. 18 presents the piecewise 

continuous function  PHYf MAE  . The first stage of the training is aimed at assuring that 
the final solution will respect the theoretical relationship embedded in the cost function. Thus, 
the training process is initiated with γ = 1, and as the error decreases, the coefficient γ reduces 
slowly to 0.7. Further decrease of the mean absolute error results in a significant drop in the 
value of the coefficient, reducing the contribution of RMSEPHY on the cost value and putting 
more emphasis on RMSEEMP. The objective of this stage of the training is to reduce as much as 
possible the empirical term but within the subspace of solutions, which are consistent with the 
considered theoretical relationship. During the execution of the analysis, it was observed that 
at this stage of the learning process, values of the empirical and physical terms decrease 
simultaneously. For clarity, the value of γ coefficient does not change after each iteration but 
after a certain number of training epochs. Initially, that number is equal to 100, but if the product 
of MAEPHY and MSEEMP,test (i.e. it is the mean squared error evaluated against the empirical 
data from the test set) does not reduce consecutively, the number of epochs doubles. The Adam 
optimization algorithm [181] with a constant learning rate η = 0.001 is applied to minimize the 
cost function. This algorithm performed better when the data-driven layer comprises one or two 
hidden layers and is comparable to the Nadam algorithm when the multilayer perceptron has 
eight hidden layers. This kind of iterative training of the physics-informed neural network with 
dynamic cost function changes is more time-consuming than the standard continuous approach 
to execute the learning process. It may take up to one week on an Intel Core i7-9850H Central 
Processing Unit with six cores and a 2.60 GHz base frequency. Nevertheless, it enables finding 
the right balance between the physical and empirical terms of the cost function, simultaneously 
reducing their values and creating accurate predictive models that respect prior knowledge. 
Open-source Python packages are used during the study, i.e. Keras application programming 
interface for the TensorFlow library is used to create the structure and train the hybrid model, 
Numpy and Pandas are used for data manipulation and Matplotlib [207] for visualizations. 

 

Fig. 18 The piecewise continuous function used to calculate the values of coefficient γ, which 
determines how the physical and empirical terms contribute to the final cost value. 
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5.3 Results of the regression analysis 

In the introduction to this chapter, it was written that the available sample comprises 19 
observations since it is limited only to Type C gas turbines. However, during the analysis of 
available data and attempts to effectively train the hybrid model, differences in crack growth 
rates were observed between the new and repaired nozzles. The consequence is a further 
reduction of the sample and removal of data related to components that were repaired in the 
past. The removed nozzle sets have the following identifiers (see Fig. 15 for details): S1N_2, 
S1N_3, S1N_5, S1N_6, S1N_24 and S1N_45. Finally, the sample comprises only 13 
observations and it can be described as follows: 

- Considering the thresholds defined in the previous chapter, i.e. LLOW and LHIGH, 4 out 
of 13 observations (31%) are classified as “short”, the “medium” class is represented by 
5 observations (38%) and the remaining 4 observations are classified as “long”. 

- 8 observations out of 13 (62%) correspond to the natural gas liquefaction facility located 
in a marine, salty environment. 89% of records from the “short” and “medium” classes 
are related to that plant, i.e. 8 observations out of 9. 

- All the observations classified as “long” correspond to units installed in another gas 
liquefaction facility located in a tropical, humid environment. 

- For the available observations, the interval fired start values are constrained within the 
interval  22,157 , with a median of 40 (the lower quartile equals Q1 = 29 and the upper 
Q3 = 110). The percentage of startup-shutdown cycles for which at least one complete 
record with the operational data is available ranges from 10% to 97%, with a median of 
36% (Q1 = 31% and Q3 = 59%). Thus, the fraction of missing data is significant. 

The target variable is the maximum crack size at Position 2 on the nozzle’s trailing edge. 

In order to not reduce the training set considerably, the first, reference model is trained 
based on ten observations. As described in the previous chapter, the training and testing subsets' 
composition should reflect the available sample's structure. Therefore, the test set is prepared 
considering the following constraints: 

- The proportions between the “short”, “medium” and “long” classes valid for the sample 
are applied to select elements of the test subset. Thus, each of the classes constitutes 1/3 
of the test set. 

- In order to avoid a significant reduction of the training and validation subsets, the test 
set comprises three elements. 77% of the data will be used to train the model, while the 
remainder will be utilized to assess the generalization capabilities. 

- 2 observations out of 3 (67%) correspond to the gas liquefaction facility located in a 
marine, salty environment. 

- The test data points should be diversified in terms of the number of interval fired starts 
and the availability of the operational data. Actually, for the selected observations, the 
IFS and coverage values are between the 40th and 90th percentiles. An emphasis is placed 
on parts that accumulated more interval fired starts. Moreover, operational data 
availability in future applications is expected to be better than in this research, based on 
the oldest available data in many cases. 
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Such a controlled manner of preparing the training and test sets considering multiple constraints 
was successfully applied in the case of purely data-driven models based on popular machine 
learning algorithms described in the previous chapter. It should improve the effectiveness of 
the learning process, facilitate the interpretation of obtained results, help to identify conditions 
in which the model returns both accurate and inaccurate estimates and simplify the overall 
evaluation of the hybrid model. The estimates obtained by means of the reference model and 
selected characteristics of the multilayer perceptron, which constitutes the data-driven layer, 
are shown in Fig. 19, Fig. 20, Fig. 21 and Fig. 22. In order to protect proprietary information, 
the data presented in the plots were normalized by dividing each value of crack length and 
thermal stress by the maximal measured crack length and the maximal calculated thermal stress, 
respectively, which were determined based only on the data related to the analyzed 13 
observations. The most important considerations regarding the obtained results are as follows: 

- The pre-trained model, which was trained on the basis of the results calculated using the 
theoretical formula (65) as the reference, provides significantly underestimated 
predictions of the final crack lengths (Fig. 19). 

- The normalized root mean squared error evaluated against the testing data is equal to 
NRMSEEMP,TEST = 9%, while for the training data, it equals NRMSEEMP, TRAIN = 7%. 
Considering the limitations in terms of the sample size and the availability of the 
operational data and the simplified approach applied to compute the thermal stresses, 
the accuracy of the final crack length estimates is satisfactory. These two values are 
comparable with the accuracy of recording those cracks during a visual inspection 
preceding repair activities, where the maximum normalized error may reach 7%. The 
most accurate predictions were obtained for the longest cracks, while the least accurate 
ones were for the two shortest observations in the sample, which the model 
overestimated. Nevertheless, such a characteristic of the model is valued since, as 
already explained, long cracks may jeopardize the component’s integrity or require 
immediate corrective maintenance. 

- Regardless of the very stable operating profile of the analyzed gas turbines, which is 
mainly characterized by a continuous duty at nominal power, the model is capable of 
differentiating the crack growth rates and the final estimates based on subtle differences 
between the units, which were extracted from actual operational data during the training. 

- The feedforward neural network responsible for the stress intensity factor calculations 
obeys the theoretical equation embedded in the cost function, i.e. Eq. (57). The estimates 
determined by the data-driven layer for a few selected crack lengths and the full range 
of thermal stresses are presented in Fig. 21. 

- The characteristics of the multilayer perceptron at the constant thermal stresses after the 
training, i.e.  ' , 'shdnshdn

K FNN const a   , which are presented in Fig. 22, are 
completely different compared to the pre-trained model. At the beginning of the crack 
propagation process, the stress intensity factor estimates are the highest, and then they 
decrease as the crack length increases. Regardless of the normalized thermal stress 
value, the characteristics before and after the training cross each other at ' 0.82a   for 
a specific value of 'shdn . It may indicate that the actual values of thermal stresses at the 
beginning of the crack growth process (i.e. until the normalized crack size is smaller 
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than 0.82) are higher than the values utilized to train the model, which were estimated 
using the previously described approach. In fact, it is expected that the applied stresses 
should decrease as the crack length increases since the crack propagates toward areas 
subjected to lower stresses. Simultaneously, the yield strength of FSX-414 cobalt-based 
superalloy decreases under cyclic loading, which introduces additional complexity. It 

 

Fig. 19 Evaluation of the hybrid model based on the physics-informed neural network, trained 
using ten observations, against the training and test data presented on the predicted vs. 
observed plot. 

 

Fig. 20 Evaluation of the hybrid model based on the physics-informed neural network, trained 
using ten observations, against the training and test data. 
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can be presumed that an improved approach to estimating the thermal stresses can 
change the characteristics and align them to ones based on the theoretical relationship. 
Nevertheless, as already described, the attempts to include the additional physical term 
RMSEPHY,ADD in the cost function or the time-depended part estimating crack length 
increments due to creep did not improve the model’s accuracy or consistency with the 
applicable physical laws. 

- Based on the final, fully-specified model, the highest crack growth rates are expected at 
the beginning of the crack propagation process during the first 20 startup-shutdown 

 

Fig. 21 Stress intensity factor estimates at the constant crack lengths  ' , 'shdnshdn
K FNN a const  

determined by the data-driven layer before and after the training using ten observations. 

 

Fig. 22 Stress intensity factor values at the constant thermal stresses  ' , 'shdnshdn
K FNN const a  

determined by the data-driven layer before and after the training using ten observations. 
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cycles. It is consistent with the available empirical data since the cracks with lengths 
' 0.68a   and ' 0.81a   were recorded after only 22 and 35 cycles, respectively. 

- Increasing the number of hidden layers of the feedforward neural network from two to 
eight has an insignificant impact on the final crack length estimates. 

- Application of the reference model to the nozzles subjected to repair activities in the 
past leads to significantly underestimated predictions of the final crack lengths. 
Compared with brand-new components, these parts are characterized by different crack 
propagation rates, and it is recommended to train a separate model using a dedicated set 
of empirical data. 

- Fig. 21 and Fig. 22 show estimates of the data-driven layer outside the original space of 
input data when ' 1a   or ' 1shdn  . The presented characteristics are continuous, with 
no peaks or drops, regardless of whether the input variables are from inside or outside 
the original input space. The curves show directly how the feedforward neural network 
extrapolates and interpolates. Thereby, knowing the range of values of the input data, 
the predictions can be made in a fully conscious way, using those characteristics. 
Additionally, the space in which the model should respect the theoretical relationship 
can be enlarged by synthetically created data, as described in the previous section. 

- The same architecture was successfully used to train models predicting other statistical 
measures, i.e. 25th, 50th and 75th percentiles and the minimal crack length. Considering 
a single set of nozzles, such a collection of hybrid models may be utilized to predict the 
distribution of trailing edge cracks in all sectors. It can also be applied to evaluate if the 
component is eligible for a repair interval extension through an on-condition check, to 
determine a serviceable limit for such an inspection and to predict the percentage of 
parts that will pass the inspection. 

In order to better understand the limitations of the proposed architecture in terms of the minimal 
number of available damage measurements, the next attempt is to train the hybrid model with 
the training set comprising two observations only and use the remaining data points for testing 
purposes. Two different train-test splits are prepared and subsequently processed. The first 
training set comprises the components, which accumulated many interval fired starts, but the 
availability of the operational data for those cycles is very limited. The identifiers of these 
nozzle sets are as follows: S1N_27 with coverage equal to 27% (i.e. at least one complete record 
with the required operating parameters is available for 39 out of 142 cycles) and S1N_30 with 
33% coverage, i.e. 29 out of 88 cycles. The second training set comprises the parts that 
accumulated a significantly lower number of startup-shutdown cycles, but the availability of 
the operational data is doubled compared to the previous set. The identifiers of these nozzle sets 
are S1N_7 with 58% coverage, i.e. 15 out of 26 cycles, and S1N_8 with 64% coverage, i.e. 23 
out of 36 cycles. The learning process was executed without any difficulties for both sets. The 
training duration was significantly shorter compared to the reference model. Regardless of the 
analyzed training set, the obtained results are very similar. Therefore, to avoid excessive 
reporting, only the estimates and the characteristics of the model trained using the second 
training set are presented in the dissertation. These results are shown in Fig. 23, Fig. 24, Fig. 
25 and Fig. 26. The most important considerations regarding the obtained results are as follows: 
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- Despite the small number of training observations, the normalized root mean squared 
error evaluated against the test set comprising 11 data points equals to NRMSEEMP,TEST 
= 11% and is comparable to the performance of the reference model on the unseen data. 

 

Fig. 23 Evaluation of the hybrid model based on the physics-informed neural network, trained using 
two observations, i.e. S1N_7 and S1N_8, against the training and test data presented on the 
predicted vs. observed plot. 

 

Fig. 24 Evaluation of the hybrid model based on the physics-informed neural network, trained using 
two observations, i.e. S1N_7 and S1N_8, against the training and test data. 
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- The components that constitute the training set accumulated less than 40 interval fired 
starts and had relatively short cracks, i.e. ' 0.58a  , which were classified as “short”. 
Despite the limited training subspace, the model has good generalization capabilities 
and extrapolates accurately if IFS > 36 and ' 0.58a  . It is capable of providing accurate 
predictions of the final crack lengths for parts that accrued over four times more startup-
shutdown cycles and had around 40% longer cracks. 

 

Fig. 25 Stress intensity factor estimates at the constant crack lengths  ' , 'shdnshdn
K FNN a const  

determined by the data-driven layer before and after the training using two observations, i.e.
S1N_7 and S1N_8. 

 

Fig. 26 Stress intensity factor values at the constant thermal stresses  ' , 'shdnshdn
K FNN const a  

determined by the data-driven layer before and after the training using two observations, i.e.
S1N_7 and S1N_8. 
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- The characteristics of the multilayer perceptron presented in Fig. 25 and Fig. 26 are 
comparable to the characteristics of the reference model. Nevertheless, the crack length 
increments estimated by means of this model during the first ten cycles are smaller in 
comparison with the reference model, which is caused by lower stress intensity factor 
estimates at the beginning of the crack propagation process. In addition, in accordance 
with the model, the process does not stop at ' 1.48a   as it was observed for the 
reference model. 

Considering the successful attempt to train the hybrid model based on two observations, the last 
trial aims to execute the learning process with the training set comprising just one data point. 
The results presented in Fig. 27, Fig. 28, Fig. 29 and Fig. 30 were obtained using nozzle set 
S1N_8 as the training observation. It should be clarified that it is the only successful attempt to 
train the hybrid model using a single observation. During the remaining trials, the learning 
process was executed using S1N_4, S1N_27, S1N_30, S1N_31 and S1N_48 nozzle sets as the 
single training data point, but the model’s accuracy was unsatisfactory. Additionally, due to 
difficulties with the optimization, the number of hidden layers of the multilayer perceptron was 
increased from two to eight. The cost function optimization proceeded in a different way in 
comparison with the previously described models. In this case, the root mean squared error 
evaluated against the test data quickly reduced to a satisfactory value. In the latter stage of the 
training process, the objective was to reduce the physical term’s value. For the models trained 
using ten and two data points, RMSEPHY reduced to a certain value in the first stage of the 
process, and subsequently, both terms decreased as the training progressed. The most important 
considerations regarding the obtained results are as follows: 

- The normalized root mean squared error evaluated against the test set comprising 12 
data points equals NRMSEEMP,TEST = 17% and is worse compared to the previously 
described model trained using two data points. The lowest prediction accuracy is found 
for the components that accrued 40 or fewer interval fired starts, for which the model 
underestimates the final crack lengths. 

- As already described, the part selected for the training set accumulated 36 cycles and 
had a crack with the length ' 0.58a  . Despite the training subspace's limitations, the 
model provides accurate predictions of the final crack lengths for parts that accrued over 
four times more startup-shutdown cycles and had around 40% longer cracks. It is 
significantly more accurate than the model trained using the theoretical formula results 
as the reference. Therefore, the capability to extract and use knowledge even from one 
empirical data point is very valuable and may bring tangible benefits. 

- In the interval  0' ' , 0.3a a  the estimates determined by the feedforward neural 
network are lower compared to the model trained using two observations. The 
characteristics of the multilayer perceptron at the constant thermal stresses after the 
training, i.e.  ' , 'shdnshdn

K FNN const a   , which are presented in Fig. 30, do not 
decrease monotonically as in the case of the previously described models, and have a 
visible peak at ' 0.3a  . However, the prediction interval is comparable with the 
characteristics of the pre-trained model. 

- This attempt proves that the physics-informed neural network based on the architecture 
described in Section 5.1 can be trained effectively using a single observation, even if 
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the required measurements of operating parameters are not available for all startup-
shutdown cycles. Nevertheless, with such a limited training set, a successful execution 
of the learning process cannot be guaranteed, and the results obtained by means of the 
fully-specified model may vary significantly depending on the particular observation 
used during the training process. Additionally, it should be highlighted that evaluating 

 

Fig. 27 Evaluation of the hybrid model based on the physics-informed neural network, trained using 
a single observation , i.e. S1N_8, against the training and test data presented on the predicted 
vs. observed plot. 

 

Fig. 28 Evaluation of the hybrid model based on the physics-informed neural network, trained 
using a single observation, i.e. S1N_8, against the training and test data. 
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the model’s performance against unseen data in the analyzed case was possible since 
the test set comprises 12 data points. Without data to build the test set, a standardized 
set of metrics and quality indicators can be defined and used for the assessment. 

Considering the normalized root mean squared error evaluated against the test subset 
NRMSEEMP,TEST as the reference metric, the results of this research aimed at applying machine 
learning methods for predicting the size of damage to gas turbine parts are summarized in Table 

 

Fig. 29 Stress intensity factor estimates at the constant crack lengths  ' , 'shdnshdn
K FNN a const  

determined by the data-driven layer before and after the training using a single observation, 
i.e. S1N_8. 

 

Fig. 30 Stress intensity factor values at the constant thermal stresses  ' , 'shdnshdn
K FNN const a  

determined by the data-driven layer before and after the training using a single observation,
i.e. S1N_8. 
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2. The error values were normalized by dividing them by the maximal measured crack length 
but considering only the subset used to create the models based on a PINN (i.e. 13 sets of the 
nozzles that were not subjected to repair activities and operated in Type C gas turbines). The 
table presents the results obtained by applying the physics-informed neural network and the 
popular statistical learning algorithms described in the previous chapter. Regardless of the small 
number of training observations, the highest prediction accuracy was achieved with the hybrid 
models based on the PINN. However, it should be reminded that the sample utilized to create 
these models was the most homogeneous, i.e. it consisted of components that operated in Type 
C gas turbines only and were not subjected to repair. The accuracy of the hybrid models based 
on the physics-informed neural network is satisfactory, especially if the limitations in empirical 
data availability are considered. Moreover, the estimates determined using these models respect 
the theoretical relationships embedded in the cost function, and the models can be consciously 
used to extrapolate since their behavior outside the space of available empirical data is known. 

5.4 The novel method of domain generalization and knowledge transfer 

As presented in this and the previous chapter, creating predictive models based on a 
limited number of empirical data is a challenge. However, in many practical applications the 
so-called small data regime is normal since failures are rare, inspection intervals are extended, 
or data acquisition costs are too high. The Weibull analysis is commonly used in such situations, 
including applications to the survival analysis of turbomachinery. The main advantages of 

Table 2 The normalized root mean squared error evaluated against the test data NRMSEEMP,TEST
describing the models based on machine learning algorithms created to predict the length 
of fatigue cracks found on the analyzed high-pressure nozzles. 

Algorithm type Description of the 
sample 

Train/test 
split 

Normalized RMSE 
evaluated against 

the test set 

Physics-informed 
neural network 

The parts that have 
not been repaired and 
operated in Type C 

gas turbines. 

10/3 0.089 

2/11 0.110 

1/12 0.173 

AdaBoost.R2 regression 

The brand-new and 
repaired parts that 

operated in Type A, 
Type B and Type C 

gas turbines. 

25/6 

0.156 
Feedforward neural 
network regression 

0.161 

Polynomial regression 0.165 
Random forest regression 0.169 

Kernel ridge regression 0.190 
Multiple linear regression 0.190 

Support vector regression 0.198 
XGBoost regression 0.311 
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Weibull analysis are listed in Section 3.2. Interestingly, all of them can be used to characterize 
the previously described hybrid models based on the physics-informed neural network, i.e.: 

- The capability to provide accurate estimates with small datasets comprising two or three 
failed data points. 

- The method is data-driven, but the obtained results provide information concerning the 
physics of failure, which can be the basis for assessing whether the model is consistent 
with prior knowledge about the analyzed phenomenon. 

- The core of a fully-specified model can be presented on a plot, enabling assessment of 
the model's correctness and quality and quickly interpreting the results. In the case of a 
Weibull distribution, the shape parameter can be considered as the core. This parameter 
determines the slope of the straight line representing the Weibull distribution’s 
cumulative density function on a log-log plot, informing how the failure rate will change 
over time. In the case of created hybrid models, the multilayer perceptron responsible 
for the stress intensity factor estimates can be seen the model’s core, which determines 
the crack propagation rate. 

- This method has a universal character and is applicable for modeling damage caused by 
various physical phenomena. 

As already mentioned, a Weibull analysis can be done even if no failed data points are available 
by applying the Weibayes method, which is a one-parameter Weibull distribution with an 
assumed value of the shape parameter β. According to [208], Weibayes is the best choice if 
failures have not been recorded or their number is limited, but only if a reasonable slope 
estimate is available. If there are no failed data points, it is assumed that the first failure is 
imminent, and the scale parameter estimate is the conservative 63% confidence bound on the 
true η value. If failures have been recorded, the scale parameter is a maximum likelihood 
estimate. The sources used to assume the slope value can be as follows: 

- a Weibull analysis related to another object but the same type of damage, including 
models created in the past; 

- recommendations available in standards, design practices, handbooks and literature; 
- physics-based models or models based on material property data; 
- knowledge of experts about the physics of failure. 

Therefore, if the sample comprises only a few failed data points and the shape parameter value 
is assumed with the best available knowledge, only the scale parameter must be estimated, and 
the resultant Weibayes will have smaller uncertainties. It can be seen as a transfer of knowledge 
from a source domain, in which the shape parameter value was determined, to the target domain, 
in which the knowledge is leveraged to obtain more accurate predictions. It should be reminded 
that the notion of “leveraging” was defined as the action of using something already available 
in order to obtain something new or better and maximize advantages. The knowledge extracted 
from empirical data in the source domain is captured in the value of β parameter, and it can be 
easily transferred and applied in other domains. 

The Dauser shift [209] is another method in which the slope value is fixed, and the scale 
parameter is estimated. It can be applied to adjust η parameter estimate when the time to failure 
is known for each unit that failed, but it is unknown how much the remaining units that did not 
fail operated. In this metod the shape parameter value is estimated based on the failed data 
points only, while the characteristic life is estimated based on the mean time to failure (MTTF) 
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and the percentage of failed units. The original model, which is the source of the slope value, 
provides a very conservative estimate of the characteristic life. The adjusted model is 
represented on a log-log graph by a straight line parallel to the original model's line. The shifted 
line is at the intersection of the MTTF value and the percentage of failed units. In accordance 
with [209], the method was successfully applied in many cases, but it is not a best practice. 
Nevertheless, again, the value of β parameter is determined based on a subset of empirical data 
and may be leveraged for the entire fleet of units to obtain more accurate predictions. 

The last method of adjusting survival models based on a Weibull distribution will be described 
using the example of high-pressure turbine blades of a heavy-duty gas turbine. The model’s 
objective is to predict the number of components scrapped during repair activities due to radial 
cracks found on the blade’s squealer tip. In the analyzed scenario, a new blade configuration is 
introduced, made from a different material compared to the baseline configuration but with the 
same geometry. Without empirical data on the new type of blades, the analysis aims to predict 
the number of upgraded blades scrapped due to the radial cracks, leveraging empirical data on 
the old configuration. The survival model for the baseline configuration is based on a two-
parameter Weibull distribution and is presented in Fig. 31 (author’s own plot based on the 
analysis results described in [210]). The sample comprising 11 failures (i.e. these data points 
refer to components that were scrapped due to the radial cracks) and 2818 suspensions (i.e. data 
points related to the parts that were not scrapped due to the analyzed failure type) was used to 
create the baseline model. The first assumption taken to create a model for the new blade is that 
the change in failure rate over time of the new configuration is similar to the old one. The 
Weibayes method is applied to build the model for the new configuration, for which empirical 

 

Fig. 31 The probability of scrapping a high-pressure turbine blade due to the radial cracks on 
the blade’s squealer tip. 
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data are unavailable. Thus, the shape parameter of the new model is the one from the model 
dedicated to the baseline configuration, i.e. 1.125  , meaning that failures will randomly 
occur. The second assumption is taken to determine the scale parameter value of the new model. 
It is based on the numerical simulation which results are presented in Fig. 32 [210]. At the 
critical location of the blade’s tip the number of cycles to initiate the fatigue crack equals Ni,old 
= 535 for the baseline configuration and Ni,new = 3058 for the part made of the new material. 
The ratio between these two values , , 5.715888i new i oldN N   is used to multiply the value of η 
parameter of the baseline model and determine the scale parameter value of the new model, i.e. 

 , , 84954 5.715888 485588new old i new i oldN N      accumulated factored fired starts. The 

characteristic life is the estimated time when 63.2% of components are expected to fail, but the 
same ratio applies to all other percentiles. Thereby, on a log-log plot the new model is 
represented by a straight line parallel to the baseline model’s line (see Fig. 31), and the value 
of , ,i new i oldN N  determines the shift between them. It is another example in which knowledge 
is extracted in one domain, where empirical data are available, captured in β parameter value, 
and subsequently transferred and applied in another domain, where empirical data is not yet 
available. Moreover, in comparison with the two data-driven methods described previously, 
this approach is more comprehensive since it leverages the results of finite element analysis. 

Despite a simple mathematical description of those methods, their effectiveness was 
proved in practical applications, allowing the creation of survival models in case of shortage or 
lack of empirical data. It is an inspiration for further research related to physics-informed neural 
networks. Considering many similarities between models based on a Weibull distribution and 
PINN-based models, the question can be posed, whether the latter can be leveraged in other 
domains in such a simple yet effective way. This question can be answered affirmatively based 
on the results of further research described in this and the next chapter of this dissertation. 

Further research activities intend to assess whether a hybrid model based on a physics-
informed neural network aimed at predicting the size of damage of a specific component based 
on actual operational data, which is trained in a domain where damage size measurements are 

 

Fig. 32 Results of the numerical simulation at the critical location of the squealer tip: the number 
of cycles to initiate the fatigue crack Ni for the baseline and new configurations. 
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available, can be appropriately shifted or scaled, similarly to the previously described methods 
applicable to a Weibull distribution in order to obtain accurate damage size predictions in 
another domain, in which the number of damage size measurements is limited, or even the data 
are unavailable. The idea is to assume that the hybrid model’s core remains unchanged and is 
the same in both domains (i.e. analogous to the methods related to a Weibull distribution, where 
the value of β parameter does not change during the shifting process) and properly scale the 
damage increments determined by the model using a factor that generally captures the 
differences between the two domains, to get accurate estimates in the domain characterized by 
a limited number of the damage size measurements. As already explained, in the case of the 
models described in this chapter aimed at predicting the maximal length of fatigue cracks at 
Position 2 of the analyzed 1st stage nozzles, the feedforward neural network responsible for the 
stress intensity factor estimates is considered as the core of the hybrid model. Training a neural 
network can be seen as extracting latent information and knowledge from the available data. 
An effectively trained neural network can be applied to make predictions leveraging that 
knowledge. For the created hybrid models, the multilayer perceptron was trained based on 
actual empirical data but also considering the constraints resulting from Eq. (57), which were 
implemented in a soft manner in the cost function. Therefore, the intention is to apply this 
hybrid kernel, which unites knowledge extracted from the empirical data with the utilized 
theoretical relationship for predicting fatigue crack lengths in different locations of the analyzed 
high-pressure nozzles. In further consideration, the analyzed object, the damage type and its 
location and the entire set of data used to train and test the fully-specified hybrid model will be 
referred to as the source domain. The hybrid model successfully created in the source domain 
will be called the source model. Since the reference model, which was trained using ten 
observations, gives the most accurate predictions, it is selected as the source model. While the 
object to which the source model will be applied, the damage location and the set of operating 
parameters required to prepare input of the physics-informed neural network will be referred to 
as the target domain. Simultaneously, it is assumed that the damage type and physical 
phenomena causing it are the same in both domains and the theoretical relationships embedded 
into the source model also apply to the target domain. In order to reduce the time and costs 
needed to gather additional empirical data, the target domain refers to fatigue cracks found at 
Position 4 of the previously analyzed high-pressure nozzles. The target location is not on the 
same airfoil as Position 2. The maximum crack size at Position 4 is the dependent variable in 
the target domain. It is consistent with the approach applied to train the source model. The intent 
is to avoid applying the damage size measurements available in the target domain, i.e. 13 
observations, for training purposes but only to test the model performance on the unseen data. 

The conceptual diagram describing hypothetical steps needed to be taken to apply the 
source model in the target domain effectively is shown in Fig. 33. Terms related to the source 
and the target domains are denoted by subscripts SRC and TGT, respectively. These steps can 
be described as follows: 

1) Determine how to estimate the damage increment in a single time step t in the source 
domain ∆y෢

THEOR,SRC,t based on the available operational data x⃗SRC,t recorded by the 
data acquisition system using prior knowledge about the analyzed phenomenon. The 
input data should be processed to get the final estimate based on theoretical or 
experimentally determined equations describing the damage growth. In the fourth 
step, these equations will be leveraged either to prepare input data for the physics-
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informed neural network or directly embed them into the neural network’s structure 
in a soft or hard manner. The complete set of equations used to estimate the damage 
increment is referred to as the theoretical model. Finally, the damage increments 
should be calculated for each available time step. 

2) The theoretical model created in the previous step should be applied in the target 
domain to estimate the damage increments ∆y෢

THEOR,TGT,t for each time step based on 
the available operating parameters x⃗TGT,t recorded in this domain. 

3) The objective of this step is to determine a map M, which purpose is to capture the 
proportions between ∆y෢

THEOR,TGT,t and ∆y෢
THEOR,SRC,t (or the shift, in analogy to the 

methods applicable to a Weibull distribution) based on the damage increment 
estimates obtained for each time step in both domains using the theoretical model. 
Considering the analyzed case of high-pressure nozzles fatigue cracks, it is assumed 
that the two domains refer to the same gas turbine, that the available operational data 
were recorded in the same period and are available for each timestamp in both 
domains. With these assumptions set, the proportion between the increments can be 
calculated individually for each time step. A generalized form of the map can also 
be determined based on the individual values using a function approximation if it 
does not introduce a significant error. 

4) Design a physics-informed neural network architecture leveraging the same set of 
equations describing the damage growth, which was used to create the theoretical 
model at the first step. Applying the same framework of equations should align the 
hybrid model with the theoretical one and impose the same way of data processing. 
Identify variables for which the theoretical model provides estimates which are not 
accurate or uncertain and they can be directly approximated using the physics-
informed neural network. Such inaccuracies may result from general problems 

 

Fig. 33 The conceptual diagram describing hypothetical steps needed to be taken to effectively
apply the source model based on a physics-informed neural network in the target domain.



100 
 

related to the availability and quality of the operational data, various assumptions 
taken during the analysis and simplification applied during the data processing and 
preparing the set of equations composing the theoretical model. In the analyzed case 
of high-pressure nozzles the stress intensity factor at shutdown Kσshdn was selected 
as the variable to be approximated by means of the PINN. Actual measurement data 
on the damage size available in the source domain must be used during the training 
process. The learning process is aimed at extracting latent information and 
knowledge from the available empirical data while respecting the constraints 
imposed by the applied framework of theoretical equations. The inclusion of actual 
measurement data in the training process should increase the prediction’s accuracy 
compared to the purely theoretical model, as observed in the analyzed case of 1st 
stage nozzles. In this step, assessing the hybrid model’s performance on the unseen 
data and the generalization capabilities is necessary. If the test results are positive, 
the last step can be executed. 

5) The hybrid model created in the previous step should be applied in the target domain 
to estimate the damage increments ∆y෢

PINN,TGT,t for each time step based on the 
available operating parameters x⃗TGT,t recorded in this domain. The model created in 
the source domain is employed in the target domain in an unaltered form. Afterward, 
the map M is applied to each damage increment  ,TGT tPINN x  determined by means 

of the physics-informed neural network to appropriately adjust the values estimated 
by the model and obtain the final estimates. Since the hybrid and theoretical models 
are based on the same set of equations describing the damage growth, and both of 
them were applied in an unchanged form in the source and target domain, it is 
assumed that the proportions between the damage increments calculated by means 
the theoretical model in both domains described with the map 

,: THEOR SRCM y 


,THEOR TGTy  are the same in the case of damage increments determined by the hybrid 

model in the two domains. It is the key assumption of the entire process described 
herein. Consequently, for each time step, the final estimate in the target domain is 
calculated as    ,, , TGT tPINN TGT ty M PINN x 

 . 

This five-step process was successfully applied for the analyzed 1st stage nozzles to predict the 
maximal crack length at Position 4 using the reference hybrid model dedicated to Position 2. 
This part of the research is described in the next section. Nevertheless, a specific mathematical 
operation exists, which is an enabler of this process and determines its effectiveness. Fig. 34 
presents how the thermal stresses at shutdown shdn , which are the main input of the physics-
informed neural network, depend on the values of the average air temperature at the axial 
compressor’s discharge TCOOL and the average temperature of gases at the outlet of the nozzles 
TFIRE. The actual values of the variables were divided by the maximum value of TCOOL, TFIRE, 
or shdn  in order to obtain the normalized variables, i.e. T'COOL, T'FIRE and 'shdn . The presented 
results (i.e. the same data are shown in each view) refer to the source and the target domain. 
The scatter plots present the normalized values of the operating parameters recorded by the data 
acquisition system, which are the same for a single time step in both domains, and the thermal 
stress values in the two domains. In the source domain, the thermal stresses are estimated using 
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Eq. (51). The same approach is applied to calculate the stresses in the target domain, which is 
based on the following formulas: 

 
 

   
, , , , ,

, , , ,
, , , , , ,

shdn TGT L TGT S TGT T S shdn TGT

L shdn TGT S shdn TGTAMB AMBT T TL shdn TGT S shdn TGT S shdn TGT

E

T T T T E

  

 

  

      

 (68) 

and 

  , , , ,5 5 7 , , 7 , ,1 ,L shdn TGT L ss TGT HOT ss TGT COLD ss TGTT T T T          (69) 

  , , , ,6 6 8 , , ,S shdn TGT S ss TGT HOT ss TGTT T T     (70) 

 

Fig. 34 The relationship between the average air temperature at the axial compressor’s discharge 
TCOOL, the average temperature of gases at the outlet of the nozzles TFIRE and the thermal 
stresses at shutdown shdn  in the source and target domains, i.e. Position 2 and Position 4, 
respectively. 
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  , , , ,HOT ss TGT FIRE HOT TGT FIRE COOLT T T T    (71) 

  , , , ,COLD ss TGT FIRE COLD TGT FIRE COOLT T T T    (72) 

where the subscript TGT indicates variables dedicated to the target domain, while the general 
meaning of all the symbols is the same as in Equations (51) (55). It should be clearly stated 
that the values of the coefficients λ5, λ6, λ7, λ8, ϕHOT,TGT and ϕCOLD,TGT were determined by 
means of the numerical simulation. They are specific to Position 4, and none of them apply to 
the source domain, i.e. Position 2. In order to better visualize, how the thermal stresses change 
depending on the variation of TCOOL and TFIRE, polynomial regression models are prepared to 
approximate the relationship between these two operating parameters and the input variable of 
the physics-informed neural network: 

  ˆ , ,shdn COOL FIREf T T   (73) 

where ˆ shdn  is the estimated value of the thermal stresses at shutdown. Due to the low variation 
of values of the ambient air temperature TAMB (i.e. the mean equals TAMBതതതതതത = 28.2 °C with a 
standard deviation σTAMB = 2.7 °C), a relatively small impact of TAMB changes on the thermal 
stresses, and because the polynomial regression models were created for visualization purposes 
only, the ambient air temperature is not considered as the models’ input variable. One model is 
dedicated to the source domain and another to the target domain. The surface plots shown in 
Fig. 34 present the normalized results obtained using the two polynomial regression models. 
Based on these plots, it is visible that the surfaces are shifted relative to each other with the 
length of the displacement vector approximately constant independently of the selected pair of 
TCOOL and TFIRE. Using the actual operational data and the thermal stress values calculated by 
means of Eq. (51) and Eq. (68) (i.e. the data presented with the scatter plots in Fig. 34), a scaling 
factor between the values of shdn  and ,shdn TGT  can be determined for each startup-shutdown 
cycle. The mean value of the factor equals φത = 0.8632 with a standard deviation σφ = 0.0016. 
Thus, considering a specific nozzle segment and operating cycle, the calculated value of 
maximum thermal stresses at shutdown related to Position 4 is equal, on average, to 86.32% of 
the stress value calculated for Position 2. It can be assumed that the factor is constant in the 
analyzed training space for any pair of the input operating parameters. Therefore, as a result of 
this assumption, the applicability of the factor is no longer limited only to a single time step, 
but it can be applied independently of time. Thus, for any triple comprising TAMB, TCOOL and 
TFIRE, the value of thermal stress at shutdown in the target domain ,shdn TGT  can be calculated 
by means of Eq. (68). Moreover, with additional constraints taken into account, it can be 
determined, which triplet of the operating parameters results in the same value of thermal stress 

,shdn shdn TGT   in the source domain. Applying again Eq. (68) to this newly determined triple 
results in another value, which will be referred to as the shifted value of thermal stress in the 
target domain and denoted by *

,shdn TGT . In summary, in the analyzed case, it is possible to 
determine a relationship between the thermal stress values in the source and the target domain 
using the Equations (51) (55) and (68) (72), relying on the common set of operating 
parameters in both domains. It should be reminded that the thermal stress at shutdown is the 
main input variable of the hybrid model based on the physics-informed neural network. 
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Although the source model respects the constraints resulting from Eq. (57) and has good 
generalization capabilities, it is dedicated to Position 2. During the optimization process, the 
empirical term RMSEEMP was minimized, which is based on the crack length measurements 
recorded at Position 2. Thus, the crack length increments and final estimates are adjusted to the 
source domain. Consequently, applying the source model directly in the target domain on the 
unchanged input data from the target domain will not yield accurate estimates for that domain. 
As explained, these estimates will be adjusted to the source domain, despite the input data from 
the target domain. Nevertheless, it is possible to increase the prediction's accuracy by leveraging 
the relationship between shdn  and ,shdn TGT  described in the previous paragraph. For further 
consideration, the set of Equations (51) (55) is denoted by fSRC, while the set of Equations 
(68) (72) is denoted by fTGT. These two functions are defined as follows: 

  , , ,shdn SRC AMB COOL FIREf T T T   (74) 

  , , , .shdn TGT TGT AMB COOL FIREf T T T   (75) 

Considering any startup-shutdown cycle with the required operational data available (i.e. a 
triplet comprising TAMB, TCOOL and TFIRE), it is proposed to execute the following steps in order 
to increase the prediction’s accuracy in the target domain by applying the unchanged physics-
informed neural network created and trained in the source domain: 

1) Calculate the value of thermal stress at shutdown in the target domain ,shdn TGT  using 
function fTGT in accordance with Eq. (75). 

2) Determine the values of operating parameters resulting in the same value of the thermal 
stresses but in the source domain, i.e. ,shdn shdn TGT  . The resultant values are denoted 

as TAMB
* , TCOOL

*  and TFIRE
* , and referred to as the shifted values of the operating 

parameters. In a generalized case, in this step, it is necessary to determine the inverse of 
fSRC, denoted by 1

SRCf  , if it exists. In the analyzed case, function fSRC is not bijective 
since many different triples may result in the same shdn  value. Therefore, this function 
is not invertible. However, the inability to determine the inverse function 1

SRCf   is not a 
problem and does not prevent the execution of the next steps since, in the analyzed case, 
the ratio between the values of ,shdn TGT  and shdn  is constant and equal to φത = 0.8632. 

In a generalized case, to determine the values of TAMB
* , TCOOL

*  and TFIRE
*  unambiguously 

and reduce the degrees of freedom, it will be required to define certain assumptions 
regarding the values of some of the operating parameters or prepare additional equations 
describing relationships between the selected operating parameters and other dependent 
variables, different than shdn . Such cases are described in the next chapter. 

3) Considering TAMB
* , TCOOL

*  and TFIRE
*  as the input data, calculate the shifted value of the 

thermal stress in the target domain *
,shdn TGT  again using function fTGT. 

4) Use *
,shdn TGT  as the input variable of the unchanged source model to estimate the crack 

length increment during a single startup-shutdown cycle. Therefore, the final estimate 
in the target domain for the original triple (i.e. TAMB, TCOOL and TFIRE) is obtained by 
means of the source model applied to the shifted triple comprising TAMB

* , TCOOL
*  and 
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TFIRE
* . In addition, it should be clarified, why the second input variable of the physics-

informed neural network is neglected in these considerations. For a specific time step, 
the ratio between the values of Cc coefficient in both domains is close to one in the 
analyzed case. Thus, the prediction's accuracy should be maintained if the original, 
unshifted values of Cc,TGT calculated in the target domain are used for estimation 
purposes. Nevertheless, it should be reminded that Cc is a monotonically increasing 
function of ,S ssT , which inverse can be easily determined. 

Functions fSRC and fTGT, representing the set of equations, respectively (51) (55) and (68)
(72), were introduced to prepare more specific input data for the physics-informed neural 
network, simplify the processing of data within the PINN’s structure and make the training 
process and the interpretation of the obtained results easier. These functions constitute a simple 
physics-based model used to estimate the thermal stresses on the basis of the actual operational 
data, which is also adjusted based on the numerical simulation results. Simultaneously, these 
functions determine the relationship between the inputs of the hybrid model in the source and 
the target domain, leaning on the same set of operating parameters shared across the domains. 
Functions fSRC and fTGT are the enablers of the four-step process described above, which is 
expected to provide accurate damage size estimates in case of limited availability or even lack 
of actual damage measurements. This process can be seen as a method of transferring 
knowledge between domains related to different operating conditions of the same unit, and also 
between different parts or units with unique characteristics, assuming that the damage type and 
physical phenomena causing it are the same in the two domains, and the theoretical or 
experimentally determined relationships embedded in the source model based on a physics-
informed neural network apply to the target domain as well. Moreover, in the described process, 
the independent variables from the target domain, i.e. the operating parameters recorded by the 
data acquisition system, are not utilized in the training of the source hybrid model, similarly to 
the damage size measurements, which may not even be available. Thus, this process can also 
be seen as a method of single-source domain generalization in regression analysis, in which a 
specific strategy is applied to create a model with good generalization capabilities. Fig. 35 
presents the first three steps of the process described above, considering a situation in which 
the single input variable of a physics-informed neural network depends on one operating 
parameter only and functions fSRC and fTGT are bijective and invertible. This simple case 
illustrates, why shifting the neural network’s input data is necessary and how to accomplish it. 
These three steps, which are denoted in the figure as (1), (2) and (3), are as follows: 

1) For a single time step, for which the operating parameter x considered as the predictor 
has a value equal to 1x , i.e. this reading was recorded in the target domain, calculate the 
corresponding value of v, which is the input variable of the physics-informed neural 
network trained in the source domain, applying the equation below: 

  1 .TGT TGTv f x  (76) 

2) Using the inverse function of fSRC, determine the operating parameter value resulting in 
the same value of the PINN’s input variable, i.e. vTGT, but in the source domain, 
following the formula below: 

  * 1
1 .SRC TGTx f v  (77) 
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The resultant value *
1x  is referred to as the shifted value of the operating parameter. 

3) Calculate the adjusted value of the neural network’s input in the target domain using the 
equation below: 

  * *
1 .TGT TGTv f x  (78) 

The resultant value vTGT
*  is referred to as the shifted value of the hybrid model’s input. 

For the analyzed time step, for which the operating parameter’s value equals 1x , vTGT
*  

instead of vTGT should be considered as the input of the unchanged source model when 
applied directly in the target domain. Such an adjustment of the PINN’s input variable 
should increase the prediction’s accuracy in the target domain. 

As already mentioned, predictions in the target domain are obtained using the hybrid model 
based on a physics-informed neural network created and trained in the source domain. Thus, if 
the operating parameter in the target domains equals 1x  and the PINN’s input variable is equal 
to vTGT, then the estimated damage increment has the same value as the prediction obtained in 
the source domain when the operating parameter equals *

1x  since    *
1 1TGT TGT SRCf x v f x  . 

Simultaneously, when the shifted value of the operating parameter is determined as *
1x x , 

function fTGT can be applied to calculate the corresponding value of the PINN’s input variable, 
denoted as vTGT

* , where    * *
1 2TGT TGT SRCv f x f x  . Finally, if the operating parameter’s value 

recorded at time step t in the target domain is equal to 1x , then the resultant damage increment 
can be estimated by the source hybrid model as follows: 

 

Fig. 35 An illustration of the three-step process applied to adjust the hybrid model’s input in the target
domain from the original value  1TGT TGTv f x  to the shifted value  * *

1TGT TGTv f x 

    1
2TGT SRC TGT SRCf f v f x  , where the inverse of SRCf  function is denoted as 1

SRCf  . 

(1)
(2)

(3)

The selected 
operating parameter

The input variable of 
the hybrid model
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     

        
* *

1, ,

1 1
1 ,

TGT TGTPINN TGT t

TGT SRC TGT TGT SRC TGT

y PINN v PINN f x

PINN f f v PINN f f f x 

   

 
 (79) 

where function PINN symbolically denotes the physics-informed neural network trained in the 
source domain. 

The above considerations regarding the hypothetical steps necessary to apply the source 
hybrid model in the target domain effectively, which are illustrated in the conceptual diagram 
in Fig. 33, and the steps needed to appropriately adjust the input data values of that model in 
the target domain can be combined to form a systematic procedure, which can be applied in 
cases similar to the analyzed one, aimed at modeling the process of progressive, irreversible 
damage accumulation based on real operational data recorded by a data acquisition system. This 
procedure establishes a novel method of single-source domain generalization and cross-domain 
knowledge transfer in regression analysis leveraging physics-informed neural networks. In 
general, the main steps of this method are as follows: 

1) Determine how to estimate the damage increment in a single time step t based on the 
operational data x⃗SRC,t recorded in the source domain, i.e. it is assumed that the feature 
selection process was executed following best practices, using prior knowledge about 
the analyzed phenomenon. Theoretical or experimentally determined equations should 
be applied to process the input data accordingly and obtain the final estimate. As a 
reminder, the source domain is the analyzed object, the damage type and its location 
and the entire set of data available for training and testing a regression model. 

2) Design a physics-informed neural network architecture leveraging the equations 
formulated in the prior step. Identify variables whose values are insufficiently 
accurately estimated by means of the theoretical equations or whose prediction 
uncertainty is high and can be directly approximated using the physics-informed neural 
network. It is essential to derive a complete sequence of functions that are applied to 
calculate the PINN’s input variable vSRC,t based on the selected operating parameters 
x⃗SRC,t. The composition of all these functions applicable to the source domain is denoted 
by fSRC. Any constraints resulting from prior knowledge about the analyzed 
phenomenon restricting the space of allowable solutions can be implemented either in 
the soft or the hard manner, i.e. using an additional loss term in the cost function or 
customizing the neural network’s structure to ensure a constraint is satisfied. 
Synthetically created data can enlarge the training space in which the model should 
respect the constraints. 

3) Execute the training process of the physics-informed neural network using the actual 
operational data and measurement data on the damage size, which are available in the 
source domain. The optimization aims to extract latent information and knowledge from 
the available empirical data, maximizing the prediction’s accuracy while respecting the 
constraints embedded in the neural network’s structure. Additionally, leveraging the 
availability of the empirical data in this domain, it is necessary to assess the hybrid’s 
model performance on the test data and the generalization capabilities. A particular 
emphasis should be put on those parts of the neural network used to estimate the values 
of the variables identified in the prior step, i.e. the variables inaccurately estimated by 
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means of the theoretical formulas. Characteristics showing the relationship between the 
input data and the output must be prepared and evaluated, focusing on consistency with 
the prior knowledge about the analyzed phenomenon. The fully-specified PINN is 
called the source model or the source hybrid model. 

4) For explanation purposes, an assumption is taken that applying the source model in 
another domain is requested, where data on the same operating parameters are available, 
but the damage size measurements are unavailable. Therefore, this step aims to evaluate 
if the source hybrid model can be safely employed in that domain and provide credible 
estimates. The evaluation’s result determines whether that domain is a valid target 
domain. As a reminder, the target domain is the specific object to which the source 
model will be applied, the damage location and the set of operating parameters required 
to prepare the input for the model. Nevertheless, the damage type in the target domain, 
the physical phenomena causing it and the applicable theoretical or experimentally 
determined equations must be the same as in the source domain. 

5) Considering all available operational data recorded during the service period in the 
target domain XTGT as the input data, calculate the values of the PINN’s input variable 
v⃗TGT. The selection of the operating parameters taken as the independent variables 
should be the same as in the source domain. It is expected that the composition of 
functions applied to calculate the values of v⃗TGT components should be similar to the 
one applied in the source domain, i.e. fSRC, and simultaneously these functions should 
capture all specific properties of the target domain, which significantly affect the value 
of v⃗TGT elements. The composition of all these functions applicable to the target domain 
is denoted by fTGT. Numerical simulation results can be leveraged in order to adjust 
functions fSRC and fTGT to their corresponding domains. A particular emphasis should 
be put on the verification of the range of values of the v⃗TGT vector components. These 
values should be inside the space of input data used to train the physics-informed neural 
network in the source domain. This approach aims to consciously and prudently predict 
in the target domain, using the hybrid model for interpolation only. Otherwise, it is 
suggested to retrain the model enlarging the training space by synthetically created data, 
i.e. to enlarge the space where the PINN respects the theoretical constraints, rather than 
using the original version of the hybrid model for extrapolation. 

6) Determine the inverse function 1
SRCf  , which exists if and only if fSRC is bijective. Else, 

fSRC is not invertible, for example, because it is a non-injective function or a function of 
several variables, i.e.  , ,SRC t SRC SRC tv f x

 . In such a case, additional operations will be 

needed to determine the components of x⃗SRC,t unambiguously, given any value of vSRC,t. 
These operations may relate to defining certain assumptions regarding the values of the 
PINN’s input variables or the values of some of the operating parameters in the source 
and target domains or preparing additional equations, which describe relationships 
between the selected operating parameters and other dependent variables, different than 
v. The ultimate objective of this step is to well-define the components of x⃗SRC,t for each 
time step given vTGT,t as the input, using the following equation: 

     * 1 1
, , , , , ,SRC t TGT t SRC TGT t SRC TGT t TGT tx x f v f f x   

    (80) 
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where the elements of vector x⃗TGT,t
*  are referred to as the shifted values of the operating 

parameters in the target domain. Considering the entire service period, the matrix with 
the shifted values of the operating parameters is denoted as XTGT

* . Based on Eq. (80), 
the knowledge of x⃗TGT,t can be leveraged in defining the assumptions mentioned above 
regarding the values of the vector x⃗SRC,t components. As already mentioned, such cases 
are described in the next chapter. 

7) Considering XTGT
*  as the input, apply function fTGT to calculate  * *

TGT TGT TGTv f X , 

which is referred to as the vector of shifted values of the PINN’s input variable in the 
target domain. 

8) Use v⃗TGT
*  as the input data of the unchanged source hybrid model to estimate the damage 

increment in the target domain for all the time steps in the analyzed service period. Thus, 
the final estimate in the target domain for the original set of operational data XTGT is 
obtained by applying the source model to the set of shifted operational data XTGT

* . 

Additionally, for clarity, if more than one variable calculated based on operational data is used 
as the input of the source hybrid model, then each variable is expected to be determined by 
means of a dedicated set of equations. Therefore, functions fSRC, fTGT and 1

SRCf   are specific to 
each physics-informed neural network input variable, and it is necessary to determine the 
shifted values for each variable separately unless some of the input variables have the same 
values in both domains for any set of operational data. 

5.5 Application of the proposed method for predicting fatigue cracks growth 

As described in the previous section, the selected target domain refers to fatigue cracks 
observed at Position 4 of the airfoil’s trailing edge of the analyzed high-pressure nozzles. The 
maximum crack size is considered the dependent variable. The reference model used to predict 
the maximal crack length at Position 2, which was trained using ten observations, is selected as 
the source hybrid model. The target location is not on the same airfoil as Position 2. The target 
domain is considered valid since the physical phenomena causing the cracks and the applicable 
framework of equations are the same as in the source domain. The thermal stresses in the target 
domain, which are the input of the source model based on the physics-informed neural network, 
are calculated by means of Equations (68) (72). The shifted values of the PINN’s input 
variable in the target domain are estimated using the factor φത = 0.8632, which is the mean value 
of the quotient of ,shdn TGT  and shdn  determined considering all startup-shutdown cycles. 
Therefore, the calculated value of maximum thermal stresses at shutdown related to Position 4 
is 86.32% of the stress value calculated for Position 2. Consequently, given a vector with the 
operating parameter’s readings x⃗TGT,t recorded at time step t in the target domain, the shifted 
value of the thermal stresses is estimated in the following way: 

  *
, , , , ,0.8632 .shdn TGT t shdn TGT t TGT TGT tf x     

  (81) 

Subsequently, applying Eq. (47), the crack length increment for that startup-shutdown cycle is 
calculated based on the Paris’ law as follows: 
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where ∆Kshdn,TGT,t
*  is the stress intensity factor value calculated based on the shifted value of the 

thermal stresses in the target domain using the feedforward neural network, symbolically 
denoted as function FNN. Considering the entire service period, the matrix with the shifted 
values of the thermal stresses is denoted as Sshdn,TGT

* , and it can be used as the input data of the 
source model to estimate values of the dependent variable in the target domain. Thus, the final 
estimate in the target domain for the original values of the thermal stresses Sshdn,TGT is obtained 
by applying the source hybrid model to the set of shifted stresses Sshdn,TGT

* . Finally, the damage 
size measurements, which are available in the target domain (i.e. 13 observations related to the 
same nozzle sets as in the source domain), will be used to evaluate the accuracy of the estimates 
obtained through the proposed method of single-source domain generalization and cross-
domain knowledge transfer in regression analysis, which is based on physics-informed neural 
networks. 

Moreover, it can be shown how to determine a map M and apply the process presented 
in Fig. 33. The map captures the proportions between the damage increments determined by 
means of the so-called theoretical model in the source and target domains, i.e. ∆a෢c,THEOR,TGT 
and ∆a෢c,THEOR,SRC. For a single time step t, the proportion between the increments is calculated 
as follows: 
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where the geometrical factor Y is calculated in accordance with Eq. (65). As described in the 
previous section, the ratio between the Cc coefficient values in both domains is close to one in 
the analyzed case. Additionally, the estimates obtained by means of the theoretical model are 
very similar in the two domains. Thus, assuming , , , ,c TGT t c SRC tC C , , ,TGT t SRC tY Y  and 

, 1 , 1TGT t SRC ta a  , Eq. (83) simplifies to: 

 , ,

, ,

.
m

shdn TGT t
t

shdn SRC t

M

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 

   
 

 (84) 

Leveraging the mean value of the quotient of ,shdn TGT  and shdn  equal to φത = 0.8632, the map 
can be approximated by the following constant: 

 0.8632 .mM   (85) 
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Subsequently, for a single time step t, the crack length increment is estimated as follows: 
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Differences between the final predictions of the maximal crack lengths at Position 4 determined 
by applying Eq. (86) resulting from the process illustrated schematically in Fig. 33 and the 
predictions obtained by means of Equation (82), which results directly from the use of the 
proposed method of domain generalization, are insignificant. Thus, to avoid excessive 
reporting, only the latter set of results is presented in the dissertation. 

 The results obtained by means of the created method of domain generalization and 
cross-domain knowledge transfer in regression analysis, which leverages physics-informed 
neural networks, are presented in Fig. 36 and Fig. 38. They can be compared with the results 
obtained by means of a hybrid model with the same architecture as the source PINN, which was 
trained from the ground up in the target domain using ten observations (i.e. these are related to 
the same nozzle sets that were selected to train the source model), which are presented in Fig. 
37 and Fig. 39. The learning process of that model was executed using the actual operational 
data, the domain-specific values of ,shdn TGT  and Cc,TGT and the measurement data on the 
damage size recorded in the target domain. In order to protect proprietary information, the data 
presented in the plots were normalized by dividing each value by the maximal measured crack 
length recorded in the target domain, which was determined based only on the data related to 
the analyzed 13 observations. The most important considerations regarding the obtained results 
are as follows: 

- The pre-trained model provides significantly underestimated predictions of the final 
crack lengths in the target domain (the details are presented in Fig. 37), similarly to the 
attempt to apply it in the source domain. 

- The accuracy of the predictions on the unseen data obtained using the proposed method 
is similar to the prediction accuracy of the hybrid model trained in the target domain. 
When the proposed method is applied, the normalized root mean squared error evaluated 
against all 13 observations is equal to NRMSEEMP,TEST = 15.5%, while considering 
nozzle sets with identifiers S1N_25, S1N_31 and S1N_47 as the reference, the error 
equals NRMSEEMP,TEST = 18.7% (i.e. these nozzle sets constitute the test subset for the 
model trained in the target domain). When the model trained from the ground up in the 
target domain is used, the error equals NRMSEEMP = 15.9% (with NRMSEEMP,TRAIN = 
14.3% and NRMSEEMP,TEST = 20.2%). Thus, the obtained results provide evidence that 
the created method of domain generalization and cross-domain knowledge transfer in 
regression analysis, which leverages physics-informed neural networks, can be applied 
effectively even if no damage size measurements are available in the target domain, 
providing accurate damage size predictions. Such limitations may occur at the early 
stages of the parts’ lifetime, e.g. during the design phase, first tests of the part or until 
the product reaches maturity. It can be presumed that leveraging a good-quality source 
hybrid model applying the created method of domain generalization may result in more 



111 
 

accurate predictions than training a model based on a limited number of observations, 
low-quality empirical data or both. 

- The stress intensity factor estimates determined by the feedforward neural network 
trained in the target domain are lower than estimates obtained using the source hybrid 

 

Fig. 36 Evaluation of the source hybrid model based on the physics-informed neural network,
trained in the source domain using ten observations, against the test data from the target 
domain presented on the predicted vs. observed plot. 

 

Fig. 37 Evaluation of the hybrid model based on the physics-informed neural network, trained
from the ground up in the target domain using ten observations, against the training and 
test data presented on the predicted vs. observed plot. 
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model. It is because the same set of operational data describes both domains, but the 
cracks detected at Position 4 are shorter than the cracks recorded at Position 2 as shown 
in Fig. 4. Thereby, the stress intensity factor values obtained using the data-driven layer 
must be smaller to avoid overestimation of the final crack lengths. Fig. 40 presents the 

 

Fig. 38 Evaluation of the source hybrid model based on the physics-informed neural network, 
trained in the source domain using ten observations, against the test data from the target 
domain. 

 

Fig. 39 Evaluation of the hybrid model based on the physics-informed neural network, trained
from the ground up in the target domain using ten observations, against the training and 
test data. 
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characteristics of the multilayer perceptron at the constant thermal stresses, i.e. 
 ' , 'shdnshdn

K FNN const a   , of the hybrid model trained in the target domain. The 
values presented in the plot were normalized by dividing them by the maximal measured 
crack length or the maximal calculated thermal stress related not to the target domain 
but to the source one, i.e. from Position 2. It simplifies a comparison with the results 
presented in Fig. 22 related to the source hybrid model. Comparing the results shown in 
these plots, it is visible that differences between the estimates decrease as the crack 
length increases and the thermal stresses reduce. Consequently, at the beginning of the 
crack propagation process, the crack length increments obtained using the source model 
are larger in coparison with the values obtained by means of the model trained in the 
target domain. Nevertheless, it does not significantly impact the final crack length 
estimates. 

- Regardless of the very stable operating profile of the analyzed gas turbines, which is 
mainly characterized by a continuous duty at nominal power, the source hybrid model 
can differentiate the crack growth rates and the final estimates also in the target domain. 

- Direct application of the source model in the target domain using the original values of 
the operating parameters (i.e. TAMB, TCOOL and TFIRE) instead of the shifted values (i.e. 
TAMB

* , TCOOL
*  and TFIRE

* ) results in overestimating the final crack lengths. As described 
in the previous section, regardless of the generalization capabilities of the source hybrid 
model, the learning process executed in the source domain was aimed at reducing the 
empirical error value related specifically to the data recorded in that domain. Thus, 
unless the same sequence of functions is applied in the source and target domains to 
calculate a PINN’s input based on selected operating parameters, i.e. SRC TGTf f , it is 
needed to determine shifted values of the neural network’s input and make predictions 
in the target domain based on them, applying the source hybrid model effectively. 

 

Fig. 40 Stress intensity factor values at the constant thermal stresses  ' , 'shdnshdn
K FNN const a  

determined by the data-driven layer before and after the training from the ground up in the 
target domain using ten observations. 
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5.6 Conclusions concerning this stage of the research 

The purpose of the second stage of this research was to apply physics-informed neural 
networks on a small sample comprising 13 observations, and assess whether the objectives of 
this research, described in Section 2.1, can be achieved using this class of machine learning 
algorithms. The specific aims were to create models based on machine learning algorithms, 
which are more consistent with theoretical or experimentally determined equations describing 
the analyzed phenomenon, and have better generalization and extrapolation capabilities than 
the data-driven models created during the first stage of the research and described in Chapter 
4. The primary outcomes of this part of the research are as follows: 

- An approach was proposed and applied to estimate thermal stresses at shutdown based 
on readings of the selected operating parameters recorded at steady-state conditions. 
These tensile stresses act in the direction perpendicular to the crack propagation plane 
and open the analyzed fatigue cracks. Actual readings of the ambient air temperature 
TAMB, the average air temperature at the axial compressor’s discharge TCOOL and the 
average temperature of gases at the outlet of the nozzles TFIRE, which are recorded by 
the data acquisition system, are utilized to estimate the thermal stress values. The finite 
element analysis results were used to determine the values of several coefficients of the 
equations applied to calculate the stresses. Additionally, selected characteristics of the 
FSX-414 cobalt-based superalloy are used, which were created based on the results of 
material properties tests conducted at Baker Hughes Company. The thermal stresses are 
utilized as the input data to estimate the stress intensity factor values. 

- A physics-informed neural network was designed and successfully applied to model the 
propagation of the fatigue cracks observed on the analyzed high-pressure nozzles. The 
PINN is based on a recurrent neural network, which is a rational choice for modeling 
progressive, irreversible damage accumulation. The custom cell of the RNN comprises 
a data-driven layer and a physics-based cyclic part. The former is a feedforward neural 
network that estimates the stress intensity factor based on the thermal stress values. The 
latter calculates the crack length increment during each startup-shutdown cycle based 
on the Paris’ law. An attempt to embed in the RNN cell a time-dependent part to capture 
the contribution of creep on the crack propagation rate was unsuccessful, resulting in a 
significant reduction of the prediction’s accuracy. The constraints resulting from the 
theoretical Equation (57), which the fully-specified PINN respects, were implemented 
in a soft manner through the additional term in the customized cost function, i.e. the 
physical term RMSEPHY. 

- A custom cost function was designed and applied, with a variable coefficient  0,1   
determining how the physical and empirical, i.e. RMSEEMP, terms contribute to the final 
cost value during the training process in accordance with Eq. (56). If γ is equal to zero 
the cost function reduces to the empirical term only. In contrast, if it equals one, the cost 
function simplifies to the physical term only, and when it has intermediate values, both 
terms are included accordingly. The coefficient value changes dynamically during the 
training process following the predefined function (described by Eq. (66)) to find a 
proper balance between the two terms. As the consistency of the data-driven layer 
estimates with the theoretical equation embedded in the cost function increases, the 
value of the coefficient decreases. Thus, the first stage of the learning process aims to 
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restrict the space of allowable solutions only to a subspace where the theoretical 
equation is respected, and the second stage aims to reduce the empirical term’s value as 
much as possible while staying in that subspace. The set of input data utilized as the 
basis to calculate the value of the physical term was created synthetically. It was 
generated in a systematic way aimed at improving the effectiveness of the training 
process and the extrapolation capabilities of the multilayer perceptron. The original 
input space, which is based on the empirical data available in the source domain, was 
enlarged with synthetic data, which simultaneously enlarged the training space where 
the physics-informed neural network should respect the theoretical constraints. The 
approach applied to generate these additional training data can be adjusted depending 
on particular objectives. 

- Three hybrid models sharing the same architecture but trained respectively based on ten, 
two and only one observation were prepared, with the maximal crack size at Position 2 
on the nozzle’s trailing edge as the dependent variable. Considering the limitations 
regarding the availability of the operational data and damage size measurements and the 
simplified theoretical description of the fatigue crack propagation process applied to 
prepare the hybrid models, the accuracy of the final estimates is satisfactory. The models 
trained using ten and two data points are the most accurate, with the normalized root 
mean squared error evaluated against the test sets equal 9% and 11%, respectively. 
These values are comparable with the accuracy of recording those cracks during a visual 
inspection preceding repair activities, where the maximum normalized error may reach 
7%. The most accurate estimates were obtained for nozzles with more than 40 interval 
fired starts accumulated and with the longest cracks. The models trained using two and 
one observation can provide accurate crack length estimates for parts with 40% longer 
cracks and over four times more startup-shutdown cycles in comparison with the utilized 
training data points. The prediction accuracy of the hybrid models is significantly better 
than that of the model pre-trained on the results obtained using the theoretical formula 
(65). When the normalized RMSE evaluated against the test set is considered the 
reference metric, those two hybrid models are also better than the data-driven models 
created during the first stage of the research (the details are provided in Table 2). 
However, even though the sample used to train the PINNs is significantly smaller, it is 
also more homogeneous, comprising only parts that operated in Type C gas turbines and 
have not been subjected to repair. Moreover, an attempt to apply the reference hybrid 
model, i.e. the one trained using ten observations, to the nozzles subjected to repair 
activities in the past resulted in a significant underestimation of the final crack lengths. 
Finally, the models are capable of differentiating the crack growth rates and the final 
estimates based on actual operational data, despite the very stable operating profile of 
the analyzed units. The obtained results are consistent with each other, regardless of the 
cardinality and the composition of the training set. Thus, cross-validation is not 
necessary. 

- Effective execution of the optimization process based on a single training observation 
was accomplished in one case only and failed for five other data points. Extracting and 
leveraging knowledge from a single damage size measurement is valuable and may give 
tangible benefits. However, with such a small sample, difficulties in converging to the 
optimal solution may be encountered, and the final predictions may vary significantly 
depending on the characteristics of the selected training observation. 
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- The core of the hybrid model is the feedforward neural network responsible for the stress 
intensity factor estimates. It determines, to a great extent, the final predictions obtained 
by means of the fully-specified hybrid model. This neural network cannot be considered 
a black box in its entirety since the characteristics of the data-driven layer are available, 
i.e.  ' , 'shdnshdn

K FNN a const    and  ' , 'shdnshdn
K FNN const a   , presenting 

directly the relationship between the inputs and the output. For example, the 
characteristics of the reference model are shown in Fig. 21 and Fig. 22. They present 
estimates of the multilayer perceptron outside the original space of input data when a' > 
1 or ' 1shdn  . These characteristics are continuous, without peaks or drops inside and 
outside the original input space. They illustrate that the feedforward neural network 
obeys the theoretical equations embedded in the cost function and how it interpolates 
and extrapolates. Thus, leveraging these characteristics, the predictions can be made in 
a fully conscious way. Otherwise, they can be utilized to limit the input space, where 
the fully-specified model can be safely applied. Nevertheless, if necessary, the training 
space can be enlarged with synthetically created data. 

- A novel method of single-source domain generalization and cross-domain knowledge 
transfer in regression analysis leveraging physics-informed neural networks has been 
proposed. The method’s purpose is to effectively apply a cumulative damage model 
based on a physics-informed neural network, i.e. the so-called source hybrid model, 
which was trained in a domain, where measurement data on damage size are available, 
in another domain, where such data are unavailable. Following the definitions given in 
Section 5.4, the former domain is called the source domain, and the latter is the target 
domain. The method can be applied if the damage type in the target domain, the physical 
phenomena causing it and the applicable theoretical or experimentally determined 
equations for estimating the damage increment in a single time step, are the same as in 
the source domain. The eight-step procedure describing the main steps of the proposed 
method is provided at the end of Section 5.4. The so-called shifting of the operational 
data and PINN’s input variables in the target domain is the essential step that enables 
an effective application of the unchanged source hybrid model in the target domain. The 
composition of functions used to calculate the input data of the physics-informed neural 
network based on the selected operating parameters shared across the domains must be 
known in both domains to accomplish that step. Eventually, the final estimate in the 
target domain for the original set of operational data XTGT is obtained by applying the 
source hybrid model to the set of shifted operational data XTGT

* . 

- The created method of domain generalization was applied to predict the maximal crack 
length at Position 4, leveraging the reference hybrid model dedicated to Position 2. The 
target location is not on the same airfoil as the source location. The value of maximum 
thermal stresses at shutdown corresponding to Position 4 is 86.32% of the stress value 
calculated for Position 2 for any vector of the chosen operating parameters. The damage 
size measurements available in the target domain were used to evaluate the prediction’s 
accuracy. Applying the proposed method, the normalized error evaluated against all 13 
data points equals NRMSEEMP,TEST = 15.5%, and is similar to the error resulting from 
the application of a model trained from the ground up in the target domain that is equal 
to NRMSEEMP = 15.9%. Thus, this method was successfully applied, providing accurate 
damage size predictions in a simulated scenario, where damage size measurements are 
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unavailable. The latent information and knowledge extracted from the empirical data 
available in the source domain were leveraged and effectively used in the target domain. 

During this part of the research, it was proved that the models based on physics-informed neural 
networks respect prior knowledge and physical laws that govern the analyzed phenomenon and 
can be trained effectively when only two or even one training observation is available. These 
features are inherited by the created method of single-source domain generalization and cross-
domain knowledge transfer in regression analysis since it leverages physics-informed neural 
networks. It was presented that accurate damage size predictions can be obtained using the 
proposed method, even if no damage size measurements are available in the target domain. As 
already described, such limitations may occur at the early stages of components’ lifetime. The 
next part of this research will focus on evaluating the flexibility and versatility of the method 
when applied to a different object and failure type. The main objective will be to prove that this 
method is universal and can be applied for modeling damage due to various failure types found 
on gas turbine components.  
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6. Predicting metal loss due to oxidation 
by physics-informed neural networks 

One of the specific objectives of this dissertation is to create a method based on machine 
learning algorithms for predicting the size of damage to gas turbine components, which will be 
universal, with the capability of applying it effectively to the most common failure types found 
on the main combustion and hot gas path parts. Thus, after the successful application of physics-
informed neural networks and the proposed method of single-source domain generalization for 
predicting the maximal length of fatigue cracks, another object and failure type is selected to 
evaluate the effectiveness of this modeling approach. Considering the minimal requirements 
for data availability, which are listed at the beginning of Chapter 4, it is decided to select a 
transition piece of a heavy-duty gas turbine as the analyzed object, focusing on predicting the 
component wall thickness reduction due to oxidation. The additional arguments in favor of this 
selection are as follows: 

- Problems related to oxidation and overheating are common for all types of gas turbines 
(according to [28], almost 7% of damage observed in aircraft engines was caused by 
material overheating). 

- This type of failure is among the most common causes of scrapping the transition pieces. 
Thus, the capability to predict the damage size may be leveraged to foresee the number 
of scrapped components, optimize parts management and predict operating expenses. 

- The analyzed part is made of Nimonic 263 nickel-based alloy, which is widely used to 
manufacture transition pieces and combustion liners of other types of gas turbines. 
Therefore, many opportunities exist to use the source hybrid model in another domain. 

- The presence of thermal barrier coating on the inner side of the part, possible effects of 
erosion on the wall thickness reduction and the limited number of empirical data make 
this a challenging problem in the context of cumulative damage model creation. 

- The input data needed to create the model are available, and no additional efforts and 
costs are required to gather them. 

Details of this part of the research are provided in the following sections of this chapter. 

6.1 The analyzed object, problem setup 
and an overview of available empirical data 

The analyzed component comes from a family of industrial gas turbines offered by 
Baker Hughes Company, which are available in different configurations to support mechanical 
drive and power generation applications. The installed fleet is composed of almost 200 units 
worldwide (status of 06-Jun-2023). The available sample comprises three configurations, which 
are referenced as Type I, Type II and Type III. The latter has a lower firing temperature and 
compressor pressure ratio than the first two, i.e. consequently, the air temperature at the axial 
compressor’s discharge is also lower. In gas turbines equipped with can-type combustors, 
transition pieces serve as a kind of collector, which transforms the cylindrical flow of exhaust 
gases from a combustion liner into a continuous annular flow at the inlet of the high-pressure 
nozzles. The number of transition pieces is equal to the number of combustion cans. However, 
the analyzed gas turbines are equipped with a single combustion chamber. The analyzed object 
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is presented in Fig. 41, Fig. 42 and Fig. 43 [211]. The transition piece is divided at the centerline 
for assembling purposes. Over the years, a few versions of the part were designed and deployed, 
but only the latest configuration is being considered in this analysis. Thus, from this perspective, 
the analyzed sample is homogeneous. This part is manufactured from Nimonic 263 nickel-
based superalloy. From the outside it is cooled by the air discharged from the axial compressor 
that flows in an inverse direction to that of the hot gases inside the transition piece. This 
component has numerous holes to inject high-pressure air into the hot gas path, creating a thin 

 

Fig. 41 The outlet of the analyzed transition piece. 

 

Fig. 42 A view from the compressor side on the analyzed transition piece. 
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coolant layer along the internal surfaces. This technique is known as film cooling. Additionally, 
as shown in Fig. 43, the internal surfaces are partially covered with a thermal barrier coating to 
provide thermal insulation from the hot gases and improve oxidation resistance. In accordance 
with the applicable maintenance policy, the transition pieces should be disassembled and 
repaired during each combustion inspection. This part should be repaired just once, and it 
should be scrapped after the second interval. However, it should be reminded that less stringent 
maintenance rules may be applied for units covered by the long-term service agreement offered 
by the original equipment manufacturer. 

Based on empirical data recorded during visual and dimensional checks executed during 
disassembly inspections and subsequent repair activities, the following failure types can be 
found on the analyzed transition pieces: 

- deformation and damage occurred during disassembly caused by the deformation, 
- oxidation or erosion, 
- cracks, 
- fretting of the outlet flange, 
- surface degradation and spallation of the thermal barrier coating. 

As for the previously analyzed high-pressure nozzles, this damage is not monitored nor directly 
measured during the operation because of the high temperature of exhaust gases. Additionally, 
the impact on gas turbine performances of surface degradation due to oxidation or erosion is 
negligible and not reflected in operational data gathered by the data acquisition system. Thus, 
a more interdisciplinary approach should be applied to predict the component wall thickness 
reduction due to oxidation. Examples of surface degradation due to oxidation and spallation of 
the thermal barrier coating are shown in Fig. 44 and Fig. 45 [212]. During a dimensional check 
preceding repair activities, the thickness of the transition piece wall is measured in three planes, 
denoted as 1, 2 and 3 in Fig. 46 [213], with eight measurements taken per plane, denoted with 
letters A to H in the same figure. Nevertheless, the completed inspection form provides only 
the minimal thickness measurement for each plane. Thus, for a specific transition piece, three 

 

Fig. 43 The inlet mouth of the analyzed transition piece. 
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Fig. 44 Green nickel oxide found on the external surface of the analyzed object after service. 

 

Fig. 45 Thermal barrier coating spallation found on the internal surface of the analyzed object 
after service. 

 

Fig. 46 Areas on the transition piece outlet where dimensional inspection is executed. 
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measurements of the minimal wall thickness are available, separately for planes 1, 2 and 3. 
Consequently, if a set of measurements related to a particular plane is analyzed, comprising 
data on various components, it should be remembered that it refers to the same plane but not 
necessarily to the same position. This additional source of uncertainty regarding the available 
measurements further complicates the task of modeling effectively the wall thickness reduction 
due to oxidation for the analyzed transition pieces. 

Before an overview of available empirical data, it should be reminded that data used for 
this research are confidential and are the proprietary property of Baker Hughes Company. Due 
to these reasons, the data cannot be shared openly and were anonymized in this dissertation. 

Input data used to train and test the predictive models comes from previously utilized 
sources for the analyzed high-pressure nozzles. The first set of data is extracted from the Parts 
Life Database and contains the following information for each transition piece: 

- The operational history of the analyzed components, including the scope of historical 
repair activities and the numbers of fired hours, fired starts and emergency shutdowns 
accumulated since the last repair and since the part was manufactured. 

- Wall thickness measurements of components after service, which were subjected to a 
visual inspection preceding repair activities. 

- The component codes and drawing numbers required to select records related only to 
the latest configuration of the transition piece. 

The analysis is limited only to parts that were not repaired in the past to avoid introducing noise 
resulting from the inclusion in the dataset of repaired components, which could be subjected to 
the stripping of thermal barrier coating and recoating after completion of repair activities. 

The second set of inputs contains actual operational data recorded by the Remote Monitoring 
& Diagnostics system. Concerning the analyzed phenomenon, the oxidation rate depends on 
the material temperature and increases as the temperature rises. Therefore, the operational data 
are used to estimate the material temperature. The following operating parameters are utilized: 

- the average air temperature at the axial compressor’s discharge TCOOL, 
- the average temperature of gases at the inlet of the nozzles TINLET, which is calculated 

based on other signals recorded by means of the data acquisition system. 

Parts with less than 50% availability of TINLET values are excluded from further processing. The 
sampling interval is set to one hour. Therefore, the damage increment will be estimated every 
hour. Raw data downloaded from the system are subjected to data cleansing that has the 
following objectives: 

- Remove the non-numerical data from the dataset, including strings, NaN (i.e. Not a 
Number) and positive or negative INF (i.e. infinity). 

- Remove from the dataset records containing erroneous values outside the acceptable 
ranges and records related to the transient states, i.e. startup, acceleration, load step, load 
rejection, deceleration or shutdown. A range of acceptable values was defined for each 
analyzed operational parameter. Records with TCOOL values outside the acceptable 
range are excluded from the dataset, while improper values of TINLET are completed in 
the next stage of data processing. 
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Missing values of the selected operating parameters are calculated as an arithmetic average of 
the values describing the adjacent cycles if the operational data are available for the preceding 
and subsequent cycles. Otherwise, they are calculated as medians of measurements recorded 
during the same day, or week (if the measurements are unavailable for that day), month, quarter, 
or finally, the entire service period. Generally, the interval used to calculate the median expands 
if no readings are available in the shorter interval. Such a gradual approach is necessary since 
the analyzed gas turbines operate in industrial applications, typically at partial load, which may 
change dynamically. 

The third set of inputs comprises the following configuration details of the analyzed engines: 

- the model, i.e. Type I, Type II or Type III; 
- the type of combustion system (either diffusion or premixed combustor); 
- the geographical position of each unit. 

Parameters that do not differentiate the investigated gas turbines or should not have any impact 
on the analyzed phenomenon were identified but not listed above. 

Considering all the limitations resulting from the availability of empirical data and the 
assumptions made, the final sample comprises only 11 observations. Those transition pieces 
have accumulated in total 148 442 service hours, but the required operating parameters are 
available for 127 532 records, which is 86% of the total number. Fig. 47 shows the values of 
the coverage, defined as the number of fired hours for which the operational data are available. 
Its values range from 60% to 99%. The data imputation approach was described in the previous 
paragraph. Fig. 48 presents the variation of the wall thickness measurements related to the 
analyzed 11 components. The median values are very similar for each position. However, based 
on the box plot, it is visible that the lowest values were recorded at Position 1, while the highest 
correspond to Position 3. It is an unexpected finding since, in accordance with the numerical 
simulation results presented in the next section, material temperatures in the areas considered 
as Position 1 should be comparable with those at Position 3. Additionally, these two areas 

 

Fig. 47 The number of fired hours accumulated since the last repair IFH for each transition 
piece, and the percentage of service hours for which values of the required operating 
parameters are available. 



124 
 

should be significantly colder compared to the area considered as Position 2. Thus, based on 
the results of analysis performed by means of the finite element method, the lowest wall 
thickness measurements are expected at Position 2, while at the remaining two positions the 
material should be thicker with the measurements comparable to each other. It can be presumed 
that higher metal loss values recorded at Position 1 may be caused by erosion. Therefore, 
considering that the measurement data related to Position 1 are not consistent with the numerical 
simulation results and that associated physical phenomena may not be completely known, it is 
decided to focus on the remaining two positions. Consequently, the source domain refers to 
Position 2, and the target domain refers to Position 3. The reduction in base material thickness 
due to oxidation is the dependent variable, which will be predicted using a hybrid model based 
on a physics-informed neural network. Finally, it should be clarified that the initial thickness 
measurements done after the manufacturing process are not available. In accordance with the 
applicable drawing, the nominal metal thickness equals 5

100nom nomw w , while for the thermal 
barrier coating it is equal to 8 14

100 1000nom nomw w . Thereby, focusing only on base material 
thickness, the difference between the upper and lower limits equals 10%. More than 80% of the 
analyzed measurements, presented in Fig. 48, can be contained in an interval with such width. 
The absence of the initial thickness measurements introduces additional uncertainties and 
significantly increases the complexity level of the analyzed problem. In order to train the model 
and make predictions in the source and target domains, it is assumed that the initial material 
thickness is equal to 5

100init nom nomw w w  . Attempts to use different values of winit did not 
improve the prediction’s accuracy.  

 

Fig. 48 Variation of the wall thickness measurements. The data normalized by dividing each 
value by the maximal measured thickness to protect proprietary information. 
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6.2 The architecture of the hybrid model 

The physics-informed neural network is based on a recurrent neural network, similarly 
to the previously analyzed problem related to the high-pressure nozzles. The equations 
describing the damage increment are embedded into the recurrent neural network’s cell, as 
presented in Fig. 49. The cell comprises the following major elements: 

- The physics-based part leverages the parabolic law that was first derived by Wagner 
[214] and that has the following form: 

  0.51 ,p C t  (87) 

where p is the oxide scale thickness, 1C  is the positively defined parabolic rate constant 
and t denotes the operation time. Based on this law, the reaction rate 1dp dt C p  is 
inversely proportional to the oxide scale thickness and it decreases with time. A more 
generalized form of Eq. (87) is based on the following power function: 

   21 ,Cp C t  (88) 

where the positively defined exponent 2C  depends on the metal temperature T, i.e. 
 2C f T . Derivating Eq. (88) with respect to time results in: 

   2 12 1 ,Cp C C t
t


 


 (89) 

which substituting  1 21 Ct p C  according to Eq. (88) can be applied to approximate 
the wall thickness reduction due to oxidation in each time interval ∆t = 1 hour as follows: 
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 (90) 

The physics-based part is used to calculate the damage increment on the external, colder 
side of the transition piece ∆pCOLD using Eq. (90) based on the estimated oxide scale 
thickness at the previous time step t - 1 denoted as pCOLD,t-1 and values of 1C  and 

,2COLD tC , which are approximated by means of feedforward neural networks. 
- The data-driven layer is based on a multilayer perceptron estimating values of the 

exponent 2COLDC  considering TCOLD as the input, which is the wall's temperature at the 
analyzed position on the external, colder side of the transition piece. The relationship 
between TCOLD and 2COLDC  should be a monotonically increasing function, i.e. the 
exponent value increases as the temperature rises. Thus, a monotonic feedforward 
neural network is applied to satisfy this constraint, inspired by the architecture presented 
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in [215]. It implements a continuous piecewise linear function by taking maximum and 
minimum operations on groups of two-dimensional hyperplanes. The structure of the 
data-driven layer is shown in Fig. 50. The first hidden layer is composed of 35 neurons 
with linear activation functions and a constraint applied to the weights, which limits 
their values only to nonnegative numbers. The neurons are divided into seven groups, 
each containing five neurons. The second hidden layer calculates the maximum from 
the results obtained in the first layer, separately for each group. Therefore, the second 
layer comprises seven units, each transforming five values into one. The third hidden 
layer computes the minimum from the outputs of the second layer, transforming seven 
values into one. Finally, the output layer has no trainable parameters and applies the 
rectifier linear unit function to ensure that the 2COLDC  estimates are nonnegative. 
Attempts to simplify the structure by reducing the number of neurons in the first layer 
and dividing them into three groups, as in the reference paper [215], resulted in lower 
prediction accuracy of the hybrid model. The min-max scaling is applied to normalize 
the input of the data-driven layer. 

- The second perceptron comprises a single neuron and is applied to estimate the constant 
1C . The initial value of the constant 1initC  is determined using the results of a burner-

rig test for oxidation resistance of Nimonic 263 nickel-based superalloy, which was 
conducted at Baker Hughes Company. The final value of the constant is computed as 

1 1initC C , where the approximated value of α minimizes the cost function. No bias 
is used in this case, while the ReLU activation function is used to ensure that the factor 
will have nonnegative values. 

By applying this architecture of the physics-informed neural network, it is assumed that the 
oxides form only on the external, colder side of the transition piece and that the oxide scale 
thickness on the internal, hotter side is equal to zero. The thermal barrier coating is assumed to 
effectively protect against metal loss due to oxidation throughout the entire service period until 
the component is disassembled and subject to inspection and repair activities. This assumption 
substantially simplifies the model’s architecture. Nevertheless, it may be too strong and false, 
especially since the thermal barrier coating spallation was observed on the transition pieces 

 

Fig. 49 The custom cell of the recurrent neural network applied to estimate the material loss due to 
oxidation during each time step. 
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included in the analyzed sample. The company possesses a model that is applied to estimate the 
number of startup-shutdown cycles until the coating spalls off completely, exposing the base 
material. Several attempts were made to consider the results of that model as an additional input 
of the physics-informed neural network, but all of them were unsuccessful. The applied 
approach assumed that the oxide scale on the internal side of the part does not grow until the 
coating detaches and the base material is exposed. The wall temperature values on the hotter 
side of the transition piece THOT were determined based on the operational data. The 
corresponding values of the exponent 2HOTC  were estimated using the same data-driven layer, 
or an additional multilayer perceptron, which estimated the values dedicated only to the internal 
side of the part. However, the increased complexity of the hybrid model’s architecture did not 
increase the prediction's accuracy and caused some optimization process disruptions. Despite 
these problems, future research should be related to the inclusion of thermal barrier coating 
presence in the hybrid model and appropriate modeling of the oxide scale growth on the internal 
side of the part. 

 For each time step, the material temperature values on the internal and external sides of 
the transition piece are calculated based on the actual operating data as follows: 

 

Fig. 50 The structure of the monotonic feedforward neural network, being the data-driven layer, 
which estimates the exponent 2COLDC  considering TCOLD as the input, which is the 
wall's temperature on the colder side of the transition piece. 
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   ,HOT INLET HOT INLET COOLT T T T    (91) 

   ,COLD INLET COLD INLET COOLT T T T    (92) 

where ϕHOT and ϕCOLD are the cooling effectiveness coefficients on the internal and external 
sides, respectively. Their values were determined using the numerical simulation results related 
to steady-state operating conditions, shown in Fig. 51. It was not prepared specifically for this 
research but for a different New Product Development program finalized a few years earlier. 
However, it should be clarified that the utilized numerical simulation is dedicated to Type I gas 
turbines equipped with a premixed combustor. Two observations in the available sample are 
related to Type III units equipped with a diffusion combustor and characterized by lower 
nominal values of TINLET and TCOOL. A dedicated numerical simulation is not available for this 
configuration. Therefore, to avoid further reduction of the sample, the values of ϕHOT and ϕCOLD 
coefficients applicable to Type I and Type II units are also assumed valid for Type III gas 
turbines. 

6.3 Configuration and execution of the training process 

The general form of the custom cost function, which is minimized during the training 
process, is the same as for the previously analyzed high-pressure nozzles and defined by Eq. 
(56). Considering that  2COLD COLDC f T , the physical term of the cost function RMSEPHY is 
based on the following inequality: 

    , , 0 ,COLD min COLD maxf T f T   

 , ,2 2 0 ,COLD min COLD maxC C   (93) 

 

Fig. 51 The material temperature field at steady-state operating conditions obtained by means of the 
finite element analysis with the values normalized by dividing them by the temperature 
related to the colder side of Position 2. 
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which is valid when , ,COLD min COLD maxT T . Based on Inequality (93) and considering that in 
accordance with the created architecture, the values of 2COLDC  are estimated using the 
feedforward neural network, the physical term is defined as follows: 
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where 1,2, ,j J …  is the ordinal number of couples created synthetically to train the multilayer 

perceptron, J = 6 830 is the number of couples,  ,2COLD minC  and  ,2COLD maxC  are the estimates 
determined by the feedforward neural network (i.e. respectively for TCOLD,min and TCOLD,max), 
which is symbolically denoted as function FNN. The ordered pairs are created basing on the 
available empirical data with each couple comprising TCOLD,min and TCOLD,max. The 683 unique 
values of TCOLD,min are evenly spaced numbers over the interval    min , maxCOLD COLDT T   . 

For each unique value of TCOLD,min, ten values of TCOLD,max are randomly drawn from the 
uniform distribution   5

, 4, maxCOLD min COLDU T T . The original input space is enlarged with 

synthetic data, simultaneously enlarging the training space, where the physics-informed neural 
network should respect the theoretical constraints. In this way, all 6 830 ordered pairs are 
created, which are used to calculate the value of the physical term. Thus, the constraints 
resulting from Inequality (93) are implemented in a hard manner, applying the monotonic 
multilayer perceptron, but also in a soft manner, through the additional term in the cost function. 
Such a redundant approach is used since the constraints resulting from Inequality (93) are less 
stringent than, for example, the restrictions resulting from Equation (57) considered during the 
second stage of the research related to the high-pressure nozzles. 

The empirical term of the custom cost function is calculated in the following way: 
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
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   (95) 

where 1,2, ,i N …  denotes the observation’s ordinal number, N is the total number of 
observations in the training set, pi denotes the observed reduction of the wall thickness and pොi 
is the final reduction of the base material thickness due to oxidation estimated by means of the 
hybrid model. 

 The multilayer perceptron composing the data-driven is pre-trained using the results 
obtained by means of the following formula: 

     21 1 ,C AT BEXP COLD
EXP init initp C t C t    (96) 

where the values of constants 1initC , A and B are based on the results of the burner-rig test for 
oxidation resistance of Nimonic 263 nickel-based superalloy, which was conducted at Baker 
Hughes Company. One thousand records were generated for the pretraining. The values of 
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TCOLD are evenly spaced numbers over the interval    min , maxCOLD HOTT T   . The training 

process duration is shorter than 20 seconds. 

 During the main part of the training process, the value of γ, which determines how the 
physical and empirical terms contribute to the final cost value, changes dynamically using the 
following formula: 

    
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Fig. 52 presents the piecewise continuous function  PHYf RMSE  . The pretraining ensures 
that the main part of the learning process is initiated with γ = 0.2. The value of γ coefficient is 
recalculated after each epoch, i.e. after one complete pass of the algorithm through the entire 
dataset, to react quickly and increase the coefficient value if the value of RMSEPHY rises. During 
the execution of this analysis, it was observed that the implemented constraints work 
effectively, maintaining the low value of the physical term while reducing the empirical term’s 
value as the training process progresses. The Adam optimization algorithm is applied to 
minimize the cost function. Initially, the learning rate’s value was set to 0.001, but it was 
increased to η = 0.01 in order to reduce the training process duration without negatively 
impacting the prediction’s accuracy. Finally, the optimization process should not take more 
than a few hours using an Intel Core i7-9850H Central Processing Unit with six cores and a 
2.60 GHz base frequency. As for the previously analyzed high-pressure nozzles, open-source 
Python packages are used to execute the analysis, i.e. Keras application programming interface 
for the TensorFlow library, Numpy, Pandas and Matplolib.  

 

Fig. 52 The piecewise continuous function used to calculate the values of coefficient γ, which 
determines how the physical and empirical terms contribute to the final cost value. 
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6.4 Results of the regression analysis 

Several hybrid models were created during the execution of analysis considering 
different training and test subsets compositions. However, the most accurate predictions are 
obtained using the model trained basing on seven observations characterized by the highest 
availability of the operational data as shown in Fig. 47. The test set comprises four data points 
with the following identifiers: TP_1, TP_2, TP_5 and TP_6. Regardless of the main criterion 
applied to create the two sets, the composition of the test subset is heterogeneous and can it be 
described as follows: 

- 2 observations out of 4 (50%) are related to Type I gas turbines, while the remaining 
test data points correspond to Type II and Type III units. Considering the entire sample, 
7 data points out of 11 (64%) are related to Type I gas turbines and 2 observations each 
are available for the remaining units. 

- 3 observations out of 4 (75%) are related to the gas turbines equipped with premixed 
combustors. Considering the entire sample, 8 data points (73%) correspond to such 
units. 

- 2 observations each on gas turbines driving compressors and generators. Considering 
the entire sample, 7 data points (64%) are related to power generation applications. 

- 3 observations out of 4 (75%) are related to units installed onshore. Considering the 
entire sample, 6 data points (55%) correspond to such location. 

- For the available observations, the interval fired hours values are constrained within the 
interval [7152, 19058], with a median of 13707 (the lower quartile is equal to Q1 = 
11895 and the upper Q3 = 15943). The selected test data points are between the 
minimum and 70th percentile values. Moreover, as for the high-pressure nozzles, 
operational data availability in future applications is expected to be better than in this 
research, based on the oldest available data in many cases. 

Despite the low cardinality of the test set, it has a very diverse composition, which should help 
to evaluate the model’s performance on unseen data and identify its advantages and 
disadvantages. However, the characteristics of the multilayer perceptron, which is responsible 
for the estimates of the exponent 2COLDC , must be included during such an evaluation. Finally, 
this hybrid model trained basing on seven observations, used to predict the reduction in base 
material thickness due to oxidation, is called the baseline model. The estimates obtained using 
the baseline model and the characteristic of the data-driven layer   2COLD COLDC FNN T  are 
presented in Fig. 53, Fig. 54 and Fig. 55. The data presented in these plots were normalized by 
dividing each value of material loss due to oxidation and component wall temperature by the 
maximal measured wall thickness reduction and the maximal calculated temperature of the 
material on the external side at Position 2, respectively. The most important considerations 
regarding the obtained results are as follows: 

- The physics-informed neural network, pre-trained basing on the results calculated by 
means of the experimentally determined Eq. (96), provides underestimated predictions 
of the final wall thickness reduction due to oxidation as shown in Fig. 53. 

- The normalized root mean squared error evaluated against the unseen test data is equal 
to NRMSEEMP,TEST = 25%, and for the training data, it equals NRMSEEMP,TRAIN = 15%. 
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Considering the test dataset, the least accurate predictions are related to the parts with 
identifiers TP_5 and TP_6, for which the operational data coverage, i.e. the number of 
fired hours for which the required operating parameters are available, is equal to 63% 
and 61%, respectively. Nevertheless, attempts to train the hybrid model using a training 
set with a modified composition comprising TP_5 and TP_6 do not reduce the empirical 

 

Fig. 53 Evaluation of the hybrid model based on the physics-informed neural network, trained 
using seven observations, against the training and test data presented on the predicted 
vs. observed plot. 

 

Fig. 54 Evaluation of the hybrid model based on the physics-informed neural network, trained using 
seven observations, against the training and test data. 
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error value for these two observations. Thus, the lower prediction accuracy may be due 
to the low availability of the operational data, but also due to the assumption regarding 
the initial thickness of the transition piece. The difference between the upper and lower 
limits of the base material thickness is equal to 10nomw . This difference can be 
converted to an interval with a width equal to 0.77, applying the same normalization 
approach as for the data shown in Fig. 53 and Fig. 54. The available measurements are 
within the interval with a width equal to 0.46. Thus, the measurement’s range is smaller 
than the tolerance of the nominal base material thickness. Taking this into consideration 
and the limitations in terms of the sample size and the availability of the operational 
data, the accuracy of the final wall thickness reduction estimates is satisfactory and 
significantly better compared to the pre-trained model. However, it should be noted that 
for observations characterized by the highest material loss, the predictions obtained by 
means of the baseline model are underestimated. 

- The final value of the constant 1C  approximated using the single neuron perceptron is 
higher than the initial value and equal to 1 1.377 initC C  . 

- The feedforward neural network estimating values of the exponent 2COLDC  satisfies the 
implemented constraints resulting from Inequality (93), as presented in Fig. 55. The 
values of 2COLDC  obtained using the data-driven layer are linearly dependent on the 
values of the base material temperature ஼ܶை௅஽. However, the inclination of 
  2COLD COLDC FNN T  characteristic decreased after the training in comparison with 
the model pre-trained basing on the results calculated by means of the experimentally 
determined Equation (96). Thus, the impact of the material temperature changes on the 
value of 2COLDC  is lower. Simultaneously, it should be highlighted that the experiment 
was conducted at higher temperatures, i.e. T'COLD > 1.066, than those analyzed. 
Executing the burner-rig test for oxidation resistance at lower temperatures, comparable 

 

Fig. 55 Estimates of the 2COLDC  exponent determined by the data-driven layer before and after 
the training using seven observations   2COLD COLDC FNN T . 
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with the analyzed ones, i.e. 0.617 ' 1COLDT  , where the oxidation rate is expected to 
be lower, could result in a characteristic with a different inclination. As described 
previously, the monotonic multilayer perceptron implements a continuous piecewise 
linear function. It should be noted that the function   2COLD COLDC FNN T  valid for the 
original space of input data, i.e. when ' 1COLDT  , is applicable also when ' 1COLDT   in 
the additional training subspace comprising synthetic data only. 

- The hybrid model is capable of differentiating the estimates of damage increments and 
the final wall thickness reduction basing on the actual operational data. Nevertheless, 
due to the lower impact of the material temperature changes on the value of 2COLDC , 
the final material loss due to oxidation estimated by the physics-informed neural 
network depends more on the number of fired hours accumulated by each part than on 
the actual operating conditions. 

- Fig. 55 presents estimates of the data-driven layer outside the original space of input 
data when ' 1COLDT  . This continuous piecewise linear function shows directly how the 
multilayer perceptron interpolates and extrapolates outside that space. Thereby, 
knowing the range of values of the input data, the predictions can be made in a fully 
conscious way, using this characteristic. If necessary, synthetically created data can 
enlarge the space in which the model should respect the prior knowledge about the 
analyzed phenomenon. 

In order to evaluate the effectiveness of this modeling approach in an even more 
challenging scenario, the next attempt is to train the physics-informed neural network with the 
training set comprising two observations only and use the remaining data points for testing. 
Three different train-test splits are prepared and subsequently processed. The first training set 
comprises the transition pieces with identifiers TP_3 and TP_6, for which the baseline model 
gave one of the least accurate estimates. Additionally, these parts have a similar number of 
interval fired hours and are characterized by moderate availability of the operational data. The 
second training set comprises the transition pieces with identifiers TP_3 and TP_9, which are 
characterized by relatively long service periods, good availability of the operational data (i.e. 
for TP_9, the coverage equals 99%) and a significant difference in TCOLD values. The last 
training subset comprises the parts with identifiers TP_2 and TP_10, which are characterized 
by short service periods, a difference in terms of operational data availability and a significant 
difference in TCOLD values. The learning process was executed without any difficulties for each 
training set, and regardless of their composition, the obtained results are very similar. Therefore, 
to avoid excessive reporting, only the estimates and the characteristic of the model trained using 
the first subset are presented in the dissertation. These results are shown in Fig. 56, Fig. 57 and 
Fig. 58. The most important considerations regarding the obtained results are as follows: 

- Despite the small number of training points, the final estimates of the wall thickness 
reduction due to oxidation are very similar to the predictions obtained by means of the 
baseline model trained using seven data points. The normalized root mean squared error 
evaluated against the entire sample is equal to NRMSEEMP = 19.6%, while concerning 
the baseline model, it equals 19.4%. The obtained results are consistent with each other, 
regardless of the cardinality and the composition of the training set. Therefore, cross-
validation is not necessary. 
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- The final value of constant 1C  approximated using the single neuron perceptron is 
higher than the initial value and equal to 1 1.298 1initC C  . 

- For ' 0.714COLDT ∼  the characteristic of the multilayer perceptron presented in Fig. 58 
is very similar to the characteristic of the baseline model. The difference between them 

 

Fig. 56 Evaluation of the hybrid model based on the physics-informed neural network, trained 
using two observations, against the training and test data presented on the predicted vs. 
observed plot. 

 

Fig. 57 Evaluation of the hybrid model based on the physics-informed neural network, trained using 
two observations, against the training and test data. 
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for values of T'COLD lower than ~0.714 can be disregarded since less than 0.08% of the 
data are within this interval. 

The last objective is to train the physics-informed neural network with the training set 
comprising just one data point. Several attempts were made to modify the composition of the 
training subset (i.e. the components with identifiers TP_2, TP_3, TP_5, TP_6, TP_10 and 
TP_11 were considered) and execute the learning process. However, the obtained results were 
not completely satisfactory, with the model’s accuracy higher than the pre-trained model’s 
accuracy, i.e. the root mean squared error evaluated against the entire sample reduced up to 
38%, but also significantly lower compared to the previously described models trained using 
seven and two observations, i.e. when the value of NRMSEEMP was at least 60% higher in 
comparison with the baseline model. Therefore, these results are not presented in this 
dissertation. 

Finally, it should be noted that the value of the empirical term RMSEEMP can be further 
reduced if the constraints resulting from the prior knowledge about the analyzed phenomenon 
are implemented partially (i.e. the monotonic feedforward neural network is not applied, and 
the physical term RMSEPHY is either included or excluded from the cost function by setting γ = 
0). Nevertheless, the reduction of the empirical term’s value has a significant impact on the 
  2COLD COLDC FNN T  characterisitic of the multilayer perceptron, making it constant or even 
decreasing in some intervals of the domain. Thus, the characteristic may be inconsistent in some 
subdomains with the prior knowledge about the analyzed phenomenon and, consequently, are 
difficult to interpret. Despite the higher prediction accuracy, such models are considered invalid 
and cannot be applied to support business decisions or apply them in other domains. 

 

Fig. 58 Estimates of the 2COLDC  exponent determined by the data-driven layer before and after 
the training using two observations   2COLD COLDC FNN T . 
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6.5 Application of the proposed method 
for predicting metal loss due to oxidation 

As described in Section 6.1, the selected target domain refers to the damage due to 
oxidation recorded at Position 3 of the analyzed transition pieces. The reduction in base material 
thickness due to oxidation is the dependent variable. The baseline model used to predict the 
wall thickness reduction at Position 2, which was trained using seven data points, is selected as 
the source hybrid model. The target domain is considered valid since the physical phenomenon 
causing the damage and the applicable framework of equations are the same as in the source 
domain. In the source domain the material temperature values on the internal and external sides 
of the transition piece are estimated using Eq. (91) and Eq. (92). The same approach is applied 
to calculate the temperature in the target domain, basing on the following formulas: 

  , , ,HOT TGT INLET HOT TGT INLET COOLT T T T    (98) 

  , , ,COLD TGT INLET COLD TGT INLET COOLT T T T    (99) 

where ϕHOT,TGT and ϕCOLD,TGT are the cooling effectiveness coefficients on the internal and 
external sides of the component wall at Position 3, respectively. Their values were determined 
specifically for the target domain basing on the numerical simulation results. In order to better 
visualize how the material temperatures change depending on the variation of TCOOL and TINLET, 
polynomial regression models are prepared to approximate the relationship between these two 
operating parameters and the input variable of the physics-informed neural network: 

  ˆ , ,COLD COOL INLETT f T T  (100) 

where ĈOLDT  is the estimated value of the material temperature on the external side of the part. 
One model is dedicated to the source domain and another to the target domain. The surface 
plots shown in Fig. 59 present the normalized results obtained using the two polynomial 
regression models (i.e. the same data are shown in each view). The actual values of the variables 
were divided by the maximum value of TCOOL, TINLET, or TCOLD in order to obtain the 
normalized variables, i.e. T'COOL, T'INLET and T'COLD. Based on these plots, it is visible that the 
surfaces are shifted relative to each other with the length of the displacement vector 
approximately constant independently of the selected pair of TCOOL and TINLET. Using the actual 
operational data recorded by the data acquisition system and the material temperature values 
calculated by means of Eq. (92) and Eq. (99), i.e. the data presented with the scatter plots in 
Fig. 59, a scaling factor between the values of TCOLD and TCOLD,TGT can be determined for each 
time step. The mean value of the factor equals φത = 0.9274 with a standard deviation σφ = 0.0047. 
Thus, independently of time, it can be assumed that the calculated value of the material 
temperature on the external side of the transition piece wall related to Position 3 is equal, on 
average, to 92.74% of the material temperature value calculated for Position 2. Consequently, 
given a vector with the operating parameter’s readings x⃗TGT,t recorded at time step t in the target 
domain, the shifted value of the material temperature is estimated in the following way: 

  *
, , , , ,0.9274 .COLD TGT t COLD TGT t TGT TGT tT T f x   

  (101) 
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Subsequently, in accordance with Eq. (90), the wall thickness reduction due to oxidation in each 
time interval ∆t = 1 hour is calculated as follows: 
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Fig. 59 The relationship between the average air temperature at the axial compressor’s discharge 
TCOOL, the average temperature of gases at the inlet of the nozzles TINLET and the material 
temperature on the external, colder side of the transition piece TCOLD in the source and 
target domains, i.e. Position 2 and Position 3, respectively. 
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where *
, ,2COLD TGT tC  is the exponent value calculated basing on the shifted value of the material 

temperature using the feedforward neural network, symbolically denoted as function FNN. 

However, considering the entire service period, the matrix with shifted values of the 
operating parameters * * *

TGT COOL INLETT T   X
 

 can be determined differently. For example, it can 

be assumed that the proportion between the values of THOT,t and TCOLD,t calculated in the source 
domain using Equations (91) and (92) at specific time step t and denoted as ψt, is valid also for 
the shifted values of these temperatures in the target domain as specified by the following 
formula: 
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, , ,
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, , ,

.HOT t HOT TGT t
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COLD t COLD TGT t

T T
T T

   (103) 

Subsequently, the shifted values of the operating parameters, i.e. TCOOL,t
*  and TINLET,t

* , can be 
determined by solving the following system of equations based on Eq. (91) and Eq. (92): 
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where , , , ,t COLD TGT t HOT TGT tT T   according to Eq. (103). The resultant shifted value of the average 
temperature of gases at the inlet of the nozzles is as follows: 
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while the corresponding value of the average air temperature at the compressor’s discharge is 
calculated by applying the first equation of relationships (104). Additionally, if more operating 
parameters are used for prediction purposes, the system of equations can be enlarged with 
further equations basing on the numerical simulation results. Such equations may have a form 
similar to Eq. (98). However, they will describe the transition piece body temperature in other 
areas by employing a dedicated value of the cooling effectiveness coefficient ϕ for each 
position. 

The shifted values of the operational data can also be calculated by assuming that the values of 
a specific operating parameter in the source and target domains are proportional to each other. 
For example, if the source domain refers to gas turbines characterized by a nominal value of 
the average temperature of gases at the inlet of the nozzles equal to TINLET,nom, and the target 
domain refers to units, where this temperature is 10% higher, i.e. 11

,10 INLET nomT , then for any time 
step t, it can be assumed that the shifted value of this operating parameter is equal to: 

 * 11
, ,10 ,INLET t INLET tT T  (106) 
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when the material temperature of the target object is higher than that of the source object for 
any ordered pair of TCOOL and TINLET (i.e. if the material temperature is estimated using Eq. 
(98), it is true when TGT SRC  ). Otherwise, when the temperature of the target object is 10% 

lower in comparison with the source object, the value of TINLET,t
*  is determined as follows: 

 * 9
, ,10 .INLET t INLET tT T  (107) 

Subsequently, the corresponding value of the average air temperature at the compressor’s 
discharge is calculated by applying the first equation of relationships (104). Nevertheless, 
compared to the two approaches described before, this approach applied to determine the shifted 
values of the operating parameters is less appropriate in the analyzed case since both domains 
refer to the same gas turbines. Finally, the results presented in this section are based on Eq. 
(102), but practically the same predictions are obtained when the shifted values of the operating 
parameters are calculated in accordance with relationships (104). 

The results obtained using the proposed method of single-source domain generalization 
and cross-domain knowledge transfer in regression analysis, which leverages physics-informed 
neural networks, are presented in Fig. 60 and Fig. 62. They can be compared with the results 
obtained by means of a hybrid model with the same architecture as the source PINN, which was 
trained from the ground up in the target domain using seven observations. These results are 
presented in Fig. 61 and Fig. 63. The learning process of that model was executed using the 
actual operational data, the domain-specific values of TCOLD,TGT and the measurement data on 
the damage size recorded in the target domain. In order to protect proprietary information, the 
data presented in the plots were normalized by dividing each value by the maximal measured 
wall thickness reduction recorded in the target domain. The most important considerations 
regarding the obtained results are as follows: 

- The pre-trained model provides underestimated predictions of the final wall thickness 
reduction due to oxidation in the target domain (the details are presented in Fig. 61), 
similarly to the attempt to apply it in the source domain. 

- The accuracy of the predictions on the unseen data obtained using the proposed method 
is similar to the prediction accuracy of the hybrid model trained in the target domain. 
Nevertheless, additional clarifications are needed since the error changes significantly 
depending on the composition of the test subset. As shown in Fig. 62, it should be noted 
that the parts with identifiers TP_3, TP_4 and TP_6 accumulated more than 13 500 fired 
hours with negligible, i.e. p' = 0.067 for TP_4, or even without material loss observed. 
Moreover, for the part with identifier TP_7 and the highest value of interval fired hours 
IFH = 19 058, the normalized wall thickness reduction is equal to p' = 0.200. These 
measurements are unexpected, differ significantly from the remaining ones and are 
difficult to be interpreted. Presumably, they are erroneous and caused by incorrectly 
taken measurements or improper recordkeeping. Including these observations in the 
training subset significantly affects the estimates of the fully-specified model. Thus, 
these four data points are in the test set, but they should eventually be disregarded. The 
model created from the ground up in the target domain is trained basing on the remaining 
seven data points. Because the model was built only to evaluate the accuracy of the 
proposed method of domain generalization, its performance was not verified on a valid 
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test set, and it may be too sensitive to the peculiarities of the training set. The normalized 
root mean squared error evaluated against the training data points equals 
NRMSEEMP,TRAIN = 16.6%, where NRMSEEMP,TEST = 58.6%. When the proposed method 
is applied, the error evaluated against the same seven data points is equal to 

 

Fig. 60 Evaluation of the source hybrid model based on the physics-informed neural network,
trained in the source domain using seven observations, against the test data from the 
target domain presented on the predicted vs. observed plot. 

 

Fig. 61 Evaluation of the hybrid model based on the physics-informed neural network, trained
from the ground up in the target domain using seven observations, against the training
and test data presented on the predicted vs. observed plot. 
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NRMSEEMP,TEST = 19.3% and 52.8%, when evaluated against the remaining four 
observations. Thus, the obtained results provide further evidence that this method of 
domain generalization and cross-domain knowledge transfer in regression analysis, 
leveraging physics-informed neural networks, can be applied effectively even if no 

Fig. 62 Evaluation of the source hybrid model based on the physics-informed neural network,
trained in the source domain using seven observations, against the test data from the 
target domain. 

Fig. 63 Evaluation of the hybrid model based on the physics-informed neural network trained,
from the ground up in the target domain using seven observations, against the training
and test data. 
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damage size measurements are available in the target domain, providing accurate 
damage size predictions. 

- The final value of constant 1C  of the model trained in the target domain is greater than 
the initial value and equal to 1 1.517 1initC C  . The obtained value is similar to that of 
the source hybrid model. 

- For ' 0.675COLDT ∼  the characteristic of the multilayer perceptron trained in the target 
domain presented in Fig. 64 is comparable to the characteristic of the source hybrid 
model. Considering the small distance between the analyzed positions, such a similarity 
between the characteristics was expected. Because of the lower impact of the material 
temperature changes on the estimated values of the exponent 2COLDC  (i.e. compared to 
the model trained on the results calculated using the experimentally determined 
Equation (96) as the reference), the final wall thickness reduction due to oxidation 
estimated by the physics-informed neural network depends more on the number of fired 
hours accumulated by each part than on the actual operating conditions. The difference 
between the characteristics of the feedforward neural network for values of T'COLD 
smaller than ~0.675 can be disregarded since less than 0.09% of the data in the target 
domain are within this interval. The values presented in this figure were normalized by 
dividing them by the maximal calculated temperature of the material on the external 
side related not to the target domain but to the source one, i.e. of Position 2. It simplifies 
a comparison with the results shown in Fig. 55 related to the source hybrid model. 

  

 

Fig. 64 Estimates of the 2COLDC  exponent determined by the data-driven layer before and after 
the training from the ground up in the target domain using seven observations
  2COLD COLDC FNN T . 
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6.6 Conclusions concerning this stage of the research 

The last stage of the research aimed to evaluate the flexibility and versatility of the 
proposed method of single-source domain generalization and cross-domain knowledge transfer 
in regression analysis, which leverages physics-informed neural networks. In accordance with 
the specific objectives of the dissertation, this method shall be universal and applicable for 
modeling damage due to various failure types found on the main components of gas turbines. 
Thus, after the successful application of the method for predicting the maximal length of fatigue 
cracks found on the high-pressure nozzles, it was used to predict the reduction in the transition 
piece wall thickness due to oxidation. The primary outcomes of this part of the research are as 
follows: 

- A physics-informed neural network was designed and successfully applied to model the 
wall thickness reduction due to oxidation based on actual operational data recorded by 
the data acquisition system. The PINN is basing on a recurrent neural network. The cell 
of the RNN comprises two feedforward neural networks and a physics-based part. The 
first multilayer perceptron, referred to as the data-driven layer, estimates the values of 

2COLDC  considering as the input material temperature TCOLD on the external, colder side 
of this component, which is calculated basing on the selected operating parameters. The 
second perceptron comprises a single neuron only and is applied to estimate the value 
of 1C  constant. The estimates of 2COLDC  and 1C  are used in the physics-based part, 
which computes the material loss due to oxidation in each time interval ∆t = 1 hour, 
assuming that the rate of oxide scale formation decreases with time and can be described 
using a power function. It was assumed that the thermal barrier coating on the transition 
piece's internal, hotter side effectively protects against metal loss due to oxidation 
throughout the entire service period until the component is disassembled and subject to 
inspection and repair activities. Attempts to embed estimates of the number of startup-
shutdown cycles until the coating spalls off into the hybrid model, exposing the base 
material, and then to model the oxide scale formation on the internal side of the 
component were not successful. This concern should be addressed during future 
research activities. The constraints resulting from Inequality (93), which the fully-
specified PINN respects, are implemented in a hard manner, applying the monotonic 
neural network responsible for estimating exponent 2COLDC , but also in a soft manner, 
through the additional term in the customized cost function, i.e. the physical term 
RMSEPHY. 

- The general form of the applied custom cost function is the same as for the previously 
analyzed high-pressure nozzles, with a variable coefficient  0,1   determining how 
the physical and empirical, i.e. RMSEEMP, terms contribute to the cost value during the 
training process in accordance with Eq. (56). The value of this coefficient is recalculated 
after each epoch using the predefined function described by Eq. (97) to find a proper 
balance between the two terms and quickly increase the coefficient value if the value of 
RMSEPHY rises. The applied constraints are effective, maintaining the low value of the 
physical term while reducing the empirical term’s value as the training process 
progresses. The original input space, which is based on the empirical data available in 
the source domain, was enlarged with synthetic data, which simultaneously enlarged the 
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training space, where the physics-informed neural network should respect the 
theoretical constraints. 

- The analyzed sample comprises only 11 data points. The same initial thickness of the 
wall is assumed for all the observations since the material thickness measurements, 
made after manufacturing, are unavailable. The lack of this information introduces 
significant uncertainties since the measurements’ range, i.e. the range of the dependent 
variable values, is smaller than the tolerance of the base material thickness. In this 
complicated case two hybrid models sharing the same architecture but trained 
respectively basing on seven and two observations were prepared. Considering the 
limitations in the quantity and quality of available empirical data, the accuracy of the 
final wall thickness reduction estimates is satisfactory and better compared to the model 
pre-trained based on the results calculated using the experimentally determined 
Equation (96) as the reference. The least accurate predictions are related to the parts 
with the lowest availability of the actual operational data. The obtained results are 
consistent with each other, regardless of the cardinality and the composition of the 
training set. Therefore, cross-validation is not necessary. Finally, attempts to train the 
model using a single training data point were not completely satisfactory, regardless of 
the selected observation. The accuracy of such models was greater than that of the pre-
trained model but significantly smaller compared to the hybrid models trained using 
seven and two data points. 

- The final value of constant 1C  approximated using the single neuron perceptron is 
higher than the initial value 1initC  by up to 38%, considering the models trained in the 
source domain and by 52% for the hybrid model created in the target domain. 

- The characteristics   2COLD COLDC FNN T  of the monotonic multilayer perceptrons 
trained in the source and target domains are similar to each other. They illustrate that 
the data-driven layer obeys the constraints resulting from Inequality (93) and show how 
the feedforward neural network estimates inside and outside the original input space, 
i.e. when ' 1COLDT   and ' 1COLDT  , respectively. Generally, the values of 2COLDC  
determined by the data-driven layer depend linearly on the values of the base material 
temperature ஼ܶை௅஽. The inclinations of the characteristics obtained after the training 
process are smaller compared to the pre-trained model. Nevertheless, the pretraining 
was based on the results of a burner-rig test for oxidation resistance, which was 
conducted at significantly higher temperatures, i.e. 1.066 ' 1.244COLDT  , than those 
analyzed. The created hybrid models can differentiate the estimates of damage 
increments and the final wall thickness reduction basing on the actual operational data. 
However, due to the smaller impact of the metal temperature changes on the value of 
2COLDC , the final material loss due to oxidation estimated by the physics-informed 
neural network depends more on the number of interval fired hours accumulated by each 
transition piece than on the actual operating conditions. 

- The created method of domain generalization was applied to predict the wall thickness 
reduction at Position 3, leveraging the baseline hybrid model dedicated to Position 2. 
Three different approaches were described to estimate the shifted values of the material 
temperature on the external side of the wall, which is the input variable of the physics-
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informed neural network. The material temperature value corresponding to Position 3 
is 92.74% of the temperature value calculated for Position 2 for any vector of the chosen 
operating parameters. Seven wall thickness measurements recorded in the target domain 
were used to evaluate the prediction’s accuracy, while the remainder was considered 
erroneous and disregarded. When the proposed method is applied, the normalized error 
evaluated against the seven valid data points equals NRMSEEMP,TEST = 19.3%, and is 
similar to the error resulting from the application of a model trained from the ground up 
in the target domain that is equal to NRMSEEMP,TRAIN = 16.6%. Additionally, it should 
be noted that the latter's performance was not evaluated against any valid test set, and it 
may be too sensitive to the peculiarities of the training data. Thus, the outcomes obtained 
by means of the proposed method are considered satisfactory. Compared to the research 
described in the previous chapter, the method was successfully applied to another type 
of gas turbine component and a different type of failure in a simulated scenario, where 
damage size measurements are unavailable. Thus, the final results provide evidence that 
this method of single-source domain generalization and cross-domain knowledge 
transfer in regression analysis, which leverages physics-informed neural networks, has 
a universal character and it can be effectively applied for modeling damage due to 
various failure types found on the main parts of gas turbines. 
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7. Summary and conclusions 

The main objective of this research was to create a method based on machine learning 
algorithms to predict the size of damage to gas turbine components. In accordance with the 
specific objectives of the dissertation, this method shall be applicable at the early stages of the 
parts’ lifetime for modeling damage due to various failure types found on the main components 
of turbines. Furthermore, it should be effective even if the availability of damage size 
measurements is limited. Finally, models created by means of this method will respect prior 
knowledge and physical laws governing the analyzed phenomenon. These objectives were 
achieved by creating a novel method of single-source domain generalization and cross-domain 
knowledge transfer, which leverages physics-informed neural networks. In this context, the 
notion of “leveraging” is considered as the action of using something already available in order 
to achieve something new or better and maximize advantages. The conducted research 
addressed two different technical problems. The first one was related to predicting the maximal 
length of fatigue cracks found on the trailing edges of 1st stage nozzles of a heavy-duty gas 
turbine. The second one was related to predicting the wall thickness reduction due to oxidation 
in transition pieces of industrial turbines. The analyzed objects perform different functions, are 
subjected to various loads and are the parts of two different models of gas turbines 
manufactured by Baker Hughes Company. Additionally, the analyzed failure types are 
governed by different physical laws. 

7.1 Conclusions 

The application of several popular statistical learning algorithms to the first technical 
problem is described in Chapter 4, with specific, detailed conclusions in Section 4.7. The 
application of physics-informed neural networks to this problem is described in Chapter 5, with 
the procedure establishing the novel method of single-source domain generalization given in 
Section 5.4 and the dedicated conclusions in Section 5.6. The application of PINNs and the 
proposed method to the second technical problem is described in Chapter 6, with the dedicated 
conclusions provided in Section 6.6. The general conclusions of this research are as follows: 

- It was shown that data-driven machine learning algorithms can be applied effectively at 
the early stages of the part’s lifetime when the availability of damage size measurements 
is limited and the number of observations is small. Despite these limitations, they can 
provide accurate estimates of the damage size based on actual operational data gathered 
by the data acquisition system. Furthermore, the applied algorithms are universal and 
can be utilized for modeling damage due to various failure types found on the main parts 
of gas turbines. However, even though the selected features reflected well knowledge 
about the cause of the analyzed phenomenon, the created data-driven predictive models 
did not obey theoretical or experimentally determined equations describing the damage 
growth. This shortcoming creates doubts regarding the interpolation capabilities in the 
entire training domain and eliminates the possibility of using such models to extrapolate. 

- A controlled approach to preparing the training, validation and test sets improved the 
training effectiveness, made the cross-validation more meaningful and simplified the 
evaluation and interpretation of results. Due to the limited number of available damage 
size measurements, elements of these sets were picked considering multiple constraints 
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resulting from the analysis of the composition and clusters of the entire sample instead 
of drawing them randomly. As a consequence, each set represents the whole dataset in 
a quantitative and qualitative way. 

- The data-driven models were trained using customized loss and cost functions, which 
directly reflect the specific objective of obtaining the highest prediction accuracy for 
the most damaged parts, which may jeopardize the turbine’s availability if not 
appropriately maintained. The applied loss function was based on a variable-width 
scoring interval defined by two scoring bounds, which get closer to each other as the 
observed damage size increases. Estimates falling within the scoring interval are 
considered successful predictions with sufficient accuracy. Moreover, accurate 
estimates for the most damaged components are rewarded with a bonus, promoting 
models with the specific demanded characteristics. Applying customized loss and cost 
functions results in models providing more valuable data-driven insights to support, e.g. 
business decisions, compared to the commonly applied cost function like the (root) 
mean squared error. 

- In order to prepare more specific input for a physics-informed neural network or any 
predictive model based on machine learning algorithms, simplify the processing of data 
within the PINN’s structure and make the training process and the interpretation of the 
obtained results easier, the actual operational data can be appropriately preprocessed by 
employing a simple physics-based model. Besides the theoretical knowledge about the 
analyzed phenomenon, such a model may be adjusted based on numerical simulation 
results, or it can use the outcomes of material properties tests. Nevertheless, it should 
be clarified that leveraging prior knowledge to prepare PINN’s input data does not imply 
that the fully-specified hybrid model will respect any law describing the damage growth 
due to the analyzed phenomenon. 

- Two different physics-informed neural networks were designed and effectively applied 
to address the analyzed technical problems, i.e. a separate model for predicting fatigue 
crack growth and another one for estimating the wall thickness reduction due to 
oxidation. They are based on a recurrent neural network, which is a rational choice for 
modeling progressive, irreversible damage accumulation. The custom cells of the RNNs 
comprise data-driven components and a physics-based component. The former ones are 
based on a feedforward neural network. They are used to approximate variables whose 
values are insufficiently accurately estimated by means of applied theoretical equations 
or whose prediction uncertainty is too high. The FNNs’ outputs are the inputs of the 
physics-based component calculating the damage increment in each time step based on 
the applicable theoretical or experimentally determined law. The Paris’ law was applied 
for the fatigue crack growth, while the rate of oxide scale formation is described with a 
power function. The constraints resulting from prior knowledge about the analyzed 
phenomena, which the fully-specified physics-informed neural networks respect, were 
implemented either in a hard manner, by applying a monotonic neural network as the 
data-driven component, or in a soft manner through the additional term in the 
customized cost function, i.e. the physical term RMSEPHY, or both. 

- A custom cost function was designed and effectively applied to train the models based 
on physics-informed neural networks. It has a variable coefficient  0,1   determining 
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how the physical and empirical, i.e. RMSEEMP, terms contribute to the final cost value 
during the training process. If γ equals zero, the function reduces to the empirical term 
only. In contrast, if it equals one, the function simplifies to the physical term only, and 
when it has intermediate values, both terms are included accordingly. The coefficient 
value depends on the physical term’s value and changes dynamically during the learning 
process in conformity with the predefined function to find a proper balance between the 
two terms. In general, the value of γ reduces as the value of RMSEPHY decreases. Thus, 
the first stage of the training process aims to limit the space of allowable solutions only 
to a subspace where the implemented constraints resulting from prior knowledge about 
the analyzed phenomenon are satisfied, and the second stage is aimed at reducing the 
empirical term’s value as much as possible while staying in that subspace. The 
coefficient value can be recalculated even after each epoch, i.e. after one complete pass 
of the algorithm through the entire dataset, to react quickly and increase it if the value 
of RMSEPHY rises. Such an approach, with dynamic changes of the weights assigned to 
the cost function terms, was applied to avoid biased estimates, which are either 
inaccurate but with very low values of the physical term or very accurate but with high 
values of the physical term, indicating poor generalization capabilities of the model. The 
PINNs were pre-trained to initiate the main part of the training process with the lowest 
possible value of γ. The pretraining is based on the data obtained using applicable 
theoretical or experimentally determined equations as a reference. Considering the main 
part of the training, the set of input data utilized as the basis to calculate the value of the 
physical term was created synthetically. It was generated in a systematic manner to 
improve the training process's effectiveness and the extrapolation capabilities of the 
data-driven components, which are embedded in the RNN cells. The original input 
space, which is based on the empirical data available in the source domain, was enlarged 
with synthetic data, which simultaneously enlarged the training space, where the 
physics-informed neural network should respect the theoretical constraints. This 
approach applied to generate these additional training data can be adjusted depending 
on particular objectives. 

- In the analyzed cases concerning the so-called small data regime, the designed physics-
informed neural networks were trained effectively based on ten, seven, two, or even one 
training observation, i.e. a damage size measurement. Considering the limitations in the 
quantity and quality of the operational data and damage size measurements and the 
simplified theoretical description of the analyzed phenomena applied to build the hybrid 
models, the accuracy of the obtained damage size estimates is satisfactory. The results 
are consistent with each other, regardless of the cardinality and the composition of the 
training set. Thus, cross-validation is not necessary. The resultant physics-informed 
neural networks have good generalization capabilities and may extrapolate accurately, 
despite the limited training subspace. For example, concerning the fatigue crack growth 
prediction, the models trained using two and one observation can provide accurate crack 
length estimates for parts with around 40% longer cracks and over four times more 
startup-shutdown cycles in comparison with the utilized training data points. 

- Effective execution of the optimization process based on a single training observation 
was accomplished in only one case, which was related to the prediction of fatigue crack 
length. Considering this technical problem, five other attempts were unsuccessful, each 
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with a different training data point. Six different observations were analyzed for the 
second technical problem, but the results were unsatisfactory. The prediction accuracy 
of the resultant models was higher than that of the pre-trained model but significantly 
lower compared to the hybrid models trained using more data points. Extracting and 
leveraging knowledge from a single damage size measurement is valuable and may give 
tangible benefits. However, with such a small sample, difficulties in converging to the 
optimal solution may be encountered, and the final predictions may vary significantly 
depending on the characteristics of the selected training observation. 

- The data-driven components approximating the key input variables of the physics-based 
parts are the core of the created physics-informed neural networks. These components 
determine, to a great extent, the final predictions obtained by means of the fully-
specified hybrid models. Those feedforward neural networks cannot be considered as a 
black box since a characteristic of each data-driven component is available, presenting 
the relationship between the inputs and the output directly. Such a characteristic shows 
how the multilayer perceptron estimates inside the original space of input data but also 
outside it, i.e. in the training subspace created synthetically. Considering the two 
analyzed technical problems, the obtained characteristics illustrate that the implemented 
constraints are satisfied and that the data-driven components obey the underlying laws 
governing the investigated phenomena. Consequently, leveraging these characteristics, 
the predictions can be made in a fully conscious way. Otherwise, they can be utilized to 
limit the input space where the fully-specified model can be safely applied. However, 
the training space can be further enlarged with synthetically created data if necessary. 

- A novel method of single-source domain generalization and cross-domain knowledge 
transfer in regression analysis leveraging physics-informed neural networks has been 
proposed. The method’s purpose is to effectively apply a cumulative damage model 
based on a PINN, i.e. the so-called source hybrid model, which was trained in a domain, 
where measurement data on damage size are available, in another domain, where such 
data are unavailable. Following the definitions given in Section 5.4, the former domain 
is called the source domain, and the latter is the target domain. This method can be 
applied if the damage type in the target domain, the physical phenomena causing it and 
the applicable theoretical or experimentally determined equations for estimating the 
damage increment in a single time step are the same as in the source domain. The eight-
step procedure describing the main steps of the proposed method is provided at the end 
of Section 5.4. The so-called shifting of the operational data and PINN’s input variables 
in the target domain is the essential step that enables an effective application of the 
unchanged source hybrid model in the target domain. The composition of functions used 
to calculate the input data of the physics-informed neural network based on the selected 
operating parameters shared across the domains must be known in both domains to 
perform that step. In Section 6.5, three different approaches were described to estimate 
the shifted values of the PINN’s input variable concerning the second of the investigated 
technical problems. Nevertheless, it does not exhaust all possibilities, which may vary 
depending on the peculiarities of the analyzed case. In the end, the final estimate in the 
target domain for the original set of operational data is obtained by applying the source 
hybrid model to the set of shifted operational data. 
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- The proposed method of domain generalization and cross-domain knowledge transfer 
in regression analysis, which leverages physics-informed neural networks, was applied 
to the analyzed technical problems. Concerning the fatigue crack growth, the source 
model related to a specific position on one airfoil was used to predict the maximal length 
of cracks on another airfoil of the high-pressure nozzle. Concerning the wall thickness 
reduction due to oxidation, the source model related to a specific area of the transition 
piece was used to predict the material loss in another area of the same component. In 
both cases, a constant shift between the input variables of the physics-informed neural 
networks in the source and target domains was assumed, independently of values of the 
operating parameters selected as the features. The damage size measurements available 
in the target domains were used to evaluate the prediction’s accuracy. By applying the 
proposed method, the normalized root mean squared errors evaluated against the unseen 
data had similar values as the errors resulting from applying hybrid models trained from 
the ground up in the target domains, i.e. with the same structure as the source PINNs. 
Moreover, it should be noted that some elements of the dataset used for evaluating the 
performance of the applied method were used to train the hybrid models created in the 
target domains. Thereby, the results obtained by means of the proposed method are 
considered satisfactory, providing accurate damage size predictions in a simulated 
scenario where the training observations, i.e. damage size measurements, are missing. 
The latent information and knowledge extracted from the empirical data available in the 
source domain were leveraged and effectively used in the target domain. 

Based on the obtained results, it can be concluded that the created method of single-
source domain generalization and cross-domain knowledge transfer, which leverages physics-
informed neural networks, can accurately predict the size of damage to gas turbine components 
in domains characterized by the limited availability of damage size measurements or lack of 
them. The damage accumulation models based on physics-informed neural networks were 
trained effectively using ten, seven, two, or even one training observation. Despite the limited 
training subspace, these models have good generalization capabilities and may extrapolate 
accurately outside the original input space. The hybrid models can accurately predict the extent 
of damage to gas turbine parts, even if the available operational data gathered by a data 
acquisition system are incomplete. For the analyzed technical problems, the required 
operational data were available on average for 54% of startup-shutdown cycles and 86% of 
service hours. Thus, the theses posed in this research have been proven. 

7.2 Novelties resulting from this research 

In summary, the primary novelties resulting from this research are as follows: 

1) Creation of a physics-based method of single-source domain generalization and cross-
domain knowledge transfer in regression analysis that enables accurate predictions with 
no observations available (i.e. damage size data), leveraging a physics-informed neural 
network trained in another domain with some observations existing. 

2) A model based on a physics-informed neural network of fatigue crack propagation was 
created for the high-pressure nozzles made of FSX-414 cobalt-based superalloy. The 
analyzed dataset was not created synthetically and the predictions are based on actual 
operational data gathered by the Remote Monitoring & Diagnostics system. 
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3) A model based on a PINN of material depletion due to oxidation was created for the 
transition pieces made of Nimonic 263 nickel-based superalloy. The analyzed dataset 
was not created synthetically and the predictions are based on actual operational data 
gathered by the RM&D system. 

4) A proof that the utilized structure of physics-informed neural network, i.e. composed of 
a recurrent neural network with a feedforward neural network embedded in the RNN 
cell, can be trained effectively and has good generalization capabilities, even if the 
number of training observations equals ten, two, or one. 

5) Custom cost functions were created to train the models based on machine learning 
algorithms. The first function favors solutions that accurately predict the longest cracks 
and awards them with a bonus. The second function uses a variable parameter to bind 
the empirical error with the error term describing the consistency of the model with the 
applicable theoretical equations. The parameter’s value can be changed dynamically to 
control and guide the learning process, depending on the quality and quantity of data 
and knowledge of the underlying laws governing the analyzed phenomena. 

6) Computer programs were written in Python programming language. They were used to 
extract features based on time series captured by the RM&D system, create the synthetic 
data applied to expand the source domain, build the structures of the physics-informed 
neural networks, process the data through them and train the PINNs. 

7.3 Future research 

The obtained results are very promising and provide a motivation to explore further 
applications of physics-informed neural networks and the proposed method of single-source 
domain generalization for predicting damage to gas turbine components. Future research works 
should address the following points: 

- Evaluating the effectiveness of the proposed method when the source and target objects 
refer to the same type of component, e.g. a rotating blade, but two different types of gas 
turbines characterized by significant differences in the values of critical operating 
parameters, e.g. the nominal firing temperature. 

- Evaluating the effectiveness of the proposed method when the source and target objects 
are two different types of gas turbine components, e.g. a high-pressure nozzle and a 
rotating blade, respectively. 

- Evaluating the effectiveness of the proposed method when applied to other failure types. 

- Exploring and defining the method's limitations regarding its applicability, flexibility 
and capabilities. Especially in terms of evaluating if the target domain is valid and if the 
source hybrid model can be safely employed there, providing credible predictions. In 
this regard, literature on transfer learning can be leveraged. 

- Defining a standardized set of metrics and quality indicators to evaluate the performance 
of the source hybrid model when applied in the target domain, where no damage size 
measurements are available for testing purposes. 

- Exploring applications of PINNs and the proposed method for classification problems. 

- Defining best practices related to creating, deploying and maintaining hybrid models 
based on physics-informed neural networks in an engineering practice.  
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