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Abstract

Field electron emission (FEE) is a crucial tool of nanotechnology, a source of electron
beams valued for its stability, luminescence, and nowadays, safety and low energy con-
sumption. Carbon Nanotubes (CNTs) have been identified as excellent sources for field
emission. However, a theoretical framework to describe low-energy field emission is cur-
rently unknown, primarily due to unavoidable, correlated behaviour of one-dimensional
(1D) materials. This work aims to develop such a theoretical formalism.
It is known, that for over four decades, that 1D systems have been described by the
Tomonaga-Luttinger liquid (TLL) theory, which is based on collective modes such as
plasmon-type modes, thereby automatically accounting for interactions. Our hypothesis
is that the TLL can be used here to provide a description of field emission from these
systems. The collective effects have been included in both the density of states (DOS)
and the tunneling amplitude, as these are the primary factors to calculate. Therefore,
the TLL effects have been incorporated into both of these calculations.
Along with the calculations of the transmission for the general case of barrier described by
a fractional power law, the canonical Fowler-Nordheim (FN) theory has been expanded.
An exact analytical formula, expressed in terms of Gauss hypergeometric functions, has
been derived. It fully captures the emission for this generalized problem, including the
screened interaction with the image potential. Initially, the accuracy of the approximation
has been compared to the most advanced FN formulation where transmission is expressed
in terms of elliptic integrals. Subsequently, the dependence of the current on the exponent
of the power law has been thoroughly analyzed. To align with experiments, several
examples of rough metallic surfaces and dielectric-covered surfaces have been observed
demonstrating their compatibility with formalism.
In the following, parameters were identified that allow for exact analytical expressions
for the finite temperature local density of states (LDOS) of TLL. Merging the results
for LDOS N(r, ω;T ) and the transmission probability T (ω, F ), the current J(ω, F ) was
obtained, thus establishing a formalism that simultaneously captures the collective effects
due to electron-electron interactions and thermionic emission. The results reveal that
different types of nanotubes, along with their minigap and compressibility parameters,
can be easily distinguished, based on field emission measurements of these materials.
Overall, this thesis presents an investigation of the quantum mechanical phenomena of
FEE from CNTs, emphasizing the application of many-body physics to explain the effects
of electron-electron interactions in these nanostructures.
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Streszczenie
Emisja polowa (ang. Field Electron Emission, FEE) jest podstawową metodą produkcji
wiązek electronów swobodnych. Takie wiązki elektronów wykorzystuje się w mikroskopii
elektronowej, która umożliwiając nam obserwację struktur o rozmiarach nanometrów jest
krytyczna dla rozwóju nanotechnologii. Kluczowymi parametrami źródeł emisji są sta-
bilność, wysoka luminescencja, a od niedawna również bezpieczeństwo i niskie zużycie
energii. Nanorurki węglowe (CNT), a w szczególności matryce nanorurek wielościen-
nych (ang. arrays of MWCNT), są obecnie uznawane za najbardziej obiecujące źródła
emisji polowej w najbliższej przyszłości. Jednakże teoretyczne ramy opisu emisji polowej
nanorurek, szczególnie w kluczowym reżimie niskiej energii, były jak dotąd niezane.
Istotną przeszkodą było podanie opisu uwzględniającego skorelowane zachowanie elek-
tronów, a takie zachowanie jest nieuniknione w materiałach jednowymiarowych (1D),
których sztandarowym przykładem są CNT. Niniejsza praca ma na celu rozwinięcie
takiego teoretycznego formalizmu.
Wiadomo, już od lat 80-tych dwudziestego wieku, że systemy 1D opisuje teoria cieczy
Tomonagi-Luttingera (TLL), która opiera się na modach kolektywnych, takich jak mody
typu plazmonowego, automatycznie uwzględniające korelacje. Nasza hipoteza zakłada,
że teorię TLL można zastosować także do opisu emisji polowej z nanorurek węglowych.
Efekty korelacji należy uwzględnić zarówno przy obliczeniach gęstości stanów (DOS), jak
i w amplitudzie tunelowania. Oba te problemy rozwiązano w przedstawionej pracy.
Dla obliczenia amplitudy tunelowania, T (ω, F ), rozważano transmisje przez barierę dla
ogólnego przypadku bariery opisanej prawem potęgowym ułamkowym. W tem sposób
rozszerzono kanoniczną teorię Fowlera-Nordheima. Wyprowadzono dokładny wzór anal-
ityczny, wyrażony w postaci funkcji hipergeometrycznych Gaussa, który w pełni opisuje
emisję w tym uogólnionym problemie, uwzględniając zarówno ekranowanie pola jak i
oddziaływanie z potencjałem ładunku pozostawionego w nanorurce. Dokładność tego
rozwiązania potwierdzono poprzez porównanie z dotychczas najbardziej zaawansowanym
sformułowaniem teorii Fowlera-Nordheima, gdzie transmisja wyrażana jest w postaci
całek eliptycznych. Następnie dokładnie przeanalizowano zależność prądu od wykładnika
prawa potęgowego bariery. W celu rozważenia rzeczywistych sytuacji w eksperymentach,
przedyskutowano kilka przykładów szorstkich powierzchni metalicznych i powierzchni
pokrytych dielektrykiem.
W kolejnej części pracy zidentyfikowano parametry, które pozwalają na podanie dokład-
nych wyrażeń analitycznych dla lokalnej gęstości stanów (LDOS) TLL w skończonej
temperaturze, N(r, ω;T ). Łącząc wyniki dla LDOS N(r, ω;T ) i prawdopodobieństwa
transmisji T (ω, F ), otrzymano prąd emisji polowej J(ω, F ). W ten sposób otrzymano
formalizm, który jednocześnie ujmuje efekty kolektywne, spowodowane oddziaływaniami
elektron-elektron, oraz emisje termiczną. Wyniki pokazują, że na podstawie pomiarów
emisji polowej rozważanego materiału – matryc MWCNT – można rozróżnić różne typy
nanorurek, wraz z wielkością ich miniprzerwy i parametrami ich cieczy elektronowej.
Podsumowując, niniejsza praca przedstawia zastosowanie mechaniki kwantowej i fizyki
wielu ciał do opisu FEE w nanostrukturach typu CNT.
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Chapter 1

Introduction

Somewhere, something incredible is waiting to
be known.

Carl Sagan

In this chapter, we give an introduction to three main research areas of this thesis:
electron emission, carbon nanotubes and the Tomonaga-Luttinger liquid.

1.1 Electron Emission

Many critical tools of nano- and atomic-scale engineering rely on our capability to create
and steer free electron beams. Obviously, the first step in this direction is to create the
free electron source. This requires finding a reliable way to extract electrons from the
material - a process called electron emission - which has become a major field of research
at the intersection of solid state physics, materials science, and vacuum technology over
the decades.
Electron emission, an important concept in physics and materials science, is the process
where an electron escapes from the surface of a material, usually a metal. At the atomic
level, every atom has a positively charged nucleus surrounded by negatively charged
electrons. In some cases, these electrons are loosely bound to the nucleus, making them
susceptible to external influences. A small amount of energy, like a little push or a tap,
may cause these electrons to fly out of their orbits.
There are free electrons inside a metal surface. These electrons, although not bound
to any particular nucleus, do not easily escape from the surface of the metal. This is
due to the overall neutral charge of the metal. When an electron leaves the surface,
it gives a positive charge to that area, creating an attractive force to pull the electron
back. Therefore, a surface barrier is formed at the metal interface, effectively containing
the free electrons inside the metal. To take these electrons out from the metal surface,
sufficient force must be applied to overcome this surface barrier.
Various physical mechanisms can cooperate to cause electron emission. To define them,
each mechanism should be considered separately, which may perhaps seem artificial but
it promotes a better explanation. This is a paraphrase of the list originally proposed in
Ref. [1]:
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1.1. ELECTRON EMISSION

• Field emission (indicated by the blue arrow in Fig. 1.1) occurs when high electric
fields facilitate electron emission through quantum mechanical tunneling, a process
described by the Fowler–Nordheim equation [2].

• Photoemission (indicated by the green arrow in Fig. 1.1) is the process where the
emission of electrons occurs due to the absorption of photons, allowing the electrons
to gain sufficient energy to overcome the potential barrier. This phenomenon is
described by the Fowler-DuBridge equation [3].

• Thermal emission or thermionic emission (indicated by the red arrow in Fig.
1.1) refers to the process where electrons are emitted as a result of heating the
cathode, enabling the electrons in the thermal tail of the distribution function to
gain enough energy to pass the surface barrier. This phenomenon is quantitatively
explained by the Richardson-Laue-Dushman equation [4].

We see that each of these mechanisms is distinguished by the original source that caused
the emission. There are also phenomena where electron-electron interactions dominate:

i. secondary emission (indicated by the green arrow in Fig. 1.1) involves the release
of electrons due to the hitting of a surface by high-energy primary electrons. These
primary electrons transfer sufficient energy to secondary electrons allowing them
to overcome the surface barrier. This process is mathematically described by the
Baroody equation [5].

ii. space-charge limited emission refers to the phenomenon where the current is
limited due to the accumulation of charge in the anode–cathode (AK) gap, which
acts to hinder the electric field at the surface of the cathode or to limit the amount
of charge crossing the gap [6].

Figure 1.1: Energy-band illustration of the electron-emission mechanisms for a material
describing the initial energy state of electrons. The solid/vacuum interface is represented
by the red dashed-dotted line, while the dotted lines represent the vacuum level for the
different electron-emission mechanisms: field electron emission – blue arrow, thermal
emission – red arrow, secondary emission and photoemission – green arrow. Here, EV AC

is the vacuum level, Ef is the Fermi level, and ω0 is the cathode work function (Figure
adapted from [7]).
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CHAPTER 1. INTRODUCTION

The last two are in essence many-body phenomena, separated artificially from others, as
in fact they are present during each emission event no matter what the original driving
force had been. Describing these is an active field of research. An ongoing research is also
in a mutual collaboration of various mechanisms, e.g. how light (i.e., photon assistance)
or finite temperature does affect the field emission.
Electron emission is widely used in numerous scientific and technological sectors, includ-
ing electronics, communication, imaging, energy transformation, and detection1. Devices
employing electron emission include vacuum tubes [8], cathode ray tubes (CRT) [9], [10],
vacuum diodes [11], [12], triodes [13], [14], magnetrons [15], field emission displays [16],
[17], [18], electron microscopes [19], [20], [21], nanoelectronic devices [10], [22], solar cells
[23], photodetectors [24], photomultipliers [25], cameras [26], [27], and scintillators [28].
In our formalism, the primary focus is on field emission (explained in detail in later
sections of this chapter), although when the energy of an electron is varied, discussions
about photon-assisted field emission can be held, which is closely related to photoemis-
sion. While our model does not primarily focus on thermionic emission, temperature
variations are accounted for. This enables the study of the transition between field emis-
sion, dominant at lower temperatures, and thermionic emission, which becomes significant
at higher temperatures.

1.1.1 Historical Review of Field Electron Emission

In order to explain the impact of field emission on contemporary engineering sciences, we
will provide here a very short review of the historical development of relevant technologies,
particularly emphasizing open research questions. A more extensive version of these
developments can be found either in Ref. [29] or in Ref. [30] and the "2nd gate to
microcosm", an autobiography of Ernst Ruska, the scientist who was a founding father
of electron microscopy, for which he obtained Nobel Prize in Physics 1986, on which this
subsection is based on.
The earliest recorded observations of field electron emission can be traced back to Winkler
in 1744 [31], who reported electrical discharges from wire electrodes. An interesting
phenomenon that further clarifies the nature of electron emission was observed by Thomas
Edison, often referred to as the "Edison effect" [6]. During Edison’s experiments with the
incandescent lamp, unexpected electrical discharges were discovered. This phenomenon,
initially a mystery to the scientists of the time, was eventually understood, the observed
current being recognized as cathode rays. This discovery formed a fundamental basis for
understanding electron emission. Debates over the nature of these rays, whether ethereal
or material, ultimately concluded with the confirmation of their particle nature. This
early research laid the foundation for later, more structured studies of electron behavior,
significantly advancing the field.
However, a proper understanding of the phenomenon did not emerge until after J.J.
Thomson’s discovery of electrons in 1897 [32]. At Cambridge University, Thomson’s
seminal work involved demonstrating the deflection of cathode rays in a capacitor plate
setup. This research established the particle nature of cathode rays and also earned him
the Nobel Prize in Physics in 1906. It laid the groundwork for more structured studies
of electron behavior, significantly advancing the field.
Before a comprehensive understanding of field electron emission, related phenomena like
thermal emission (Richardson effect) observed in 1916 [33] and photoemission (Einstein’s

1It is necessary for each application requiring the free electron beam.
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photoelectric effect) observed in 1905 [34] were documented. These phenomena involved
the emission of electrons due to thermal energy or photons, respectively.
After 1922, various experimental efforts were undertaken to investigate field electron
emission. Groups led by Millikan [35] at Caltech, Gossling [36] at General Electric in
London, and Lauritsen [37] and Oppenheimer [38] independently, sought to characterize
the current-voltage relationship in field electron emission.
A significant theoretical breakthrough occurred after the development of quantum me-
chanics. In 1928, Fowler and Nordheim proposed a theory[2] of field emission based on the
quantum tunneling of electrons. They introduced the Fowler-Nordheim (FN) equation
that predicted a specific current-field dependence, which matched experimental results.
The success of this theory provided evidence for quantum tunneling and Fermi-Dirac
statistics for electrons. The most direct application of field emission is field electron
microscope (FEM). Erwin Mueller’s development of FEM in 1937 marked a major ad-
vancement [39]. FEM allows to image the surface of the tip. It became a powerful tool for
studying material characteristics and structures, leading to developments in the field of
surface science. It was the first one that enabled us to see single atoms in 1951. This in-
novation opened up new possibilities for investigating surface properties and behaviours.
The concept of the field electron microscope was extended to various other instruments
in surface science, contributing to advancements in understanding the properties and
behaviors of materials at the atomic and subatomic levels.
FEM allows imaging of the tip only, so it is not very versatile but the stable beam
of electrons allowed for development of other tools. The mid-20th century witnessed a
transformative leap in the ability to probe the nanoscale world through the development
of transmission electron microscopy (TEM). TEM used electron beams to overcome the
limits of classical optical microscopy, building on the foundations of field electron emis-
sion. This progress was made possible by the need for a stable source of electron beams,
an important requirement met by developments in field electron emission technology.
Field emission provides the consistent, high-intensity electron beam essential for the
high-resolution imaging capabilities of TEM and SEM.
Since the discovery of the wave nature of electron in the late twenties of the 20th cen-
tury, researchers have been aware that these electron waves can overcome the optical
diffraction limit. Finally, the electron microscope’s version of Ruska, built in 1933, could
achieve magnifications ten times greater than existing light microscopes, for example, a
magnification of more than 12,000 times. The reason for this significant improvement is
the shorter wavelength of electrons compared to light. Electrons, having much shorter
wavelengths, allow TEM to bypass the diffraction limit that restricts the resolution of
traditional optical microscopy, allowing much finer detail to be resolved.
In the 1960s, Albert Crewe and his team made significant advancements in electron
optics and imaging techniques, which led to the development of the first commercial
high-resolution electron microscope. However, the development of aberration–corrected
electron microscopes in the 1990s further improved TEM’s resolution and imaging ca-
pabilities leading to phase sensitive technique with Å, single atom resolution. Scien-
tists Harald Rose, Maximilian Haider, and Knut Urban played a crucial role in devel-
oping aberration correction technologies that effectively addressed defects in electron
lenses, leading to enhanced resolution. Nowadays, all these aberration controlled High-
Resolution Transmission Electron Microscopy (HRTEM) relies, on the top of interference,
on high-performance-computation methods where the knowledge about energy distribu-
tion of original, emitted electron beam plays a central role. Thus, the engineering of
HRTEM devices meets here developments in materials science of electron sources.
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A different path of electron microscopy development was that of low-energy-electron
microscopy; it first became operational thanks to works by Ernst Bauer and Wolfgang
Telieps in 1985. Here, the aim is to study real-time dynamics that takes place on larger
areas of the surface, answering research questions on phase transitions, mesoscopic order-
ings, and self-organization. This class of methods is actively pursued – further derivatives
of the LEEM are: bright and dark field micro-imaging, spin-resolved imaging, mirror and
reflectivity contrast imaging and even electron holography. In all those cases, particularly
in holography, detailed knowledge about the incoming electron beam is again crucial. The
electron diffraction methods described below were also derived from the LEEM.
In 1981, German physicists Gerd Binnig and Heinrich Rohrer refined both FEM and
SEM approaches by developing a technique similar to field emission, but on an extremely
small scale. They used a concept similar to having a cathode, which is like a plate,
on top of the material and gradually shrinking it down. This gradual size reduction
enabled the probing of objects from macroscopic down to nanoscopic scale. Further
miniaturization of the cathode to an extremely small size comparable to a single atom
led to the development of the Scanning Tunneling Microscope (STM). This innovative
microscope duplicates the principle of field emission, where the material is probed with an
increasingly small cathode, performing the remarkable achievement of atomic resolution.
The STM complements rather than competes with Ruska’s transmission microscope.
Therefore, in 1986, Ruska, Binning, and Rohrer shared the Nobel Prize in Physics.

Another application of stable electronic beams is in electron wave diffraction ex-
periments. Here, the control of beam’s monochromaticity is crucial. In 1927, the de
Broglie hypothesis, claiming that the mass of an electron was small enough to exhibit
the properties of both particles and waves, was experimentally confirmed at Bell Labs
by Clinton Davisson and Lester Germer [40]. They conducted an experiment where they
fired low-energy electrons at a crystalline nickel target, observing diffraction patterns in
the angular dependence of the intensity of backscattered electrons [40], [41]. Shortly af-
ter, Thomson and Reid published their own electron-diffraction work, using much higher
kinetic energy [42], thousands of times greater than that employed by Davisson and Ger-
mer. These investigations provided strong evidence for the wave properties of electrons
and marked the inception of electron-diffraction research. The significance of low-energy
electron diffraction (LEED) grew in the 1960s. This surface-sensitive approach was criti-
cal in determining the atomic arrangement of crystalline surfaces and in gaining a better
knowledge of nanoscale material characteristics. Along with TEM, LEED transformed
the comprehension of the nanoscale world, revealing detailed surface structures and inter-
actions and laying the foundation for contemporary materials research. In addition to the
remarkable historical events outlined earlier, the area of electron emission has experienced
ongoing growth with a multitude of contemporary achievements that have advanced the
comprehension of materials, nanoscale phenomena, and time–resolved imaging methods.
These achievements have transformed multiple disciplines and cleared the path for the
latest research and applications.

1.1.2 Tunneling Phenomena and Field Electron Emission:
Basic Explanation

Field electron emission, also known as electron field emission or just field emission, is a
quantum mechanical phenomenon that occurs when electrons tunnel from a metallic solid
into free space, typically a vacuum, under the influence of a strong electric field. Unlike

– 6 –



1.1. ELECTRON EMISSION

other electron emission methods, such as surface photoemission or thermionic emission,
the field electron emission does not require electrons to exceed an energy threshold. In-
stead, it depends on their ability to tunnel through a potential barrier. This phenomenon
can be explained only by quantum mechanics. In classical mechanics, potential barri-
ers are impenetrable. However, quantum mechanics allows particles to tunnel through
these barriers, appearing on the other side. This fundamental mechanism underlies field
electron emission.
The field electron emission process is determined by the work function of the material,
which is the energy required for an electron to escape the surface of the metal. Metals
have a substantial barrier, characterized by the work function that is several electronvolts
above their Fermi energy. The detailed discussion is in Chapter 6, Sec. 6.7.
From the view of fundamental physics, field electron emission is a quantum tunneling
phenomenon from solids to a vacuum. More precisely, field emission is a method for
electron emission applying an electric field to modify the shape of the barrier (see Fig.
4.1). When a highly positively charged metal plate is placed next to a metal surface, the
positive charges inside that anode pull out free electrons from the metal surface (Fig.
1.2). If the positive potential on the anode is strong enough, it will overcome the work
function and release free electrons from the metal’s surface.

Figure 1.2: Illustration of field electron emission: electrons are emitted from a metal
surface due to the influence of a strong electric field by a positively charged plate (anode)
(Figure from [43]).

To produce field emission, a strong field between the anode and the metal is necessary.
The field emission can then occur at low temperatures, that’s why it is often called
cold-cathode emission [2].
Electrons are negatively charged, and when they start moving due to the electric field,
they can influence the locally distribution of other electrons around them. This inter-
action can cause a "screening" effect, which can make the process quite challenging to
describe theoretically. Actually, the process is quite complex: when an electron is emit-
ted, it leaves a "hole" in the electron distribution at the metal surface. This hole can
also affect the behavior of the emitted electron and interact with other electrons, leading
to "many-body effects." These interactions can impact the energy and trajectory of the
emitted electron, thus modifying the measured current. One question addressed in this
thesis is whether such modification is substantial or not.
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1.1.3 Fowler-Nordheim theory

Field emission is a profoundly quantum mechanical phenomenon; hence, its theoretical
description has been possible only after the development of quantum mechanics. The first
successful model for the emission from bulk metals was proposed by Fowler and Nordheim
in 1928 [2]. The Fowler-Nordheim (FN) theory is an elementary field electron emission
theory. It has an essential role in the theory of field electron emissions. Fowler and
Nordheim presented an analytic formula for the emission current density as a function
of the external electric field. The FN formula (shown later as Eq. 3.14) describes the
fundamental behaviour of field electron emission from metals and is transformed into a
basic field emission equation. The essential idea behind the FN approach is to use a
supply function (later it will be called density of states(DOS)) to represent the emission
current density as the product of the supply function and the transmission coefficient.
FN is a theory of a single electron escaping from the material. It is well established by
the seminal works of Landau [44], the single particle description works well for three-
dimensional (3D) materials. Ultimately, this is the reason why FN has worked so well,
being the foundation of FE for several decades: all the materials considered were large
bulk 3D electrodes. The necessity to improve it arose only in the last few years, with the
development of nanotechnology.
FN is a single-particle description and does not take these many-body processes into
account. These later ones are considered here by the methods derived in Sec. 3.1.3.

1.2 Carbon Nanotubes

Up to the late 20th century only two carbon allotropes were known: graphite and dia-
mond. Then, with an advent of nanotechnology, researchers were able to discover that
carbon atoms make distinct structures also on this scale. Carbon nanotubes (CNTs) are
a fascinating class of nanomaterials with a wide range of applications. CNTs were first
observed by Sumio Iijima in 1991 and are characterized by their nanosized hollow tube-
shaped structures [45]. Iijima described the production and characterization of carbon
nanotubes, emphasizing their characteristic helical and tubular form consisting of carbon
atoms. This finding was a significant turning point in the study of nanomaterials, and
since then it has prompted intensive research into the characteristics and possible uses
of CNTs in a variety of sectors, ranging from electronics [46] and materials science [47]
to medicine [48], [49], [50] and energy storage [51], [52].

1.2.1 Classification of Carbon Nanotubes

Carbon Nanotubes (CNTs) are categorised into two main types based on their diame-
ters and structures: single-walled carbon nanotubes (SWCNTs) and multi-walled carbon
nanotubes (MWCNTs).
SWCNTs are seamless cylinders composed of a single layer of graphene rolled up into
a tube. They have relatively small diameters, typically ranging from 0.7 to 10nm, with
most falling below 2nm. Despite their small size, SWCNTs can achieve significant lengths,
often reaching up to several µms. One of the distinguishing features of SWCNTs is their
electronic properties, which can be either metallic or semiconducting, depending on their
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(a) (b)

Figure 1.3: (a) A Schematic diagram of a graphene sheet, representing a single layer of
carbon atoms arranged in a hexagonal lattice pattern. a⃗1 and a⃗2 are the basis vectors of
the graphene lattice, defining the unit cell of the graphene structure. The red lines on
the graphene sheet indicate the section that will be rolled to form a carbon nanotube.
This pattern determines the tube’s twist and resulting electrical properties. The chiral
vector C⃗h is defined in Eq. 1.1, and the chiral angle θ is the angle between the chiral
vector C⃗h and the vector a⃗1. (b) The rolled-up lattice structures form armchair, zigzag,
and chiral carbon nanotubes, each labelled with their respective chiral indices n and m.
(The segments highlighted in red in part (a) correspond to the orange-highlighted regions
here, indicating the formation of the carbon nanotubes from the graphene lattice.) The
figures are reproduced from [53].

helical arrangement. However, it’s important to note that while SWCNTs are easier to
describe theoretically, they can be challenging to obtain and characterise experimentally.
MWCNTs consist of several SWCNTs encapsulated one inside another, sharing one main
axis, perpendicular to their chiral vectors C⃗h (as defined in Eq. 1.1). Each SWCNT is thus
a shell, a parallel building block, of the MWCNT. MWCNT can have a diameter reaching
more than 100nms. MWCNTs are easier to synthesize and can be considerably longer,
with lengths that can range from several µms to even mms. An experimental finding is
that, unlike SWCNTs, MWCNTs are always metallic, regardless of their chirality. This
means that they conduct electricity well and have a characteristic band structure that
results in metallic behavior independent of their specific structural configuration.
The theory that describes MWCNTs is built upon theories developed for SWCNTs, but
it has to incorporate additional complexities arising from the interaction between the
multiple walls or shells. These interactions can involve van der Waals forces, as well as
more complicated effects caused by electrical or thermal connections between the layers.
Although theories for SWCNTs give a basic foundation, characterising the behaviour and
properties of MWCNTs requires a more extensive theoretical approach. In the simplest
approximation, one takes the following picture: since the number of shells Ns is usually
large, certainly Ns ≫ 3, then at least one of these shells fulfils the conditions (see below)
to be metallic. This explains experimental facts. In a more refined picture, even if the
metallic shell is perturbed (either by distortion or electric potential of other shells), so
that carriers should be localized therein, the carriers can always jump onto a neighbouring
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Table 1.1: Classification of SWCNTs and MWCNTs based on electronic properties and
chirality

shell and find a parallel way ahead. However, a necessity of these jumps implies that a
characteristic velocity of carriers should always be smaller than Fermi velocity in SWCNT.
This is also in agreement with experimental observations. The MWCNT can then be
imagined as a rolled Moire pattern, with a flat band at the lowest energies. Now, the
velocity and the size of the effective unit cell become free parameters of the theory.

In contrast to the above-given complexities of MWCNT, the SWCNT are fully under-
stood, so their full theoretical description can be presented here. In terms of the chiral
vector and the chiral angle, SWCNTs are also classified into three varieties: armchair,
zigzag and chiral. These classifications are specifically determined by how the graphene
sheet is "rolled up" during the creation process.
Chiral vector can be expressed regarding the base vectors (Fig. 1.3)

C⃗h = (n,m) = na⃗1 +ma⃗2 (1.1)

The relationship between the integers (m,n) and the diameter d of SWCNTs [54] is given
by

d = |C⃗h|
π

= a0

π

√
(n2 + nm+m2) (1.2)

where a0 is the unit vector length and a0 = 0.246nm. Hence, the radius of the nanotube
will be

R = |C⃗h|
2π (1.3)

And the chiral angle, the angle between the C⃗h = (n,m) and the basis vector a⃗1, shown
in Fig. 1.3 (a), is given by [54], [55]:

tan θ =
√

3m
2n+m

(1.4)

In armchair (n, n) CNTs, both indices (n, n) are the same; they are highly symmetrical
and have unique electronic properties, making them particularly interesting for certain
electronic applications.
Zigzag (n, 0) CNTs are formed when one of the indices is zero (0), and the other index
(n) determines the size of the nanotube. Zigzag CNTs also have distinctive electronic
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properties and are studied for their potential applications in nanoelectronics and other
fields.
Chiral (n,m) CNTs have different values for both indices (n and m), meaning that they
are formed with a combination of rolling angles relative to the hexagonal lattice. They
exhibit a wide range of electronic and optical properties, depending on the specific values
of n and m. These nanotubes are adaptable and may be used for various applications.
CNTs are utilized in nanotechnology, materials science, and electronics. They improve the
electrical and mechanical properties of materials, have applications in nanoelectronics,
sensors, energy storage, and medicine, and are integral to the development of innovative
nanoscale devices and systems. Their remarkable versatility remains a driving force
behind ongoing research and innovation across a wide range of disciplines.

1.2.2 Semiconducting, narrow-gap and metallic nanotubes

Carbon Nanotubes (CNTs) are distinguished by their unique electrical properties, which
can be classified as semiconducting, narrow-gap semiconducting or metallic.
This diversity is due to their distinctive structural configurations, particularly their chi-
rality and diameter. The electronic properties of CNTs are determined by their band
structure, which is derived from the band structure of graphene, a single layer of carbon
atoms arranged in a hexagonal lattice.
In graphene, the conduction and valence bands meet at specific points, known as the K
and K ′ valleys. These valleys (Fig. 1.4) play a crucial role in determining the electronic
properties of CNTs. Electrons in graphene behave as massless Dirac fermions on account
of the linear energy dispersion near the K and K ′ Dirac points of the Brillouin zone.
This results in a cone-like energy dispersion, often referred to as the Dirac cone (Fig.
1.4), see Eq. 6.3 for mathematical formula describing it.

Figure 1.4: Illustration of the band structure of 2D graphene (or, more generally, any
hexagonal bi-partite 2D material): Dirac cones showing energy dispersion at the K and
K ′ valleys in semimetal graphene. Characteristics of a semimetal is that there is only one
point where conduction (red cone) and valence (blue cone) bands touch (as shown in the
K point). An intersection of perpendicular quantization with the Dirac point correlates
with metallic properties in carbon nanotubes, while deviations indicate semiconducting
characteristics.
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Figure 1.5: Visualization of the low-energy electronic band structure for a CNT be-
longing to the zigzag(like) class. Anisotropy of tσ̄

r⃗,d⃗
leads to the cones shifting away from

K and K ′ points of a reciprocal unit cell. The plane cross-sections are caused by circum-
ferential quantization conditions; the values of quantized ky, closest to Dirac points, are
demonstrated. Each cone has two dispersions E(kx) (Figure from [56]).

When graphene is rolled into a nanotube, its electronic properties depend on perpendic-
ular quantization. The chiral angle, which is the angle of the graphene lattice relative
to the axis of the nanotube, determines whether the nanotube is metallic or semicon-
ducting. This is because the chiral angle affects how the hexagonal lattice of graphene
aligns along the circumference of the nanotube. In a carbon nanotube, quantization oc-
curs as a result of the confinement of electrons around its circumference. The allowed

Figure 1.6: Energy band diagrams showing spin-orbit coupling effects at K and K ′

points in the Brillouin Zone: blue dash lines show the metallic behaviour of nanotube
(without curvature effects).
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Figure 1.7: Illustration of the curvature effect of the nanotube on the transfer integrals
between the orbitals of the closest neighbor atoms. The pz orbitals on different sites are
no longer parallel, therefore there is mixing with the px,y orbitals forming the σ bonds
(Figure from [57]).

energy states (standing waves) depend on the diameter of the nanotube. Larger diame-
ters allow for more standing waves, leading to denser quantization bands. These bands
represent different quantized values of the wave vector perpendicular to the nanotube
axis (k⊥ = i π

|Ch|). The key question is whether any of these quantization bands intersect
with the Dirac point in the energy dispersion relation. If a quantization band crosses the
Dirac point, the nanotube exhibits metallic behaviour: at the Dirac point, the energy
gap between the valence and conduction bands vanishes, allowing the free movement of
electrons (metallic behaviour), in other respects, it is semiconducting.
Depending on the energy dispersion and the positioning of the quantization bands rela-
tive to the Dirac point, one can determine the electronic nature of the nanotube. The
proximity of these bands to the Dirac point determines whether the nanotube behaves as
a metal or a semiconductor. In general, when chirality is such that n−m is divisible by

Figure 1.8: Electrons that are held in a nanotube segment have quantized energy levels,
each of which is four-fold degenerate in the absence of spin-orbit coupling and defect
scattering. The purple arrow on the left indicates the current and magnetic moment
arising clockwise, while the one on the right – from anticlockwise orbital motion around
the nanotube. The green arrows indicate positive moments due to spin (Figure from
[58]).
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three, one of the quantized bands crosses the Dirac point and the nanotube is metallic.
Otherwise, the nanotube will be a large gap semiconductor, with the size of the gap
inversely proportional to its diameter.

Up to this point, the rolling of the graphene sheet has been discussed with an
assumption that graphene bands will stay unaltered during the rolling, i.e., that atomic
overlaps t will stay the same (see Eq. 3.44 for the Hamiltonian). This is of course an
approximation. There are further, small perturbations that will turn the metallic tube
into a narrow gap semiconductor. Fig. 1.5 illustrates the low-energy band structure of a
zigzag CNT. The vertical axis indicates the electron energy E, while the horizontal axes
represent the momentum space kx and ky. The conical structures describe the electron
dispersion relations near the Dirac points, which are typical of the hexagonal lattice of
graphene. The planes encode the quantization condition. The anisotropy of the hopping
parameter tσ̄

r⃗,d⃗
shifts these cones slightly away from the K and K ′ points. This shift

is caused by the CNT’s curvature and spin-dependent interactions. The resulting 1D
low-energy band structure is illustrated in Fig. 1.6, where narrow gaps ∆curv and ∆so

are shown. As illustrated in Fig. 1.7, the systems of coordinates on different sites are
no longer parallel; thus, the overlaps between previously (in flat graphene) orthogonal p
orbitals are now possible, as shown in Fig. 1.7. This produces a finite ∆curv. The origin
of the ∆so shift is due to the spin-orbit coupling effect, the physical origin of which,
the emergent magnetic field from a screwdriver motion of carriers along the CNT, is
illustrated in Fig. 1.8.
The cross-sectional points of the cones with the horizontal planes resulting from circum-
ferential quantization show the quantized energy levels available to the electrons, with
particular focus on the levels close to the Dirac points. This quantization is a direct
consequence of the cylindrical geometry of CNTs. An energy gap, denoted as ∆curv,
appears due to the shift from the Dirac points. Conversely, the splitting of the energy
dispersions on the cones, indicated by ∆so, is a manifestation of spin-orbit coupling ef-
fects. These effects also cause a slight tilt in the horizontal planes correlated with ∆′

so

and measuring them will provide a deeper understanding of the spin-orbit interactions.
This indicates the complex interaction between the topological features and electronic
properties of CNT, offering insight into the conductive behaviour of materials and the
potential for innovative applications in nanotechnology.

1.2.3 Arrays of Carbon Nanotubes

An array of CNTs is an organised formation of many nanotubes where individual carbon
nanotubes are aligned in parallel along their axis and possibly in an organized manner
within the perpendicular plane. They are often referred to as "forests" of CNTs since many
nanotubes are grown as trees from the same substrate, akin to forests, simply happening
on a nanoscale. These are specialized nanostructures consisting of vertically CNTs on
various substrates, including silicon [61], [62], [63], quartz [64], [65], [66], sapphire [67],
[68], stainless steel [69], [70] and copper [71], [72]. The array configuration maximises the
collective mechanical, electrical, and thermal properties of the CNTs, making it highly
desirable for various advanced applications in nanotechnology, electronics, and materials
engineering.
In Fig. 1.9 (a), high magnification SEM micrograph of MWCNT at a higher plasma
intensity is shown [59], and in Fig. 1.9 (b), the idealized structure is presented which will
be used for our theoretical model [60].
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(a) (b)
Figure 1.9: VACNT array grown on a substrate (a) High magnification SEM micrograph
of MWCNT at a higher plasma intensity under the conditions 0.2A, 640V, 140W (Figure
from [59]), (b) The idealized structure is to be captured with our theoretical model
(Figure from [60]).

1.2.4 Synthesis Techniques of Carbon Nanotubes

The synthesis of CNTs typically involves three main methods: electric arc discharge,
laser ablation, and chemical vapor deposition (CVD). Each of these methods has
its complexities and subtleties. In Fig. 1.10, schematic experimental setups for nanotube
growth methods are presented.

Electric arc discharge method

The electric arc discharge method for synthesizing CNTs operates at high temperatures
(above 1700◦C) and involves an arc discharge between high-purity graphite electrodes
in a helium-filled chamber at subatmospheric pressure [74]. This process produces less
structural defects in CNTs compared to other methods.
The chamber contains a graphite cathode and anode, along with evaporated carbon
molecules and metal catalyst particles such as cobalt, nickel, and iron. The direct current
heats the chamber to approximately 4000K, leading to the formation of a cylindrical hard
deposit on the cathode and hard gray shell, chamber soot, and cathode soot.
In general, the synthesis of MWCNTs doesn’t typically require catalyst precursors, whereas
the synthesis of SWCNTs often involves the use of their different types. For the expan-
sion of SWCNTs during arc discharge, a complex anode is used, which is a composition
of graphite and metal [75].
The main advantage of this method is its ability to produce large quantities of nanotubes.
However, its downside includes limited control over the alignment of nanotubes and the
need for purification due to the use of metallic catalysts.

Laser ablation

The laser ablation method for synthesizing CNTs is a specialized Physical Vapor De-
position (PVD) process [76]. In this method, a graphite target is placed in the center
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Figure 1.10: Schematic experimental setups for nanotube growth methods: (a) arc-
discharge method using helium gas, (b) laser ablation process with an oven temperature
of approximately 1200°C, and (c) CVD technique with a hydrocarbon feedstock and a
catalyst, within an oven temperature range of 500-1000°C (Figure from [73]).

of a quartz chamber, filled with argon gas, and maintained at a temperature of around
1200◦C. The graphite target is then vaporized using a laser, which can be either contin-
uous or pulsed. In a continuous laser setup, the graphite is vaporized constantly, while
a pulsed laser allows more controlled vaporization, correlating each laser pulse with a
specific amount of vaporized carbon atoms.
The main strengths of this method are its good yield and low levels of metal impurities
because metal atoms usually evaporate when the tube closes. However, a disadvantage is
that the produced nanotubes are often not completely straight and may branch out. From
an economic point of view, this method does not meet expectations because it requires
high-quality graphite rods and high laser power, sometimes two lasers are required, and
it does not make as many nanotubes each day as the arc-discharge method does.
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Chemical vapor deposition (CVD)

Chemical Vapor Deposition (CVD) is a process used for depositing solid material films
on a substrate surface through a controlled chemical reaction in the vapor phase [77].
This technique, also known as thin-film deposition, is widely applied in sectors such as
electronics, optoelectronics, catalysis, and energy, particularly in manufacturing semi-
conductors, preparing silicon wafers and creating printable solar cells.
CVD is the most used technique to grow CNTs. There are many different types of
CVD such as catalytic chemical vapor deposition (CCVD), thermal, or plasma-enhanced
(PE) oxygen-assisted CVD, and water-assisted CVD. However, CCVD is the standard
technique for the synthesis of carbon nanotubes.
The development of CNTs using CVD can be categorized into two main types based on
the position of the catalyst: gas phase growth and substrate growth. (Fig. 1.11 provides a
visual representation of these growth mechanisms, distinguishing between the tip-growth
model (often associated with gas-phase growth) and the base-growth model (common in
substrate growth)). Each of these growth mechanisms can be further divided into two
subtypes: bulk carbon diffusion and surface carbon diffusion models. In the gas phase
growth process, catalyst formation and nanotube synthesis occur in mid-air. Substrate
growth involves depositing catalyst nanoparticles or metal precursors on a base material
like SiO2 or on a high-surface-area powder before initiating growth. The fundamental
chemical processes that lead to nanotube formation from nanoparticles are similar in
both methods, typically falling into the categories of surface carbon diffusion and bulk
carbon diffusion.

Figure 1.11: Widely accepted growth mechanisms for CNTs: (a) illustrates the tip-
growth model, corresponding to surface carbon diffusion, and (b) shows the base-growth
model, related to bulk carbon diffusion (Figure from [78]).
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1. Surface Carbon Diffusion: In this process, the metal particle remains in a solid
state while the decomposed carbon migrates across the surface of the particle. Here,
the CNT starts forming at the side of the metal particle. As carbon consistently
decomposes on the particle, the nanotube keeps growing. This mechanism is fre-
quently employed to describe growth at lower temperatures, especially when using
Ni (nickel) catalyst nanoparticles [79]. Fig. 1.11 (a) illustrates this surface carbon
diffusion process, as seen in the tip-growth model.

2. Bulk Carbon Diffusion: Here, similar to surface carbon diffusion, the carbon
feedstock breaks down on the metal particle’s surface. The metal nanoparticle ab-
sorbs the carbon until it reaches a saturation point, after which a CNT with one
or several walls begins to grow from the outer surface of the nanoparticles. Here,
the metal may either stay solid or transform into a liquid nanodroplet. When it
turns liquid, the process can be visualised as the droplet absorbing carbon until
saturation. Subsequently, a nanotube emerges, and the ongoing absorption of car-
bon supports the growth process following the hydrocarbon vapour-metal-carbon-
liquid-crystalline carbon solid pathway, known as the vapor-liquid-solid model. This
model, originally proposed for explaining the formation of silicon and germanium
whiskers in the 1960s [80], [81], was later adapted to elucidate nanotube formation
[82]. Fig. 1.11 (b) corresponds to this bulk carbon diffusion, depicted through the
base-growth model.

For constant-size catalyst particles, the growth of CNTs generally continues until hydro-
carbon supplies cease. This cessation may occur either by withdrawing the feedstock
from the reaction zone, or when the particle gets completely covered with amorphous or
graphical carbon, obstructing the gas. Furthermore, base growth might decelerate or stop
due to the slow diffusion of hydrocarbons to the nanoparticle at the base of the CNT.
Continuous growth depends on an uninterrupted carbon supply and nanotube extru-
sion. However, competing reactions, like forming graphitic layers or amorphous carbon
deposits, may occur. Under suboptimal conditions, amorphous carbon may cover the
nanoparticle, stopping the growth by cutting off the carbon source. Also, if the emerging
nanotube encounters too much external force, a graphitic carbon shell might form around
the nanoparticle, disconnecting it from the feedstock.
This thesis focuses on CVD-created MWCNTs, as this is the method used by the experi-
mental team at IPPT PAN. Since there is always some contribution from Surface Carbon
Diffusion during growth, the top of the MWCNT is never pure carbon but has character-
istics of a quantum dot with Coulomb blockade and potentially some plasmonic features
prone to aging. Therefore, we focus on the theoretically easier-to-describe stationary
emission from the nanotube’s side.

1.2.5 Carbon Nanotubes Properties and Applications

CNTs, especially MWCNTs, are very strong as they are a single chain of unbroken co-
valent carbon-carbon bonds. Moreover, they have many carbon-carbon bonds at each
step, so breaking a CNT requires breaking many strong covalent bonds. CNTs are made
of a two-dimensional (2D) matrix of carbon-carbon bonds formed into cylinders. This
implies they can bend and twist without breaking bonds but can’t extend too far before
bonds break. This means they are highly resistant to extension beyond a certain point.
That is what we mean by "strong."
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CNTs have extraordinary electrical conductivity, heat conductivity and mechanical prop-
erties.

• High Electrical Conductivity: The thermal conductivity of CNTs enables their
use in heat dissipation applications. They can be used in thermal interface materials
for electronic cooling or integrated into materials requiring efficient heat transfer.
The low thermal expansion coefficient of CNTs also means they don’t deform easily
under thermal stress, making them suitable for applications that require thermal
stability.

• High Thermal Conductivity And Heat Expansion: The thermal conductiv-
ity of CNTs enables their use in heat dissipation applications. They can be used
in thermal interface materials for electronic cooling or integrated into materials
requiring efficient heat transfer. The low thermal expansion coefficient of CNTs
also means they don’t deform easily under thermal stress, making them suitable
for applications that require thermal stability. For SWCNTs, the thermal conduc-
tivity at room temperature typically ranges from 1750 to 5800 W/mk. This range
reflects variations based on factors like nanotube structure, defects, and the specific
measurement method. For MWCNTs, it can exceed 3000 W/mk. MWCNTs often
exhibit even higher thermal conductivity than SWCNTs due to the multiple con-
centric layers. The fact that CNTs can achieve thermal conductivities about three
times better than diamonds, highlights their potential as highly efficient thermal
conductors.

• Strength and Elasticity: Carbon atoms in graphite form a planar honeycomb
lattice in which each atom is connected to three neighbouring atoms by strong
chemical bonds. Owing to these strong bonds, the basal plane elastic modulus of
graphite is one of the largest known materials.

• Aspect Ratio: CNTs are tiny, high aspect ratio conductive additives used in
plastics. Their unique shape allows for lower concentrations to achieve the same
electrical conductivity as other additives, like carbon black or stainless steel fiber.
This efficient use of CNTs preserves the toughness and other key properties of the
polymer resins, especially at low temperatures, making CNTs an effective choice
for enhancing electrical conductivity in plastics.

• Chemically stable: CNTs are chemically stable, making them suitable for use in
harsh environments. This stability is beneficial to chemical sensors and filtration
systems, where they can withstand exposure to corrosive substances or high tem-
peratures. In addition, their chemical inertness makes them useful in biomedical
applications, such as drug delivery systems or tissue engineering scaffolds.

Due to their excellent physical and chemical properties, CNTs are used in a wide range
of applications:

• CNTs are highly conductive, both electrically and thermally, making them ideal for
use in electronic devices.

• Due to the strong UV/Vis-NIR absorption characteristics of SWNTs, their use in
solar cells is a very promising application.
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• Due to their large surface area, CNTs have been successfully used in medicine and
pharmaceuticals to adsorb or conjugate a wide variety of medicinal and diagnostic
agents.

• CNTs have several unique chemical, dimensional, optical, electrical, and structural
properties that make them attractive as drug delivery and biosensing platforms for
the treatment of various diseases and noninvasive monitoring of blood levels and
other chemical properties of the human body accordingly.

• One of the most important applications of arrays of CNTs is the field electron
emission. Because each carbon atom is strongly covalently bonded to three other
carbon atoms, carbon nanotubes have an extremely high melting point. This also
means that each carbon atom has an extra electron, which forms a sea of localized
electrons inside the tube that allows the nanotubes to conduct electricity.

1.2.6 Field emission from Carbon Nanotubes

CNTs are famous for their extensive array of applications, and their versatility and unique
properties make them valuable in numerous fields. Among the numerous applications,
field emission stands out as critical, underscoring the importance of CNTs in advancing
technology. The exceptional properties of field emission from CNTs, including their
low turn-on field and high emission current density, make them particularly valuable
in various technologies and industries. They can be efficient electron emitters in flat
panel displays [83], [84]. They offer advantages such as faster response times [85], higher
contrast [86], and potentially lower power consumption [87], [88] compared to traditional
display technologies.
The higher contrast in CNT-based display technologies is primarily due to the increased
electron emission per cm2 from CNTs [86]. This increase in electron emission per unit
area increases the brightness and the overall quality of displayed images. Therefore, the
number of electrons emitted per cm2 is significantly greater, contributing to a brighter
and higher-contrast visual experience.
Although the exact reasons for the faster response time in CNT-based applications
are still under investigation, it is believed to be due to the collective behavior of the
Tomonaga-Luttinger liquid (TLL) inside the carbon nanotubes. This unique internal
state may facilitate rapid electron transport, contributing to the observed fast response.
CNTs are perfect for electron field emission due to their unique geometry and extraordi-
nary physical characteristics. This efficiency is partly due to their ability to emit a sig-
nificant number of electrons even at low voltages, resulting in lower power consumption.
The low power requirement, characterized by lower voltages, enhances safety, making it
safer to work with devices that incorporate CNTs, as they operate at much lower voltages
(like 5 V) compared to traditional technologies that might require kilovolts (e.g., 5 KV).
Electron field emission from CNTs was first discovered by De Heer, Andre Chatelain,
and Daniel Urgate in 1995 [89]. Their work sparked many further studies, aiming to
understand and optimize this phenomenon for real-world applications, focusing especially
on individual CNTs. The majority of these studies primarily involved electron emission
occurring at the tip of the CNTs [90], [91], [92].
The special shape and physical qualities of CNTs make them perfect for use in electron
field emission applications. Their high aspect ratio, coupled with remarkable mechanical
strength and electrical conductivity, facilitates efficient electron emission, even under the
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Figure 1.12: Comparison between experimental results and theoretical FN model with
and without resistance. At low energy regimes, FE cannot be captured in single-particle
theory (Figure from [93]).

influence of low electric fields. These features make it possible to create high-quality field
emitters and result in many new technologies and innovative uses.
Furthermore, the use of CNTs in field emission applications also presents environmen-
tal and economic advantages. Their lower energy requirements result in lower energy
consumption, which is both cost-effective and more environmentally sustainable. In ad-
dition, the durability and longevity of CNT-based components contribute to less frequent
replacement and reduced material waste.
The detailed research in this field efforts to understand the emission mechanisms and
potential optimizations.
The current understanding of emission from carbon nanotubes is insufficient, as high-
lighted in experimental evidence [93], [94], [95] emphasizing the need for additional re-
search. The standard seminal FN emission theory for single particle emitters does not
apply to carbon nanotubes, especially at low voltages.
In Fig. 1.12, the current-voltage characteristics of field emission from a nanotube are
compared to the FN model, describing field emission in vacuum electronic devices. At
higher voltages, the experimental data closely coincide with the FN fit with resistance,
indicating that the FN model with resistance accurately describes the field emission ob-
served in the experiment at these voltages [93]. At lower voltages, the experimental data
exhibit a noticeable deviation from both the FN model and the FN fit with resistance.

1.3 Tomonaga–Luttinger liquid

Low energy physics of one-dimensional (1D) electron metals can be described in terms of
the Tomonaga–Luttinger liquid (TLL). TLL is a theoretical model describing interacting
electrons in a 1D conductor.
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1.3.1 The idea of TLL

All theoretical descriptions of electronic liquid in materials are based on a standard
assumption: single electron states can be distinguished and the dynamics of the system
as a mention of these carriers can be described. Then, it is studied how they effectively
scatter to obtain all transport properties from that. This approach is so commonly used
that most materials engineers take it for granted.
The key idea behind TLL is that electrons cannot avoid each other when moving along
1D systems [96]. Once the interaction between them is present, even very small, it is im-
possible to think about single electron particles moving along the system. Instead, when
we excite 1D metal, a collective motion begins. A key quantity is now local electronic
density. The situation is very similar to sound propagation inside a tube: a motion of
a single molecule cannot be followed as it scatters with other molecules (for electrons,
it would actually be impossible, as they are indistinguishable). The theory of sound is
written as a theory of denser and more diluted volumes of air. The final outcome is a har-
mony of music that we can hear. The quantities used to extract measurable observables
are correlation functions and we can say that for the sound, all macroscopic correlation
functions are expressed using this collective variable.
In the same spirit, in 1D we need to write all the correlation functions using collective
modes basis. As will be seen in the following chapter, a plane wave with a characteristic
Fermi wavelength (ground state just like in any other noninteracting metal) is defined,
and then local distortions of the wave due to interactions are observed. A great thing is
that the resulting model is that of a 2D membrane, which is exactly solvable. The role
of density-density interactions turns out to change the compressibility of the membrane,
thus all of them can be taken into account exactly. As we will show in the latter chapters
the presence of TLL can be revealed by characteristic power-law behaviour of correlation
functions, the exponent of which does depend on interactions and in principle can vary
as external fields are applied. Our problem of field emission from nanotube, involving
electron-electron interactions, thus, revolves around understanding what wavy collective
fluctuations will be caused by a single escaping electron. If the "membrane" of a many-
body quantum liquid is pulled, how will it bounce back? In our sound analogy, that
would correspond to an issue of how a melody would change if a mass density of the
"membrane" has been locally and instantaneously changed.
The subject of electronic liquids is in fact more general and remains an active field of
research[97], thus potential applications of formalism developed here can be also broad.
Here however we shall focus only on Multi-Wall Carbon Nanotubes (MWCNTs) as the
best established example of non-Fermi liquid, which already nowadays is used in many
devices and platforms for engineering applications.

1.3.2 History of Luttinger Liquid Theory

The theoretical framework of the TLL, essential for understanding 1D systems, has
evolved through significant contributions of various physicists over the decades. It is
presently a well-developed field of research in solid state physics. It was first proposed by
Sin-Itiro Tomonaga in 1950 [98]. He suggested that excitations in 1D systems could be
represented by a quantized field of sound waves, known as phonons. However, subsequent
research, particularly by Bohm and Pines in 1953 [99], refined this concept, suggesting
that these excitations were more accurately described as plasmons. John M. Luttinger
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further developed this theory into a model in 1963 [100]. However, Luttinger’s solution
contained a significant error. He failed to explain the infinite dimensionality of Hilbert
space, which changed the behaviour of the field operator commutators. This resulted
in the inaccurate conclusion that the excitations were the same in both interacting and
noninteracting electron systems. The model’s accurate solution came with the work of
Daniel C. Mattis and Elliot H. Lieb in 1965 [101]. They addressed the issue regarding the
infinite-dimensional Hilbert space and correctly formulated the field operators, thereby
correcting the errors in Luttinger’s model.
A significant advancement was made by F.D.M. Haldane in 1981 [102]. The contribution
he made to 1D metals is similar to the contribution of Lev Landau in the field of 3D Fermi
liquids [44], [103]. Landau showed that despite the presence of many-body interactions
in standard metals, one must have well-defined fermions, only with a renormalized mass.
Similarly, in 1D Haldane showed that despite capturing only the density-density Hartree-
type interaction (which will be defined in Eq. 3.36), there is a regime where TLL will exist
because the exchange Fock-type interaction (see Eq. 3.37) renormalizes down to zero.
The Fock-terms can then only renormalize the compressibility of the liquid. Thus the
TLL is not just an abstract theoretical concept, but it advances into the realm of physical
reality. He coined the term ’Luttinger liquid’, sometimes called ’Tomonaga–Luttinger
liquid’ and also provided a profound physical interpretation of the bosonization of 1D
fermion excitations. His interpretation brought a deeper understanding of the collective
behaviour of electrons in 1D conductors. He was awarded a Nobel Prize in 2016.
Further development of the theory moved in the direction of finite systems and the role
of boundary conditions. Seminal advances in this field were done in the 90’ by Affleck
and Ludwig. In this thesis, we will use a later extension of these works done by Sebas-
tian Eggert [104], principally obtained when he was a student of Ian Affleck. Eggert’s
contributions, building on Haldane’s bosonization approach, added to the comprehensive
understanding of the Tomonaga–Luttinger liquid concept in the case when the 1D metal
has a boundary and is set at a finite temperature.
TLL remains an active field of research, with the current effort being dedicated mostly
to 1D systems away from equilibrium and 1D systems in close vicinity of Berezin-
skii–Kosterlitz–Thouless (BKT) transition driven by a sine-Gordon perturbation. These
recent achievements will not be used in this thesis. Instead, the focus will be on applying
known field theory methods to a realistic technological problem.
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1.4 Outline of Thesis

This thesis comprises eight chapters and a bibliography, systematically addressing the
generalization of Fowler-Nordheim tunneling theory and its applications to nanotube
materials. The thesis is divided into two parts: the first part serves as a literature review,
providing a comprehensive overview of existing research and theoretical background; the
second part presents our own results and contributions to the field.
Chapter 1, titled "Introduction", serves as an overview of the thesis providing essential
background information on field electron emission. It reviews key theories in the field,
with a special focus on the FN theory, thus setting the stage for the more specialized
topics explored in the following chapters.
Chapter 2, called "Motivation", articulates the pressing need and current relevance of
the research focus. By delineating the specific research objectives and contributions, this
chapter serves as a justification for the scope and direction of the study.
Chapter 3, titled "Methodology", provides the scientific methods that are used in this
study. It starts with talking about Schrödinger equation and wave functions, followed by
a discussion of a simpler method called the WKB approximation. Subsequently, it moves
to a more advanced way of looking at the problem, called "second quantization", offering
a detailed explanation of the Hamiltonian formulation within this advanced framework.
Additionally, collective modes and field theories are introduced, particularly emphasizing
their importance in 1D materials like nanotubes. Finally, the chapter culminates in
an in-depth exploration of 1D metals, focusing on the Tomonaga-Luttinger liquid (TLL)
theory and its applications in tunneling processes. This chapter establishes the theoretical
and methodological ground rules for the specialized analyses presented in the following
chapters.
Chapter 4, titled "Generalizing Fowler–Nordheim Tunneling Theory for an Arbitrary
Power Law Barrier," is based on a published paper [105], and starts with defining the
new model for a tunneling barrier shaped by an arbitrary power law. Then, a generalized
formula is derived for tunneling expressed by the Hypergeometric function. The chapter
proceeds to validate this formula using Kemble’s improved JWKB expression, comparing
it against established results for triangular barriers and exploring its performance for
different exponents in the power law. The discussion extends to tunneling currents in
composite surfaces with varying work functions, and the chapter further compares these
analytical findings with numerical methods. Finally, it closes by discussing potential
experimental applications of the generalized theory and its relationship with existing
quantum mechanical solutions.
The electrons do interact with each other which will affect field emission. Firstly, the
spectral distribution of interacting electrons will have a so-called pseudo-gap or zero-bias
anomaly (ZBA), which is explored in Chapter 5, titled "TLL Density of States". We
derive the exact analytic Fourier transform for two cases, which we called Coulomb metal,
relevant for CNTs, and Hund metal, relevant for heavier p-elements’ nanotubes.
Secondly, the transmission function itself will be modified as the potential felt by elec-
tron depends on interactions. When an electron is emitted, it leaves a "hole" in the
electron distribution at the metal surface, affecting the behavior of the emitted electron.
Moreover, the hole can also interact with other electrons, leading to "many-body effects."
These interactions can impact the energy and trajectory of the emitted electron. This
is considered in Chapter 6 which is titled "Field emission from Carbon Nanotubes".
This chapter, published as Ref. [106], subsequently explores the Fourier transforms of
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TLL local density of states (LDOS) and combines these two components to arrive at a
formula for the tunneling current. Next, the discussion switches to the application of
these findings to nanotubes, dealing with both gapless nanotubes and those with mini-
gaps. The chapter concludes by summarizing the study’s implications and its relevance
to the broader scientific community. As a result, this chapter expands on the signifi-
cance of electron-electron interactions in field emission, providing new insights that can
be gleaned through field electron emission measurements on 1D nanomaterials.
Chapter 7, titled "Electron Emission Theory for Nanotube Materials: an influence
of geometry", explores the vital role of geometrical arrangement in electron emission
from nanotube materials. First, it presents the overview of the formalism, laying the
foundation for the subsequent exploration. Next, it demonstrates the capability of our
modelling to capture the essential features of electrostatic potential, obtaining the current
and accurately describing its dependence on various geometrical parameters of an array.
Chapter 8, titled "Conclusion," concludes this thorough thesis. This chapter summarises
the important findings, insights, and contributions presented throughout the preceding
chapters. It offers a comprehensive overview of the primary research aims, techniques,
and results, while also acknowledging the limitations and challenges encountered during
the research. In essence, this final chapter summarises the journey undertaken in this
thesis, to provide a clear and insightful conclusion to the topic.
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Chapter 2

Motivation

The area of field electron emission (FEE) has gained significant attention over the years
due to its wide range of applications in advanced electronics, vacuum microelectronics,
and materials science. As with any evolving scientific area, people are always looking
for the perfect material that can emit electrons well. Many different materials have been
tried over the years. But carbon nanotubes are currently leading in this area. They have
special shapes and features that make them good for this kind of work. Due to higher
brightness and a more monochromatic output, they are setting new standards for what
can be done.
While carbon nanotubes are good field emitters, most studies have concentrated on elec-
tron emission from the top of the tubes. Surprisingly, there have been few studies about
emissions from the sides of the carbon nanotubes. This is where this research comes in.
Looking into side emissions might reveal a new layer of possible uses and applications
for carbon nanotubes in field emission technologies. This represents an unexplored as-
pect of carbon nanotube research that has largely gone overlooked, despite its potential
importance.
Looking at this relatively unexplored dimension, this research aims to explore new layers
of functionality and CNTs in field emission technologies. Side emitters can exhibit various
properties compared to tip emitters, such as variations in emission currents, stability
under different operating conditions, or even unique electron distribution patterns. These
differences can be extremely important in applications where precise control of electron
emission is required.
Furthermore, the study on side emissions is not just about discovering a new phenomenon;
it’s about challenging and potentially expanding the current theoretical frameworks that
determine our understanding of electron emissions in nanomaterials. The physics of side
emissions involves complex interactions influenced by the unique cylindrical geometry
of the nanotubes, the electronic structure of the sidewalls, and the interplay between
the nanotube and its substrate. The curvature of these cylinders can concentrate elec-
tric fields at certain points, influencing electron emission. Additionally, the chirality of
the nanotubes affects whether they are metallic or semiconducting, impacting electron
transport along the sidewall. The substrate material can also induce stress or strain
in the nanotubes, altering their electronic band structure and affecting the overall field
enhancement factor. This complexity presents both a challenge and an opportunity to
refine our theoretical models and computational methods.
Investigating side emissions could lead to the development of new CNT-based devices
with enhanced or specialized emission characteristics. For example, the ability to use
side emissions effectively could lead to the design of more efficient electron sources for
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imaging technologies or new types of emitters for electronic displays.
One reason for this oversight is the complication of the study: unlike the relatively
straightforward single-particle theory that adequately describes tip emission, emission
from the side is influenced by a range of phenomena, including electron-electron interac-
tions. These interactions complicate the investigation of the emission process, making it
a challenging but potentially rewarding area. However, these challenges also make it a
potentially rewarding field, promising new insights and applications.
One of the most significant advantages of using CNTs is the ability to achieve electron
emission at substantially lower voltages, around 1 V. Lower operating voltages make
CNT-based devices great candidates for integrated circuits, portable devices, and various
other applications. Thus, a better understanding of field emission mechanism in CNT is
an important research objective.
ARPES recently moved from high energy probe (hard X-ray) to UV-laser ARPES in
order to study the lowest energy and most delicate orderings without destroying them.
Taking into account recent interest in nano- to meso- sepic phases, this is also the texture
or LEED, so such low-energy beams are highly desired.

The Aim of the Study
The aim of this study is to establish a new theoretical framework for field emission
analysis, with a specific focus on tackling this phenomenon at the many-body level. In
particular, we wish to focus on novel materials, such as carbon nanotubes, which host
electrons with reduced dimensionality. We are interested in low energy field emission,
that involves electronic band crossing the chemical potential. We want to know how
such factors as temperature and geometry interactions conspire together at such a low
energy regime and we wish to understand their joint effect. By incorporating the electron-
electron interactions, and thus studying collective behavior in CNTs, this research aims to
give deeper insights into mechanisms of field emission. The formalism should answer the
following questions: how the electronic liquid is rearranged upon emitting the electron
and how the emitted electron experiences and is affected by this rearrangement. It is
known that in a low-energy regime, there exists a formalism that captures the effects
of interactions non-perturbatively, the Tomonaga-Luttinger liquid (TLL). Therefore, we
shall base our investigation on this method.

The Hypothesis
The central hypothesis of this thesis is: It is possible to derive the closed-form analyt-
ical formalism that captures both the effects of strong interactions and temperature and
thus will fully describe low energy field emission from arrays of MWCNTs. With such
formalism, researchers will be able to show that interaction at the many-body level plays
a significant role in the field emission process, particularly in the context of electron
emissions from the sides of CNTs. Since interactions can substantially change the den-
sity of states in a 1D system, this modification manifests in all transport coefficients,
including resistivity. This hypothesis is based on the fact that an analytic description
was possible for all these bulk phenomena. Thus, it can be deduced that the formalism
for field emission should also be derivable, illuminating how this quantity is influenced by
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electron-electron interactions. In comparison with the standard transport coefficients, in
field emission, incorporating a strong external field is necessary. Adding an external field
is similar to subjecting carriers to a strong force, thus adding extra energy. Therefore,
low energy electrons now affect the motion of finite energy electrons, but since researchers
have been able to describe both families of carriers, we hope to merge both descriptions
in this work.
Since the emitted current dependence on the applied field can be different from that in
conventional materials, this carries relevant implications for potential applications of any
arrangement of nanotubes as a field emitter. This hypothesis challenges the traditional
understanding of field emission, which so far has predominantly been focused on single-
particle processes. It also implies, on a more fundamental level, that field emission current
will carry information about the nature of electron-electron interactions in CNT.
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Chapter 3

Methodology

The aim of this chapter is to present principal theoretical tools that are used in the thesis.
As stated in Chapter 2, the idea of the thesis is to move beyond a traditional single-
particle description towards methods that can capture correlated behaviour of many
electrons. Actually, this closely resembles the development of quantum mechanics, with
more and more complicated systems being solved, thus in a way this chapter explores the
evolution of quantum mechanics. First, traditional quantum mechanics is examined as it
was developed a century ago, focusing on the fundamental principles that have developed
in this area since then (Sec. 3.1.1). In this formalism, Wentzel-Kramers-Brillouin (WKB)
approximation is presented. It is a quasi-classical method characterized by simplifying
assumptions of the plane and evanescent waves, and is serving as our starting point for
understanding tunneling in quantum mechanical systems (Sec. 3.1.2).
Then the emphasis shifts from the analysis of single particles to the many-body theory
(Sec. 3.2). This transition is essential for addressing the limitations of early quantum me-
chanical models, especially in the context of interacting electrons. Our discussion includes
the FN theory of field emission, originally developed within classical quantum mechanics.
However, we recognize that this theory fails when electron-electron interactions become
significant.
To address these challenges, the chapter systematically describes various advanced meth-
ods dealing with the multi-body effects of quantum mechanics. This gradual approach of
advancing theoretical methods culminates with the formulation of field emission in field
theory (Sec. 3.3).

3.1 Field emission theory within wavefunctions
framework

3.1.1 Schrödinger equation and wavefunctions

In 1925, Austrian physicist Erwin Schrödinger introduced an equation and published it
in 1926 [107], which contributed greatly to the development of quantum mechanics. This
equation, known as the Schrödinger equation, describes the behavior of electrons under
a wide range of circumstances.
In order to understand field electron emission within the framework of the Schrödinger
equation, the wave-like properties of electrons and the concept of tunneling through a
potential barrier must be considered.
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Figure 3.1: Visualization of electron tunneling from metal to vacuum across a potential
barrier. In the metal, the wave function is depicted as a plane wave, indicating stable
electron presence. Within the barrier, the wave function transitions to the evanescent
wave that decays exponentially. In the vacuum, the wave function resumes as a plane
wave with diminished amplitude. Figure adopted from Ref. [108].

The Schrödinger equation describes the behaviour of quantum particles, including elec-
trons, in terms of their wavefunctions. In the case of field electron emission, we have a
metal-vacuum interface where electrons can tunnel from the metal into the vacuum.
The wave function, denoted as ψ(x), represents a particle, as well as its module |ψ(x)|
gives the density of the probability of finding an electron at a particular position x within
the quantum system.
Unlike classical mechanics where an object without sufficient energy cannot overcome a
barrier, quantum mechanics allows particles, such as electrons, to tunnel through barriers
even without the necessary energy. This reflects their wave-like characteristics at the
quantum level (Fig. 3.1).
In general, within quantum mechanics, there is an equation Ĥψ(x) = Eψ(x), where the
Hamiltonian (Ĥ) is an operator that extracts the energy from a given wave function
(ψ(x)). We will drop the operator .̂.. symbol from now on.
For illustrative purposes, a simplified one-dimensional case will be considered. The Hamil-

tonian operator now takes the form H =
(

− ℏ2

2m
d2

dx2 + V (x)
)

. The Schrödinger equation,

a second order differential equation, in one dimension is:

− ℏ2

2m
d2ψ(x)

dx2 + V (x)ψ(x) = Eψ(x) (3.1)

where ℏ is the reduced Planck’s constant, m is the electron mass, ψ(x) is a one-dimensional
wave function, V (x) is the electron potential energy, E is the total energy of the electron.
In the metal region (x < x1) and the vacuum region (x > x2), the potential energy can be
approximated as zero since the electron is free to move. x2 − x1 represents the thickness
of the potential barrier. Therefore, in these regions, the Schrödinger equation simplifies
to:
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− ℏ2

2m
d2ψ(x)

dx2 = Eψ(x) (3.2)

The solution in these regions is then a plane wave:

ψ(x) = A exp (ikx) + B exp (−ikx) (3.3)

where A and B are coefficients, k is the wave vector given by k =
√

2mE
ℏ2 .

In the barrier region (x1 < x < x2), the potential energy is non-zero and acts as a barrier
to the electron’s motion. In the simplest case, we can represent this potential energy by
a step function:

V (x) =
V0, for x1 < x < x2

0, otherwise
(3.4)

In this region, the Schrödinger equation becomes:

− ℏ2

2m
d2ψ(x)

dx2 + V0ψ(x) = Eψ(x) (3.5)

The solution to this equation is an evanescent wave, which decays exponentially within
the barrier.

ψ(x) = C exp (−κx) (3.6)

where C is a complex number and κ is the imaginary wave vector given by κ =
√

2m(V0−E)
ℏ2 .

The decay of the wave function is due to the difference between the electron’s energy
and the potential energy of the barrier that is negative. The evanescent wave indicates
the presence of the electron within a limited region inside the barrier, but its probability
decreases rapidly with distance from the interface. The study of tunneling through po-
tential barriers has important applications, including the development of nanoelectronics,
quantum computing technologies, and advanced materials with specific electronic prop-
erties.
In this way, it has been demonstrated how quantum mechanics works in the simplest pos-
sible case: a landscape with a constant potential. The phenomenon of tunneling, based
on the Schrödinger equation and the wave-like properties of electrons, is further anal-
ysed using more advanced methods starting from the WKB (Wentzel-Kramers-Brillouin)
approximation, which is discussed in the next section.

3.1.2 WKB approximation

The WKB approximation, named after Wentzel [109], Kramers [110], and Brillouin [111],
(sometimes it is referred to as the JWKB approximation, where the “J” stands for Jeffreys
[112]), is a commonly used method to solve the Schrödinger equation in situations where
the potential energy varies slowly depending on the position.
Developed in the early days of quantum mechanics, the WKB method linked classical
and quantum understanding, offering solutions to problems that are not achievable with
just classical methods. In the 1920s, these researchers explored the Schrödinger equation
with varying potentials. Their collective efforts highlighted the importance of the WKB
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method in connecting classical and quantum mechanics. The WKB approximation pro-
vides an approximate solution to the Schrödinger equation by treating the wave function
as a semiclassical quantity: a probability density without any further interference effects.
Fig. 3.2 illustrates a potential barrier, a fundamental concept in understanding quantum
tunneling.

Figure 3.2: Illustration of a quantum mechanical potential V (x) with barrier energy
level E, where A is incident, B is the reflected and F is the transmitted wave amplitudes.

The Schrödinger equation can be rewritten as

d2ψ(x)
dx2 + k(x)ψ = 0 (3.7)

with the abbreviations

k(x) =
√

2m
ℏ2

(
E − V (x)

)
, if E > V (x)

k(x) = −i
√

2m
ℏ2

(
V (x) − E

)
= −iκ(x), if E < V (x)

When k(x) = const, the solution of the function has the form of ψ(x) = exp (±ikx),
and when k is not a constant but varies at a slow rate, the proposed assumption for the
solution takes the form of

ψ(x) = exp
(

± i
∫
k(x)dx

)
(3.8)

Substituting with the wave function into Schrödinger equation (Eq. 3.7), we get

d2ψ

dx2 + k(x)2ψ =
(
d2

dx2 + k2
)

exp
(

± i
∫
k(κ)dκ

)
(3.9)

and its one-order approximation solution is

ψ1(x) = −1
4 ln[k(x)] + const (3.10)

The wave function of Eq. 3.7 can be written as
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ψ(x) ≈


c1

k1/4(x) exp
(
±i
∫ x

x0

√
k(κ)dκ

)
, for E > V (x) classical region,

c1
k1/4(x) exp

(
±
∫ x

x0

√
k(κ)dκ

)
, for E < V (x) non-classical region.

(3.11)

where c1 is a normalization constant.
When applying the WKB approximation, it is crucial to analyze the different regions
around a potential barrier. The electron is supposed to move from the left side (x < x1),
to pass through the potential barrier (x1 < x < x2,), and enter the right region (x > x2).
Any potential barrier can similarly be divided into three regions. In terms of the WKB
approximation, the wave function in the three different regions can be written as:

ψ1 = A exp (ikx) + B exp (−ikx), x < x1

ψ2 = C√
κ(x)

exp
( ∫ x

0
κ(κ)dκ

)
+ D√

κ(x)
exp

(
−
∫ x

0
κ(κ)dκ

)
, x1 ≤ x ≤ x2

ψ3 = F exp (ikx), x > x2

The amplitudes A, B, C, D and F are real numbers that fully describe the behaviour of
the wave function in the entire system. These amplitudes describe the amount of each
component of the wave function (incoming, outgoing, and transmitted) present in the
different regions.
The transmission coefficientD represents the ratio of the squared amplitude of the portion
that tunnels through the barrier |F|2 to the squared amplitude of the incident wave |A|2,
indicating the probability of quantum particle transmission through the barrier:

D = |F|2

|A|2
≈ exp

(
− 2

ℏ

∫ x2

x1
κ(x)dx

)
= exp

(
− 2

ℏ

∫ x2

x1

√
2m(E − V (x))dx

)
(3.12)

and the reflection coefficient:

R = 1 − exp
[

− 2
ℏ

∫ x2

x1

√
2m(E − V (x))dx

]
(3.13)

Despite being an approximation, the WKB method is a valuable tool for understanding
quantum tunneling phenomena to analyse the behavior of particles in the presence of
potential barriers. It provides approximate solutions that are particularly useful when
the potential energy varies slowly.

3.1.3 Fowler-Nordheim theory

The Fowler-Nordheim (FN) theory, developed in 1928 by Fowler and Nordheim, provided
a fundamental understanding of the electron emission from metals into a vacuum under
the influence of strong electric fields. This phenomenon has critical implications in var-
ious technological applications such as field emission displays, electron microscopy, and
vacuum nanoelectronics.
Mainly, assuming that the emission current moves along the x direction and the emitter
surface is on the y − z plane, the emission density [2], [113] can be written as

– 33 –



CHAPTER 3. METHODOLOGY

J =
∫ ∞

0
N(Ex)D(Ex)dEx (3.14)

where N(Ex) is the number of electrons crossing to the y − z plane in the x direction
along the current between Ex and Ex + dEx. N(Ex) is the density of states, which is
sometimes called the supply function in field emission theories. D(Ex) is the transmission
probability of the vacuum potential barrier.
Based on the Sommerfeld model [114], the electron energy in a metal can be expressed
as

E = Ex +
h̄k2

p

2m
where k2

p = k2
y + k2

z , the electron group velocity is vx = h̄kx

m
, and d3k = d2kpdkx. For a

given Ex, d2kp = 2πkpdkp = 2π m
h̄2dE and the constant density of states can be derived

N(Ex) = eme

2πh̄3

∫ ∞

Ex

dE

1 + exp
(

E−EF

kBT

) = emekBT

2πh̄3 ln
[
1 + exp

(
− Ex − EF

kBT

)]
(3.15)

where EF is the Fermi energy of emitter, e is the elementary charge, me is an electron
mass, kB is Boltzmann constant and T is the temperature. The transmission coefficient
D(Ex) describes the probability of an electron tunneling through the triangular vacuum
potential barrier. In the FN theory, this coefficient is often calculated using the WKB
method described in the previous section (Sec. 3.1.2).
The tunneling probability through the barrier is related to the transmission coefficient
D(Ex), which quantifies the fraction of incident particles (electrons) that penetrate the
barrier. It is given by:

D(Ex) = exp
( ∫ √

2m(V (x) − Ex)dx
)

(3.16)

This equation expresses the probability that an electron with energy Ex will tunnel
through the potential barrier as a result of the interference between classical and quantum
mechanical effects, and V (x) represents the potential energy as a function of position x.
The Emission current density is expressed as

JF N = emekBT

2πh̄3 DF

∫ ∞

0
exp

(
Ex − EF

dF

)
ln
[
1 + exp

(
− Ex − EF

kBT

)]
dE (3.17)

where dF is a characteristic energy scale related to the electric field strength and the
work function of the metal, which affects the rate of electron field emission;

DF = exp
−2ge

3e
ω

3
2
0
F

,
1
dF

= ge

√
ω0

eF
,

where ge = 2
√

2me

h̄2 is a constant that includes physical factors, ω0 is the work function of
the metal, and F is the local electric field.
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3.1.4 JWKB improved

The quasiclassical Jeffreys-Wentzel-Kramers-Brillouin (JWKB) approximation [29], [115]
assumes that the particle can tunnel through an otherwise inaccessible region, and its
wave function in it is determined by an evanescent wave - an exponential function. The
key question is how to set up conditions linking outside and inside the barrier, the con-
nection formula, as they are located at the barrier edge where the condition of slowly
changing potential V (x) is probably not fulfilled. The standard textbook form of JWKB
approximation [29], [115] is usually used with linking conditions set by Airy functions
(representing the reflection points in triangular barrier approximation). Then the tun-
neling probability reads:

T (E,F ) = 1(
Exp

(
2AαI(E,F )

)
+ Exp

(
− 2AαI(E,F )

))2 ≈ Exp
(

− 2AαI(E,F )
)

(3.18)
Here, Aα is a numerical factor that will be obtained in the following section, and a
shorthand notation for the integral has been used:

I(E,F ) =
∫ x2(E,F )

x1(E,F )
κ(x,E, F )dx|k1 (3.19)

where E is electron energy at which the tunneling process takes place, F is the strength
of an external electric field,

κ(x,E, F ) =
√

2m
h̄2 (V (x, F ) − E)

and x1,2 are the inner and outer ends of the barrier. The x1,2 are found by solving the
equation V (F, x) = E. It is assumed that an integral is performed for a given eigen-state
with a momentum k1, known from the energy conservation condition. The commonly
used approximation that takes us from the top to bottom line in Eq. 3.18 is valid only
deep inside the quantum well, away from the top of the tunneling barrier.
Unfortunately, neither form of Eq. 3.18 gives the correct quantum mechanical result
right on the top of the barrier, where the exact quantum mechanical solution states that
T = 1/2. In Eq. 3.18 when x1 = x2 and κ = 0 the bottom formula gives T = 1 which
grossly overestimates the transmission coefficient, while the top expression in Eq. 3.18
gives T = 0.669, a value that is still away from 1/2. Clearly, when one works at the
smallest energies, a better expression is needed to obtain the correct T (E,F ) values.
Recent work [116] has studied this problem in detail and found that quite good results
can be obtained using Kemble [117] version of WKB, the WKB approximation improved
by using a hydrodynamic connection formula. Then the expression is the following:

T (E,F ) = 1

1 + Exp
(

2AαI(E,F )
) (3.20)

an expression that clearly produces the desired quantum mechanical correct result T =
1/2 at the barrier top: when x1 = x2 ⇒ I = 0. Moreover, Ref. [116] showed how, by
extending the potential V (x) onto a full complex plane, the Eq. 3.1.4 can be extended to
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above-barrier energies. In that work, the optimal complex plane contour has been found
that solves V (x) = E equality and minimizes the imaginary part of the potential V (x).
In this way, it has been proved [116] that the necessary extension boils down to the same
integral as in Eq. 3.1.4, but is performed over a purely imaginary variable. This result
is going to be used in the present work.

3.1.5 Further improvements of FN theory

The classic FN theory [29], [118], [119] of field emission from metals describes and reveals
the differences in field emission between bulk metallic emitters and low-dimensional emit-
ters. FN tunneling is the wave-mechanical tunneling of electrons through a triangular-
type barrier produced at the surface of an electron conductor by applying a very high
electric field [120].
The calculations implicate the FN equations [113]. The magnitude J of the electron
emission-current density is given by

J = ¯̄λAω−1
0 F 2 exp

(
−

¯̄µBω3/2
0

F

)
(3.21)

where ω0 is the local work function and F is the local field at the surface, ¯̄λ and ¯̄µ are
generalized numerical correction factors, their form depending on the assumptions and
approximation made, A and B are respectively the first and second FN constants [118],
[119], given by

A ≡ e3/8πh̄P = 1.541434 × 10−6AeV V −2 (3.22)

B ≡ 4
3(2me)1/2/eh̄ = 6.830888 × 109eV −3/2V m−1 (3.23)

where e is the elementary charge, me is the elecron mass, h̄P is Planck’s constant and
h̄ = h̄P/2π. And the bare scale reads:

k0 = (2m)1/2

h̄
∼= 5.123168eV −1/2nm−1 (3.24)

The Nordheim parameter is given by

yN ≡ CF 1/2

ω0
(3.25)

where

C ≡ (e3/4πε0)1/2 = 1.541434 × 10−6eV V −1/2V m1/2 (3.26)
and ε0 is the electric constant.
In the absence of image potential, the tunneling barrier is modelled as a sharp triangular
barrier. In elementary FN theory, the transmission probability is

Del(F, h) = exp
[

− {(8me)1/2/h̄P }
∫ ¯̄xout

¯̄xin

(h− eF ¯̄x)1/2d¯̄x
]

= exp[−Bh3/2/F ] (3.27)
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where B is the second FN constant, ¯̄x is a spatial coordinate along the tunneling direction,
which has a dimension of a [m].
In the presence of an image potential, the potential energy V (x) is

V (x) = h− eF ¯̄x− e2

16πϵ0 ¯̄x (3.28)

where h is the height of the surface potential barrier, F is the electric field normal to the
surface and the last term describes the Coulomb interaction with an image charge left
behind in the electrode. The barrier maximum height is

Vmax = h−
(
e3F

4πε0

)1/2
≡ h− yh (3.29)

where y = (e3F/4πε0)1/2/h is a non-dimensional parameter and (yh) is the amount of
energy that has decreased the top of the image-potential-reduced barrier. The ends of
the barrier, as experienced by an electron of a given energy ω0, correspond to the zeros
of V (x). These are given by:

¯̄xin, ¯̄xout = h

2eF (a± 1) (3.30)

where a is the auxiliary parameter and it has been defined by

a =
√

1 − y2 (3.31)
The transmission probability for this barrier, in WKB approximation, is

D(F, h) = exp
[

− (8me)
1
2

h̄P

∫ h
2eF

(1+a)

h
2eF

(1−a)

(
h− eF ¯̄x− e2

16πϵ0 ¯̄x

) 1
2
d¯̄x
]

(3.32)

The analytic WKB solution has been obtained [118] as a formula in terms of elliptic
integrals:

Dpast(F, h) = exp
[

−
(
m

1
2
e

eh̄P

)(
h

3
2

F

)
I3(F, h)

]
(3.33)

with

I3 = −2
3(1 + a) 1

2 [E(m) − (1 − a)K(m)] (3.34)

K(m) and E(m) are the elliptic integrals of the first and second kind, and m = 2a
1+a

is
the elliptic parameter. This has been the most advanced version of the single-particle
theory.

3.2 Many-body formalism

This section explores the many-body problem in quantum mechanics. In the previous
sections, the focus was on the wave functions of single, noninteracting electrons. This
approach, which exemplifies Fowler–Nordheim theory, effectively captures the behavior
of isolated electrons moving through quantum mechanical systems in the absence of
electron-electron interactions.
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Now, the focus shifts to addressing the complexities of electron-electron interactions
which is a fundamental aspect that is neglected in the single-electron approach. In this
section, the main questions are addressed: what happens when electrons interact, and
how to construct a theory to accurately describe these interactions. This is an important
point in the understanding of quantum mechanics, as a transition is made from the
relatively simple analysis of individual electrons to the collective modes. This includes
exploring new theoretical tools and concepts, such as second quantization. Richer and
often unexpected phenomena that arise from electron interactions can be discovered,
providing a deeper and more complete understanding of quantum mechanical systems.

3.2.1 Limitations of first quantization

A wave function solution is obtained within a framework also called first quantization.
The method, although powerful, has certain limitations and drawbacks. One of the
main limitations of the first quantization framework is that it becomes mathematically
and conceptually challenging when dealing with systems involving a large number of
interacting particles. This is particularly true in cases where the interactions between
particles are strong and cannot be treated perturbatively.
We use bra-ket notation, that works irrespective of a chosen basis, to give the many-body
electronic wavefunction as some combination of single-electron wavefunction:

|Ψ⟩ = |ψ1 · · ·ψN⟩ (3.35)

Consider the interaction between two electrons as an illustrative example. The Coulomb
interaction involves coordinates of both electrons and (in 1D) its Hartree component can
be represented as follows:

V II
ij (x, x′) = ⟨ψiψj|

1
|x− x′|

|ψiψj⟩ ≡
∫
ψ∗

i (x)ψ∗
j (x′) 1

|x− x′|
ψi(x)ψj(x′)dxdx′ (3.36)

while the Fock, exchange component is:

J II
ij (x, x′) = ⟨ψjψi|

1
|x− x′|

|ψiψj⟩ ≡
∫
ψ∗

j (x)ψ∗
i (x′) 1

|x− x′|
ψi(x)ψj(x′)dxdx′ (3.37)

Here, x and x′ denote the positions of the interacting electrons, and |Ψ⟩ encompasses
the wave function of the entire system and contains single electron wave functions of all
electrons. Thus the overall interaction ⟨Ψ|V |Ψ⟩ will be a sum of contributions from all
occupied states i, j.
For example, the wave function representing the case of two interacting electrons is given
by:

Ψ(x1, x2) = ψ1(x1)ψ2(x2) − ψ1(x2)ψ2(x1) (3.38)
The term ψ1(x1)ψ2(x2) represents the case where electron 1 is in state ψ1 and the electron
2 is in state ψ2. The term ψ1(x2)ψ2(x1) represents the opposite configuration, where the
electron 1 is in state ψ2 and the electron 2 is in state ψ1. The two are indistinguishable.
To extend the system to include N particles, the wave function must be generalized

– 38 –



3.2. MANY-BODY FORMALISM

through antisymmetrization. This is necessary because particles, such as electrons, com-
ply with the Pauli exclusion principle. This principle requires the wave function to be
antisymmetric (e.g. "−" sign in Eq. 3.38) when particles are exchanged. Accurately cap-
turing this interaction within the confines of the first quantization framework becomes
increasingly formidable as more particles are injected into the system.
Generalizing Eq. 3.38 to N particles requires to work with Slater determinants. They
are expressed as:

Ψ({xi}) = 1√
N !

∣∣∣∣∣∣∣∣∣∣∣∣∣∣

ψ1(x1) ψ1(x2) · · · ψ1(xN)
ψ2(x1) ψ2(x2) · · · ψ2(xN)

· · ·
· · ·
· · ·

ψN(x1) ψN(x2) · · · ψN(xN)

∣∣∣∣∣∣∣∣∣∣∣∣∣∣
(3.39)

which is a many-body analogue of the wave function as defined in Eq. 3.11. Varying
any of the amplitudes means that one is changing entire column in the determinant.
Consequently, the optimization problem (especially if two columns are to be changed
simultaneously because of interaction) becomes intractable.

3.2.2 Second quantization

The aim of the first quantization was to construct the wave of probability that describes
the system. For many particles, waves start to interfere in a way that is very hard to
follow. Thus, it is sensible to fix the basis, so-called Hilbert space basis: to define static
waves and shift the interest to the problems of how particles jump from one state to
another. Unlike the first quantization, where the focus was on ever-evolving waves, the
second quantization will concentrate on how particles are jumping from one state to
another.
Unlike the first quantization approach, which focuses on wave functions for individual
particles, the second quantization framework treats particles as excitations of underlying
quantum fields that extend throughout spacetime. This shift in perspective offers several
advantages. First, it provides a more elegant and unified way to incorporate both par-
ticles and their interactions, making it particularly suitable for describing systems with
numerous interacting particles.
For more complex, interacting systems a method for transparent bookkeeping of the
changing occupancy of various quantum states is necessary. To this end, researchers have
proposed introducing new operators - creation ci

† and annihilation ci operators - adding
or removing particles from the system. Here, the index i is used here to represent all the
relevant degrees of freedom, including the spin of the particles. Second quantization thus
gives a fundamental and efficient language for expressing the physics of many-particle
systems. It will be used in this thesis to write down the Hamiltonian of the system.
The many-body state of a system of electrons, containing the single-particle states
|ψi⟩, i = 1, ..., N , before given as the Slater-determinant (Eq. 3.39), now can be ex-
pressed in a very compact form:

|Ψi⟩ = 1√
N !

∑
P

sgn(P )P (|ψ1⟩ · · · |ψi⟩ · · · |ψN⟩) = c1
† · · · ci

† · · · cN
†|0⟩ (3.40)
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where P (·) refers to a permutation of the objects in parentheses and sgn(P ) is the sign
of this permutation. |0⟩ notation means the vacuum, defined as a state with no parti-
cles. The advantage of this expression is that all the symmetry properties of the Slater-
determinant are now embodied in the product of creation operators. For this to be true,
the creation operators have to satisfy certain rules.
For the same single-particle state, its creation should not be allowed twice at all, therefore,

ci
†ci

† = 0 (3.41)
and destruction operators must satisfy similar relations

cicj = −cjci, for i ̸= j, and cici = 0. (3.42)

The products of creation and destruction operators corresponding to different states must
involve a minus sign when their order is switched and the destructions are taken

ci
†cj = −cj

†ci, for i ̸= j. (3.43)

These operators move an electron from an occupied state i to an empty state j or the
other way around, and since the order of application in the two products is reversed,
corresponding to a permutation, they must come with opposite signs.
The peculiarity of this formulation is that it compactly represents the many-body space of
excitations by embedding the properties of ladder operators into simplified commutation
relations, eliminating the need for an exact Hilbert space representation. It is considered
the foundation on which the extensive structure of quantum field theory is built.
This section will practically introduce the basic elements of second quantization and
justify its application, setting the stage for discussions about the operations of quan-
tum mechanics expressed in second quantization terms, such as taking matrix elements,
changing bases, and representing operators.

3.2.3 Hamiltonian in second quantization

The formalism of second quantization provides a comprehensive solution for representing
the Hamiltonian of complex systems, particularly one-dimensional materials that are of
interest in this thesis. This formalism is essential, presenting creation and annihilation
operators that signify the addition and removal of particles in various quantum states,
providing a detailed insight into the dynamic properties of the system. The algebra
of creation and annihilation operators automatically takes into account Pauli exclusion
principle.
The energy and further behaviour, as well as transport coefficients of any material, are
determined by its Hamiltonian. In general, the Hamiltonian depends on the specific
chemical properties of the material or, more generally, the physical system under con-
sideration. Nevertheless, it is commonly used to describe the Hamiltonian using a few
model parameters, like in a tight-binding approximation. It gives an immediate under-
standing of the forces acting on carriers in the material and we shall use it in the thesis
for illustrative purposes. The methodology derived here relies on tight-binding approxi-
mation, although it is possible to derive collective modes without this assumption. Those
derivations would use less transparent methods; the study of these generalizations is in
the field of theoretical physics, beyond the scope of this manuscript.
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The tight-binding model simplifies the description of electron movement in a solid
by discretizing space and parameterizing hopping amplitudes between these sites. In a
solid, electrons occupy the locations on atoms and have a negligible probability of being
measured in between as they are in there only when hopping to a neighbouring site due
to quantum tunneling. Then as our Hilbert basis, we take atomic orbitals ψi, one located
at each, e.g., i-th, site.
In the tight-binding model, a lattice of sites is considered, and each site can accom-
modate one or more electrons. The Hamiltonian describes electrons hopping between
neighbouring sites and their on-site energies ϵi. In its simplest form, the Hamiltonian for
a one-dimensional lattice can be written as:

H =
∑

i

ϵici
†ci + t

∑
i

(ci
†ci+1 + ci+1

†ci) (3.44)

Here, ϵi represents the on-site energy or the energy level associated with an electron occu-
pying the i-th lattice site. It is often referred to as the diagonal term of the Hamiltonian.
It can be calculated as the following integral:

ϵi =
∫
dr⃗ψ∗

i (r⃗)Vion(r⃗)ψi(r⃗)

where we are integrating the ionic potential over the single-particle wave functions. The
ci

† and ci are the creation and annihilation operators, respectively, creating or annihilat-
ing an electron at the i-th lattice site. The parameter t represents the hopping integral
or the coupling strength between adjacent lattice sites.
It characterizes the probability amplitude for an electron to hop from one site to the
next. The terms ci

†ci+1 and ci+1
†ci describe the hopping of an electron from the i-th site

to the (i+ 1)-th site and vice versa. The hopping parameter can also be expressed as an
integral:

tji =
∫
dr⃗ψ∗

j (r⃗) ∇2

2mψi(r⃗)

where again we take single-particle wave functions, the base of the Hilbert space, to
evaluate it. The entire complexity of the many-body problem is taken into account
by the anti-commutation rules of the creation/annihilation operators. The many-body
problem is now solved by diagonalizing the tri-diagonal matrix (for nearest neighbour
hopping) which can be done by going to reciprocal (momentum) space and that leads
to electrons band-structure E(k), in our simplest case E(k) = cos(k). The advantage is
however that one can immediately grasp the physical content of the problem (also for
inhomogeneous case) and add interactions which now take nicely compact form:

Hint =
∑
ijml

V (i, j, l,m)c†
ic

†
jclcm (3.45)

Where the matrix element:

V (i, j, l,m) =
∫ ∫

ψ∗
i (r⃗)ψ∗

j (r⃗′) e2

|r⃗ − r⃗′|
ψk(r⃗)ψl(r⃗′) dr⃗ dr⃗′

is again defined as integral over single electron states. The matrix is now in general four-
dimensional. A problem that is still difficult to solve, but at least one can immediately
understand its physical content and look for sensible approximations.
Using the Hamiltonian in the Schrödinger equation, it is possible to derive the energy
levels and wave functions of electrons within the lattice. Overall, the tight-binding model
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provides a valuable approximation for understanding the electronic properties of various
materials, including conductors, insulators, and semiconductors. It serves as a foun-
dational framework for more advanced models in condensed matter physics. Most im-
portantly, the microscopic behaviour of electrons propagating within the system is very
transparent in this formalism.

3.3 Collective modes: field theory

Second quantization is a valuable tool for perturbative methods, particularly when the
description of the system closely aligns with a known basis, such as Bloch states. It
involves the use of creation (c†

i ) and annihilation (cj) operators, which are effective for
manipulating particles within a predetermined Hilbert space i, j-indexed basis, making it
well-suited for constructing perturbative series and considering small corrections to the
single-electron basis. Second quantization is then used to make perturbative expansions,
e.g., in interaction term V (k, k′), namely we construct diagrams with more and more
V (k, k′) nodes assuming that higher order gradually dies out – the state mixing is small.
But in many cases, there is a need to create infinitely many electrons at various positions
to capture the strongly collective nature of the system.
In such a case, in strongly correlated systems, where it is essential to describe an entire
ensemble of particles collectively, field theory methods employing field operators become
more appropriate. To this end, we first define a boson that describes density fluctuation,
sometimes known as plasmon. It reads:

b†
q =

∑
i

c†
ici−q (3.46)

where we see that this new entity at one creates an infinite number of fermions: c†
i creates

an electron in state i, and ci−q annihilates an electron in a state that is momentum q away
from state i. These bosons are used whenever one suspects that collective modes deter-
mine the physics of the system and constitute the correct basis to begin with. Following
Richard Feynman, instead of studying dynamics of a single electron one introduces a
notion of fields as objects over which path integrals are performed. This reformulation of
quantum mechanics is very similar to the Lagrange reformulation of Newtonian classical
dynamics, where the focus was shifted from the particle’s motion towards its optimal
trajectory.
Now, based on the b-boson we define a field:

ϕ(x) =
∑

p

Ap(x)(b†
p + b−p) (3.47)

where the amplitudes are Ap(x) =
√

L|p|
2π

1
p

exp(−α|p|−ıpx), i.e., it determines how much of
each collective mode should be taken at different positions to create an optimal density.
These field operators create the entire ensemble of particles simultaneously, capturing
the system’s collective behavior. They are not single-particle wave functions – inside
them, the second quantization operators are incorporated, and these keep track of all
anti-commutation rules of many-body state. The field operator ϕ(r), where r = (x, t)
represents the spatial and temporal coordinates of a quantum 1D system, is a fundamental
tool that we shall use in this thesis.
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The connection between fermionic and bosonic fields can be described by equations, such
as Eq. 3.46, that relate the creation and annihilation operators for fermions to those
for bosons. Such equations are essential for understanding the transformation between
different representations of the same physical system. We choose the right basis that is
the closest to capturing the full solution of the system. In quantum many-body theory,
the choice of formalism is crucial, especially when considering correlations – choosing the
right one means that the perturbing term will be very small and we are very close to the
final answer. Collective modes in the context of field theory are essential for describing
1D interacting particle systems, because then fermions cannot avoid each other as they
move along the nanotube.

3.3.1 Special case of 1D

In the case of a 1D system, any interaction between fermions immediately leads to a
breakdown of the single-electron picture. Here, it is strikingly clear that we need to
resort to the description in terms of collective modes. Fortunately, expressing the system
in terms of fields allows for an immediate solution to the problem.
Upon expressing a system of many fermions (electrons) in terms of field operators defined
above the Hamiltonian describing the low-energy properties of a massless one-dimensional
system is (for derivation see Appendix A)

H = ℏ
2π

∫
dx
[
uK

ℏ2

(
π∇θ(x)

)2
+ u

K
(∇ϕ(x))2

]
(3.48)

where we used the collective, many body field ϕ(x) defined just above in Eq. 3.47. The
θ(x) is a canonically conjugated momentum field. This is the Hamiltonian of a Tomonaga-
Luttinger liquid (TLL) – a new paradigmatic state for 1D fermions that substitutes the
well-known Landau Fermi liquid describing conventional 3D metals.
Here, u is the velocity associated with the collective excitations in the system, K is
the Luttinger parameter and the bosonic fields ϕ and θ represent the density and phase
fluctuations. The gradient terms of these fields, (∇ϕ)2 and (∇θ)2, give kinetic and
density-density interactions. Remarkably derivatives of the bosonic fields correspond to
fermionic density fields:

ρc(x) = 1√
2π

∇ϕ(x) , πc(x) = 1√
2π

∇θ(x) (3.49)

Here, ρc(x) and πc(x) are the spatial fluctuations of fermion density and fermion mo-
mentum density. Mathematically, these are the dual fields to the phase fluctuations,
the bosonic fields ϕ(x) and θ(x), respectively. All the observable quantities should now
be expressed in terms of these bosonic fields, and then their expectation values can be
relatively straightforwardly calculable, taking into account the solvability of the theory
given by Eq. 3.48.
Later in Chapter 5, the presence of a simple relation will be demonstrated between the
ϕ(x), θ(x) fields and the all-fermion field Ψ(x) (an analogue of Eq. 3.39, in the sense that
it contains motion of all electrons), approximately:

Ψ(x) ∝ exp(±kFx) exp(ϕ(x) ± θ(x))
It should be emphasized that although the bosonic field appears as simple phase shifts
defined on the top of Bloch wave, in fact, they contain the collective motion of all electrons
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in the system. The fact that such collective motion can be described by a remarkably
simple equation of motion Eq. 3.48 is one of the greatest achievements of the theory of
correlated systems for which F.D.Haldane received Nobel prize in physics in 2016.
Eq. 3.48 is a Hamiltonian of an elastic membrane, therefore, all our knowledge on that
can be significantly useful here. It is one of the rare and remarkable, cases when insights
from mechanics inspire the development of fundamental physics.

3.4 TLL and tuneling

3.4.1 Re-defining the problem

We are now ready to tackle the problem of tunneling out of interacting nanotube. In
essence, our approach is as follows: since the escaping electron is distinct, we separate
quantum (TLL) and (semi-) classical degrees of freedom that describe the motion of that
electron. We will proceed by averaging out the TLL to determine its influence on the
(semi-) classical motion to get the transmission.
We start by defining the problem, namely: the TLL before and after emission, plus
the emitted electron. The problem focuses on studying a model for one-dimensional
interacting fermions. Initially, the TLL is characterized by a quantum state with N
electrons, represented by the wavefunction ⟨ΨN

TLL|. Due to the emission of an electron, the
initial state is transformed into the final state, where the TLL contains N−1 electrons (in
any q-state, Eq. 3.46) and there is an additional the emitted electron (in some momentum
state): ⟨ΨN−1

TLL |⊗⟨Ψemit|.
The transmission has been defined at the beginning of this chapter as an overlap of
incoming and outgoing wavefunctions. In all-electron language, it can be written as:

T (E) =
∫ xout

xin

⟨Ψfinal(E)|x1, x2, ..., xN⟩G(x, x′)⟨x′
1, x

′
2, ..., x

′
N |Ψinitial(E)⟩dxdx′dx1...Ndx

′
1...N

(3.50)
Here, G is a propagator of the tunneling fermion from point x to x′, and we integrate it
over the entire barrier area. The variable x can be equal to any of coordinates xi and
variable x′ to any of coordinates x′

i, but it is usually assumed that all (indistinguishable)
electrons sit on orbitals of the same shape. Thus, T will be proportional to N(N − 1)
times, the case when x = x1 and x′ = x′

1 is chosen (so G ∝ δ(x− x1)δ(x′ − x′
1)) with all

other electrons, playing a role of an effective medium.
The Eq. 3.50 generalizes the previous WKB description in terms of plane waves. The
outgoing wave, i.e., the quantum state after the emission process, is a tensor product of
emitted electron’s states and the states of remaining correlated electronic liquid:

⟨Ψfinal|= ⟨ΨN−1
TLL |⊗⟨Ψemit| (3.51)

while the initial state is a correlated electronic liquid that contains all electrons:

⟨Ψinitial|= ⟨ΨN
TLL| (3.52)

When, as in our case, the system is a correlated 1D metal, the correlated electronic liquid
is the TLL described in the previous sections. Our problem is thus to provide the time
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evolution Ψinitial(t) and extract the part that (after a long time) will give a finite overlap
with ⟨Ψfinal| as defined above.
Since the emitted electron is geometrically separated and distinct as it moves along the
1D system on its way out, we can simplify the problem and assume that the outgoing
electron can be factorized out

⟨Ψfinal|= ⟨ΨN−1
TLL |·⟨Ψemit| (3.53)

where we used simple "·" product instead of tensor "⊗" product because we removed any
entanglement between these states. To benefit from this factorization and, at the same
time, employ an accurate and complete analysis of the 1D system ≡TLL, the Hamiltonian
ought to be split in quantum (TLL) and classical parts.

Htot = HT LL[Φquant] +Htun[Φcl] (3.54)
where Φcl refers to the large displacement of carriers due to emission events, and Φquant

are small fluctuations around this trajectory (solved previously as TLL). To split the
Hamiltonian, we follow the method of Fukuyama and Suzumura ([121], [122], [123]), who
simply proposed ϕ = ϕcl + ϕq. Then the Hamiltonian becomes:

H =
∫
dx
(
uK(∇θ(x))2 + u

K
(∇ϕ(x))2 + V cos(θ(x = xtun))

)
=
∫
dx

(
uK

[
(∇θq)2 + (∇θcl)2

]
+ u

K

[
(∇ϕq)2 +

(
∇ϕ2

cl

)]
+ u

K
M2 + uKP 2 + V cos θcl(x = xtun)

(
1 −

θ2
q − ⟨θq⟩2

2

))
(3.55)

which indeed can be divided into a quantum part

HT LL[Φquant] =
∫
dr
(
uK (∇θq)2 + u

K
(∇ϕq)2

)
(3.56)

and classical part:

Htunel[Φcl] =
∫
dr

(
u

K
(∇ϕcl)2+uK(∇θcl)2+ u

K
M2+uKP 2+V cos θcl(r)

(
1 − θ2 − ⟨θ⟩2

2

))
(3.57)

where M is a correction to the tunneling electron mass due to quantum fluctuations

M2 ∝ ∇ϕcl(ϕ2 − ⟨ϕ⟩2),

and analogous for P 2, the correction to mutual momentum. The last term is a tunneling
term, with its amplitude V ∝ Fext – proportional to the external electric field Fext.
The quantum part is identical to TLL and from now on, the q index will be neglected.
It should be noted that the difficult-to-solve nonlinear term, the cosine corresponding
to emission operator, acts only on the classical field ϕcl. When the cosine is large and
dominates the behaviour, a classical description of this term can be continued with h̄ → 0.
Then the time evolution can be factorized:

Utotal(t1 − t0) = UT LL(t1 − t0) · Utun(t1 − t0) (3.58)
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where we could use simple product "·" instead of full quantum tensor product "⊗". Here, U
is a time evolution operator which is defined as U ∼ exp (iH), and since the Hamiltonian
is split, it is explicitly represented as:

⟨Ψfinal|Ψinitial⟩ = ⟨ΨT LL|exp(iHT LL)|ΨT LL⟩⟨Ψout|exp(iHtun)|Ψ0⟩ (3.59)
where UT LL = exp (iHT LL) is simply a response function of the TLL. Since |ΨN−1

TLL ⟩ =
ck|ΨN

TLL⟩, we are interested in the retarded response function of c†
kck, "susceptibility", i.e.,

the imaginary part of the propagator, electron Green’s function. It can be written in the
mathematical form:

⟨ΨT LL|c†(t, x)c(0, 0)|ΨT LL⟩R = Im[GT LL(t, x)] (3.60)
which is nothing else than the LDOS of TLL, as discussed in the previous section. The
other part contains the large-amplitude motion along the classical trajectory. Then, the
element that needs to be evaluated is a classical propagator [121], [122], [123]:

Gcl(t1 − t0) = exp [Scl(t1 − t0)] (3.61)
with

Scl =
∫
dr
(
VF (∇θcl)2 + (∇ϕcl)2 +

(
u

K
− 1

)
∇ϕ2

cl + V cos θcl + corrections
)

(3.62)

The first two terms can be refermionized (see Sec. 10C in Ref. [124]), so that they
manifestly represent the motion of a single fermion, while the third term regularizes
action at the smallest distances. The cosine is the largest term with the characteristic
feature of localizing the system at its minimum. The problem is reduced to evaluating
tunneling probability between such minima, a problem that has been solved by Coleman
[125].
The corrections indicated in Eq. 3.62 are terms ∝ (θ − ⟨θ⟩) ≡ P and ∝ M2. These
corrections will capture how quantum fluctuations modify the tunneling trajectory. In
all papers that have addressed the problems of tunneling so far, these terms were simply
neglected, to make the factorization of quantum and classical parts exact. Physically,
this is supposed to be justified by the fact that the emitted electron moves independently
from the carriers in the 1D metal. This assumption works well if the trajectory of the
electron qcl(t) is such that it immediately loses contact with the cathode.
However, as will be observed, this assumption does not work when the electron moves
along the 1D metal. In particular, it entirely misses the interaction with the image-hole
left behind in a metal, a feature taken into account in the most advanced version of
3D FN theory. This is accounted for by the M,P terms. Moreover, it is observed that
the quantum corrections effectively renormalize the potential experienced by the emitted
electron, because V → V

(
1 − θ2−⟨θ⟩2

2

)
. These terms will also be accounted for through

the dielectric function of the TLL cathode. Thus, the terms that will be neglected in our
reasoning, are only a mutual correlation between the image-hole and the local variations
of dielectric functions. These should be smoothed out at the finite temperatures we are
interested in.
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3.4.2 Back to WKB: Instanton idea of Coleman

We now move to the next stage of our derivation: we identify ϕcl with the trajectory q(τ)
along which the electron tunnels out. Crucially, for us, the problem of moving from one
minimum to another along q(τ) within the field theory has been solved by Coleman [125]
who showed that the semi-classical (WKB-type) approximation works well. We outline
this derivation here, below.
What remains to be solved now is the classical part of the problem, the second term in
Eq. 3.59 or in other words Eq. 3.61. The breakthrough was achieved through the work
of Coleman [125], who demonstrated for potential shown in Fig. 3.3 the existence of an
additional solution to the Euler-Lagrange equation that he called an instanton. Just as
a soliton in real space, an instanton lives in a temporal domain and describes a sudden
jump from one state to another.
Sidney Coleman’s innovative integration of the WKB approximation with instanton con-
cepts has been a fundamental element in enhancing the understanding of quantum me-
chanics and quantum field theory. This section highlights Coleman’s seminal contribution
to the field, illustrating the interconnections between the WKB approximation and his
revolutionary instanton concepts [125].

Figure 3.3: Potential energy U as a function of the field ϕ (nonderivative part of the
Lagrangian), showing the false vacuum (ϕ−) and the true vacuum (ϕ+). The figure is
inspired by Ref. [125].

Coleman’s contributions have been instrumental in extending these concepts to quantum
field theory, providing a more generalized and coherent framework. The quantum field
theory of a single scalar field in four-dimensional space-time with nonderivative interac-
tions should be taken into account.

L[ϕ] = 1
2∂µϕ∂

µϕ− U [ϕ] (3.63)

This Lagrangian represents a foundational mathematical structure in the theoretical de-
velopments under consideration, describing the dynamics of a scalar field ϕ(r) in the
presence of a potential U [ϕ]. U [ϕ] is assumed to include two relative minima, ϕ±(r),
with ϕ−(r) being the absolute minimum (Fig. 3.3). The classical field theory state where
ϕ(r) = ϕ−(r) represents the unique state of lowest energy, correlating to the unique
vacuum state of the quantum theory, at least in perturbative regimes. The classical equi-
librium state where ϕ(r) = ϕ+(r), called "false vacuum", is stable within the classical
framework but is destabilized by quantum effects, notably by barrier penetration. Cole-
man’s theory depends on the idea that quantum fluctuations can include the formation of
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a bubble of the ϕ−(r) region. The expansion of this bubble is contingent upon surpassing
a certain critical size, beyond which it can grow and convert the available false vacuum
ϕ+(r) into a true ϕ−(r). The decay probability of the false vacuum (per unit time per
unit volume, Γ/V ) is expressed as

Γ/V = Ae−B/ℏ[1 +O(ℏ)] (3.64)
where A and B are theory-dependent coefficients.
Through his instanton concepts, Coleman introduces an approach to understanding and
calculating the crucial B coefficient, which determines the probability of decay for the
false vacuum. Accurately estimating B is essential as it reveals the complex dynamics
and properties of the true vacuum state, thereby illuminating the overall behavior of the
quantum field.
Based on a solution for a single particle q(r) trajectory problem, defined by Lagrangian

L[q(r)] = 1
2 q̇

2 − V [q(r)] (3.65)

where V [q] denotes the potential, Coleman showed that the field ϕ(x) will have three
solutions: two well-known Gaussian oscillations around the minima and the jump, a
solution in time known as instanton. The jump fulfils the equation

d2ϕ

dx2 = Vsaddle[ϕ] (3.66)

which can be solved as

x =
∫ ϕ1

0

dϕ

(2Vsaddle(ϕ)) 1
2

(3.67)

leading to the action

S1 =
∫
dx

1
2

(
dϕ1

dx

)2

+ U+

 =
∫ a

−a
dϕ {2U [ϕ]}1/2 (3.68)

To evaluate the coefficient B, the Euclidean action SE of the bounce solution can be
computed:

B = SE =
∫
dτddx

[1
2

(
∂ϕ

∂τ

)2
+ 1

2(∇⃗ϕ)2 + U(x)
]

(3.69)

The seminal result by Coleman [125] is that the Euler-Lagrange equation for the field
instanton gives classical equation of motion q̈(r) = Vsaddle(q(τ)) which admits a tunneling
type solution, upon inserting it into the tunneling action one finds:

Stun =
∫
dτ
√
Vsaddle(q(τ)) (3.70)

which shows that WKB can serve as a good approximation for Eq. 3.62. Based on the
discussion after Eq. 3.62, it is observed that including quantum corrections will lead to
a modified potential:

V (x) = h− eFd0x
α − e2

16πϵ0d0xα
(3.71)
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where we split the ¯̄x spatial coordinate into x dimensionless variable, and the dimension-
carrying parameter d0. This is because the correlation functions in TLL are given by
power-laws with non-universal exponents, which leads to an arbitrary α. A full expla-
nation of a physical meaning of the parameter d0 will be provided in Chapter 4. It is
thus expected that Vsaddle (Eq. 3.70) will have the form of Eq. 3.71. Remarkably, for
the simplest case of straightforward motion perpendicular to the barrier, this becomes
equivalent to the quasi-classical WKB result. However, in more complicated cases, such
as ours, the trajectory of a particle will follow a path similar in spirit to the path-integral
formulation. Now the q(τ) is the saddle point trajectory, and it is assumed that due to
the geometry of the problem (the quantum well in between nanotubes), a significant por-
tion of the trajectory is such that q(τ)||x. For a considerable time, the emitted electron
keeps interacting with the surrounding TLLs. Our task is then to average out the quan-
tum fluctuations, which can be achieved for TLL, in order to obtain effective parameters
inside Vsaddle(x).
To complete the connection with the most advanced form of single-particle formalism,
Eq. 3.1.4, we turn to density matrix formalism. Since ρtun = exp(−Stun) and antic-
ipating the result in Eq. 3.70, we obtain that T is expressed by Kemble’s improved
Jeffreys–Wentzel–Kramers–Brillouin (JWKB) formula:

T (F, ω) = 1
1 +D(F, h = ω − ω0)

(3.72)

where D is the transmission probability (as defined in past studies, in Eq. 3.33). The
probability that the selected carrier is emitted is generally proportional to the element of
the single-particle density matrix: pemit = ρtun/Z where Z is a partition function of the
system. For Z, we take Z = ρ0 + ρtun ≈ 1 + ρtun, assuming that the tunneling process
is so negligible that it does not affect the density matrix of the rest of the system. We
thus arrive at normalized emission probability:

pemit = 1
1 + exp(+Stun) (3.73)

and the remaining problem is to solve exp(+Stun). For this task, the idea introduced by
Coleman is employed, which has been described in this section.
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Chapter 4

Generalizing Fowler-Nordheim
tunneling theory for an arbitrary
power-law barrier

4.1 Introduction

In this chapter, the canonical Fowler-Nordheim theory has been extended as the trans-
mission for the general case of a barrier described by a fractional power law has been
computed. An exact analytical formula has been derived, which is written in terms
of Gauss hypergeometric functions, and fully captures the emission for this generalized
problem, including the screened interaction with the image potential. Firstly, the quality
of the approximation has been benchmarked against the most advanced formulation of
Fowler-Nordheim where the transmission is given in terms of elliptic integrals. After that,
as the barrier is given by a power law, the dependence of the current on the exponent of
the power law is analyzed in detail. To be relevant to the experiments, several examples
of rough metallic surfaces and surfaces covered with a dielectric have been considered,
showing that these can be described by the formalism. Finally, it is discussed how this
solution may be related in some specific cases to an exact quantum mechanical solution
of the quantum well problem.
The chapter is organized as follows: the model is defined in Sec. 4.2, then in Sec. 4.3 the
generalized formula for tunneling in the case of a barrier described by a power law with
an arbitrary exponent is derived. In Sec. 4.4, using Kemble’s improved JWKB expres-
sion for tunneling, the validity of this expression compared to previous results for bare
Coulomb triangular barrier [118] and present results obtained for arbitrary exponents is
assessed. The dependence on the exponent of the power law is studied. The transmission
probability for composite surfaces with locally varying work functions is also shown in
Sec. 4.4.3. Besides, a comparison of our analytical results with a numerical scattering
matrix method is made. Finally, in Sec. 4.5, the possible experimental implementations
in which our theory could be applied are discussed, and a connection with exact quantum
mechanical solutions of the problem is built. The conclusion is in Sec. 4.6.
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4.2 The model

We start with the one-dimensional Schrödinger equation for the tunneling electron:

−d2Ψ(x)
dx2 − k2

0(E − V (x))Ψ(x) = 0 (4.1)

where Ψ(x) is a one-dimensional wave function, V (x) is the electron potential energy,
E is the electron’s total forward energy and k0 ∼= 5.123168eV −1/2nm−1 is a universal
constant (see Sec. 3.1.5 for its explicit expression). In our case, V (x) will have a specific
form of a sum of two opposite power laws.

Figure 4.1: Illustration of the image-force-reduced barrier V (x) encountered by a tun-
neling electron. α = 1 corresponds to the exact triangular barrier at a perfectly smooth
planar interface, while 0 < α < 1 corresponds to a reduced dimensionality seen by tun-
neling electrons at a rough surface above the concave part, while α > 1, above the convex
part.

4.2.1 Effective potential

It is observed that the entire information about the physics of the problem is inside the
effective potential energy experienced by an electron, V (x). The electron image-potential-
reduced barrier is shown in Fig. 4.1, where V (x) is the electron potential energy, h is
the zero-field (tunneling) barrier height (h0 is a work-function of a given material) and
xin = x1 and xout = x2 are the inner and outer ends of the barrier (when possible notation
from Ref. [118] will be used in this subsection to facilitate comparisons). When power-
law exponent α = 1, it coincides with the exact triangular barrier at a perfectly smooth
planar interface, while arbitrary α corresponds to the rough surface.
The expression for a potential is generalized to the following form:

V (x) = h− eFd0x
α − e2

16πϵ0d0xα
(4.2)

where x is a dimensionless variable because the dimension of [m] is accounted for by
the extra parameter d0, which serves as a characteristic length scale that influences the
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effective electric field in our model. In the context of tunneling through the barrier,
d0 essentially rescales the applied voltage, determining the threshold field. d0 is a free
parameter in this Chapter, providing flexibility in modeling various tunneling barriers
without committing to a specific material-dependent value. A smaller d0 results in a
larger effective electric field. Now which can be constructed either by formal mathematical
construct of a surface fractal [126] or by boundary condition set by experiment h =
ω0 − ω is the height of the effective barrier encountered by the tunneling electron. In
the absence of any additional exciting force, it is reduced to the material-characteristic
work function ω0. The theory can be straightforwardly generalized to take into account
e.g. photon-assisted field emission when the electron gains an additional energy ω before
the tunneling. The choice of potential, although not presuming to describe any specific
realization at present, may be justified on physical grounds. This is discussed in detail
in Sec. 4.5.1.

4.3 Hypergeometric function solution

Finding an analytical form for an overlap integral is one of the most significant outcomes
of this work, as detailed in this section.
The expression of the generalized potential has the form of Eq. 4.2. The decay of the
evanescent wave function is now described by the following integral, known as an overlap
integral:

D(F, h) = exp
[

− (8me)
1
2

ℏ

∫ h
2eF d0

(1+a)
1
α

h
2eF d0

(1−a)
1
α

(
h− eFd0x

α − e2

16πϵ0d0xα

) 1
2
d0dx

]
(4.3)

The integration boundaries are defined by the points where the electron enters and exits
the potential barrier:

xin,out =
(

h

2eFd0

)
(1 ∓ a)1/α

where

a =
√

1 − F

(ω0 − ω)2 (4.4)

is an auxiliary parameter.
In Eq. 4.3, substituting η = xα ⇒ x = η

1
α ⇒ dx = d

(
η

1
α

)
= 1

α
η

1
α

−1dη, we obtain

D(F, h) = exp
[

− (8me)
1
2 d0

ℏ

∫ ( h
2eF d0

)α

(1+a)(
h

2eF d0

)α

(1−a)

(
h− eFd0η − e2

16πϵ0d0η

) 1
2 1
α
η

1
α

−1dη
]

(4.5)

Then, substituting with a new variable of integration ξ = 2eF d0
h

η ⇒ η = hξ
2eF d0

, we have

η
1−α

α =
(

hξ
2eF d0

) 1−α
α

and dη = d
(

hξ
2eF d0

)
= h

2eF d0
dξ. Therefore,

D(F, h) = exp
[

− (8me) 1
2 d0

ℏ

∫ ( h
2eF d0

)α−1
(1+a)(

h
2eF d0

)α−1
(1−a)

(
h − eF d0

hξ

2eF d0
− e2

16πϵ0d0

2eF d0

hξ

) 1
2 1

α

(
hξ

2eF d0

) 1−α
α h

2eF d0
dξ

]
(4.6)
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where the borders of integral are ξin,out =
(

h
2eF d0

)α−1
(1 ∓ a).

D(F, h) = exp
[

− (8me)
1
2 d0

ℏ

∫ ξout

ξin

(
h− eF

hξ

2eF − e2 · 2eF
16πϵ0hξ

) 1
2 1
α

(
hξ

2eFd0

) 1−α
α h

2eFd0
dξ
]

= exp
[

− (8me)
1
2 d0

ℏ
1
α

h

2eFd0

(
h

2eFd0

) 1−α
α
∫ ξout

ξin

(
h− eF

hξ

2eF − e3F

8πϵ0hξ

) 1
2
ξ

1−α
α dξ

]

= exp
[

− (8me)
1
2

ℏ
1
α

h

2eF

(
h

2eFd0

) 1−α
α
∫ ξout

ξin

(
h− eF

hξ

2eF − e3F

8πϵ0hξ

) 1
2
(2ξ
h

) 1
2
(
h

2ξ

) 1
2
ξ

1−α
α dξ

]

= exp
[

− (8me)
1
2

ℏ
1
α

h

2eF

(
h

2eFd0

) 1−α
α
∫ ξout

ξin

(
h

2ξ
h

− hξ

2
2ξ
h

− e3 · F
8πϵ0hξ

2ξ
h

) 1
2
ξ− 1

2 ξ
1−α

α dξ
]

= exp
[

− m
1
2
e

eℏ
h

3
2

F

(
h

2eFd0

) 1−α
α 1
α

∫ ξout

ξin

(
2ξ − ξ2 − e3 · F

4πϵ0h2

) 1
2
ξ− 1

2 ξ
1−α

α dξ
]

(4.7)

using e3·F
4πϵ0h2 = y2, we get

D(F, h) = exp
[

− m
1
2
e

eℏ
h

3
2

F

(
h

2eFd0

) 1−α
α 1
α

∫ ξout

ξin

(
2ξ − ξ2 − y2

) 1
2
ξ− 1

2 ξ
1−α

α dξ
]

(4.8)

As mentioned in Ref. [118], simple polynomials can always be expanded in terms of
factors involving their zeros, and it is characteristic of JWKB integral that c and d are
the zeros of the quadratic expression in Eq. 4.8. It can be easily confirmed that Eq. 4.8
may be written in the form:

D(F, h) = exp
[

− m1/2
e
eh̄

h3/2

F

1
α

(
h

2eFd0

) 1−α
α
∫ c

d
ξ

1−α
α ξ− 1

2 (c− ξ)
1
2 (ξ − d)

1
2dξ

]
(4.9)

where the last term is an integral sometimes called (up to a pre-factor) the Gamow factor,
or [127], [128] principal Schottky–Nordheim barrier function. It reads:

I(ξ) =
∫ c

d
ξ

1−α
α ξ− 1

2 (c− ξ)
1
2 (ξ − d)

1
2dξ (4.10)

The analytic solution of the integral I(E,F ) has been found, which is given by a Gauss
hypergeometric function:

I(F, h) =
παd

1
α

− 3
2
(
2c((α − 1)c + d) 2F1

(
1
2 , 3

2 − 1
α

; 1; 1 − c
d

)
− αd(c + d) 2F1

(
− 1

2 , 3
2 − 1

α
; 1; 1 − c

d

))
α2 − 4 (4.11)

Here, I(F,E ≡ h) is an implicit function of F and h, since c =
(

h
2eF d0

)α−1
(1 + a) and

d =
(

h
2eF d0

)α−1
(1 − a).

It is not accidentally that the Gamow factor found by us (Eq. 4.11) can be expressed by
the function that belongs to the 2F1 family. As it has been previously identified [128],
for the case when α = 1, the defining equation for Fowler-Nordheim tunneling is indeed
the Gauss Hypergeometric ODE. This can be shown manifestly if we rewrite Eq. 4.11 as
follows:

I(F, h) = παd
1
α

+ 1
2

α2 − 4

(
2((α − 1) c

d
+ 1) c

d
2F1

(1
2 ,

3
2 − 1

α
; 1; 1 − c

d

)
− α( c

d
+ 1) 2F1

(
−1

2 ,
3
2 − 1

α
; 1; 1 − c

d

))
(4.12)

– 54 –



4.4. RESULTS: ILLUSTRATION

It can now be easily observed that by taking1 a variable z ≡ c
d
, the two terms in Eq. 4.12

are in fact two solutions of the hypergeometric ODE:

(1 − z)zw′′(z) + w′(z)(c̄− z(ā+ b̄+ 1)) − āb̄w(z) = 0 (4.13)
precisely, they are solutions of the second type in the Kummer list of twenty-four solutions
[129], namely those of the form:

w2,1(z) =2 F1
(
ā, b̄; ā+ b̄− c̄+ 1; 1 − z

)
and

w2,2(z) = z2F1
(
c̄− b̄+ 1, c̄+ ā+ 1; ā+ b̄− c̄+ 1; 1 − z

)
.

with the following ODE’s parameters

ā = −1/2, b̄ = −1/α + 3/2, c̄ = −1/α + 1.

Obviously, in our solution w(z) there are distinct terms, e.g., the term ((α − 1) c
d

+ 1)
appearing in front of the second solution. This implies that Eq. 4.13 needs to be modified,
for instance by changing the expression in front of the w′′(z), as (1−z)z → (1−z)z/(z+1).
However, this does not change the number of singular point and it has been proved
[130] that every second-order ordinary differential equation with at most three regular
singular points can be transformed into the hypergeometric differential equation. Thus
WKB problem in general belongs to this class of ODE’s. It should be also noted that
previously analyzed case α = 1 is indeed special, as then some of the terms ∼ (α − 1)
drop, and the differential equation is simpler, namely, it does not contain the "damping"
term ∼ w′(z). We thus see that a simpler ODE identified in Ref. [128] with solution
Eq. 3.34 is a special case and for any further quasi-classical analysis of the tunneling
mechanism (for instance, with time dependence), one should use ODE identified by us,
Eq. 4.13.

4.4 Results: Illustration

Returning to observable quantities, an overlap quantity D(F, h) is defined:

D(F, h) = exp
[

−
(
m

1
2
e

eh̄

)(
h

3
2

F

)(
h

2eFd0

) 1−α
α
( 1
α

)
I(F, h)

]
(4.14)

The results of the previous section can now be put together, and the transmission prob-
ability can be expressed in the following way:

T = 1
1 +D−1(F, h) (4.15)

which will be used in the following to generate the results. This expression, which is a
modification of standard WKB [127], [131] that suits better concave barriers with a single
turning point, has been derived for the first time in Ref. [117]. In Ref. [132] it was shown

1Taking z ≡ c
d implicitly assumes that c/d can vary while d can stay constant which is mathematically

sound but physically hard to reconcile with the fact that the external electric field F is the quantity
that one can easily change, which affects equally both c, d. However, c = xout is mostly determined by
external fields and one can imagine protocols where only xout varies keeping xin intact.
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that when the top of the tunneling barrier can be approximated by a parabola, then the
T = 1/2 holds for the energy of an electron right on the top of the barrier and the Eq.
4.15 (derived due to improved "hydrodynamic" connection formulae [117]) reproduces
this result. The formula, Eq. 4.15, has been recently extensively benchmarked against
Hill-Wheeler, Wong and exact quantum mechanical solutions in Ref. [116] showing that
Kemble’s result can be used for the tunneling process both below and above the barrier
top. Details are explained in Chapter 3.

4.4.1 Comparison with the elliptic integrals solution

We are now comparing Eq. 4.14 for the general case obtained by us and Eq. 3.33 for
the known special elliptic integrals: by definition, they must coincide when α = 1. In

this case, the value of the expression
(

h
2eF d0

) 1−α
α

becomes 1, since α = 1. However, in
the plots presented later in this chapter (except Fig. 4.5), we set d0 = 1Å. If energy
h is measured in [eV ] then the term Fd0 needs to be in [V ] since only then the extra
pre-factor

(
h

2eF d0

)
with non-universal power 1−α

α
is dimensionless. Thus, choosing the

d0 = 1Å sets the characteristic scale of electric field as [V/Å]. Actually, this choice of
d0 = 1Å falls very close to the length scale defined by the second FN constant B in Eq.
3.23.
The comparison is made to assess the quality of our new formula since the exact solution
is known and widely used in terms of these elliptic integrals. The result of this comparison
is presented in Fig. 4.2. Indeed, the new function works very well as the surfaces perfectly
overlap for all regimes of the external field F and applied photon energy.

Figure 4.2: Transmission probability as computed by our general formula, Eq. 4.11, (in
the case when α = 1), in red, and previous result that has been expressed as the elliptic
integrals, Eq. 3.34, in blue. Perfect overlap of the two opalescent surfaces results in a
single surface with purple color.
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4.4.2 Transmission probability dependence on α

Thanks to the fact that we have the generalized formula, now we can explore how the
tunneling probability depends on α.
In Fig. 4.3, the transmission probability was obtained by our general formula, when α
is below 1 and when it is above 1 (α = 0.3, 0.5, 0.8, 1.2, 1.5, 1.8). As can be seen, the
overall shape of the tunneling probability changes substantially. For small values of α,
the transmission probability changes sharply, for instance, when α = 0.3, there is a very
big region where transmission probability is 0, and a very big region where it is 1.
For the larger values of α(> 0.75), the transmission probability seems to be changing
more gradually: the slope of T varies slowly as a function of both external field F and
energy ω. It should be taken into account that the ω is proportional to, e.g., photon
energy that is capable of shifting the chemical position and thus the effective barrier h
(Fig. 4.1). E.g., when α = 0.8, there is a region where transmission probability is equal to
0, then, at a small region of work function or height of the potential, it smoothly elevates
from 0 to 1 and there is also a very big region where it is equal to 1. Furthermore, when
α > 1, an extra edge appears at larger ω. If an experiment studying photon-assisted
field emission with light of varied frequency is performed, a response with a singularity
is expected for α < 0.75, a smooth peak for intermediate values of α, and a smaller
singularity as a satellite of a broad peak response for α > 1.5.
To investigate this effect further, in Fig. 4.4 the three-dimensional image of the trans-
mission probability dependence on α and F is shown when effective barrier (ω0 − ω) is
constant and equal to (a) 0.4eV , (b) 0.55eV , (c) 0.75eV , and (d) 0.9eV accordingly. In
all cases, α ranges from 0.1 to 2.5, and the profiles shown in the bottom panel are for
the case when F = 0.5V/Å. A small barrier indicates a broad range of field, with T = 1,
while a big barrier means a small range of field, with T = 1, intending a large area with
T = 0. The area of small T is always favoured by small α (and small F ).
There are clearly two regimes: one where the transmission probability dependence is
decreasing and the other where it is increasing as a function of α, and there is a critical
line between these two regimes, where the quantity is independent of the values of α.
If we have a method of varying α in a controlled manner, for instance, by applying stress
to an array of nanotubes (see the next chapter), then T will also change. But it is not
obvious which way. Making potential more shallow (i.e., increasing α), can both increase
and decrease T depending on the tunneling barrier. Fext can even be varied to pin the
point at which α dependence is not present; in this way, an independent measure of work
function can be obtained. The absence of α dependence would mean zero amplitude of
some IR peaks, therefore this diagnostic tool is feasible.
Figure 4.5 illustrates the influence of d0 on the transmission probability when α = 0.8
and F = 0.8V/Å. As shown in the figure, the dependence on d0 is relatively weak
and becomes even less significant as d0 increases. Notably, the frequency dependence
remains qualitatively similar across different d0 values. At high frequencies, where the
transmission probability approaches 1, the influence of d0 becomes negligible. Thus,
the d0 dependence is primarily observed at lower frequencies, where the transmission
probability has not yet reached 1.
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Figure 4.3: Transmission probability calculated by the new general formula expressed
by Hypergeometric function for the cases (left to right, top to bottom) when α = 0.3
(red), α = 0.5 (blue), α = 0.8 (green), α = 1.2 (yellow), α = 1.5 (brown), α = 1.8
(purple). Here, and in all the following plots (except Fig. 4.5 ) in this Chapter, d0 = 1Å

.

4.4.3 Contributions from various areas of the surface

We have also been able to simulate a surface with spatially varying emission properties.
The most general form of emission for a two-component surface reads:

Ttot = s1T (F,E;α1)
∣∣∣∣
E=ω01−ω

+ s2T (F,E;α2)
∣∣∣∣
E=ω02−ω

(4.16)
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(a) (b)

(c) (d)

Figure 4.4: The transmission probability dependence on α, when effective barrier is (a)
0.4eV (b) 0.55eV (c) 0.75eV (d) 0.9eV and α changes from 0.1 to 2.5. Profiles in the
corresponding bottom panels are shown in the case of F = 0.5V/Å.

where T (F,E;αi) is given by Eq. 4.15 parameterized by a given αi. For instance, a
corrugated metallic surface (see Sec. 4.5.1) can produce the effect of varying exponent
α. From the electrostatics textbook, we know that the electrostatic potential behaves
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Figure 4.5: Transmission probability dependence on d0 and ω, calculated by Eq. 4.14,
when α = 0.8, F = 0.8V/Å.

like xπ/γ, where γ is the outer angle of the surface. Thus for flat surface, one has x1 (as
usual), the convex part with γ < π will result in α > 1, while the concave part γ > π
will have α < 1 (and thus singularity of a derivative of the potential i.e., the electric
field amplitude). It is straightforward to realize that the wrapped surface will contain
both concave and convex regions. Then it is expected that γ1 ≈ π − γ0 and γ2 ≈ π + γ0
(where γ0 is deviation from flat situation). In order to match the experimental situation,
different area proportions of these regions (and possibly their different densities of states)
can be assumed, and the change in the total emission current can be observed.
In Fig. 4.6 the transmission probability from the composite surface is presented. Here, for
illustrative purposes, the simplest situation will be considered first, where both contribute
equally, i.e. s1 = s2 = 1/2.

T0 = 1
2T (F,E;α1)

∣∣∣∣
E=ω01−ω

+ 1
2T (F,E;α2)

∣∣∣∣
E=ω02−ω

(4.17)

Two distinct situations are considered: the work functions ω0i of the two components are
either equal or different from each other. In Fig. 4.6 (a), concave and convex regions have
α1 = 0.8 and α2 = 1.8, respectively, and ω01 = ω02 = 1eV . Here T (E) is a monotonically
increasing function of F , as expected from the continuously increasing Gamow factor.
There are only small, subtle differences in comparison with an average ᾱ = 1.4 case: the
intermediate T (E) range is smaller, and its increase is smoother and more concave. In
Fig. 4.6 (b) (α1 = α2 = 0.8 and ω01 = 0.9eV , ω02 = 1eV ) and (c) (α1 = α2 = 1.8 and
ω01 = 0.9eV , ω02 = 1eV ), there is situation where the two regions have the same values
of α and different values of work function. As shown in the figures, when α < 1 (Fig. 4.6
(b)), the edge of transmission probability is still sufficiently sharp because of the smaller
value of α; while in the case when α > 1 (Fig. 4.6 (c)), the transmission probability
is spread more. In both cases, double-edge structures occur due to two different work
functions. As regards Fig. 4.6 (d), where α1 = 0.8, ω01 = 1eV and α2 = 1.8, ω02 = 0.9eV ,
we have both different α and ω0 and the figure demonstrates an initial sharp transmission
due to the lower α followed by a broader spread to the higher value of α, highlighting
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the interactions between these surface characteristics. A double-edge structure is indeed
obtained due to the two different work functions of the surface.
A situation when local work functions are different on different areas on the surface may
be induced by different crystallographic orientations on the surface (hence differences in
surface electric dipole moment), but can also be induced by many-body effects (e.g. CDW
formation). It is observed that the double edge is particularly well visible in the regime
of small ω (deep inside the well) and large enough external field. In our calculations, it
was also discovered that the double edge is well pronounced when α1 < α2 and ω01 > ω02,
but much less pronounced in the opposite case when α1 < α2 and ω01 < ω02.
In the context of analyzing transmission probabilities from various surface areas, the
situations were also discussed when

T1 = 1
4T (F,E;α1)

∣∣∣∣
E=ω01−ω

+ 3
4T (F,E;α2)

∣∣∣∣
E=ω02−ω

(4.18)

T2 = 3
4T (F,E;α1)

∣∣∣∣
E=ω01−ω

+ 1
4T (F,E;α2)

∣∣∣∣
E=ω02−ω

(4.19)

(a) (b)

(c) (d)
Figure 4.6: The transmission probability with the composite surface computed by Eq.
4.17, when (a) α1 = 0.8, α2 = 1.8 and ω01 = ω02 = 1eV , (b) α1 = α2 = 0.8 and
ω01 = 0.9eV , ω02 = 1eV , (c) α1 = α2 = 1.8 and ω01 = 0.9eV , ω02 = 1eV , (d) α1 = 0.8,
α2 = 1.8, and ω01 = 1eV , ω02 = 0.9eV .
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(a) (b)

(c) (d)
Figure 4.7: The subtraction between (a) T0 (Eq. 4.17,) and T1 (Eq. 4.18), (b) T0 (Eq.
4.17) and T2 (Eq. 4.19), (c) T0 (Eq. 4.17,) and T3 (Eq. 4.20), (d) T0 (Eq. 4.17,) and T4
(Eq. 4.21), when α1 = 0.8, α2 = 1.8 and ω01 = ω02 = 1eV .

T3 = 1
8T (F,E;α1)

∣∣∣∣
E=ω01−ω

+ 7
8T (F,E;α2)

∣∣∣∣
E=ω02−ω

(4.20)

T4 = 7
8T (F,E;α1)

∣∣∣∣
E=ω01−ω

+ 1
8T (F,E;α2)

∣∣∣∣
E=ω02−ω

. (4.21)

Fig. 4.7 (a) shows the difference between T0 (Eq. 4.17,) and T1 (Eq. 4.18), and Fig.
4.7 (b) shows the difference between T0 (Eq. 4.17,) and T2 (Eq. 4.19), (c) shows the
difference between T0 (Eq. 4.17,) and T3 (Eq. 4.20), (d) shows the difference between T0
(Eq. 4.17,) and T4 (Eq. 4.21), as T0 is taken as the reference level. It is essential to note
that T0 − T1 = −(T0 − T2) and T0 − T3 = −(T0 − T4). Studying such a relative change
makes sense from experimental point of view: changing orientation of external electric
field makes some cross sections on corrugated surface more likely to emit. By measuring
the difference we shall obtain a signal similar to the one presented in Fig. 4.7. Please
note that, if one crystal facet can be passivated faster than another, then the ω0i and αi

parameters will be gradually modified, a process that only analytical formula can easily
capture.
As it is observed from the Fig. 4.7, cases (a) and (c) possess similar behaviour: initially,
the relative change of transmission probability is close to zero, it is simply because the
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T (ω, F ) = 0 in this regime. As ω increases slightly, the relative change of transmission
probability enters a concave region, indicating minimal or slightly decreasing values. With
further growth of ω, the relative change of transmission probability increases, forming a
convex shape. The relative change of transmission probability reaches its maximum at
a specific range of ω and F . Identifying this line and extracting it from experimental
data can serve as an important tool to diagnose the emitting surface. Beyond this peak,
further increases in F cause the relative change of transmission probability to decline
down to zero – the unitary transmission regime is reached for all values of parameters.
Just like before we had a double ridge structure due to two types of the surface, now
we see that changing the proportion indeed reduces one of the ridges with respect to
another, thus confirming our conjecture.
Remarkably, in all cases, we observe a peak of the relative change of T (ω, F ) in the
regime when the transition from small to large T (ω, F ) takes place for the smallest
external electric field F (this is for large ω, i.e., when chemical potential is close to the
barrier top). We see that in this regime the measured signal is very fragile, susceptible
to the details of the surface, which can be prohibitive for some applications (that require
stable electron beams over a long time), but beneficial for applications when a small
external field is supposed to affect the signal (for example vacuum electronics).
Similarly, in both figures (b) and (d), the relative change of transmission probability
starts at zero. As the ω and F increase, the relative change of transmission probability
rises, creating a bulging effect. This is followed by a recessing phase where the relative
change of transmission probability decreases. Subsequently, there is another phase of
increase, forming a second bulge. Finally, the relative change of transmission probability
subsides to zero at higher values of ω and F .
In the expression provided above (Eq. 4.16), the constant featureless density of states
(DOS) is assumed for the entire 2D surface. In fact, this needs to be substituted by
independently computed material-specific data, e.g. calculated using ab initio methods.
Examples of material-specific local density of states (LDOS) will be given in the following
chapters of this thesis. Nevertheless, our formula plays an important role as any DOS
has to be multiplied by our result to obtain a measurable quantity. This allows us to
distinguish the proportion of each phase, with different ω0i, on the surface, and possibly
even determine the phases that sit on the convex and concave structures.

4.4.4 Comparison with numerical methods

The problem of tunneling through a barrier is frequently solved numerically, using the
scattering matrix (or related transfer matrix ) technique. Here a small comparison will be
made between those methods and our analytic formula using a light-matter equivalence
[133]. The numerical analysis is based on the two-dimensional Fourier Modal Method
with the implementation of the scattering matrix algorithm and proper factorization
rules, extended to multilayer structures [134]. First, it should be noted that any transfer
matrix-type method improves with an increasing number of sub-systems and ultimately
becomes an ideal approximation in the limit where one divides the potential into an
infinite number of slabs, i.e., there is an infinite multiplication of matrices involved. Of
course, this is impossible from the numerical viewpoint, but it has been shown [135] that
this limit is actually equivalent to the WKB solution, provided the off-diagonal reflection
coefficients are neglected.
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From this fact, two conclusions can be drawn. Firstly, the smoother shape of the po-
tential, the smaller internal reflectivity, the better WKB will work. This implies that
WKB should not be used for tunneling through a potential barrier hosting resonant level
sub-systems, e.g. quantum dot or ad-atom on the surface, or to be more precise, WKB
could be used only for each sub-system separately and then their transfer matrices com-
bined. Secondly, in order to make a comparison with the scattering matrix approach, it is
necessary to take into account multiple events when the carrier is scattered back (twice)
into the barrier and only after that is transmitted. At present all scattering formalism
by default includes these corrections, as does the approach introduced in Ref. [136] with
which we compare.
Fortunately, the reflection coefficient can also be easily deduced from our result, since
R(F, ω) = 1 − T (F, ω). Thus, a series of higher order transmission terms can be con-
structed:

T = TW KB +R2Υ2TW KB +R4Υ4TW KB + ... (4.22)
which can be re-summed as a geometric series. Above, an additional factor Υ was intro-
duced that describes the wavefunction decay as it propagates. For the waves above the
barrier, or very close to the barrier top it is expected that Υ = 1, but deep inside the
barrier, for evanescent wave solution it is expected that Υ → 0 and there indeed pure
WKB works well (see Fig. 4.8).
In Fig. 4.9, a comparison of the numerical method with the zeroth order WKB result
and such a re-summation with Υ = 1 is shown. It is observed that the re-summation
of the geometrical series allows us to establish quite good correspondence between the
numerical and analytical methods for larger ω. In the range of the highest transmissions,
the numerical method reveals the presence of oscillations that are due to the quantum
interference effect.
Our method cannot capture these, however, an extension in this direction could be pos-
sible in principle. In any case, the effect turned out to be tiny for our power-law barriers.
There are also advantages of the exact analytical WKB formula: since the result is given

(a) (b)

Figure 4.8: The transmission probability comparison between numerical and analytical
solutions: the blue points indicate the scattering matrix method calculation with 20
slabs, the pink line indicates the WKB solution considering the internal reflections, and
the grey line shows the pure WKB solution. (a) α = 0.5, ω = 0.3, and (b) α = 0.6,
ω = 0.3.
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(a) (b)

(c) (d)

Figure 4.9: The transmission probability comparison between numerical and analytical
solutions: the blue points indicate the scattering matrix method calculation with 20
slabs, the pink line indicates the WKB solution considering the internal reflections, and
the grey line shows the pure WKB solution. (a) α = 0.5, ω = 0.6, (b) α = 0.6, ω = 0.6,
(c) α = 0.8, ω = 0.6, and (d) α = 1, ω = 0.6.

Figure 4.10: The transmission probability calculated by scattering matrix method: red
points indicate calculation with 5 slabs and green ones with 20 slabs.
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as a single special function (i.e., there is no demand for a final summation of a series
or a convolution of special functions) its computational cost is negligible, comparable to
a few matrix multiplications. For the numerical method, it is observed that the result
becomes stable when ∼ 20 slabs are taken (see Fig. 4.10), moreover one needs to be
prudent with numerical stability of the matrix multiplication. Finally, it is a challenge
to compute numerically data that would generate an analogue of Fig. 4.4, which is par-
ticularly relevant for systems where α may change in the course of experiment, such as
sputtering phenomena mentioned in the introduction.

4.5 Discussion

4.5.1 Experimental relevance

Due to its technological importance, the research field of field emission applied theory is
extremely broad. While the largest amount of work is done purely numerically, we ought
to point out works where an analytical approach to external potential has been used, and
in fact, there have been many. A literature search solely for the case of the ellipsoidal
tip reveals cases, where the potential has been approximated either as an ellipsoid [137]
(with logarithmic dependence V (r)) or a power series in term of Legendre functions [138].
An extensive list of such analytical potentials has been given in Ref. [139]. The need
for these works was due to the fact that the authors wished to have an insight in how
parameters of the potential affect the transmission, hence a similar motivation to ours,
however, the last WKB integral was always performed numerically. In our work, we
assume a given shape of the potential to get a closed analytical formula for the final
result – the transmission itself. We cannot presume to achieve similar detail description
of potential as the above mentioned works, dedicated to this subject. However, we wish
to point out a few arguments showing that our assumption is actually plausible, certainly
not unrealistic.

Metallic surfaces

If the surface is metallic, the knowledge from basic electrostatics can be used to predict
power law behavior in its vicinity. In terms of a wrapped metallic surface, it is stated
in electrostatic textbooks [e.g. Jackson, Chap.2.11 [140]] that the power law of external
potential depends on the angle of each metallic corner. In general, the following power
law of electric field is expected: xπ/β. For elevated areas, with corner angles larger
than π we then expect a behaviour like rα with α < 1, hence faster decay of external
field (but definitely as a power law). In the extreme case of the sharp tip, we have
β = 2π ⇒ α = 1/2 which is the smallest possible value of α for an entirely metallic
2D surface. On the other hand, for lower (convex) areas the corner angles are smaller
than π and so we now expect a behaviour like rα with α > 1 for the external field.
The image potential, the other term in Eq. 4.2, will also change depending on surface
corrugation: when an electron approaches narrow, fine corners, it is necessary to introduce
more (artificial) image charges. This corresponds to dipolar and quadrupolar moments,
resulting in the potential diverging faster than 1/r. Overall, the spatial dependence of
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both terms, the external field and image potential change, but in both cases these changes
can potentially be captured by our formula Eq. 4.2.

Other, non-metallic surfaces

In the above-given situation, a purely metallic but corrugated surface was considered
where the elementary electrostatic solution is readily accessible. In general, two coexisting
phases on the surface can be assumed: a dielectric and a metal. The details will depend
on the system under consideration, but a few general remarks can be made. For the
dielectric, e.g. a layer of an oxide gradually covering all available areas, it is probable
that a fractal structure will be encountered, with a partial (Hausdorf) dimension which
upon averaging will lead to varying dielectric constant ϵ(x) that goes down to ≈ 1 as
we move towards the outside medium. In the effective medium approximation, the local
ϵ(x) will be proportional to the surface coverage of the dielectric (within a given cross-
section) which leads to a power-law dependence ϵ(x) ∼ xb. Naturally, this will affect
both ingredients in the interaction part of the Hamiltonian: the image potential will be
rescaled by a factor 1/ϵ(x), while the external potential will be rescaled by a factor ϵ(x).
This simply means that in the absence of corrugation, but in the presence of the oxide
layer, one should take α = 1 + b.
The reasoning can also be extended to the case when the kinetic energy part of the
Hamiltonian varies in the direction perpendicular to the surface. As shown in Ref. [126],
through a proper substitution of the x-variable we can rewrite the system with varying
content of metallic phase (again as a fractal) or a system with a varying mass m(x) into
the form Eq. 4.2, hence our formalism should be also applicable.

4.5.2 The case of α = 2 and connection with an exact quantum
solution

It is observed that the expression we found, Eq. 4.11, suffers from a singularity when
α = 2. Numerical studies allowed us to check that any small deviation ±ϵ → 0 removes
instability and produces a sensible result. Hence, only the case α = 2 requires a separate
insight. Firstly we note that the 1/x2 potential well is known [141] to be a pathological
case. When the Schrödinger equation for the inverse square potential is written as:

∇2ψ + (1/x2 − f) = 0 (4.23)
The authors of Ref. [141] showed that the presence of the external force f introduces a
natural energy scale in the problem, which regularizes it. It is not a pathological problem
any longer (in the sense that a unique, self-adjoint ground state can be found) and,
actually, it admits an exact analytic solution in terms of Kummer and Triconi functions
(see below). Thus the well-defined quantum states can be defined only by imposing a
UV cut-off in the problem and adding extra boundary condition for a derivative.
The need to add a derivative boundary condition implies that one must go beyond the
WKB to remove the singularity. Quite remarkably, when α = 2 the Eq. 4.11 actually
simplifies, as now the second index of hypergeometric functions equals to one:

2F1

(1
2 ,

3
2 − 1

α
; 1; 1 − c

d

)
−−→
α→2 2F1

(1
2 , 1, 1, 1 − c

d

)
.
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This can be also written as 2F1
(

1
2 , 1, 1,

2a
a−1

)
, where a was defined in Eq. 4.4. The second

and third indexes are now equal which means that 2F1 → 1F0, and the last function gives
simply a power law

1F0(1/2; z) ∝
√

1 − z.

This is the same power law as the asymptotic of the modified Bessel function I1/2(1/z),
introduced below Eq. 4.27.
However here, for reasons that will become clear shortly, we prefer to use the fact that
i) the derivative

2F
′

1(a, b, c, z) = 2F1(a+ 1, b, c, z),
and ii) the exponential function (in Eq. 4.14) can be expressed as hypergeometric func-
tion, it is the simplest hypergeometric function 0F0. Therefore, in Eq. 4.15, we actually
have a composite function of two hypergeometric functions, which will also lead to power
series. The result can be written as:

T = 1
1 + f(xin/xout)f ′(xin/xout)

(4.24)

where, we transformed exp (A+B) = expA expB, and for our choice of indexes and
physically sensible range of xin/xout the

0F0[1F0(1/2; 2a/(a− 1))] ≈ 1F1(1/2; 2a/(a− 1)).

In the following we will also use a relation between 2F0 and 1F1 from Ref. [142]:

1F1(a, b; z) = za
2F0(a, a− b+ 1; −1/z) (4.25)

resulting in a simplification to 1F1, otherwise known as Kummer and Triconi confluent
hypergeometric functions. Thus, we have re-written our WKB result: we used simpler
hypergeometric functions for α = 2.
Now we move to an exact quantum mechanical solution of the full problem, which is
Eq. 4.23 plus external field ∝ x2. The point is that, as mentioned above, the scattering
problem for a parabolic potential is analytically solvable, and the solution can be written
as a combination of two solutions of ODE, precisely of the Kummer U(a, b; z) and Triconi
M(a, b; z) functions. For instance, from Ref. [143], we find that the following Schrodinger
equation:

(−∇2 + ξ2 − β/ξ2)ψ(ξ) = 0 (4.26)
where ξ is measured in units a and β = aa∗, has the following solutions:

ψ(ξ) = U(1/4(1 − β), 1/2, ξ) (4.27)
and

ψ(ξ) = M(1/4(1 − β), 1/2, ξ) (4.28)
Thus general solution can indeed be written as a combination of Kummer and Triconi
confluent hyperbolic functions. Some languages of symbolic calculations return the solu-
tion in terms of generalized Laguerre polynomial or in terms of modified Bessel functions,
but for our indexes both these are equivalent to the Kummer function. The small values
approximation of Bessel function is indeed the index dependent power law I2ν(x) ∝ x−2ν ,
so indeed we have a full correspondence with 1F0 if we neglect the ∝ β shift of the first
index in Eq. 4.27-4.28.
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Thus the solution for wave function at the point xout, for a given a (determined by F, ω0)
reads:

ψ(a) = exp(−ık0a)(1 − a) 2F0
(
±1/2 + ı

a

1 − a
, 1 + 2ı a

1 − a
,
1 − a

2a
)
, (4.29)

the form that is remarkably similar to our Eq. 4.11 when α = 2 (or to the simplified
form found in Eq. 4.25).
To elaborate on this comparison, we now move on to measurable quantity, i.e., the
transmission probability. Based on matrix expression given in Ref. [143], a full quantum
mechanical expression for tunneling can be obtained:

T ≈ 1[
2 + exp (ık0 (xin − xout))

(
f ′( xin

xout
)f( xin

xout
)−g′( xin

xout
)g( xin

xout
)

f ′( xin
xout

)g( xin
xout

)−g′( xin
xout

)f( xin
xout

)

)2] (4.30)

where energy current conservation was used, and the f, g are the two linearly independent
solutions of Schrödinger equation, the ψ(x) in Eq. 4.29 i.e., the Kummer and Triconi
functions in our specific case. We see that when functions’ derivatives are equal to zero
(the case of barrier top) then indeed T = 1/2 which confirms Kemble’s version of WKB
that we used.
The WKB result for α = 2, the Eq. 4.24, can be compared to the above quantum
mechanical result. For the α = 2, it can be observed that a full connection with the
quantum mechanical solution can be established by adding an extra phase shift in the
first index of 1F1(1/4 + ıa, 1/2, a) functions, by adding the second solution g and by
including the derivatives of f ′ and g′ in the denominator. Upon expanding hypergeometric
function we see that the index shift is equivalent to multiplying 2F1 times a power series
with energy dependent coefficients (the a depends on energy and changes from real to
imaginary as we cross the barrier top). This is reminiscent of the geometric series, that
we proposed as a conjecture in Eq. 4.22. The derivatives f ′, g′ and the wave interference
between the two solutions were, naturally, neglected in WKB. It should be noted that
the derivative of Eq. 4.11 will naturally contain the problematic 1/(α2 − 4) factor and
therefore in the full solution the singularities in the numerator and denominator will
cancel each other. The presence of the two interfering (counter-propagating) solutions
will be particularly important on the resonance, thus our generalization should be able
to capture these effects. Indeed in the resonant case, if the peak is Lorentzian, then
numerator and denominator are equal, but opposite and so T = 1.
In summary, this detailed study of α = 2 case allowed us to establish a direct link
with the exact quantum mechanical solution of the problem. This not only justifies
the Kemble version of JWKB but also demonstrates the usefulness of generalizing the
tunneling expression and expressing it in terms of hypergeometric 2F1 functions from a
fundamental viewpoint.
In passing we note the situation for other special values of α. For α → 0 one can use the
following mathematical transformation:
when

β̄ → ∞
then

2F1(a, β̄b, c; β̄z) → 1F1(a, c; z).
Thus, we are back with confluent hypergeometric function but since in our problem β̄z
was finite to begin with, thus now z → 0 and we can look only at the first term of
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the polynomial expansion. We then arrive at the exponential function, known to be the
solution for quantum rectangular barrier (see Chapter 3). For α = 1 the situation is less
clear: following our conjecture we shall arrive at bi-confluent hypergeometric function
2F2(1/2, 1/2, 1, 1; 2a/(a− 1)). The quantum problem when α = 1 is a bi-confluent Heun
equation and we were not able to find exact analytic solutions of this equation in the
literature. In passing we note that the exact analytic solution, in terms of Airy functions,
exists but only for the case without ∝ 1/x screening term.
It remains to be shown whether the corrections to JWKB identified here can be applied
for any value of α (the general solution of the quantum mechanical problem for an
arbitrary α is not available at present), but this mathematical problem is well beyond
the scope of this thesis. Nevertheless, our conjecture, can serve as a relevant and valuable
benchmark for future experiments and numerical studies. Such a pragmatic, engineering
approach to the T (E) problem can also be used to gain in-depth understanding, through
analytic solution, of much more complicated problems where resonances are present on
the surface.

4.6 Partial conclusions and perspectives

In conclusion, the main result of this chapter is deriving the exact analytic tunneling
formula in the JWKB approximation for the barrier described by a fractional power
law. The formalism incorporates the external electric field, as well as interaction with
an image charge left behind in the surface. Our potential is quite specific as it involves
two power laws of precisely opposite exponents, but the existence of the exact closed
analytic solution for the transmission T (E), expressed in terms of an easy-to-evaluate
single special function, is nevertheless a remarkable result. In the next chapters, we will
show that this specific case is actually realized in a broad class of important materials.
Based on this, we have demonstrated that quite rich tunneling spectrum is possible for
the composite surface, paving the way for future analytical modelling of experimental
findings. We have also shown that nanostructuring is an efficient way to modify T (E).
Finally, we have demonstrated that our result is general enough to build a connection
with some cases of the exact quantum mechanical result.
One future perspective is to capture the situation where a quantum dot is attached to the
surface. Generally speaking, such system can be described as a double tunneling barrier
and a set of discrete energy levels in between. Each of these levels will contribute to an
overall transmission. One faces the situation where tunneling and scattering processes on
each of these levels (and their quantum interference) have to be computed; we shall have
tensor quantities with an index corresponding to the energy level number. An example
of such calculation has been presented in Ref. [144]. We see that in this case, the overall
tunneling T (E) (i.e., a scalar quantity that we have been evaluating so far) will be
proportional to a trace of a tensor product of the transfer matrices TQM

dot (E)⊗TQM
surface(E)

on both barriers (surface-to-dot and dot-to-vacuum). The fact that we have obtained the
connection with TQM

surface point is a position where such tensor products can be evaluated.
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Chapter 5

TLL Density of States

5.1 Introduction

The recognition of the purely collective properties of one-dimensional (1D) electrons, a
concept originally proposed in the 1950s by Tomonaga and Luttinger, has profoundly
influenced the understanding of low-dimensional systems. This paradigm shift was fur-
ther advanced in 1981 when Duncan Haldane developed the Tomonaga-Luttinger liquid
(TLL) as a new theoretical framework. This model, which provides an alternative to
the traditional Landau-Fermi liquid theory, has been instrumental in describing low-
dimensional metals. The beautiful thing is that this non-trivial model, dominated by
many-body effects admits an exact analytic solution. This works also at finite tempera-
tures and, as shown in seminal works of Affleck and Ludwig [145], [146], [147], [148], close
to the edges of low dimensional system. These last features are particularly important
for realistic applications in nanostructures where the edges frequently play a crucial role.
Haldane’s work [102], which later got the Nobel Prize for theoretical discoveries in topo-
logical phase transitions and topological phases of matter, underscores the significance
of this theoretical advance in condensed matter physics.
Despite this, there have been only a few previous studies of field emission within the TLL
framework, focusing on a zero-temperature, infinitely long 1D system, suspended flat on
the top of a surface [149], [150]. This is a completely different geometry than in the devices
of currently common interest. Two developments of the theory are necessary to achieve
the aim of bringing theoretical description closer to the experimental setting. First, for a
low energy field emission, the tunneling process cannot be considered as instantaneous,
so it is required to abandon the anti-adiabatic approximation and consider the dynamics
of the tunneling at least in a saddle point approximation. Second, it is essential to
abandon the assumption of translational invariance; in order to explore varying tunneling
probabilities along the nanotube, it is required to derive the local density of states (DOS)
along the nanotube. Both of these developments are achieved in this work.
In particular, in nanostructures, an unavoidable presence of boundaries breaks the trans-
lational invariance and if we are interested in this class of materials it is definitely worth
investigating what the electron distribution in their vicinity is. For the noninteracting
system, homogeneous distributions are expected from Bloch waves plus Friedel oscilla-
tions that always decay like 1/x1 in 1D. Including interactions can make this simple
picture much more complicated and interesting. Uncovering this phenomenology is the
object of this chapter.
Unfortunately, the exact analytic solution is known only for correlation functions in real
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(space-time) coordinates, while most experiments, for instance, STM, can measure a
signal in frequency (energy) space. Thus, it becomes necessary to perform a (partial)
Fourier transform: we need to Fourier transform the time domain while keeping the
information about the distance from the edge. It should be noted that in our problem,
with translational invariance broken, we shall have a relative real-space coordinate and
an absolute distance from the edge. The first variable is considered constant and small
(at least in the case of an STM probe) while the second is the variable of our interest
here.
There are not that many examples of such t → ω Fourier transforms, which is unfortunate
because the correlation functions contain singularities which make numerical integration
tricky. This work aims to provide two examples of such LDOS, one for what we call
Coulomb metal and the other for Hund metal, and a comparison of the two.
The Chapter is organized as follows: Sec. 5.2 presents the TLL and how to compute
its correlation functions. In Sec. 5.3, the density of states is examined, emphasizing the
importance of the boundary condition and the validity of open boundary conditions. Sec.
5.4 presents the results of the Fourier transformation of LDOS, an analytic expression for
the Coulomb metal and Hund metal. In Sec. 5.5, 4kF charge susceptibility is investigated.
Finally, Sec. 5.6 concludes the chapter.

5.2 TLL and how to compute its correlation
functions: two modes

We will generalize here results from Chapter 3, where single-mode TLL was considered.

5.2.1 Multimode 1D liquid

TLL is a low-energy state of collective excitations that provides a highly nontrivial solu-
tion for a strongly correlated 1D system. While the fermionic system is strongly inter-
acting, upon bosonization the solvable theory is reached. The fermionic field operators
ψ(x) are rewritten in terms of bosonic density ϕ(x) and momentum θ(x) fields:

ψ(x) = exp ıkFx exp ı
(

N∑
ν

ϕν(x) + θν(x)
)
/
√
N (5.1)

where N is the number of bosonic fields in the model. In Eq. 5.1, the bosonized represen-
tation of the fermionic operator captures the low-energy excitations in terms of collective
bosonic fields. This formulation effectively separates the fast oscillations due to the Fermi
momentum from the slowly varying bosonic degrees of freedom. The details of these fields
and the bosonization procedure can be found in Appendix A, Sec. A.1. The bosonized
Hamiltonian of the TLL state, written in terms of fluctuations of these collective bosonic
modes, is

H1D =
N∑
ν

∫ dx
2π

[
(vνKν)(πΠν)2 +

(
vν

Kν

)
(∂xϕν)2

]
(5.2)

where ∇ϕν(x) gives the local density of fluctuations, while vν and Kν are respectively
the velocity and the TLL parameter (∼ compressibility) of a given bosonic mode ν that
depend on electron-electron interactions with small momentum exchange. In the simplest
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approximation, Galilean invariance is assumed, which implies vνKν ≈ vF , where vF is a
Fermi velocity which in turn is approximated by Λ, an energy scale associated with the
UV cut-off of our theory (≡ bandwidth for a single band material, but more generally
Λ spans the energy range where dispersion is linear). When, as is the case for carbon
nanotubes (CNTs), the gapless states can be grouped into pairs existing in two valleys
at K,K ′ points of Brillouin zone, there are two bands crossing the Fermi level and a
two-leg ladder description applies. Then, N = 4, i.e, there are four bosonic modes
ρ±, σ±, corresponding to the spin and charge modes oscillating symmetrically or anti-
symmetrically within the two legs of the ladder, referred to as the total and transverse
modes, respectively. The total mode is a density fluctuation occurring simultaneously in
both legs (the valleys), while the transverse mode is a density fluctuation propagating in
the opposite direction in two adjacent legs of the ladder.
The Kν parameters, proportional to compressibilities of collective modes, incorporate
all electron-electron interactions with small momentum exchange WHart(q → 0), the so-
called Hartree interactions. This is particularly useful for materials such as CNTs with
electron-electron Coulomb interactions character, where W (q) ∼ 1/q so that WHart(q →
0) indeed dominates. Furthermore, if these interactions do not depend on spin and valley
degrees of freedom, only the parameters of the total charge mode ρ+ will be affected.
In condensed matter physics and solid-state physics, the DOS of a system describes the
number of modes per unit frequency range. In particular, we shall distinguish two cases.

Coulomb metal will be the case when only the charge mode compressibility will
be different from one Kρ+ ̸= 1, and it can be different from one by a large margin. The
values for all other parameters will stay close to one. This can happen in the case of a
material dominated by long-range Coulomb interactions, hence the name. One example is
a free (un-bundled) carbon nanotube where interactions are only weakly screened. These
are usually modelled by a two-leg ladder Hamiltonian (or multi-leg ladder for MWCNT),
but there is always a single, totally symmetric charge mode and it is the one that will be
affected.

Hund metal will be the case when both charge and spin modes are subjected
to long-range interactions. This may occur in a multi-orbital system which is in an
orbitally selective Mott phase. The Mott insulating bands will provide a magnetically
ordered background (usually anti-ferromagnetic) which upon averaging out will provide
interaction-mediating bosons for the remaining metallic state. The orbital that remains
metallic is usually split by the Hund’s coupling, hence the name we have chosen. Since
the same bosons are mediating charge and spin interactions, it is expected that Kρ and
Kσ will be approximately equal. Hund splitting becomes important for heavier elements.

5.2.2 Values of TLL parameters

The density-density long-range Coulomb-type interactions between electrons in a nan-
otube can be expressed as:

HCoul =
∑
k,q,µ

[c†
µ(k)cµ(k)]VCoul(k, k′)[c†

µ(k+q)cµ(k+q)] =
∫
dxdx′∇ϕρ+(x)VCoul(x−x′)∇ϕρ+(x′)

(5.3)
which we have expressed both in the fermionic second quantization language (that makes
the physical content of the interaction transparent by summing over all µ valley, spin,
and sub-lattice states) and in the bosonic field language. In the bosonic language, it is
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clear that only the ρ+ mode is affected, which is due to the fact that this mode contains
the electric charge.
Ref. [151] provides an extensive derivation of Coulomb interactions in a nanotube. It has
been found that upon integrating out (evenly) all degrees of freedom along the SWCNT
circumference, the following formula for interaction is obtained:

VCoul(q) = 2e2

κ
(|ln(qR)|+c0) (5.4)

where κ is electric permittivity of the nanotube and c0 = γ+π/2ln2 = 0.51 is a constant,
with γ – Euler’s constant. This led the authors to the desired formula for Kρ+:

Kρ+ = 1/
√

1 + 4 · 2.7 · ln(R/L) (5.5)
where the numerical parameter 2.7 was found by the authors through comparison with
experimental data. Clearly Kρ+ ≪ 1, so it is in a strongly correlated regime and it
does depend on the geometrical parameters of the tube. One expects quite substantial
variation in this parameter which is indeed observed in SWCNT.
However, in MWCNT the situation is different. As mentioned in Chapter 1, the MWCNT
was introduced as a multi-shell system, with electrons randomly jumping from one SWNT
to another within the MWCNT, always choosing the most conducting shell in a given
region. This model is in agreement with the previous experimental [152], [153], [154], [155]
and theoretical [156], [157], [158], [159], [160] studies. Thus, R is a random variable, and
in fact the propagation length L is random as well, and the variance can be as large as
R itself δR/R ∝ 1. One expects normal, Gaussian distribution of these radii. Therefore,
in Eq. 5.4 one has to take a logarithm of a Gaussian distribution G(R) with variance
δR. The solution to this problem is known from the theory of normal distributions. In
the q → 0 limit, the case contributing to Kρ+, we have ln(G(R)) → ln(2π), which, upon
substitution to formula for Kρ+, gives:

Kρ+ → 1/
√

1 + 4 · 2.7 · 1.84 = 0.22 (5.6)
A correction to VCoul due to variance reads:

δVCoul(q) = −ln(δR) (5.7)
and is momentum independent. The next order correction ∼ q2 is expected to be smaller
(when δR is substantial), and will also be counteracted by Fock exchange corrections
proportional to gradients of density (so-called GGA corrections), thus also ∝ q2.
To make further progress, we note that the large momentum exchange component of
electron-electron interactions (which has been neglected so far) leads to non-linear terms
∼ cosϕν , the most relevant of which are quarter-filling (two-site unit cell) umklapp terms:

Humkl =
∫
dxg3(x) cos 2ϕρ+ (5.8)

where g3 is the amplitude of umklapp (LL → RR) scattering. The umklapp terms emerge
from backscattering interactions at specific commensurate fillings. The bosonized form
is obtained using standard bosonization techniques (see Appendix A), where the charge
mode ϕρ+ captures the collective dynamics of the system. This has been extensively
discussed in the literature (e.g., [151]) and even textbooks ([96] Chap.4), but remains an
active field of experimental research [161]. These terms are not captured by the TLL, but
can be incorporated in low energies by gradually averaging higher energies. This is the
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Figure 5.1: Kosterliz-Thouless (KT) Renormalization Group (RG) flow. It shows how
the TLL parameter (and the non-linear term g) changes as the characteristic energy in
the system is reduced. When g is sufficiently small (and K is sufficiently large), the TLL
is stable. When g ≈ K, the system is close to the straight line that terminates at K∗.
Then this will be the parameter of TLL measured at experimental temperatures (Figure
is adopted from Fig. 3.2 in Ref. [162]). The BKT flow was discovered in Ref. [163],
[164].

so-called Renormalization Group procedure, a very well-developed method. Its canonical
result, the Kosterliz-Thouless flow, is shown in the figure below (Fig. 5.1).
Without going into details of the method, which is beyond this work dedicated more
towards applications of 1D materials, we note that the K∗ = 0.25 is a special point of
this flow – the system flows towards it in a straight line. To be precise, whenever the
deviation of Kρ+ from K∗ and the value of g3 are close to each other, then we are in the
vicinity of the straight line of the flow, thus indeed flowing towards K∗

ρ+ = 0.25. It should
be emphasized here that in our problem, the high energy is the bandwidth of carbon pz

orbitals, which in SWCNT is above 3eV , while in MWCNT is reduced, for instance by
half (it can be more, each situation can be captured by our theory). At the same time,
the energies/temperatures at which field emission devices are working are around 30meV
which is smaller by a factor 50. This order of magnitude will be used below. This is still
distinct from temperatures used in theoretical physics works which are usually smaller
by a factor 10−5 ÷ 10−3.
There are, of course, also Coulomb interactions between the nanotubes. The "other-
than-the-metallic" shells of MWCNTs will provide screening, which makes the problem
immensely complicated. However, two definite statements can be made:

• following the argument given by H. Schulz in Ref. [165], again only the ϕρ+ bosonic
mode will be affected, and the entire effect can be captured by minor modification
of Kρ+,

• due to variations of the metal shell positions (that is, how deep inside MWCNT the
metallic shell is), the screening is also random, which brings us back to the central
limit theorem argument given above.

Overall, a very non-trivial result has been obtained here: although the Kρ+ parameter is
the most affected by interactions and naively has the strongest dependence on geometry,
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Figure 5.2: The electrical potential (P ) of atoms on either side of a graphene sheet (top)
are identical, so then the pz orbitals of carbon are unaffected, but this assumption breaks
down when the sheet is curved into a nanotube (bottom). Double-walled nanotubes
(bottom) show unique effects as P in inner and outer tubes are staggered. Local electric
field will break the perfect symmetry on the nanotube circumference. Yakobson Research
Group/Rice University [166].

due to generic disorder present in MWCNT, it is possible to simplify the problem of
computing it. Contrary to SWCNT, in MWCT, the measured value of this parameter
turns out to be universal.
This dichotomy between SWCNT and MWCNT prevails also in other TLL modes. Any
deviation from perfectly symmetric situation – even summation over all µ in Eq. 5.3
– will modify the other three TLL parameters. While SWCNT was generically very
symmetric, in MWCNT, the interactions between shells can break the central axis rota-
tional symmetry. The neutral Kν modes, ν = σ±, ρ−, can be modified by external fields,
which are defined as fields external to the metallic shell. They can be either generated
outside MWCNT in the laboratory or induced due to the presence of other shells. For
instance, to modify the spin channel compressibility Kσ+, a field that couples with total
spin density, namely the local magnetic field, is required. To modify the relative charge
mode TLL parameter (i.e. compressibility of this mode) Kρ−, a force acting differently
on two sites of bi-partite lattice is needed, such as a local strain or local dipolar moment.
Recent experimental findings, illustrated in Fig. 5.2, show that such forces can indeed
be induced in a double wall MWCNT.
In order to predict how the neutral TLL parameters depend on the characteristic features
of the material, a deeper understanding of the interactions is required. In Ref. [151] the
authors showed that:

Kν(xi) ≈ 1 − νf(xi) (5.9)
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where ν = ±1 for ν = σ+, ρ− respectively. The xi are some microscopic parameters
that determine geometry of electron wavefunction. The f is a constant proportional to a
deviation from a perfect circumferential symmetry, the C∞. It is a ratio: f = Vreal(q →
0)/VC∞(q → 0). We aim to evaluate it now. To this end, we need to carefully examine
how the interaction amplitudes are computed when one moves to the second quantization
description (see Chapter 3, Sec. 3.2). The bare Coulomb potential in a nanotube of radius
R and thickness dz reads:

V̄Coul(r⃗ − r⃗′) = e2/κ√
(x− x′)2 + 4R2 sin2((y − y′)/2R) + d2

z

(5.10)

where the dz is the thickness of the toroid (here we shall consider physical nanotube
as a geometrical, stereometric solid figure – a toroid). The scattering amplitude (i.e.
a quantity that enters into the second quantization Hamiltonian) of the Hartree-type
interaction is given by an integral over the elementary cell:

V (r⃗, r⃗′) =
∫
dr⃗Ψ∗(r⃗)Ψ∗(r⃗′)V̄Coul(r⃗ − r⃗′)Ψ(r⃗)Ψ(r⃗′) (5.11)

where Ψ∗(r⃗),Ψ∗(r⃗′) are wave-functions of interacting electrons, Bloch waves along the
x-direction and, in a perpendicular plane, a section of a toroid of a given thickness (the
charge density in MWCNT is in general spread over a section of a distorted toroid). We
add an extra parameter ζ that accounts for inhomogeneity along the circumference of
the toroid where ζ = 0 corresponds to symmetric homogeneous distribution (or constant
radius) like in a SWCNT nanotube. Hence we shall generalize expression given by Egger
and Gogolin in Ref. [151] for the symmetric SWCNT. We integrate over perpendicular
coordinates to get an interaction amplitude along the b-axis V (x):

V (x) =
∫ 2πR

ϕR

∫ 2πR

ϕR

dy

2πR
dy′

2πR
V̄Coul(r⃗ − r⃗′)

1 − ζ sin((y − y′)/2R) (5.12)

The integral is known also in this more general case:

V (x− x′) = Ūαβ
γδσ̄σ̄′

(ϕ2 + 1) Π
(
ϕ; ζ

∣∣∣∣∣
(

2R√
d2+4R2+(x−x′)2

)2
)

(
ζ
√
d2 + 4R2 + (x− x′)2

) (5.13)

where Π(ϕ; ζ|1/x̃) is the incomplete elliptic integral of the third kind, x̃ = (x−x′)/R, the
relative distance in R units. The integral is parameterized by U (chosen appropriately
depending on screening in the MWCNT). The parameters ϕ (angle of the sector of the
toroid) and ζ (distortion of the toroid) are determined by material specific considerations,
namely:

• parameter ζ captures the situation shown in Fig. 5.2, where the density of electrons
along the circumference, related to Ψ(y, z), is not constant. This may be either a
static effect induced by Moire-type potential from other shells, or a dynamic effect
induced by exciting a phonon (or both). In this second case, there is a possibility
to tune the amplitude of ζ by adjusting the amplitude of IR radiation applied to
the emitter

• parameter ϕ is related to the fact that electrons can move only within a part of
nanotube’s circumference. One can easily imagine that such a phenomenon will be
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induced by impurities evaporated on the surface of MWCNT. Then by adjusting
the concentration of impurity atoms, the experimentalists and engineers should be
able to decrease the average ϕ, thereby decreasing the sector of the toroid available
for mobile electrons ∝ Ψ(y, z). Importantly, this effect depends on the chirality of
the nanotubes:

– when the metallic nanotube (shell of MWCNT) is armchair (achiral), its wave-
function Ψ(y, z) forms a simple standing wave with a node on the circumfer-
ence, meaning that the equation Ψ(y0, z0) = 0 can be fulfilled. The position
of the node can be adjusted to the position of the impurity, so for small con-
centrations of impurities, there will be no effect

– when the metallic nanotube (shell) is zig-zag (achiral), it features a uniform
wave on the circumference Ψ(y, z) but allows for the degenerate standing wave
solution along the nanotube that could admit Ψ(x± a/2) = 0. Atomistic dis-
order may thus be avoided (by the same argument as above), but the fermionic
velocity vF can be reduced

– for the chiral tubes, the wavefunction Ψ(x, y, z) is a plane wave running in a
screw motion along the nanotube. The impurity cannot be in general avoided
(although for armchair-like tubes with two K,K ′ points located at finite ±q0,
there is some adjustment possible, so the influence of atomistic disorder can
be weaker). In general, we expect that the smaller the chiral angle, the plane
wave will move closer to the nanotube axis. Thus, the "shadow" of impurity
will extend along a longer section of the nanotube.

Of course, as the electron jumps from one least conducting shell to another, then
the ϕ will vary. One takes an average value in the above formula.

The equation Eq. 5.4, that was used to estimate Kρ+, is in fact a long-wavelength
approximation for a Fourier transform of the elliptic integral of the first kind K(x), the
result of reasoning in Ref. [151] done for the symmetric case ζ = 0. Thus parameter f

(a) (b)

Figure 5.3: The "neutral", charge-less TLL parameter Kρ− from Eq. 5.14 plotted as
a function of the angular span ϕ (in radians) of the CNT electronic wavefunction and
its inhomogeneity parameter ζ. In panel (a) we use a0 = R

((
1 − 1√

5

)
+ 1

)
and in (b)

a0 = R
(
3
(
1 − 1√

5

)
+ 1

)
where R is an average radius of the MWCNT.
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Figure 5.4: The "neutral", charge-less TLL parameter Kρ− from Eq. 5.14 plotted as
a function of the angular span ϕ (in radians) of the CNT electronic wavefunction and
its inhomogeneity parameter ζ. We show them here together to visualize the role of
a0 = R

(
j
(
1 − 1√

5

)
+ 1

)
variations; orange: j = 1, blue: j = 2, green: j = 3.

in Eq. 5.9 is thus in fact a ratio of the elliptic function of the third and of the first kind,
namely:

f(ϕ, ζ) = Π(ϕ; ζ|1/x̃)
K(x̃)

∣∣∣∣∣
x̃=a0

− 1 (5.14)

where a0 is the size of the unit cell along the nanotube. We multiply it with 1 −Kρ+, to
ensure that all Kν parameters change proportionally. The results are presented in Fig.
5.3 and Fig. 5.4.

5.2.3 Correlation functions in TLL

Having estimated the TLL parameters based on material specific considerations, we are
now in a position to predict measurable quantities. In TLL, the fermionic correlation
functions are translated into a bosonic form, which for a single-mode TLL reads (up to
a pre-factor):

⟨ψ†(x, t)ψ(0, 0)⟩ ≈ ⟨exp(ϕ(x, t) + θ(x, t)) − (ϕ(0, 0) + θ(0, 0))⟩ (5.15)

The correlator in Eq. 5.15 can be evaluated as a Gaussian integral:

⟨exp ıA(ϕν(x, t) − ϕν(0, 0))⟩ = exp −1
2[A⟨(ϕν(x, t) − ϕν(0, 0))⟩]2 =

exp −1
2A

2⟨ϕν(x, t)ϕν(0, 0)⟩ = exp
(

−1
2A

2K2
ν ln(r)

)
= r− 1

2 A2K2
ν (5.16)

where A is some numerical constant (peculiar for the chosen observable, e.g. A = 1/
√
N

for Green’s function), and r =
√
x2 + t2. In the first line, Debye-Waller relation was
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used for the average of an exponential. In the second line, a central result of TLL is
used: the correlation function of bosonic modes results in a simple logarithmic decay
multiplied by the TLL parameter K2 for ϕ modes; for θ modes, it is an inverse K−2.
For correlators of the dual θ field, the procedure is the same; the final result can be
recovered by simple substitution K → 1/K. This leads to power laws with non-universal,
interaction-dependent exponents ∼ K.
For a multimode TLL, there is a straightforward generalization. The fundamental bosoniza-
tion formula now reads:

ψR,L(x, t) = exp ıA
(∑

ν

(ϕν(x, t) ± θν(x, t))
)

(5.17)

i.e., each electron splits into several bosonic modes (in the above formula, a plus sign
denotes right-going and a minus sign – left-going fermions).
Following the same steps as before for a single-mode case, now we find that for many
modes, the fermionic propagator reads:

⟨ψ†(x, t)ψ(0, 0)⟩ =
∏
ν

{
exp

[
−1

2A
2⟨ϕν(x, t)ϕν(0, 0)⟩

]
exp

[
−1

2A
2⟨θν(x, t)θν(0, 0)⟩

]}
(5.18)

the above formula is factorized in bosonic modes (index ν) because ⟨ϕ†
ν(x, t)ϕν′(0, 0)⟩ = 0

when ν ̸= ν ′. This is a manifestation of the famous spin-charge separation, postulated
theoretically and then observed experimentally in 1D systems.
A great advantage of working with TLL is that all correlation functions can be computed
exactly, in principle, at least in real space (x, t). For instance, the result for the spectral
function in an infinite TLL was calculated more than four decades ago [165], [167], [168],
[169] and now can be also found in textbooks [96], [170] and reads:

A0(x, t;T = 0) = −iY (t)⟨[ψrs(x, t), ψ†
rs(0, 0)]+⟩ = −iY (t)

2π eirkF x lim
ϵ→0

{
αcut−off + i(vF t− rx)

ϵ+ i(vF t− rx)

×
∏

ν=ρ,σ

1√
αcut−off + i(uνt− rx)

(
α2

cut−off

(αcut−off + iuνt)2 + x2

)
γν +

(
x → −x
t → −t

)}
(5.19)

where αcut−off is the high energy cut-off of the theory, for instance, the bandwidth. The
exponent γν is

γν =
(
K2

ν +K−2
ν − 2

)
/8 > 0 (5.20)

From this, the following Fourier transform can be found:

AR,s(q, ω) ∼ (ω − vσq)ζ−1/2|ω − vρq|(ζ−1)/2(ω + vρq)ζ/2 (5.21)
where the overall exponent ζ = ∑

ν γν . However, this is the simplest case T = 0, L → ∞.
The details of the derivation of Eq. 5.19 can be found in Appendix A, Sec. A.2.

– 80 –



5.3. THE DENSITY OF STATES

5.3 The density of states

The density of states (DOS) encodes the electronic properties of any material, deter-
mining its electrical conductivity, thermal conductivity, and optical properties. This is
because it provides crucial information about the behaviour of electrons, including their
occupation and propagation characteristics. Here we wish to incorporate the effects of
interactions, since it is known that in 1D, propagating electrons cannot avoid each other
and therefore become strongly correlated.

Usually, the evaluation of any correlation function in a strongly correlated state is a pro-
hibitively difficult task, especially considering the finite size and the finite temperatures.
Calculating spectral function A(q, ω) for all values of energies in 1D liquid at T = 0
can be done by means of Bethe ansatz [171], while for the finite temperatures - only
with the most advanced numerical methods such as tDMRG; both results were shown in
Ref. [172]. Therein, for the spin chain with characteristic energy J , it was found that a
linearized theory works up to energy scales of ≈ 1.5J . This linearized theory is precisely
the TLL framework introduced in Chapter 3 and used here.

Fortunately, as described in Chapter 1, the CNTs can be described through the TLL for-
malism. Therefore, in the following, we take ntube(F, ω, r) = nT LL(F, ω, r). The Green’s
function and thus also DOS for an infinite TLL are well known [96], actually, the way
to obtain them was demonstrated in Sec. 5.2.3. Thanks to the conformal invariance
of the underlying field theory, the TLL correlation functions are known for infinite 1D
wires at finite temperatures as well. This allows for a direct comparison with the experi-
ments that are unavoidably performed at finite temperatures. Remarkably, in Ref. [173],
Mattsson and co-workers obtained finite-temperature LDOS also for a finite-size spin-full
1D system. Their result explicitly demonstrates the LDOS dependence on a distance
from the top of the nanotube. Their solution is presented in Eq. 5.22. A product of
two Sinhai(r, vit) functions is observed, each corresponding to a pole of Green’s function
characterized by a velocity vi.

The method to evaluate TLL correlations with a boundary was obtained by Affleck and
Eggert [174], [175]. Since the correlation function on the boundary remains factorized1,
just like in a bulk, we give here an example of a single-mode procedure. The procedure
involves several transformations of the fields as summarized in the box below.

As a result, even for equal-space correlation functions x = x′ = r, correlators ⟨ϕ(r, t)ϕ(r, t′)⟩
as well as ⟨ϕ(r, t)ϕ(−r, t′)⟩, are obtained. The latter produce terms ∝ (2r±vνt), and this
r dependence indicates translational symmetry breaking.

1This assumption is broken only by boundary terms of the form cos ϑ(x = 0) where ϑ is a linear
combination of at least two modes. Physically, to have a strong mixing, the two modes must have the
same velocity (which excludes holon) and some symmetry, such as valley symmetry, has to be broken on
the boundary.
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The boundary procedure, BP, involves several transformations of the bosonic fields,
namely the fermionic field undergoes the following series of mappings:
Initially the relation between fermionic field ψ(x) and bosonic fields ϕ, θ reads as usual:

ψR (x1, τ1) ∝ e−i[ϕ(x1,τ1)−θ(x1,τ1)].

Step 1 Rescale ϕ fields by K and θ fields by 1/K (this is to move to noninteracting
fields ϕ̃, to avoid the nonlocal interactions later on)

ψR (x1, τ1) ∝ e−i[Kϕ̃(x1,τ1)− 1
K

θ̃(x1,τ1)].

Step 2 Move to basis of chiral ϕ̃L,R fields

ψR (x1, τ1) ∝ e
−i

[
K

(
ϕL−ϕR

2

)
− 1

K

(
ϕL+ϕR

2

)]
(x1,τ1)

.

Step 3 When the boundary condition is set by large cosϕ, thus by pinning ϕ(x =
0) = 0, in terms of chiral fields this translates to a nonlocal condition

ϕL(x) = ϕR(−x)
upon which the fermion field is transformed as

ψR (x1, τ1) ∝ e− i
2 [(K− 1

K )ϕe
R(−x1,τ1)−(K− 1

K )ϕe
R(x1,τ1)].

Step 4 One can now move back from chiral fields to ϕ̃, θ̃ fields

ψR (x1, τ1) ∝ e− i
2 [(K− 1

K )[θe−ϕe](−x1,τ1)−(K− 1
K )[θe−ϕe](x1,τ1)].

The real-space expressions for correlation functions have been also obtained for a finite
temperature TLL with a boundary in Ref. [173]. It reads:

N(x = 0, t, r; β) =
sinh π

β
t

π
β
α

−as−ac ∣∣∣∣∣sinh π
vcβ

(2r + vct) sinh π
vcβ

(2r − vct)
sinh2 2πr

vcβ

∣∣∣∣∣
− bc

2

×
∣∣∣∣∣sinh π

vsβ
(2r + vst) sinh π

vsβ
(2r − vst)

sinh2 2πr
vsβ

∣∣∣∣∣
− bs

2

(5.22)

where the exponents as,c and bs,c depend on Kν as will be shown in the next subsection
(Sec. 5.3.1). Because of as,c(Kν) dependence, electron-electron interactions enter through
Kν in a highly non-trivial, non-perturbative way – they modify the exponents of the power
law. This implies that the result is non-perturbative.
The further advantage of TLL is that it obeys conformal invariance, allowing correlation
functions to remain accessible even at a finite temperature and a finite size. The finite
temperature expressions can be found through CFT mapping [176] of a plane on a cylinder
(thus imposing a periodic condition in time) which is equivalent to a substitution r →
sinh(r/β) (here β is an inverse temperature). The finite temperature correlations are
obtained due to the usual conformal symmetry transformation z → β/2πlog(z), which
leads to the sinh() functions above, in Eq. 5.22.
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5.3.1 Importance of the boundary condition

The relation between the exponents a, b and the TLL parameters is determined by the
nature of the boundary itself. If the boundary is set by backscattering potential, the fields
ϕν are locked at x = 0. This is the standard case that has been applied in Ref. [173].
Then we would have as,c = Ks,c

2+K−2
s,c

4 , bs,c = K−2
s,c −Ks,c

2

4 and indeed at the boundary the
correlation function decays with 1/K exponent because the fluctuations of ϕ(x = 0) are
frozen (while correlation in the bulk still follow Eq. 5.19). However, different situations
with different boundary conditions at x = 0, are also possible.
In Ref. [173] the authors used standard Dirichlet boundary condition that assumes a hard
wall boundary at the end of the nanotube, which, in turn, results in a boundary condition
ϕν(x = 0) = 0. However, what is more appropriate for a nanotube in a finite electric
field, constantly emitting a stream of electrons, are the radiative boundary conditions as
derived in [177]. These conditions are also consistent with a physical situation most likely
implemented when the residue of metal catalysts rests on each nanotube’s top: a small
quantum dot in a double tunneling regime is present at the top of the nanotube. Assuming
charge flow continuity, without voltage drop, between the nanotube and the quantum dot
the boundary condition for the canonically conjugated field θρ±(x = 0) = cste is reached.
This can be easily accommodated in Mattsson’s and co-workers’ formalism by making a
substitution Kρ± → 1/Kρ±. This can be proven as follows:
It is possible to consider the situation when there is an intense emission of carriers close
to the end of a 1D system. The so-called radiative boundary conditions are then applied.
These were first identified in Ref. [174] and can be written as

(VFg
−2∂x + ∂t)ϕ(xi) = p(xi)

where p(xi) is a probability of emitting/injecting carrier at a point xi. This sets the
boundary condition for canonically conjugated momentum field θ(x = 0). As a result,
the following modification in the above procedure by Affleck and Eggert is necessary: in
the step 3. of BP we now impose the boundary condition for the original θ field thus now
for the chiral field the boundary condition reads:

ϕL(x) = −−−ϕR(−x) (5.23)

The entire reasoning thus stays the same, but signs need to be changed in front of some
coefficients which ultimately results in a change of sign in Eq. 5.25.
For the spin sector, this unusual boundary condition will have a different interpretation:
a local DM interaction, that is locally generated spin-flip processes. It could be expected
that such a term would naturally arise on the edge of heavy atom chain with nonequiv-
alent (lower symmetry) lattice sites. Usually, DM interaction approaches zero because
contributions from various sites cancel out. However, this cancellation will not work on
the edge of the wire where only one site is present.
Furthermore, when Kρ < 0.5 (such as in our case), then g ≫ VF (please note that
Kρ = 0.5 correspond to U → ∞ in the Hubbard model), thus the first term in the bound-
ary condition can be neglected, leaving only the time derivative, namely the boundary
condition for the canonically conjugated field θ(x0) = 1. Since fluctuations of θ(x = 0)
field at the boundary are now frozen, a different relation between exponents a, b and Kν ,
needs to be set, namely:

as,c =
Ks,c

2 +K−2
s,c

4 (5.24)
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Coulomb Hund

as 0.25 1.5

ac 2.015 2.015

bs 0 −2

bc −2 −2

Table 5.1: The aν and bν parameters’ values that were used for the Coulomb and Hund
models. The values of bν are in bold font because they are fixed in our method.

bs,c = −
K−2

s,c −Ks,c
2

4 (5.25)

The two-leg ladder description is obviously much more complicated than the spin-full
chain that we considered so far, as there are four ρ±, σ± instead of two bosonic modes.
However, an extremely useful aspect of nanotubes dominated by the long-range interac-
tion is that only the velocity of the charge-full ρ+ mode, the vρ+, is strongly modified,
while for the remaining three modes the respective velocities stay close to VF . Thanks
to that our original formulas for space-dependent spectral functions N(ω, r) can be still
applied, however, we need to take into account that now three modes Kν will contribute
to what was before as:

ãs =
K2

σ+ +K−2
σ+ +K2

σ− +K−2
σ− +K2

ρ− +K−2
ρ−

8 (5.26)

where we took into account that N = 4 in the denominator. In Ref. [173] the case of
the simplest single-mode TLL was considered, and the impurity term cosϕ(x = 0) was
responsible for setting the boundary where the radiation took place2. In the case of a
multimode TLL setting boundary is a non-trivial step that also contains some physics
within the problem. There are several, to be precise, eight possible two body terms
c†

0c0 [178], [179], and the choice among them is determined by the nature of boundary
scattering. If the scattering on the boundary is featureless, ϕν → θν is chosen for all
the boundary conditions. However, if there is a spin-flip of valley-flip, like in a quantum
dot attached on the top of a nanotube, the scattering will involve cos θσ+ or cos θρ−,
respectively. Therefore, the radiative boundary condition will now be set for ϕσ+ or ϕρ−.
On the boundary, these fields will become frozen; consequently, the boundary exponent
will depend on 1/Kσ+ or 1/Kρ− as usual (contrary to the radiative boundary condition
for ρ+ which will always have θρ+ frozen, resulting the boundary exponent depending on
Kρ+).
The list of all values of aν and bν used for the calculations is presented in Table 5.1. The
values of bν are fixed in our method.
This statement can be further generalized: if the standard TLL is in contact with a
highly non-trivial electrode such as a helical TLL where (ϕ± θ)|x=0 boundary condition
is set, or more generally with a spiral TLL where (cos(α)ϕ ± sin(α)θ)|x=0 boundary
condition (with a K−dependent rotation angle α) is imposed, the boundary condition
will be defined through emission of such carriers and strong back-scattering of orthogonal

2Please note that in Ref. [173] the canonical notation is swapped ϕ ↔ θ.
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carriers. Anticipating the results obtained in Sec. 5.4.2 will lead to a prediction of particle
accumulation causing fluctuation onto the external electrode.

Validity of open boundary condition

We work in the case where K ≪ 1 and analyzing the transmission function T (ω;α) as
obtained in Chapter 4, when α ≪ 1, it is observed that for sufficiently small ω and a
sufficiently coarse-grained lattice, the radiative boundary condition becomes sharp. This
implies that there exists x0(Λ) such that any carrier located there will be emitted with
probability p(x0) → 1. Furthermore, as will become clear from our analysis of the 4kF

component of charge susceptibility, the dielectric function in the vicinity of the boundary
keeps the α power (in the potential) small but constant down to some specific distance.
Beyond this distance, α abruptly decreases to zero, making the above-defined condition
for T (ω;α → 0) even sharper.

5.4 Results: Fourier Transform of LDOS

5.4.1 Analytic expression

Physically, accessible quantities are usually measured in the frequency domain. Con-
sider, for instance, an STM measurement done along 1D wire. Also, when computing
a response of some composite system in a series, the generalized "susceptibilities" enter-
ing multiplicatively will be in the frequency domain (in the time domain we shall have
convolutions). The expression, as given above, thus requires partial Fourier transfor-
mation, namely, the integral transform needs to be performed only along the time-axis
into a frequency domain. Although it may seem straightforward, this is a significant
technical issue. In the simplest case of single-mode TLL, the Fourier transform of finite
temperature expression takes the form of a hypergeometric Beta function [96]. Analyt-
ical formulas are known only for the cases of bosonic modes with one common velocity
(such as the hypergeometric Beta function) and with two velocities (such as the Appel
hypergeometric function [180]). For the boundary problem, the formula is expected to be
even more complicated. On the other hand, analytical formulae have a great advantage,
since both the N(x, t) and N(x, ω) have singularities. Therefore, numerical integrals are
notoriously hard to control, which is particularly important if N(x, ω) is intended to be
used as an input for some further calculations.
Therefore, it is observed that this task is non-trivial and can be done only for a few
special cases, probably only for a few special values of Kν TLL parameters.
The main part of electronic propagator is the chiral Green’s function which is a correlator
GRR = ⟨ψ†

R(x, t)ψR(0, 0)⟩, where the right-going many-body electronic wave remains
right-going when it propagates space-time interval from (x′, t′) to (x, t) (it should be
noted that due to the boundary, the translational invariance is broken). The finite
temperature, real-space (and real-time) LDOS in a 1D TLL has been obtained in Ref.
[173], where Mattsson, Eggert and Johanesson provided the expression for frequency-
(energy-) dependent LDOS as a regularized integral (which they later solved numerically).
The expression is a straightforward Fourier transform of Eq. 5.22 and it reads:
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(5.27)

where the exponents for space-independent as,c and space-dependent bs,c parts depend
on TLL parameters presented in Eq. 5.24 and Eq. 5.25.
The above given expressions provide the only contribution to the bulk case, without the
boundary. In the presence of the boundary, there is also a staggered contribution to the
Green’s function, which is a correlator

GLR(x, x′, t′, t) = ⟨ψ†
L(x, t)ψR(x′, t′)⟩.

Here, a right-going many-body electronic wave has turned into a left-going one during
the space-time interval from (x′, t′) to (x, t), due to scattering off the boundary at x = 0.
In the single-particle context, these are known as Friedel oscillations. We derived the
integral, an analogue of Eq. 5.27, for this component of Green’s function (as before for
the case when x = x′ = r). It reads as follows:
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(5.28)

Unfortunately, we were not able to find any values of Kν which would admit exact
analytical expression for the above integral Eq. 5.28. Fortunately, the numerical studies
of Eggert and collaborators suggest that this is sub-dominant contribution already for the
hard-boundary condition and it is expected to be even smaller for our radiative boundary
conditions.
The real space result of Eq. 5.27 has been written as a product of powers of sine-
hyperbolic functions. The difficulty in integrating rests in the fact that for our purposes
frequency dependence of LDOS is required, which is obtained through partial Fourier
transform. Obviously, this can be done through a direct numerical evaluation; however,
already in Ref. [173] the singularity of LDOS was pointed out, which needs to be reg-
ularized. This is a nontrivial task to achieve for the numerical integration, especially
since we wish to use it as a basic ingredient for later calculations. We then turned our
attention to possible analytic expressions, for specific cases when the Fourier transform
can be done exactly.
The integral of LDOS (Eq. 5.27) as obtained by Eggert has been expressed as:
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(a) (b)
Figure 5.5: Time evolution of the boundary phase shift cos(γ(t)) for (a) Coulomb
metal and (b) Hund metal. The function illustrates the induced modulations in the
LDOS through boundary conditions within a TLL framework.

A(x, t) = cos(γ(t))Ā(x, t) (5.29)
where Ā(x, t) is the time ordered correlation function of TLL, the complicated function
expressed in terms of Sinha(x, t). The additional dependence, that enters into retarded
correlation function, is introduced by a boundary phase shift, the cos(γ(t)) and has a
form of a sequence of step-functions:

γ(t) =


π
2 (as + ac), 0 < t < 2r

vc

π
2 (as + ac + bc), 2r

vc
< t < 2r

vs

π
2 (as + ac + bc + bs), 2r

vs
< t < ∞

(5.30)

The overall time integral (t-domain Fourier transform to ω-domain) can be solved by
means of integration by parts, namely taking

dv = Ā(x, t)

and
u = cos(γ(t)) ≈ sign(t− t0).

Then we have: ∫ ∞

0
udv = −

∫ ∞

0
vdu+ vu

∣∣∣∣∞
0

Since du is a sum of Dirac deltas (derivative of the sequence of step functions), the first
term simply gives v =

∫
Ā(x, t). The second term, depending on the position of phase

shift, may cancel out the value of v at zero. This fenomenon ocuurs for Coulomb metal
but not for Hund metal.

5.4.2 Coulomb metal

A case has been identified where an exact analytic solution can be derived. The choice
of −bc/2 = 1 and −bs/2 = 0 is the one, for which the analytic Fourier transformation of
Eq. 5.27, is the following:
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(5.31)

It is stated that the case when −bc/2 = 1, −bs/2 = 0, corresponds to ac = 2.015, as = 1
4 .

This implies Kρ+ = K∗ = 0.25, and we further take Kσ− = 1 which is used in further
calculations while Kρ− and Kσ+ are kept as free parameters. There is only one mode with
velocity vc, the holon, and for this pole the value bc automatically determines Kρ+. If =
a simple spin-full fermionic chain were focused on, bs = 0 would imply a "noninteracting"
(i.e. SU(2) invariant) spin degree of freedom with Ks = 1. In the case of two-leg ladder
(that is examined in this chapter), the other pole has three bosonic modes ν = σ+, σ−, ρ−
contributing (see Eq. 5.26). Thus, even with setting bs = 0, there is a certain freedom in
the choice of these TLL parameters. It should be emphasized that the condition bs = 0
does not mean the complete absence of the spin degree of freedom in the system, as
as ̸= 0, but rather that there is no spatial dependence induced by the spin degree of
freedom.

Ks = Kρ− +Kσ+ +Kσ− (5.32)

Kρ− +Kσ+ +Kσ− = 1 (5.33)
While this is a result obtained at a particular point, it should be emphasized that since the
N(r, ω; β) is a continuous function of Kν , our results are expected to provide a good indi-
cator for an overall behaviour of this function in a strongly correlated case. Furthermore,
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(a) (b)

(c) (d)

Figure 5.6: TLL DOS for Coulomb metal as a function of energy ω and the distance
from the boundary r (tip of the carbon nanotube, unit of r is 1/VF ); when (a) β = 50,
(b) β = 100, (c) β = 150, (d) β = 200. The β = 1/T is inverse temperature with a unit
set by the fact that the unit of energy was set by vF = 1.

the obtained value lies close to a limiting (separatrix) behaviour of a sine-Gordon model,
i.e. a TLL with a cosine perturbation, where the latter term may arise backscattering.
Thus, this result is expected to manifest frequently in real-life experiments. Finally, it
should be noted that although the problem was solved with two bosonic poles (velocities),
this can correspond to the situation with indeed only two modes, and equally well to the
situation with more modes provided that there are only two velocities (i.e. some modes
are degenerated).
Thus our solution works for the physically relevant case when Kρ ≈ 1/4 as measured
experimentally [181]. This also corresponds to a close vicinity of marginal RG flow for the
case of a half-filled band. The proximity of nanotubes to the Mott-insulating phase has
been identified in several earlier works [182]. Here it is assumed that in the charge sector
the system can flow towards the Mott phase consistently moving towards the critical value
K∗ = 1/2. However, due to weak incommensurability, such as co-doping between SWNT
shells of MWNT, the system is in a Luther-Emery liquid with parameter K∗/2 = 1/4.
If intra-tube repulsive interactions are too weak to push the system towards these small
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(a) (b)

(c) (d)

Figure 5.7: TLL DOS for Coulomb metal as a function of energy ω. The distance
from the boundary r (tip of the carbon nanotube) is a constant and r = 2.50 1

VF
, (a)

β = 50, (b) β = 100, (c) β = 150, (d) β = 200.

(a) (b) (c)

Figure 5.8: TLL DOS for Coulomb metal as a function of energy ω. r is the distance
from the boundary (tip of the carbon nanotube, a unit of r is 1/VF ); when β = 150, (a)
r = 1.5, (b) r = 2.5, (c) r = 3.5.

– 90 –



5.4. RESULTS: FOURIER TRANSFORM OF LDOS

values, there are always inter-tube Coulomb interactions that can be incorporated in our
modelling and will further modify downwards the Kρ+ parameter [165]. This explains
why such a value is frequently observed in experiments done on SWCNT. At absolute zero
temperature, it is established that DOS diminishes to zero at the Fermi energy following
a power law in ω, known as a zero-bias anomaly (ZBA). Here, the DOS for TLL will be
analized under finite temperature conditions.
Fig. 5.6 illustrates the LDOS as a function of ω and r at various temperatures, where
ω is measured relative to the Fermi energy and r is the distance from the boundary. At
ω = 0, the energy corresponds to the Fermi level, serving as a critical reference point for
energy levels. This deep at ω = 0 is a well-documented signature of 1D physics, known
as the "zero-bias anomaly" that has been experimentally observed in various systems,
for instance, in carbon nanotubes [181] or in semiconductor gated wires [183], [184], and
quite recently, even in controlled 2D to 1D crossover [185]. The figure (Fig. 5.6) shows
LDOS both below and above the Fermi energy, providing valuable insights into the energy
distribution characteristics within the confined TLL of the nanotube.
A profound deep is observed close to ω = 0 and a deep when r is going down to 1. These
features are sharper at temperatures lower; in this case, when β = 200, it is sharper
than when β = 50. Then, it increases to a maximum when r is a few lattice spacing,
after which it decreases as we move deeper into the carbon nanotube. It is important
to mention that the double peak structure observed for values where ω > 0 may be
probably related to the well-established 1D hallmark known as spin-charge separation
that was also experimentally measured in several systems [183], [184], [186], [187], [188].
Fig. 5.7 illustrates the LDOS as a function of ω, when the distance from the boundary
r is a constant and r = 2.50 1

VF
.

Fig. 5.8 illustrates the LDOS as a function of ω at a fixed inverse temperature β = 150,
when the distance from the boundary r is (a) 1.50 1

VF
, (b) 2.50 1

VF
, and (c) 3.50 1

VF
. We

observe

• large amplitude for smaller r,

• faster decay (as ω) for larger r,

• ZBA is probably sharper for smaller r.

5.4.3 Hund metal

The case where bs = 0 corresponds to the situation when Ks = 1 (all Kν = 1 for all
neutral modes), representing a noninteracting value. This can be realized for purely
charge and long-range interactions such as Coulomb interactions. The case of bs = bc

implies that both spin and charge sectors are equally shifted away from the noninteracting
point. This can be implemented for on-site interactions under the condition that only
parallel spin electrons interact. Such a situation may arise, for instance, in a Hund
metal, where Hund exchange JH dominates low-energy physics. Hund’s rules state that
(due to anti-symmetrization of the wavefunction) the states with maximum multiplicity,
i.e., states with parallel spins, are energetically favoured. Materials where the Hund’s
rule dominates are the base of late d-orbital transition metal compounds (e.g. oxides
or chalcogenides of iron, cobalt or nickel) but they will play an important role also in
neighbouring heavy p-orbital materials based on tin and lead. Importantly, each of these
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materials also exists in 2D form, e.g. stanene or plumbene, so in the future, they may
also be rolled up into nanotubes, just as graphene into CNTs.
In a special case where −bc/2 = 1 and −bs/2 = 1 the integral can be performed analyti-
cally, and the resulting indefinite integral reads:
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Although the formulas themselves are quite lengthy, some useful remarks can be made
from their functional form. Each formula consists of several building blocks with hyper-
geometric 2F1 function in the numerator. Some of these include an extra π phase shift
in the argument and spatially dependent pre-factors ∼ vρr.
There are two types of spatially dependent pre-factors for the Hund metal case:

∼ (vρ + vσ)/2r

and
∼ (vρ − vσ)/2r.

This is a manifestation of the fact that i) now both spin and charge contribute to spatial
dependence; ii) the two waves can interfere. The known relation can be used between
the hypergeometric 2F1 function and the incomplete Beta function:

Bκ(a, b) = κa(1 − κ)b−1

a
2F1(1, 1 − b, a+ 1; κ

κ − 1) (5.35)

which upon substitutions

κ →
(

1 − exp
[
−2π
β
t

])−1

a → 1
2

(
ac + as + iβω

π

)

b → 1
2

(
ac + as − iβω

π

)
proves that our formula can be re-expressed in terms of hypergeometric Beta functions.
It is well known that the Fourier transform in the bulk TLL is given in terms of the Beta
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(a) (b)

(c) (d)

Figure 5.9: TLL DOS for Hund metal as a function of energy ω and the distance
from the boundary r (tip of the carbon nanotube, unit of r is 1/VF ); when (a) β = 50,
(b) β = 100, (c) β = 150, (d) β = 200. The β = 1/T is inverse temperature with a unit
set by the fact that the unit of energy was set by vF = 1.

function. Here, it is shown that the presence of boundary and the second TLL mode
generalizes that expression into a combination of incomplete Beta functions, allowing for
a connection between the two situations. The advantage of writing the expression in a
less compact form, with a = ω + K in the denominator is that it manifestly has a form
of a Lehman representation for a free boson propagator.
The local propagator, a quantity that is integrated over all momenta, was computed to
obtain the above-mentioned denominator (±π) which implies that original LDOS has
a plasmon pole form with bosons moving along the light rays defined as Dirac deltas
δ(k − Kν/β). In our procedure, to obtain correlation functions, the fields have been
re-scaled by Kν to arrive at noninteracting theory, without Bogoliubov angle that would
need to be nonlocal when left- and right-going fermions are coupled. In this case, as
recently proven, the Kν are becoming related to Thomas-Fermi screening length. Thus
the shift of the plasmon pole can be interpreted as a characteristic screening length in
the material.
Finally, we decided to keep the formula in its most general form as it will later enable
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us to generalize to complex TLL parameters, that will encode non-Hermiticity in the
presence of strong external field.
The most remarkable feature of Hund metal is the presence of a sharp peak in close
vicinity of ω = 0, which decays relatively quickly with r. This can be interpreted as an
interference phenomenon. In the Coulomb metal case, not only is there no interference,
but also any feature close to zero energy is suppressed by boundary conditions affecting
phase shifts. Curiously, the peak seems to disappear as we move towards the lowest
temperature. Perhaps this is a numerical artefact that is due to peak narrowing, although
we have thoroughly checked various adaptive meshes and the feature seems to persist.
An alternative interpretation is given below.
An even more remarkable interpretation is possible for the spin sector in the Hund
metal case, where a strong, sharp peak close to zero energy is observed. In our range of
parameters Ks ≪ 1 we are deep inside the antiferromagnet (AFM) Ising phase, however
gapless in the absence of a bulk gapping term. We thus expect to work in TLL but
strongly anisotropic Jz ≫ J⊥ limit. This represents type-II Toulouse point, the decoupled
boundary [189]. On the other hand, the radiative boundary condition represents strong

(a) (b)

(c) (d)

Figure 5.10: TLL DOS for Hund metal as a function of energy ω and the distance
from the boundary r (tip of the carbon nanotube, the unit of r is 1/VF ); when (a) β = 50,
(b) β = 100, (c) β = 150, (d) β = 200. The β = 1/T is inverse temperature with a unit
set by the fact that the unit of energy was set by vF = 1.
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(a) (b)

(c) (d)

Figure 5.11: TLL DOS for Hund metal as a function of energy ω. The distance from
the boundary r (tip of the carbon nanotube) is a constant, and r = 1.50 1

VF
, (a) β = 50,

(b) β = 100, (c) β = 150, (d) β = 200.

(a) (b)

Figure 5.12: TLL DOS for Hund metal as a function of energy ω. The distance from
the boundary r (tip of the carbon nanotube) is a constant, and r = 2.50 1

VF
, (a) β = 50,

(b) β = 100.
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(a) (b) (c)

Figure 5.13: TLL DOS for Hund metal as a function of energy ω. r is the distance
from the boundary (tip of the carbon nanotube) when β = 150, (a) r = 1.51/VF , (b)
r = 2.51/VF , (c) r = 3.51/VF .

Kondo-type coupling with an outside entity, and this is a spin-flip type coupling ∼ θs.
At the lowest temperatures, the bulk and boundary are incompatible in the sense that
an easy axis bulk cannot provide so much radiation coupling with an in-plane oscillating
outside object. The bath and the boundary are orthogonal at T = 0. The situation
changes at finite temperatures when TLL bosons start to be excited, and they can couple
on the boundary. Consequently, a peak is observed that increases as the temperature is
reduced; a behavior that is counter-intuitive for usual Kondo setting with constant JK

and isotropic bath. It should be emphasized that all the temperatures considered here
are much below the Kondo coherence temperature TK . In the close vicinity of the peak,
we observe the negative LDOS, a phenomenon known to exist in low-dimensional systems
[190], possibly due to overscreening by the massive zero-energy state. This is yet another
phenomenon that occurs exclusively when the radiative boundary condition is imposed.
Fig. 5.11 and Fig. 5.12 present the LDOS for Hund metal as a function of energy ω
at various temperatures, corresponding to the profiles captured in Fig. 5.10 for a fixed
distance from the boundary r = 1.5 1

VF
and r = 2.5 1

VF
, respectively, while Fig. 5.13 shows

the same temperature, but at different distances. The zero energy peak is a reproducible
feature observed in all these cases.
The system has particle-hole symmetry, although it is not observed in the figures for
Hund metal, specifically in regions close to zero energy. Further research is needed to
address this, particularly in developing an adaptive mesh capable of accurately capturing
the problem at energies close to zero.

5.4.4 Hund versus Coulomb metal

Here, the results of integral transforms for Coulomb and Hund metals are compared. It
is observed that as we move away from the edge, in all cases, there is a sudden drop
close to the boundary, then a broad maximum (in Hund metal very shallow) followed by
a gradual decrease towards bulk behaviour.
The appearance of the broad peak is somewhat expected. From Ref. [173], it is known
that LDOS should be a function of a variable xω. For the ω dependence of LDOS, it is
evident that it scales as αbulk −1 (in the bulk) or αedge −1 (on the boundary). While αbulk

is always greater than one, upon choosing radiative boundary condition with Kσ < 1/2,
αedge < 1 was taken, which gives an inverse scaling of LDOS close to the boundary.
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The fact that in Hund metal both spin and charge modes, with different velocities,
contribute to the spatial dependence, also manifests as weak oscillations, the beating
phenomena which are visible the best for the smallest r.
An interesting dichotomy can be observed at the lowest energies. In the case of Coulomb
metal, the LDOS has a simple zero bias anomaly, an interaction-induced pseudo-gap, as
the Fermi level is approached. On the contrary, the most remarkable feature of Hund
metal is the presence of a sharp peak in close vicinity of ω = 0, which relatively quickly
decays with r. This can be interpreted as an interference phenomenon. In the Coulomb
metal case not only is there no interference, but also any feature close to zero energy
is suppressed by boundary condition affecting phase shifts (that mathematically enter
through partial integration explained in Sec. 5.4.1). Curiously, the peak seems to dis-
appear as we move towards the lowest temperature. Initially, the numerical accuracy
was blamed for that (as the standard Kondo peak is expected to narrow), but extensive
trials of different meshes were not able to change this picture. It is thus necessary to
understand better the specific regime of the spin system being tackled here.

Interpretation of the ω → 0 features

It is observed that the same LDOS can be produced for both Kν and 1/Kν provided that
boundary conditions are reversed. For a more intuitive ϕν(x = 0) boundary condition,
strongly attractive interactions are observed within a charge sector Kc ≫ 1. In the
Coulomb metal case, this results in a broad maximum in the vicinity of the boundary,
suggesting that electrons accumulate close to the boundary because it is energetically
favorable for them to stay together in a constrained area. Similarly, the Ks ≫ 1 for
the spin sector implies that the system is in an Ising ferromagnet regime, where it has a
tendency to develop easy-axis large local magnetization that decouples from the boundary
at the lowest temperatures.
The situation for strong repulsive interactions K ≪ 1, which is frequently more physically
relevant, is even more interesting. It is clear that the radiative boundary condition
θc(x = 0) for the charge sector induces an enlarged LDOS close to the end of 1D system.
This suggests that charge accumulates there to facilitate in-out charge fluctuations.
The situation is even more remarkable for the spin sector in the Hund metal case, where
a strong, sharp peak close to zero energy is observed. In our range of parameters Ks ≪ 1,
we are deep inside AFM Ising phase, however gapless in the absence of bulk gapping term.
We thus expect to work in TLL but strongly anisotropic Jz ≫ J⊥ limit. On the other
hand, the radiative boundary condition represents strong Kondo-type coupling with an
outside entity, and this is a spin-flip type coupling ∼ θs. At the lowest temperatures,
bulk and boundary are incompatible, in the sense that an easy axis bulk cannot provide
such a large radiation coupling with an in-plane oscillating outside object. The situation
changes at finite temperatures when TLL bosons start to excite and they can couple on
the boundary. Therefore, with a reducing temperature an increasing peak is observed.
This a behavior that is counter-intuitive to the usual Kondo setting with constant JK

and isotropic bath. It should be emphasized that all the temperatures considered here
are well below the Kondo coherence temperature TK .

– 99 –



CHAPTER 5. TLL DENSITY OF STATES

5.5 4kF charge susceptibility

A similar approach, as for the spectral function, can be applied to two-body correlations,
such as the susceptibilities. Of special interest is the charge susceptibility as it determines
screening, and thus local dielectric constant. In our range of TLL parameters, when
Kρ < 1/3, the slowest decaying correlation is the 4kF susceptibility. It represents a
combination of two 2kF susceptibilities; while in the bulk it is ∝ χ2kF (x, t) ⊗ χ2kF (x, t),
on the boundary there is also a term ∝ χ2kF (r, x, t)⊗χ−2kF (−r, x, t) which will contribute
to the uniform component. The χ4kF depends on cos(4ϕρ) operator, without a component
from the spin sector. Since the difference between Coulomb and Hund metals is in the
spin sector, this dominant contribution to charge susceptibility is going to be the same
for both Coulomb and Hund metals.

χT LL(ω, r) =
∫
dt cos(ω(t)
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(5.36)
The above integral can be evaluated analytically for the case ω = 0 and 2Kc = 1, which
is of our particular interest when calculating static interactions determining Kρ. The
result reads:
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(5.37)

This result can be regularized in a similar manner as the LDOS. The resulting suscep-
tibility is plotted in Fig. 5.14. Like before, a cross-over between two power laws is
observed - boundary and bulk, with the boundary increase much steeper and the bulk
decay much slower. This is in agreement with the result for longitudinal spin suscepti-
bility reported in [191], if one recalls that we work in the limit of small Kρ. Remarkably,
the boundary peak of a two-body charge susceptibility is much more prominent than the
single-particle boundary feature in the Coulomb metal, suggesting that probes measur-
ing local susceptibilities like nuclear magnetic resonance (NMR) relaxation-time 1/T1 or
Raman spectroscopy may be better suited to study these many-body changes of profile
than the more frequently used STM.
Based on the random-phase approximation (RPA), which is known to hold in TLL, the
dielectric function can now be estimated as ϵ(r) = 1 + cbackNemχρ(r), where Nem is the
density of emitted carriers and cback is a geometry-dependent constant that describes the
strength of back-reaction onto the TLL. At this point, it should be emphasized that,
according to Dzyaloshinskii-Larkin theorem ([192], see also Fig. 1.10 in the textbook of
T. Giamarchi [96]), vertex correction is prohibited in pure TLL. Thus, the correction to
the dielectric function, and hence interaction, is possible due to the presence of emitted
carriers. In the zeroth-order approximation, only those carriers are going to be affected
by the spatially dependent screening.
On the bulk side (large r values), it can be observed that the dielectric function from
TLL carriers initially increases as one approaches the end of the 1D system. This has
important consequences, for instance, in the case of field emission. From electrostatics,
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Figure 5.14: Illustration of the static (ω = 0) q = 4kF charge susceptibility as a function
of a distance from the boundary for two temperatures β = 50 (red) and β = 100 (blue).

it is expected that inter-tube screening should decrease and the external electric field
should increase as the emitted carrier approaches the tip of the 1D system. However, the
increase ϵ(r) when r → 0 as observed here for r > 1[n.u.], implies that this electrostatic
effect is at least partially compensated by correlations, thus, for instance, an assumption
of constant screening along the 1D system, which is used in field emission studies, is
justified.
On the boundary side, a rapid increase in charge susceptibility is observed. This implies
that somewhere close to the boundary, the relative dielectric constant will be smaller than
one, and this will be a manifestation of strong radiation set on our boundary. In principle,
this should be the point where the boundary condition is set, as a further decrease towards
a negative relative dielectric constant indicates that our formalism would be breaking
down therein. Here, employing the strong coupling approach becomes necessary.

5.6 Partial conclusions and perspectives

In this chapter, results for two types of TLLs are obtained: one is the Coulomb metal
case, which has already been frequently recognised in the past, particularly in the con-
text of carbon-nanotube types of materials (but also for p-orbital-based sparse quasi-1D
materials). Another class was the Hund metal, the possible realization of which was
identified as 1D wires made of heavy atoms, such as Au at stepped silicon surfaces. It
should be noted that other realizations of Hund metal are also possible, especially based
on K ↔ 1/K duality upon θ ↔ ϕ change of boundary condition. In this context, it is
noted that nanotubes based on heavy p-elements, such as rolled sheets of stanene, will
have a strong local in-plane spin-orbit interaction. Consequently, Kσ ≫ 1, while the
boundary conditions are set by cosϕσ. Thus we are in the Hund metal regime. In this
way, our framework covers all possible nanotubes based on p-elements hexagonal sheets,
spanning from Coulomb to Hund metal.
While the focus of this study is mainly on the linear regime of low energy, there have been
significant advances in the field that tackle the nonlinear regime in carbon nanotubes. No-
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tably, recent works in Ref. [193] and Ref. [194] have explored nonlinear Luttinger liquids
in carbon nanotubes, providing deeper insights into these systems. Such advancements
provide exciting prospects for future study. These studies were done for SWCNT where
a simple tight-binding description of the entire band structure works reasonably well: it
is quite clear when the conducting pz orbitals start to overlap with σ∗ − px,y orbitals and
acquire a curvature, while for MWCNT, such microscopic modelling is prohibitively com-
plicated, and some effective model for VF (q) needs to be developed. In principle, if such a
model is found, it is possible to include curvature as a momentum/frequency-dependent
velocity VF (q) (which holds for the neutral modes part of LDOS). However, what remains
to be established is how the holon velocity vρ and TLL parameters Kν would be affected
by this change of the model and what momentum dependence they would acquire. Thus
extending our model to incorporate these nonlinear effects is highly non-trivial and has
to be left as an intriguing direction for future research. Curvature is equivalent to a
mass term in the Hamiltonian, and there were experimental efforts to measure how this
mass changes upon 1D to 2D cross-over [185]. In the context of arrays of nanotubes,
this would be a case where electrons start to hybridize in between the tubes, i.e., the
inter-tube distance of an Angstrom scale. However, this is beyond the scope of this work
and actually beyond arrays that have been synthesized so far.
The UV cut-off within the Tomonaga-Luttinger liquid theory in our approach is purely
phenomenological i.e., it is assumed that at some energy scale, the linear approximation
of the spectrum will not be applicable any longer. For SWCNT, this can be related
to the inverse lattice spacing, but for MWCNT the characteristic length scale may be
much longer. Recent theoretical and experimental advances have provided a more de-
tailed understanding of it. Works such as [195], [196] have provided a deeper theoretical
understanding, while experimental studies [197] have substantiated these observations.
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Chapter 6

Field emission from Carbon
Nanotubes

6.1 Introduction

The method to calculate the field emission current is much less clear when interactions
and correlations play a substantial role. The questions of how the electron-electron
interactions affect the field emission, and how they conspire with thermal effect to produce
the total current in a real device, remained largely unanswered. Here, we identify one
class of materials—the arrays of nanotubes—where a fully analytic answer can be given
to these questions.
Nanotubes and nanorods have been recently established as very good materials to work
as electron sources in a field emission (FE) process. These are one-dimensional materials,
and electron-electron interactions are expected to play a crucial role in their physics. The
influence of electron-electron interactions on the field emission is studied here. The prob-
lem in the low energy regime is studied, thus it is necessary to abandon the anti-adiabatic
approximation and derive tunneling amplitude for a finite duration of the tunneling pro-
cess. The parameters for which an exact analytic expression for tunneling current can be
provided were identified in this work. A formalism was obtained that enables to capture
at the same time the collective effects due to electron-electron interactions and thermionic
emission. Our results reveal that different types of nanotubes and their minigaps, ∆ν and
compressibility parameters Kν can be easily distinguished, based on FE measurements
on these materials.
The Chapter is organized as follows: Sec. 6.2 introduces the generalization of TLL to
four modes in nanotubes, beginning with the real-space tight-binding Hamiltonian for
graphene and its diagonalization in reciprocal space. Sec. 6.3 describes the quantum
tunneling process in a dense array of nanotubes, focusing on the dynamics of electrons
confined by quantum wells created by Coulomb interactions between nanotubes and
modified by TLL parameters. Sec. 6.4 represents the tunneling current dependence on
the power low parameter α, including the TLL parameters. In Sec. 6.5, the tunneling
current calculations are presented from the entirely metallic nanotubes, zig-zag-like and
armchair-like nanotubes. In Sec. 6.6, the variation of chemical potential along 1D metal
under external electric field is introduced. Sec. 6.7 presents the modification of the work
function in our formalism to adjust the electronic behavior in different materials. Sec.
6.8 concludes the chapter.
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6.2 TLL in nanotubes: generalization to four
modes TLL

The real-space tight-binding Hamiltonian for graphene reads:

Hgraph = t(a†
ibi + a†

i−1bi + h.c) (6.1)

where ai, bi are anihillation operators on bi-partite lattice. This can be diagonalized by
moving to reciprocal space, where H is the Hamiltonian and J is the overlap matrix,
associated with the two non-equivalent carbon atoms in the lattice [198]

H =
(

ϵ2p −γ0f(k)
−γ0f(k)∗ ϵ2p

)
and J =

(
1 sf(k)

sf(k)∗ 1

)
(6.2)

to find the following expression for energies of lowest lying valence and conduction bands

E±(kx, ky) = ±γ0

{
1 + 4 cos

√
3kxa

2 cos kya

2 + 4 cos2 kya

2

}
(6.3)

which in the vicinity of K ′K ′ point of Brillouin zone can be approximated as

E(k) = ±
√

3
2 γ0ka = ±3

2γ0kaC−C (6.4)

where aC−C is the nearest neighbor carbon-carbon distance, a = 1.421 ×
√

3Å is the
lattice constant for a 2D graphene layer, γ0 is the nearest-neighbor C−C energy overlap
integral, ϵ2p is the site energy of the 2p orbital, s is an overlap integral between the
nearest A and B atoms and

f(k) = eikxa/
√

3 + 2e−ikxa/2
√

3 cos kya

2 .

It is noted that the dispersion is indeed linear which is a required condition to realize the
TLL. The implications of perpendicular quantization imposed, when graphene is rolled
into SWCNT, have been thoroughly discussed in Chapter 3.
Additionally, electron-electron interactions are introduced:

Hint =
∑
k,k′

V (k, k′)(a†
kak′ + b†

kbk′)(a†
k′ak + b†

k′bk) (6.5)

which manifestly conserves the momentum. Because the interaction V (k, k′) in low di-
mensional system is weakly screened, it follows that:

V (k, k′) ∝ 1/|k − k′|

which implies that the Hartree processes with k ≈ k′ dominate. Consequently, the
interaction term simplifies to density-density form:

Hint =
∑
i,j

V (i, j)ρiρj (6.6)

where it is noted that the sum of all reciprocal space density components nk = a†
kak gives

the real space density ρi. With this, the description of collective modes can be set up.
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TLL represents a unique solution for strongly correlated 1D systems, transitioning from
interacting fermionic systems to a solvable bosonic model. In this model, fermionic fields
ψ†(x) ≡ ∑

k∈ocupp Ak(a†
k(x) + b†

k(x)) (where we moved to continuum limit and the Ak

are coefficients whose determination in TLL solves the problem) are expressed through
bosonic fields ϕ(x) (density) and θ(x) (momentum):

ψ(x) = exp (ıkFx) exp ı(
N∑
ν

ϕν(x) + θν(x))/
√
N (6.7)

Here, N denotes the number of bosonic fields. The bosonized Hamiltonian, describing
fluctuations of these collective bosonic modes, is given by:

H1D =
N∑
ν

∫ dx
2π

[
(vνKν)(πΠν)2 +

(
vν

Kν

)
(∂xϕν)2

]
(6.8)

The LDOS for the model N = 4, appropriate for CNT, was found in the previous chapter.
Here, the solution of tunneling problem will be explored.

6.2.1 Tunneling barrier

The physics that we aim to capture is that of an electron tunneling through a barrier
described by a potential V (x). The lowest-order approach to this problem is through
the WKB approximation. In past studies [118], when any attempt for exact analytical
expression was made, the V (x) was given by the following expression:

V0(x) = h− eF0 ¯̄x− e2

16πϵ0 ¯̄x (6.9)

where h = ω0 −ω (ω0 is the work function characteristic of the given material and ω is the
energy), and ¯̄x was defined in Chapter 3. The second term corresponds to an unscreened
external electric field F0 = cste, while the last term represents an interaction with an
"image" hole left behind in a metal. This has led [127] to an expression for the tunneling
probability in terms of elliptic integrals, which was later rewritten [128] as a solution to
a hypergeometric equation, suggesting a possibility for further generalizations.
Looking for a description of a tunneling process from a correlated electron liquid, we
turn to the generalization of this formalism presented in Chapter 4 where the potential
is taken in the following form

V (x) = h− et̃tunFeffd0x
α − e2Geh

16πϵ0d0xα
(6.10)

where the previous formula was generalized by admitting that the driving term is an
arbitrary power law with a prefactor proportional to some effective tunneling amplitude
t̃tun times some effective (screened) electric field Feff , while the interaction term with
nanotubes is proportional to some electron-hole propagator Geh. The t̃tun = ttun/Λ is a
relative probability that the carrier moving along the tube will tunnel out of it, while
Geh = Geh(x = d0) · Λ gives a probability of co-moving electron and a hole; it is a two-
body exciton-type propagator times the band-width. In Eq. 3.71, we have extracted
spatial dependence of all these quantities to absorb them in the respective power law of a
dimensionless x multiplied by dimension-carrying parameter d0. The assumption is that
the functional dependence, namely the power-law remains, which as demonstrated below,

– 105 –



CHAPTER 6. FIELD EMISSION FROM CARBON NANOTUBES

is indeed highly probable within the TLL environment. When α ≡ 1, Eq. 6.10 simplifies
to the previously considered Eq. 6.9. In Chapter 4, it was found that for the special
case when the absolute value of powers in the last two terms are equal, the expression
for the tunneling probability can be expressed in a close analytic form i.e., in terms of a
hypergeometric function, see Eq. 6.13 below. α(K) will be obtained in Sec. 6.3.1.
The transmission probability is generally equal to the element of the density matrix
corresponding to the system with an emitted carrier. This is equal to T = ρtun/Z,
where Z is a partition function of the system, given by Z = ρ0 + ρtun ≈ 1 + ρtun.
Here, it is assumed that the tunneling process is so negligible that it does not affect
the density matrix of the rest of the system. Since ρtun = exp(−Stun), and anticipating
the result from Eq. 6.14, it is obtained that T is expressed by Kemble’s improved
Jeffreys–Wentzel–Kramers–Brillouin (JWKB) formula:

T (F, ω) = 1
1 +D(F, h = ω − ω0)

(6.11)

where, explicitly including the elementary constants e,me and h̄P (which are set to = 1
from now on):

D(F, h) = exp

[(
m1/2

e

eh̄

)(
h3/2

F

)(
h

2eFd0

) 1−α
α
(21− 1−α

α

α

)
I(F, h)

]
(6.12)

and the WKB integral I(F, h, x) =
∫ xout

xin

√
V (x)dx reads:

I(F, h, x) =
παx

1
α

− 3
2
(
2ζx2((α − 1)ζ + 1) 2F1

(
1
2 , 3

2 − 1
α

; 1; 1 − ζ
)

− α(ζ + 1)x2
2F1
(
− 1

2 , 3
2 − 1

α
; 1; 1 − ζ

))
(α2 − 4)

(6.13)

where ζ = m/n, m =
(

h
2eF d0

)α−1 (√
1 − F

(ω0−ω)2 + 1
)
, n =

(
h

2eF d0

)α−1 (
1 −

√
1 − F

(ω0−ω)2

)
,

see Eq. 4.11 applied to Eq. 6.10.
It was confirmed [105] that the expression above for α = 1 simplifies the previously
obtained result in terms of elliptic integrals [118], [119] for the single-particle case (Eq.
6.9). Our aim in the following section will be to build the connection between the
exponent α in the formula above and the correlation effects in the nanotube.

6.3 Tunneling process

In the presence of an array of nanotubes, the escaping mode of the electron is confined,
and it takes place in the quantum well created by neighbouring nanotubes (Fig. 6.1).
A dense array of nanotubes is considered, wherein "dense array" is an array that supports a
quantum well and thus the confinement. The nanotubes interact with each other through
Coulomb interactions creating narrow wells of potential between them and can also affect
the physics of the tubes. Fortunately, this last phenomenon can be captured by an
appropriate modification of the TLL parameters. To be precise, for Coulomb interactions,
this affects only the effective Kρ+ parameter [165]. Thus there remains a problem of
motion within deep wells of potential between the tubes. Each tube is described by TLL
with some effective Kρ+, and emitted electrons are expected to propagate within these
potential minima. The issue that is to be addressed here concerns the dynamics of an
electron as it propagates along the nanotube and in the process can still interact with
the TLL electrons inside the tube. The usual approximation is to compute a saddle
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Figure 6.1: A schematic illustration of the problem considered here: an array of nan-
otubes vertically grown on the substrate. The electron (black dot) is emitted from the
nanotube and still interacts with the hole inside of the nanotube (white spot) during the
propagation.

point (quasi-classical) configuration of the fields for a tunneling event taking place in a
negligibly short time – the instanton gas approximation. However, the situation in the
nanotube array is different, as the tunneling electron has to travel all the way up towards
the top of the nanotube, experiencing the influence of TLL in the meantime. To solve this
complicated case, a decision was made to separate quasi-classical and quantum degrees
of freedom [123]:

S = Sclas(q) + Squant(ψ),

were the former describes the time-extended tunneling process Sclas(q) ≡ Stun(q), with
q(τ) representing a trajectory of escaping single electron taking place in an effective,
averaged potential determined by quantum fluctuations

Squant ≡
∑

i

S
(i)
1D,

where ψ(x, t) indicate wavefunctions inside the nanotubes and i indicates the tube num-
ber. In other words, the classical trajectory includes the averaged TLL effect (encoded
in known TLL’s correlation functions), in the potential experienced by the escaping car-
rier. This may be considered as a vertex correction to the tunneling matrix (operator)
elements, a significant quantity of which was emphasized previously [199], where it was
accessed using alternative diagrammatic methods.
Following the seminal result by Coleman [125], the Euler-Lagrange equation for instanton
gives a classical equation of motion

q̈ = Vsaddle(q(τ))

which allows a tunneling type solution. This was presented in Chapter 3, Sec. 3.4.2.
Upon inserting it into tunneling action one finds:

Stun =
∫
dτ
√
Vsaddle(q(τ)) (6.14)
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where Vsaddle (see Sec. 3.4.2) is expected to have the form of Eq. 6.10. Remarkably, for
the simplest case of straightforward motion perpendicular to the barrier, this becomes
equivalent to quasi-classical WKB result. However, in more complicated cases, such
as ours, the trajectory of a particle will follow in a spirit similar to the path-integral
formulation. Now the q(τ) is the saddle point trajectory and it is assumed that due
to the geometry of the problem (the quantum well between nanotubes), a significant
portion of the trajectory is such that q(τ)||x. For a considerable time, the emitted
electron continues to interact with surrounding TLLs. Our task is then to average out the
quantum fluctuations, which can be made for TLL, in order to obtain effective parameters
inside Vsaddle(x).
In realistic systems, neighbouring nanotubes may have different chirality and parameters,
but the tube that is the most metallic, i.e., has the smallest gap, will provide the largest
amount of screening. This justifies our approximation of a single-tube dominated process.

6.3.1 The dependence α(Kν)

In Eq. 3.71, it is observed that there are two terms in the potential that need to be
overcome by the tunneling electron. The last one is due to an interaction between the
electron and the hole that has been left behind in the nanodevice, and the second one is
due to the screened external potential. The question is what the form of these terms is
in an environment defined by surrounding 1D nanotubes - TLLs.
The second term in Eq. 6.10 arises from an interaction with external potential that
pulls an electron away from the nanodevice. By itself, the external electric field in the
vicinity of the 1D conductor has a very weak spatial dependence, due to the under-
screening property of 1D metal, known to follow logarithmic dependence V0(x) ∼ ln(x).
The spatial dependence arises then due to extended quantum fluctuations in TLL. Since
seminal works by Furusaki [200], it is known that in the limit of the strong potential (in
our language work-function equal or greater than bandwidth), the tunneling process can
be described by instanton events which add the following cosine perturbation term to the
TLL Hamiltonian:

Htun = Fext

∫
dxdtÔtun(x, t)

where
Ôtun(x, t) = cos(θρ+(x, t)) cos(θρ−(x, t)) cos(θσ+(x, t)) cos(θσ−(x, t))

Here, a full fermion tunneling was taken, including all bosonic fields in Ôtun. In Chapter
3, Sec. 3.4, we arrived (for a single-mode TLL) at the result that the external field is
renormalized by fluctuations of θν fields around its minimum Ṽ → V (1 − (θ − ⟨θ⟩)/2)
where we changed the notation, here F ≡ V . The correlation function

teff (x) = ⟨Ôtun(x, t)Ôtun(0, 0)⟩

will indeed capture this effect of fluctuation between cosines’ minima. The spatial spread
of the tunneling amplitude ttun(x), the probability of these instanton events, is propor-
tional to correlation functions of the canonically conjugate momentum θν fields. As the
electron moves along the nanotube, it will endeavour a series of such tunneling events
which can be re-summed into the final effective tunneling rate as a geometric series [123],
the accuracy of such approximation has been confirmed by bench-marking with the nu-
merics in our previous work [105]. Thus, an overall effect of the quantum fluctuations
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leads to the following spatial dependence: t̃tun = F/(1− ttun), which, for sufficiently large
tunneling probability, results in the following scaling relation:

t̃tun ∼ x2(
∑N

ν
1/Kν)/N (6.15)

Here, the exponent of the power law depends only on 1/Kν because we computed it
specifically for the θν fields (following the prescription given at the beginning of Chapter
5) and for equal times.
In the presence of an entire array of nanotubes, the electric field that pulls the carrier, is
screened – a process described by a dielectric constant:

Fext = Feff = F0/ϵ(x).

These are density fluctuations ∝ ϕ(x) terms, introduced as mass renormalization

M̃ → M(1 − (ϕ− ⟨ϕ⟩)/2)

at the end of Chapter 3. According to Dzyaloshinskii-Larkin reasoning [192], the RPA
holds inside each TLL, and it can also be assumed that inter-tube interactions are long-
range (the dilute limit for emitted electrons). Thus, the dielectric function of the array
reads

ϵ(q) = 1 +W (q)χirr(q).
For long-range electron-electron interactions W (q), the second term dominates in the
long-wavelength limit. The TLL susceptibility is taken to be an irreducible part of
susceptibility χirr, and therefore upon Fourier transform, ϵ(x) ≈ χT LL(x). The static
charge susceptibility is proportional to the equal-time correlation function:

χT LL(x) = ⟨ÔCDW (x, t = 0)ÔCDW (0, 0)⟩ (6.16)
with

ÔCDW (x, t = 0) = cos(ϕρ+(x)) cos(ϕρ−(x)) cos(ϕσ+(x)) cos(ϕσ−(x)) (6.17)

Thus, its correlation function scales like χT LL(x) ∼ x
∑

ν
2Kν2K , because only ϕν fields are

involved. The only assumption used here is that the action of the external electric field
on the TLL is independent of spin and valley degrees of freedom. Otherwise, a different
form of ÔCDW would need to be chosen to account for, e.g., magnetostriction.
Overall, the tunneling is due to an external electric field in the vicinity of TLL and scales
like:

Vext(x) = teff (x) · F0

ϵ(x) ∼
(
x
∑

ν
2/Kνx

∑
ν

2Kν

)1/Nν

(6.18)

We now move to the interaction between the propagating electron and its "image"-hole
inside the nanotube. This is an interaction with the solitonic wave which tunneling
electron is pushing through the CNT as it moves along the q(t) trajectory along the CNT.
In Chapter 5, Sec. 5.2.3, we calculated, the Green’s function for a single particle as an
example; the characteristic exponent η = A2∑

ν(Kν +1/Kν) (where A2 = (1/
√

2N)2) was
obtained. The probability of electron-hole recombination at (x, t) (after both particles
were created at the same point (0, 0)) in the simplest approximation will be given by a
correlation function of two distinguishable co-propagating particles (one inside and one
on the surface of the nanotube). The entire reasoning follows as before. However, in Eq.
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5.15 we need to take two copies of each bosonic field, ultimately producing A2 = 2/N .
Therefore, the electron-hole recombination, which is an analogue of an image potential
(i.e., the last term in Eq. 6.10) is predicted to have the following scaling:

Vimg(x) ∼ x−22η (6.19)

with the single particle exponent known to be

η = (
∑

ν

Kν + 1/Kν)/2N.

In the language of Fukuyama’s tunneling theory presented in Chapter 3, Sec. 3.4.1, this
term needs to be added because tunneling out of TLL requires re-fermionization to get
back a single electron, while the motion inside TLL is given by collective modes. This
is a correction proportional to

(
u(q)
K(q) − 1

)
, and since the TLL parameter has strong q

dependence in our case, this is like extracting the first moment in terms of bosonic fields,
hence the second cumulant – in terms of fermionic fields. This confirms our physically
motivated idea of the exciton’s propagator, a square of a single fermion propagator.
It is observed that both exponents of power laws in Eq. 6.19 and Eq. 6.18 have the
same absolute value, only with the opposite sign. Hence, our gFN formalism is applied,
provided that the following conjecture is made:

α → 2(
∑

ν

Kν + 1/Kν)/Nν (6.20)

The influence of electron-electron interactions on the tunneling current can thus be ex-
plored. To this end, the recently obtained generalization of Fowler-Nordheim theory will
be applied.

6.4 Results, general case

6.4.1 The current’s α dependence

The total tunneling current, the quantity of interest, is equal to:

J(ω, F ) = T (ω, F )ntube(ω, F ) (6.21)

where the first term comes from our generalized Fowler-Nordheim (gFN) theory derived
in Chapter 4, Eq. 4.11, and the second one is a density of states that is material specific
and for MWCNT has been obtained in the previous chapter. While T (ω) determines the
tunneling probability, the ntube(ω) determines how many carriers there are, actually avail-
able to tunnel e.g. when one goes far above the Fermi energy, the tunneling probability
will approach one (because emitted electrons are above the top of the barrier), but at
the same time, the number of available carriers will go down to zero. This is obvious for
single-particle Fermi-Dirac distribution when ω ≫ T (where there are nearly no carriers
for energy much higher than thermal effects), but as we saw in the previous chapter for
interacting systems: interactions can broaden the distribution but not that substantially.
Before the effects of ntube(ω, F, r) are studied, we present the effect of gFN on T (ω)
specifically including the implications of electron-electron interactions. In Fig. 6.2 the
transmission probability is presented without the effect of the density of states.
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We now wish to investigate the effect of varying TLL parameter on the current. For
simplicity, we take two mode TLL and vary the charge parameter Kρ. It is assumed
that due to spin-rotational invariance Kσ = 1, and a step function is simply considered
for DOS ntube(ω), i.e., Fermi-Dirac distribution at zero temperature in a metal with
constant dispersion. The result is shown in Fig. 6.3. Indeed, it can be seen that the
tunneling probability is an increasing function of frequency ω (energy), but the effects of
interactions are also important. The growth is fastest for noninteracting carriers Kρ = 1,
while the presence of interactions (both repulsive Kρ < 1 and attractive Kρ > 1) smooths
the curve. This is a manifestation of the fact that for any Kρ ̸= 1, single-particle states
fractionalize into collective bosonic states which need to be combined to emit the electron
from the TLL.
Above, a constant density of states along the wire was assumed. If this does not hold, as
we showed in Chapter 5 for MWCNT, the formula for the current needs to be generalized:

J(ω, F ) =
∫
drT (ω, F, r)ntube(ω, F, r) (6.22)

where we included the possibility that the tunneling probability may also depend on the
position, through xin, xout. In Fig. 6.4, we present this dependence on r. We see that
for the lowest energies, ω → 0 and fields F → 0, the probability of emission is strongly
suppressed as we move deeper in between the tubes, i.e., when r is increasing. This is an
intuitive behaviour that we are able to capture. We wish to point out that such spatial
dependence T (ω, F ; r) is an active field of research in CNT, e.g., see Ref. [201].
Finally, at finite temperature:

J(ω, F ; β) =
∫
drT (ω, F, r)ntube(ω, F, r; β) (6.23)

where ntube(ω, F, r; β) ≡ N(ω + µ(F, r), β, r), the quantity evaluated in Chapter 5. The
µ(F, r) dependence is discussed in Sec. 6.6.

Figure 6.2: The transmission probability T (F, ω), shown like in Chapter 4 as a function
of external field F and electrons energy ω. Here, power law parameter α includes the
TLL parameters (Eq. 6.20): Kσ− = 1, Kσ+ = 1.51515, Kρ− = 0.66, Kρ+ = 0.25.
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Figure 6.3: 3D plots of field emission current J(Kρ, ω) as a function of energy ω and
TLL charge interaction parameter Kρ. J(Kρ, ω) is plotted for a given constant value of
external field F = 0.8V/µm keeping Kσ = 1. We took the Fermi-Dirac distribution for
the density of states.

6.5 Results for nanotubes

The results for LDOS of the previous chapter (Sec. 5.4), can be used to obtain electron
emission spectra for arrays of nanotubes. It is known that rolled hexagonal lattice, upon
perpendicular quantization, may become either a metal or a semiconductor. The first
case, realized in approximately one-third of all cases, is described as two-leg-ladder model.
This model can develop mini-gaps in some of its four bosonic modes. The two legs model
description is necessary due to an additional degree of freedom i.e., due to two valleys
K,K ′, that are already present in 2D dispersion of graphene. This is valid and well
established for carbon nanotubes, but not limited to them, since any rolled 2D analogue

Figure 6.4: The transmission probability T (F, ω; r) as a function of electric field F and
energy ω. We show the transmission probabilities for three distances r along the tube:
r = 2, green surface (on the left side), r = 4, red, and r = 8, purple respectively. For
the smallest energies (ω → 0), the transmission probability decreases significantly with
increasing distance r along the tube.

– 112 –



6.5. RESULTS FOR NANOTUBES

based on p-orbitals (silicene, stanene, etc.) will share the same general properties, albeit
with different values of parameters. Usually, nanotubes are grown using CVD on a pre-
arranged catalyst array, and MWNTs are obtained. Although a multi-wall system is
obtained, it can always be assumed that among several (N > 3) layers there will be at
least one metallic.
The two-leg ladder description is obviously much more complicated than the spin-full
chain considered so far, as there are four ρ±, σ± instead of two bosonic modes. However,
an extremely useful aspect of nanotubes dominated by the long-range interaction is that
only the velocity of the charge-full ρ+ mode denoted as the vρ+, is strongly modified,
while for the remaining three modes, the respective velocities stay close to VF . Thanks
to that, our original formulas for space-dependent spectral functions N(ω, r) can still be
applied. However, it is necessary to take into account that now three modes Kν will
contribute to the previous as:

ãs =
K2

σ+ +K−2
σ+ +K2

σ− +K−2
σ− +K2

ρ− +K−2
ρ−

8 (6.24)

The advantage of this situation is that previously setting bs = 0 determined the value
Ks = 1, while what is now expected is that, for the case with long-range interactions,
three neutral modes with nearly equal velocities Vσ+ ≈ Vρ− ≈ Vσ− = VF contribute to bs.
It is noted now that even if we take our specific analytical solution for LDOS, the choice
of TLL parameters for the neutral modes is largely arbitrary, thus also the value of α
in the tunneling function becomes a free parameter. The most likely situation is that of
slow marginal flow towards ultra-low temperature ordering of cosϕσ+ and cosϕρ− terms,
and then K−1

ρ− > 1 will compensate the effect of Kσ+ < 1 and the two, together with
Kσ− ≈ 1, will give at the same time bs = 0 and a non-trivial value for the exponent of
correlation function as as well as the exponent α inside the tunneling barrier expression.

6.5.1 Entirely metallic tube

We begin with the simpler case, when the nanotube is entirely metallic, which can happen
when an achiral, armchair or zig-zag tube is present among MWNT layers. In this case,
all the bosonic modes are massless because high symmetry prevents the emergence of any
symmetry-breaking cosine term (e.g., dimerization), and one can immediately apply the
results of the previous section with the substitutions described above.
The list of all values of Kν parameters used for the calculations is presented in Table 6.1.

Kσ− Kσ+ Kρ− Kρ+

1 1.51 0.66 0.25
1 1.17 0.85 0.25

Table 6.1: Parameters used for the tunneling current’s calculations

Fig. 6.5 shows the tunneling current for entirely metallic nanotubes when F changes from
0.01 to 0.2 V/m. Here, we focus on the small values of F to emphasize the significance
of the Kν parameter values. Indeed, the difference between the various values of Kρ− is
clearly observable, which means that the values of Kρ− are meaningful and measurable
quantities. As shown in the beginning of the previous chapter, Kρ− basically measures
the distortion of the charge distribution along the circumference of the nanotube.
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At higher temperature (β = 50, panel (a)), a double peak structure is observed, both
below and above ω = 0, the second one contains both thermal and interaction effects
that are entangled. The case Kρ− = 1 would correspond to a noninteracting system with
charge evenly distributed on the circumference of the nanotube, the further one is from
this value the stronger are electron-electron interactions. Thus the difference between red
(Kρ− = 0.85, weaker interactions) and green (Kρ− = 0.66, stronger interactions) allows
one to investigate their effect. Therefore, the more Kρ− parameter is different from one,
the larger the current is (the green surface is higher than the red one), at least in the
regime of the smallest F . It is thus seen that interactions do increase the amplitude of
field emission. Sub-figure (b) shows that for this temperature (β = 200), there are no
thermionic effects and the entire emission is driven by the interactions. For the smaller
values of interactions, there is a very tiny emission, and for larger interactions, the two
emission peaks clearly appear.
Fig. 6.6 and Fig. 6.8 illustrate the characteristics of the tunneling current for entirely
metallic nanotubes, each described by specific parameters. The metallic nanotubes ex-
hibit massless bosonic modes due to their high symmetry that protects against backscat-
tering, resulting in unique electron emission properties. Both figures comprise two subfig-
ures, (a) and (b), corresponding to different values of temperature. Sub-figure (a) shows
the tunneling current as a function of energy and electric field when the temperature is
higher β = 50, while sub-figure (b) displays the same for lower temperature β = 200.
In these figures, it is observed that tunneling current increases for negative ω (when
ω changes from -1 to close to 0), the same behaviour is visible in Fig. 6.3 (for the
transmission amplitude) and in TLL’s LDOS for larger values of x. Hence, the peak-like
structure for the negative ω appears as a product of both. Next, there is a deep at ω = 0
point corresponding to the same feature of the deep visible in TLL’s LDOS in Fig. 5.6.
Similar to Fig. 5.6, the deep is sharper for lower temperatures. When ω > 0, there is a
double peak structure, a massive peak and a smaller shoulder. The shoulder structure

(a) (b)
Figure 6.5: The tunneling current J(ω, F ), plotted as a function of external electric
field F and energy ω, measured with respect to Fermi level. The plots are for entirely
metallic nanotubes described by the following parameters: (a)β = 50, (b) β = 200;
Green: Kσ− = 1, Kσ+ = 1.51, Kρ− = 0.66, Kρ+ = K∗; Red: Kσ− = 1, Kσ+ = 1.17,
Kρ− = 0.85, Kρ+ = 0.25. Here, the focus is on the lowest values of external electric fields.
β = 1/T is inverse temperature with a unit set by the fact that the unit of energy was
given by vF = 1.
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(a) (b)
Figure 6.6: The tunneling current J(ω, F ), plotted as a function of external electric
field F and energy ω, measured with respect to the Fermi level. The plots are for entirely
metallic nanotubes, described by the following parameters: Kσ− = 1, Kσ+ = 1.51,
Kρ− = 0.66, Kρ+ = K∗; when (a) β = 50, (b) β = 200. Here and in all plots below,
vs = 1 [in VF units] and vc = 4 (with one exception of Fig. 6.7). The colour coding
follows the J value on the vertical axis.

(a) (b)
Figure 6.7: The tunneling current J(ω, F ), plotted as a function of external electric
field F and energy ω, measured with respect to the Fermi level. The plots are for entirely
metallic nanotubes, described by the following parameters: Kσ− = 1, Kσ+ = 1.51,
Kρ− = 0.66, Kρ+ = K∗ and vc=1.5; when (a) β = 50, (b) β = 200. This is the only plot
in this chapter when vc ̸= 4.

is more visible when interactions are stronger (Kρ− = 0.66) and it is smoother when
interactions are weaker (Kρ− = 0.85).
Galilean invariance implies that vνKν = VF = cste. Thus, in all of the plots in this
chapter, we use vc = 4, so that Galilean invariance will be obeyed by the charge-carrying
particles for which we always set Kρ+ = K∗ ≈ 0.25. The only plot with a different
value of charge velocity is Fig. 6.7. We can investigate the effects of modified velocity
by comparing Fig. 6.7 and Fig. 6.6 (all other parameters are kept the same for clarity).
We observe that in comparison with Fig. 6.6, in Fig. 6.7, we see a much closer peak
with approximately equal amplitude to the first, rather than a separate small peak. The
fact that the secondary peak (sometimes visible only as the "shoulder") is much bigger
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(a) (b)
Figure 6.8: The tunneling current J(ω, F ) for entirely metallic nanotubes described by
the following parameters: Kσ− = 1, Kσ+ = 1.17, Kρ− = 0.85, Kρ+ = K∗ = 0.25; when
(a) β = 50, (b) β = 200.

when the velocities of all modes are closer can be interpreted in the following way: from
energy-momentum conservation, we deduce that in the standard case, when vc = 4vs,
we need four neutral particles combined to reach the energy shell of holons. These
are very rare events. On the other hand, when vc is close to vs, such events are more
frequent, and various bosons can easily transfer energy-momentum among themselves.
Their probabilities should then be nearly equal. Finally, we notice that the overall current
is noticeably larger when velocities are closer to each other. This is due to the fact that
the full fermion is much easier to reconstruct back from a system of bosons moving with
similar velocities.
When the temperature is higher, the ω > 0 structure has a larger amplitude, which is
in agreement with an expectation for thermionic emission. Furthermore, all figures show
that as the external electric field F increases, the overall peaks’ height and area grow
larger. Initially, for lower fields, the height grows fast, but later saturation is observed,
especially for the thermionic peak (ω > 0). For larger fields, an increased range of
contributing ω and the shoulder feature are also observed indicating that we are beyond
the single particle regime.

6.5.2 The case of gapped neutral modes

More complicated, but more likely is the situation when the nanotube has lower sym-
metry, specifically when it is chiral, as therefore mini-gaps can open in certain bosonic
modes. These classes of nanotubes were introduced in Chapter 1. Indeed, while the
achiral tubes are very special, the chiral metallic tubes are rather common: 1/3 of all
nanotubes belong to this class. Their characteristic feature is that they are not protected
by symmetry, thus curvature effects will perturb them. While applying the TLL ideas
in large gap semiconductors is problematic, in narrow gap semiconductors, it is possible.
Moreover, large-gap semiconductors, contrary to narrow-gap superconductors, will give
negligible contribution to the low energy field emission, a subject of this thesis.
There have been several works dedicated to the problem how to incorporate curvature
terms within the TLL theory. The general consensus [202], [203], [204], [205] is that they
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Figure 6.9: The illustration of band structures in metallic and semiconducting regimes
at K and K ′ points: the diagrams above demonstrate the metallic behaviour where the
conduction and valence bands meet at the Fermi level without a gap, the diagrams below
depict the semiconducting behaviour with an existing gap ∆ between the conduction and
valence bands.

will give rise to so-called dimerization terms. These can be further re-written [56] as a
sum of double products of cosines:

Hcurv = ∆
∑

ν,ν′

∫
dx cos 2ϕν(x, t) cos 2ϕν′(x, t)

 (6.25)

where the summation ν, ν ′ runs only along neutral modes because the charged ρ+ mode
has a much larger velocity and has been averaged out in anti-adiabatic limit. The am-
plitude ∆ is a sum of spin-orbit and curvature effects (Fig. 6.9):

∆ = ∆curv + ∆so (6.26)

and it is assumed that the ∆ is uniform along the tube (generalization to non-uniform
∆(x) can be accommodated in our formalism where analytic expression for the space-
dependent LDOS has been found).
This curvature-induced perturbation has to be taken into account with local correlations
on-site gU , which are of the same order of magnitude [151] although less relevant. Past
research on the so-called two-leg ladder models [96] indicates that equal size gaps in ϕσ+
and ϕρ− modes are the most likely outcome. Overall, this suggests that in the minimal
model at least the following perturbation to the TLL Hamiltonian needs to be added:

Hcos = ∆tot

∫
dx cos(2ϕρ−) cos(2ϕσ+) (6.27)

where ∆tot = ∆ + gU . This results, in the lowest energies, in two bosonic fields locking
at the minimum of the cosine. The gaps of the two modes are equal and entangled by
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Figure 6.10: Zigzag-like nanotubes: Dirac points collapse to the origin of the longitu-
dinal Brillouin zone, resulting in metallic behaviour and armchair-like nanotubes: Dirac
points are well separated in longitudinal momentum space, giving rise to metallic be-
haviour.

construction. There are also other cosine terms in a two-leg ladder description, but they
contain an equal number of canonically conjugated cosϕσ− and cos θσ− terms, which
implies that an ultra small gap is present only through re-fermionization of this field. It
is also assumed that the tube is not commensurate; hence umklapp terms, involving a
cos(ϕρ+) term, are not present.
The remarkable point is that for the many-body problem, when the single-particle elec-
tron emission gap is ∆ = ∆σ+ +∆ρ−, the two-particle probes such as charge susceptibility
or electron-hole spectral function, detect a gap of two times larger size ∆2p = 2∆. This
implies that for energies ∆ < ω < 2∆, we shall have an intermediate regime where the
modes σ+ and ρ− do not contribute to characteristic exponents, and certainly, do not
contribute to characteristic exponent α.
In the mini-gap situation ρ− and σ+ modes become gapped and one ought to skip Kρ−
and Kσ+, parameters resulting in a condition Ks = Kσ−.
More information about this regime can be gathered from several studies, for instance,
by Essler and Tsvelik [206], [207], where they have computed spectral function for the
sine-Gordon model. They showed that indeed while the spectral function has a gap ∆
below which any tunneling is impossible, the characteristic double dispersion (spinon
and holon) of TLL is recovered only for energies above 2∆. In the intermediate regime,
the dispersion characteristic of the gapped state is observed 1. From this, the following
ansatz is deduced: in the intermediate regime, we shall also take the as exponent inside
NT LL(ω, r) independent of bosonic modes σ+ and ρ−. Additionally, we assume that
dielectric properties along the tube are modulated with periodicity q0 which means that
a simple integral for the current J(ω) is now becoming a Fourier transform:

J(ω, F ;T ) =
∫
dr cos(q0r)NT LL(ω, r)T (ω, F ) (6.28)

where q0 is the distance between Fermi points, i.e., the distance between the two K,K ′

1Mathematically, this is related to the fact that the energy and momentum are given by cosh and
sinh functions of rapidity q, and we recover simple linear relation of TLL only when q > 2, specifically
when tanh q → 1.
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valleys, measured along nanotube axis. In the following, two cases will be considered:
q0 = 0 for zigzag, and q0 ̸= 0 for armchair.
The intermediate regime postulated here can be noticed in a two-stage activation be-
haviour of J(ω, F ;T ), as revealed in the plots below. Depending on the details of the
perpendicular quantization condition, two types of chiral tubes can be distinguished [208]:
zig-zag-like and armchair-like, see Fig. 6.10.

6.5.3 Zig-zag-like nanotubes

In this case, q0 = 0 and Eq. 6.28 reduces to the previously used formula, but with a
different N(ω): N(|ω|< ω0) = 0 and N(ω0 < |ω|< 2ω0) = N2T LL(ω), where N2T LL(ω)
is the LDOS for TLL with only two free modes (and the α exponent in T (ω) modified
accordingly). Fig. 6.11 and Fig. 6.12 present the tunneling current behaviour in zig-zag-
like nanotubes with different interaction parameters. The left and right panels in both
figures show the tunneling current at different temperatures (a) β = 50, and (b) β = 200.
Here, ω0 = 0.1 is chosen. As shown in the figures, when |ω|< 0.1, the tunneling current
is equal to 0, and there is no emission due to the presence of mini-gaps in some bosonic
modes. And when 0.2 > |ω|> 0.1, there is anomalous tunneling. When |ω|> 0.2, the
behaviour of tunneling current is similar to the previous case (Fig. 6.6 and Fig. 6.8).

(a) (b)
Figure 6.11: The tunneling current for Zig-zag-like nanotubes, described by the follow-
ing parameters: Kσ− = 1, Kσ+ = 1.51515, Kρ− = 0.66, Kρ+ = K∗ = 0.25, ω0 = 0.1;
when (a) β = 50, (b) β = 200.

In comparison with Fig. 6.6 and Fig. 6.11, differences are obvious in the new intermediate
regime. The emission peak for ω < 0 now has a larger amplitude; a discontinuity is
actually observed at ω = −2ω0, which is due to the fact that N(ω) has been defined in
an unphysical, piecewise manner.
In reality, some crossover between two- and four- modes TLLs is expected (the study
of the right crossover function is postponed to later research). The larger amplitude of
emission is probably due to the fact that two bosonic modes are not mobile, hence they
do not need to be captured when a single fermion is re-constituted. The emission peak
for ω > 0 grows faster as a function of F and reaches saturation at smaller values of
F . For the largest ω, the shoulder peak is even better expressed, especially at lower
temperatures and stronger interactions, shown in Fig. 6.6 (b).
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(a) (b)
Figure 6.12: The tunneling current for Zig-zag-like nanotubes, described by the follow-
ing parameters: Kσ− = 1, Kσ+ = 1.17, Kρ− = 0.85, Kρ+ = K∗ = 0.25, ω0 = 0.1; when
(a) β = 50, (b) β = 200.

6.5.4 Armchair-like nanotubes

In this case, q0 ̸= 0 (actually q0 can be as large as a third of BZ), and Eq. 6.28 takes a
more complicated form of Fourier-transform. Hence, the fact that we know the LDOS
distribution along the tube NT LL(ω, r), plays a vital role.

(a) (b)
Figure 6.13: The tunneling current for armchair-like nanotubes, described by the fol-
lowing parameters: Kσ− = 1, Kσ+ = 1.51, Kρ− = 0.66, Kρ+ = K∗ = 0.25, ω0 = 0.1;
when (a) β = 50, (b) β = 200.

Fig. 6.13 and Fig. 6.14 present the behaviour of the tunneling current in armchair-like
nanotubes, exhibiting mini-gaps in bosonic modes, each described by specific parameters.
The system is described within the framework of a TLL model. For illustration purposes,
q0 is set to 1/(3a). As seen in the figures, when ω changes from −1 to −0.2, the current
gradually increases; then at ω = −0.2, there is a sharp decrease (a discontinuity, like
before), and the current stays the same, constant up to the point when ω = −0.1. In the
region of ω changing from −0.1 to 0.1, the current is forced to be zero. At ω = 0.1, there
is a sharp increase and in the region of 0.1 to 0.2, the current decreases. When ω > 0.2,
the current behaves as in the previous case (Fig. 6.11 and Fig. 6.12). Comparing these
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(a) (b)
Figure 6.14: The tunneling current for armchair-like nanotubes, described by the fol-
lowing parameters: Kσ− = 1, Kσ+ = 1.17, Kρ− = 0.85,Kρ+ = K∗ = 0.25, ω0 = 0.1; when
(a) β = 50, (b) β = 200.

results with those for zig-zag-like tubes, namely Fig. 6.11, Fig. 6.12 and Fig. 6.13, Fig.
6.14, it can now be observed that in the periodically modulated case, the increase of J(F )
is actually delayed. For stronger interactions, intense growth occurs only for the largest
electric fields F without any observed saturation. The amplitudes of all current peaks
are smaller, as clearly revealed by the discontinuity at ω = −0.2. The presence of spatial
modulation of the nanotube properties should be thus visible in this non-trivial way in
the (ω, F ) characteristics of the material.

6.6 Chemical potential variation

The case of a 3D metal is relatively simple: external electric field cannot penetrate
it, screening is perfect, and chemical potential inside the material is constant. On the
contrary, 1D metals can screen the external electric field only partially; hence, a finite
slope of chemical potential can be expected when the nanotube is subjected to a strong
external electric field, the µ(r, F ) dependence. The problem of a chemical potential µ in
a TLL under external bias has been solved in [177] and we shall use this solution here.
Given that Kρ+ ≈ 1/4 in our case, the TLL in the vicinity of Mott transition is being
dealt with. This means that the term in Eq. 5.8 is close to being relevant. In fact, some
past works [209] indicated that at the lowest energies, MWCNT can undergo partial
localization, leading to the fragmentation of conducting liquid. We then extend the
single impurity treatment used in Ref. [177] by considering the continuous distribution
of unitary scattering centers λB ≈ 1, where λB is the amplitude of local back-scattering
in the notation of that paper. We aim to know the voltage drop Ux in such an effective
medium that mimics MWCNT.
The exact analytical solution, that connects the externally applied field F with the grad-
ual voltage drop inside 1D system Ux has been obtained therein[177]. More precisely
we use a derivative of their solution since we work in the continuous scatters limit. The
self-consistent relation reads:

Ux = Im
[
ψ
[
0.5 + 0.5 + ı(2Ux − 1.5F )

2πT

]]
(6.29)
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where ψ(...) is the digamma function. We solve this equation numerically to obtain the
relation Ux(F ). The four-voltage potential derivative Ux was associated with chemical
potential gradient and an external bias with external electric field F to which the nan-
otube is subjected. A solution of this equation Ux is the desired slope of electro-chemical
potential, a quantity that is included inside our formulas. Namely we take µ(r) = rUx

with a boundary condition that µ(r = L) = EF i.e. deep at the bottom of the nanotube
chemical potential is equal to MWCNT Fermi energy.

6.7 Dependence on work-function

Our formalism also enables us to directly modify the work function of the material under
consideration. The work function is a key component in the analysis of the electronic
properties of materials [210]. It characterizes the material which is observable in the
effects it has. In composite materials, such as those presented in Chapter 4, Sec. 4.4.3,
the work function can be tuned in a certain range of parameters. It is a characteristic
property of the material, and if a different material is taken, our formalism entirely
captures all that by adjusting the unit of energy, indicated as ω0. Basically, our formalism
is applicable to different values of work function. The ability to adjust the work function
allows for enhanced control over the electronic behavior of the material. This additional
feature is inspected here. Physically, this corresponds to changing the material.

(a) (b) (c)

Figure 6.15: The tunneling current for nanotubes, described by the following parame-
ters: Kσ− = 1, Kσ+ = 1.51, Kρ− = 0.66, Kρ+ = K∗ = 0.25, β = 50, when (a) ω0 = 1,
(b) ω0 = 2, and (c) ω0 = 3.

Fig. 6.15 and Fig. 6.16 present the tunneling current for different work functions, when
β = 50 and β = 200 accordingly. As shown in the figures, in the case of higher work
function, the tunneling current is smaller, as the barrier that the election has to overcome
to exit, is becoming much larger. It should be noted that panel (a) in both figures (Fig.
6.15 and Fig. 6.16) is the same as (a) and (b) in Fig. 6.6.
One can also imagine the situation when we dope additives on the surface of MWCNT.
Such chemical modification of the surface is a frequently used method of nano-engineering.
Since we have computed the space-dependent ntube, it should be rather straightforward
for us to incorporate also the space-dependent ω0(x) inside T (ω, F, x) in Eq.6.22 if a
specific experimental device requires that. The study of a surface with different ω0(x)
has been performed in the second half of Chapter 4, thus we are able to predict the effects
that are expected to be seen for such a composite system.
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(a) (b) (c)

Figure 6.16: The tunneling current for nanotubes, described by the following parame-
ters: Kσ− = 1, Kσ+ = 1.51, Kρ− = 0.66, Kρ+ = K∗ = 0.25, β = 200, when (a) ω0 = 1,
(b) ω0 = 2, and (c) ω0 = 3.

6.8 Discussion and Conclusions

The main outcome of this work is to show that the effects of emission due to temper-
ature and electron-electron interactions can be simultaneously and non-perturbatively
accounted for in a closed analytic formula. It is observed that both lead to potentially
observable effects. In our work, setting the bandwidth as a unit of energy, the results
are easily transferable from one material to another, for instance, from carbon to silicon-
based nanotubes. An open issue is the role of many-body interactions when the emission
takes place from the tip of the nanotube. There were studies showing an emergence of
additional purely many-body peaks on the tip [211], showing that the standard single-
particle approach may be insufficient here as well. This will obviously depend on the
microscopic structure of the tip in a given system, and an in-depth study of this effect
is left for the future. Our considerations of exact quantum mechanical solutions at the
end of Chapter 4 showed that these effects can be potentially linked with our formal-
ism. One further example of such a many-body resonant peak is what was discovered in
Hund metal case. Therefore, to compute the emission current in Hund’s case, it would
be necessary to capture this effect.
Taking into account the geometrical smallness of the tip, Coulomb-blockade effects should
be always present. This will generally decrease the current from the tip, thus increasing
the importance of the side-surface (background) current studied here.
Another open issue is the experimental relevance of the observed phenomena. Naturally,
the temperature and the external field are parameters that can be varied in an experi-
ment; our formula offers a possibility to fit these characteristics. Importantly, the TLL
parameters can also be modified experimentally. For instance, the ways in which Kσ+
can be affected by an external magnetic field have been studied in detail in the work of
Egger et al [212]. This parameter will also be modified for nanotubes made from heavier
elements with stronger spin-orbit coupling. On the other hand, the Kρ− parameter is
usually linked to the strength of the effective on-site Hubbard parameter and on the
strength of inter-valley hybridization. Both of them are largely unknown and can also
lead to a mini-gap in the spectrum, the effects of which have been investigated in the later
part of this study. However, our connection of the Kρ− parameter value with the charge
inhomogeneities on the circumference indicates that this quantity should be susceptible
to tension and chemical modifications of MWCNTs. Hence, this may also allow for a
control of this parameter.
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This last remark, regarding unknown parameters in effective low-energy physics of multi-
wall nanotubes, brings up another relevant aspect of our work. In our plots, qualitative
differences between various types of nanotubes are clearly evident. These differences can
even be quantified if the TLL parameters are sought after. This implies that our results
could serve as a tool to diagnose arrays of MWNT, in order to determine, through low
energy field emission, the fraction of nanotubes representing certain properties, and also
to specify whether the fabrication method has any influence on that. Although more
crude, this may be a fast and efficient alternative for Raman spectroscopy methods [213]
that are used now for this daunting task of distinguishing the chirality of nanotubes. It
is worth emphasizing that the field mission can also be used with microscopically small
electrodes. Therefore, it should be possible to obtain valuable space-resolved information
about the many-body effects in arrays of nanotubes.
Moreover, while discussing experimental techniques, it is essential to differentiate between
ARPES [214] and the FE method (which is the focus of our study). In FE, the focus
is on varying the amplitude of the external electric field, adjusting frequency through
photon-assisted FE, or regulating back-gate potential. In ARPES, which has also been
done in CNTs [73], it is necessary to resolve problems of light wave interference and light
polarization (that determine dipole moments of the transition), i.e., everything under
the assumption that the amplitude of the dynamic external field is weak (within a linear
response regime). Though the two techniques differ in their foundational principles, they
complement each other, as seen in the emergent research on photon-assisted FE [215].
Our study will also have implications for the modelling of nanotube arrays. Although
our focus is on one specific range of parameters, where our analytic formula works, the
advantage of our result is that it is an exact method, with no approximation involved.
Thus, it can serve as a benchmark for numerical calculations. The fact that it is analytic
means that the formula may be easily transferred from one material to the other simply
by modifying parameters. It can also be applied for processes other than FE, where
electron tunneling in a large side-surface of nanotube arrays plays a vital role, for instance,
in chemical and materials engineering processes geared towards catalysis or hydrogen
storage.
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Chapter 7

Nanotubes’ Array: role of geometry

7.1 Introduction

The focus of the previous chapter was the regime of small external electric fields. It is
there where the correlation phenomena are most pronounced. However, one can also
inquire what the role of the geometry of the nanotube array is. The parameters that
can be varied are the distances between the nanotubes, the radii of the nanotubes and
the height of the nanotubes. They will have the biggest influence in the regime of the
high external electric field. In that case, the bottleneck determining the transport, the
field emission, is set by the solution of the electrostatic Poisson equation. The geometry
defines the boundary condition for Poisson equation, playing a crucial role [137]. This
chapter is dedicated to studying these geometrical effects.

7.2 Electron Emission Theory for Nanotube Array

So far detailed analytical and numerical solutions have been given for the case of the
tip of a single nanotube only [10], [216]. Here we fill this gap in our knowledge of real
enginnering devices and give a detailed analysis of how the geometrical arrangement of
an entire array of nanorods influences the resulting emission current. Our formalism
is general, however, for specificity, triangular and square arrangements of the tubes are
considered below.

7.2.1 Formalism

In this part of the work, a relatively simple modelling of electrostatic potential around
an array of nanorods is employed. We would like to fit the electrostatic potential as a
power law with an arbitrary exponent. Then, one would be able to straightforwardly
consider electron-electron correlations as well, and this formalism can be incorporated
into the recently developed generalization of Fowler-Nordheim formalism (Chapter 4).
As a result, a closed analytic formula is obtained, allowing for a rather straightforward
inspection of how the geometry of an array influences the field emission current.
To compute the field emission current density j(E) we use the recently developed (Chap-
ter 4) generalization of Fowler-Nordheim formalism, which accounts for a tunneling bar-
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rier described by an arbitrary power law. In this case, the formula for J(E) is the Eq.
3.21.
To implement it, an expression for the electric field potential outside the emitting rod is
required, which is assumed to be in the same form as before, i.e. given by the following
expression:

V (x) = h− eFd0x
α − e2

16πϵ0d0xα
(7.1)

where, once again, we introduced a characteristic length d0 that scales the distance. Here,
it is a free parameter that one aims to fix from the electrostatic solutions. On the other
hand, for a single nanotube, one can use a known formula (from the textbook [217]),
which is a formula for elongated spheroid and provides the electric potential around
the spheroids. This will be used as a starting point, and then a combination of these
formulas will be implemented for various distributions for spheroids [218]. The single
spheroid potential reads:

fϕU( x, y, z) = 1
2 ln (2H/R) · ln

√
ξ +H2 +

√
H2 −R2

√
ξ +H2 −

√
H2 −R2

(7.2)

where

ξ = −p+
√
p2 − q; (7.3)

p = H2 +R2 − (x2 + y2 + z2)
2 (7.4)

q = H2R2 −H2
(
x2 + z2

)
−R2y2; (7.5)

Eq. 7.5 presents the potential for a single spheroid, and now the potential for a few
spheroids is being calculated, it is necessary to take the superposition of this potential
with appropriately shifted reference points where the xi, yi, and zi are the centres of the
spheroids we have.

V =
[

N∑
i=1

V (x− xi, y − yi, z − zi)
]

(7.6)

where N is the number of rods taken to evaluate the potential. First, a point in the x−z
plane is chosen where the potential should be calculated. For example, in the case of an
equilateral triangle, the point is at the center of the triangle O. The potential is then
calculated along the height of the rod for various yi, e.g., at half-height and full height.
It is assumed that the rods form a potential well, from which the electron can escape.
Then the axial value of the potential is plotted in log scale as a function of the log of the
perpendicular distance. For a given value of an external potential, it is observed that the
electron will leave the well at a certain yexit point. Assuming that the external potential
is given in the form of a power law, as shown in Eq. 7.7, the log of the potential will give
us the slope or the alpha power coefficient for each value of y (Eq. 7.8):

V = yα (7.7)

log V = α log y (7.8)
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The average value of the power law coefficient is then calculated, as the electron crosses
the barrier, up to the exit point. As the barrier becomes longer, and the exit point further
away, the effective exponent will differ as the shape of the barrier will changes.

7.2.2 Results

Nanotubes are placed in the corners of the equilateral triangle and in the corners of the
square (the side of the triangle and the side of the square are equal to d0, see Fig. 7.1).

(a) (b)
Figure 7.1: Equilateral triangular array and square array (the rods are in the
angles of the triangle and square respectively), the calculations are done at the
points A(d0/2, d0

√
3/2) and O(d0/2, d0

√
3/6) for triangle and at the points B(d0, d0),

M(d0/2, d0/2) for square. The side of the triangle and the side of the square are equal
to d0.

The calculations have been made for various geometrical arrangements (Table 7.1). Next,
the dependence on the geometry has been discussed, as well as the distinctive effects when
the rods are made thicker or thinner, longer or shorter.

Distances between
the rods d0 (µm) Radius R (nm) Height H (µm)

100 25 1
200 25 1
1 25 1

100 25 2
100 12.5 1

Table 7.1: Geometrical parameters of nanotube arrays, detailing the distances between
the rods, their radii, and heights

We begin by showing values of the potential on the (x, z) surface to show that it correctly
mimics the chosen positions of the rods (Fig. 7.2). These plots serve as a cross-check to
verify the consistency of the calculated electric potential with the physical arrangement of
the charged rods. They confirm that the potential is well-defined and accurately reflects
the expected influence of the rods’ positions and geometries.
Emission currents at various characteristic points can now be studied. In the first step, the
result of Eq. 7.1 is calculated along the axis of nanotubes; hence, the axis is perpendicular
to the surface, and approximated by a power law with a varying exponent.
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(a) (b)

Figure 7.2: The electric potential (a) at the centre of the triangle O in H/2 height of
rod, (b) at the centre of the square M in H height of the rod.

In the following figures (Fig. 7.3 - 7.8), the transmission, as calculated above, has been
multiplied by the Lorentzian peak for the high-energy single-particle density of states.
This approximation should hold for the strongest electric fields when electrons are instan-

(a) (b)

(c) (d)
Figure 7.3: The electric current comparison depending on the distances between the
rods in the (a) centre of the triangle O; (b) angle of the triangle A; (c) centre of the square
M (d) angle of the square B; accordingly Green: H = 1µm, R = 25nm, d0=100µm,
Pink: H = 1µm, R = 25nm, d0=200µm.
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(a) (b)

(c) (d)
Figure 7.4: The comparison of the electric current in terms of long (d0=100µm, green)
and short (d0=1µm, blue) distances between the rods in the (a) centre of triangle O,
(b) angle of triangle A, (c) centre of square M , (d) angle of square B; when R = 25nm
and H = 1µm.

taneously pulled away from the nanotube. What is observed is the dip in the Lorentzian,
corresponding to the ZBA detected in the previous chapter. Here it is noted how the
ZBA gradually disappears for the largest applied fields F .
Fig. 7.3 and Fig. 7.4 present the electric current comparison depending on the distances
between the rods. All comparisons are made with the case when the height of rods
is H = 1µm, the radius of rods is R = 25nm, and the distance between the rods is
d0 = 100µm.
Fig. 7.5 presents the electric current comparison depending on the height of rods in the
(a) centre of the triangle O; (b) angle of the triangle A; (c) centre of the square M ; (d)
angle of the square B. Fig. 7.7 presents the electric current comparison depending on
the radius of rods in the (a) centre of the triangle O; (b) angle of the triangle A; (c)
centre of the square M ; (d) angle of the square B.
As shown in the figures, variations in the radius size and the height of the rods appear
to have a negligible impact on the results. This is evident from the similarity of the
response surfaces across different values of rod radius and height. However, the distance
between the rods significantly affects the outcomes. The response surfaces vary when
the inter-rod distance changes, indicating that this parameter is a critical factor in the
electric current comparison.
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(a) (b)

(c) (d)
Figure 7.5: The electric current comparison depending on the height of rods in the
(a) centre of triangle O; (b) angle of triangle A; (c) centre of square M ; (d) angle of
square B; accordingly Green: H=1µm, R = 25nm, d0 = 100µm, Yellow: H=2µm,
R = 25nm, d0 = 100µm.

(a) (b)
Figure 7.6: The electric current comparison in the centre of triangle O (Orange) and
in the angle of triangle A (Blue), when (a) H = 1µm, R = 25nm, d0=100µm, (b)
H = 1µm, R = 25nm, d0 = 1µm.
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(a) (b)

(c) (d)
Figure 7.7: The electric current comparison depending on the radius of rods in the
(a) centre of triangle O; (b) angle of triangle A; (c) centre of square M ; (d) angle of
square B; accordingly Green: H = 1µm, R=25nm, d0 = 100µm, Magenta: H = 1µm,
R=12.5nm, d0 = 100µm.

(a) (b)
Figure 7.8: The electric current comparison in the centre of square M (Pink) and in
angle of square B (Green); when (a) H = 1µm, R = 25nm, d0=100µm, (b) H = 1µm,
R = 25nm, d0=1µm.
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In Fig. 7.6, the electric current measurement point is set in the centre of triangle O and in
the angle of triangle A, and in Fig. 7.8, it is in the centre of square M and in the angle of
square B, at different rod parameter configurations on different points. As observed from
the figures, the geometrical point of calculation is essential when the distances between
the rods are large, while in the case of small distances, it becomes negligible.

7.3 Partial Conclusion

This chapter provides an analysis of the influence of nanowire geometry on electric field
emission. It is established that the distance between nanorods is a main factor affecting
the emission current, with significant changes observed in response to changes in this
parameter. Conversely, changes in the height and radius of the nanorods have little
effect on the emission current. Based on gFN formalism, it serves as a fundamental tool
to forecast and adjust the electron emission properties of nanomaterials according to
their geometrical configurations.

Future perspectives: Based on the findings discussed in this chapter, future research
should focus on direct experimental validation and comparison of these calculations. Ex-
perimental setups could be designed to specifically manipulate the geometrical parameters
of nanorod arrays, such as distances between rods, their heights, and radii, to directly
observe their influence on electron emission. These parameters can be adjusted by the
CVD method: varying the geometry of the catalyst mask, the time of growth, and the
size of the catalyst, respectively. This approach would not only validate the theoretical
models but also provide practical insights into optimizing nanodevice designs for spe-
cific applications in field emission technologies. Additionally, exploring the interaction
of these geometric factors with different materials and surface coatings can enhance the
efficiency and stability of electron emission, allowing for new applications in electronic
devices.
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Chapter 8

Conclusion and Outlook

There are two possible outcomes: if the result
confirms the hypothesis, then you’ve made a
measurement. If the result is contrary to the
hypothesis, then you’ve made a discovery.

Enrico Fermi

This thesis has been presented in the research field of quantum tunneling and electron
interactions in nanostructures, particularly focusing on the analytic modelling of tun-
neling phenomena and the effects of temperature and electron-electron interactions in
nanotubes.
The original research outputs obtained in the thesis are:

1. in Chapter 4, formula for field emission with arbitrary exponent of tunneling po-
tential [105], in particular

a) The canonical Fowler–Nordheim theory is extended by computing the zero-
temperature transmission probability for the more general case of a barrier
described by a fractional power law. The theory captures the screening of
external field interaction with the image potential.

b) An exact analytical formula is derived, expressed in terms of Gauss hyperge-
ometric functions. The new formulation is compared with the most advanced
existing formulation of Fowler-Nordheim theory by then, expressed in terms
of elliptic integrals.

c) The transmission probability from the composite surfaces is presented, and its
dependence on the power law exponent is analyzed.

d) The formalism is also bench-marked against a numerical scattering matrix
method. Our analytical formula provides the same accuracy with negligible
computational cost.

2. in Chapter 5, we study space-dependent properties of 1D collective liquid (known as
Tomonaga-Luttinger liquid, TLL) that exists inside carbon nanotube, in particular

a) The analytic expression for Fourier transform of LDOS was obtained and anal-
ysed for both Coulomb metal and Hund metal.

b) The spectral function analysis approach was extended to explore two-body
correlations, focusing on charge susceptibility. 4kF susceptibility is shown to
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be a combination of two susceptibilities 2kF , with distinct behaviors in bulk
and at boundaries (the 4kF susceptibility, dependent on the cos(4ϕρ) operator
and not influenced by the spin sector, is found to be the same both for Coulomb
and Hund metal).

3. in Chapter 6, the current is computed by connecting TLL framework (where mate-
rial dependence comes from the parameters Kν) with the above-mentioned results
of Chap.4, namely:

a) The analytical results from Chapters 4 and 5 are used to calculate the field
emission current for various nanotubes.

b) The importance of electron-electron interaction and temperature effects on the
tunneling current is demonstrated. It is shown that electron-electron interac-
tions have a significant impact on the emission and can be used to distinguish
types of nanotubes.

c) A widely applicable model has been developed incorporating tunable material-
specific parameters that can be applied to various nanostructures by changing
parameters such as electron velocity and UV cut-off.

4. in Chapter 7 we study effects of an electrostatic potential derived from a geometry
of the nanotubes’ array

a) An in-depth analysis is provided on how the geometry of nanowires affects
electric field emission.

b) It establishes that the distance between nanorods is a critical factor that sig-
nificantly influences the emission current.

Achieving these outputs allows for the feasibility of such formalism, in terms of analytic
solution, for the field emission from MWCNT. The formalism incorporates both the effects
of arbitrary temperature and of strong correlations within 1D system. Thus, the initial
hypothesis, suggesting that such formalism is possible, has been assessed positively.
The significant impact of electron interactions across both small and large external fields
has been captured. Specifically, conditions for the monochromaticity of the outgoing
electron beam, a crucial aspect for applications, were determined: improving electrons’
beam monochromaticity will expand the accuracy of future SEM and TEM devices where
beam coherence and uniformity are of primary importance.
The results derived here are applicable to a wide range of materials: it is sufficient to
change the value of material-specific parameters – velocity and UV-cut-off – to move from
carbon nanotubes to nanotubes based on different elements, or potentially to columnar
materials, as well. In this latter case, for a denser system, the emitted current may need
to be convoluted with some characteristic penetration depth.
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Limits of validity of the approach
Like any theoretical formalism, our approach also has its limits of validity. The most
important one is that we rely on TLL description of 1D carriers. On the lowest energy
side, it was demonstrated how to go beyond that and accommodate the effects of minigaps
in the spectrum. On the higher energy side, the problem is more profound due to the
entry of band curvature effects. It is known that in this case, some spectral weights will
be shifted into the area between holon and spinon dispersions. However, the majority
of LDOS remains in the holon and spinon poles, implying that our approach serves as a
good first-order approximation.
Actually, the most pertinent problem is not necessarily the one with spinon dispersion
curvature, as this can be taken into account in the lowest-order approximation through
substitution vσ → vσ(q). In fact, we studied the effect of changing boson velocity, as
shown in Fig. 6.7, so we can even make predictions how such effect will manifest. The
issue is with other higher-energy bands that may be activated at very large values of ω
and F . The fact that TLL is valid only within a finite frequency window is accounted
by UV cut-off (or by introducing incomplete Beta functions like in Ref. [219]). There
is, however, an issue of LDOS from these other bands. To be precise, the TLL states
will extend to these higher energies, but will be convoluted with the response of other
carriers. The most sensible approach would be to take some form of a polaronic picture,
where single particle LDOS of the other carriers will be dressed through the Land-Frisov
transformation, with 1D bosons – both spinons and holons. Thus, the formalism derived
here will nevertheless play a role. Obviously, this is a material-specific problem, since
in each material, even in each device realization, the other band carriers will enter at
different energies.

Future perspectives of this work
At the end of each chapter, we have indicated possible extensions of our formalism, namely
how to incorporate resonant states, chemical modification of the surface, or varying ve-
locities of the collective modes, to name the most important ones. This is to indicate
that our formalism is not a closed analytical formula that will not lead to any further
description of more complex realistic systems, but instead is open for further develop-
ments. Naturally, applicability to various other quasi-1D platforms can be achieved by
simply changing the parameters. This versatility opens up possibilities for exploring new
classes of materials and functionalities. Here we showed the way to quantify it. Further,
device-specific studies are possible.
The TLL LDOS is also known for pumped systems, developing these was an active field
of research in the last decade. Therefore, together with the fact that in Eq. 6.22 we
can straightforwardly incorporate diffraction phenomena through spatially dependent
field amplitude F (x) our formalism can be also extended to address problems involving
interaction with light. This includes time-resolved and femtosecond field emission, paving
the way for advances in ultrafast electronic and photonic devices.
Another issue is that a relatively weak external electric field was assumed. Strong fields
can affect the parameters of the TLL, making them spatially dependent, and increase
the density of emitted carriers in between the tubes. This leads to the problem of the
plasmon-polariton coupling regime. The problems of the TLL with spatially varying

– 135 –



CHAPTER 8. CONCLUSION AND OUTLOOK

Kρ(r) and non-hermitian TLL are currently being intensely studied in the literature. It
has been recently shown [220] that extension to complex-valued TLL parameters can
capture these phenomena. This gives hope that this regime can be incorporated in
the formalism developed in this thesis. This also implies that curvature-induced holon
lifetimes could be described by imaginary velocities in certain energy ranges, potentially
overcoming the key limitation of this formalism, making it a universal description of the
MWCNT platform.
Our results also hold significant implications for chemical reactivity on surfaces. In
particular, our approach can be extended to study light-induced or plasmon-induced
chemical reactions. This could improve our understanding of surface-mediated reactions
and open new ways for research in material science and surface chemistry.
The assumption is that the chemical reactivity on the surface will depend on the amount
of electrons available to perform the chemical reaction. This partially relates to the
recent idea of plasmonic catalysis. Thus basically, by taking nanorods of some material
and shining a light on them, plasmons with a certain density along the nanorod are
induced. These plasmons, therefore, are observed inside the nanorod, allowing for some
previously difficult chemical reactions to perform more easily now. So this is one possible
pathway in which our calculations can be useful considering the density of electrons along
the rod and the probability of an electron going out from the nanorod.
By acknowledging these potential extensions, we emphasize the broader impact and future
potential of our work in both electronic and chemical applications.
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Appendix A

Bosonization details

The derivations in this Appendix are based on the textbook of T. Giamarchi [96].

A.1 Derivation of fields
We consider the model of 1D fermions with linear dispersion:

H = VF

∑
k

kc†
kck (A.1)

where c†
k, ck are their creation/annihilation operators in reciprocal space. The corre-

sponding chiral fermionic field is ψr=R,L.
The basic quantity, that will also determine electron-electron interactions, is real space
density ρ(x). The Fourier component ρ†

r(p) of the density is defined by

: ρr(x) := 1
Ω
∑

p

: ρr(p) : eipx (A.2)

where we identified normal ordering : ... : to avoid an infinite number of occupied states.
It is defined as:

: ρ†
r(p) :=


∑

k c
†
r,k+pcr,k if (p ̸= 0)∑

k[c†
r,kcr,k − ⟨0|c†

r,kcr,k|0⟩], if (p = 0)
(A.3)

Let us call ψR(x) (resp. ψL(x) ) the operator destroying a right (resp. left) going fermion
at point x. It satisfies the following commutation relation:

[ρ†
r(p), ψr(x)] = 1√

Σ
∑
k,k1

eik1x[c†
r,k+pcr,k, cr,k1 ] = −eipxψr(x) (A.4)

From that, we can postulate the bosonization formula, i.e, give an operator written
directly in terms of boson operators, and that would produce the same commutation
relations:

ψr(x) ≃ e
∑

p
eipxρ†

r(−p)( 2πr
pL

) (A.5)

Rather than to work directly in terms of the density operators, it is convenient to intro-
duce the two fields ϕ(x) and θ(x), which are defined by

137



APPENDIX A. BOSONIZATION DETAILS

ϕ(x), θ(x) = ∓(NR ±NL)πx
L

∓ iπ

L

∑
p̸=0

1
p
e−α|p|/2−ipx(ρ†

R(p) ± ρ†
L(p)) (A.6)

where the upper signs are for ϕ. Using these canonically conjugated bosonic fields, the
single-particle operator and the exact expressions for the fermionic field are

ψr(x) = Ur lim
α→0

1√
2πα

eir(kF −π/L)xe−i(rϕ(x)−θ(x)) (A.7)

where we have added the so-called Klein factor operator Ur, which ensures proper anti-
commutation relation obeyed by the fermionic field ψr(x). From this we see that e.g.
the kinetic energy term (Eq.A.1) which is proportional to ∑

r(∇ψr)†(∇ψr) (upon ap-
plying chain rule and bringing derivative into exponential) will contribute (∇θ)2 to the
Hamiltonian, a term that is present in Eq.3.48.

A.2 Correlation function
We now wish to obtain correlation function of fermionic field in Eq. A.7. Formally, the
expression for time-ordered correlation reads:

GR(r) = ⟨ψR(r)ψ†
R(0)⟩ = −eikF x

2πα ⟨ei(ϕ(r)−θ(r))e−i(ϕ(0)−θ(0))⟩ (A.8)

where the relation expA expB = exp(A+B) exp[A,B]/2 to bring it to the same expres-
sion as Eq. 5.15 in the main text. We then split the terms in the exponential into the
Gϕϕ, i.e., averages of ϕ(x, τ)ϕ(0, 0), the Gθθ plus the term Gϕθ that arises from a finite
commutator [ϕ, θ] ̸= 0, which we will call F2(r) and evaluate it later on. In order to
evaluate those first terms, we use a quite general relation (Debye-Waller):

⟨Tτe
∑

j
i(Ajϕ(rj)+Bjθ(rj))⟩ = e− 1

2 ⟨Tτ [
∑

j
(Ajϕ(rj)+Bjθ(rj))]2⟩

= e− 1
2
∑

i<j
[−AiAjK2−BiBjK−2]F1(r1−rj)+[AiBj+BiAj ]F2(r1−rj) (A.9)

which allows to move the average into the exponential, i.e. move from the first to second
line in Eq. 5.16 in Chapter 5. I have put back the time ordering to emphasize that this
relation is valid for operators (here r = (x, vντ) is a coordinate on the space-imaginary
time plane). We now look specifically into the correlation Gϕϕ of the bosonic fields. The
average ⟨⟩ means time-ordered product so just for the next few lines I put back explicitly
the time-ordered product and denote ⟨⟩0 the averages without the time-ordered product,
that is, simply Tr[e−β(H−µN) . . .]/Z

Gϕϕ(x, τ) = K2⟨Tτ [ϕ̃(x, τ) − ϕ̃(0, 0)]2⟩0

= 2K2[⟨ϕ̃(0, 0)ϕ̃(0, 0)⟩0 − Y (τ)⟨ϕ̃(x, τ)ϕ̃(0, 0)⟩0 − Y (−τ)⟨ϕ̃(0, 0)ϕ̃(x, τ)⟩0)] (A.10)

We can now use the fact that averages, functional integrals of fields ϕ̃, in TLL theory,
are that of Gaussian matrix form, with a determinant equal to ω2 + u2k2 (in reciprocal
space), see Eq. A.24, where the action matrix is given explicitly for chiral modes. In real
space and zero temperature, this evaluates to:
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Gϕϕ(x, τ) = K2
∫ ∞

0

dp

p
e−αp[1 − e−v|τ |p cos (px)] = K2

2 log
[(x2 + v|τ |+α)2

α2

]
(A.11)

where a term under integral will be called F1(r). The α is a UV cut-off needed to
regularize the integral. We have thus arrived at the same result as presented in the main
text without details, the Eq. 5.16.
By collecting back all terms (a similar derivation for Gθθ will give a term proportional to
1/K2), we obtain:

GR(r) = ⟨ψR(r)ψ†
R(0)⟩ = −eikF x

2πα ⟨ei(ϕ(r)−θ(r))e−i(ϕ(0)−θ(0))⟩ = −eikF x

2πα e
−
[

K2+K−2
2 F1(r)+F2(r)

]
(A.12)

Finally, let us derive the expression for F2(r). If we had to compute the single-particle
Green’s function

⟨T F
τ ψ̃R(r)ψ̃†

R(0)⟩
we would have to use the fermionic time-ordered product T F

τ . Instead, all calculations
we have done for the correlations of ϕ and θ, assume a bosonic time-ordered product (see
Eq. A.10). Thus, instead of

Y (τ)⟨ψ̃R(x, τ)ψ̃†
R(0)⟩ − Y (−τ)⟨ψ̃†

R(0)ψ̃R(x, τ)⟩ (A.13)
the corresponding correlation function in bosons

⟨TB
τ e

−i(ϕ(r)−θ(r))ei(ϕ(0)−θ(0))⟩ = e
−
[

K2+K−2
2 F1(r)+F2(r)

]
(A.14)

corresponds to Eq. A.13 but with a plus sign for the second term. To correct it, we have
to put a minus sign if τ < 0. This can be achieved by multiplying the result by

e±iπY (−τ) (A.15)
If we take the convenient choice

eiπY (−τ)Sign(x) (A.16)
this amounts into replacing in F2 the arctangent by

Sign(τ) arctan
[

x

v|τ |+α

]
+ πY (−τ)Sign(x) (A.17)

which is nothing but the argument of the complex number yα + ix (yα = vτ +α Sign(τ)).
We can thus absorb the phase factor simply by changing the definition of F2 the arctan-
gent by the argument. The argument is defined with a cut on the negative real axis. It is
easy to see that this modification takes care of all phase factors even in more complicated
objects. Indeed, in an operator that contains a number n of fermionic operators either
θ disappears (as in the density operator) or occurs with a coefficient n. In the formula
Eq. A.9, the extra phase of π only appears if n is odd, which indeed corresponds to a
fermion-like operator for which the time-ordered product should be taken with a minus
sign. For n, even a term einπ appears, which leaves the results unchanged.
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A.2.1 Retarded correlation function
The retarded correlation function can thus be written as

χR
BA(t) = iY (t)[χT

BA(t) − (χT
A†B†(−t))∗] (A.18)

where χT
BA(t) is the susceptibility of A,B operators, thus for A ≡ c†, B ≡ c, it is the time

ordered Green’s function as evaluated just above, but here defined on the real time axis
(we shall also use the fact that for Green’s function, the two terms in the parenthesis in
Eq. A.18 are equal). It is thus enough to obtain the time-ordered correlation functions in
real time to get the retarded correlation function. Green’s function upon Wick rotation
will read as follows:

e−[
K2

ρ+K−2
ρ

4 F1(x,vρτ)+ 1
2 F2(x,vρτ)] →

(
ϵ2

x2 + (it+ ϵ)2

)K2
ρ+K−2

ρ
8 − 1

4

e− 1
2 log[(yϵ−ix)/ϵ]

=
(

ϵ2

x2 + (it+ ϵ)2

)K2
ρ+K−2

ρ
8 − 1

4
√
ϵ√

i(vρt− x) + ϵ
(A.19)

where we have used the following real-time integrals, as defined by Voit [170]:

F1(x, t) + F2(x, t) = −1
2 [2V ν(x, t) − 2rV ν

0 (xt)] (A.20)

V ν(xt) = 1
2

∫ ∞

0

dp

p
e−ϵp[1 − cos(px)e−ivν(p)pt] (A.21)

V ν
0 (xt) = i

2

∫ ∞

0

dp

p
e−ϵp sin (px)e−ivν(p)pt (A.22)

and for the moment, for clarity, we dropped the "cut−off" subscript. To be very precise,
it is commonly assumed that holon’s velocity is a function of momentum vρ(p) equal to
vρ, when p < α, and to VF for larger momenta. The α is thus the UV cut-off of the
theory above which other bands intervene and curve the metallic conduction band. The
above given integrals thus need to be split

∫ α
0 ... +

∫∞
α . It is upon this split that we get

the pre-factor in the final Eq. 5.19, the final Eq. 5.19 is then recovered from Eq. A.19
and the two terms in Eq. A.18.

A.2.2 Chiral fields
When computing correlations for the boundary, we use chiral bosonic fields. We can
rewrite the Gaussian action using these fields:

ϕR = K2θ − ϕ

ϕL = K2θ + ϕ
(A.23)

which are the fields only containing right (resp. left) movers (see Section 3.2). In the
functional integral, the chiral fields decouple and have the action

S = 1
4πK2

1
βΩ

∑
k,ωn

(ϕR,q
∗ , ϕL,q

∗ )
(
k(uk − iωn) 0

0 k(uk + iωn)

)(
ϕR,q

ϕL,q

)
(A.24)
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The correlation functions of these fields are easily obtained and given

⟨ϕ∗
R,qϕR,q⟩ = 2πK2

k(uk − iωn)

⟨ϕ∗
L,qϕL,q⟩ = 2πK2

k(uk + iωn)

(A.25)

Of course, one can also recover the correlation functions between the fields ϕ and θ, using
Eq. A.23 and Eq. A.25.
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Appendix B

Field emission results: validation
and applications

B.1 Scrutiny of past experimental results

A pivotal aspect of materials engineering stems from an ability to change the functional
properties of a material by changing its structure on a mesoscopic scale. This shows
that not only the atomistic, physical properties of constituting elements do determine
the properties, but one can improve material by modifying its structure on intermediate
scales. One remarkable example of such a situation is a phenomenon of field emission
from carbon-based materials. The task is to pull electrons out of a material as efficiently
as possible; thus, the escape route out of the sample matters significantly. In particu-
lar, one may expect that a vertically ordered array, with an easy escape route, will be
much superior to a random sponge where outgoing electrons will suffer multiple colli-
sions/reabsorption on their way out. The aim of this short appendix is to make the case
that this indeed happens and then postulate devices that could profit from such a specific
structure. This also justifies why in the main text, we have focused on this and only this
specific structure.
In 1995, field emission (FE) from an isolated single multi-walled nanotube (MWNT) was
first reported by Rinzler et al. [221], and FE from a MWNT film was reported by de Heer
et al. [89]. In the early days, 20-30 years ago, the nanotubes were usually manufactured
in a form of a dense paste printed on the substrate, at best on a micron scale. The field
emission from such devices has been explored [87], but in this case only a tiny fraction
of tubes, randomly sticking out of an amorphous composite of tubes and metal particles,
can contribute to FE signal. Such material is not a subject of the PhD thesis.
The breakthrough came in 1998 when Ren and his team studied a large-scale method for
fabricating well-aligned carbon nanotube (CNT) arrays on glass substrates using plasma-
enhanced hot filament chemical vapor deposition [59], [222]. Thus, the idea of an array
of vertically aligned tubes has been transferred from the realm of idealized model into
physical reality of concrete devices and experimental benchmarks. Later, they explored
potential applications of CNT arrays, such as cold-cathode flat panel displays, vacuum
microelectronics, and hydrogen storage. Later, experiments on vertically aligned multi-
walled carbon nanotube (MWCNT) arrays were again conducted by Ren’s group [223],
[224], [225] from MIT. Nanotubes made of different materials were also manufactured
and they gave similar FE results. In Ref. [226], Fowler–Nordheim (FN) plots of ZnO
nanowires are demonstrated (Fig. 5 in Ref. [226]), showing non-linear behaviour with
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Figure B.1: Equipotential line for different densities of vertically aligned tubes. H is
the height of the nanotubes, and L is the distance between the nanotubes. The L/H is
a dimensionless parameter that describes the spacing of the array. For a dense array of
nanotubes, the field cannot enter the areas in between the tubes, while for the sparse
array, the line is directly above the substrate. The best arrays are those with intermediate
L/H (Figure from [227]).

straight segments separated by slope changes – straight, then deviating, then straight
again – suggesting multiple emission regimes.
The density of CNTs plays an essential role in determining their field emission properties
(see Fig. B.2). As shown in Fig. B.2, the best field emission exists with sample F,
when the nanotube is the longest with the intermediate density. When the density of
nanotubes is smaller, the electric field can penetrate between the nanotubes [227], [228]
(see Fig. B.1), enhancing the local electric field by each nanotube and improving electron
emission. In contrast, when the nanotubes are dense, their electric fields overlap, reducing
the effective field on each individual CNT [229]. The situation would be even worse in
the amorphous cases - the electric field cannot enter between the nanotubes. In terms of
length dependence, longer CNTs enhance field emission due to their higher aspect ratio,
but this effect decreases at very high densities due to electric field screening. The field
enhancement factor depends on the electric field, which proves that it is not only a factor
but a function of F .
In Ref. [230], CNTs were grown by plasma-enhanced chemical vapor deposition on
Ni nanoparticles made by electrochemical deposition, and then CNT arrays were half-
embedded in the polymer. Next, fibre-free cloth was used to polish the surface that
mechanically breaks the top part of the CNTs and exposes the tip of the CNTs, blocking
the emission from the sides of CNTs.
Nanotubes can be coated for better control of the photonic crystal parameters. In order to
create nonmetallic photonic arrays, such as nonmetallic 2D bandgap crystals, nanotubes
can also be utilized as structural templates [231].
Upon these works, CNTs have been extensively studied for their FE properties due to their
high aspect ratio, excellent electrical conductivity [232], and mechanical stability. The
FE characteristics of CNTs have shown encouraging results for applications in vacuum
microelectronics, flat panel displays [87], and electron sources. Ongoing research focuses
on material engineering, surface modification, and advanced deposition techniques.

B.1.1 Dependence of j(F ) on the specific device

Naturally, since the current j(F ) depends on the local electric field in the area of the
cathode (not simply on the external electric field Fext), the outcome will depend on the
specific arrangement of electrodes in the device under consideration. This is a problem
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Figure B.2: The measured current densities as a function of the macroscopic electric
field for eight samples of vertically aligned MWCNT arrays. As expected from Fig.
B.1, the intermediate densities support the strongest currents. The length dependence
supports the conjecture of side-surface emission (Figure and table from Ref. [229]).

of electrical engineering; hence; not the subject of the thesis. There are, however, also
material-specific factors that we shall briefly review below.

Field electron emission depends on microstructure

Field electron emission (FEE) from CNT arrays shows strong dependence on the mi-
crostructure of the emitter. Specifically, the arrangement, alignment, and density of the
CNTs affect both the emission intensity and stability. Many studies [233], [234] show
that variations in the structural parameters can lead to notable differences in emission
characteristics. The structural parameters, such as grain size, surface morphology, crys-
tallographic orientation, defect density, and overall structural uniformity, play essential
roles in determining the efficiency and stability of electron emission [216].
Control and optimization of these parameters might be essential for developing efficient
and reliable CNT-based electron emitters.
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j(F ) depends on vacuum

The effect of different vacuum levels on the field emission characteristics of CNT ar-
rays was investigated [235], introducing electron-molecule collision ionization as a signif-
icant factor affecting field emission under non-vacuum conditions. The presence of gas
molecules significantly affects the field emission behaviour, as different pressures influ-
ence the collision probability between electrons and gas molecules, resulting in changes
in the emission current density. Higher vacuums result in more stable and stronger field
emission.

B.1.2 The nanotube structure is fragile; device stability

Field emission from vertically aligned carbon nanotubes was tested experimentally, and
the phenomenon was strong, particularly at the lowest values of the electric field [236].
Experiments show that at high voltages, the structures are fragile, and they can be easily
damaged.
CNT structures are fragile due to their nanoscopic dimensions and sensitivity to mechani-
cal and thermal stresses [237]. The nanotubes can easily deform or degrade when exposed
to high voltages or strong forces, making it crucial to maintain structural stability and
preserve their performance as field emission cathodes.
Field electron emission at low voltages is significant because it allows efficient electron
release without applying excessive voltage. Scanning electron microscope (SEM) analysis
shows that the nanotube structures experience structural changes after current extraction
at high voltages, ensuring improved but less controllable emission properties [238].
Low voltage operation improves the stability and the long life of the CNT field emission
cathodes. Studies confirm that low-field emission requires fewer high-energy interactions
that could damage the nanotube array. Therefore, achieving efficient electron emission
at lower voltages enhances performance and extends the lifespan of the CNT cathode.

B.1.3 Comparison with experiment

Until now, all experimental works have nearly always been compared with the tradi-
tional Fowler-Nordheim expression for field emission. This is despite the fact that more
advanced theoretical expressions have been known for a few decades, for instance, Murphy
and Good (MG) written in terms of elliptic integrals [127]. Instead, experimentalists have
added an extra free parameter (β) to their expression to generalize it phenomenologically.
This is a rather frustrating situation, which motivated some theorists to inquire what the
connection is between phenomenological β and those more advanced, e.g. MG, expres-
sions. We should note here that based on extensive research of Richard Forbes [239],
[240], we can see that generalizing the Fowler-Nordheim theory in this way is equivalent
to introducing the hypergeometric function into the exponential. In fact, Forbes criti-
cized the simplistic use of the β enhancement coefficient [241], [242], and he developed
phenomenological models that connect β to the local electric field F , considering the
emitter’s electrostatic properties [243]. This approach was an effort to connect the the-
ory and experiment. From that, we deduce that also for our formalism, one expects to
observe on the FN plot a straight line but with the non-linear corrections. This is because
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MG expression, just like ours can be written in terms of a hypergeometric function, thus
a polynomial, which can indeed be rescaled by a given β.
As already mentioned in the main text (Sec. 1.2.6), the current understanding of emission
from carbon nanotubes is insufficient as underlined in experimental evidence emphasizing
the need for additional research. The standard Fowler-Nordheim theory for single particle
emitters does not apply, particularly at low voltages (Fig. 1.12, originally from Ref. [93]).
In this figure, we observed a behaviour similar to the one observed in Ren’s group [226]:
instead of one single FN curve, we see different behaviour at the lowest voltages, an
additional signal that should not be there. The field enhancement factor is not any
longer a constant, but it depends on the applied field. In Ref. [94], [95], the extra
factor β was defined in terms of two parameters (one for thermionic and one for field
emission), and it turns out that both ought to be taken as functions. Thus, it has been
detected from the experiments that the β factor actually strongly depends on both the
electric field and the temperature. Therefore, it is not a factor but a function of F and
T , precisely as it has been computed in Chapter 6. In all these cases, the β needs to be
taken as large as of the order of 104.

To conclude, computing an exact value of an absolute field emitted current is quite a
difficult task. This is because the final result will depend on the finest details of a specific
device. However, if one knows the amplitude of current at one specific field F , and light
frequency ω for photon-assisted process, it is possible to predict the signal for all other
(F, ω) points.

B.2 Bringing back dimensionality

Dimensionality of energy: TLL is characterized by a linear dispersion of the con-
duction band close to the Fermi energy and is assumed to have no other bands around
it. This implies that there is an ultraviolet cutoff Λ in the theory, at energy where these
conditions are not fulfilled any longer. Then, in principle, if we know this Λ, which equals
half of the characteristic spectral gap ∆/2 of other bands, it will determine the energy
scale of the problem. Thus, everything on the energy scale ω will be essentially multiplied
by this characteristic gap ∆[eV ] resulting in a real value of energy that can be compared
with the experiment. Each material has a given spectral gap of other, non-conduction
bands which determines its energy scale ∆, thus redefining the energy dimensionality.

Dimensionality of the electric field F : The electric field axis also requires a defini-
tion of a characteristic length-scale d0[m]. In Chapter 4, this is determined by geometry
and can be set to be ≈ 1µm. If we set our characteristic length d

(geom)
0 [m] to be 1µm

(usual size of microstructures), then the unit of F should be V/µm (see e.g. caption of
Fig. 6.3). In Chapter 5, we fix the velocity VF , and so the characteristic length is set
to d(VF )

0 = VF/∆, where VF is a material-dependent quantity. It is equal to the velocity
of electrons in the conduction band. The unit of the electric field is then [∆[eV ]/d0[m]].
Our formalism is thus general and by choosing appropriate VF one can capture MWNT
made from arbitrary 2D sheets.
To give a specific example, for a SWCNT, we can take ∆ = 1eV = 1014Hz and the Fermi
velocity of graphene VF = 3.6 · 106m/s which leads to d(VF )

0 ≈ 10nm. If we take the value
of the velocity for the carbon (graphene sheet) that corresponds to the metallic SWCNT,
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the value of the characteristic length will thus be 10nm. If we choose a different material
than carbon (graphene sheet), with a different cutoff and different velocity, then it will
be of a similar order of magnitude but not exactly the same value of the d(VF )

0 . This is, in
fact, the smallest possible value of d0 determined for a given material of the electrode. If
we arbitrarily assume that we are working with some geometrical features on the surface,
such as corrugations or similar structures that are orders of µm, we will arrive at different
characteristic d0.

Dimensionality of current (vertical axis): The low value on the vertical axis of the
current is due to the fact that the calculation has been done for a single emitter and this
is going to be modified by the fact that we have quite a lot of nanotubes on each surface.
In reality, the arrays of carbon nanotubes contain millions of them per cm2, therefore the
field will be multiplied by the density of carbon nanotubes in the arrays.

B.3 Applications

B.3.1 Applications of field electron emission from Carbon
nanotubes arrays

FEE from carbon nanotubes (CNTs) has transformed various technologies due to their
excellent electrical conductivity, nanoscale size, and mechanical strength. The main
applications of CNTs in FEE span industries and technologies.
In electron holography, CNTs act as ultra-bright, coherent electron sources, enabling
high-resolution imaging of electric and magnetic fields for advanced material research.
The high level of ordering and uniformity in CNT arrays is useful for applications in data
storage, field emission displays and sensors [244], and offers the prospect of deriving
computational functions from the collective behavior of symmetrically coupled nanotubes.
In electronics, due to their conductivity, CNT-based field emission displays (FEDs)
provide energy-efficient, high-contrast, slim panels that replace bulky cathode-ray tubes.
In the medical and industrial sectors, CNTs serve as very effective field emitters, allowing
them to serve as electron sources for X-ray sources, with specific advantages over
traditional thermionic tubes. CNT-derived X-ray sources can create X-ray pulses of
any duration and frequency, gate the X-ray pulse to any source, and allow the placement
of many sources in close proximity [245].
CNT array electron emission properties also power electron microscopy and lithog-
raphy [246], where arrays provide stable, high-current beams for nanoscale patterning
and atomic-resolution imaging.

B.3.2 Specific devices supported by our results

Facing the above-described difficulties with a direct one-to-one comparison with experi-
mental results, one can try to answer another question: among the multitude of current
applications of field electron emissions, which ones are particularly well-suited for our
candidate material? In particular, to be specific, we consider the below devices working
in the regime of low-energy electron emission. This last assumption is not really neces-
sary: if one is able to create a finite-time impulse of current J(t0 < t < t1) at a given
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energy, then by applying a system of electrodes (with impulses of voltages), one can in
principle accelerate an electron beam to any desired energy. However, here we wish to
investigate the situation where the electric setting of the device is kept simple.
In order to answer this question, one must first identify the key advantages of working
with collective field emission from an array of nano-tubes. These are:

1. the emitting surface, the side of MWNT is now large: one expects a reasonably
strong current even if the probability of emission per surface unit is small;

2. the emitted electrons, coming from in-between the tubes are naturally collimated:
those with tilted trajectories ought to be reabsorbed into MWNT;

3. the sharpness of peaks, as obtained in Chapter 6 of this thesis (Fig. 6.11 - 6.14),
suggests that for a given value of electric field, there is a well-defined monochromatic
frequency of the beam;

4. the velocity of emitted carriers vemit is determined by Coulomb interactions, and
the emitting array is built out of Coulomb-coupled MWNT; thus, the velocities of
different emitted carriers must be very close to each other;

5. the primary emission of electrons is into quantum well states in between the tubes;
thus, they are all confined to wave functions with quite similar spatial distribution.

The advantage of working at weak currents is that even in a very long run, the emitter
should not be affected or even damaged as was reported for single wire devices. At low
voltages, conditions ionizing of atoms and molecules is less of a problem. It also means
less energy consumption (relevant for green economy) and greater safety of the device.
With the beam being naturally collimated, there is no need for additional grated gates,
which are also prone to damage in the long run. While point 1 above has implications for
stability and durability, the other points (p.2-5) are very favorable for the quality of the
beam itself. The general desire is to obtain large area monochromatic plane wave that
will move coherently to be used in any further application. Below, based on the results
of the thesis, we propose two modes in which the array of MWNTs can be employed to
achieve novel functionalities; i.e., as a material, platform of which novel devices can be
designed. In principle, these novel devices can be patented. One of the devices will be
able to explore spatial dimension that has been so far inaccessible, the other device will
be able to explore the temporal dimension.

Spatial resolution

Firstly, we note that although low energy field emitted electrons offer lower lateral reso-
lution (due to a diffraction limit) that can be partially improved through phase-sensitive
probes, they offer electrons with much higher penetration depths. Thus, they offer the
possibility to investigate the in-depth dimension of the sample. This naturally suggests a
potential application in a field of electron holography (or low-energy-electron diffraction).
Electron holography is nowadays an intensely developed experimental probe that allows
researchers to understand the 3D structure of proteins or 3D patterns of (e.g. magnetic)
ordering on the surface of nanoparticles. Electron holography provides a unique per-
spective into electromagnetic fields, charge distributions, and electrostatic potentials at
the nanoscale by capturing the phase change of an electron wave as it passes through or
interacts with a sample [247], [248], [249]. Electron holography in transmission electron
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microscopy (TEM) offers a solution. A hologram is recorded by superposition with a
coherent reference wave, from which the image wave can be completely reconstructed by
amplitude and phase [250].
Here, we postulate to use MWNT array both as an emitter and a receptor of the electron
wave. The wave is reflected and half of it moves through the sample, while the other half
serves as a reference.
Plane waves are particularly well-suited here. Afterwards, both reach the MWNT array,
where they interfere, which now works in the receptors’ mode. Integration of MWNT
arrays in electron holography has been already explored experimentally, and it has been
shown that these setups offer several advantages, such as enhanced spatial resolution
[251], [252], signal stability [234], [253], and compact device architecture [86], [254], [255].
This setup enhances phase stability and enables a more efficient electron holography
system with potential applications.
The central idea of holography is to gain access to the 3D structure of an object by
studying the interference pattern between two beams of electrons: one that has gone
through the sample and another that has not. The fact that nanotubes are aligned
vertically paves the way to determine the interference pattern also in this third direction.
To this end, we propose a device that is built on the top of standard CCD camera
concept. The operation of 2D CCD camera is based on the fact that the system detects
the transistor status at each pixel. In our concept, at each pixel we propose to inject
an impulse of charge current. Then a time-of-flight type of measurement could be used
where an electron wave packet is injected at a given time into a given MWNT and
then backscattered by the electron wave maximum. By measuring the time of flight

Figure B.3: Receiving mode: the blue rods show schematically MWNT which form
the array of vertically aligned nanotubes, a front of an electron wave interacting with
MWNTs is indicated as green dashed line, red points are the zones of plasmon-polariton
interaction. These points are specified not only in 2D plane but in 3D space. It is thanks
to the time-of-flight method applied inside each MWNT, the measurement of τ i

T OF . This
information can be used in electron wave holography devices.
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(a) (b)
Figure B.4: Emitting mode (a) vertical nanotubes emitting electrons into a potential
well in between them. When the emitted electrons have two close frequencies ω1 and ω2
the resulting electron wave will exhibit the beating phenomenon as shown on the top of
this panel; (b) the schematic illustration of results in Chapter 6, low temperature, strong
interactions, large enough F = cste, e.g. in panels (b) in Fig. 6.11 or Fig. 6.13, where
in the spectrum for positive ω there are indeed two close peaks at ω1 and ω2.

(back-and-forth) τ i at a given i-th pixel, one can deduce where the maximum of electron
wave is located in 3D. The idea is illustrated in Fig. B.3. The theory of conductivity
in nanotubes is a well-developed field, the only unknowns here are material structure-
specific properties, namely the exact electron distribution along the tube (in particular
local susceptibility), and the way the local symmetry breaking affects the local TLL
parameters. Both problems were solved in this thesis, in Chapter 5 (in particular, Sec.
5.5) and Chapter 6 (Sec. 6.2), respectively. Those results make the case that such a
phenomenon is feasible to observe and quantify the expected backscattering strength.

Temporal resolution

The results of our calculations in Chapter 6 show a new interesting phenomenon: in the
case of lower temperature and stronger interactions, as reported in Fig. 6.11 (b) and 6.13
(b), one can observe two neighbouring peaks of current. This means that the beating of
two waves can be induced in the outgoing electron beam. This is technologically quite
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interesting because it can allow probing the sample stroboscopically, thus accessing the
dynamics of the measured system. The distance between the two peaks determines the
beating frequency, thus the time intervals at which we shine the electron beam on the
sample. From Fig. 6.11 (b), we see that the distance between peaks can be as small
as 0.2 of the conduction band bandwidth, which for MWNT (with reduced electron
dispersion), can be as small as 0.1eV , which is the energy scale of magnetic soliton-
type excitation in nanoparticles, and also corresponds to picoseconds time scales. The
picosecond time scales are those of rotational correlation times of molecules or a lifetime
of ionized hydronium. Thus, they are relevant for applications in nano-biochemistry. In
Fig. 6.11 (b) and 6.13 (b), we clearly see that the relative amplitude of the two waves
varies as a function of the applied electric field F ; this operation of the proposed device
is fully controllable and can be even done in a lock-in mode.
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