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Streszczenie

Prezentowana rozprawa jest oparta na szesciu pracach [A], [B], [C] [D], [E], [F], ktore ukazaly sie w
latach 2014-2020.

Celem tych artykutéw byto zbadanie modeli matematycznych pewnych zjawisk biologicznych, ktére
probuje sie przedstawié¢ jako procesy quasi-oscylacyjne lub propagacje fal biegnacych. Podstawowymi
narzedziami matematycznymi w opisie analizowanych zjawisk sa uktady réwnan rézniczkowych czast-
kowych lub pojedyricze rownania, tzw. réwnania reakcji-dyfuzji.

Zjawiska oscylacyjne byly rozpatrywane na przyktadzie czasoprzestrzennej ewolucji stezenia jo-
néw wapniowych zachodzacej wewnatrz komoérek eukariotycznych. Zjawiska te zwiazane sa z za-
lezna od czasu wymiang jonéw wapnia pomiedzy réznymi kompartmentami komoérkowymi. Byly
one rozpatrywane w artykule [A] Ich analiza opierala sie na symulacjach numerycznych w ramach
zaproponowanego przez nas rozszerzonego przestrzennie modelu skonstruowanego na bazie modelu
calo-kompartmentowego opisywanego uktadem zwyczajnych rownan rézniczkowych pierwotnie wpro-
wadzonego w pracy [Marhl, M. i in. Complex calcium oscillations and the role of mitochondria and
cytosolic proteins. Biosystems 57, 75-86 (2000)]. Model Marhla dotyczy symulacji oscylacji stezenia
wapnia usrednionego po poszczegdlnych kompartmentach komoérki eukariotyczne;j.

W modelu przestrzennym ewolucja stezenia wapnia w punkcie zalezy od jego polozenia w kom-
partmencie. Jednak dla duzych wartoséi wspotczynnika dyfuzji przebiegi czasowe stezenia wapnia w
réznych punktach kompartmentu przestaja si¢ od siebie r6znié i staja sie podobne do odpowiadajacym
im przebiegéw w modelu calo-kompartmentowym. Z kolei, dla malejacych wartoéci wspotczynnikéw
dyfuzji przebiegi te staja sie coraz bardziej chaotyczne, zanim zupelnie znikna dla odpowiednio matego
wspotczynnika dyfuzji.

Roéwnania rézniczkowe czastkowe opisujace wspomniane wyzej buforowane uktady wapniowe sa
przykladami réwnan reakcji-dyfuzji, ktore sa jednym z gléwnych narzedzi biologii matematycznej.
Jedna z podstawowych klas rozwigzan takich uktadow sa fale biegnace [Volpert, A. 1., Volpert, V. A.
& Volpert, V. A. Traveling Wave Solutions of Parabolic Systems (American Mathematical Society,
1994)]. Sa one wazne z tego wzgledu, ze moga opisywaé procesy propagacji sygnatéw biologicznych.
Najczesciej zjawiska takie sa w przyblizeniu modelowane przez quasi-jednowymiarowy opis odpowiada-
jacy falom ptaskim. To zalozenie redukuje wiele trudnosci technicznych zwiazanych z matematyczna
analiza tych proceséw. Czesto jednak przyblizenie takie jest zbyt upraszczajace. Jest tak w przypadku
proceséw zachodzacych na powierzchniach zakrzywionych np. na blonie komoérkowej analizowanych
w publikacjach [B], [C], [E]. W pracach tych rozpatrzona zostata transdukcja sygnatéw biologicznych
jako propagacja fali biegnacej po powierzchni membrany komoérkowej. Fala taka moze powodowaé
aktywacje komorek (albo ich dezaktywacje). Przykladami takich zjawisk sa w szczegolnosci procesy
aktywacji komorek uktadu odpornosciowego (limfocytow typu B) zachodzace na ich btonach, oma-
wiane w przytoczonych pracach oraz zawartych w nich referencjach. Stosujac uproszczony model
opisywany przez skalarne réwnanie reakcji dyfuzji z przedziatami liniowym cztonem zrédtowym w po-
staci McKeana potrafimy scharakteryzowaé¢ procesy aktywacji na membranie komorkowej opisywane;j
(po odpowiednim skalowaniu) przez dwuwymiarowy sfere jednostkowa.

W pracy zostato znalezione niestabilne stacjonarne rozwiazanie powyzszego réwnania majace
wlasnosé separatrysy pomiedzy dwoma zbiorami warunkéw poczatkowych, ktére propaguja sie od-
powiednio do jednorodnego stanu aktywnego albo do jednorodnego stanu nieaktywnego na blonie
komoérkowej. Uzyskany rezultat jest, naszym zdaniem, bardzo interesujacy z matematycznego punktu
widzenia, poniewaz separatrysa zostata znaleziona w postaci analitycznej. Ma takze znaczenie poznaw-
cze, gdyz pozwala stwierdzi¢ istnienie minimalnego obszaru stymulacji poczatkowej zapewniajacego
aktywacje calej komorki.

W pracy analizowane jest rownanie zalezne od czasu, ktérego stacjonarny odpowiednik zo-
stal przeanalizowany w [B| Zawiera ona techniczne przygotowanie do analizy istnienia i wlasnogci
rozwigzan typu “mild solutions” bedacych przedmiotem trzeciego artykutu [E] W pracy [C], przy
zalozeniu istnienia stabych rozwiazan, pokazujemy miedzy innymi, ze rozwiagzanie nalezace do klasy
C°([0,T7], L*((0,7))) nalezy jednoczesnie do klasy C’;;f([o,ﬂ x [0,T]), dla 8 € (0,1/4) tzn. jest C!
gladkie ze wzgledu na wspolrzedna przestrzenna i ciggte Holderowsko ze wzgledu na zmienna czasowsa,
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z wyktadnikiem 8 w przedziale (0,1/4).

W artykule |E | kontynuujemy badanie zjawiska propagacji fal na kuli dla wspomnianego wyzej mo-
delu aktywacji komorek biologicznych. Na wstepie pokazujemy istnienie i jednoznaczno$é rozwigzan
typu mild solutions dla liniowego parabolicznego problemu poczatkowo - brzegowego z odpowiednio
zadana funkcja zrodlowa f(z,t), zakladajac, ze rozwiazania te sa dane przez rozwiniecie w szereg
wielomianéw Legendre’a. Aby scharakteryzowaé gladkosé rozwiazain, znajdujemy jednostajne osza-
cowania na wspoétczynniki tego rozwiniecia wzgledem zmiennej przestrzennej x. Istotna trudnosciag
w tej analizie jest nieciaglo$é¢ wzgledem zmiennej przestrzennej x wyrazu Zrodlowego implikowana
przez wlasnosci funkcji McKeana w pierwotnej wersji rownania i uniemozliwiajaca wykorzystanie
standardowych twierdzen do uzyskania dowodu istnienia, jedynosci i gltadkosci rozwiazan. Dowod
ten w ogoélnosci w przypadku nieliniowym otrzymujemy nastepnie stosujac zmodyfikowana metode
kolejnych przyblizen oraz twierdzenie o istnieniu rozwigzan dla przypadku liniowego. Skonstruowane
rozwigzania sg klasy C?! wszedzie poza punktem odpowiadajacym niecigglosci wyrazu zrédlowego.
Nastepnie konstruujemy pare zaleznych od czasu super- i sub-rozwiazan, ktore imituja monotoniczne
profile frontéw fal biegnacych wzdluz poludnikéw z pewna predkoscia. W oparciu o skonstruowang
wezesniej metode dowodu dowodzimy istnienia rozwiazania, ktore ma charakter fali biegnacej poru-
szajacej sie z predkoscia zalezna od czasu i potozenia na kuli.

Ten rodzaj analizy pozwala stwierdzi¢, ze warunki poczatkowe sa dobrze okreslone i jesli sa wieksze
niz warto$¢ stanu progowego, rozwiazanie propaguje si¢ w czasie w kierunku jednorodnego stanu
ustalonego o wiekszej wartosci. Jesli natomiast warunki poczatkowe sa mniejsze niz warunek progowy,
to rozwiazanie zbiega sie do zerowego stanu ustalonego. Wartosci stanu progowego sa zadane przez
niestabilne rozwigzanie stacjonarne znalezione w pracy [B].

Publikacje [D] i [F] pogwiecone sa analizie wplywu geometrii tréjwymiarowych obszaréw na propa-
gacje fal biegnacych wewnatrz ich objetosci (D)) badz tez po ich powierzchni (F]).

W pracy [D] proponujemy miedzy innymi model polaryzacji trojwymiarowych kanaléw na skutek
zatrzymywania sie frontow fal biegnacych (wewnatrz kanalow) w sasiedztwie wklestych fragmentow
powierzchni ich brzegu, w miejscu ich rozszerzajacego sie przekroju.

Powstanie zjawiska stacjonarnego i stabilnego czota fali biegnacej chcemy wtlasnie interpretowaé
jako modelowy mechanizm laczacy ksztalt brzegu obszaru z polaryzacja jego wnetrza. Jak wykazali-
$my numerycznie, mozna w ten sposob wygenerowaé zlozone konfiguracje polaryzacyjne na zbiorach
opisujacych réznorodne obiekty biologiczne. Zaproponowany model wyrédznia sie istotnie na tle in-
nych mechanizméw tworzenia sie wzorcow przestrzennych (pattern formation). W przeciwieristwie do
nich, np. mechanizmu opartego na bifurkacji Turinga, opisany jest bowiem pojedynczym réwnaniem
typu reakcji-dyfuzji. Co wiecej, powiazanie polaryzacji z geometrig obszaru, czyni go doskonalym na-
rzedziem opisu zjawisk polaryzacyjno-segmentacyjnych w trakcie proceséw morfogenezy organizmow
biologicznych.

W pracy |F| udowadniamy, ze podobne zjawiska moga charakteryzowaé¢ propagacje fal biegnacych
na hiperpowierzchniach dwuwymiarowych. Pokazujemy w niej, ze heterokliniczny front fali biegna-
cej, rozchodzacy sie po dwuwymiarowym brzegu tréojwymiarowego obszaru moze zatrzymywac si¢ na
jego wklestych kawatkach wzdluz linii odpowiadajacych statej krzywiznie geodezyjnej. Zjawisko to
mozemy uwazaé¢ za jeden z mozliwych mechanizméw polaryzacji hiperpowierzchni w procesach da-
jacych sie opisa¢ rownaniami typu reakcji dyfuzji. Co wiecej, polaryzacja brzegu moze implikowaé
polaryzacje catego obszaru tréjwymiarowego. Praca uzupelniona jest teoretyczna analiza warunkow
stabilno$ci tego rodzaju rozwiazan w zaleznosci od lokalnych wtasnosci geometrycznych rozpatrywane;j
hiperpowierzchni.

Teoretyczne rezultaty zawarte w obu pracach maja charakter asymptotyczny, gdyz zaktadaja one
zaniedbywalna grubo$¢ frontu falowego (tzn. szerokosé, na ktorej wartosé opisywanej wielkosci zmie-
nia sie efektywnie miedzy swoimi wartosciami stacjonarnymi), tak aby (asymptotycznie) mogt on
by¢ utozsamiony z hiperpowierzchnia (w przypadku 3D) lub linia (w przypadku fal na powierzchni
2D). Naklada to pewne warunki na wystepujace w rozpatrywanym réwnaniu parametry i funkcje.
W szczegolnosci odnosi sie to do malosci wspoélczynnika dyfuzji oraz do postaci funkcji zrédtowe;j.
Przedstawione w pracy symulacje numeryczne dowodza jednak, ze opisane efekty polaryzacyjne maja
miejsce w stosunkowo szerokim zakresie vartosci parametrow i moga by¢ spetnione w przypadku wielu
zjawisk biologicznych.
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Abstract

The presented dissertation is based on six papers [A], [B],[C], [D], [E], [F], which were published between
2014 and 2020.

The aim of these articles was to investigate mathematical representation of certain biological
phenomena as quasi-oscillatory processes or traveling wave propagation. The basic mathematical
tools in the description of the analyzed phenomena are systems of partial differential equations or
single one, the so-called reaction-diffusion equations.

Oscillatory phenomena were analysed by considering the example of spatio-temporal evolution of
calcium ion concentration occurring inside eukaryotic cells. These phenomena are related to the time-
dependent exchange of calcium ions between different cellular compartments. They were considered
in the article [A] Their analysis was based on numerical simulations within the spatially extended
model proposed by us, constructed on the basis of the whole-compartment model described by the
system of ordinary differential equations originally introduced in [Marhl, M. et al. Complex calcium
oscillations and the role of mitochondria and cytosolic proteins. Biosystems 57, 75-86 (2000)]. The
Marhl’s model deals with the simulation of calcium concentration oscillations averaged over individual
compartments of an eukaryotic cell.

In the spatial model, the evolution of the calcium concentration at a point depends on its position
in the compartment. However, for large values of the diffusion coefficients, the time courses of cal-
cium concentration in different points of the compartment cease to differ from each other and become
similar to the corresponding courses in the whole-compartment model. In turn, for decreasing values
of diffusion coefficients, the waveforms of oscillations become more and more chaotic, and finally they
disappear completely for a sufficiently small diffusion coefficient.

The partial differential equations describing the above-mentioned buffered calcium systems are
examples of reaction-diffusion equations, which are one of the main tools of mathematical biology.

Traveling waves [Volpert, A. 1., Volpert, V. A. & Volpert, V. A. Traveling Wave Solutions of
Parabolic Systems (American Mathematical Society, 1994)] are one of the basic classes of solutions
for such systems. They are important because they can describe the propagation processes of bio-
logical signals. Most often, such phenomena are approximately modeled by a quasi-one-dimensional
description corresponding to plane waves. This assumption reduces many of the technical difficulties
associated with the mathematical analysis of these processes. However, this approximation is often
too simplistic, as in the case of processes occurring on curved surfaces, e.g. on the cell membrane,
as were analysed in the papers [B], [C], [E]. In these papers, the transduction of biological signals was
considered as the propagation of a traveling wave along the surface of the cell membrane. Such a wave
can cause cell activation or deactivation. Examples of such phenomena are, in particular, the processes
of activation of immune cells (type B lymphocytes) taking place on their membranes, considered in
the mentioned above papers and the references therein. Using a simplified model described by a scalar
reaction-diffusion equation with a piecewise linear source term in the McKean form, we were able to
characterize the activation processes on the cell membrane described (after appropriate scaling) by a
two-dimensional unit sphere.

In the work [B], an unstable stationary solution of the above equation was found having the property
of separatrix between the two sets of initial conditions that propagate either to a homogeneous active
or inactive state on the cell membrane. The obtained result is, in my opinion, very interesting from a
mathematical point of view, because the separatrix was found in an analytic form. It is also interesting
from a practical point of view, because it allows to determine the existence of a minimum area of initial
stimulation ensuring the activation of the whole cell.

In the paper |C|we analyze a time-dependent equation whose stationary counterpart was analyzed
in the paper [B]. It contains a technical preparation for the analysis of the existence and properties
of the “mild solutions” to this equation, which is the subject of the third article [E] In the work [C],
assuming the existence of weak solutions, we show, among other things, that a solution belonging to
the class C°([0, 7], L%((0,))) also belongs to the class C;f([O,ﬂ'] x [0,T)), for B € (0,1/4), i.e. is C*
smooth in terms of the space coordinate and Hélder continuous in terms of the time variable with the
exponent § in the interval (0,1/4).



In the article [E], we continue the study of the phenomenon of wave propagation on a sphere for
the aforementioned biological cell activation model. First, we show the existence and unambiguity
of “mild solutions” for the linear parabolic initial - boundary value problem with an appropriately
given source function f(x,t), assuming that the solutions are given by expansion into a series of
Legendre polynomials. To characterize the smoothness of the solutions, we find uniform estimates
for the coefficients of this expansion with respect to the spatial variable x. A significant difficulty in
this analysis is the z-discontinuity of the source expression implied by the properties of the McKean
function in the original version of the equation and making it impossible to use standard theorems to
deduce the existence, uniqueness, and regularity of solutions. This proof in general in the nonlinear
case is then obtained using the modified method of successive approximations and the existence of
solutions for the linear case. The constructed solutions are of class C?! everywhere except the point
corresponding to the discontinuity of the source term. We then construct a pair of time-dependent
super- and sub-solutions that imitate the monotonic profiles of a traveling wave fronts moving along
the meridians at a certain speeds. Based on the method of proof constructed there, we demonstrate
the existence of a solution, having the character of a traveling wave moving at a speed depending on
time and position on the sphere.

This type of analysis allows us to conclude that the initial conditions are well defined and if bigger
than the threshold state value, the solution propagates towards a higher homogeneous steady state
over time. If, on the other hand, the initial conditions are smaller than the threshold condition, then
the solution converges to the zero steady state. The threshold state is given by an unstable stationary
solution.

The publications [D] and [F] are devoted to the influence of the surface curvature of the boundary
of a 3D region on a wave traveling inside the volume the region or on its surface.

In the work [D], we propose, among other things, a model for the polarization of the 3D channels
due to the stopping/pinning of wave fronts running inside the channel near the widening concave parts
of its boundary. We want to interpret the emergence of the phenomenon of a stationary and stable
traveling wave front as a model mechanism connecting the shape of the boundary of the region with the
polarization of its interior. As we have demonstrated numerically, complex polarization configurations
can be generated in this way on domains describing a variety of biological objects. The proposed model
stands out significantly from other spatial pattern formation mechanisms. In contrast to them, e.g. the
mechanism based on Turing bifurcation, it is described by a single equation of reaction-diffusion type.
Moreover, the link between polarization and region geometry makes it an excellent tool for describing
polarization-segmentation phenomena during morphogenesis processes in biological organisms. The
place where wave front line is pinned, is specified analytically and numerically demonstrated in axially
symmetric case.

In the paper |F|we prove that very similar phenomena can characterize the propagation of traveling
waves on two-dimensional hypersurfaces. In it, we show that a heteroclinic traveling wave front
propagating along a 2D boundary surface of a 3D region of a channel can stop on its concave pieces
nearby lines corresponding to a constant geodesic curvature. We can consider this phenomenon as
one of the possible mechanisms of hypersurface polarization in processes that can be described by
equations of reaction-diffusion type. Moreover, 2D boundary polarization can imply polarization of
the whole 3D region. The work is complemented by a theoretical analysis of the stability conditions
for such solutions depending on the local geometrical properties of the considered hypersurface.

The theoretical results contained in the papers [D] and [F| assume negligible thickness of the wave
front (i.e. a width over which the value of the described magnitude changes effectively between its
stationary values), so that (asymptotically) it can be identified with a hypersurface (in the 3D case)
or a line (in the case of waves on 2D surfaces). This imposes certain conditions on the parameters
and functions in the equation under consideration. In particular, this relates to the smallness of the
diffusion coefficient and the form of the source function. However, the numerical simulations presented
in this paper prove that the described polarization effects take place over a relatively wide range of
parameter values and can be fulfilled in the case of many biological phenomena.
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Analiza zjawisk propagacji fal w systemach biologicznych

Wstep

Od kilku dziesiecioleci biologia przejmuje role gtéwnego nurtu badar naukowych, stajac sie przy okazji
inspiracja i motywacja badan w wielu innych dziedzinach, a w szczegdlnoséci w zakresie modelowania
matematycznego. Badanie i analiza uktadéw biologicznych jest utrudniona przez ich gigantyczng zto-
zonos¢ 1, ogodlnie rzecz biorac, nieliniowy charakter zachodzacych w nich proceséw. Jedng z najbardziej
obiecujacych strategii poznawczych uktadéw biologicznych jest konstrukcja modeli matematycznych
poprzez poréwnanie z eksperymentem rezultatow symulacji komputerowych opartych na tych mode-
lach. Niestety, w chwili obecnej symulacje numeryczne realizowane np. w ramach dynamiki molekular-
nej czy tez zaawansowanych proceséw stochastycznych, potrafig wyjasnié¢ tylko pojedyncze aspekty zja-
wisk biologicznych zachodzacych wewnatrz nawet najprostszych komorek eukariotycznych. Wynika to
z faktu ogromnej wielopoziomowej ztozonosci geometrycznej i fizyko-chemicznej komoérek oraz innych
struktur biologicznych, implikujacej bardzo dlugie czasy symulacji komputerowych w zakresie mo-
deli matematycznych uwzgledniajacych podstawowe procesy wewnatrz komérkowe. W konsekwencji,
zachodzi potrzeba wypracowania metodyki analizy zjawisk biologicznych w oparciu o modele uprosz-
czone. Jednym z takich uproszczen jest opis zjawisk biologicznych w jezyku réwnan rézniczkowych
czastkowych. Wsrdéd nich wyréznié nalezy uktady rownan czastkowych typu reakcji dyfuzji, ktore w
swej podstawowe]j wersji mozna uwazac za podklase uktadéw rownan parabolicznych, badz tez eliptycz-
nych w przypadku stacjonarnym. Z matematycznego punktu widzenia uktady te sg stosunkowo dobrze
poznane [3], [2], [4], [5], |6], przy czym warto dodaé, ze wiele uogodlnien, nowych probleméw i metod
zwigzanych z tymi rownaniami zostalo zainspirowanych wtasnie zjawiskami biologicznymi. Z drugiej
strony, ich struktura pozwalajaca uwzgledni¢ podstawowe procesy biologiczno-fizyczno-chemiczne za-
chodzace w komoérkach, tkankach, pojedynczych organizmach zywych, a nawet catych ekosystemach,
nadaje sie doskonale do opisu i czasoprzestrzennej analizy calego spektrum proceséw biologicznych,
takich jak embrio- i morfogeneza, przesytanie informacji biologicznej, rywalizacja miedzygatunkowa,
itp. Jednym z przyktadow zastosowan uktadow rownan typu reakcji-dyfuzji jest modelowanie procesow
chondrogenicznych, tzn. proceséw tworzenia sie struktur kostnych w trakcie rozwoju morfogenetycz-
nego kregowcow |[7]. Inne przykltady dotycza zagadnieri poruszania sie¢ mikroorganizmow wskutek
zmieniajacego sie w czasie stezenia odpowiedniego morfogenu [8], [9], |10], formowania sie struktur
przestrzennych populacji bakterii lub ameb na skutek chemotaksji [11], [12], [13], [14], czy tez opisu
rozprzestrzeniania sie infekcji. Ciagle aktualnymi i uzupehiajacymi sie zrodtami zagadnien biologii
matematycznej pozostaja ksiazki: 3] i [15]. W pracach bedacych przedmiotem powyzszej dysertacji
do modelowania i analizy wybranych zjawisk biologicznych stosujemy wlasnie aparat matematyczny
rozwiniety dla uktadéw réwnan typu reakcji-dyfuzji. Prace te poswiecone sa w ogdlnosci procesom
transdukcji sygnaléw biologicznych odbywajacych sie wewnatrz obszaréw o skomplikowanej strukturze
przestrzennej oraz na ich powierzchniach ograniczajacych, ktére mozemy utozsamiaé¢ z membranami
komérkowymi, lub brzegami innych tworéw biologicznych. Powyzsze procesy opisywane sg lokalnie
przez rozwiazania rownan reakcji-dyfuzji o charakterze fal biegnacych, ktore w przeciwienstwie do fal
rozchodzacych sie w prostoliniowych cylindrach o stalym przekroju moga objawiaé¢ sie¢ dodatkowymi

zjawiskami, istotnymi réwniez z biologicznego punktu widzenia.
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Cele i ogélna charakterystyka rezultatéw pracy

Celem przedstawionej rozprawy doktorskiej jest matematyczna i numeryczna analiza procesow
oscylacyjnych oraz proceséw propagacji sygnalow w ukltadach biologicznych. Procesy takie stanowig,
dwa podstawowe scenariusze w ramach deterministycznego opisu zjawisk ewolucyjnych. Przykla-
dem procesdéw oscylacyjnych sa powtarzajace si¢ w czasie przestrzenne zmiany stezenia substancji
biochemicznych zachodzace wewnatrz komoérek biologicznych. Jednym z najwazniejszych wewnatrz-
komérkowych czynnikéow biologicznych jest wapii. Odpowiednie stezenie jondéw wapniowych w cytozolu
komorkowym jest niezbednym warunkiem prawidtowego funkcjonowania komoérki. Problemem, jaki
postawiliémy sobie w tym przypadku byla odpowiedz na pytanie: Czy dla typowych komérek biologicz-
nych oscylacje stezenia jonéw wapniowych moga by¢ opisywane tzw. modelami kompartmentowymi?
Zagadnienie to zbadaliSmy, poprzez uog6lnienie znanego modelu kompartmentowego bazujacego na
roéwnaniach rozniczkowych zwyczajnych na przypadek przestrzenny 3D, opisany przez réwnania roz-
niczkowe czastkowe. W szczegolnosci zbadaliémy wplyw wspoétczynnika dyfuzji wapnia na charakter
rozwiazan. W przypadku symulacji 3D zaobserwowaliSmy m.in. niezwykle zlozone zachowanie sie
rozwiazan oscylacyjnych w miare malenia wspotczynnika dyfuzji jonéw wapnia, oraz ich zanikanie
przy jego dostatecznie matej wartosci. Jak wiadomo, wapn jest jednym z najwazniejszych czynnikow
sygnatowych. Przekazywanie informacji realizuje sie przede wszystkim poprzez réznego rodzaju fale
stezenia wapnia. Matematyczna teoria fal biegnacych w modelach opisywanych za pomoca nielinio-
wych rownan typu reakcji-dyfuzji jest juz bardzo dobrze opracowana dla obszaréw de facto jednowy-
miarowych (idealnych cylindrow o stalym przekroju). Podejécie takie jest bardzo dobrze uzasadnione
w przypadku fal poruszajacych sie w dltugich komorkach biologicznych, takich jak komoérki miesniowe,
staje sie jednak nieadekwatne w przypadku fal poruszajacych sie po zakrzywionych powierzchniach,
takich jak membrany komorkowe. (Krzywizna wplywa tutaj istotnie na wtasnosci funkeji opisujacej
transdukcje sygnatu.) Moga to by¢ np. fale wapniowe propagujace sie na powierzchni zaptodnionego
oocytu, lub tez fale aktywacji receptorow i odpowiadajacych im kinaz np. na powierzchni limfocytow
typu B. Zaaktywowane kinazy wplywaja na stan komorki przesyltajac informacje do jadra. Odpowied-
nio silny sygnal przetacza komoérke ze stanu nieaktywnego do aktywnego, umozliwiajac jej reakcje na
bodzce zewnetrzne. Zadaniem, ktére postawiliSmy przed soba w tym zakresie, byla matematyczna
analiza réwnania typu reakcji-dyfuzji opisujacego powyzszy proces na sferze modelujacej membrane
komorkows z uproszczong kawatkami liniows, funkcja zrodtows. Praca nad realizacja postawionego za-
dania zaowocowala znalezieniem rodziny Scistych rozwiazan stacjonarnych rozpatrywanego rownania
wyrazonych poprzez funkcje hipergeometryczne Gaussa. Funkcje te stanowia separatrysy okreslajace
minimalna wielkosé klastra zaaktywowanych receptoréw, ktéra zapewnia caltkowita aktywacje komorki.
Pozwalaja réwniez na badanie efektow progowych w zaleznosci od parametréw modelu. W oparciu o
powyzsze funkcje moglismy nastepnie zdefiniowaé sub- i super-rozwiazania rozpatrywanego réwnania,
a nastepnie udowodnié istnienie rozwiazania majacego cechy fali biegnacej aktywujacej membrane
komorkowsa.

Nieskonczony cylinder prostoliniowy o stalym przekroju jest specyficznym zbiorem geometrycz-
nym o wysokiej symetrii. Mozna sie zatem spodziewaé, ze propagacja fal odbywajaca sie w bardziej
ogoblnych zbiorach tréjwymiarowych, lub na ich powierzchniach granicznych, bedzie charakteryzowaé
sie szeregiem wtasnosci, ktore nie maja swoich odpowiednikéw dla idealnych cylindréow. Niektore z
tych wtasnosci zostaly pokazane w dwodch koautorskich pracach dotyczacych wtasnie propagacji fal
na wklestych zbiorach 3D oraz na powierzchniach zakrzywionych 2D. W pracach tych wykazalismy
numerycznie, ze w obu przypadkach propagujace sie fale moga zatrzymywac sie na wklestych czesciach
swoich no$nikéw. W ten sposéb moze dokonywaé sie stabilna polaryzacja dwu- i trojwymiarowych
obszaréw, w szczegblnosci wielu struktur biologicznych. Taki mechanizm polaryzacyjny moze mieé
duze znaczenie w modelach morfogenetycznych. Polaryzacja struktury jest tutaj bowiem zalezna od
jej geometrii, a modyfikacje geometryczne od aktualnej polaryzacji. Co wiecej, w przeciwienstwie do
innych mechanizméw dyferencjacji przestrzennych, powyzszy mechanizm polaryzacyjny generowany
jest przez pojedyncze rownanie typu reakcji-dyfuzji.



Wave propagation analysis in biological systems

Introduction

For several decades, biology has taken over the role of mainstream scientific research, additionally
becoming the inspiration and motivation for research in many other fields, especially in the field of
mathematical modeling. Unfortunately, the study and analysis of biological systems is restrained by
their gigantic complexity and, in general, the nonlinear nature of the processes considered. One of the
most promising cognitive for biological systems is to construct mathematical models by comparing
experiments with the results of computer simulations based on these models. However, at present,
numerical simulations realized, for example, in the framework of molecular dynamics or advanced
stochastic processes, are able to explain only single aspects of biological phenomena occurring inside
even the simplest eukaryotic cells. This is due to the fact of the enormous multilevel geometric and
physico-chemical complexity of cells and other biological structures, implying very long times for com-
puter simulations of mathematical models that take into account the basic processes inside the cell.
Consequently, there is a need to develop a methodology for analyzing biological phenomena based on
models, which are simplified. One such simplification is the description of biological phenomena in the
language of partial differential equations. Among these are systems of partial differential equations
of the reaction-diffusion type, which in their basic version can be considered a subclass of systems
of parabolic equations (or elliptic in the stationary case). From a mathematical point of view, these
systems are relatively well understood (see [3], [2], [4], [5], [6]), with the noteworthy fact that many of
the generalizations, new problems and methods associated with these equations were inspired precisely
by biological phenomena. On the other hand, their structure, enabling to take into account the ba-
sic biological-physical-chemical processes in cells, tissues, individual living organisms and even entire
ecosystems, is perfectly suited for the description and spatio-temporal analysis of the entire spectrum
of biological processes, such as embryo- and morphogenesis, transmission of biological information,
interspecies competition, etc. One example of applications of systems of reaction-diffusion type equa-
tions is the modeling of chondrogenic processes, i.e., the processes of bone structures formation during
the morphogenetic development of vertebrates [7]. Other examples address issues of how microorgan-
isms move as a result of time-varying concentration of the corresponding morphogen [8|, 9], [10], the
formation of spatial structures of populations of bacteria or amoebae due to chemotaxis [11], [12],
[13], [14], or the description of the spread of infection. Continuously up-to-date and complementary
sources of problems in mathematical biology remain the books: |3| and [15].

In the papers constituting the dissertation, we use the mathematical apparatus developed for sys-
tems of reaction-diffusion equations to model and analyze selected biological phenomena. These works
are devoted, in general, to the processes of transduction of biological signals inside complex spatial
structure and on their bounding surfaces, which we can identify with cell membranes, or the bound-
aries of other biological entities. The above-mentioned processes are described locally by solutions
of reaction-diffusion equations in the form of traveling waves, which, unlike waves propagating in
rectilinear cylinders with constant cross-sections, can manifest additional phenomena, also important

from the biological point of view.
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Objectives and general characteristics of the results

The aim of the presented dissertation is the mathematical and numerical analysis of oscillatory pro-
cesses and signal propagation processes in biological systems. Such processes represent two basic
scenarios within the deterministic description of evolutionary phenomena. An example of oscillatory
processes are (repeating over time) spatial changes in concentrations of biochemical substances occur-
ring inside biological cells. One of the most important intracellular biological factors is calcium. An
adequate concentration of calcium ions in the cell cytosol is a prerequisite for the proper functioning
of the cell. The task we undertook in this case was to answer the question: Can, for typical biological
cells, oscillations of calcium ion concentration be described by so-called compartmental models? We
investigated this problem by generalizing an existing compartmental model based on ordinary differ-
ential equations to the spatially 3D model described by partial differential equations. In particular, we
investigated the influence of the calcium diffusion coefficient on the nature of its solutions. In the case
of 3D simulations we observed, among others, the extremely complex behavior of oscillatory solutions
as the diffusion coefficient of calcium ions decreases, and disappearance of oscillations as diffusion
achieves sufficiently small value. As is well known, calcium is one of the most important signaling
factors. Transmission of information is realized primarily via various types of waves of calcium con-
centration. The mathematical theory of traveling waves in the models described by means of nonlinear
reaction-diffusion equations is very well developed, however only for de facto one-dimensional domains
(ideal cylinders of constant cross-section). This kind of approximation is very well justified for waves
moving in long biological cells, such as muscle cells, but becomes inadequate for waves traveling on
curved surfaces, such as membranes of cells. (The curvature, in this case, significantly affects the sig-
nal transduction.) Examples of such waves can include, e.g. calcium waves propagating on the surface
of a fertilized oocyte, or activation waves of receptors and their corresponding kinases on the surface
of B-type lymphocytes. The activated kinases affect the state of the cell by sending information to
the nucleus. A sufficiently strong signal switches the cell from an inactive state to an active one,
enabling it to respond to external stimuli. The task we undertook in this case was the mathematical
analysis of the reaction-diffusion equation describing the above process on the sphere modeling the
cell membrane with a simplified piece-wise linear source function. The work on the implementation of
this plan resulted in finding a family of strict stationary solutions to the considered equation expressed
explicitly by the Gaussian hypergeometric functions. The constructed functions have the separatrix
property and determine the minimum size of the cluster of activated receptors, which ensures the
complete activation of the cell. They also enable us to establish activation thresholds with respect
to the parameters of the model. Based on the above functions, we were then able to define sub-
and super-solutions of the considered equation, and then prove the existence of a solution having the
characteristics of a traveling wave activating the cell membrane. An infinite rectilinear cylinder of
constant cross-section is a specific geometric set with very high symmetry. It can therefore be expec-
ted that wave propagation taking place in more general three-dimensional sets, or on their boundary
surfaces, will be characterized by a number of properties that do not have their counterparts for ideal
cylinders. Some of these properties have been shown in two coauthored papers dealing exactly with
waves’ propagation inside concave 3D sets and on 2D curved surfaces. In these works, we showed
numerically that in both cases, propagating waves can stop at concave parts of their carriers. In this
way, stable polarization of 2- and 3-dimensional regions, in particular of many biological structures,
can arise. Such a polarization mechanism can have crucial applications in morphogenetic models.
The polarization of the structure depends here on its geometry, and the geometric modifications on
the polarization. Moreover, unlike other spatial differentiation mechanisms, the above polarization

mechanism is generated by a single reaction-diffusion equation.
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1 Dynamics of free calcium ions inside eukariotic cell - paper

Calcium Oscillations in a Spatially Extended Three Compartment Cell Model

Bialecki S, Kazmierczak B

Proceedings of the XX National Conference Applications of Mathematics in Biology and Medicine,
Lochow, September 23-27,ISBN: 978-83-932893-1-8, pp. 15-20, (2014)

1.1 Motivation

The role of calcium in cell physiology is so fundamental that cannot be overestimated. The spatio-
temporal distribution of calcium ions control diverse processes, such as fertilization, proliferation,
morphogenetic development, gene expression, learning and memory, synaptic communication, muscle
contraction, hormone secretion, cell movement, wound repair and many, many more. Appropriate
level calcium in the cell must be ensured to generate sufficient amount of energy in the form of ATP
which is a necessary condition to sustain life. Additionally, calcium is an universal carrier of biological
signal{”ﬂ

Calcium is one of the most important second messengers. This means that calcium ions relay
signals received at receptors on the cell surface (binding of protein hormones, growth factors, etc.)
to target molecules in the cytosol or nucleus, amplifying the strength of the signal and initiating
appropriate regulatory pathways. In this way, the external signals (such as ligand to receptor binding)
are trans-coded into increase of internal calcium ions concentration in the cytosol of the cell.

Moreover, the distribution of calcium concentration in the eukariotic cell compartments is not
constatnt in time.

Thus there are continuous oscillations of Ca?t concentration caused by flows of calcium ions
between the cytosol and its intracellular stores: endoplasmic reticulum and mitochondria. In the case
of vertebrates, it is estimated that around 20 percent of organism energy is used for maintaining these
oscillations.

These temporary changes of calcium ions concentration are important, because high level of free
calcium ions concentration is extremely harmful to the cell, so after fulfilling its role it must, as quickly
as possible, be hidden back into internal reservoirs (the endoplasmic reticulum and mitochondria),
where concentration of Ca?t may be from 2 to 4 orders of magnitude higher with respect to the
cytosol.

Generally, the signal transduction by calcium ions can be realized in two ways:

1. By initiation of appropriate regulatory pathways - through binding to relevant molecules calcium
ions can cause rebuilding their conformation and thus change their state to active (see Figure|l)),

2. By responding to appropriate mechanical strains. This, due to mechanochemical coupling, is a
basic mechanism of many biological phenomena such as heart contraction and bacterial move-
ment.

The starting point in my study of the phenomena of inter-compartmental flow of calcium ions and
oscillations of their concentration in eukaryotic cells was the existing Marhl’s modelf}] It was later
modified in Michal Dyzma’s doctoral dissertationlﬂ to take into account Mitochondria-Associated
endoplasmic reticulum Membranes, known in the literature under the acronym MAMs. (See alsolﬂ )
Both of the above mentioned ODE models describe the dynamics of calcium and buffer molecules
concentrations averaged over the cell compartments. Such an approach can be justified by assuming
relatively large diffusion coefficients of free calcium ions in all the considered compartments.

LCarafoli, E. Calcium - A universal carrier of biological signals. The FEBS journal 272, 1073-89. doii10.1111/j.
1742-4658.2005.04546.x (Apr. 2005).

2Carafoli, E. & Krebs, J. Why Calcium? How Calcium Became the Best Communicator. THE JOURNAL OF
BIOLOGICAL CHEMISTRY 291, 20849-20857. doii10.1074/jbc.R116.735894 (40 Sept. 2016).

3Marhl, M. et al. Complex calcium oscillations and the role of mitochondria and cytosolic proteins. Biosystems 57,
75-86 (2000).

4Dyzma, M. Modelowanie oscylacji stezeri jondw wapniowych w komdrkach eukariotycznych z uwzglednieniem ob-
szardw bezposredniego kontaktu pomiedzy mitochondriami a retikulum endoplazmatycznym. PhD thesis (IPPT PAN,
1st Nov. 2014).

5Morciano, G. et al. Role of mitochondria-associated ER membranes in calcium regulation in cancer-specific settings.
Neoplasia 20, 510-523 (2018).

SYang, X. et al. Mitochondria-associated endoplasmic reticulum membrane: Overview and inextricable link with
cancer. Journal of cellular and molecular medicine 27. doii10.1111/jcmm.17696 (Feb. 2023).
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Figure 1: Calcium signaling in eucariotic cell

1.2 Main results of paper

The natural question arises:
In what way the lower values of diffusion coefficients of calcium ions affect the existence and properties
of oscillatory solutions for the spatially extended model?

To study this problem, we first designed the spatial extension of the Marhl’s model by assuming a
specific distribution of calcium reservoirs in the cytosol. Both the approximate shapes of the reservoirs,
as well as their spatial configuration corresponded qualitatively to experimentally obtained images of
these organella. The complicated geometry of the assumed distribution of the calcium vesicles made
the numerical calculations of the initial boundary value problems extremely time consuming. To reduce
this time, we resigned from the full generality of the possible three dimensional spatial configurations,
and confined ourselves to the axisymmetric distributions of the compartments inside a spherical cell.
We hope that this simplification had no influence on the qualitative validity of the obtained results.
One of the basic conclusion of our numerical analysis was the observation that for typical biological
cells and for diffusion coefficients of calcium ions from the physiologically accepted range, at a given
moment of time, the spatial variability of calcium concentration in all of the compartments is negligible.
This result is shown in Figure
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Figure 2: Example distributions of calcium ion concentrations at the same moment of time at the 2D
cross-sections of the 3-dimensional ball with axially symmetric geometry of compartments modeling
the biological cell. Colours show the calculated distributions of calcium concentration for: a) cytosol,
b) reticulum and ¢) mitochondria. The radius of the cell and and diffusion coefficient of calcium ions
are equal respectivelly to 5um and 100um?/s. The diffusion coefficient of buffers in the cytosol is
equal to 1um?/s.

The first task I undertook in my research was to construct a spatial model as a system of partial



reaction-diffusion equations describing the flow of calcium ions between intracellular calcium stores
and the cytosol, consistent, in terms of the size of inter-compartmental flows, with the spatially
homogeneous model of Marhlﬂ The derivation of the spatially extended model has been carried out
by postulating a reaction diffusion system of equations in the compartments supplemented with no-
flux boundary conditions at the outer boundary of the cell and nonlinear Robin boundary conditions
at the interfaces of the inner compartments. The unknown coefficient functions were chosen via
integration over the compartments volumes, applying Gauss-Ostrogradski theorem, and comparing
the results with the equations of the spatialy homogeneous model. The additional conditions used in
the construction of the model assumed that the buffers in reticular and mitochondrial compartments
are 'fast’ and the total amount of buffers is sufficiently large. (Precise formulation of these conditions
are given after system (17)-(18) in [A])

The designed PDE model was used to check numerically the robustness of oscillatory solutions with
respect to changes of diffusion coefficient of calcium ions, which has been assumed to be the same in all
the compartments. To speed up calculations, effective diffusion for calcium ions was used for Mit and
Ret compartments. For sufficiently large diffusion coefficients of calcium ions in the compartments
(= 100um?/5s), the model exhibits oscillatory solutions very similar in their structure and period to
the solutions observed in Marhl’s model, i.e. relatively regular peak oscillations (as in the left upper
panel of Figure 2 in[A]) of period equal to circa 10s. For decreasing values of the diffusion coefficient
of calcium ions (assumed to be the same in all the compartments), this simple structure becomes
more complicated. Groups of irregular high peaks are more and more separated by smaller ones until
the oscillatory solutions cease to exist at Decyt = Demitt = Derer = 13.5 um?/s. These results are
presented at Figure 2 in[A]

Numerical results were obtained via simulations by means of COMSOL Multiphysics software.

Finally, it is worth emphasizing that mitochondria and the endoplasmic reticulum have very com-
plex geometry that is difficult to reproduce in the model. In particular, there are still many questions
concerning the structure of the endoplasmic reticulum, which is a serious obstacle in designing more
accurate models.

The problem of convergence of parabolic systems of equations on domains separated by semi-
permeable membranes, when diffusion coefficients tend to infinity while the flux through the mem-
branes remains constant, has been considered in the papelﬂ One of the motivation of this analysis was
the phenomenon of calcium flow between the calcium stores described above.

"Marhl, M. et al. Complex calcium oscillations and the role of mitochondria and cytosolic proteins. Biosystems 57,
75-86 (2000).

8Bobrowski, A., Kazmierczak, B. & Kunze, M. An averaging principle for fast diffusions in domains separated by
semi-permeable membranes. Mathematical Models and Methods in Applied Sciences 27 (Feb. 2016).



2 Reaction-diffusion waves on the sphere - papers [B], [C],

2.1 Motivation and background

As we noted in the previous subsection, the space-time evolution of calcium ions plays a very important
role in the physiology of eukaryotic cells. To date, very few aspects of the influence of calcium dynamics
on the initiation and evolution even of the most significant cell signaling pathways have been explored.
There is no doubt, however, that calcium is one of the most important information transmitters
between individual organelles (compartments) of the cell, as well as between the intercellular space
and the interior of the cell (in particular the nucleus). In long biological cells (e.g. in muscle cells) or in
epithelial cells, the above-mentioned transfer of information may take place as a result of propagation of
traveling waves of calcium concentration in the cytosol. In the mathematical description, such waves
are often approximated by plane waves, for example as waves moving inside rectilinear cylindrical
regions of constant cross-section with homogeneous Neumann boundary conditions (see, e.g. the book
of Volpertsﬂ), The plane waves are relatively well known, both in the context of the proofs of their
existence as well as their properties. These issues are discussed comprehensively in the Volperts’
booksﬂ and, in the narrower range of calcium waves, in the book of Keener and Sneydﬂ Propagation
of calcium waves may, however, take place in more complex geometries as for instance on the curved
surfaces corresponding to the cell membrane. The most spectacular example of such waves are calcium
waves formed on the surface of the fertilized oocyte (see Figure|3)). First observations of such traveling
calcium waves on Medaka egg cells’ membrane were made by J aﬁ@ in 1977.

time 0 sec 10 sec 20 seu 40 sec

Figure 3: Calcium wave just after fertilization on the surface of Medaka egg
(Discovered and first visualized by Jaffe in 1978).

From a mathematical point of view, such waves are much more interesting than plane waves and
their description is more complex due to the fact that they move on curved surfaces. Moreover,
non-zero curvature of the surface can often be a source of phenomena that have no counterparts for
plane waves. This is a subject of papers [D] and [F]. Despite the fact that calcium waves are a kind
of paradigm for traveling waves in biology, signal transduction phenomena can also be performed by
traveling waves in which calcium ions play no role, such as receptor activation waves on the membranes
of the immune cells of type B. Such waves have been studied, e.g. in papeﬂ , where a mathematical
model of the activation process based on an interaction of volume kinase molecules with membrane
receptors has been proposed. The model is described by the following system of equations:

9K — DVEK +aR(1-K) - l;ﬁ;g

1
98 — y[(co + K2)(P ~ R) — RI. (1)

where K is concentration of the active membrane kinase molecules, R - concentration of the activated
receptors, a, b, H, ¢y, 7y - positive constants, D - surface diffusion of kinase molecules, P - uniform total

9Volpert, A. 1., Volpert, V. A. & Volpert, V. A. Traveling Wave Solutions of Parabolic Systems (American Math-
ematical Society, 1994).

10Keener, J. & Sneyd, J. Mathematical Physiology I doi{10.1007/978-0-387-75847-3 (Springer New York, 2009).

HRidgway, E. B., Gilkey, J. C. & Jaffe, L. F. Free calcium increases explosively in activating medaka eggs. Proceedings
of the National Academy of Sciences T4, 623-627. doii10.1073/pnas.74.2.623 (Feb. 1977).

12Hat, B., Kazmierczak, B. & Lipniacki, T. B cell activation triggered by the formation of the small receptor cluster:
a computational study. PLoS Computational Biology 7, €1002197. do0ii10.1371/journal.pcbi.1002197 (10 Oct. 2011).
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concentration of all receptors both the activated and inactivated ones.

Because %—IE is close to zero, then if we assume it to be equal to zero we can compute R(K) from
the second equation, after substitution to the first one, we obtain the following simplification of the
model: -

% = DVIK + ®(K) :=
(2)
DVEK +aR(K)- (1 - K) — 225

For the parameters a, b, P, and H taken from physiological ranges , the reaction term ®(K)
is of bistable type in Hat®. By approximating the source by piecewise linear term F(u,o) in the
McKean form (see Figure [4)) we arrive, after appropriate rescaling of time and space units, at the
reaction-diffusion equation on the sphere:

% = Viu+ F(u,0) (3)
F(u,0) = —-Bu+ BxH(u—0) (4)

where B and o are positive constants, and V% is a Laplace-Beltrami operator on the sphere, i.e.

1 0 0 0? 0
V2= — —(sinz—) = — + cot z —. 5
o sinx Oz ( &T) 0x? oz (5)
15
=
s |
1+ |
05 .
| O
0
0.5
A | L | L il L il L il |
0 01 0.2 03 0.4 05 0.6 07 0.8 09 1
U

Figure 4: The assumed McKean form of F(u, o)

H(-) is the Heaviside function: H(v) =1 for v > 0, H(v) =0 for v < 0 and H(0) = Hy; € [0, 1].
In axisymmetric case problem reads:

ou 15(

. Ou
3 = sz de smx) + F(u,0) (6)

ox

where (z,t) € (0,7) x (0,T] and F is given by (4)), subject to the boundary conditions

w4 (0,1) = uy(m,t) =0, (7)
and initial conditions
u(0, ) = uo(x). (8)
We are interested in solutions u(z,t) with negative z-derivative, i.e. such that
ou
a—(m,t) <0, for (z,t) € (0,7)x[0,T).
x



Let o F1(a, b, c; z) denote the (Gaussian) hypergeometric function satisfying the hypergeometric equa-

tion
2

d=w dw
z(l—z)ﬁ—l—[c—(a—i—b—i—l)z]g—abw:O (9)
where a, b, c € R.
If \g = % . (f 1++v1-— 4B) (and —Ag - (Ap+1) = B:=a-b), then o F1(—Ap, Ap + 1, 1; 2) satisfies
the equation
(Z(l—Z)2F1(—)\B,/\B+1,1;Z)7Z) —BQFl(—)\B,)\B-i-l,l;Z):O, (10)
2

hence the equation

[QFl( Ap,Ap+ 1 1; 17)] —cotw [zFl( A, Ap+1,1; 17)]
N . (1)

—-B 2F1( )\B,)\B—I—l 1; “ﬂ)zo.

Remark 1

In the model, the discontinuity of the source function in the point w = ¢ implies the discontinuity of
the second derivative of the stationary solution to system (6))-(7) at a point z = . It is crucial that
there exists a bijective correspondence between o € [0,1] and 79 € [0,7]. This correspondence is very
helpful in constructing solutions to the considered system. O

The properties of stationary solutions to the boundary value problem @— can be summarized
in the following lemma.

Lemma 1 (THEOREM 2.1 in paper [B] and Lemma 5.1 in paper [E])
Given o € (0,1) and B > 0, we can find a unique no € (0,7) such that the function

1+ Ci(no) - 2Fi(=Ap, A + 1,1, 1=522) 0 <z < n,
U(zino) =< Ca(no) - 2F1(=Ap, Ap +1,1; 1§22, no <z <, (12)
g T = 1o,

satisfies the equations

1
- 9 sinxa—U +B—-Bu=0, for 0<x<mno, (13)
sinz Oz Oz
1
sinx% <s1nx(3g) — Bu=0, for no <z < m, (14)
and the boundary conditions
ou ou
U im0y o 1
ax (O) T’O) 6.’17 (71-7 770) 0 ( 5)
Here, Ci(no) € (—1,0) and Ca(no) € (0,1) are given by the expressions:
5 sin?
01(770)201(770;3)2—5 2Fi(—=Ap +1,\p + 2,2; LEege o) sin_to (16)
2
Ca(no) = Ca(no; B) = a oFi(—Ap +1,\p +2,2; 10 lo)si o

where,for)\B:%-(—1—1—\/1—43) and S =4B —1,
2 mV/S\\ —1
W = F o TITO T 8(m(s + 1)sech(T )) (17)

The function U(x;mn0) defined by (@ is of class C1([0,7]) N C2([0,70)) N C%((no, ), monotonically
decreasing on (0,7), and satisfies

1> U(0;m0) > U(x;mo) > U(m;no) >0

for xz € (0,7). Finally, we have that the map

no € (0,m) —> o =0 (no) := U(no;no) € (0,1) (18)
is of C'-class, increasing, bijective, and W = (2% > 0 for all ny € (0,w). Moreover, for

0<a<b<m, o) = 1/2 uniformly on [a,b] as B — co.



2.2 Main results of the paper

Stationary Waves on the Sphere
Bialecki S, Kazmierczak B, Tsai J-C
SIAM J. APPL. MATH., 75, 4, 1761-1788

In paper |B|due to the adopted assumption on the source term in the McKean form, the stationary
counterpart of Eq. have been solved analytically. The solution is constructed by means of sewing
the partial solutions corresponding to the linear parts of the function F'(u, o) (shown in Figure [4)) in
the C* class. The sewing procedure is carried out at the appropriate point = n9(c) € [0, 7] such
that U(no(o);no(0)) = o. In this way, we can obtain a solution to Eq. (3) which belongs to the class
C11([0,7]), and to the class CL([0,n]) N C2([0,m0(c))) N C%((no(o),7]) (see THEOREM 2.1 in the
paper [B)). The sewing point ng(c) is uniquely defined. Moreover, according to THEOREM 2.5 the
mapping (0,7) 3 1o — U(no;no) = o € (0,1) is bijective (see Figure [5| where the dependence o on 7
is visualised).

(o
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0.8
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0.4
0.2

05 10 15 20 25 a0 'O 05 10 15 20 25 3o 0 05 10 15 20 25 3o 0

Figure 5: Relation between between the transition (sewing) point ng and the parameter o for B= 10, 50 and 100.

This analytical form of solution facilitates significantly mathematical analysis of the wave front
propagation on the sphere. In particular, we were able to explain the phenomena of activation fronts
on the sphere that were examined numerically irﬂ .

Though the constructed stationary wave is unstable (see, THEOREM 4.1, p.1778 in [B]), it has a
very important property as a separatrix between the two sets of initial data. The initial data from
the first set generate solutions tending to the inactive state (v = 0), while the elements of the other
one evolve to the active state (u = 1).

10 10
08F \\ 0.8} \

0.6¢ 0.6¢
0.4¢ 0.4¢
0.2& O.ZK
05 10 15 20 25 30 X 05 10 15 20 25 30 X 05 10 15 20 25 30 X

Figure 6: Profiles of the standing fronts (separatrices) for different values of o: 0.1 (the lowest curves), 0.2, 0.4,
0.6, 0.8 (the highest curves) for different values of B: 10 (left panel), 50 (middle panel) and 100 (right panel). By
dots we have denoted the points (n(o), o).

Thus the constructed stationary wave can be treated as a threshold condition for the immune
cell activation. In a way, it determines the minimal activation, which can induce the propagation
of the activation wave. As it follows from Figure [6] the smaller the value of o, the smaller portion
of receptors should be stimulated to initiate the activation wave. Moreover, for large values of the
parameter B which, via scaling, corresponds to low values of diffusion coefficient, we can observe very
high sensitivity of the separatrix location with respect to the parameter o. It changes very strongly
with the parameter ¢ in the vicinity of ¢ = 0.5. Biologically, this can be interpreted as the possibility
of cell activation in the aftermath of a small internal reorganization of the cell which can be sufficient
for appropriate (though small) changes of the parameter o. The Figure [7|below presents the example
profiles of two separatrices for change of o from o = 0.48 to o = 0.52 (B = 1000).

12Hat, B., Kazmierczak, B. & Lipniacki, T. B cell activation triggered by the formation of the small receptor cluster:
a computational study. PLoS Computational Biology 7, €1002197. doij10.1371/journal.pcbi.1002197 (10 Oct. 2011).
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Figure 7:  The profiles of the stationary solutions Uy (x;00) to system with B = 1000 for o = 0.48 and
o = 0.52. The coordinate x denotes the zenith angle.

2.3 Main results of the paper

Regularity of solutions to a reaction-diffusion equation on the sphere: the Legendre series
approach

Bialecki S, Kazmierczak B, Nowicka D, Tsai J-C

MATHEMATICAL METHODS IN THE APPLIED SCIENCES 40, 14, 5349-5369 (2017)

This work examines the regularity of solutions to the equation
— = DViu+ F(u;0), (19)

where V% is the Laplace-Beltrami operator defined by . F(u;0) is a piecewise linear function
imitating a bistable function:
F(u;0) = —Bu+ BH(u — o), (20)

where B and o € (0,1) are positive constants and H(-) is the Heaviside function (see Figure [4)).
According to the assumed symmetry of the problem, Eq. is supplemented with homogeneous
boundary conditions of the Neumann type for x = 0,7. As we are interested in time dependent
solutions to (L9), we must also specify the initial condition u(x,0) = ug(x). In this work, we examined
the properties of solutions to Eq.. Such solutions can describe the dynamics of many signaling
phenomena on the membrane of biological cells. Although in this paper we have not studied yet the
existence of solutions, we have been able to characterize their properties, mainly in terms of regularity,
what may be considered as an initial step in the analysis of the existence of time dependent solutions.
(Similar investigation has been carried out in an augmented form in paper [E]) In particular, we were
able to prove that if the 'mild solution’ of Eq.7 i.e. the solution of the integral equation

u(w,t) = J7 Gy uo(y)siny dy + [y [ Gla,y.t = 5)F(uly, s);0) siny dyds, (1)
where
G(z,y,t —s) = Z:Zo exp(—=I(l+1)(t — s))P,(cos x)P,(cos y), (22)

belongs to the class

C°([0,71, L*((0,m))) N BV ([0,] x [0,T)),

then it also belongs to the class L
C.:7 (10,7] x [0, 7))

for all 8 € (0,1/4) and satisfies the Neumann type boundary conditions u ,(0,t) = u ,(0,t) = 0 for
all t € [0,T].
To prove this fact, we assumed that

ug € C*([0, 7]); 10,6(0) = wo (M) =05 Up 222(0) = Ug ggz(m) =0 (23)
and the mild solution w(z,t) is such that the function
f(-,t) = F(u('7t)v U)

belongs to the space of functions of bounded variation BV ([0, 7]) and is continuous at the ends of the
interval [0, 7], i.e.

f(,t) € BV([0,7])) N (C([0,¢)) N C([mr — ¢, 7])) for some € (0,m). (24)


http://dx.doi.org/ 10.1002/mma.4390
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We also assumed that the Legendre coefficients w;(f,t) (defined in (27)) behave in such a way
that:

o (f( 1)) < %gu;t) (25)

for fome function g(I;t) — 0 as I — oo, uniformly with respect to ¢t € [0, T].

The proof is based on the analysis of the absolute convergence of the expansion of the function u into
a series of Legendre polynomials with time-dependent coefficients:

u(z,t) = S0=o° exp(—1(I 4 1)t) Py(cos z)w; (ug)
(26)
+ LI Pulcos) fy exp(—1(1+1)(t = s)) | Jy Pilcos€)F(u(¢, ); o) sin€ de] ds,

where .
wy(ug) := / Pi(cos z)up(x) sinz dz
0

denotes the [-th Legendre expansion coefficient of the initial data ug. Similarly, for any function
f:[0,7] x [0,T], T > 0, and any [, we denote by w;(f,t) its I-th Legendre coefficient, i.e

wy(f,t) = /OTr Pi(cosx) f(z,t)sinz dx. (27)

The results of the paper provide a class of ’a priori’ estimates that can be used in a proof of
existence of solutions to Eq., in particular by using sub- and super- solution methods.

The elliptic operator at the right-hand side of Eq. (5) has a singularity at z = 0 and z = 7.
However, because spheres are rotationally invariant, one can expect that solutions of Eq. (5) are
regular (i.e., at least of Ciz class), at points where the source functions are smooth. This can be seen
by an appropriate change of coordinates close to the points z = 0 and x = 7 and using the bootstrap
arguments. (For this kind of effective approach see Theorem 4.3 in [E].) In the paper, however, we
prove the z-differentiability (together with Holder continuity with respect to time), by analyzing the
convergence of the infinite series representation and its term-by-term differentiation for all ¢ € (0,7).
We think that this method of proof has a significance by itself, especially in the context of iterative
methods. In the proof we use the results of papelﬂ where the properties of solutions to the equation

Q' + q(z)Q, =0,
with
. 3 1

=u(l) = (1+3)

z) =v° — ,
() 4sin?x

were analysed.

The main difficulty (implied by the chosen method) is related to the necessity of accurate estimates
of highly oscillating functions of the form

Ql(l‘) = (1 — 60821’)3/4dlzéy)|y—cosa:- (28)

These estimates are necessary to show the convergenve of the infinite series Syp defined by Eq.(29)
in the paper [C].

13 Antonov, V. A., Kholshevnikov, K. V. & Shaidulin, V. S. Estimating the Derivative of the Legendre Polynomial.
Vestnik St. Petersburg University. Mathematics 43, 191-197. doii10.3103/51063454110040011| (4 Apr. 2010).


https://doi.org/10.3103/S1063454110040011




2.4 Main results of the paper

The propagation phenomenon of solutions of a parabolic problem on the sphere
Kazmierczak B, Tsai J-C, Bialecki S

Mathematical Models and Methods in the Applied Sciences 28, 10, 2001-2067 (2018)

As in the previous work [C], here we analyze time dependent solutions to the equation

0
ai: = DV2u + F(u;0) (29)
on the unit sphere S, where
F(uw;0) = —Bu+ BH(u — o), (30)

B >0 and o € (0, 1) subject to boundary conditions
Uz (z,t) = uy(m,t) =0, (31)

and initial conditions
u(z,0) = up(x). (32)

Continuing the analysis started in the paper [C], we focus on the problems of the existence of
solutions having the form of a propagating front connecting states (places) of © =0 and u = 1. Such
an objective is motivated by the phenomenon of calcium wave propagation observed on the surface of
large oocytes, or wave phenomena related to activation of receptors on the membrane of B cells.

In this work, we investigate existence and uniqueness of solutions of an integral equation associated
with Eq. and expressed formally by a series of Legendre polynomials with time dependent coef-
ficients. Due to the assumed discontinuity of the reaction kinetics, standard methods of convergence
analysis cannot be used for such series and their derivatives, i.e. series obtained by differentiation
with respect to . We would like to note that the choice of the above discontinuous source function
is dictated by the fact that for this kind of function, we can find exact solutions for the stationary
problem depending on the parameter o. From these functions which are solutions to the stationary
problem, we construct solutions for the time dependent problem, having in mind, in particular, solu-
tions in the form of traveling fronts. By finding the appropriate a priori estimates for the expansion
coefficients of the solution into a series of Legendre polynomials, we prove, using the method of sub-
and super-solutions, the existence of the desired solution.

In particular, we prove that the constructed solutions are class Cztl everywhere away from the
point (z,(t),t), where u(z,(t),t) = o and o is ’discontinuity point’ of the source function F(-; o).

The paper also includes the results of numerical simulations showing that the constructed sub-
and super-solutions in fact constrain the actual solutions to the considered time dependent problem.

The core results of Part I of the paper |E| constist of three theorems about existence and smooth-
ness of the solution to the problem - containing increasingly stronger results with the same
two assumptions.

The first assumption concerns properties of the initial function ug. The second assumes existence and
properties of (mild) super- and sub-solution to problem .

First assumption: We assume that the function ugy is C*([0, 7]), has first and third derivative
equal zero at the ends of interval (0, ), is a decreasing function, and ’disjointly’ bounded in the class

C*.
This assumption (Assumption 4.1 p.2021) in the paper |E]is formally written as:
The function uy € C([0, 7)) is such that
Ug € Cl([O,ﬂ']), and ||u0\|C4([0’a]) + ||UO|IC4([G"7T]) < 00,
u07w(0) = U’O,I(ﬂ-> = Oa and uO,wajx(O) = uO@wa;(ﬂ-) = Oa (33)

Oug ()
o <0 for all ze€(0,m).

Second assumption: We assume that mild super-solution W and sub-solution V exist in class
C’iia”’ﬁo ([0, 7] x[0,T7) for some oy, o € (0,1). They both have their range in (0, 1) and are decreasing
in z.
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This assumption (Assumption 4.2 p.2022) in the paper E|is formally written as:

There exist functions W,V of class C;Ia”’ﬁo([O,ﬂ] x [0,T]) for some ag, By € (0,1) which are respect-
ively (mild) super- and sub-solution to problem (@), (@), , @ and which satisfy

0<W(x,t)<1 and 0<V(zt)<1, (34)
W ov
dd < °r <
o (x,t) <0 and B (x,t) <0 (35)

for all (z,t) € (0,7) x (0,T).
For each t € (0,T) each of the equations W (-,t) = o and V (-,t) = o has at most one solution.

Basing on this assumptions, we are able to prove the following theorems:

Theorem 4.1, p. 2023 . There exist the mazimal mild solution U (resp. the minimal mild solution
u) to initial boundary value problem - , which belongs to the class Cija’ﬁ([O,ﬁ] x [0,T)) for
any o € (0,1/2) and B € (0,1/4), is in the ordered interval [V, W] of the sub-solution V' and the
super-solution W, and satisfies Uy (-,t) < 0 on (0,7) x (0,T), (resp. uz(-,t) <0 on (0,7) x (0,7T)).

Theorem 4.2, p.2031. There exists unique mild solution u to system (@) - @ which belongs to
the class C’ijao’ﬁo([ﬂ,w] x [0, T]) for some ag, By € (0,1). The solution u is unique for all t € (0,T).

Theorem 4.3, p.2033. There exists unique mild solution u to the problem (@ - (@ which belongs
to the class C;Iao’ﬁo([O,ﬂ] x [0,T]) for some ag,Bo € (0,1). For each t € (0,T) there exist a unique

point T, such that u(z,(t),t) = o and away from this point u € C’itl The solution u is unique for all

te[0,T].

In sections 5 and 6 in Part II of the paper |[E| we continue considering propagating behaviour of
solutions to system - . To show the existence of wave like solutions propagating on the sphere
according to Theorem 4.3 we have to show the existence of the proper super- and sub-solutions
required by second assumption. Section 5.1 contains construction of time dependent super-solution
and section 5.2 - construction of time dependent sub-solution. In section 5.3 we prove that the solu-
tion to problem - during propagtion is lying between constructed sub- and super-solution.
Section 5.4 provides concrete numerical examples of solutions, sub- and super-solutions, which were
more generally considered in section 5.3 and presents them graphically (see Figure |§| and Figure
below).

In Discussion (section 6) we applied the results to the species with very small diffusivity. We
showed that the assumption B > 1 used in section 5 is biologically justified. By scaling arguments
we also showed that the speed of the obtained solutions corresponds to the experimental values for
B = 1000.

Construction of time-dependent super-solution.
Let U(x;n9) be stationary solution defined in Eq. to problem @- in Lemma The super-
solution is sought in the form U (z;nd (t)) with sufficiently chosen function ng (t) € C1[0, T*] for some
T > 0:

15 (0) = b, g (TT) =jp, and (nd)'(-) >0 on [0,7"], (36)

which satisfies the supersolution condition:

dng (t) OU
dt 8770

(z;mg (1)) = E(2;ng (1)) (37)
where
E(z;ng (1) = F(U(x;ng (1)), 00) — F(U (2318 (1)), o (ng (1)) (38)

A super-solution to the boundary value problem - in the limit of big B is given by the
following theorem.

Theorem 5.1 p. 2048. Let ng € (0,7/2) and g = ®™ — ng € (w/2,m). Then there exist constant b
such that for all B > 0 sufficiently large, the function

U™ (x5t) = Ula;ng (1))

12



with

g (¢) == 4VBb 't +nf (39)
is a super-solution of Eq. (6]7) for all (z,t) € [0,7] x [0,T]
= f
Mo — "o
where TT (= ———L,
4~ 'VB
Remark 2
The existence of b follows from Egs.(5.31), (5.34), (5.35) in the paper. O

Construction of time-dependent sub-solution.

Lets begin with choosing 7y € (0, 7/2) and set o9 = o (#jp). Since o as the function of g is increasing
in (0,7) and o(7/2) = 1/2 (see Eq. and Lemma or PROPOSITION 2.2 and PROPOSITION

2.3 p. 1767 of paper [B)).
o0 € (0,1/2). (40)
Let us also choose a parameter v with
ve(0,1/2 — o). (41)
The subsolution is sought in the form U(z;n, (¢),v) where:
Ulzing v) = Ulz;ng +ko(ng)) —v (42)
with k,(ng ) defined as satisfying the condition

o(ng +ko(ng)) =g ) +v (=U (g +ko(ng);m0 + ko)) (43)
Let
) = Dl v, B) = 50 (j;;ma n kma))) . (44)

3
Next, we fix x > 3 and let the function ny : [0,77) — (0,7) be defined as the solution to an ordinary

differential equation:

dny v
%)= ——— VB, (45)
dt L(ny (t))x
where T~ is such that:
g (T7) =7 and olip) =1 v, (46)

We assume that 7, satisfies the initial condition:
19 (0) = 7o.
Where 7jg, 79 were previously set.
The construction of the sub-solution U~ (z,t) of Eq. (6 is summarized in the following theorem.

Theorem 5.2 p.2052 For B sufficiently large, the function U~ (x,t) given by

U (1) = { U(x;ng (t),v) forte0,T7), (47)
" Ul —weexp(=B(t—T7)) forte [T, o0).

s a sub-solution of Eq. (@ Here ng (t) and T~ are defined by and (@), respectively.
Numerical examples

The numerical simulations confirm that the actual solution to the considered time dependent
problem is lying between the constructed sub- and super-solutions if only the initial solution is lying
between the constructed initial sub- and initial super-solution as shown in Figures [J] and [I0] In
our numerical simulations, we take the following values of the parameters defining the super- and
sub-solution to Eq. @:

B = 1000, ijp = 7 — 3.05, 00 = (1) = 0.40876, v = 0.05,
(48)
X =5/3, nf = o + 0.2,0(nf) = 0.47353.
The initial position of the subsolution U(+; 7o, v) is equal to U (+; 7jp+0.1)—wv. It follows that k, (1)) ~ 0.1
(where k, is defined in (43))). From and the increasing properties of U(-;19) with respect to
1o € (0,7), we conclude that, in fact, U (x; i, v) < U(z;53) for all z € [0,7].
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initial condition for Eq.@. The solid black curves depict the solution to Eq.@ and the dashed red curves correspond
to the sub-solutions at the given time. Left upper panel: The sub-solution and solution curves for ¢ = 0.1. Right upper

panel: The sub-solution and solution curves for ¢ = 0.175. Left lower panel: The sub-solution and solution curves for
t = 0.25. Right lower panel: The sub-solution and solution curves for ¢t = 0.4.
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15



2.5 Summary of the results

All three papers [B], [C], [E] consider analytical solutions to the traveling wave problem on the sphere.

In paper |B] exact analytical construction of stationary solutions to Eq. was done, basing on
the properties of the hypergeometric functions. In the paper we have proved that the constructed
stationary solutions are unstable. This fact plays a key role in activation processes taking place on
the cell membrane. The instability property was shown with the help of the theory of weak sub- and
super-solutions. Using the explicit form of the stationary solution it was shown that for relatively
small values of the diffusion coefficient (equivalent to large values of the parameter B), the profile of
the stationary solution is changing abruptly with the small perturbations of parameter o near oy = 0.5
(see Figure E[) Because the stationary front is a separatix, we have to initially activate very small
amount of receptors around the north pole of the of the sphere (corresponding to the angle = 0)
to induce the total activation of the cell in in the considered model (see Egs. (1.3)-(1.4) in the paper

(B).

In the papers [C|[E] we have described, among others, the construction of the traveling wave like
solutions to Eq. generated by monotonic initial data. To examine their smoothness, we used the
mild solution approach and analysed the infinite series of the Legendre polynomials together with
the series obtained by its formal differentiation. The form of this series was complicated due to the
discontinuity of the reaction term. Finally, the weak sub- and super-solutions were built. It was shown
by numerical simmulations, that the time dependent solution lies between the constructed sub- and
super-solutions, if only the initial data lie between them.



3 Wayve front blocking in 3D and 2D domains - papers D),

3.1 Motivation

The motivation for the next papers are ubiquitous phenomena of pattern formation, in particular in
diverse biological systems. Within the framework of reaction-diffusion description, spatial patterns
may be understood as stable stationary solutions with non-zero gradients of concentrations, establish-
ing polarization of the considered region or other forms of non-homogeneity in general. In majority
of cases, pattern formation processes are opposite to diffusion phenomena, which tend to equalize the
concentration to the average level. It was shown already in Casten and Hollandﬂ and in Matanﬂ
that stable non-homogeneous solutions of a single reaction diffusion equations with zero Neumann
boundary condition in convex domains do not exist.

THEOREM (Casten & Holland 1978) Suppose that Q is a convex subset of R™ and u : Q — R is
a nonconstant equilibrium (stationary) solution of class C3(Q) of the problem

% = Au+ f(u) in (0,00) x £, (
49)

ou

e 0 on (0,00) x O

then u is unstable.

In the paper ([D]), we have successfully tested the hypothesis about the possibility of stopping traveling
fronts in widening, concave parts of 3D channels, as in Figure We also aimed to show that we can
generate stable spatialy non uniform stationary solutions arising as a result of blocking traveling fronts
in diverse 3D geometry domains (see Figure . It needs to be stressed, that such blocking is just the
result of local widening of channels, i.e. the effect of influence of purely geometrical properties on the
front propagation. The consequences of such a phenomenon may be far-reaching. It is described by
a relatively simple model including only one reaction-diffusion equation. However, it can incorporate
also an influence of geometry and its time changes on the evolution of biological systems. The model
does not go deeper into molecular level but may be a good heuristic hint for developing novel models
of pattern formation. The similar hypothesis about the possibility of stopping traveling fronts on
2D boundaries of channels (at its concave parts) has been checked in the paper (FJ). Another result
of this paper concerned modeling the influence of polarization of the surface on polarization of the
volume by suitable system of reaction diffusion equations. Finally we aimed to characterize the curves
of stationary front localization.

3.2 Main results

3.2.1 Wave front blocking in 3D domains - paper [D|

Polarization of concave domains by traveling wave pinning
Bialecki S, Kazmierczak B., Lipniacki T
PLOS ONE 12, 12, e0190372-1-10 (2017)

Pattern formation is one of the most common and the most important fundamental phenomena
in biology at various spatial and temporal scales. The spatial structures appear in a natural way
in the population dynamics of living organisms, play a key role in the processes of morphogenesis,
and are also closely related to the processes of signal transmission inside cells. Gradients of spatial
concentrations of the relevant proteins may regulate the processes of cell division and cell movement.
We propose a simple polarization mechanism described by a single reaction-diffusion equation. The
main difference between the proposed mechanism and Turing bifurcation is revealed in the fact that
it allows for the establishment of concentration gradients in specific sub-regions of the region under
consideration.

Consider a scalar reaction-diffusion equation with homogeneous Neumann-type boundary condi-
tions:

14 Casten, R. G. & Holland, C. J. Instability results for reaction diffusion equations with Neumann boundary condi-
tions. Journal of Differential Equations 27, 266—273. doii10.1016/0022-0396(78)90033-5 (1978).

15Matano, H. Asymptotic behavior and stability of solutions of semilinear diffusion equations. Publications of the
Research Institute for Mathematical Sciences 15, 401-454. doi:10.2977/prims/1195188180 (1979).
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% = DAu+ f(u) in [0,00) x 2
B4 (50)
= 0 on [0,00) x O9.

To establish the attention, we choose f in the form
flw)=1-u)(I+u)(ute), ecl0,1) (51)

Lets assume that the heteroclinic traveling wave front being solution to the problem is running
in the domain 2 shown in Figure As a result of interaction of the traveling wave front with the

Initial condition: u=1 Initial condition: u=-1

Figure 11: Initial conditions for traveling wave in 3D domain

inhomogeneous boundaryFE] of the region (especially its concave pieces), this wave front may stop,
establishing the polarization of the region. If we assume D < 1, this effect can be explained basing
on the approximate formula for the effective front propagation speecﬂ

U= &+ D(Ry + Ra), (52)

where ¢ corresponds to the ’one-dimensional’ velocity, while K1, Ko are the local principal curvatures
of the front surface. For regions 2 having the form of axially symmetric cylinders with variable
intersection, the front surface is spherical, so k1 = k3 = 1/R, where R is the radius of the sphere.

Objectives and general strategy of numerical simulations

As we said, the main objective of the paper [D] was to show numerically that stable stationary
spatially nonhomogeneous solutions to Eq.— can be obtained by traveling waves’ pinning at
concave parts of the channels, in which they are propagating. Moreover, as a sort of additional
outcome of our numerical investigation, we wanted to check how precisely is fulfilled depending
on the magnitude of the coeffciecient D. It turns out that the effect of wave blocking is most easily
generated for sufficiently small, but nonzero values of the diffusion coefficient D. For such values of D,
the localization of the transition region (with width proportional to \/ﬁ) and its radii of curvatures
are relatively well determined. The transition region can be represented, for example, by the spherical
surface u(x,t) = —e¢, to which the corresponding value of the curvature radius R can be assigned. In
this way, we can find numerically the position of the wave pinning, and conclude that relation is
satisfied with relatively good accuracy. Though, blocking phenomena can exist also for bigger values
of D, it follows straightforwardly from our calculations, that they may cease to arise for sufficiently
large D, even if they should take place according to relation . Finally, it is also worthwhile to
emphasize, that an alternative approach using the variational calculus is presented shortly in section
Discussion of the paper [D].

Assuming that the front surface is spherical and locally perpendicular to the boundary of Q we
conclude that the radius of the front curvature equals

dr

R(z) = /1 + (ﬁ)_2 (53)

as can be derived basing on Figure [12].
Now, it follows from and Figure [12|that given zg

16Berestycki, H., Bouhours, J. & Chapuisat, G. Front blocking and propagation in cylinders with varying cross
section. Calculus of Variations and Partial Differential Equations 55, 44. doii10.1007/s00526-016-0962-2 (2016).

7Tyson, J. J. & Keener, J. P. Singular perturbation theory of traveling waves in excitable media (a review). Physica
D: Nonlinear Phenomena 32, 327-361. doi:10.1016/0167-2789(88)90062-0 (1988).
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Figure 12: Derivation of Eq. characterizing the radius R(zo) of the front sphere and its connection with the

position zg where the front is stopping.

2D
R(Zo) ’
Using Eq.7 we can conclude that a stationary front stopped at zp, satisfies (for D < 1) the
following relation between its radius and the velocity of the one dimensional plane wave

v(zg) = ¢ —

(54)

2D
R(z0)

It is obvious that the stationary front is stable, if, for |z — zo| sufficiently small, v(z) < 0 for z > 2o
and v(z) > 0 for z < z9. As ¢ = const, then by means of relation , it implies that

(Cjzf) - < 0. (56)

Condition is equivalent to the inequality:

0=c— (55)

7 (20)% + 1" (20)* < 7(20)r" (20). (57)

This inequality shows that the stable pinning takes place at sufficiently abrupt openings of the
propagation channel.

Remark 3
Inequality appears in the paper [D] as inequality (6) with opposite sign, but this difference was
only due to the typographical error. O
Remark 4

The reaction diffusion Eq. in spherical coordinates takes the form:

% 7D(82u 2 Ou 1 0 ( 8u> 1 % (58)

or2 + ror + r2 sin 6 00 sm@% + r2sin29@> + f(w).

If u has spherical symmetry and does not depend on ¢ and €, then in the vicinity of r = R we obtain:

ou O?u 2 0u
— 2D+ =— . 59
5t = (5 * 7ar) + 1 (59)
Assuming that the solution to Eq. has locally the form of travelling wave u(x,t) = u(r — vt) we
obtain for D <« 1: o2 5
U 2 U

where from it follows that locally the solution is a travelling wave propagating with an effective speed
v =c— 2Dk, (61)

where ¢ is speed of the plane wave and k = 1/R is the curvature of the great circle on the sphere with
the radius R in agreement with Eq..
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Moreover, using Lemma, 2 from APPENDIX for n = 3, in the local coordinates (71, 72) connected
with a smooth two-dimensional hypersurface ¥ and the perpendicular direction & at a given point
Xo € 2, we can write Eq. in the vicinity of this point in the form:

Ju Pu 0%u  *u Ju
(o o

ot o€ oni  On; o
where by appropriate rotation of 7; and 7, axes, k1 and ks can be considered as the main curvatures

of the considered hypersurface ¥. Assuming that the solution to Eq. has locally the form of
travelling wave u((&,n1,72),t) = u(§ — vt) we obtain for D < 1:

)+ Dlra(x0) + ralx0)) 52 + f(w), (62)

2
Dz + (Dlax) + raloxa)) + v) G + f(w) =0, (63)
from where, taking into account the directions of the vectors K1 (xg) and K2(xX0), we obtain for D < 1
the approximate equality . O

For the source function f(u) = (1 — u)(1 + u)(u + €) the 1D (or plane) traveling wave solutions
of problem 7 i.e. solutions of the form u(z,t) = u(x — ct) = w(§) are given explicitly (see, e.glﬁl7
(13.88))

_ 1= Hexp(§/wo)
1+ Hexp(&/wp)’

for an arbitrary constant H # 0, with front velocity ¢ and front width 2wy

w(§)

(64)

c=evV2D and wozﬂg. (65)

Then
1 €

R(z0) V2D

0.8 |[—D=032
D=0.08
0.7 i D=0.02
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Figure 13: Characterization of the pinning position in the local widening of the domain © shown in Figure

The accuracy of relation , has been checked numerically and illustrated in Figure where

€

the dependence of 1/R as a function of the ratio 755 for the domain 2 in Figure [11| has been shown.

8Murray, J. D. Mathematical Biology (Springer-Verlag New York, 2002).
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Figure 14: Nonconstant stationary solutions in different biological geometries obtained by traveling wave pinning: (a)

Bones, (b) Budding yeast cell, (c) cells with large nucleus (e.g. B-cells), (d),(e) adherent cells

Summary of the results

In the paper [D], we showed that heteroclinic traveling wave solutions to a scalar bistable equation
of reaction-diffusion type with appropriately chosen parameters can stop on concave portions of the
boundary of 3-dimensional domains. Depending on geometry, a number of stationary fronts may
be formed leading to complex spatial patterns (as in the Figure . In contrast to the Turing
bifurcation, the presented polarization mechanism is described by a single equation. Moreover, it
allows for maintaining gradients of the analysed variables in the specific regions of the considered
domain. If linking the instant domain shape with the instant spatial pattern, the mechanism can
be responsible for cellular polarization and differentiation during morphogenetic processes. The work
contains also a number of results of numerical simulations presented in Figure which indicate the
potential application of the proposed mechanism, e.g. to explain polarization processes of various
types of biological structures at the cellular and tissue levels.

The numerical calculations have been carried out by means of the COMSOL Multiphysics (version
4.3 b) software. Additionally, I constructed appropriate Matlab scripts and the COMSOL LiveLink
module for Matlab was used to obtain numerical graphs characterizing the blocking phenomena. O
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3.2.2 Stopping of the wave front propagating on 2D domains - paper

|Traveling and standing fronts on curved surfaces
Biatecki S, Natecz-Jawecki P, Kazmierczak B, Lipniacki T
|Physica D 401, 132215 (2020)

In the paper, we analyze heteroclinic traveling waves propagating on two-dimensional manifolds
formally described by reaction-diffusion equation with homogeneous Neumann-type boundary condi-
tions:

ou .
gz DAu+ f(u) in  [0,00) x £, ©7)
— =0 on [0,00) x 09,
on
where
flw) =1 —uw)(1+u)(u+e). (68)

Here Q is the 2D boundary surface of 3D domain (see Figure, e € [0,1), D is diffusion coeflicient
and A is the Laplace-Beltrami operator acting on 2. The left hand side of the second equation denotes
the directional derivative of u in direction 7 - normal to the curve 92 limiting the surface €. The
direction of 77 can be selected into the exterior of ) and tangent to 2. Starting with the step like
initial condition, e.g. u(x,0) = u4 to the left of the cross section perpendicular to the axis of the
surface 2 and u(x,0) = u_ to the right of this cross section (as shown in Figure we can generate
a solution achieving after some time the form of a traveling wave propagating on 2 joining the two
steady states u_ = —1 and uy = +1 .

0}

Figure 15: The schematic geometry considered in the paper .

It is known P77 that for fronts moving in the plane, the modification of their velocity with
respect to the one dimensional speed is locally proportional to the curvature of the front line (see Eq.

197ykov, V. S. Analytical evaluation of the dependence of the speed of an excitation wave in a two-dimensional
excitable medium on the curvature of its front. Biofizika 25, 888-892 (1980).

20Tyson, J. J. & Keener, J. P. Singular perturbation theory of traveling waves in excitable media (a review). Physica
D: Nonlinear Phenomena 32, 327-361. doii10.1016/0167-2789(88)90062-0 (1988).

21Keener, J. P. A geometrical theory for spiral waves in excitable media. SIAM Journal on Applied Mathematics

46, 1039-1056. doi{10.1137/0146062| (1986).
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) in|[F]). We propose a generalization of this rule for non plane surfaces. It consists in replacing the
curvature of the front line with its geodesic curvature with respect to the surface by assuming that

7~ &+ Dk, (69)

where ¢ is the velocity of the one-dimensional traveling front solution for the first equation of
propagating in a plane locally tangent to the curved surface in a direction perpendicular to the front
line. (For f glven by (68| ., || = ¢, where ¢ is determined by the first equahty in (65).) The geodesic
curvature vector kg is defined as the projection of the curvature vector k of the front line £ on the
plane locally tangent to the surface at the considered point. (Let us note that relation appears
also in Zykov@) If the wave is moving on the cone surface as in the Figure in the direction of
growing area of the cross section perpendicular to the symmetry axis then

v~ ¢ — Dk, (70)

For the derivation of relation in the case of axially symmetric surfaces, see Remark 5.

In view of Eq. , on the concave parts of the boundary hypersurface, stable stationary fronts
can concentrate near curves of constant geodesic curvature. Eq. becomes strict in the limit
D — 0. In this limit the stationary front lines (v = 0) tends to the corresponding lines of constant

geodesic curvature k, = ¢/D = \/22%. This fact has been numerically verified in the paper with a

very high degree of accuracy (see Figure . The corresponding lines of constant geodesic curvature

Figure 16: Characterization of stationary front on the surface P satisfying z(z,¢) = Qsin(¢)(1 + 22); y(z,¢) =
cos(#)(1+ 22)

minimize the geometric functional describing the “energy” E (derived later in Eq.) for the problem
, consisting of two components: one proportional to the length L of the front line £ and other to
the area S_ of the surface S_, where the solution u is close to the lower stable point u_ and covered
by the front line:

E=aS_+bL.

It is convenient to parametrize the points on £ by assigning to them the corresponding arc length [
measured from a fixed point on £. Let 6¢(1) = m - 6£(1), where 1 is a unit vector in the direction
tangent to the surface, normal to L(s), and directed from S; to S—. The Sy is the surface (of the
area S;) where the solution w is close to the upper stable point u. The variational derivative of the
functional E:

SE = asS_ + bsL /(—a bk, )oedl + O(15¢]?) (71)
L

is zero if
kg =a/b (72)

and the front lines are stopping near lines of constant geodesic curvature. Hence a model establishes
a mechanism for the formation of spatial patterns on surfaces. The values of parameters a and b can

227ykov, V. S. Kinematics of rigidly rotating spiral waves. Physica D: Nonlinear Phenomena 238, 931-940. doi:10.
1016/7.physd.2008.06.009| (11-12 8th Sept. 2009).
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be determined with the following reasoning. Let us see that:

ov
ou

- /( j f(p)dp. (74)

The potential V is specified in Eq. up to an additive constant due to the arbitrary value of the
lower integral limit in . From the physical point of view this constant is however not essential.
For f given by and (-) chosen as 0, we have

DV?y — — =0, (73)

is stationary counterpart of Eq., where

1 2e 1 2 4e
—1)=—+—= H)=—-—-— -1)-V(Q1)=—.
V)= -+ 5, VD =-3-3, V(-)-V()=3
The last quantity does not depend on the choice of the lower integration limit.
Eq. may be obtained as the Euler-Lagrange equation from the following energy functional:

Elu] ::/Q(V(u(x))+%D|Vu(x)|2>dx. (75)

Thus assuming the specific form of the front profile and taking H = 1 we can obtain an approx-
imation of F[u] in the thin front limit:

Elu] = ,5 +ifL (76)
Hence
2¢
V2D’
Moreover the following necessary condition for stability of stationary solution can be obtained in
the form:

ky=a/b=

0°E ,
5 oo = /ﬁ(o) ( — #(1,0) — kgo)dl >0, (77)

where [ parametrizes the curve £, £ is the coordinate perpendicular to the curve £(0), x(I,0) is Gauss
curvature of the surface in position [, = 0 and kg is constant geodesic curvature for curve £(0).
If £ is to minimize F, the value of expression must be positive, which is not possible if k > 0
everywhere. Consequently, on surfaces with positive x, such as boundaries of 3D convex domains,
there are no stable stationary solutions not equal to constant. In particular, such solutions do not
exist on the sphere. This fact is confirmed in our paperB]. Thus, by Theorem 4.1 in [B] pp.1778-1779,
the explicit stationary solution of the problem @,@, (corresponding to Eq.(2.1) in [B]), with
F being bistable piecewise linear function, described in Lemmal[I] is not stable.
It should be emphasized that is only a necessary, but not a sufficient condition for the stability
of the front line. That is because we have limited ourselves to perturbations £ that are constant along
the front lines.

Finally, when the perturbations d¢ of the curve are not constant, but may depend on [, we can
arrive at an appropriate expression for the second variation of the functional E in the form:

5 = / [ B0 + 3 (28 ar (78)

The above formula shows that the inequality

(—r(1,0) — k) > 0 (79)

for every I € £(0), where £(0) = £({ = 0) is a sufficient (but not necessary) condition for the front
stability. When deriving the sufficient condition and the necessary condition, we used the Gauss-
Bonnet theorem.

In this way we have obtained the necessary condition and sufficient condition for front
stability.

As in the 3D case considered in the paper [D], the presented pattern formation mechanism is also
described by a single reaction-diffusion equation and combines the formation of the spatial polarization
pattern with the internal geometry of the surface.
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(a) Surface (b) Surface

D = 0.03
e =0.05
Symmetry plane Symmetry plane

Figure 17: The polarization of the boundary surface C generates the polarization of the entire volume C. D - surface

diffusion coefficient, d - spatial diffusion coefficient.

Moreover, we can show that the natural polarization of the surface can generate the polarization of
the entire region, for which the surface is the boundary (see Figure . For this purpose, we consider
a simple model in which the processes inside the cell C are coupled to the processes happening on the
cell membrane 0C by appropriate Robin-type boundary conditions.

So, we assume that on the cell membrane:

% = DV?u + g(u) on OC, (80)

with a bistable function g of the form

g(u):4u(ufl)(1;67u). (81)

We also assume that the kinase K concentration inside the cell is described by the equation

%—Ij =dV?’K —aK in C. (82)

This equation is supplemented with a boundary condition depending on the membrane variable u:
- VK = bu(l — K). (83)

These types of equations are often used in mathematical biology to describe signal transduction.
In this context, the variable u represents the level of activation of membrane receptors, which is
regulated through some nonlinear regulatory processes leading to the bistability of the function g(u).
The variable K represents the local concentration of activated intracellular kinases. Quantity 1 — K
is therefore the local concentration of non-activated kinases, activation of which through contact with
activated receptors implies the flux of activated kinases bu(l — K'), where b is the activation rate.
Factor a is the deactivation factor. D and d (D < d) are the diffusion coefficients of membrane
receptors and intracellular kinases, respectively. As a rule, d is an order of magnitude larger than
D. Numerical simulations showing the polarization of a volume C due to polarization just the volume
boundary surface dC is shown in Figure

Summary of the results

We have shown that, the polarization scheme designed in paper [D] works also in the case of 2-
dimensional hyper-surfaces. Stationary fronts can emerge at parts with negative Gaussian curvature,
on lines of constant geodesic curvature, for which an appropriately constructed energy functional
E attains a local minimum. In the paper, we present a mathematical analysis of this functional,
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in particular derive sufficient condition together with necessary condition for the stability of such
stationary solutions.

From the biological point of view such stationary front lines separate regions of different polariza-
tion of the boundary surface, emerging, e.g. via local activation of membrane receptors. By considering
a system of equations modeling boundary-volume interaction, we demonstrate that polarization of the
boundary surface can induce a corresponding polarization inside the volume. O

Numerical methods

As in the case of paper [D]we used the COMSOL Multiphysics (version 4.3 b) software, together
with the COMSOL LiveLink module for Matlab. Additionally, we used the Mathematica software to
find the curve of constant geodesic curvature. It has been done by demonstrating numerically that
the wave fronts being the results of COMSOL simulations indeed converge to a curve with a constant
geodesic curvature in the limit of very low diffusion.

To check the validity of the calculations performed by the COMSOL built-in tools, we used the
Laplace-Beltrami operator expressed in curvilinear coordinates on axially symmetric cylindrical sur-
faces. For completeness, in subsection 2. of APPENDIX we insert a short derivation of this repres-
entation.

Remark 5

Let us prove the validity of Eq. in the case of an axisymmetric 2D surface and heteroclinic fronts.
Note that, if [ denotes the signed length of the curve obtained by the cross section with a chosen
symmetry plane (see definition , point 2. of APPENDIX @, we have

19or 10r 0z 1 tan(a(l)) _sin(a(l)) ko (1)

rol  rdz ol r(l) 1+ tan(a(l))? oo
where «(1) is an angle between the line tangent to the curve r(I) at the point (r(1), ) and the symmetry
axis (see also Figure , and kg4 (1) is the geodesic curvature of the circle r(¢) = const at this point
on the surface. Let us assume that locally, close to the point (r(1),1),

u(l,t) = u(l — vt). (84)
In view of , the first equation of system can be written as

ou 0%u ou
— =D— + Dk,—
ot o TPl
Using (84]), we obtain locally for D <« 1

+ f(u). (85)

2

0%u ou

hence finally
v=c— Dk, (86)

where c is the velocity of the plane wavefront in the direction of growing I. O

Remark 6

The form of the Laplace operator has been used to double check the correctness of the numerical
computations performed in the paper. These computations (Figure and Figure were carried
out in the COMSOL MULTIPHYSICS by using the “Coefficient form boundary PDE” module and
the “Parametric surface” module (for defining the geometry). To check the validity of the results,
I designed a simple axisymmetric geometry as above and compared the computations obtained by
“Coefficient form boundary PDE” module with the results obtained by the simpler COMSOL mod-
ule “Coeflicient form PDE” with the Laplace-Beltrami operator expressed in curvilinear coordinates. O

Curves of constant geodesic curvature.

Next, it seems worthwhile to explain, how the curves of constant geodesic curvature for the Figure
3 of the paper |F| (and Figure [18 below) were obtained. The curves presented in Figure (18| (b, ¢, d, e)
constitute “visual evidence” of the statement that with the diffusion coefficient D decreasing to 0, the
stationary front lines obtained as a result of solving the problem defined by Eqs.@— converge to
curves with constant geodesic curvature on the surface:

P ={(x,y,2): v = Qsin(¢)(1+ 2?),y = cos(¢)(1 + 2?), (2, ¢) € (=L, L) x (0,2x]}.
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The stationary front lines of heteroclinic solutions to Eq.@ were obtained by means of the COM-
SOL MULTIPHYSICS software. According to what has been said above, these curves may serve as
"COMSOL’ approximation to the curves of constant geodesic curvature corresponding to the limit
D = 0. Our strategy to show it, was to use the approximate values of kgc ~ 2¢/v/2D assigned to
the curve lines obtained with the help of the COMSOL software and perturbing them appropriately,
to be able to obtain closed curves with constant geodesic curvature k,. It turned out that using the
MATHEMATICA software (and an original code) we were able to find k4 close to kg such that the
equation

(.7 n)
e

defining geodesic curvaturﬁﬁ for a curve given in the parametric form

kg = (87)

T ¢ (11(¢),r2(d), 13(0))

could be satisfied. In , (r1,r9,73) are Cartesian coordinates, ('r',,r”,n) is so called scalar triple
product, and n is the local normal vector to the curve. The solution to Eq. defines curves of
constant geodesic curvature. The initial point of the curves (coinciding with the point of the original
approximate curves) have been taken from the symmetry plane ¢ = 0 of the surface P, which allowed
us to impose the condition 74(0) = 0 (where r3 is equivalent to z). The obtained curves satisfied the
conditions r(0) = r(27) and r5(27) = 0, so they were smoothly closing after one turn around the
surface P. These results have been presented in panels (c), (d), (e) of Figure (I8).

This analysis has been carried out for parameter e (appearing in the definition of the function
f ) taken from the set {6”5‘6“',2' = 1---50}, where €p,4, &~ 0.031 is such that above that value
no stationary front exists. For each such ¢ we obtained one stationary front using the COMSOL
MULTIPHYSICS software and then with our MATHEMATICA code we proved that this front
corresponds to the curve of constant geodesic curvature, which confirms the theory presented in the
paper. In contrast to panels (c), (d), (e), in panel (b) we find the curve characterized by the geodesic
curvature equal exactly to the theoretical value 2¢/ V2D by perturbing the localization of the starting
point on the line of cross section P N {¢ = 0}. The calculations were performed for € = €,4,/2.
It turns out that the coordinates z at points ¢ = 0 and ¢ = /2 of the stationary wave front line
(blue curve) are the most distant from the corresponding theoretical black curve of constant geodesic
curvature. The discrepancy in these points is visualized in the panels (c) and (d) to illustrate the
statement that asymptotically in the limit of small diffusion the curves of wave fronts converge to the
curve of constant geodesic curvature. The panel (e) presents the difference between the real value
of the curvature of the stationary front line for different values of € and the theoretical value of the
geodesic curvature (black line) in the limit of small diffusion in the axially symmetric (Q = 1) case.

23Struik, D. J. Lectures on Classical Differential Geometry Second Edition (Dover Publications, Inc. New York,
1988).
24Globodyan, Y. S. Geodesic curvature. Encyclopedia of Mathematics Accessed on June 23, 2023. 2020.
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Figure 18: Characterization of stationary front on the surface P satisfying x(z, ¢) = Qsin(¢)(1 + 22);
y(z, ¢) = cos(¢)(1+2?). (a) Position of stationary front for @ = 1/2, D = 0.005, and € = €pax ~ 0.031.
(b) z(¢) for the stationary front line for @ = 1/2, D = 0.005, and € = €yax/2. Numerical simulation
(blue line) versus theoretical prediction in the limit of D — 0 (black line). (c¢) and (d) z-coordinate
of the stationary front for ¢ = 0 and ¢ = 7/2 obtained in the numerical simulations (performed in
ComsoL MULTIPHYSICS 4.3b) of Eq. on P with the @ = 1/2 and Q = 1/8 versus theoretical
predictions in the limit of D — 0 (black line). (e) Geodesic curvature s obtained in the numerical
simulations on P with the circular cross-section (i.e. @ = 1) for four values of the diffusion coefficient
D (color lines) versus theoretical prediction in the limit of D — 0 (black line).
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4 Podsumowanie

W pracach stanowigcych podstawe niniejszej rozprawy przedstawiliémy modele matematyczne (oraz
ich analize) wybranych zjawisk zachodzacych w uktadach biologicznych. Immanentna cecha analizow-
anych procesoéw jest ich charakter przestrzenny. Podstawowym aparatem matematycznym uzytym
zaréwno do sformultowania powyzszych modeli, jak rowniez do analizy postawionych problemoéw byty
réwnania reakcji-dyfuzji. Tematyka przedstawionych prac obejmowala zasadniczo dwa typy zjawisk:
procesy zwiazane z transdukcja sygnatow w strukturach biologicznych oraz procesy zwigzane z for-
mowaniem sie wzorcow przestrzennych. Oba typy procesé6w maja fundamentalne znaczenie w biologii.
Pierwszy z nich jest podstawa funkcjonowania organizmoéow zywych w kontekscie korelacji procesow
biochemicznych w réznych obszarach komoérki oraz miedzy komoérkami, umozliwia réwniez adekwatne
reakcje komoérek na bodzce zewnetrzne. Drugi typ proceséw jest nierozerwalnie zwiazany ze zjaw-
iskami ksztaltowania sie organizmoéw zywych i ma kluczowe znaczenie w embriologii i morfogenezie.
Zrozumienie mechanizmoéw réznicowania sie komorek czy tez formowania sie wyspecjalizowanych nar-
zadow w tworzacych sie organizmach jest ciagle otwartym problemem zawierajacym takze ogromny
tadunek filozoficzny. Pracami motywowanymi zagadnieniem przenoszenia sygnaléw biologicznych sa
prace [B], [C]i[E], w ktérych rozwazamy procesy rozszerzania sie obszaru zaaktywowanych receptoréw
na membranie komoérkowej. W ramach zaprezentowanego modelu byliémy w stanie ilo§ciowo opisaé
efekty progowe oraz scharakteryzowaé¢ propagacje fali aktywacyjnej. Prace[A] [D]i[F] poswiecone sa
natomiast mechanizmom polaryzacji obszaréw zachodzacym na skutek zmiennej, dostatecznie skom-
plikowanej geometrii obszaréw. Oprdcz analizy teoretycznej prace te zawieraja szereg nietrywialnych
przyktadéw przestrzennych i powierzchniowych struktur polaryzacyjnych w zaproponowanym mech-
anizmie zatrzymywania sie fal biegnacych. Przedstawione prace pokazuja, ze modelowanie
przestrzenne jest poteznym narzedziem, zapewniajacym glebszy wglad w bogactwo efek-
tow zwigzanych ze zjawiskami biologicznymi. Moim zdaniem, sa one dobrym punktem wyjscia
do dalszych studiéow w opisanych powyzej obszarach badawczych. W zakresie pierwszej grupy prac
dobrze byloby rozwazy¢ propagacje sygnaléw na dowolnych zamknietych powierzchniach dwuwymi-
arowych z bardziej ogolng funkcja zrodtowa. W zakresie drugiej grupy prac naturalnym rozszerzeniem
tematyki byloby dolaczenie efektéw zwiazanych z niejednorodnosciami strukturalnymi osrodkow.
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5 Conclusions

In the papers constituting the dissertation, we presented mathematical models (and their analysis) of
selected phenomena occurring in biological systems. An immanent feature of the analyzed processes is
their spatial character. The basic mathematical apparatus used both to formulate the models and to
analyze the problems posed were reaction-diffusion equations. The topics of the presented works basic-
ally included two types of phenomena: processes related to signal transduction in biological structures
and processes related to formation of spatial patterns. Both types of processes are of fundamental
importance in biology. The first is the basis for the functioning of living organisms in the context of
correlation of biochemical processes in different parts of the cell and between cells. It also enables
cells to respond adequately to external stimuli. The second type of processes is intrinsically linked
to the phenomena of the formation of living organisms and is crucial in embryology and morpho-
genesis. Understanding the mechanisms of cell differentiation or the formation of specialized organs
in forming organisms is still an open problem, which comprises also a huge philosophical content.
Works motivated by the problem of biological signals’ transmission are papers [B],[C]and [E], in which
we consider the processes of activation of receptors on the cell membrane. Within the framework
of the presented model, we were able to quantitatively describe threshold effects and characterize
the propagation of the activation wave on the sphere. The papers [A], [D] and are devoted to the
mechanisms of polarization effects generated by varying and sufficiently complex spatial geometries.
In addition to the theoretical analysis, these works contain a number of non-trivial examples of spatial
and surface polarization structures in the proposed mechanism based on blocking of traveling waves.
The presented works show that spatial modeling is a powerful tool as it provides deeper
insight into rich effects connected with biological phenomena. In my opinion, these works
are a good starting point for further studies in the research areas described above. In reference to
the first group of papers, we plan to consider signal transduction phenomena on arbitrary closed 2
dimensional surfaces with a more general source function. In reference to the second group of papers,
a natural generalization would take into account effects connected with structural heterogeneity of the
media.
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6 APPENDIX

1. Laplace operator in IR" in local coordinates connected with an (n — 1)
dimensional hypersurface

Consider a hypersurface S = {(x1,z2,...,2,) : 1 — w(22,...,2,) = 0} defined in the vicinity of the
point xg € S. Assume that the hyperplane z; = 0 is tangent to the hypersuface S at the point xg. It
follows that

g;(xo):O, 1=2,...,n. (88)

Let
E=x1 —w(xe,...,xn) My=wmiy1 fori=1,....,n—1. (89)
Let us derive the expression for the Laplace operator A in the variables (£,71,...,7,—1) at the

point x = Xg.

Lemma 2 Suppose that and hold. Then at x = xg:

0? 0? )
Aceotns = (8752 + Z 37’02) + Z ,‘ﬁk(X(ﬁa—5

k=1,...,n—1
0%w o
where ki (xg) = —W(xo)7 kE=1,....,n — 1 are the principal curvatures of the surface S at
X = Xp- i
We have:
0x1 &Tl 85 8x1 8771
and

9 060 oni 0
8.23k (9l‘k 8{ Z 833k 8771

It follows that

9> 0 0,060 n; gy P R ) o,
8x1 T o 85 (8:101 o€ Z o0x1 8771) Z Ox1 On; (8:51 o0& Z 8;1 877])

and

0? _ 06 0 0¢ 0 on; on; 0 0 O on;
x2 Oy, O (&ck o€ Z oy, am> Z dxy, On; (aTk o€ Z oy, am)
Due to we have in some vicinity of xq:
o€ on; O

a—mzl7 axlzo, axkzd(i+1)k7 forie{1,...,n—1} and k € {2,...,n},
and exactly at x = xq, for kK =2,...,n,
08 _ 0w _
8xk n 8.23k a
We thus have at xq,
0? 0?
07 = o

and, for k=2,...,n,
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0? 0 o 0 H? 0 0w\ O 0? 9%wy 0 0?
B () 5 - (B s ()
Oz Onr—1 \Oxy, 0§ Oxy/ 0 01 Oxy /) 0§ 9%

Thus finally at x = xq:

0?n—1 - _Txk

1

9 =P K )
B = (8752 JFZ ) + Z/{k(XO)a—5

k=1

9.2
= o
where
0w 0w
kp(x0) = —=—5—(x0) = ——==(x0), k=1,...,n—1

Let us note that

n—1 n—1 n—

0*w 0
> kk(x0) = —T(XO)ZZ—W(XO)-
k=1 "k

2
k=1 9 k+1 k=1

Now, the Laplace operator is invariant with respect to orthogonal transformations of the coordinates
(in particular rotations) hence for n = 3 the last sum is equal to the sum of the principal curvatures
of the surface S at x = xg.

2. Laplace-Beltrami operator on axially symmetric surfaces

The Laplace-Beltrami operator in curvilinear coordinates has the following form:

1 g
Vif = Zi&- 1919”705 f ), (90)
= o)

where |g| = det (g) and g is a metric tensor, i.e. ds? = g;;dz’dz? and g" are the entries of the matrix

g~!. For the 2D axisymmetric hypersurface S, where S is given by the relation r = r(z), we have

ds? = r2d¢? + (1 + (%)2>d22, hence

dr\?
1 — 0
g= * (dz)
0 r2

In consequence, the Laplace-Beltrami operator acting on the function f : .S — IR has the form

1 0 r 8) 1 02

— 5: 2020 ) T Rag)
ry/[1+ |- 1+ |
dz dz

z@)[:/u (Z)zdz (92)

denote the signed length of the curve obtained by the cross section of S with the symmetry plane. By
means of , and the fact that

V2f =

Now, let

9z 1

ol i, % 2
dz

it follows that in the coordinates (I, ¢) the Laplace-Beltrami operator on S reads:

2 — —
Vf*ral

19( 8f> 182f_82f+18r8f 1 0%f

"or) T2ag T o T ral ol T ag?
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