Micromechanical modelling of voided FCC
and HCP polycrystals in inelastic regime

PhD thesis by
mgr inz. Saketh Virupakshi
Supervisor:
prof. dr hab. inz. Katarzyna Kowalczyk-Gajewska
Auxiliary supervisor:

dr inz. Karol Frydrych

PAN

Instytut Podstawowych Probleméw Techniki Polskiej Akademii Nauk
02-106 Warszawa, ul. Adolfa Pawinskiego 5B

2025



Acknowledgements

I would like to express my profound gratitude to my supervisor, prof. dr hab. inz.
Katarzyna Kowalczyk-Gajewska, and auxiliary supervisor, dr inz. Karol Frydrych,
for their invaluable support, sharing their extensive knowledge, skills, and experience.
Their immense dedication and effort have been instrumental in guiding me through the
preparation of this dissertation.

I would also like to express my sincere gratitude to prof. dr hab. inz. Stanislaw
Stupkiewicz for his invaluable assistance in implementing the crystal plasticity model
within the AceGen/AceFEM environment, as well as for his inspiring ideas shared
through his lectures on contact mechanics. Additionally, I extend my thanks to dr inz.
Mohsen Rezaee Hajidehi for the insightful discussions and support with finite element
implementations.

I would also like to extend my heartfelt thanks to my parents, wife, son, and all
others who may not be mentioned individually for their unwavering support and words of
encouragement throughout the preparation of this dissertation. My gratitude also goes to
my colleagues from the doctoral program and the employees of IPPT for all the assistance
they have provided.

I would also like to express my gratitude for the financial support received from the
National Science Centre under grant 2021/41/B/ST8/03345.

My gratitude would be incomplete without acknowledging God, who endowed me
with the strength and determination to complete my thesis, reinforcing my conviction that
I am exactly where I need to be.



Abstract

High specific strength metals and alloys with face centered cubic (FCC) and hexagonal
close packed (HCP) lattice symmetry are gaining significant interest in the transport
and aerospace sectors because of their excellent strength-to-weight ratios and improved
durability at high temperatures. However, the widespread application of such materials is
sometimes impeded by their low ductility and poor fracture toughness. These constraints
stem from the distinct crystallographic characteristics, which for HCP crystals limit the
availability of easy slip systems and leads to activity of twinning. Moreover, for some alloys
with FCC symmetry, despite their high lattice symmetry, the initiation of twinning results
in low ductility and fracture toughness. A better understanding of the void growth failure
mechanism in these highly anisotropic metallic materials will facilitate the reduction of the
aforementioned limitations. Therefore, this thesis focuses on exploring and elucidating the
connection between crystal anisotropy and the processes of void growth and coalescence
that lead to ductile damage in polycrystalline metals, utilizing numerical analyses and
micromechanical models.

Numerical full-field calculations are employed to investigate porous FCC and HCP
crystal structures, using both 2D plane strain unit cells with cylindrical voids and 3D unit
cells with spherical voids. This method allows for an in-depth analysis of how boundary
conditions, crystal orientations, and initial void volume fractions impact void evolution
and stress or strain heterogeneity in these materials. To achieve this goal, a rate-dependent
crystal plasticity constitutive theory is considered. The theory incorporates slip and twinning
mechanisms, accounting for their mutual interactions in terms of hardening laws and the
lattice reorientation effects due to twinning.

To predict the macroscopic behavior of porous polycrystals, a micromechanical mean-
field model is formulated. At the single porous crystal level, an additive Mori-Tanaka
scheme is employed to capture the elasto-viscoplastic response. In the second step, an
additive self-consistent scheme is implemented to estimate the overall behavior of the
porous polycrystal. The numerical implementation of this model at both stages is detailed,
offering a comprehensive framework for its application. Predictions from the mean-field
model are validated and analyzed against full-field numerical computations. Moreover, a
novel GTN-type yield criterion for porous crystals is formulated using a micromechanical
approach, with model tuning parameters calibrated via full-field unit cell calculations.
Comparisons are drawn between the newly proposed model and existing models in the
literature. The findings from this research hold significant potential for predicting the

performance of porous polycrystalline materials across various loading scenarios.



Streszczenie

Metale i stopy o wysokiej wytrzymatosci wiasciwej o sieci krystalicznej regularnej
$ciennie centrowanej (Al, ang. FCC - face centered cubic) i heksagonalnej zwartej
(A3, ang. HCP — hexagonal close packed) zyskujq duze zainteresowanie w sektorach
transportu i lotnictwa ze wzgledu na doskonaty stosunek masy do wytrzymatosci i
zwiekszong trwatos¢ w wysokich temperaturach. Z drugiej strony szerokie zastosowanie
takich materiatow jest utrudnione przez ich niska ciagliwos¢ i staba odpornos¢ na pekanie.
Ograniczenia te wynikajq ze szczeg6lnych cech struktury krystalograficznej, ktéra ogranicza
dostepnosc¢ tatwych systemow poslizgu i wywohuje aktywnosc¢ blizniakowania. Co wiecej, w
przypadku niektérych stopow o symetrii FCC, pomimo ich wysokiej symetrii sieci, inicjacja
bliZzniakowania skutkuje niska ciagliwos$cia i odpornoscia na pekanie. Lepsze zrozumienie
mechanizmu uszkodzenia na skutek wzrostu pustek w tych wysoce anizotropowych
materiatach metalicznych ulatwi redukcje wyzej wymienionych ograniczen. Dlatego tez,
niniejsza praca skupia sie na badaniu i wyjasnianiu zwigzku miedzy anizotropia krysztatow a
procesami wzrostu i tgczenia pustek, ktore prowadza do ciggliwego uszkodzenia w metalach
polikrystalicznych, wykorzystujac analizy numeryczne i modele mikromechaniczne.

Obliczenianumeryczne metodq elementéw skonczonych (MES) sg stosowane do badania
porowatych struktur krystalicznych FCC i HCP, wykorzystujac zaréwno dwuwymiarowe
komorki jednostkowe z cylindrycznymi pustkami w plaskim stanie odksztatcenia, jak i
trojwymiarowe komorki jednostkowe z kulistymi pustkami. Ta metoda umozliwia dogtebng
analize tego, w jaki sposob warunki brzegowe, orientacje krysztatow i poczatkowe udziaty
objetosciowe pustek wptywaja na ich ewolucje, jak rowniez niejednorodno$¢ naprezenia w
tych materiatach. Aby osiagnac ten cel, zastosowana jest teoria plastycznosci krysztatow
wrazliwa na predkos¢ odksztatcenia. Teoria ta obejmuje mechanizmy poslizgu i bliZni-
akowania, uwzgledniajac ich wzajemne oddziatywania pod wzgledem praw umocnienia i
skutkow reorientacji sieci spowodowanej blizniakowaniem.

Aby przewidzie¢ makroskopowe zachowanie porowatych polikrysztatow, sfor-
mutowano model mikromechaniczny. Na poziomie pojedynczego porowatego krysztatu, do
uchwycenia odpowiedzi sprezysto-lepkoplastycznej stosuje sie addytywny schemat Mori-
Tanaki. W drugim kroku, implementuje sie addytywny schemat wewnetrznie zgodny, aby
oszacowac ogolne zachowanie porowatego polikrysztatu. Szczeg6towo opisano numeryczng
implementacje tego modelu na obu etapach, co pozwala na jego dalsze zastosowanie.
Przewidywania modelu mikromechanicznego sq weryfikowane i analizowane w stosunku
do obliczenn numerycznych MES. Dodatkowo, zostalo sformulowane nowe kryterium

uplastycznienia typu Gurson-Tvergaard-Needleman (GTN) dla krysztalow porowatych



przy uzyciu podejscia mikromechanicznego, z parametrami modelu skalibrowanymi za
pomoca symulacji MES dla reprezentatywnych komorek jednostkowych. Przeprowad-
zono porOéwnania miedzy nowo zaproponowanym modelem a istniejagcymi modelami w
literaturze. Wyniki tych badan maja znaczny potencjatl do przewidywania odpowiedzi

porowatych materiatéw polikrystalicznych w réznych scenariuszach obcigzenia.
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CHAPTER 1

Introduction

1.1 Motivation

This thesis focuses on modeling ductile failure, including void growth and coalescence,
in polycrystalline materials with strong anisotropy in terms of plastic properties, such as
Zn, Mg, and Ti alloys with a hexagonal close-packed (HCP) crystal structure or metals and
alloys of FCC crystal structure deforming by slip and twinning. Despite the advantageous
mechanical properties, such metals and alloys often exhibit deficiencies such as low
ductility, fracture toughness, and formability, restricting their potential numerous industrial
applications, cf. Appel and Wagner (1998); Proust et al. (2007); Agnew et al. (2001);
Mrdéz (2006). The mechanical response of these materials are significantly influenced by
their microstructure. Developing a reliable, physically based description of their behavior
under loading is crucial to mitigate the risk associated with unexpected failures in designs
utilizing these materials.

Metals and alloys characterized by strong anisotropy, demonstrate the following

advantageous properties: cf. (Kowalczyk-Gajewska, 2011):

* low density,
» exceptional specific strength and stiffness, even under elevated temperatures,

* robust corrosion resistance ranging from good to excellent.

A more profound understanding of the correlation between microstructure characteristics,
active plastic deformation mechanisms, and the void growth leading to ductile failure in
single crystals or polycrystalline metal and alloys is crucial for the effective utilization
of innovative multifunctional materials like advanced steels, magnesium, zirconium, or
titanium alloys in commercial applications. The increasing adoption of novel hexagonal
close-packed (HCP) alloys is notable. These alloys are gaining momentum in a wide array

of applications, spanning various fields such as:



* The aerospace and automotive sectors are exploring solutions to reduce fuel
consumption, such as incorporating Ti and Ti-Al alloys in the structural components
of aircraft engines and using Mg alloys in powertrain and various automotive

components.

» Biomedical applications involve the utilization of Ti alloys for hip and dental
implants, with the potential consideration of Zn alloys as a replacement due to their

improved biocompatibility.

* In the nuclear energy industry, Zr alloys are employed in nuclear reactor fuel
claddings.

 Additionally, in the electronics field, lightweight Mg alloys are employed in mobile
electronic devices.

The optimal utilization of the materials under consideration encounters specific challenges:

* Restricted ductility and formability at room temperature, particularly evident in Mg

alloys.

* Elevated processing costs due to the necessity of integrating advanced technological

processes, notably in the case of Ti and Zr alloys.

* Elevated sensitivity of properties to the material’s microstructure, marked by strong

anisotropy induced by crystallographic texture.

It is evident that employing advanced multi-scale analysis to study void growth and
coalescence in elasto-viscoplastic crystals with multiple deformation modes is crucial
for understanding the complex relationship between structure, fabrication process, and
properties, especially in a large strain regime. Specifically, this approach will enable a
comprehensive exploration of the connection between the evolving void volume and its
coalescence on one hand and the local plastic anisotropy of a single crystal on the other
hand, accounting for the applied loading conditions. Furthermore, the study will delve
into the intricate mutual interactions between void growth and microstructural changes in
the surrounding material. Determining such interrelations is a pivotal aspect in the realm

of engineering sciences at the intersection of material science and mechanics of materials.

1.2 State of the art

Over the past seven decades, extensive research has been carried out on the fracture

micro-mechanisms in ductile porous solids. Those research encompasses numerous
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experiments, development of micromechanical theories, and numerical models. The
ongoing interest in this field is evident through innovative techniques, diverse perspectives,
and philosophies adopted by scientists and engineers to understand the micro-mechanisms
of ductile fracture in materials. The initial part of this literature review provides a brief
exploration of experimental observations regarding ductile failure in materials at both
macro and micro scales. Subsequently, attention shifts to the mathematical description
(phenomenological models) of ductile failure at the macroscopic level. The review then
delves into a detailed analysis of numerical approaches applied to porous unit cell models,
spanning both macro and micro perspectives. Following this, the focus narrows down to
recent developments in proposing new models for porous single crystals, with a specific

emphasis on their implementation within finite element frameworks.

1.2.1 Experimental research on ductile fracture.

Scenarios of void initiation, growth and coalescence in polycrystalline metallic materials
and metal matrix composites. The literature contains fairly comprehensive documentation
on the ductile fracture of porous materials (Das, 2021; Wcislik and Lipiec, 2022). From
a macroscopic perspective, voids typically originate in the central region of the sample,
initiating crack propagation perpendicular to the sample loading axis in the neck area. As
the crack approaches the surface, reduced constraints cause the trajectory to shift, resulting
in a cup-and-cone fracture pattern (Wcislik and Lipiec, 2022). At the microscopic level,
ductile failure is characterized by the initiation, growth and coalescence of microscopic
voids. The ductile fracture micromechanisms, along with various microstructural and
fracture features under tensile deformation, are schematically represented in Fig. 1.1a.
Example of the experimental evidence of void nucleation caused by fragmentation of TiN
particles, along with a fracture surface showing dimples in IF steels, is shown in Fig. 1.1b.
It is observed that the complex process of micro-void nucleation, growth, and coalescence
typically begins at or beyond the ultimate tensile strength up on induced plastic strain and
stress triaxiality.

Voids typically originate through either decohesion or the cracking of second phase
particles / inclusions (Tipper, 1949; Rogers, 1960; Gurland and Plateau, 1963; Ledn-Garcia
et al., 2010; Chen et al., 2018), at the intersection of the slip bands (Chan and Davidson,
1999) and at the grain boundaries (Gardner et al., 1977). Some observations concerning
these phenomena are discussed below.

In materials containing second-phase particles, initiation of voids can take place through
either the separation of the particle/matrix interface or the cracking of particles. The
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manifestation of either of the two specified mechanisms is significantly influenced by
the mechanical characteristics of both the matrix and the particle and the strength of the
matrix-particle interface. Typically, particle separation tends to occur predominantly in
relatively soft and ductile matrices. Nevertheless, a matrix with high yield stress, hardening
exponent, and particle stiffness enhances the occurrence of the particle cracking. The
interactions between slip and a second phase particle, typically less deformable than the
matrix, results in regions with highly localized stress, leading to cracking of particles or
interface decohesion (Bluhm and Morrissey, 1965; Gladman et al., 1971; Gurland, 1972).

Cox and Low (1974) emphasize the significance of non-metallic inclusion sizes in
determining the fracture resistance of AISI 4340 and maraging steels. In maraging alloys,
plastic fracture occurs through the initiation of voids resulting from the fracture of titanium
carbo-nitride inclusions. The subsequent growth of these voids leads to coalescence and
final fracture. In contrast, AISI 4340 steels experience fracture through the nucleation
and growth of voids formed by the fracture of the interface between manganese sulfide
inclusions and the matrix. The growth of these inclusion-nucleated voids is halted before
coalescence, as void sheets composed of small voids nucleated by cementite precipitates
connect these neighboring sulfide-nucleated voids. Controlling the sizes of these inclusions

is crucial for enhancing fracture resistance.

The involvement of dislocations in the formation of voids is demonstrated by Gardner
et al. (1977). He observed the transformation of dislocation structures into cells in
iron and beryllium crystals under high strains. The boundaries between these cells,
characterized by ample surface energy, initiated voids without requiring additional internal
stress concentrators like precipitates or second phase particles. In the Nb-Cr-Ti alloy, slip
band decohesion and potential void nucleation occur through an intersecting slip process,
with the decohered slip bands serving as void nuclei for further growth and coalescence,
ultimately leading to dimpled fracture (Chan and Davidson, 1999). Utilizing advanced
research techniques such as high-angle annular dark-field scanning transmission electron
microscopy (HAADF-STEM), the study by Noell et al. (2020) explores the fracture
mechanism of copper with copper oxide particles. The investigation reveals that voids
initially nucleate at the nanoscale within the diffuse neck of a deformed specimen, often
unrelated to the presence of second-phase particles. Only a select few of these void nuclei
grow from the nano to microscale, ultimately leading to failure. The initial stages of
void growth from the nanoscale to the microscale seem to be primarily influenced by the
location of void nuclei. Specifically, dislocation structures play a crucial role in controlling
the early phases of void growth, both for particle-free voids and those associated with

particles.
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FIGURE 1.1 a) Schematic representation of ductile fracture micro-mechanisms, illustrating various
fracture features observed during the failure process.(reprinted from Das (2021) with permission
from Springer Nature) b) Fracture surface of an IF steel tensile specimen showing a TiN particle
in a dimple of the fibrous zone. (reprinted from Ledn-Garcia et al. (2010) with permission from
Elsevier).

The work by Thompson and Williams (1977) delves into the distinction in failure
mechanisms between single-phase and two-phase Ti alloys. In two-phase Ti alloys, ductile
failure initiates at interphase interfaces, while in single-phase alloys due to lacking of
second-phase particles, void nucleation occurs through blocked slip bands. Similarly,
Van Stone et al. (1978) focuses on the failure mechanisms of Ti alloys at cryogenic
temperatures. Metallographic sections of specimens deformed under cryogenic conditions
reveal elongated dimples nucleating as cigar-shaped voids at offsets in twin boundaries
or grain boundaries, resulting from the intersection of intense slip bands or deformation

twins with those boundaries.



There is also a lot of experimental observation concerning the stage of the void growth
and in general, damage evolution. The experiments conducted by Poole and Charras
(2005) involved generating varying levels of initial damage in the Al-Si model composite,
which was then tested with the matrix heat treated under identical conditions. The findings
unambiguously demonstrate that pre-existing damage reduces the overall flow strength of
the materials and enhances the strain to necking. Thus, the decisive factor influencing
tensile fracture is not the extent of damage but rather the rate of damage evolution and its

impact on the overall work-hardening behavior.

Regarding failure in DP steels, the fracture of martensite plays a pivotal role. The
detailed analysis of microdamage development in DP1000 steel under tension was conducted
by Alharbi et al. (2015). Strength tests were performed within the scanning electron
microscope (SEM) chamber, capturing the microstructure of the material in the chosen
area at regular intervals. Cracking of the particles was observed at a relatively small
overall strain, around 2%. Upon further strain increase, the martensite phase eventually
cracked. The increase of deformation caused the crack to transform into a void, acting as
a stress concentrator and it becomes the cause for crack propagation in the ferrite. The
substantial intensity of this phenomenon underscores its predominant role in the failure
of DP1000 steel. Similar conclusions were drawn by the authors of Santos et al. (2019).
Investigation into the microdamage development in DP600 and DP800 steels under uniaxial
tension revealed that at low strain, the globular aluminum oxide inclusions acted as void
initiators. However, with higher deformations, voids were observed to form near the

ferrite—martensite interfaces, within the ferrite matrix, and close to martensite islands.

In a recent study, Pathak et al. (2020) extensively explored the impact of stress state on
void nucleation in DP780 and CP800 steels through various strength tests, including simple
shear, hole tension, v-bending, and biaxial tension. Microtomography was employed to
capture the material microstructure in the region of interest during each test, and nucleation
intensity was quantified as the average number of nucleated voids per 1 mm? of material
in the process zone. Biaxial tension tests exhibited the highest void nucleation, with

3 at failure. In contrast, hole tension tests recorded a

approximately 30,000 voids/mm
lower nucleation intensity, ranging from about 9,500 to 18,000, depending on the material.
Shearing tests showed the lowest nucleation intensity, with values between 3,000 and 4,000

voids/mm?

at failure. Han et al. (2022) conducted experimental investigations on the
mechanical damage induced during the shearing process of QP980 steel. They identified
two distinct types of microvoids based on the nucleation site. Numerous microvoids
with small sizes (<5 pm) were formed at phase interfaces, while a few larger microvoids

originated from inclusions, exceeding 5 ym. The evolution of a V-shape microcrack from
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FIGURE 1.2 Modes of void coalescence (observed in steels) a) Internal necking, b) Internal shearing,
and c) necklace coalescence (reprinted from Pineau et al. (2016) with permission from Elsevier).

the microvoids distributed on the sheared surface emerged as a critical factor, as it could
lead to edge failure in subsequent forming processes.

In AA2024-T3 under shear loading, as studied by Tancogne-Dejean et al. (2021),
pre-existing voids rotate and elongate with mechanical loading, while intermetallic particles
fail early in a brittle manner, leading to void nucleation. The newly-formed voids grow,
hindered by fragmented particles, leading to micro-cracks. The process ends with the
observation of strain localization bands and void-sheet failure.

Experimental observation concerning the last stage of ductile damage, i.e., void
coalescence and/or strain localization are also numerous. Microvoids, once initiated,
undergo growth within a plastically deformed solid matrix. This growth is influenced
by plastic strain and hydrostatic stresses, with a connection to weak dependence on the
spatial distribution of microvoids (Benzerga and Keralavarma, 2009). Various numerical
and constitutive models proposed by scientists related to void growth will be discussed
after an experimental literature review. Stable void growth is characterized by relatively
uniform plastic strain distribution, but beyond a certain point, strain localization occurs
between adjacent voids, limiting material ductility. Although the void volume fraction is
a crucial parameter in the study of microvoid growth, various factors beyond void volume
fraction also significantly influence the processes of void growth and strain localization.
Material softening can occur through various mechanisms such as microstructural changes,
thermal interactions, and damage evolution. This leads to a localized degradation of the
material’s load-carrying capacity, causing strain localization in a thin band (Fressengeas
and Molinari, 1985).

The initiation of strain localization is influenced by factors like stress state, material



properties, and material porosity (Needleman and Rice, 1978). Strain localization can also
occur through void coalescence, a critical mechanism in the failure of ductile materials.
This phenomenon exhibits various modes influenced by microstructural factors, loading
conditions, and plastic flow characteristics, categorized into three main modes (Pineau
et al., 2016). The first mode involves coalescence by internal necking of the intervoid
ligament (Fig. 1.2a), initially discussed by Argon et al. (1975). The second mode is
coalescence by internal shearing of the intervoid ligament (Fig. 1.2b), already discussed
above (Cox and Low, 1974), where localized shear can lead to void sheeting and local
failure. The third mode is necklace coalescence (Fig. 1.2c), where voids link up along their
length, observed in steels with elongated inclusions. Necklace coalescence is regarded
as a crucial mechanism in the development of ductile delamination cracking (Pala and
Dzioba, 2018).

In a recent investigation by Naragani et al. (2020), the void coalescence and ductile
failure in IN718 were explored using high-energy synchrotron X-ray tomography and
diffraction. The study characterized the initial porosity and its evolution under tensile
loading through micro-tomography. Two distinct mechanisms of ductile failure emerged:
intervoid shearing, associated with grains exhibiting low stress triaxiality, and intervoid
necking, linked to grains with high stress triaxiality. Notably, despite the prevalence of
high stress triaxiality in many grains, the research revealed that factors like plasticity and
stress heterogeneity within the lattice of the grains between voids play pivotal roles in

predicting the onset of intervoid necking-based failure.

The ongoing discussion, based on experimental findings, has been focused on exploring
void nucleation sites and coalescence mechanisms across various polycrystalline materials.
In view of the presented review, it is evident that voids nucleate due to decohesion
and cracking of different kinds precipitates (intermetallics, second phase particles), the
separation of the particle/matrix interfaces as well as at the intersection of slip bands and
other dislocation structures, with the stress condition and the stiffness difference between
the particle and matrix being noted as playing a role. Additionally, voids can emerge at
grain and twin boundaries, particularly noticeable in HCP alloys. Once formed, voids
are growing within the plastically deformed matrix, influenced by their location and the
prevailing stress state. Eventually, stable void growth leads to strain localization, thereby
limiting material ductility. Three primary mechanisms of void coalescence have been

identified: internal necking, void sheeting, and necklace coalescence.

Role of material microstructure on void initiation, growth in FCC and HCP lattice
structures. The forthcoming literature study places greater emphasis on experimental
investigations pertaining to metals with FCC and HCP lattice structures, encompassing
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both macro and single crystal levels.

In their study, Barrioz et al. (2019) investigated the role of dislocation channeling
in void growth within FCC crystals, focusing on Solution Annealed 304L austenitic
stainless steel. Through experiments and simulations, they highlight significant interactions
between voids and dislocation channels, especially under irradiated conditions, revealing
distinct localization patterns. As the applied strain increases, deformation becomes more
homogeneous at the void scale through the activation of secondary channels. The research

emphasizes the importance of these dynamics for ductile fracture modeling.

The interaction of lattice dislocations with grain boundaries in proton- and ion-irradiated
austenitic stainless steels was examined by Cui et al. (2014). The importance of the local
resolved shear stress in determining the ability of dislocations to propagate through grain
boundaries and the role of strain energy density minimization in slip transmission prediction
was emphasized. When the grain boundary cannot facilitate slip, alternative relief methods
such as out-of-plane displacement and crack nucleation on the grain boundary are observed;
however, in the experiments conducted, it was not possible to determine the sequence
of these events. These observations suggest implications for the modeling of mechanical
properties in irradiated metals.

In the experimental study by Furukimi et al. (2017), void nucleation behavior in single
crystal iron during tensile tests was investigated, emphasizing the influence of specimen
size and slip systems. It was determined that void nucleation in single crystal iron requires
the presence of multiple slips. While the smaller specimen manifested single slip, the
larger one demonstrated multiple slip systems, resulting in voids with diameters ranging
from 50-100 nm along slip bands. Accumulation of dislocations across various slip planes
in the larger specimen corroborated the presence of multiple slip systems, where voids
were distinctly observed.

In the research by Perez-Bergquist et al. (2011), a detailed quantitative characterization
of damage and substructural evolution in bicrystal copper is presented. Upon examining
the shocked bicrystals using optical microscopy, widespread void formation was observed,
both at grain boundaries and within individual crystals. The occurrence of voids was
notably influenced by crystallographic orientation, with a pronounced number appearing
in the [1 0 0] grain. While most of each grain retained its orientation post-spalling,
notable misorientations were found near grain boundaries. Additionally, defects with up
to 18° misorientations adjacent to void/matrix interfaces emphasized the significance of
substructural changes in void formation during dynamic loading.

The fracture behavior of a rolled AA7075-T651 aluminum plate under quasi-static
loading was investigated by Fourmeau et al. (2013), emphasizing the influence of stress
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state and plastic anisotropy. They found that strain to failure in in-plane uniaxial tension
varied significantly with direction and ductility, resulting in cup-and-cone or shear mode
fractures. Notched tensile specimens exhibited reduced strain to failure due to increased
stress triaxiality, while in-plane upsetting tests consistently surpassed uniaxial tension tests,
likely due to lower stress triaxiality. Through-thickness tests showed limited ductility,

with fractures inclined at a 45° angle to the loading axis.

Experimental observations on ductile failure mechanisms in FCC crystals have revealed
a range of phenomena across different materials. Annealed steels exhibit void growth
influenced by dislocation channeling, while austenitic stainless steels show cracks initiated
by the interaction of lattice dislocations with grain boundaries. In aluminum specimens,
the stress state and anisotropy play a significant role, leading to various failure modes such
as in-plane cup and cone failure transitioning to shear failure. Void nucleation in Fe single
crystals depends on the activity of multiple slip systems, while in Nickel superalloys, void

growth is driven by dislocations.

Microscopic damage mechanisms in hot-rolled magnesium alloy AZ31B were examined
under both uniaxial and controlled triaxial loadings by Kondori and Benzerga (2014). It
was determined that magnesium alloys with void-forming second phase particles might
exhibit enhanced tolerance to ductile damage accumulation over the one commonly reported
for uniaxial loading scenarios. When subjected to moderately triaxial loading, AZ31B
displayed increased ductility, marked by the activation of multiple deformation systems.
This led to a shift from twinning-controlled fracture to microvoid coalescence (microscale).
The strain to failure decreases with increasing stress triaxiality, indicating pronounced
void growth activity. Nevertheless, the presence of shallow dimples on fracture surfaces
under high triaxialities implied premature coalescence of initiated microcracks. Fig. 1.3a
illustrates a twin-sized void located near the tip of the macroscopic slanted crack. The
arrow marks in the Fig. 1.3b indicates the varying sizes of twin related microcracks under
uniaxial loading. The influence of void volume fraction on the growth and linkage of
pre-drilled holes in pure magnesium was investigated by Nemcko et al. (2016). It was
determined that the effects of the void fraction were overshadowed by the heterogeneous
deformation associated with the local microstructure. Notably, strain concentrations at
twin and grain boundaries were identified to be significantly higher than macroscopic
strain levels. Such boundaries are believed to have a critical strain threshold for fracture

initiation, ultimately resulting in the premature linkage of holes.

In the research conducted by Nemcko and Wilkinson (2016), the processes of nucleation,
growth, and linkage of microvoids in commercially pure magnesium were investigated
using x-ray computed microtomography. It was observed that flat penny-shaped voids

10



FIGURE 1.3 SEM micrograph of the longitudinal section of a uniaxial tensile specimen from the
Mg alloy AZ31B, halted at the onset of macroscopic crack formation. The image highlights
(a) a twin-sized void positioned near the tip of the slanted macroscopic crack and (b) several
twin-related microcracks of varying sizes located near the primary crack.(reprinted from (Kondori
and Benzerga, 2014) with permission from Springer Nature).

predominantly nucleated early in the deformation process, especially at twin and grain
boundaries. As deformation progressed, void growth accelerated, with a preference for
expansion along these boundaries, resulting in irregular flat void shapes. Ultimately,
voids linked via the void sheeting mechanism, leading to a widespread shearing failure
throughout the material. The distinctive faceted fracture patterns in magnesium were
attributed to the failure of twin boundaries.

The study by Basu et al. (2017) demonstrated that plastic anisotropy can be altered to aid
ductility in Mg alloys, as evidenced by comparing samples of different textures produced by
severe plastic deformation. It provides insights into the correlation between anisotropy and
ductility. The study proposes a simple micromechanical model to understand the complex
relationship between plastic anisotropy and ductility by introducing the anisotropy effect
on ductility (AED) index, which can be tuned through processing to enhance ductility at
comparable strength levels.

In the experimental study by Kondori et al. (2018), synchrotron radiation laminography
revealed diffuse damage in Mg alloy AZ31, indicative of its ductile behavior. Void formation
and coalescence were widespread, originating as flat voids that varied in blunting based on
factors such as spatial location, overall triaxiality, and local strain levels. The transition from
damage to fracture was marked by macroscopic cracks, primarily from void coalescence

in the plate’s rolling direction, evolving into a corrugated crack pattern.

In addition to microstructural features, the shape of voids and the orientation of void
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bands also influence the mechanical response of both FCC and HCP crystals. In their
research, Fadida et al. (2020) explored the mechanical response of Ti6Al4V specimens
with artificial voids under varying strain rates and shear stress states. They observed that
void shape notably influences failure displacement in shear compression specimens under
quasi-static conditions. Additionally, an increased number of voids at a constant volume
fraction decreases this displacement. Across both quasi-static and dynamic loadings, the
presence of voids consistently reduced the displacement to failure, while void spacing and
orientation showed minimal impact on the mechanical behavior of specimens.

The influence of void band orientation and crystallographic anisotropy on void growth
and linkage in magnesium and copper sheets was explored by Nemcko et al. (2016). For
copper, as the void band orientation angle increases from 0° to 45° relative to the tensile
axis, the mechanism shifts from internal necking to shear localization. This shows the
significant impact of void band orientation on the growth and linkage of holes in copper.
Conversely, in magnesium, void band orientation does not significantly impact the growth
and linkage processes. The interruption in hole growth is attributed to failures at twin
and grain boundaries, with the local microstructure prevailing over void band orientation
effects.

In summary, the experimental observations of ductile failure in HCP materials,
encompassing pure Mg, Mg alloys, Ti, and Zr alloys, uncovers various underlying
mechanisms. In pure Mg, stress concentrations at twin and grain boundaries initiate the
formation of penny-shaped voids, which gradually grow and eventually merge through
void sheeting. In Mg alloys, damage initiation occurs at second phase particles and
deformation twins. Factors such as spatial location and strain levels lead to void blunting.
Notably, AZ31B Mg alloys demonstrate enhanced ductility under moderate triaxialities
due to activity of multiple deformation systems, transitioning from twinning failure to
microvoid coalescence under differing stress conditions. In titanium samples, the presence
and shape of voids significantly influence failure, especially under shear compression,
with crystal orientation further impacting void growth. Additionally, in Mg sheets the role
of void band orientation dictates the failure. These observations highlight the intricate
relationship between microstructure, stress conditions, and deformation mechanisms in

HCP materials, particularly during ductile failure.

1.2.2 Macroscopic models for porous ductile materials

In this part, classical mechanical models of ductile failure will be discussed which

are set in the macroscopic phenomenological plasticity or viscoplasticity. The pioneering
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work on void growth in nonlinear solids was conducted by F. A. McClintock (McClintock,
1968). It was observed in the experiments that long, roughly cylindrical voids frequently
form in the neck of a tension bar when subjected to significant deformation. Based on these
observations, a fracture criterion was formulated to describe fracture through the growth
and coalescence of preexisting holes in plastic materials. This criterion was formulated
by extrapolating the existing solution for elliptical holes in viscous materials under both
varying and constant stress ratios. In addition to that, the classical closed-form solution of
relationship between the void growth rate and remote stress value for circular hole in von
Mises plastic material is presented. The criterion demonstrates a strong inverse dependence
of fracture strain on transverse tensile stress, as well as anisotropic fracture behavior due
to the shape and spacing of the holes. Next, an approximate relation to depict the growth
of a spherical void within a rigid, infinite, perfectly plastic material subjected to a uniform
remote strain field was given by Rice and Tracey (1969). It was found that the rate of
void enlargement was enhanced over the remote strain rate by a factor that exponentially
increases with the ratio of mean normal stress to the yield stress. The findings further
indicated a pronounced decrease in fracture ductility as hydrostatic tension increased. In
the seminal work of Gurson (1977), limit analysis was applied to derive the homogenized
macroscopic yield potential for the voided material which depends on the macro-stresses
and the volume fraction of voids. According to this outcome the macroscopic plastic
flow becomes pressure sensitive and a homogenized solid is compressible even though the

respective matrix is governed by the incompressible Huber-Mises plasticity.

One of the first finite element models of a porous material in terms of a unit
cell representing a doubly periodic square array of circular cylindrical voids within an
elastic-plastic medium under plane-strain conditions was presented by Needleman (1972).
A variational principle was employed as the basis for implementing the finite-element
analysis. The research yielded insights into change in void shape and size as the overall
strain increases, the tensile behavior of material in the presence of voids, and the evolution
of the plastic zone surrounding a void. By comparing the results with an original Gurson
model it was found by Tvergaard (1981, 1982) that the tuning parameters ¢; and ¢
need to be introduced to refine the predictions of the constitutive Gurson model into
closer-agreement with the comprehensive numerical analyses of a periodic array of voids.
Tvergaard and Needleman (1984) investigated necking and failure in a round tensile test
specimen. They utilized elastic-plastic constitutive relations that take into account the
initiation and growth of micro-voids. An equivalent damage parameter function was
introduced by them to substitute the real volume fraction of voids in the initial Gurson
model, addressing the consequences of abrupt void coalescence during failure. In this way
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the widely used GTN model came to existence. The yield criterion has the following form:

2
o = (”) + 2¢.f cosh (332‘””) — (1 +qf?) =0, (1.1)

Ty Ty
where o, is the equivalent Huber-Mises stress, o, is the flow stress of the matrix material,
f is the void volume fraction, o,,, is the hydrostatic mean stress, and ¢;, and ¢, are tuning

parameters (when ¢; = ¢» = 1 the original Gurson model is recovered).

Since the introduction of the GTN model, many subsequent studies have validated
it under various loading conditions and extended the approach to account for different
void shapes, anisotropy, and other factors. Koplik and Needleman (1988) investigated the
parameter dependence of void growth and coalescence by simulating a periodic array of
spherical voids within an isotropically hardening elastic-viscoplastic matrix. The numerical
outcomes were related to the rate-sensitive version of the Gurson model. A transition
from a generalized axisymmetric deformation state to a mode of uniaxial straining was
demonstrated, resulting in accelerated void growth and coalescence within porous plastic
materials. Gologanu et al. (1993, 1994) extended the classical Gurson analysis to ellipsoidal
volumes containing confocal ellipsoidal cavities. A two-field estimation of the overall
yield criterion was presented, which was further approximated to a Gurson-like criterion
dependent on the “shape parameter” of the cavity.

Finite deformation constitutive relations for plastically dilatant materials, encompassing
ductile fracture damage, were formulated by Rousselier (1981). These relations, which
characterize the ductile fracture of metals, were deduced from a macroscopic perspective,
based on the existence of the quasi-potential of dissipation and the normality rule for
plastic strain rate and internal variable rates. An exponential correlation between ductile
fracture damage and stress triaxiality was demonstrated by the model. The yield function

has the following form, different from the Gurson model:
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where p is the density of the material, and 1! («) characterizes the hardening curve of the

material.

A three-dimensional model for ductile fracture in metals was introduced by Thomason
(1985), encompassing the influences of volumetric growth and shape change of microvoids
within triaxial stress fields. The condition marking the plastic limit-load failure of the
intervoid matrix at the onset of void coalescence was outlined by this model. Theoretical

predictions of ductile fracture strains derived from this model were found to align well
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with experimental observations. This approach to micro void coalescence, has gained
substantial attention in recent times.

Leblond et al. (1994) proposed approximate macroscopic potentials for the viscoplastic
solids containing cavities of cylindrical or spherical shape, based on the exact form of
overall potential of a porous viscoplastic volume element. Pardoen and Hutchinson (2000)
introduced the enhanced Gurson approach for spheroidal voids by heuristically extending
the existing Gologanu-Leblond-Devaux model, addressing void shape effects, and the
Thomason model for the initiation of void coalescence. This new framework considers
both material flow characteristics and void dimensions. The efficacy of the proposed

framework was subsequently evaluated using void cell computations.

Extension of the Gurson approach to the anisotropic Hill quadratic yield function for
the metal matrix was done by Benzerga and Besson (2001). It was demonstrated that the
anisotropy of the metal matrix impacts void evolution through a single scalar parameter,
which serves as an invariant of the IVth order plastic anisotropy tensor, defining the Hill
criterion. The criterion has the following form:
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where o’ is the stress deviator, H is the fourth-order material dependent macroscopic
anisotropy tensor, X, is the mean stress, and / is the anisotropic factor. For isotropic
matrix i.e, H = [*, h = 2, the criterion reduces to Gurson yield criterion (Eq. (1.1)).

As will be discussed below, these seminal works laid the foundation for numerous
studies that extend the results by incorporating additional features of matrix microstructure,
pore geometry, and specific loading conditions, as well as their evolution during the
deformation process. Monchiet et al. (2008), Keralavarma and Benzerga (2010) formulated
plastic constitutive relations for anisotropic porous materials with spheroidal voids oriented
arbitrarily withrespect to the surrounding orthotropic matrix using nonlinear homogenization
theory. Similarly, Morin et al. (2015) extended these criteria for spheroidal voids and the
criterion by Madou and Leblond (2012a,b) regarding general ellipsoidal cavities within
plastically isotropic matrices to arbitrary ellipsoidal voids in anisotropic matrix.

Nahshon and Hutchinson (2008) introduced a modification to the Gurson Model,
incorporating the third stress invariant to account for damage growth during low triaxiality
straining in shear-dominated situations. Meanwhile, Stewart and Cazacu (2011) put forth
a macroscopic anisotropic yield criterion tailored for porous materials, characterized by
an incompressible and anisotropic matrix that exhibits tension-compression asymmetry.

This yield criterion is derived from micromechanical considerations and non-linear
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homogenization, and it accommodates strength-differential effects. The developed criterion
reduces to the yield criterion proposed by Benzerga and Besson (2001) (Eq. (1.3)) if
the matrix material does not exhibit tension-compression asymmetry. The yield surfaces
obtained using the anisotropic yield criterion proposed by Stewart and Cazacu (2011) are
compared with those from the full-field dilatational viscoplastic fast Fourier transform
(FFT) analyses for porous polycrystals undergoing twinning at the single-crystal level.
Both methods demonstrate a pronounced sensitivity to the third invariant of the stress
deviator, which is linked to the anisotropy and tension-compression asymmetry in the
plastic behavior of the matrix as indicated by Lebensohn and Cazacu (2012).

Agoras and Ponte Castafieda (2014) introduced a finite strain constitutive model of
macroscopic behavior of porous viscoplastic solids, considering changes in void size,
shape, and distribution due to deformation. Utilizing the ‘iterated variational linear
comparison’ procedure of Agoras and Ponte Castafieda (2013), the model employs
consistent homogenization estimates to describe both the instantaneous effective behavior

of the porous material and the development of its inherent microstructure.

The effects of stress triaxiality, Lode parameter, and initial void volume fraction on
the behavior of void collapse and void coalescence were investigated by Liu et al. (2016)
through micromechanical modeling, focusing on the energy perspective (specifically change
in elastic energy relative to the plastic work). The numerical results revealed that the loci
of strain-to-onset of void collapse and void coalescence were found to be discontinuous
functions of stress triaxiality, with a transition zone separating the two behaviors. Within
this region, characterized by low triaxiality, there exists an interplay between void collapse
and coalescence.

Morin et al. (2017) proposed a Gurson-type model for ductile porous materials,
incorporating both isotropic and kinematic hardening. This model is based on a “sequential
limit-analysis” of a hollow sphere made from a rigid-hardenable material. The influence
of the heterogeneous distribution of microscopic hardening parameters near the voids is

comprehensively addressed in the model.

Srivastava et al. (2017) introduced the approach for characterizing the creep response of
porous cubic single crystals which is based on the orthotropic potential proposed by Stewart
and Cazacu (2011). This phenomenological model accounts for the impact of crystal
orientation and the applied stress state on the evolution of both creep strain and porosity
in porous cubic single crystals. When compared to results from three-dimensional finite
deformation unit cell analyses (Srivastava and Needleman, 2015), the phenomenological
model not only reproduces similar trends but also exhibits notable quantitative agreement

in certain cases.
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A micromechanical modeling approach for a rigid plastic Huber-Mises matrix material
with spherical voids, incorporating the coupling of mean-field homogenization with
Gurson’s single cavity stress-strain solution, was proposed by El Ghezal and Doghri
(2018). Alternative microstructures (rigid plastic inclusions embedded in the homogeneous
Gurson material) are homogenized using the generalized self-consistent (GSC) and Mori-
Tanaka (MT) models. Numerical predictions of effective yield surfaces are then compared
against full-field finite element (FE) and analytical results for a range of porosities.

Torki (2019) proposed a unified model for the description of void growth and coalescence
under combined tension and shear. This model was formulated through limit analysis
applied to a cylindrical elementary cell that encompasses a coaxial cylindrical void. Sartori
et al. (2019) developed analytical expressions for mechanical fields, such as macroscopic
stress, effective equivalent plastic strain rate in the matrix, and plastic multiplier, while
characterizing porous materials with either the Gologanu et al. (1997) or Gurson (1977)
yield surfaces. This approach is suitable for thermo-viscoplastic materials that show strain
hardening and is not confined to materials that behave perfectly plastic. A plastic instability
criterion for porous plastic solids was derived by Keralavarma et al. (2020). The failure
criterion is contingent upon the stress triaxiality, Lode parameter, porosity, and the strain
hardening characteristics of the material. It distinctly indicates that failure arises due to
the interplay between strain hardening and softening induced by void growth within the
coalescence band.

The distinctive mechanical behaviors of the GTN and Rousselier models were discussed
by Rousselier (2021). The Rousselier model demonstrates the capability to achieve strain
localization in a plane at all stress triaxialities, while the GTN model is limited to
pointwise localization for the ultimate mechanical state, a constraint that can be alleviated
through finite element discretization. Due to its analytical form, the Rousselier model was
incorporated by the author into the multiscale framework of self-consistent polycrystalline
plasticity, allowing for the modeling of various mechanisms related to plasticity and ductile
fracture at the slip system scale.

An isotropic multi-surface model, which incorporates inhomogeneous yielding, was
formulated by Torki et al. (2021). This model was employed to explore the influence
of the third stress invariant on ductile failure. The effective yield surface of a material
containing voids is influenced by all stress invariants, including the third stress invariant.
The influence of the third stress invariant is particularly prominent at low stress triaxiality

and is attributable to the occurrence of inhomogeneous yielding.

In this section, various phenomenological macroscopic models addressing ductile

failure in porous materials are reviewed. Initial analytical solutions for void growth were

17



provided by McClintock (1968); Rice and Tracey (1969). Models were then formulated
using thermodynamic principles, kinematic limit analysis, or variational homogenization
theory. The classical Gurson model, derived from kinematic analysis for the Huber-Mises
material, was extended in multiple ways, including the incorporation of tuning parameters
from unit cell FE computations to enhance model predictions, the inclusion of the third
stress invariant, hardening, tension-compression asymmetry, and general ellipsoidal shape
of voids with their distribution. Similarly, models for viscoplastic porous solids were
extended. Additionally, a GTN-type criterion was developed for anisotropic matrices
following the orthotropic Hill criterion and the similar extensions are proposed to this
model as those applied to the Gurson model. Most of these formulations are validated

with respect to FE computations.

1.2.3 Macroscopic finite element models for porous ductile materials

In this section, computational finite element (FE) models used to study ductile failure
in porous materials will be discussed. Recalling that the GTN model was validated
through numerical unit cell analyses in terms of yield point prediction, porosity growth,
and evolution of macroscopic response of porous materials, attention will now be directed

towards the FE approaches applied to further investigate ductile failure mechanisms.

The computational cell model, as employed by Faleskog et al. (1998), has demonstrated
successful application in predicting the nonlinear fracture behavior of low and moderately
hardening materials. Moreover, its adaptability extends to high hardening materials through
a two-step calibration procedure that encompasses the calibration of GTN and cell fracture
parameters. When appropriately calibrated, the cell model proves capable of accurately
capturing the load, displacement, and crack growth histories under various loading
conditions for high hardening materials. Barsoum and Faleskog (2011) explored the
influence of the Lode parameter on the failure of ductile materials, focusing on deformation
concentration in a narrow band with voids. They used a micromechanical model with a
3D unit cell (Fig. 1.4a) containing a single void and found that the third invariant of stress
impacts void shape evolution, and the growth rate increases as stress triaxiality decreases.
At moderate triaxiality, the Lode parameter strongly influences the behavior of the voided
band. However, in shear-dominant stress states, the localization criterion does not predict
material failure, suggesting a need for a micromechanical-based coalescence criterion in
such conditions. Using unit cell micromechanics, Wong and Guo (2015) investigated tensile
and shear void coalescence in ductile materials from an energetics perspective. Analyses

were conducted for general triaxial stress states under imposed periodic, homogeneous
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FIGURE 1.4 Schematic representation of various cell models used in computational studies of
ductile failure. (a) Unit cell with a spherical void, (b) void band cell inclined at an arbitrary angle,
(c) long cylindrical cell with a cylindrical void, where a slice can be cut and treated as a plane
strain model for analysis.

and symmetric boundary conditions, considering the presence and absence of shear stress
as dictated by stress triaxiality and Lode parameter. Shear stress was found to have
a significant impact on lowering the effective strains at the beginning and end of void
coalescence, based on the total elastic and plastic energies of the cell.

The impact of stage III and IV hardening on void expansion and coalescence was
evaluated by Lecarme et al. (2011) using FE unit cell calculations and a Kocks-Mecking
type hardening law. It was found that stage IV hardening can greatly delay void coalescence
while increasing ductility. Subsequently, the Kocks-Mecking rule was incorporated into the
Gologanu-Leblond-Devaux (GLD) porous plasticity model, and damage model predictions
were compared to FE results.

Tekoglu et al. (2015) employed a FE 3D model (Fig. 1.4b), incorporating a porous
band with a doubly periodic array of spherical voids, to explore two distinct mechanisms
of strain localization: macroscopic localization driven by void growth and localization
resulting from void coalescence. It was observed that simultaneous occurrence is evident
at low triaxialities, while a clear distinction is notable at high triaxialities. In a similar
manner, Guo and Wong (2018) applied the 3D void-sheet model to clarify the differences
in the onset of macroscopic strain localization and void coalescence, emphasizing that
macroscopic strain localization precedes void coalescence.

For a three-dimensional non-periodic void cluster, Trejo Navas et al. (2018) conducted
a parametric study to investigate void growth and coalescence. The simulations show
non-uniform and rapid void growth close to the plastic localization band. The coalescence

mechanism observed between voids involves internal necking, underscoring the significance
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of considering intervoid interactions. Using unit cell finite element computations, Reboul
et al. (2020) examined the impact of strain rate sensitivity on the onset of strain localization
and void coalescence in porous ductile materials. It was found that the applied stress
triaxiality and the strain rate sensitivity had a significant impact on both the critical porosity

and strain.

1.2.4 Crystal plasticity FE models for porous crystals

Recently, there has been a growing interest in characterizing void growth at the single
crystal level within the context of crystal plasticity framework. In this context, numerical
investigations involving 2D and 3D unit cells containing cylindrical or spherical voids
embedded within the single crystal matrix have been performed. Firstly, finite deformation
and rate-dependent crystal plasticity theory within the framework of 2D planar strain
models were employed by O’Regan et al. (1997) and Potirniche et al. (2006) to investigate
the growth and coalescence of microvoids in single crystals under in-plane strain-driven
boundary conditions. In a similar fashion, Liu et al. (2007) utilized numerical analysis on
a 3D unit cell containing a spherical void to investigate the behavior of void growth and
coalescence in FCC single crystals employing 3D rate-dependent crystal plasticity theory.
The results show that the growth patterns and shape of voids are strongly influenced by
the crystallographic orientation, especially under loading with a small strain biaxiality.
Additionally, Liu et al. (2007) presented results concerning microstructure evolution in
the presence of voids. Their focus lies on texture evolution within the unit cell and the
heterogeneity of deformation, assessed through the misorientation angle with respect to the
average orientation. It was concluded that the areas around the void exhibit concentrated
lattice rotation heterogeneity. Gan et al. (2006) compared results from the proposed
anisotropic slip line theory (Kysar et al., 2005) with experimental and finite element
findings concerning deformation around a cylindrical void in FCC single crystals. The
investigation involved in-plane uniaxial compression of a single crystal along the [001]
direction, with the cylindrical void axis aligned along the [110]. As elucidated in detail
by Gan et al. (2006), the application of the anisotropic rigid-plastic slip line theory in
this configuration ensures a plane strain condition in the [001] - [110] crystal plane under
the influence of compressive or tensile loading, incorporating three effective in-plane slip
systems. The study demonstrated that the measurements of lattice rotation agrees well
with the numerical results, particularly in illustrating the deformation sectors around the
void.

The effect of stress triaxialities, crystallographic orientations, and initial void volume

20



fractions on void growth and coalescence in FCC single crystals was examined by Ha and
Kim (2010) through the incorporation of rate-dependent single crystal plasticity into a 3D
finite element framework. It was demonstrated that the void growth is primarily dictated by
the crystallographic orientation at low stress triaxiality, while the impact of stress triaxiality
becomes more pronounced at higher values. The void undergoes a transformation into
prolate and oblate shapes influenced by stress triaxiality, and the formation of corners
was observed for specific crystallographic orientations. The growth rate of voids is more
rapid for smaller initial void volume fractions in comparison to larger ones. In a similar
manner, Yerra et al. (2010) employed 3D finite element calculations to study void formation
and coalescence in BCC single crystals. Furthermore, the Thomason void coalescence
criterion was utilized to investigate the onset of void coalescence. Using a crystal plasticity
constitutive model that considers self and latent hardening, Zhang et al. (2009) investigated
the effects of strain rate sensitivity, hardening, and the initial orientation of the loading axis
on necking under tensile loading of aluminum single crystals. The results demonstrated
that each of these parameters influences the localization strain. The influence of the creep
exponent, void spacing, initial void fraction, and Lode parameter under fixed triaxiality
on the dynamics of void growth and collapse in FCC single crystals was investigated
by Srivastava and Needleman (2013) using the unit cell FE methodology. In a similar
fashion Srivastava and Needleman (2015) analyzed the impact of crystal orientation, stress
triaxiality, and the third invariant of stress on void evolution in FCC single crystals using a
rate-dependent crystal plasticity framework. The study revealed that, for higher triaxialities
and asymmetric orientations, the Lode parameter has a significant impact on both porous

and creep strain evolution.

Concerning HCP crystals, only a few studies have been found in the literature. HCP
materials undergoing deformation through slip and twinning were exclusively investigated
by Prasad et al. (2015) in the case of cylindrical voids and by Selvarajou et al. (2019)
for spherical voids. An unexpected effect of twin-related reorientation was observed on
void growth, resulting in a substantial decrease in porosity under uniaxial c-axis loading.
Additionally, lattice reorientation due to twinning exhibited spatial non-uniformity within
the cell, leading to the formation of twin-matrix and twin-twin boundaries. The intersections
of these boundaries with the void became hotspots of strain concentration, resulting in facet

formation and the development of complex quasi-polyhedral shapes for evolving cavities.

Beyond single crystal case, Liu et al. (2009) and Dakshinamurthy et al. (2021) explored
void growth at grain boundaries using a bi-crystal unit cell model. The void shape in
bi-crystals is affected by triaxiality, Lode parameter, and the initial orientation of each grain.
Due to the heterogeneity of slip activity at higher triaxialities, voids tend to grow faster
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in soft orientations, while they collapse in hard orientation crystals. Furthermore, around
the void, heterogeneity of lattice rotation is observed, leading to grain fragmentation.
Additionally, Jeong et al. (2018) conducted CPFEM simulations on Representative Volume
Elements (RVE) of BCC single, bi, and tri-crystals, incorporating voids within the grains,
grain boundaries, and tri-junctions. The study indicated that the anisotropic expansion of
voids located at grain borders is impacted by inter-grain orientations. Frodal et al. (2021)
integrated damage evolution with a single crystal plasticity model to predict failure in
polycrystalline materials. The outcomes from this coupled model effectively replicated the
experimental responses of both smooth and notched tensile specimens with a high level
of accuracy.

In spite of predominant FE simulations, the fast Fourier transform (FFT) method,
dislocation dynamics or molecular dynamics calculations were used to study the void
initiation and growth in crystalline materials. Let us mention a few examples. Bringa
et al. (2010) examined the influence of the loading direction on void initiation in FCC
nano-crystalline metals through molecular dynamics simulations. The simulations revealed
that distinctive dislocation loops, originating at the surface of nanoscale voids, played
a crucial role in the outward growth of the voids and the formation and interaction of
these loops were found to be contingent on the loading orientation of the material. In
a similar manner, the impact of size effect on void growth in FCC single crystals was
demonstrated by Chang et al. (2015) using three-dimensional dislocation dynamics. A
dislocation-density-based evolution formulation was incorporated into a crystal plasticity
model by Shanthraj and Zikry (2012) to examine the mechanisms governing plastic
strain localization and void interactions in crystalline materials. Anisotropic dislocation
interactions, including junction formation and annihilation in FCC crystals, can lead to
significant variations in microstructural evolution and void interaction behavior based on
crystal orientation.

Lebensohn et al. (2013) introduced an FFT-based full-field formulation for calculating
void growth in porous polycrystalline materials. This formulation involves the integration
of polycrystal plasticity and dilatational plasticity. Subsequently, the obtained results were

compared with unit cell finite element calculations.

1.2.5 Crystal plasticity phenomenological models for porous crystals

Regarding the analytical description of porous crystals, there are limited contributions.
A micromechanical two-level homogenization approach for modeling ductile damage in

polycrystalline materials with hard intracrystalline particles was proposed by Bonfoh
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et al. (2004). At the single crystal level (micro-meso transition) with hard particles,
they proposed a novel hardening law that considers particle and dislocation interactions.
Additionally, the formation of cavities at the Particle-Crystal interface was predicted based
on the comparison of elastic energy of the particle and surface energy formation. For

meso-macro transition to polycrystal level self-consistent approach was used.

Han et al. (2013) proposed a phenomenological extension of the Schmid multisurface
to incorporate porosity in FCC single crystals. This extension was developed using the
micromechanical variational homogenization method introduced by DeBotton and Ponte
Castafieda (1995). It is noteworthy that the original outcome of this method was a quadratic
criterion in terms of the void volume fraction and dilatational stress. Subsequently, this
criterion was adapted to a Gurson-type model through the use of a power expansion of
the cosh(x) function. Furthermore, three tuning parameters were introduced based on
the Tvergaard-Needleman concept, and these parameters were calibrated using unit cell
calculations. Ling et al. (2016) proposed an elasto-viscoplastic model for porous single
crystals at finite strains, extending the yield function developed by Han et al. (2013)
for porous single crystals at infinitesimal strains to include finite strains. The porosity
evolution and strain hardening of the single crystal matrix is incorporated in the model.
Furthermore, the proposed GTN-type framework has been integrated into the large strain
constitutive model and implemented in the finite element code. Preliminary FEM results

are provided for uniaxial tension tests conducted on notched single crystal specimens.

Models relying on the Schmid criterion (as the Han et al. (2013) yield criterion)
are recognized to encounter challenges in the distinct selection of active slip systems,
necessitating special procedures in the finite element implementation of the model. This
difficulty can be circumvented by employing the regularized Schmid law of 2n degree
(Arminjon and Bacroix, 1991; Gambin, 1991; Kowalczyk and Gambin, 2004). Following
this observation, Paux et al. (2015); Paux et al. (2018) formulated a GTN-type model based
on the regularized law. Notably, the resulting yield condition comprises only two fitting
parameters, compared to the three parameters present in the proposal by Han et al. (2013).
This condition was derived by initially assuming n = 1 and following the methodology of
kinematic limit-analysis applied to a hollow sphere made of an anisotropic Hill matrix, as
outlined by Benzerga and Besson (2001). Subsequently, the result was ad-hoc generalized
ton > 1. It is important to highlight that one of the tuning parameters in the development

process is referred to as the anisotropy coefficient.

There is also a family of analytical models, which are formulated by means of the
variational homogenization approach. Idiart and Ponte Castafieda (2007) derived variational
bounds on effective potentials based on the generalized linear comparison method for
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non-linear composites with crystalline constituents. This application was specifically
focused on a two-phase porous crystalline material, which consists of a viscoplastic single
crystal phase and isotropically and randomly distributed cylindrical pores. Applying
similar methodology, constitutive models for nonlinear voided polycrystals, incorporating
dilatational viscoplastic behavior, were developed by Lebensohn et al. (2011); Lebensohn
et al. (2012) using the variational linear comparison approach. The model predictions
were subsequently compared to results from full-field numerical simulations, employing
FFT method, to investigate the influence of various microstructural parameters such as
overall porosity and matrix phase texture.

Mbiakop et al. (2015b) proposed a rate-dependent constitutive model for porous single
crystals with elliptical voids under plane strain conditions for arbitrary slip systems. The
model is based on Ponte Castafienda (1991) variational nonlinear homogenization approach
and Danas and Aravas (2012) modified variational method. The model was validated
using full-field FE simulations of periodic unit cells, which took into account numerous
parameters such as crystal anisotropy, void shapes and orientations, creep exponents,
and loading conditions. Similarly, Mbiakop et al. (2015a) extended the model to three
dimensions, specifically addressing porous single crystals with ellipsoidal voids with

arbitrary crystal anisotropy.

A generalized iterated variational homogenization (IVH) method was developed by
Song and Ponte Castafieda (2017b) based on the combination of the nonlinear variational
homogenization method and the iterated homogenization procedure introduced by Agoras
and Ponte Castafieda (2013). This method was utilized to estimate the effective flow
potential of high anisotropic, low lattice symmetry HCP porous viscoplastic single crystals.
The macroscopic response of porous HCP crystals to axisymmetric loadings was examined,
and it was shown that porosity, void shape, and crystal anisotropy all influence the overall
size, shape, and orientation of the macroscopic gauge surfaces, which is defined as the
single equi-potential surface in stress space to represent effective behavior of the porous
single crystal. Similarly, a finite-strain constitutive model for the macroscopic response of
porous viscoplastic single crystals was developed by Song and Ponte Castafieda (2017a),
utilizing the fully optimized second-order (FOSO) variational method of Ponte Castafieda
(2015), in conjunction with an appropriate generalization of the iterated homogenization
procedure by Agoras and Ponte Castafieda (2013). This fully optimized second-order
(FOSO) variational approach was used by Song and Ponte Castafieda (2018a,b) to derive
finite-strain constitutive models for the macroscopic response of porous polycrystals with

huge pores randomly scattered across a fine-grained polycrystalline matrix.

Das et al. (2021) developed a constitutive model for porous polycrystals with
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pressurized pores, taking into account the evolution of pore pressure, shape, and matrix
texture with deformation. This was accomplished using an iterative second-order variational
homogenization approach proposed by Song and Ponte Castafieda (2018a) for vacuous
pores. The porous polycrystal is thought of as a three-scale composite, and the model
was used to study the macroscopic response of porous ice-type HCP polycrystals. The
existence of pressured pores can cause solid polycrystal-like behavior and have a major
hardening influence on the overall response.

A reduced micromorphic crystal plasticity model at finite deformations was formulated
by Ling et al. (2018), based on a single scalar variable known as microslip. This proposed
model was subsequently utilized to investigate strain localization phenomena, as well as void
growth and coalescence, in FCC single crystals. The investigation of viscoplastic behavior
in voided cubic crystals under hydrostatic loading was explored in a micromechanical
study by Joéssel et al. (2018). Three distinct methodologies were utilized, encompassing a
Gurson-type estimate treating crystals as hollow sphere assemblies, a sequential laminate
approach of infinite rank, and a complex unit cell representation of a periodic medium.
Results revealed consistent agreement among the approaches under weak plastic anisotropy

conditions. However, discrepancies arose under conditions of strong plastic anisotropy.

Scherer et al. (2019) derived closed-form analytical solutions for single slip under
conditions of positive, zero, and negative strain hardening within a periodic unit cell
subjected to simple shear. These solutions were subsequently employed to validate the finite
element implementation. Additionally, they proposed an enhanced model incorporating
non-linear saturating softening behavior, which was applied to investigate the interaction

between voids and slip bands.

A crystal plasticity based constitutive model for porous single crystals was proposed
by Siddiq (2019), accounting for damage resulting from void growth and coalescence.
A detailed parametric assessment has been conducted to explore the impact of various
parameters on material response. Subsequently, the proposed model has been implemented
inafinite element framework. A coalescence criterion for porous single crystals with periodic
arrays of voids was proposed by Hure (2019), based on limit-analysis, homogenization,
and crystal plasticity. Good agreement with numerical results for various configurations
has been demonstrated. The criterion considers crystal orientation, void lattice, and their
interactions.

A ductile damage model was proposed by Kong et al. (2023), which integrates classical
porous plasticity and the Coulomb-Rousselier-Luo (CRL) model at the slip system scale
into a mean-field polycrystalline framework. The proposed model was applied to sheet

specimens made of an anisotropic aluminum alloy under non-proportional loading.
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In addition to the literature mentioned above, it should be noted here that some recent
review papers have been published, which encompass profound literature pertaining to
ductile failure. Pineau et al. (2016) provided an overview of metal failure, focusing on
brittle and ductile fracture under monotonic loads. The local approach to fracture was
discussed, which included the integration of microstructure, physical mechanisms, and
overall fracture properties. Das (2021) undertook a thorough literature study on the fracture
micro-mechanisms of ductile porous solids, emphasizing the intricate interplay between
engineering/metallurgical variables. The research history, status, importance, and potential

gaps in ductile fracture research were discussed.

1.3 Scientific goal and scope of the thesis

The scientific aim of this thesis is to comprehend and elucidate, through numerical
analyses and micromechanical modeling, the relationship between crystal anisotropy and
the processes of void growth and coalescence that result in ductile damage in polycrystalline
metals and alloys characterized by FCC and HCP symmetry, especially when they deform
by slip and twinning. As discussed in the preceding Section 1.1, materials with high plastic
anisotropy, such as magnesium, zirconium, or zinc alloys with a HCP lattice, are known
to exhibit reduced ductility and fracture toughness. These limitations stem from a scarcity
of easily deformable slip systems and the occurrence of twinning. The failure mechanism
linked to void growth under conditions of locally constrained plastic deformation within
a crystallite and the markedly heterogeneous stress field in a polycrystalline volume
element is not yet fully understood and incorporated into validated constitutive models.
Micromechanics, describing the connection of the macroscopic response of heterogeneous
materials with the local properties and microstructure geometry through properly selected
micro-macro transition schemes, is considered a well-suited tool to address the current
problem and fill this gap. In analogy to the seminal results by Gurson, Tvergaard, and
Needleman (the so-called GTN model of ductile damage), the applied approach is expected
to yield macroscopic elasto-(visco)plastic models for porous crystals and polycrystals of
specified lattice symmetry. These models can then be utilized as material models in
large-scale finite element (FE) calculations.

The effectiveness of the proposed micromechanical approach in making accurate
predictions depends on two critical factors: i. the accurate identification of the phenomena
influencing crystal behavior at the local observation level, and ii. the judicious selection of
an appropriate micro-macro transition scheme. In the context of metals with HCP lattice

symmetry, the local constitutive rule must consider the mutual interactions between different
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slip modes and twinning, altering hardening laws for material parameters like critical
resolved shear stresses (Sahoo et al., 2019; Frydrych et al., 2020). Furthermore, twinning,
in contrast to slip, possesses a polar character and results in a sudden lattice reorientation
within a part of the observed grain. This transformation turns a single grain into a bi- or
multi-crystal, comprising parent and twin orientations. Consequently, this process induces
heterogeneous plastic flow within the volume element, leading to the development of
local internal stresses and grain refinement. Experimental observations (Nemcko et al.,
2016; Kondori et al., 2018) confirm that all these phenomena, especially the twin-matrix
boundaries significantly impact void growth and coalescence. Therefore, they will be
integrated into the local crystal plasticity model employed within the micromechanical

framework.

Concerning the micro-macro transition, the primary challenge lies in the pronounced
non-linearity and anisotropy of local behavior. Established micro-macro transition schemes,
such as the Mori-Tanaka method, the self-consistent method, the generalized self-consistent
model, and the differential and incremental schemes (Nemat-Nasser and Hori, 1999) were
originally formulated assuming a linear constitutive law. To adapt these concepts to
cases involving physical nonlinearity, some form of linearization scheme must be applied
(Kanouté et al., 2009). The formulation of such a scheme is not trivial, particularly when
dealing with an elasto-viscoplastic medium, as demonstrated by Mercier et al. (2019). In
the present work, the so-called sequential linearization method will be applied in this
regard (Kowalczyk-Gajewska and Petryk, 2011; Girard et al., 2021) and its applicability
to porous polycrystalline materials will be verified.

In this study, while the primary focus is on porous polycrystalline materials with HCP
lattice symmetry, the analysis encompasses comprehensive numerical studies and detailed
application of micromechanical theories to FCC porous polycrystalline materials as well.
The investigation initiates with an in-depth examination of void growth and coalescence
scenarios in unit cells of porous single crystal, employing the crystal plasticity finite
element method (CPFEM) for both FCC and HCP crystal structures. Subsequently, the
research moves to formulation of micromechanical models, addressing both porous single
and polycrystals characterized by FCC and HCP symmetry.

After detailed discussion of the state of the art in terms of ductile failure in metals and
alloys presented in previous subsections, the next chapters present own research focusing
on numerical and analytical micromechanical modeling of these phenomena in single and
polycrystalline metals and alloys. The thesis is organized as follows:

In Chapter 2, a crystal plasticity model that accounts for both slip and twin systems is

presented. This model is implemented within a finite element framework to perform unit
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cell calculations in both 2D and 3D cases for HCP and FCC porous single crystals. In
Chapter 3, the finite element implementation and the various boundary conditions applied
to the unit cell models are discussed in detail.

In Chapter 4, the crystal plasticity finite element method (CPFEM) is employed to
investigate cylindrical void growth or collapse in FCC crystals, as well as accompanied
microstructure evolution, using a 2D plane strain model. This study compares displacement-
controlled and stress-controlled boundary conditions, and examines the anisotropic response
of porous crystals under different crystal orientations. In Chapter 5, the similar analysis
is conducted for HCP crystals. A 2D plane strain model with a cylindrical void under
prismatic and c-axis loading is studied across different biaxial loading scenarios, with the
results compared to the work of Prasad et al. (2015). Subsequently, a 3D unit cell with a
spherical void under uniaxial loading is considered. In this study, the loading direction is
varied while the crystal orientation remains fixed. The obtained results are then compared
with the work of Selvarajou et al. (2019).

In Chapter 6, a theoretical formulation of a novel micromechanical mean field model
for porous polycrystals is presented. At the level of crystal with a void, the additive
Mori-Tanaka scheme is employed to determine the overall response of the porous single
crystal, while the additive self-consistent scheme is used to find the overall response of
the porous polycrystals. The numerical implementation of this model, for both single and
polycrystals, is discussed in Chapter 7. In addition, the mean field model predictions are
validated against unit cell FE computations for both porous single and polycrystals.

Finally, in Chapter 8, a new GTN-type yield criterion for porous single crystals is
proposed, based on the micromechanical approach discussed in Chapter 6. The tuning
parameters of the model are calibrated using unit cell FE computations. The predictions
of the model are then compared with the proposals of Han et al. (2013) and Paux et al.
(2018) for FCC single crystals. Additionally, for HCP crystals, the extension of Paux
et al. (2018) yield criterion that account for twinning is proposed and calibrated. The
calibrated anisotropic parameter, based on optimization employing differential evolutionary
algorithm, is compared with the results obtained using kinematic limit analysis under
hydrostatic loading. The thesis concludes with a brief summary and suggestions for future
work.

The results from Chapter 4 have already been published in the article Virupakshi and
Kowalczyk-Gajewska (2023). As the content of this article aligns with the material included
in this chapter, its certain sections reproduce parts of this publication. Additionally, in
the remaining sections of the thesis, the content that overlaps with the article has been

expanded upon to different extent.
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CHAPTER 2

Crystal plasticity model

In this chapter, the crystal plasticity formulation accounting for slip and twinning
is presented. This formulation is utilized in the unit cell finite element calculations
for FCC and HCP crystal systems, which will be discussed in the subsequent chapters.
Initially, the slip and twin systems considered for both crystal systems throughout the
work are presented, followed by a description of kinematics and constitutive equations.
The proposed model incorporates the polarized character of twinning, the emergence of
new twin-related orientations (via reorientation scheme), and the impact of the slip-twin
coupling on the hardening phenomenon and the lattice rotations during deformation.

2.1 Notation

Throughout the work, the “tensor” notation is used. When needed, certain expressions
are also presented in indicial notation, utilizing tensor components within an orthonormal
basis and the summation convention over the repeated indices. The following notation
conventions apply:

* Scalars are represented in italics or roman typeface, for example, 4", F, T,

CT‘T, Ema
log(Lo).

* Vectors and second-order tensors are denoted by boldface English or Greek alphabets,

both in small and capital letters, for eg., m,n, F, o, 3.

* The double-struck letters are used to represent fourth-order tensors. e.g., S, P, L, I

The second-order and fourth-order identity tensors are denoted as I and [, respectively.
Their components in any orthonormal basis are expressed as d;; and ;1,0 ;;, respectively. In
the subspace of symmetric second-order tensors, the identity operation is achieved through
the symmetrized [, represented as [°, with components %(@kéﬂ + 0,01;). The notation



TABLE 2.1 Notation used for tensor operations.

Tensor Notation Indicial Notation
m-nT-FP-L mini, Tij Fij, PijraLiji
F-nP-nP-F Fing, Pjrang, PijrFr
n-Fn-PF-P niFij, i Pk, Fij Pijra

meon TRF P®L ming, Tij Fra, Pijri Lpgrs
FonPonPoF Fijng, Pijuang, Pt
TF,Pol,T:F T3 Fjks Pijri Litmn, Tij Fyi
Vv, divv, rotv Vi j, Vi, €ijkUk,; (Where €5, is a permutation tensor)
VT, divT Tijns Tijj

employed for various operations involving tensors of different orders is summarized in
Tab. 2.1. The second-order tensor F with components F}; is represented by F* when
transposed, indicating a tensor with components F);, while the fourth-order tensor P
with components P, is denoted by P? when transposed, representing a tensor with
components Fy;;. Inverses of second- and fourth-order tensors are denoted as F~! and

P~1, respectively.

2.2 Abbreviations

Below are the defined abbreviations used throughout the entire text:

FCC - Face Centered Cubic

e FFT - Fast Fourier Transforms

* FEM - Finite Element Method

* CPFEM - Crystal Plasticity Finite Element Method
* HCP - Hexagonal Close Packed

» VPSC - ViscoPlatic Self Consistent

e PTVC - Probabilistic Twin Volume Consistent

* CRSS - Critical Resolved Shear Stress
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 MFP - Mean Free Path

* RVE - Representative Volume Element

» RPP - Representative Porous PolyCrystal

« HPPC - Homogenized Porous PolyCrystal

* RPSC - Representative Porous Single Crystal
* HPSC - Homogenized Porous Single Crystal
*+ HEM - Homogenous Equivalent Medium

» EVPSC - Elasto-Visco Plastic Self-Consistent
* MFM - Mean Field Model

* IPF - Inverse Pole Figure

» SFE - Stacking Fault Energy

* GTN - Gurson-Tvergaard-Needleman

2.3 Crystal lattice symmetry

In this section, the independent components of the elastic stiffness tensor, as well
as the slip and twin systems considered throughout the work for FCC and HCP single
crystals, are discussed. For FCC crystals with cubic symmetry, the elastic stiffness tensor
[, has three independent components in anisotropy axes, namely L1717 = Lasss = L3333,
Li122 = L1133 = Loz, and Liois = Lizi3 = Losps. However, for Mg and Ti HCP
crystals with transverse isotropic symmetry, which have their third axis (c = e3) coaxial
with the main axis of symmetry, there are five independent components in the anisotropy
axes: Li111, L1122, L1133, L3333, and Lq313. It is important to note that due to material
symmetry, there are additional non-zero components, such as Losos = L1111, Looss = L1133,
Lozo3 = L1313, and Liz1o = L1111 — Liioo.

The symmetry of the crystal influences the slip and twin systems that apply to the
material being examined. The slip planes and directions are specified within the crystal
frame, utilizing Miller indices. In this representation, the slip plane is identified by its
normal vector (refer Kocks et al. (2000)).
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TABLE 2.2 Slip & twin systems considered for FCC crystals.

1 2 3 4 5 6 7 8 9 10 11 12

Slip plane

(111) (111) (111) | 1)) 1) (D) | iy @iy @iy | di) (di) (d1)

Slip direction

[110] [101] [011] | [1T10] [101] [O11]| [110] [101] ([O11] | [110] [101] [O11]

Twin plane

(111) (111) (111) | (I11) (T11) (111 | (111 (11 (11 | A1) @I (111

Twin direction

[211] [121] [112] | [211] ([121] ([112]| [211] ([121] ([112]|[211] [121] [112]

TABLE 2.3 Slip & twin systems considered for HCP crystals.

Slip/twin plane | Slip/twin direction
(0001) [1120]
Basal slip (0001) [2110]
(0001) [1210]
(1070) [1210]
Prismatic (a) slip (0110) [2110]
(1100) [1120]
(1122) [1123]
(1212) [1213]
Pyramidal (c + a) slip (%}12) [21}3]
(1122) [1123]
(1212) [1213]
(2112) [2113]
(1012) [1011]
(1012) [1011]
Tensile twinning (TT) (}102) [1}01]
(1102) [1T01]
(0112) [0T11]
(0112) [0111]

« In FCC crystals, plastic deformation predominantly occurs along the {111}(110)
family of slip systems and the {111}(211) family of twin systems. As a result, a
total of 12 slip and 12 twin systems are considered in this study, each of which is

32



®

FIGURE 2.1 Geometry of slip and twin systems considered for FCC crystals (Kowalczyk-Gajewska,

2011).

detailed in Tab. 2.2. Furthermore, Fig. 2.1 illustrates a schematic representation of
the FCC crystal structure, highlighting potential slip and twin systems.

In HCP crystals, considered in the present thesis, characterized by low lattice
symmetry in terms of plastic deformation, the slip systems are categorized into three
families: three basal slip systems denoted as {0001}(1120), three prismatic slip
systems represented by {1100}(1120), and six pyramidal slip systems indicated by
(c+ a) {1122}(1123). Additionally, based on the lattice parameter c/a ratio, one
family of tensile twin systems is identified, namely {1012} (1011). Tab. 2.3 provides
a comprehensive description of all the slip and twin systems examined in this study,
utilizing the conventional notation of four Miller indices. Additionally, these systems
are schematically depicted in Fig. 2.2. Although the present set of slip and twin
systems is most commonly considered for Mg or Ti HCP alloys, other families of
slip and twinning systems are sometimes considered in other works. While the use of
four indices notation in the hexagonal system is common for describing HCP crystal
symmetries, the non-orthogonality of this system necessitates its transformation into
an orthonormal basis to ensure an accurate description of lattice orientation. In the
current study, the z-axis is aligned parallel to the a; axis, as illustrated in Fig. 2.2.
The orthonormal basis is denoted by (z — y — 2). An alternative approach is to
orient the y-axis along the a, direction (refer to Frydrych and Kowalczyk-Gajewska
(2018)).
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FIGURE 2.2 Geometry of slip and twin systems considered for HCP crystals.
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2.4 Rate-dependent crystal plasticity formulation

Various proposals exist in the literature concerning crystal plasticity formulation,
encompassing both full-field FEM, FFT-based models, and micromechanical mean-field
models at both small strain and large strain regimes. Additionally, consideration is given to
both elastic and viscoplastic components of deformation in some models, whereas others
focus solely on the viscoplastic part, keeping only elastic rotations, while disregarding
stretches due to their negligible contribution. Furthermore, various hardening models exist
regarding the coupling between slip and twinning. Here, a brief description is provided for
the various models existing in the literature, while the displacement-based model in the
Lagrangian framework, utilized in the present work, is presented in detail, encompassing

the consideration of twinning and the reorientation scheme within the model.

In the domain of finite strain elasto-viscoplasticity of crystals, two types of models are
prevalent. The first class of models is based on the velocity-based method, which uses an
additive decomposition of the velocity gradient (L) and the hypoelastic law. For example,
Frodal et al. (2021, 2023) proposed a coupled damage crystal plasticity model using a
hypoelastic corotational formulation and objective stress rates. The second kind of models is
based on an incremental displacement-based framework and a multiplicative decomposition
of the deformation gradient (F) utilizing the hyperelastic law. The hyperelastic law is
formulated using conjugated stress and strain measures. If the elastic component is small,
the law can be approximated as linear. Regarding micromechanical mean field models,
a VPSC formulation was proposed by Lebensohn and Tomé (1993) to simulate plastic
deformation in polycrystals. This formulation is based on an additive decomposition of the
velocity gradient. In this model, the contributions to deformation from the elasticity part
are considered small compared to plastic deformation by slip, hence they are neglected.
The crystal lattice is updated using an elastic spin tensor (W¢), and the model is formulated
based on stress and strain rate tensors utilizing inclusion problem and various linearization
schemes due to the rate-dependent nonlinear power law. This model has been employed in
one of our recent publications (Frydrych et al., 2021) for finding optimal crystal plasticity

parameters by comparing experimental textures with the simulated textures.

A crystal plasticity model for pure Mg, encompassing slip and deformation twinning,
was proposed by Zhang and Joshi (2012) based on the framework of Kalidindi (1998).
Drawing from experimental observations, they developed constitutive descriptions for the
evolution of slip and twinning, as well as their hardening interactions. Additionally, they
integrated lattice reorientation resulting from twinning into their model. Moreover, in a

more recent work, a finite-strain phase-field model that integrates deformation twinning
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and crystal plasticity was introduced by Rezaee-Hajidehi et al. (2022). Within this model,
twinning is regarded as a displacive transformation distinguished by a volume-preserving
stretch, as opposed to a simple shear considered in the standard approach. In the following
sections, the displacement-based formulation utilized in the current work will be presented.

2.4.1 Kinematics

The initial step in the model formulation involves describing the kinematics. In terms
of kinematic description, the model adheres to classical contributions (Hill and Rice, 1972;
Asaro and Rice, 1977; Asaro and Needleman, 1985). The deformation gradient F is

multiplicatively decomposed into two parts:
F =F.F,, 2.1

where F, and F,, denote the elastic and plastic components, respectively. The evolution

of the plastic part of the deformation gradient is governed by the equations:
F,=L,JF,, (2.2)

where the dot over the quantity denotes its material time derivative.

When it comes to twinning, a mechanism akin to slip takes place (see Fig. 2.3).
However, in this scenario, only a segment of a matrix grain experiences shearing along the
designated twin plane and in the specified twin direction, resulting in a particular amount of
shear referred to as vV, which is dependent on lattice geometry. Consequently, a twinned
sub-grain is created. In contrast to the slip mechanism, twinning operates unidirectionally,
as outlined by Fischer et al. (2003). This phenomenon is attributed to the lattice geometry,
which demands significantly more energy to displace an atom in the reverse direction.
With a specified lattice orientation relative to the matrix grain, the twinned volume fraction

exhibits a distinct orientation, determined by the following relation:

W:RTW M

T
aO a[) )

(2.3)
R™ — on™ @ nW_T,

here, ajWV represents the crystallographic direction in the twinned portion of the grain,
while a)! denotes the crystallographic direction within the matrix grain defined in the initial
configuration. Additionally, nIW signifies the unit vector perpendicular to the twinned
plane in the initial configuration. The conventional approach, as employed by Chin et al.
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FIGURE 2.3 Single crystal deformation by twinning (Kowalczyk-Gajewska, 2011).

(1969); Kalidindi (1998); Staroselsky and Anand (1998), incorporates twinning into the
crystal plasticity model. Twinning is regarded as a form of unidirectional slip mechanism.
The rate of pseudo slip %t) is correlated with the rate of volume fraction f' of the twinned

portion generated by the twin system [, according to the formula:

Wy =71, (2.4)
where vTW is the characteristic twin shear which depends on the geometry of the crystal.

The plastic part of the velocity gradient ]Zp is described as follows:

2M 2M+N

L, =3 dfymi ©mg + 3 3ymy ©ng = 3 4'mg@np, (2.5)
where m{ and n; denote, respectively, the slip direction and slip plane normal defined
in the initial configuration. To unify the description of slip and twinning in the above
formula the slip in the m, direction is distinguished from the slip in —m direction, and
4" denotes the rate of shear in the r-th deformation mode. M denotes the number of slip
systems and /N the number of twinning systems respectively; so M, N = 12 for FCC and
M =12, N = 6 for HCP crystals (see Tabs. 2.2 and 2.3). The total volume fraction of

twins generated within the matrix grain across all twin systems must not exceed unity, i.e.,

N 1 N
S aw o < b (2:6)
=1 =1
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2.4.2 Twin reorientation scheme

One challenge associated with modeling twinning in the context of texture evolution
is addressing the emergence of new orientations related to twinning. Several researchers
have tackled the modeling of the emergence of new twin-related orientations. The first
to address this was Van Houtte (1978), who introduced a probabilistic twin reorientation
condition. This condition is based on determining whether the maximum increment in the
volume fraction of twins accumulated across all potential twin systems in the given strain
increment exceeds a certain threshold value. Staroselsky and Anand (1998) modified the
Van-Houtte method by incorporating the maximum of the total volume fractions of twins
accumulated over the entire deformation process up to the current time step. It is crucial
to emphasize that each grain possesses a distinct orientation, either corresponding to the
matrix orientation or to the twin-related orientation. This distinction helps to mitigate the
ambiguity associated with the increase in the number of orientations.

Another two approaches to address twin-related orientations were introduced by Tomé
et al. (1991). The first strategy, termed Predominant Twin Reorientation (PTR) scheme,
substitutes the probabilistic reorientation condition with a deterministic one. In this scheme,
the threshold value in the reorientation condition will depend on the total volume fraction of
twins accumulated throughout the deformation process in the entire polycrystalline element.
The second approach, referred to as the Volume Fraction Transfer scheme, maintains
a fixed set of orientations throughout the deformation process, allowing the associated
volume fractions to evolve. It is important to highlight that both of these schemes require
an analysis of the entire polycrystalline aggregate to determine reorientation, making
them impractical for implementation in a finite element (FE) model of a polycrystal.
All the models, including their details and limitations, were thoroughly discussed in
Kowalczyk-Gajewska (2013). In the present formulation, the probabilistic twin volume
consistent (PTVC) reorientation scheme developed by Kowalczyk-Gajewska (2010, 2011,
2013) is utilized to address lattice reorientation resulting from twinning. It ensures the
consistency between the twin volume fraction and the proportion of reoriented domains
within the sample. When the reorientation criterion is met, a crystal lattice is reoriented
to the twin-related orientation. It is important to note that only the information available
at the specific point (in FEM calculations precisely at Gauss point) is required to validate

this reorientation criterion. The condition is as follows:
if Af™>¢ or Yot oo am =R™a" and ™" = g,

where A fTW is increment of twin volume for a given time step, ¢ is a number randomly
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FIGURE 2.4 Schematic representation of Probabilistic Twin Volume Consistent (PTVC) reorientation
scheme and the way of finding the current size of W;, n;. P and P, ¢ denote probability of
reorientation up to time t and t + At respectively, while P a; probability of reorientation at the
time step At.

generated from the set (0, Wy, n;), while f* is a value of twin volume fraction for
which the reorientation is always performed. R™"W is the rotation tensor as shown in the
Eq. (2.3). In rotation tensor R™W, nI™ represents the unit normal to the twin plane of the
twin system /, where () = y"" f' is maximized among twin systems at the current time
step. The current size of the set W, o; changes along the deformation process to ensure
consistency. It is important to highlight that this condition is inherently probabilistic, so
the formation of twin matrix laminate or distinct twin lamellae is not typically observed

in the calculations. The intricate details of this scheme are elucidated in Fig. 2.4.

2.4.3 Rate-dependent constitutive law

The rate of shearing on a given slip or twinning system r is calculated using the

visco-plastic power law (Hutchinson, 1976; Asaro and Needleman, 1985):

Y=o <T> , (2.7)

T
TC’I“
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FIGURE 2.5 Tllustrative depiction of the evolution of critical shear stress 7., resulting from slip
activity and twin activity.

where 7, is the reference shear rate, n is a rate-sensitivity parameter. As n — oo the
model approaches the rate insensitive limit. In the rate-insensitive limit, the power law
Eq. (2.7) with a high value of n is frequently regarded as a viscoplastic regularization of

rate-independent plasticity.

The resolved shear stress (RSS) is the projection of the Mandel stress tensor M, on

the direction mg and plane of slip nj:
7" =<m{-M.-nj>>0, M. =F/SF =F/7F,", (2.8)

where < - >= 2((-) 4+ | - |), S is the first Piola-Kirchhoff stress and 7 is the Kirchhoff
stress. The Mandel stress tensor is obtained using a hyper-elastic law:

ov
M, =2C,——, 29
aC. (2.9)
where C, = FIF, is the right elastic Cauchy-Green tensor and
1
U= iEe L E. (2.10)

is the Kirchhoff-type function of free energy density per unit volume in the reference
configuration, ¢ is the anisotropic stiffness tensor of single crystal and E, = 3(C, — I

is the elastic Lagrangian strain tensor.
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2.4.4 Hardening laws

In the following subsection, the evolution of the critical resolved shear stress (CRSS)
7., which is influenced by the interaction of different slip and twin systems is presented
(Kowalczyk-Gajewska, 2010, 2011; Frydrych et al., 2020). The development of the
hardening laws was based on experimental observations. The consequence of impeding
the movement of dislocations due to other dislocations, particles of foreign phases, and
grain boundaries results is the strengthening of the material. However, at a certain
point, the density of dislocations in the material saturates, halting further strengthening.
Various mechanisms were outlined in the literature where twinning also contributes to the
strengthening of the material (Salem et al., 2006; Sahoo et al., 2019). Hardening is a
crucial phenomenon in plastic deformation processes. Therefore, modeling the hardening
phenomenon accurately is essential for predicting material behavior and for designing
metal forming processes effectively.

In the context of crystal plasticity, the proposed hardening law is as follows:

M 2M 4N
o=t = H{ S SOy + Hiyy Y hSD4% wherer < M (2.11)
q=1 q=2M+1
oM+ N
Hi,, Z h ts)’y +Hiy D hrq 49, where r > 2M (2.12)
q 2M+1

and 49 = A9+ 49 Eq. (2.11) represents the increase of CRSS of slip systems due to slip
and twinning activity whereas the increase of CRSS of twin systems due to slip and twin
systems is given by Eq. (2.12). The latent hardening on a given system « due to activity
on system [ is described using the submatrices. These matrices have the following form
(Asaro and Needleman, 1985):

Py =g 4+ (1= ) ng -] (2.13)

where ¢(*#) are the corresponding latent hardening ratios and the term |n}, - n| is responsible
for considering the influence of coplanarity of systems. The functions H, ) depict the
hardening of the r-th slip system or the r-th twin system resulting from the activity of
other slip or twin systems. These hardening laws are assumed based on experimental
observations as follows. To describe the hardening of the r-th slip system or r-th twin
system resulting from the activity of slip systems, the Voce-type law with saturation, in
the form utilized by Kalidindi et al. (1992) to which a separate linear term is added, is
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employed. ,
T as TCTT as
H(as) == ho <1 - ) —|— hl . (2.14)

r
Tsat

The depicted law is illustrated schematically in Fig. 2.5. From the figure, it is evident that
initially there is a rapid increase in critical stress, indicating strengthening due to the increase
of dislocation densities within the material. As strain increases, the rate of strengthening
diminishes owing to dynamic recovery, resulting in a reduction in dislocation density.
Thus, the model accommodates both athermal statistical storage of moving dislocations
and dynamic recovery. As the CRSS value approaches 7., stress growth nearly halts and
the critical shear stress grows linearly with the modulus h{*, representing the attainment
of equilibrium between dislocation density increase from slips and dynamic recovery. The

r
parameters T, s

at?

h&?, h{*, and 3 are material constants. When 3 equals to 1 and h; = 0,
the exponential Voce hardening function is obtained. In the present work, for FCC crystals
without twinning, the evolution of the critical value of the resolved shear stress adheres to
the exponential Voce law. This law is employed in the material model, and the results will
be detailed in the subsequent chapter. The equation representing this law is as follows:
) = =0 oyt (w4 ) (1 ~ exp (—r i )) @)

sat

r= /th, r =S5 (2.16)

The parameters 7,

at?

h{®, hi® are hardening parameters. Similarly, in the current study of

HCP materials with twinning, a similar form of hardening law is employed:

r as as —hg?® s
H{,g = h3® + h§® exp (ir ) (2.17)
. . 2M
s = /th, =Y 14]. (2.18)
r=1

The values of hardening parameters will be outlined in the subsequent chapters. For
describing the hardening of the r-th slip or r-th twin system as a result of twinning activity,
the following law is assumed based on the concept of Karaman et al. (2000):

at rat
hO

T o t
Hiyy = —( ar ;‘EFW)Q. (2.19)

In this model, the hardening effect of twins is considered through a term proportional to

W, where f™W represents the current volume fraction of twins. Consequently, the

42



CRSS undergoes variation with an increase in the twin volume fraction (fTV). However,
by adjusting % to be less than 1 instead of 1, the saturation of the volume fraction of
twins occurs below unity (refer to Fig. 2.5). Unlike the proposals of Karaman et al. (2000),
explicit length-scale parameters are not included in this model. Thus, material parameters
like A§" and initial values of 7. may rely on the grain size, for instance, following the
Hall-Petch relation.

The subsequent step is to decide whether slip and secondary twinning could occur
in the grains reoriented by twinning and assessing the level of slip and twin resistances
following the reorientation. Thus, in the event that the reorientation condition is true for a
given point, and the crystal lattice at this point has been reoriented owing to twinning, the
newly formed crystal is assumed to be described by the same material model with different
material parameters. It accounts for the fact that the mechanical characteristics of twins
differ from those of the parent grain mainly due to conversion of glissile dislocations into
the sessile ones due to the twinning shear transformation of the lattice (Basinski’s-type
hardening Basinski et al. (1997); Sahoo et al. (2019)). Experimental results on low stacking
fault energy (SFE) material (Asgari et al., 1997) indicate that twinning and slip within
twinned regions are more difficult than in untwinned regions. Slip within twinned regions
may be largely limited to planes that are co-planar with the matrix-twin border. Thus the
increased resistance observed in twinned material can be also attributed to the Hall-Petch
type effects stemming from the directional reduction of the mean free path (MFP) within
twin lamellae (Mahajan and Chin, 1973). Based on these observations in the present
calculations we assumed that the twinning is no more possible in reoriented parts, while
the initial critical shear stress 7, for slip and the hardening parameters: h{’, h{® and 777

sat

are modified.
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CHAPTER 3
FEimplementation and boundary

conditions

In this chapter, the aspects of finite element implementation of crystal plasticity model,
construction of the unit cell models, and boundary conditions applied in the performed
numerical analyses are presented and discussed. Throughout the study, both 2D plane
strain and 3D unit cell models featuring cylindrical and spherical voids are considered to
investigate the effects of crystal orientation, and loading conditions on void growth and
deformation heterogeneity in porous single crystals and polycrystals. Additionally, the unit
cell calculations are used to calibrate the yield surfaces proposed for both FCC and HCP
single crystals in the Chapters 4 and 5. Fully displacement-controlled or mixed boundary
conditions are utilized.

3.1 FE implementation

The standard procedures developed for the FE implementation of finite strain elasto-
plasticity in the fully Lagrangian displacement-based setting are followed (Simo and
Hughes, 1998). In particular, incremental constitutive equations have been obtained by
applying the implicit backward-Euler time integration scheme and the relation (Eq. (2.2))
is integrated using the exponential map,

F,(t + At) = exp(AtL,)F,(2). (3.1)

The implementation has been performed using AceGen code generator (Korelc, 2002).
It combines the symbolic algebra capabilities of Wolfram Mathematica with automatic
differentiation and advanced techniques of expression optimization. The package enables

straightforward derivation of an algorithmic consistent tangent that leads to a quadratic
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FIGURE 3.1 Schematic representation of the 2D unit cell with two types of boundary conditions:(a)
displacement controlled, (b) stress controlled. In the figure D/L.= 0.2 which is corresponding to
0.0314 void volume fraction.

convergence rate. Computations were performed using the AceFEM package. In the
calculations, 4-noded linear quadrilateral elements with 4 integration points (i.e., “Q1”
element topology as per AceGen convention, “CPE4R” as per ABAQUS convention)
are used for the 2D plane strain unit cell. For the 3D unit cell with a spherical void,
both 8-noded linear and 20-noded hexahedral elements with 2*2*2 integration points are
employed (i.e., “H1” for the 8-noded hexahedral element and “H2S” for the 20-noded
hexahedral element as per AceGen convention, “C3D8”,“C3D20R” respectively as per
ABAQUS convention). The H2S element with reduced integration (2*2*2) is used for
some of the computations to determine yield points for calibrating the proposed yield
surface for porous single crystals as discussed in Chapter 8. Additionally, the F-bar method
(de Souza Neto et al., 1996) is applied to 2D plane strain with “Q1” and 3D unit cell
with “H1” elements in order to have a robust implementation, enabling the enforcement

of nearly incompressible material behavior in the geometrically non-linear regime.

The three-dimensional nature of the crystal plasticity model, specifically the geometry
of slip systems, is fully considered for the 2D plane strain problem. At each Gauss
point the material displacement gradient H = F — I is assumed for which components

H;3 = H;; =0 (¢ =1,2,3) and ’3’ denotes the direction perpendicular to the plane.

In micromechanics, the concept of a unit cell serves as a crucial bridge between the
microstructure of a material and its macroscopic properties, enabling efficient analysis

and prediction of material behavior. The unit cell is defined as the smallest representative
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volume element (RVE) of a heterogeneous material that captures its essential microstructural
features, allowing the determination of the effective properties of the material. It is a
simplified model that incorporates key components of the microstructure of the material-
such as the matrix, inclusions, voids, and interfaces arranged in a way that represents the
overall composition and structure.

In the present study, a unit cell with a void, representing the microstructure of a porous
crystal, is used to perform finite element (FE) computations. These computations aim to
predict the evolution of porosity and the mechanisms leading to ductile failure. For such
unit cell, the connection between macroscopic stress and strain measures (for example
deformation gradient (F) and first Piola-Kirchhoff stress (S)) and respective local fields
within the unit cell are given by so called averaging relations (Nemat-Nasser (1999)),
specified in the reference configuration:

Ft) = / F(X,1)dV.
v (3.2)
S(t) = /V S(X, t)dV.

<l=<|

3.2 Unit cell model and boundary conditions

3.2.1 2D & 3D cell model

A 2D plane strain unit cell with one cylindrical void is employed for analyzing the
cylindrical void growth in Chapter 4. Cartesian coordinate system (x — y) is used and
the origin of the coordinate frame is placed at the node OP, see Fig. 3.1. The following
notation is used interchangeably for x — 1,y — 2, 2 — 3 and vice versa in both 2D and 3D
model. The initial diameter of the void is D and the square plate has a side length of L.
The ratio of D/L is used to define the void volume fraction: f = w/4(D/L)?. Nodes
OP, XP, and YP are used to prescribe the periodic boundary conditions. In this study, two
types of boundary conditions are considered for FCC crystals, namely stress-controlled
and displacement controlled, as depicted in Fig. 3.1, while for the HCP 2D plane strain
model, only stress-controlled boundary conditions are utilized.

As depicted in Fig. 3.2, a 3D cubic unit cell with a spherical void is employed, utilizing
the Cartesian coordinate system (z-y-z), with the origin of the coordinate frame located at
node OP. The initial diameter of the void is represented by D), while the side length of the
cube is denoted as L. The void volume fraction is defined by the ratio D/L. Nodes OP,
XP, YP, and ZP are utilized to impose periodic boundary conditions and to apply different
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stress ratios. The present investigation utilizes a 3D unit cell methodology to determine
the yield points, which will subsequently be used to calibrate the proposed yield surface
for both FCC and HCP crystals with spherical voids in Chapter 8. Additionally, this unit
cell is employed to investigate the mechanics of porous evolution, the effect of crystal
orientation, and the activity of different slip and twin systems in HCP crystals with a

spherical void in Chapter 5.

3.2.2 Periodic boundary conditions for both 2D and 3D unit cells

During deformation, rather than confining the sides of the unit cell to remain planar,
which can over-constrain the model and lead to the development of high stresses for some
orientations, periodic boundary conditions are applied. Accordingly, the displacement of
corresponding nodes on opposite sides of the unit cell in each direction is connected by

periodic boundary conditions, given by:

u; —uy = H(X; — Xy), (3.3)

where H is the overall (averaged) material displacement gradient tensor of the unit cell
and its relation with macroscopic deformation gradient is H = F — I, u;, uy represent
the displacement of corresponding nodes on opposite sides and X;, X, represent the
corresponding nodal position vectors at the reference configuration.

Following Koplik and Needleman (1988) studies for phenomenological plasticity,
several studies were carried out by Han et al. (2013); Srivastava and Needleman (2013,
2015) on unit cells with single crystal containing voids imposed with constant stress
triaxiality ratio (ratio of the mean stress to the von Mises stress) boundary conditions.
On the other hand, strain-controlled boundary conditions were considered by Schacht
et al. (2003); Potirniche et al. (2006). In the subsequent chapters, both kinds of boundary
conditions are employed in order to compare and quantify the influence of strain and stress
ratios on the void growth and coalescence under overall loading. The way in which they

are imposed is described in the next subsections.

3.2.3 Imposing stress controlled boundary conditions

In the present study, various constant macroscopic stress triaxiality (T) values are
imposed to investigate the mechanics of void evolution. Triaxiality is defined as the ratio
of hydrostatic stress ¥,,, to the equivalent stress >, of the macroscopic Cauchy stress X.
This is achieved using a special spring element method based on the work of Ling et al.
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(2016). The same methodology is applicable to 2D plane strain cells as well, but here the

general case of the 3D framework is presented.

The macroscopic Cauchy stress tensor is defined in terms of stress ratios (7;,172) as

follows, with z considered as the primary loading direction.

211 0 0 T O 0
Eil=1 0 o 0 [ =Zs(t)| 0 0 0| — X =Ns()N, (3.4)
0 0 X33 0O 0 1

such that the triaxiality and Lode parameter in terms of 7,7 are as follows:

5 1 My — 1y — 1
+ M+ and I — N2 — M

T=2"=
Yea 3\ —m — 1 — o +nf + 13 L=

,  @35)

where the stress state is taken to be such that >33 > Y99 > ¥y &y < < 1. It is
important to note that if the main direction of loading changes to the = or y direction, the
equations will change accordingly. Similarly, for the calculation of the Lode parameter,
the principal stress components are ordered accordingly. For the axisymmetric loading

case, 171 = 12 = 1, the Lode value is -1, and the triaxiality is:

142
T = R/ (3.6)

3(1—n)

In order to impose constant N direction in Eq. (3.4) along the deformations process, a
special spring element aligned with the main loading direction (i.e., the z direction) is
considered. It has only one degree of freedom (F33) at the far end of the spring, which
is used to impose displacement. The near end of the spring has nine degrees of freedom
and is connected to the unit cell in such a way that these components correspond to the
nine components of the macroscopic deformation gradient of the unit cell (i.e., Fij, where
1,j = 1,2,3). Therefore, this element functions as a spring in the primary loading direction
in the following manner:

Ss3 = K (Fs3 — Fa3), (3.7)

where K is the element stiffness and Ss; is the component of the first Piola-Kirchhoff stress
tensor in the spring loading direction. The corresponding macroscopic first Piola-Kirchhoff

stress tensor of the unit cell can be written as:
S=JSF | = JSs(t)NF | = Sa3(t)N(Fy;, n1, 1m2), (3.8)
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where M = JNF . Due to the connection between the unit cell and the spring element
at the near end, by using Ss3 = S5 = 233(15)1\7[33 and the Eq. (3.7), ¥33(t) can be written
as: _

Yag(t) = ———". (3.9)

Consequently, the macroscopic first Piola-Kirchhoff stress is applied to the unit cell via
the spring element to maintain constant stress triaxiality as defined in Eqg. (3.5).

In the subsequent chapter, the implementation of spring elements for the HCP unit cell
under uniaxial loading will be slightly modified. Here, the crystal orientation is kept fixed
while the stress direction is varied to impose the uniaxial loading. The uniaxial loading

state can be written in the following form:
¥ =3(t)n ®n, (3.10)

where >(¢) is the magnitude of stress (which can be found from the solution of global
problem by energy minimization), n is the direction of loading, represented using the
angles u and v as follows: [cos(u) sin(v), sin(u) sin(v), cos(v)]. Thus, the components of

overall stress tensor 3 under uniaxial loading can be written as follows:

(2] = 2(t) m(u,v) nelu,v) |- (3.11)
sym. n3(u; v)
Similar to Eq. (3.9), X(¢) can be determined using the following equation:

K(Fg;g—n'F'n)
n~1\7[-n

S(t) = : (3.12)

where n-F-n and n - M - n are the components of ', M in the uniaxial loading direction.

3.2.4 In-plane displacement controlled boundary conditions for 2D plane

strain unit cell

For the displacement controlled boundary conditions, a displacement biaxiality factor
[ is set, which is defined as the ratio of the displacement in the z direction to the
displacement in the y direction, namely 5 = u,(XP)/u,(YP) = const. Therefore, the
following displacement boundary conditions along with the periodic boundary conditions
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Eq. (3.3), are imposed at the reference configuration as shown in Fig. 3.1b:
+ at node OP, u, = u, = 0,
* at node XP, u, = fu(t), u, =0,
+ at node YP, u, =0, u, = u(t),

which result in the following components of the displacement gradient H in Eq. (3.3):

g 00
— u(t
[Hy] = é) 0 10
0 00
Note that all components of H are known for this loading scenario. For the uniaxial

tension/compression case in the y-direction of the sample, the following displacement
boundary conditions are imposed:

* at node OP, u, = u, =0
* at node XP, u, = 0
« at node YP, u, = u(t),

which result in the following components of the displacement gradient H in Eq. (3.3):

* x 0

— u(t

[sz]=(L) 010], (3.13)
000

where by « we denoted unknown components of H. By energy minimization, this leads
to the averaged Cauchy stress for which ¥,, = ., = 0, so the stress biaxiality factor
n = Y32/%y, = 0. Note that this case is not equivalent to the 3D uniaxial tension case
since, in general all 3J;., k = z, y, z are not necessarily zero for anisotropic material under

plane strain conditions.

3.2.5 In-plane stress controlled boundary conditions for 2D plane strain

unit cell

For controlling the in-plane stress biaxiality factor n, the formulation based on the
proposal by Ling et al. (2016), as discussed in the Subsection 3.2.3 is employed. A
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FIGURE 3.2 Schematic representation of the 3D porous unit cell with geometric parameters and
imposed stress controlled boundary conditions.

special spring element oriented in the direction of principal loading is employed to regulate
displacement at the nodes XP and YP in order to maintain the constant stress ratio. Node
OP is fixed and the displacement of node XP in the y direction is disabled to remove
rigid motion as shown in the Fig. 3.1a. In-plane stress biaxiality 7, which is defined
as the ratio of the Cauchy’s stress normal components along = direction to y direction,
namely n = ¥,,/3,, = const is kept constant to study the void growth. Application of
the element results in the averaged Cauchy stress for the unit cell of the form:

n 0 %
[Ekl] = Eyy(t) I (3.14)
sym. *

where by x we denote unknown components of 3. Note that ¥,,(¢) is also unknown,
while via the spring element, displacement w, (YP) is imposed.

3.2.6 Stress controlled boundary conditions for 3D unit cell

As discussed in Subsection 3.2.3, maintaining constant triaxiality is achieved using a
spring element. In the current study focusing on calibrating the yield surface for FCC
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crystals, the x direction serves as the primary loading direction. To ensure constant stress
triaxiality, a specialized spring element oriented in the direction of principal loading is
utilized, controlling displacements at nodes XP, YP, and ZP as shown in Fig. 3.2. Node
OP is fixed, and displacements of node XP in the y and z directions are restricted, along
with the z-direction displacement at node YP, to eliminate rigid rotation of the unit cell.
Stress ratios 7, and 73 are kept constant to enforce constant triaxiality, and these values
are adjusted to calibrate the yield surface of the single crystal. The imposition of these
boundary conditions leads to the following representation of the overall Cauchy stress

tensor and the macroscopic deformation gradient:

1 0 0 1 * %
[Er] = au(t) o 0 | Hyl= umL(t) 0 x * |- (3.15)
sym. 73 0 0 %

The unknown components of H are denoted by *. It should be noted that >, (¢) (refer
Eq. (3.9)) is also unknown, while the displacement u,(t) is imposed via the spring element.
Similarly, in the unit cell calculations for the calibration of the yield surface for an HCP
single crystal, the z direction is taken as the primary loading direction. Node OP is fixed,
and the displacement along the = and y directions for node ZP and along the z direction for
node YP is constrained to remove rigid rotation, resulting in the following representation

of the overall Cauchy stress tensor and the macroscopic deformation gradient.

m 0 0 x 00
[(Zh] = 2. (t) me 0| [Hyl=%21 % « 0], (3.16)
SyIm. 1 * x 1

where X, (t) (refer Eq. (3.9)) is unknown and the displacement component v, (t) is imposed

via the spring element.

Regarding the HCP crystal with a spherical void under uniaxial tension, the crystal
orientation is fixed with the z-axis parallel to the [1010] direction and the z-axis parallel to
the c-axis, i.e., [0001]. The loading direction is varied in this configuration. The current
study examines five uniaxial loading scenarios in the YZ plane, which result in Eq. (3.11)

taking the following form:

0 0 0
Y= 2(t>l’l ®Xn — [Zkl] = Z(t) 7].2(’0) y/G(U) 5 (3.17)
sym. m(0)
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where n is the direction of loading and it is has following components in sample frame [0,
cos[v], sin[v]]. The angle v will be varied from 0° to 90° in the YZ plane. 0° corresponds
to prismatic loading, while 90° corresponds to c-axis loading. X..(¢) is unknown and
can be found from the Eq. (3.12). Similar to previous cases, node OP is fixed. In these
analyses to remove rigid rotation, additional constraint equations is solved which ensure

that the macroscopic deformation gradient F is symmetric.

3.3 Finite element geometry and mesh

Two commercial software packages are utilized in this study. The 2D plane strain and
3D unit cell model geometry and mesh are generated using the commercial CAE software
ABAQUS (version 6.13), as shown in Figs. 3.3 and 3.4. The mesh data is then imported
into the symbolic and algebraic system Wolfram Mathematica, as specified in Section 3.1,
for finite element calculations and post-processing using the AceFEM package.

For the 2D plane strain model, the ratio of the void diameter to the side length in the
XY plane is set as D/L = 0.2, resulting in an initial void volume fraction of f = 0.0314.
A 2D mesh consisting of 1168 elements of type CPE4R (“Q1” element topology as per
AceGen convention) is employed. Similarly, for the study of void evolution in the HCP
unit cell under uniaxial tension, the ratio of the void diameter to the side length in the XY
plane is taken as D/L = 0.2673, leading to an initial void volume fraction of f = 1%.
A 3D mesh comprising 6128 elements of type C3D8R (“H1” element topology as per
AceGen convention) is employed. For the calibration of the yield surface using unit cell
calculations for both FCC and HCP crystals, a similar mesh with 6128 elements of type
C3D8R (both “H1” and “H2S” element topologies as per AceGen convention) is used.
The applied mesh density was established based on the mesh convergence tests. They
were carried out on a number of unit cells with different mesh sizes. Convergence was
evaluated by determining the evolution of the relative void volume fraction with the overall
effective strain.

Results of numerical analyses are presented/discussed mainly in terms of the macroscopic
stress-strain curves, evolution of the relative void volume fraction, averaged accumulated
slip and twin and the averaged current relative activity of slip systems. Those quantities
are established as described below. Similarly to other studies (see e.g. (Ling et al., 2016)),
the overall Cauchy stress 3 = =S F' (J = detF) is calculated based on the volume
averaged first Piola-Kirchhoff stress S (Eq. (3.2)) which for zero stress in the void is
reduced to:

1 1
S — V/VS(X)dV - Vm/VS(X)de, (3.18)
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FIGURE 3.3 Finite element mesh of 2D plane strain unit cell.

0]

FIGURE 3.4 Finite element discretization of 3D unit cell with spherical void used for yield surface
calibration and study the mechanics of porous evolution in HCP single crystals.
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where V,, is the bulk crystal volume and the integration is performed numerically in the
reference configuration. For 3D unit cell, unknown components of the overall deformation
gradient F = I + H are calculated based on the relation (Eq. (3.3)) using the current
displacement vectors at nodes XP, YP and ZP and the initial lengths L,, L,,, L, of unit cell

edges along z, y, z direction, namely

_ u, (XP) _ uz(YP) _ u, (ZP)
=14 =20 s 7. - Ua(ZP)
11 + I, 12 L, 13 L.
- u, (XP) - u, (YP) - u, (ZP)
F — Y F — 1 yi F: — Yy .
21 L. 22 + L, 23 L. (3.19)
- u(XP) _ u(YP) _— u,(ZP)
F3 = L F3y = L, Fzz3 =1+ I

Similarly, for the 2D plane strain case, the unknown components of the deformation

gradient are calculated as follows.

_ L (XP _ -(YP
F11:1+U( ); F12ZU( )7
La Ly (3.20)
_ u, (XP) _ (YP) ’
Fy = -2 Fpo=1+-2""7
21 L. 22 + L,

The current normalized void volume fraction is defined as the ratio of the current void

volume fraction (f) to the initial void volume fraction (fy). f is calculated as follows:

Veell (t) — Um (Zf)

V() ) (3.21)

f =
where v (t) and v,,(t) denote current cell and matrix volume respectively, which are :
Ucell(t) = det F‘/o,

and

U (t) = y det F(x,t)dV,, ZdetF t)wg,

where X and w, are the position and the weight of the Gauss point g respectively . The

volume averaged accumulated slip and twin volume fraction are defined as:

sample i ‘/sample

, (3.22)

where summing is applied over all Gauss points in the sample volume over which the
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averaging is performed. Here V; denotes the volume represented by i’ Gauss point. I'; is
the accumulated slip and /™" the twin volume fraction at that Gauss point (if reorientation
was performed at the given Gauss point the twin volume fraction for this point equals
one). The volume averaged relative activity ¢ of a slip or twin system () is defined as:

_ ANV
g Z Vi (3.23)
> ALY,

where summing is applied over all Gauss points in the volume over which the averaging
is performed. Eq. (3.23) quantifies the activity of the particular mechanism compared to

Ith Gauss

the others over a given time step. Here V; denotes the volume represented by
point. A~f is the increment in plastic strain on the a* system and AL, = 2MFV A~
is the incremental cumulative plastic strain on all N deformation (slip + twin) systems at

that Gauss point.
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CHAPTER 4
Cylindrical void growth vs grain

fragmentation in FCCsingle crystals

In this chapter, the CPFEM detailed in Chapter 2, Section 2.4 is employed to investigate
the interaction between cylindrical void growth or collapse and grain refinement in face-
centered cubic (FCC) single crystals deforming by slip only. A 2D plane strain model, as
shown in Fig. 3.1, with a single void, is utilized. The impacts of crystallographic orientation
and various boundary conditions on void growth or coalescence, as well as grain refinement
due to heterogeneous lattice rotation, in a 2D plane strain unit cell, are examined. First,
in-plane uniaxial compression and tension, simulated using the displacement-controlled
scenario (Eq. (3.13)), are performed to demonstrate the void-induced heterogeneous slip
activity, which subsequently leads to spatial variation in lattice rotation. This example also
explores the effect of loading direction with respect to crystal axes and loading ‘sign’ (tension
vs. compression). Moreover, the analysis preliminary verifies the model predictions with
available experimental findings provided in (Gan et al., 2006). Next, various in-plane
biaxial processes are examined to understand the impact of plastic anisotropy on void
growth in an FCC single crystal. The results and discussion presented in this chapter have

already been published in the paper Virupakshi and Kowalczyk-Gajewska (2023).

4.1 Material parameters, crystal orientations and loading cases

considered

The parameters of the hardening model, elastic constants of the material, and the value
of n used are shown in the Tab. 4.1. The latent hardening parameter on both coplanar and
non-coplanar systems is the same, but in general, it could have been taken as different.
Plastic deformation in FCC crystals occurs along the {111}(110) family of slip systems.



TABLE 4.1 Elastic constants (C11, C2, C44) (Potirniche et al., 2006), initial critical resolved shear
stress (7p), and hardening model parameters (74, ho, 1, 4, go), exponent in the power law (n)
and reference shear rate (vg).

Cii | Cig | Cu | 7o Tsat ho hy q | g | n Yo
GPa | GPa | GPa | GPa | GPa | GPa GPa
150 75 | 37.5]0.02 | 0.097 | 0.18 | 0.0 x 103 | 1.4 | 1.4 | 20 | 0.001

TABLE 4.2 Crystal orientations considered with respective global coordinate axes.

Crystal Lateral Primary Lateral
Orientation direction () | loading direction (y) | direction (2)
Orientation O [110] [001] [110]
Orientation A [111] [211] [011]
Orientation B [100] [010] [001]
Orientation C [110] [110] [001]

Thus, in the computations 12 possibly active slip systems are considered (see Tab. 2.2).

Four initial orientations of the crystalline lattice relative to the sample axes are considered
to study the impact of plastic anisotropy on evolution of porosity, as summarized in Tab. 4.2.
Various types of boundary conditions have already been explained in Chapter 3, and those
conditions are applied here (refer to Subsections 3.2.2, 3.2.4 and 3.2.5).

Throughout the discussion, the displacement-controlled boundary condition will be
referred to as the (5 loading case (refer Subsection 3.2.4), and the stress-controlled boundary
condition will be referred to as the 7 loading case (refer Subsection 3.2.5). In the current
study, seven loading scenarios with (3 equal to -0.5, 0, and 1 as well as 1 equal to -0.5, 0, 0.8,
and 1 are analyzed. The scenario = 0.8 is selected due to its approximate equivalence
to the 5 = 0 case. Note that the state of in-plane uni-axial tension or compression is

represented by n = 0.

4.2 Microstructure evolution and void growth in in-plane
uniaxial tension and compression
Gan et al. (2006) examined in-plane uniaxial compression of a single crystal along the
[001] direction with a cylindrical void axis along the [110] (orientation O in Tab. 4.2).

As discussed in detail by Gan et al. (2006), by applying the anisotropic rigid-plastic slip
line theory, this configuration ensures a plane strain condition in the [001] - [110] crystal
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TABLE 4.3 Set of active slip systems for the specified in-plane uniaxial loading of Orientation O
(no void) according to the rigid-plastic crystal plasticity model. £+~ denotes the magnitude of the
slip on the specified system and its sign at the same level of the true strain in the given loading
direction.

' Slip system
Loading _ _ _ _ _ _
(111)[101] (111)[011] (111)[101] (111)[011]
Tension [001] —y Y Y -
Compression [001] v - - &
Tension [110] g - = Y
Compression [110] — Y Y -

plane under the action of the compressive or tensile loading with three effective in-plane
slip systems. For the pristine crystal they are results of equal activity of four systems (see
Tab. 4.3), which act in opposite directions (i.e. m and —m) for tensile and compressive
loading in the plane. It could be also verified that when the direction of loading is changed
to [001], under a plane strain condition, the same set of slip systems will be active,
again in the opposite sense. Thus, as far as plastic deformation by dislocation motion is
considered, in-plane compression (cor. tension) in [001] is equivalent to in-plane tension
(cor. compression) in [110].

For the sample with a cylindrical void, under the same loading conditions, the formation
of regions of unequal slip activity of potentially active systems around the void is observed,
which leads to the lattice rotation heterogeneity and crystal fragmentation into subgrains.
These theoretical predictions were verified by Gan et al. (2006) experimentally, for the
[001] compression case, by EBSD measurements. Note that for the crystal without the
void, no lattice rotation is predicted by the model, and slip activity is homogeneous, so
the grain is not fragmented.

The purpose of the study is to investigate the differences between void evolution and
grain fragmentation using four loading scenarios, namely tension/compression in the [110]
and [001] directions, even though the same active slip systems are expected for all cases
in a pristine rigid-plastic crystal (as indicated in Tab. 4.3). It is obvious that the overall

stress biaxiality factor 7 is equal to 0 in each case.

First, we have used this example to verify the predictive capabilities of the present
numerical model. As shown in Gan et al. (2006) and confirmed in our study, one of three
effective in-plane slip systems dominates in three different angular slip sectors which are
centered at the middle of the void, as marked by dashed lines in Fig. 4.1b. This results in

different lattice rotations in respective domains. In Fig. 4.1b, we present misorientation
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FIGURE 4.1 a) In-plane lattice rotation angle obtained using EBSD measurement (reprinted from
(Gan et al., 2006) with permission from Elsevier) and b) misorientation angle map plotted found
by the CPFEM method for a 5% compression strain. The dashed line represents the slip sectors
at an angle of 35.3°, 54.7°, and 90° respectively.

angle distribution' for the compression strain of 5%. Qualitatively similar subdivision
is seen in experimental data quoted in Fig. 4.1 after Gan et al. (2006). There are some
differences concerning the direction of rotation in the lateral domains, however, a full
quantitative comparison is not possible due to the lack of the detailed experiment geometry
and boundary condition data in (Gan et al., 2006).

Next, the same sample configuration is used to explore the effect of loading direction
and its sign (i.e. in plane tension vs. compression) on the void evolution and grain
refinement. To this end, four loading cases enlisted in Tab. 4.3 are studied numerically.
In Fig. 4.2a, we compare the overall in-plane mean stress variation vs. magnitude of the
true strain in the loading direction. It is seen that initially, the response in terms of the
magnitude of the in-plane mean stress (o yean = 1/2(X5: + £y, )) is the same for all cases
and does not show visible tension-compression asymmetry. However, as the deformation
proceeds, the difference starts to increase due to differences in the lattice rotation and
void evolution. In each case, the stress level is smaller for the porous crystal than for the
pristine one. The evolution of the normalized void volume fraction (f/ fy) is presented in
Fig. 4.2b. It is observed that, as expected, the void volume fraction increases for tension
and decreases for compression, however, there are important differences between the two
loading directions. While for tension in [001] void grows monotonically, for tension
in [110] after initial increase void volume stabilizes at some, relatively small, constant
value (f/fo ~ 1.13), at least for the demonstrated strain regime?. On the other hand,
for compression in [110] void volume decreases monotonically and void starts to close

See definition (4.1), which is in the present case equipped with the sign to indicate the in-plane
rotation direction. Sign + denotes clockwise and — anticlockwise rotation of [001] axis

%It has been verified that for both these loading cases, the void volume starts to increase with accelerating
rate and softening is observed for in-plane mean stress at larger strain, which events eventually lead to
void coalescence, see Fig. 4.5.
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FIGURE 4.2 Comparison of a) absolute value of in-plane mean stress (0mean)b) normalized void
volume fraction c) displacement biaxiality factor (3), d) true strain biaxiality factor (Si,¢) for four
loading cases between pristine and voided single crystal. Evolution of quantities is presented as a
function of the absolute value of Ej,,q = In(1+ /L), where u is the displacement in the loading
direction.

at a relatively small true strain level (~ 0.25)%, and for compression in [001] after initial
important decrease the void collapse is postponed to higher strain values. It should be
stressed that the overall stress triaxiality value, calculated accounting for the 3D character
of the stress field (note that 2., is not zero for all analyzed cases), is approximately equal
to 0.5 for both tension loadings and -0.5 for compression. Only small variations in the
Lode parameter calculated for the overall stress are detected for four loading cases (its
value is around 0.32-0.33). Displacement biaxiality ratio 3, calculated here as the inverse
ratio of in-plane displacements in loading direction with respect to the lateral one, is seen
in Fig. 4.2c, while the in-plane true strain biaxiality S, calculated as the corresponding
ratio of in-plane components of true strain measure (e.g. for tension/compression in [001]
itis fiog = B/ Eyy = In(F,)/ In(F,,)) is shown in Fig. 4.2d. Their variation with strain
is compared for all four cases and pristine and voided crystals. As expected, it is observed

that for a crystal without a void for all cases the evolution of 3., is the same: it starts with

3Calculations were stopped at the moment when the void opposite boundaries were first in contact
since the material overlapping was not prevented in calculations.
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FIGURE 4.3 Space distribution of accumulated shear at true strain | Ejoaq| level 0.25. a) Tension[001]
b) Tension [110] c) Compression [110], d) Compression [001]. Initial orientation of crystallographic
directions [001] and [110] was marked on the plots.
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FIGURE 4.4 Local lattice rotation angle at true strain | Ej,qq| level of 0.25 in the loading direction.
a) Tension [001] b) Tension [110] ¢) Compression [110], d) Compression [001]. Initial orientation
of crystallographic directions [001] and [110] was marked on the plots.

the value of -0.5 in the elastic regime and reaches -1.0 for well-developed plastic flow,
which marks incompressible deformation in that regime. On the other hand, for voided
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FIGURE 4.5 Uniaxial tension in 001 and 110 directions under plane strain conditions for the
advanced strain: (a) mean in-plane stress evolution (b) normalized void volume fraction.

crystals, the value of -1 is approached only for tension in [110], which is related to the
stabilization of the void growth. For the remaining processes, the value does not drop
below -0.95 indicating the compressibility of voided crystal.

Differences in the void growth or closing for two loading directions concern also the
developed void shape as seen in Figs 4.3 and 4.4. While the ellipsoidal shape of the void is
observed for tension in [110] and compression in [001] (equivalent in terms of slip activity
pattern in pristine crystal), the polygonal shapes are the results of compression in [110]
and tension in [001] directions. Accumulated shear maps also show the failure mode for
each case. In compression cases the failure proceeds by accumulated shear localization in
two intersecting bands. For tension, although at the initial stage two bands are also visible,
the void coalescence takes place, much later for [110] than for [100] case (see footnote 2
and Fig. 4.5).

Fig. 4.4 shows an interesting interplay between the void evolution and the grain
fragmentation phenomenon. Itis seenthat forthe two cases forwhich the void growth/collapse
is halted or retarded (tension in [110] and compression in [001], respectively) the clear
checker-board-type subdivision of initial grain into subgrains, misoriented with respect
to each other by the angle as large as ~ 20° at the true strain level 0.25, is found. On
the other hand, for two other processes, the significant lattice rotation is seen only in the
domains of intensive strain. These latter results confirm microstructure evolution as an
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important effect accompanying the deformation of voided crystalline materials.

The analysis showcased in this section illustrates that both in-plane stress biaxiality
and stress triaxiality, as well as displacement or strain biaxiality, alone are inadequate in
determining the growth of voids. This is particularly true when anisotropic materials are
analyzed. It is important to note that microstructure evolution plays a substantial role in
this process. Fragmentation of bulk crystal surrounding the void into subgrains may lead

to significant impediment of the void volume changes.

4.3 Void growth and microstructure evolution in in-plane biaxial

loading processes

In this subsection, to further explore factors differentiating the void growth and accom-
panying grain fragmentation in FCC crystals, in-plane biaxial processes are considered, for
three orientations A, B, and C defined in Tab. 4.2. Orientations were selected following
Potirniche et al. (2006). In order to investigate and differentiate the effect of stress and
strain biaxiality seven loading scenarios with S equal to -0.5, 0, and 1 as well as 7 equal
to -0.5, 0, 0.8, and 1 are analyzed. Let us remark that orientation A, contrary to B and
C, is non-symmetric with respect to the loading axes, thus shear strain component F,,
(cor. shear stress component ¥,,) may be observed for 7 (cor. ) loading cases even for

a pristine crystal sample.

4.3.1 Overall response of voided crystal

Stress biaxiality ratio. The stress biaxiality ratio for seven loading scenarios is shown
in Fig. 4.6a. To start with, as it is evident, the stress biaxiality ratio for the 7 loading case
is maintained constant for all crystal orientations during the deformation process, which
verifies the validity of the finite element procedure used for imposing a constant stress
biaxiality ratio. On the other hand, in general, for displacement controlled processes (with
constant [3) stress biaxiality ratio n changes during the deformation process. For crystal
orientations A and C, under the 8 = —0.5 loading case, the stress biaxiality is larger than
zero; it initially rises, then progressively drops, and ultimately approaches the uniaxial
loading case at the end of loading. Although the biaxiality ratio is marginally more than
n = 0 for orientation B at the end of loading, apparently, it would reach the uniaxial
loading state if the deformation would have proceeded. For g = 0, the magnitude of 7
steadily rises until it approaches n = 1 at the end of loading. For this case, on average
the value of stress biaxiality for three orientations is close to n = 0.8 that is why for
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comparison purposes such stress controlled scenario is also selected for analysis. Finally,
for the 5 = 1 case, the stress biaxiality ratio is kept constant just as it does for the n = 1
case. Those graphs in conjunction with displacement biaxiality plots in Fig. 4.6b are
important for analyzing the growth of the void and the stress response. The softening
stress response is evident in Fig. 4.6c when the stress biaxiality ratio increases and void
growth is significant, resulting in coalescence.

Additionally, yellow lines are denoted as ‘uniaxial’ in Fig. 4.6, show the results
obtained for the in-plane uniaxial tension process without the employment of a special
spring element but using the displacement-controlled conditions with H described by
Eq. (3.13). Calculations are performed for verification purposes and are in good agreement
with the predictions obtained with the use of the spring element (marked as n = 0 in
figures).

Displacement biaxiality ratio. The displacement biaxiality under various loading in-
stances is depicted in Fig. 4.6b. Similar to the situation of stress biaxiality, the displacement
biaxiality ratio § is kept constant during the (-type process, which verifies the finite
element procedure. On the contrary, in general, for stress ratio controlled processes
(with constant 7)), the displacement biaxiality ratio varies in the course of deformation.
The displacement biaxiality is kept below -0.5 for n = 0 (in-plane uniaxial tension) and
n = —0.5 loading cases. For asymmetric orientation A, under the 7 = 1 loading scenario,
the ratio initially follows the 5 = 1 case, but as deformation proceeds the curve steadily
falls and approaches the 3 = 0 case. For orientations B and C, the ratio remains constant
until halfway through the deformation, after which it steadily drops. For n = 0.8 as
expected, the strain biaxiality oscillates around /5 = 0, although differently for each of
the three orientations. For orientation A it is almost constant and close to zero, for
orientation B it is negative, initially being close to -0.5 and increasing towards the uniaxial
straining mode, while for orientation C it starts with a positive value and next decreases
to zero. These plots are again valuable for studying in conjunction with the contour plots
of accumulated shear in Subsection 4.3.2, void evolution (Fig. 4.6d) and stress response
(Fig. 4.6¢).

Overall mean stress response. Fig. 4.6¢ illustrates the in-plane overall mean stress
response for the various loading scenarios and the given crystallographic orientation.
When all loading scenarios are compared, 5 = 1 exhibits the stiffest response in the
initial deformation phase, whereas n = —0.5 demonstrates the softest stress response for
all crystal orientations. For the n = 0 loading scenario, the stress response increases
monotonically in all orientations. Fig. 4.6a shows that the stress biaxiality ratio is greater
than O (positive) for 5 = -0.5, 0 and 1, and n =0.8 and 1 loading cases. As a result,
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FIGURE 4.7 Overall mean stress response (0mean = 1/2 (3 + X,y)) for different crystal
orientations and for the loading case: a) 5 =0, (b)n=0,(c)n=08(d)S=1(e)n=1.

in the initial deformation stage, a stiffer stress response is observed, followed by a
softening response due to significant void expansion in the crystal, which cannot be further
compensated by an increase of average stress in the bulk crystal. When the magnitude of
peak stress for the different orientations is compared, orientation C has the largest peak
stress, and orientation A has the lowest peak stress for § =1 loading case. Furthermore,
the evolution of the overall mean stress in Fig. 4.6c correlates well with the displacement
biaxiality ratio 5 shown in Fig. 4.6b. In particular, the higher 3 value the more stiff the
initial response is and the sooner (in terms of the value of F,, — 1) the peak stress is
achieved for the given process.

Fig. 4.7 depicts the overall mean stress response in both pristine and porous unit cells
for various crystal orientations and the specified loading scenario. Five loading scenarios
where (3 and 7 are both equal to 0 and 1 are analyzed, together with scenario = 0.8 which

approximately corresponds to 5 = 0 case as discussed before. It is evident that all loading
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cases exhibit the anisotropic response. Also, it is apparent that the response of the porous
crystal differs substantially from that of the pristine crystal. With the exception of 7 = 0
(uniaxial loading condition), the pristine crystal response is almost/nearly elastic. In the
case of n = 0 loading, the pristine crystal displays a stiffer response than the porous crystal
for orientations A and C; however, for orientation B, the response is almost the same for
both the pristine and porous crystal. The response of orientation C is the stiffest in each
of the loading conditions. For loading scenarios, 3 = 0,1, and n = 0.8, 1, orientation A
initially displays the softest response, whereas orientation B exhibits the softest response
by the end of the deformation process. When the loading scenarios 5 = 0 and = 0 are
compared, the substantially higher stress biaxiality in the § = 0 loading case (refer to
Fig. 4.6a) causes a more stiff response during an early deformation stage, followed by a
softening due to significant void expansion in the crystal. On the contrary, a monotonic
stress increase is observed for the 7 = 0 loading scenario. Instead, as expected, the stress
response for 5 = 0 case is close to 7 = 0.8 loading conditions. Due to the highest stress
biaxiality, a similar response was observed for g = n = 1.

Normalized void volume fraction evolution. Fig. 4.6d compares the evolution of the
normalized void volume fraction for various loading conditions and the specified orientation.
These evolution plots are in good agreement with displacement biaxiality ratio plots in
Fig. 4.6a. For all orientations, the void growth rate increases as the displacement biaxiality
ratio increases. The void is collapsing for the 7 = —0.5 loading case, and this behavior
is the most pronounced in orientation C. Confirmation of the phenomenon can be seen
in contour plots of accumulated shear for orientation C which are shown in Fig. 4.15.
Under n = 0 loading case, the void grows very slowly as compared to higher stress
biaxiality cases. If the displacement biaxiality ratio is less than -0.5, softening behavior
is not observed, since not much void growth is seen. The void growth increases at first
with 5 = —0.5 but subsequently stabilizes for all orientations. The evolution of the void
volume fraction under the  and n = 1 loading scenarios correlates with the evolution of
the displacement biaxiality ratio (Fig 4.6b). The curves of void evolution start to deviate
from each other at the same moment when the value of 3 for = 1 case drops below one.

Qualitative differences are observed in the curves shown in Fig. 4.6d for 1-cases, which
can be explained by the accompanied variation of displacement biaxility ratio. As it is seen,
for the high stress biaxiality ratio: 7 = 1, initially for all three orientations the displacement
biaxiality (3 is equal to 1, so the cell is under the conditions beneficial for the void expansion.
Accordingly, at this stage, the void is growing in all directions (compare Figs. 4.10f,
4.12f, and 4.14f). However, as deformation proceeds the displacement biaxiality ratio is

decreasing towards zero, which effectively slows down the void growth since its growth
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starts to be limited to one direction in the plane. Nevertheless, the void volume fraction
is still growing on the cost of bulk crystal, and the achieved values are high. This causes
a decrease of the overall in-plane mean stress as an increase of average stress in the bulk
crystal is not able to compensate for the void expansion, Fig. 4.6c. On the contrary,
for smaller stress biaxiality ratio: n = 0, the initial displacement biaxiality is negative,
so even though the net change of void volume fraction is positive, in this scenario the
void diameter is growing only in one direction while decreasing in the perpendicular one
(compare Figs. 4.10e, 4.12e, and 4.14e). For this case, as the deformation proceeds the
displacement biaxiality ratio increases towards zero, which in this case leads to accelerated
void growth because the reduction of void size in one of the directions is halted, while it
is still growing in another one. For all three orientations for the considered deformation
range, the increase in the void volume fraction is not yet sufficient to overcome the overall
mean stress increase due to the strain hardening in bulk crystal. However, with increasing
deformation one may expect softening which will be accompanied by an accelerated void
growth rate. Interestingly, for the 7 = 0.8 case the former and latter scenarios of void
growth are observed for orientations C and B, respectively (see also Fig. 4.8c). Orientation
A exhibits here some limit case with the almost constant rate of void volume fraction.

Fig. 4.8 compares the evolution of the void volume fraction for different crystal
orientations and the selected loading conditions. Five loading cases, the same as in mean
stress response plots shown in Fig. 4.7 are illustrated. For = 0 (in-plane uniaxial loading
case), the anisotropic response is observed. Void growth in orientation C is the highest,
followed by orientations A and B. But for 5 = 0 and 1 loading cases, due to relatively
large strain biaxiality, the void growth is significant and the effect of crystal orientation
diminishes. It has been verified that the latter observation is true also for other processes in
which 3 value is kept constant. The same observation is reported in (Potirniche et al., 2006)
under displacement controlled boundary conditions. The void growth for orientations C
and B are nearly identical for n = 1 loading. However, the void growth rate is slower
in asymmetric orientation A than in orientations B and C. For the same 7 and 3 values,
the void expansion under 3 = 0 is substantially faster than the 7 = 0 loading situation,
since, as already mentioned, this case corresponds approximately to n = 0.8 case, so a
much higher stress biaxiality ratio. Similarity between n = 0.8 and 8 = 0 case is also
seen when comparing the contour plots in (b) parts of figures in Subsection 4.3.2 with
respective maps in Fig. 4.16.

Unlike in (Prasad et al., 2015) the void coalescence criterion is not formulated in
the present study. Nevertheless, in order to closely observe this phenomenon, Fig. 4.9

it is demonstrated how the void size is changing in three different directions: AB, EF,
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FIGURE 4.8 Normalized void volume fraction evolution for different crystal orientations and for
the loading case: (a) 3=00b)n=0()n=08(d)S=1(e)n=1.

E’F’ marked in Fig. 3.1 for two selected loading cases: 5 =1 and = 1. The figure
presents the evolution of the value of log(L/|Xyight — Xieft|) Where Xight and Xier, denote
current locations of nodes at the right and left end of the respective diameter and L is the
current cell size in a relevant direction. When this value is tending to zero the coalescence
is approached. It is seen that for the case § = 1 and symmetric orientations B and C
the coalescence state is attained in two perpendicular bands along X and Y directions.
Additionally, the void is loosing its spherical shape, more importantly for orientation B
than C. For other cases the coalescence is approached mainly in X direction and this state is
attained visibly sooner for orientations A and B than for orientation C. Fig. 4.9 shows that,
although the orientation effect is not seen in the normalized void evolution plots shown
in Fig. 4.8 under the same value of displacement biaxiality, it manifests in the developed

void shape and thus may influence the coalescence strain and, in general, the failure mode.
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FIGURE 4.9 The change of the void diameters along X (AB), Y (EF) and diagonal (E’F’) directions
(see Fig. 3.1) for three orientations and two loading cases: § = 1 (top) and = 1 (bottom). The
curves present the value of log(L/|Xyight — Xleft|) Where Xyign; and Xje, denote current locations
of nodes at the right and the left end of the respective diameter marked in Fig. 3.1 while L is the
current cell size in a relevant direction.

4.3.2 Local sample response

Local distribution of accumulated shear. First, in order to show the possible failure
mode, contour plots of accumulated shear are presented at the end of the deformation
process at strain level 0.3 for six considered loading scenarios in Figs. 4.11, 4.13 and 4.15,
for three crystallographic orientations A, B, and C listed in Tab. 4.2, respectively. Since
the strain level along the principal loading direction is the same for all the cases, one is
able to observe relative variation in a shape change of the cell as a whole and the void
for all six loading scenarios. Additionally, to illustrate the strain localization process,
the contour plots are presented for Fyy — 1 = 0.15, so at the intermediate stage of the
deformation (refer Figs. 4.10, 4.12 and 4.14)

Part (a) of Figs. 4.10—4.15 shows the contour plots of accumulated shear under 5 = —0.5
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FIGURE 4.10 Contour plots of accumulated shear I" for the asymmetric orientation A under various
loading conditions at the strain level of Fss — 1 = 0.15.

loading. For all orientations, shear begins to accumulate on the transverse sides of the voids
at the intermediate strain level of 0.15. Due to the symmetry of crystal orientations B and
C with respect to the loading direction, the symmetrical distribution of accumulated slip is
observed, whereas for asymmetrical orientation A alternate bands of severe deformation
and no deformation are developing. Because of the relatively high stress biaxiality ratio in
the # = —0.5 scenario, void growth is rapid as deformation progresses (refer to Fig. 4.6(a,
d)). The unit cell is deformed substantially at strain level 0.3, with the maximum shear
accumulating on the transverse sides of the void. For orientations A and B, the transverse
ligament is the origin of void coalescence. In orientation A, the void rotates, and the strain
concentration is observed on the transverse sides along the inclined direction. Moreover,
at the strain level 0.3 a slight trace of the shear band is seen. Because of the asymmetric
orientation, the unit cell edges do not remain straight and are deformed. For orientation
B, a polygonal void shape is noticed. For orientation C, inclined shear bands clearly form,
and the shear accumulates along the transverse sides of the void. The mode of failure
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FIGURE 4.11 Contour plots of accumulated shear I" for the asymmetric orientation A under various
loading conditions at the strain level of Fzs — 1 = 0.3.

in this case is through these inclined shear bands. In addition, the void elongates in the
loading direction, resulting in an ellipsoidal void shape.

Part (b) of Figs. 4.10-4.15 displays the contour plots of accumulated shear under
B = 0 loading. The void growth is substantially faster due to the high stress biaxiality
(0.5 < n < 1, refer to Fig. 4.6a) and is evident even at the intermediate strain level of
0.15. At this strain level, shear begins to accumulate around the void and the void starts
to grow significantly in the transverse direction for all three orientations. Additionally,
the void rotates for orientation A. More shear is accumulated in the transverse ligament
for orientation C than for orientations A and B. The symmetric distribution of contours is
found again for symmetric orientations B and C. As the deformation process proceeds,
rapid void growth is observed in all crystal orientations, and coalescence occurs along
the transverse sides of the void. The void is substantially rotated for orientation A, and

a zigzag pattern of strain localization bands is seen along the transverse direction of the
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FIGURE 4.12 Contour plots of accumulated shear I' for the symmetric orientation B under various
loading conditions at the strain level of Fss — 1 = 0.15.

void. Similarly, in orientation B, void expansion in the transverse direction is quick, and
a polygonal form of the void is clearly developed. On the other hand, the void shape in
orientation C is nearly circular, and accumulated shear is seen in the transverse ligament.

Part (c) of Figs. 4.10—4.15 present the accumulated shear distribution under g = 1
loading. The contour plots resemble those from the preceding loading scenario, i.e. 5 =0,
however, the void growth is quick in both longitudinal and transverse directions due to the
strong stress biaxiality. When compared to the previous loading instance 5 =0, the void
expansion and accumulation of shear is significantly more severe at the intermediate strain
level of 0.15. The void is rotated for asymmetric orientation A, as in prior loading scenarios.
Due to the high stress biaxiality, the void form is much more circular for orientations B
and C at the strain of 0.15. In contrast to prior loading examples, coalescence is observed
in both directions at the final strain level of 0.3 for orientations B and C. In addition, for
orientations B and C, a polygonal void shape with rounded corners is observed. Similar

behavior was reported in (Srivastava and Needleman, 2015) at high stress triaxialities.
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FIGURE 4.13 Contour plots of accumulated shear I' for the symmetric orientation B under various
loading conditions at the strain level of Fyy — 1 =10.3.
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Furthermore, for both orientations, substantial shear accumulation is seen around the void.
The void rotates even further in asymmetric orientation A, but its shape is not perfectly
circular or polygonal. The same rapid void growth is clearly observed in normalized void
volume fractions plots for this § loading case and three orientations (refer Fig. 4.6d).
Now, let us move to the 1 = const loading scenarios. Subfigures (d) of Figs. 4.10—4.15
show the contour plots of accumulated shear under the » = —0.5 loading scenario. In
comparison to the § = —0.5 loading condition, void growth is not significant under this
loading configuration. This is because the stress biaxiality ratio is low. Also, as previously
discussed on the basis of the void evolution plots, void expansion is not detected when
the displacement biaxiality ratio 3 is lower than -0.5. At the intermediate strain level
of 0.15, inclined shear bands begin to form for orientation A, whereas shear bands for
orientation C are at 45° with the main loading direction. However, in orientation B, the

deformation is almost homogeneous and there is no void growth. For orientations A and
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FIGURE 4.14 Contour plots of accumulated shear I" for the symmetric orientation C under various
loading conditions at the strain level of Fss — 1 = 0.15.

C, the void collapses at a strain level of 0.3. Normalized void volume fraction plots
confirm the observation. The void in orientation C is collapsing like a penny shaped crack.
Furthermore, shear accumulates the most at the tip of the severely elongated void. For
orientation B, still, almost homogeneous deformation is seen, with no void expansion.
Part (e) of Figs. 4.10—4.15 displays the contour plots of accumulated shear in accordance
with the n = 0 (uniaxial) loading scenario. The response is quite similar to the loading
case with n = —0.5. At the strain level of 0.15, for asymmetric orientation A, the
shear starts to accumulate on the transverse sides of the void and the formation of one
family of inclined shear bands is observed whereas for orientation B almost homogeneous
deformation is observed with no shear localization. The formation of two families of
the inclined deformation bands and accumulation of slip on transverse sides of the void
is seen for orientation C. For orientation A, a noticeable formation of another family of
inclined deformation bands is observed at a strain level of 0.3, and the unit cell is distorted
whereas for orientation B some heterogeneity of deformation is observed, but not much
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FIGURE 4.15 Contour plots of accumulated shear I' for the symmetric orientation C under various
loading conditions at the strain level of Fyy — 1 =0.3.
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void expansion. For orientation C, slip shear accumulates on both sides of the void, causing
the void to elongate along the loading direction, resulting in an ellipsoidal shape. When
compared to orientations A and B, void expansion is substantially more prominent for
orientation C. Overall, when comparing responses of three orientations with the respective
£ = 0 loading case, the void growth is not significant due to low stress and negative
displacement biaxiality ratios. On the other hand, as already discussed, the = 0 case is
approximately equivalent to the 7 = 0.8 case for which the respective accumulated shear
maps are shown in Fig. 4.16. Those contour plots are very similar to the maps shown in
(b) subfigures included in this subsection.

Finally, part (f) of Figs. 4.10—4.15 depicts the accumulated shear contour plots under
the » = 1 loading scenario. Similarly to the 5 = 1 loading scenario, void growth is
accelerated due to high stress and displacement biaxiality. The displacement biaxiality
ratio plot (Fig. 4.6b) explains the slight deviations from the 5 = 1 loading condition. For

77



Orientation A Orientation B Orientation C

(a) (b)
Orientation A Orientation B

(c)
Orientation C
30
25
20
15

10

(d)

FIGURE 4.16 Contour plots of accumulated shear I" (a-c) and lattice rotation angle in degrees (d-f)
for orientations A, B and C at F5 — 1 = 0.3 for n = 0.8 case.

orientations B and C, the void growth is rapid even at the strain level of 0.15, which is
identical to the § = 1 loading situation. However, there is some deviation in the strain
accumulation as compared to § = 1 case for asymmetric orientation A, which can be
correlated with differences seen in the displacement biaxiality ratio curves in Fig. 4.6b for
these cases. A polygonal void shape with rounded corners is seen for orientations B and
C at the strain level of 0.3, which is identical to the § = 1 loading situation. The void
growth is slightly reduced since the displacement biaxiality ratio is less than 1 (refer to
Fig. 4.6d). The primary difference is that in the 3 = 1 loading situation, void coalescence
occurs in both loading directions, but in the = 1 loading instance, void coalescence
happens only in the transverse ligament. Displacement biaxiality plots (Fig. 4.6b) clearly
show the origin of this disparity. In addition, the maximum shear accumulates around the
void for all orientations.
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Local distribution of lattice rotation. The influence of void evolution and loading
conditions on new grain formation is now studied on the basis of contour plots of the
lattice rotation angle. We concentrate on, somewhat opposite, cases of orientation A and
B, and present only selected results for orientation C.

The lattice rotation angle ¥ € (0, ), presented in the plots, is defined as:

¥ = arccos <tr<ARgC)) — 1) (41)

where AR(t) is calculated based on the initial orientation tensor R(0) and current

orientation tensor R.(t), respectively, as
AR(t) = R(t)R(0)T. (4.2)

Orientation tensor R(#) is constructed based on the current orientation of lattice direction
a with the Miller indices [100] and lattice plane normal b with {001}, respectively. The
change of their orientation during the deformation process is governed by the elastic part
of the deformation gradient F., so that a(t) = F.(t)a(0) and b(t) = F_7(¢)b(0).

In each loading case, we observe rotation angle heterogeneity, which results in the
development of a new microstructure. The presence of a void causes heterogeneity of
strain, which results in heterogeneity of lattice rotation. However, we notice that the
distribution of the rotation angle does not follow perfectly the distribution of accumulated
shear I', as was already seen in Section 4.2 for uniaxial loading cases.

The lattice rotation angle plots for asymmetric orientation A are shown in Fig. 4.17.
Because orientation A is not stable under prescribed loading conditions, we observe
uniform lattice rotation even in pristine crystals. For example, the calculated lattice
rotation angle for loading case n = 0 at F5, — 1 = 0.3 for a crystal without a void is
11°. For voided crystal and » = 0 case, we observe bands with rotation angles of 30°,
whereas the remaining portion of the cell rotates at a smaller angle of about 10°, which
roughly corresponds to the lattice rotation which would be seen in pristine crystals. In the
unit cell, new grains are formed as a result of the different rotation angles. Under the 7
= -0.5 loading scenario, a similar response is observed. Two inclined bands are forming
in this case. The evolution of the void volume fraction has an effect on the evolution
of the microstructure. For n = -0.5, we see that the new subgrains with larger rotation
angle correlate with the zones of increased accumulation of shear. For g =0, g =1, and
1 = 1 loading cases, the formation of new grains takes place around the void, as well as

alternate domains of no rotation (blue domain) and moderate rotation outside of the void
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FIGURE 4.17 Contour plots of lattice rotation angle (V) in (degrees) for the asymmetric orientation
A at the strain level of Fyy — 1 = 0.3.

(d)

is observed. All of these factors contribute to the formation of multigrain microstructures,
particularly at high strain or stress biaxiality values. For the S = -0.5 loading case (and
for the approximately equivalent 7 = 0.8 case as seen in the Fig. 4.16), the combination
of effects found for other loading cases is seen. We observe the formation of a band with
high lattice rotation, which starts at the lateral sides of the void and then is parallel to the
main direction of loading, as well as alternating bands of no and medium rotation angles
in the middle vertical portion of the unit cell.

Fig. 4.18 depicts the lattice rotation angle plots for orientation B. Due to the symmetry
of orientation with respect to the loading conditions, the developed microstructure preserves
this symmetry. Because orientation B is stable under prescribed loading conditions, we
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FIGURE 4.18 Contour plots of lattice rotation angle (V) in (degrees) for the symmetric orientation
B at the strain level of Fyy — 1 = 0.3.

do not observe lattice rotation for pristine crystal. For a voided crystal, for n = 0 and
n = —0.5 loading cases, the heterogeneity of lattice rotation angle is very small, which is
less than 5°, following homogeneity of deformation seen in Fig. 4.13(d, e). Around the
void, a few small domains with 5-10° of lattice rotation are present. The formation of
new grains around the void is observed for higher biaxiality loading cases where 5 = 0,
1 and n = 1, and the crystal domain in a larger distance from the void does not rotate
significantly. Under § = —0.5 and n = 0.8 loadings, the response is somewhere in
between the two scenarios discussed before.

In order to further illustrate the effects related to grain refinement, Figs. 4.19 and 4.20
present histograms of the lattice rotation angle generated based on the data in
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FIGURE 4.19 Histogram plots of lattice rotation angle ¥ in degrees for the asymmetric orientation
A at the strain level of F»y — 1 = 0.3. (Area fraction is calculated in reference configuration).
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FIGURE 4.20 Histogram plots of lattice rotation angle W in degrees for the symmetric orientation
B at the strain level of F55 — 1 = 0.3. (Area fraction is calculated in reference configuration).

Figs. 4.17 and 4.18, respectively. The histogram plot on the left displays the entire
unit cell, while the histogram plot on the right shows the area surrounding the void. For the
purpose of the latter plot, we employed two layers of finite elements which surround the
void (refer to Fig. 3.3). Different colors of bars correspond to different loading conditions.
When we compare the results for asymmetric orientation A and symmetric orientation B,
we observe that orientation A has a substantially larger orientation spread than orientation
B. This is because most of the elements rotate less than 10° in orientation B. When we
consider the area around the void for both orientations, the orientation spread widens
significantly, especially for » = 1 and 3 = 1 loading cases.

In order to quantify more directly observed differences for each case mean value and
standard deviation of rotation angle were calculated and collected in Tab. 4.4, which

includes also the respective values found for orientation C. As expected, for all loading
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TABLE 4.4 Mean (M) and standard deviation (SD) of misorientation angles (degrees) for two
orientations under different loading scenarios.

Loading Case =—-05|p=0|p=1|n==05|n=0|n=08|n=1

M 11.656 | 8.593 | 13.605 | 16.804 | 16.034 | 9.1274 | 9.308

Orientation A
SD 7.302 7.997 | 9.114 6.390 4.569 | 6.91265 | 8.223

. . M 3.179 4.446 | 7.548 0.255 0.808 | 4.08305 | 5.702
Orientation B

SD 2.938 7.605 | 9.837 0.321 0.956 | 6.87856 | 8.125

. . M 5.188 4.490 | 6.502 7.103 6.445 | 4.68702 | 5.727
Orientation C

SD 5.278 6.808 | 7.576 8.595 6.451 | 7.06543 | 6.737

conditions the highest mean value is obtained for orientation A, which is connected with
lack of symmetry for this configuration. Considering the results for the same orientation
but different loading conditions, we see that the highest mean misorientation angle is found
for the case n = —0.5 and 0 for orientation A, and for = 1 for orientation B and C (refer
to Tab. 4.4). The standard deviation is used to illustrate lattice rotation heterogeneity.
High biaxiality factors 7 and § = 1 correspondingly showed the highest lattice rotation
heterogeneity for orientation A. However, for other stress and strain biaxiality factors,
the variation in lattice rotation is not significantly lower. The smallest heterogeneity is
observed for the 7 = 0 case (around 4.5°). As a result, in the presence of a void, orientation
A is prone to grain fragmentation. For orientations B and C, the disparities in lattice
rotation heterogeneity are larger. Again, S and 7 = 1 had the highest values. However, no
heterogeneity is evident for » = —0.5 and 7 = 0 for orientation B, as shown by contour
plots (Fig. 4.18). This observation is not true for orientation C, which can be correlated
with important strain heterogeneity for those two cases seen in Fig. 4.15. On overall, the
level of orientation spread appears to be more influenced by loading conditions in the case

of symmetric orientations.

4.4 Summary and conclusions

In this chapter, using the crystal plasticity theory combined with the finite element
method, we have investigated the effects of initial crystallographic orientation, stress, and
displacement controlled loading conditions on the void and microstructure evolution in a
2D plane strain unit cell. Uniaxial and biaxial loading cases have been studied.

For uniaxial loading cases a special configuration, which enforces an equivalent pattern

of plastic deformation in the pristine crystal, has been selected in order to investigate the
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mutual interactions between the evolving void and the lattice rotation heterogeneity. It
has been found that neither macroscopic in-plane stress biaxiality nor displacement/strain
biaxiality, are sufficient to fully decide about the void growth, especially when anisotropic
materials are considered, and that a significant role in this process is played by microstructure
evolution. Fragmentation of bulk crystal surrounding the void into subgrains may lead to
significant disturbance of the void volume changes. Note that a similar observation, about
the importance of the microstructure changes, was made by Prasad et al. (2015) for HCP
crystal in which the appearance of domains with new twin related orientation strongly
affected void growth and coalescence.

Next, biaxial loading cases have been considered for three crystal orientations, one
of which is not symmetric with respect to loading directions. It has been analyzed
how stress or strain biaxiality factors and initial lattice orientation influence the void
evolution in terms of its size and shape. Overall, seven cases with three displacement
controlled loading scenarios (5 = {—0.5, 0, 1}) and four stress controlled loading scenarios
(n = {-0.5,0,0.8,1}) have been considered. The following are the key conclusions of
the study:

1) It seems that the primary driving factor for void growth and coalescence is the
displacement biaxiality factor 5. A clearer correlation is found between variations in
displacement biaxiality ratio and normalized void volume fraction evolution plots,

as well as the resulting void shape and coalescence pattern.

2) Softening stress response is evident for large displacement biaxiality factors when
the stress biaxiality ratio 7 increases. The void volume fraction increase in such
cases is significant, resulting in void coalescence. The effect of crystal orientation
is then diminished. Similar findings were reported in other studies (Potirniche et al.,
2006). The coalescence is observed in both directions for displacement biaxiality
£ =1, but only in the transverse ligament for stress biaxiality 7 =1. For advanced
plastic deformation, particularly at high stress and displacement biaxialityn = § = 1,
voids evolve into polygonal forms. Similar findings have been reported by Srivastava
and Needleman (2015).

3) For stress controlled processes, the starting point can be described as a biaxial
straining process which under the void growth is approaching an uniaxial straining
mode. The way by which the void growth proceeds is governed by the variation of
the displacement biaxiality factor 5. When initially S is positive the obtained void
volume fractions are larger (softening is observed earlier), while the void growth

rate will be decreasing when the uniaxial straining mode is approached. On the
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4)

5)

other hand, when initially 3 is negative then the obtained void volume fractions are
smaller (softening is observed later), while the void growth rate will be increasing

when the uniaxial straining mode is approached.

For lower stress 7 and displacement [ biaxiality values, an anisotropic response is
observed, and the strain-stress response is dependent on crystallographic orientation.
For the lowest value of stress biaxiality n = —0.5, void closure has been observed,
particularly in the non-symmetric orientation A and orientation C, as well as the

formation of strain localization bands.

In general, the heterogeneity of plastic deformation is the largest for non-symmetric
orientation A. This results in lattice rotation heterogeneity and the formation of grain
fragmentation in each loading case. For other orientations heterogeneity of lattice
rotation is concentrated around the void, especially for higher stress and displacement
biaxiality ratios (3 = {0, 1} & = {0.8, 1}). On the other hand, for small or negative
values of both biaxiality factors, void evolution, and lattice rotation heterogeneity is
greatly influenced by initial crystal orientation and substantially differ for the same
value of stress and strain biaxiality factor, while the grain refinement encompasses

a larger crystal volume.
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CHAPTER 5
Finite element analyses of HCP

crystals with voids

In this chapter, the growth and coalescence of voids in HCP single crystals deforming
through slip and twinning are examined using CPFEM, by employing a unit cell methodology,
similarly as in the previous chapter. A 2D plane strain unit cell with a cylindrical void and a
3D unit cell with a spherical void are considered (see Figs. 3.1b and 3.2). A rate-dependent
crystal plasticity model that includes slip, twinning, and PTVC reorientation scheme is
used; the formulation details are thoroughly explained in Chapter 2, Section 2.4. For
a better understanding of the impact of stress state on void growth, simulations were
conducted using constant stress ratio controlled boundary conditions imposed through
a specific special spring element. This approach is already discussed in Chapter 3,
Subsection 3.2.3. In the first part, the growth of a cylindrical void in a 2D plane strain
cell under various stress biaxiality ratios is discussed. In the second part, the anisotropic
growth of a spherical void under uniaxial tension in five different direction with respect

to crystal axes is examined.

5.1 Numerical analyses of a 2D plane strain unit cell with

cylindrical void

A 2D plane strain unit cell with one cylindrical void is employed (refer schematic
Fig. 3.1b and for FE mesh Fig. 3.3). Three basal, three prismatic, six pyramidal slip
systems, and six tensile twinning systems are considered as potential plastic deformation
modes for HCP crystals (refer to Tab. 2.3), taking into account the three-dimensional nature
of crystal slip and twin systems. As already mentioned, regarding boundary conditions,

to control in-plane stress biaxiality, stress controlled boundary conditions are imposed as



TABLE 5.1 Crystal orientations considered with respective global coordinate axes.

Case In-plane lateral Primary Out-of-plane lateral
loading direction (x) | loading direction (y) | direction (z)

Prismatic (Orientation A) | [1010] [1210] [0001]

C -axis (Orientation B) | [1210] [0001] [1010]

TABLE 5.2 Elastic constants and some other parameters for Mg alloy AZ31B (Frydrych, 2017).

Cn Cha Cis Cs3 Cu | Y™ | ¢/a | n Yo
[GPa] | [GPa] | [GPa] | [GPa] | [GPa]
59.3 25.7 21.4 61.5 16.4 | 0.129 | 1.624 | 20 | 0.001

TABLE 5.3 Hardening parameters for Mg alloy AZ31B (Frydrych, 2017).

o ho by | Teat/fsat | R q
System Interaction | [GPa] [GPa] | [GPa] | [GPa]/— - basal prism. pyr. <cta>
twin
Basal slip-slip | 0.0029 | 0.03016 | 0.0 0.0783 1.0 1.0 1.0 0.0
slip-twin — 0.00001 | — 0.9 — 1.6
Prism. slip-slip | 0.1122 | 0.989 0.0 0.1057 1.2 1.0 1.0 1.0
slip-twin — 0.00001 | — 1.0 — 1.6
Pyr. <c+a> slip-slip 0.135 1.585 0.0 0.135 2.0 1.0 1.0 1.0
slip-twin — 0.0002 — 1.0 — 1.4
Tensile twin | twin-slip — 0 72.5 0.01 — 0.0 0.0 1.0
twin-twin | 0.0649 | 0.001 — 0.95 100.0 1.4

outlined in Subsection 3.2.5. In the calculations, the sample direction is fixed with y axis
denoting principal loading axis. The crystal lattice is oriented along this direction using a
rotation matrix defined by Euler angles.

5.1.1 Crystal orientations, material parameters and loading cases

considered

The material and hardening parameters representing the Mg alloy AZ31B, as shown
in Tabs. 5.2 and 5.3, were used in the calculations. These parameters were identified in
(Frydrych, 2017) based on the experimental results of Proust et al. (2009). The elastic
response of Mg is transversely isotropic, and the elastic constants are defined in Tab. 5.2.
In the following section, the analysis focuses on the influence of crystal orientation on
texture development, void evolution, stress-strain response, and deformation mechanisms.

Two crystal orientations are considered, as presented in Tab. 5.1. It should be noted that
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FIGURE 5.1 Variation of macroscopic mean stress (X,,) with macroscopic strain (E22) for (a)
orientation A and (b) orientation B corresponding to initial void volume fraction of 0.031. The
peak stress is indicated by e where as onset of void coalescence is indicated by o & x.

in the prismatic loading scenario (orientation A), the c-axis is oriented perpendicular to
primary loading direction while for Orientation B c-axis is parallel to primary loading
direction. Each orientation is studied under four loading conditions with stress biaxiality
(n) values of 0.2, 0.4, 0.67, and 0.8, encompassing a wide range of in-plane mean stress
levels. Both orientations are symmetric under such loading conditions, so the overall

deformation gradient in 3D is approximately diagonal,

Fiu. 0 0
Fij = 0 F22 0
0 0 1

so is the Hencky logarithmic strain: E = log U = logF.

5.1.2 Macroscopic response of voided crystal

In Fig. 5.1(a, b), the changes in in-plane macroscopic mean stress Y.,,, with 55 (defined
as log[F o)) are illustrated for orientations A and B, respectively. The stress-strain response
differs qualitatively between the two orientations as a result of activation of different set

of deformation modes. Fig. 5.2 shows the volume-averaged relative activity plot of all

88



——— Basal Prismatic Pyramidal < ¢ +a > Twin Twin Vol. Fraction ----- Reoriented volume
1.+ 1.L
0.8} 0.8}
iy =
=z =
£ 06F £ 06F
< <
o o
Z 04] S 04
] 3}
o ~
0.2 0.2+
0.k ‘ ‘ ‘ ‘ 0
0. 0.1 0.2 0.3 0.4
E22
(a) (b)

FIGURE 5.2 Relative activity plots, ¢ (refer Section 3.3), of deformation mechanisms (a) orientation
A and (b) orientation B with n = 0.4.

possible slip and twin mechanisms under the loading case n = 0.4. Similar results are
observed for other 7 loading cases. This plot is utilized to analyze an impact of deformation
mechanisms on the averaged (macroscopic) and local mechanical response of a unit cell.

In Fig. 5.1a, it is shown that for orientation A, mean stress initially increases linearly
with F5, and then begins to saturate due to plastic yielding in the cell and void expansion
at low stress ratios of 7 = 0.4 and 0.2. When strain hardening in a single crystal cannot
compensate for the expansion of the void, the macroscopic stress reaches a peak and then
starts to decline. This peak occurs at higher levels of Fs, for low stress ratios of n = 0.4
and 0.2 due to the slow expansion of the void and significant accumulation of plastic
deformation, as seen in Fig. 5.1a. For high stress ratios 7 = 0.8 and 0.67, this behavior
occurs at lower Fs, values, shortly after the macroscopic mean stress versus strain curves
deviate from linearity due to the rapid growth of the void. Additionally, it can be observed
that as the stress ratio 7 decreases, the peak macroscopic mean stress values decrease.
This behavior is qualitatively similar to the behavior of the FCC unit cell discussed in
the previous chapter (compare Fig. 4.6¢) as only (prismatic) slip modes are active for this
orientation (Fig. 5.2a) for all values of 7.

In comparison to Fig. 5.1a, the macroscopic mean stress >, vs. Fsy curves for
orientation B in Fig. 5.1b exhibit a distinct pattern which results from the activity of
different set of slip systems and in particular, twinning. In this scenario, Y, initially

increases gradually with Fy (up to E9s ~ 0.04). During this phase, twin formation
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FIGURE 5.3 Evolution of void volume fraction with macroscopic strain (£2) for (a) orientation
A and (b) orientation B corresponding to initial void volume fraction of 0.031. The peak stress is
indicated by e where as onset of void coalescence is indicated by o & x.

occurs in the cell for low stress ratios of 7 = 0.4 and 0.2, as observed in the relative
activity plot (Fig. 5.2b). More details will be given when presenting the local response.
After lattice reorients throughout a large section of the cell, ¥, increases significantly,
as seen in Fig. 5.1b. Multiple slip mechanisms become active after this stage especially
in reoriented domains of the cell, as observed in Fig. 5.2b, resulting in rapid increase of
the mean stress. As the material hardens volumetric deformation is concentrated in the
void. With the void continuing to expand rapidly, the macroscopic mean stress decreases
after reaching the peak stress. Similar to orientation A, peak macroscopic mean stress
values decrease as the stress ratios decrease. Due to the increased hardening induced by
lattice reorientation from tensile twinning, the levels of peak macroscopic mean stress ¥:,,

are higher for orientation B than for orientation A for the same 7.

5.1.3 Void growth and coalescence

Fig. 5.3(a, b) depicts the evolution of the void volume fraction with F5; for orientations
A and B, respectively, for various stress ratios (). The void volume fraction is defined as
the ratio of the area enclosed by the void to the area of the unit cell. Fig. 5.3a reveals that
as 7 decreases from 0.8 to 0.67, the void volume fraction declines very little at a fixed

value of Es for orientation A. This trend is consistent with the plastic slip developing
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within the unit cell in a similar manner (refer to Subsection 5.1.4). Furthermore, as 7 is
reduced further from 0.67 to 0.2, a significant delay in the evolution of the void volume
fraction with Ey is observed for both orientations A and B. This delay can be attributed
to a substantial drop in macroscopic mean stress (¥,,) and increased evolution of plastic
slip in the cell (orientations A & B). Consequently, for Mg single crystals, the level of
in-plane mean stress is crucial in controlling the evolution of the void volume fraction
with macroscopic strain. There is an interplay between void growth and development of
plastic deformation in the material.

By observing Fig. 5.3b, a kink is visible on the curves for all stress ratios at Fyy == 0.04
for orientation B. This stage is characterized by a significant rise in macroscopic stress
due to the completion of the reorientation caused by tensile twinning and saturation of the
activity of this mechanism throughout a large portion of the cell. The void growth rate
accelerates significantly after this stage due to the activation of several difficult-to-proceed
slip mechanisms in the reoriented area (refer to Fig. 5.2b). Consequently, mean stress
reaches a peak shortly after this transition due to rapid void growth, as seen in Fig. 5.1b.
At high stress ratios, the void growth rate for orientation B is slower in comparison to
orientation A due to tensile twinning before reorientation is completed in the cell, as
shown in Fig. 5.3(a, b). As a result of the delayed hardening imparted by activity of
tensile twinning at the initial stage of the deformation process, void growth is hindered
for orientation B compared to orientation A, especially at high stress ratios.

Fig. 5.4(a, b) depict the evolution of unit cell width showing variation of log(L,/L)
with macroscopic strain Fyy for various stress ratios, corresponding to orientations A and
B, respectively. Here, L, and L represent the initial and current widths of the cell. All of
the curves represented in Fig. 5.4a exhibit similar behavior. Thus, when Es, is increased,
L,/L is increased, reflecting an initial reduction in cell width. Following this first stage of
deformation process, for orientation A and all values of 7, saturation occurs in the value of
L, /L, after which it remains nearly constant. This stage indicates that further deformation
occurs in a uniaxial straining mode along the primary loading (i.e., ) direction which
results in flow localization and inter necking coalescence of adjacent voids (Prasad et al.,
2015). This behavior is again consistent with the response of FCC crystals in previous
Chapter 4. The critical value of macroscopic strain (£4,) at the onset of void coalescence
is defined as the magnitude of Fs, at which the rate of change of the cell width |dL/dEs,|
is less than 2% of its peak magnitude and is represented by o in the plot. Similarly, the
value of peak stress is indicated by e as marked in Fig. 5.4a.

Corresponding to orientation B, saturation in the cell width occurs only for the large

stress ratio = 0.67, as seen in Fig. 5.4b. The curves for n = 0.4 and 0.2, on the other
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FIGURE 5.4 Evolution of normalized width of the unit cell expressed as log(L,/L) versus Eao
for (a) orientation A and (b) orientation B corresponding to initial volume fraction of 0.031. The
peak stress is indicated by e where as onset of void coalescence is indicated by o & x.

hand, indicate that the cell width does not saturate but continues to decrease. These curves
reveal a kink with a drastic reduction in slope around Fy =~ 0.04 (refer to Fig. 5.4b),
corresponding to the phase when lattice reorientation occurs across a significant section
of the cell due to tensile twinning saturation. To comprehend this behavior, it should be
noted that for low stress ratios, especially for n = 0.2, void coalescence for orientation
B happens through the formation of shear localization bands that connect voids across
diagonally adjacent cells as it will be demonstrated in the upcoming section. When
principal logarithmic strain log(\}) over the full length of the shear band surpasses a
threshold value of 0.4, shear localization mode of coalescence have occurred. In Fig. 5.4b,
the relevant stage is marked by x symbol on the curves for = 0.2. The evolution plot for
1 = 0.8 is not presented here due to numerical convergence issues. The criteria for void
coalescence, both for orientations A and B, are assumed following the work by Prasad
et al. (2015).

In Fig. 5.5, the results of the cell width evolution are compared with the results of
Prasad et al. (2015) for orientation A. It can be seen that there is a good agreement between
both results. Nevertheless for orientation B, the results are slightly different due to the
presence of twinning activity, and there are nuance differences in problem formulation

and the reorientation scheme used (by comparing Fig. 8b of Prasad et al. (2015) with
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FIGURE 5.5 Comparison of the normalized width evolution of unit cell with the results of Prasad
et al. (2015) for orientation A (Prismatic loading). Dotted lines represent the results of Prasad
et al. (2015) whereas solid lines represent the results of crystal plasticity model used in the present
work.

Fig. 5.4b).

5.1.4 Contour plots of accumulated slip for orientation A

Fig. 5.6(a, b) show the contour plots of accumulated slip (I'*) at the moment when
the macroscopic stress reaches a maximum (i.e. a peak stress) for n = 0.8 and 0.67,
respectively. For these figures, Fs is equal to 0.03 and 0.04, correspondingly. It should
be noticed that, regardless of the level of strain Fs,, the prismatic slip system contributes
the most to plastic slip in orientation A, as indicated in the relative activity plot Fig. 5.2a.
Plastic slip contours for both stress ratios are comparable, as can be seen in the contour

Fig. 5.6(a, b) and considerable amounts of plastic slip accumulate around the void surface.
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FIGURE 5.6 Contour plots of accumulated slip I'*, (as defined by Eq. (2.18)) for the orientation A
(prismatic loading) and initial void volume fraction of 0.031 corresponding to (a) n = 0.8 at Ea9
=0.03 (b) n = 0.67 at E2y = 0.04 (c) n = 0.8 at Ep2 = 0.2 (d) n = 0.67 at E2s = 0.2.

Also, plastic slip is beginning to accumulate in the transverse ligament normal to the
major principal stress direction y. However, the void retains an almost circular shape in
Fig. 5.6(a, b) and void coalescence is not seen, yet.

Fig. 5.6(c, d) illustrates the contours of accumulated slip at £y = 0.2, again for n =
0.8 and 0.67, respectively. As for Fs, = 0.03, plastic slip distributions for the two stress
ratios are very similar. At the deformation stage depicted in these figures, a substantial
amount of plastic slip has accumulated around the void surface as well as in the transverse
ligament. Furthermore, the void has deformed into an oblate shape (i.e., it has elongated

in the x direction). This is typical behavior as concerns the void growth in the presence
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FIGURE 5.7 Contour plots of accumulated slip I'®, (as defined by Eq. (2.18)) for the orientation A
(prismatic loading) and initial void volume fraction of 0.031 corresponding to (a) 7 = 0.4 at Eyo
=0.10 (b)) n =0.2 at F32 = 0.15 (c) n = 0.4 at E3 = 0.35 (d) n = 0.2 at Fy2 = 0.35.

of high mean stress. Fig. 5.6(c, d) also reveals that the transverse ligament has shrunk
significantly, indicating that the mechanism of coalescence is owing to this ligament’s
necking. According to Koplik and Needleman (1988), it causes a shift in overall unit cell

deformation from biaxial to uniaxial straining along the y direction.
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Fig. 5.7(a, b) illustrates the contour plots of accumulated plastic slip for orientation
A corresponding to the low stress ratio = 0.4 and 0.2 at the point of peak macroscopic
stress. The values of s, related to these figures are 0.1 and 0.15, respectively. A distinct
pattern of plastic slip evolution can be seen when the stress ratio is low during the peak
stress stage as compared to the one observed in Fig. 5.6(a, b) for higher stress ratios.
Hence, in Fig. 5.7(a, b), high accumulated slip I'* can be observed just in the transverse
side of the void surface, rather than all over the void surface as in Fig. 5.7(a, b). In
addition, plastic slip has started to accumulate in the shape of two inclined bands at a 45°
angle to the primary loading direction. The magnitude of accumulated slip ['* inside this
domain is greater for n = 0.2 (Fig. 5.7b) than for n = 0.4 (Fig. 5.7a). Moreover, while
the void preserves its circular shape at the peak stress stage for n = 0.4, it has become
significantly prolate in the primary loading direction for n = 0.2.

At Ey = 0.35, Fig. 5.7(c, d) depicts the space distribution of accumulated slip I'*
for n = 0.4 and n = 0.2, respectively. When comparing these results to Fig. 5.7(a, b), it
can be seen that the plastic slip concentrates in the transverse ligament at greater Foy =
0.35. Although there is an inclination to develop an inclined strain localization band at
lower Es, for the low stress ratio case, plastic slip accumulation in the transverse ligament

predominates at later stages of loading process, leading to necking and void coalescence.

5.1.5 Contour plots of accumulated slip and tensile twin volume fraction

for orientation B

The space distribution of accumulated plastic slip (I'*) for orientation B, under high
stress biaxiality values of n = 0.8 and = 0.67 are shown in Fig. 5.8(a, b), respectively.
The contours are presented at the same Fy; = 0.05, which is before the cell reaches peak
macroscopic stress. This is also the moment when twinning activity is strongly decaying
and twin volume fraction is close to the saturation (see Fig. 5.2b). Fig. 5.8(c, d) show
the contours of accumulated twin volume fraction at the same stage under stress biaxiality
values of n = 0.8 and n = 0.67, respectively. The magnitude of accumulated slip is
higher for n = 0.8 when compared to stress ratio of 0.67. The prevalent contribution
to accumulated slip arises from basal slip system which gets triggered at initial stage of
deformation due to its low critical resolve shear stress (refer to Tab. 5.3) prior to tensile
twinning. Fig. 5.8(c, d) demonstrates that the large twin volume fraction is accumulated in
the outer transverse ligaments and in the middle part of the cell there is no accumulation
of twin. In fact, the value of accumulated twin inside the regions encompassed by the red

color contour is above 0.9, implying that lattice reorientation (in accordance with Eq. (2.3),
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FIGURE 5.8 Contour plots of (a) accumulated slip for n = 0.8 (b) accumulated slip for n = 0.67 (c)
accumulated twin for n = 0.8 (d) accumulated twin for 1 = 0.67 corresponding to the orientation
B (c-axis loading) and initial void volume fraction of 0.031 at Fy, = 0.05.

c axis rotates in the plane by about 86°) has occurred as a result of tensile twinning. This
observation is in accordance with literature studies concerning Mg alloys which shows
that twinning once activated can quickly occupy entire grain (Frydrych et al., 2020). Thus
the reorientation of the lattice causes the harder pyramidal and prismatic slip systems to be
active which results in textural hardening, as observed in Fig. 5.2b. This hardening effect
is associated with higher stress vital to initiate slip in the twinned region. As observed for
orientation A at high stress ratio 7 equal to 0.8, 0.67, the same mode of void coalescence
via the transverse ligament will occur for orientation B too, despite the tensile twinning is
activated. Please note that the calculations were stopped before reaching the strain level
FE5 = 0.35 due to convergence issues associated with high local deformation, particularly
forn =0.8.
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FIGURE 5.9 Contour plots of (a) accumulated shear for = 0.4 (b) accumulated shear for n = 0.2
(c) accumulated twin 7" (as defined by Eq. (2.4)) for n = 0.4 (d) accumulated twin for = 0.2
corresponding to the orientation B (c-axis loading) and initial void volume fraction of 0.031 at
E22 = 0.05.

Space distribution of accumulated slip I'* and accumulated twin volume fraction I'*
at Fs; = 0.05 for orientation B corresponding to lower in-plane stress ratio values of 7
equal to 0.4 and 0.2 are depicted in Fig. 5.9. The accumulated I'®, which is predominantly
result of basal slip activity, as indicated in the relative activity plot (Fig. 5.2b) during
initial deformation, extend out vertically in the form of bands in a slender central zone,
starting from the void surface, as shown in Fig. 5.9(a, b). While comparing Fig. 5.8(a, b)
with Fig. 5.9(a, b), the horizontal lobe in the plastic slip distribution around the void
vanishes, and the magnitude of I'® reduces as 7 decreases. Intensive twin activity is
concentrated along the whole right and left parts of the cell for » = 0.4 and 0.2 which is
seen from the contours of accumulated twin volume fraction shown in Fig. 5.9(c, d). Also
in Fig. 5.9(c, d), the magnitude of the accumulated twin volume fraction exceeds 0.9 over
the entire right and left parts of the cell, whereas for the higher stress ratio, the twin gets
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FIGURE 5.10 Contour plots of (a) accumulated basal slip (b) accumulated prismatic slip (c)
accumulated pyramidal slip (d) accumulated twin (e) principal logarithmic strain corresponding to
the orientation B (c-axis loading) and initial void volume fraction of 0.031 with n = 0.2 at Fgy =
0.2.

accumulated more in the area close to the void.

In Fig. 5.10, contour plots of accumulated plastic slip subdivided into the net values for
three families: basal, pyramidal and prismatic slip and accumulated twin volume fraction
are presented for orientation B under n = 0.2 at Fy, = 0.2 across the entire unit cell. At
FE9 = 0.2, significant activity of basal plastic slip is observed which accumulates around
the void boundary and, to some extent, in two inclined bands connecting the voids as
shown in Fig. 5.10a. From the contours in Fig. 5.10(b, c), it can be seen that the slip
accumulates from the transverse side of the void to the corner of the unit cell. Additionally,
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the void is slightly rotated in the primary loading direction and deformed into a prolate
shape. Alternating bands of twinned and untwinned regions are depicted in Fig. 5.10d.
In these twinned reorientation regions of the cell, the activity of pyramidal and prismatic
slip systems has been triggered. It should be stressed that asymmetric deformation of the
unit cell is observed in Fig. 5.10, in spite of the symmetry of unit cell geometry, crystal
orientation and loading conditions. This is possible because of the probabilistic character
of twin reorientation scheme, which breaks the symmetry of the problem. It should be
underlined that such probabilistic nature of twinning behavior is closer to the physical
reality.

In Fig. 5.10e, the combined influence of slip and twins on plastic deformation in the
cell is illustrated by log(A}) (principal logarithmic strain) contours. This figure reveals
the formation of two distinct inclined shear localization bands. Due to shear deformation,
some cell boundaries appear distorted. As 7 decreases, a shift in the coalescence pattern is
observed for orientation B, transitioning from internal necking of the transverse ligaments
to shear localization along inclined bands that join voids diagonally across the cells. These
findings suggest that at low stress ratios, plastic anisotropy and microstructure evolution

induced by tensile twinning in Mg initiates this alternative failure mechanism.

5.1.6 Summary for 2D plane strain unit cell

The following are the key findings of this study:

1) For orientation A plastic deformation in the cell occurs due to dislocation slip, with
the prismatic slip system playing a significant role. The behavior of the unit cell for
prismatic loading is thus similar to the one seen in Chapter 4 for FCC crystals with
symmetric crystal orientations. However for orientation B, during the early phases
of loading, the basal slip mechanism is active along with tensile twinning in the
transverse ligament. The hard deformation modes (i.e. with high critical resolved
shear stress) of pyramidal and prismatic slip are triggered in the twinned area once
a significant amount of the cell surrounding the transverse ligament undergoes

reorientation.

2) For both orientations, void growth declines when 7 is reduced. However, the early
phase of void formation is greatly hindered in orientation B due to twinning activity.
Next, due to the activity of multiple slip systems after reorientation and resulting

textural hardening of the crystal matrix, the void growth rate is increased.

3) Regardless of 7, void coalescence occurs in orientation A by necking of the internal
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ligament normal to the principal stress direction. This is accompanied by a change
to a uniaxial straining mode along the primary principal loading direction. For
orientation B at lower 7, the mode of failure is by shear localization along with an
inclined band that connects neighboring voids diagonally with respect to loading
direction. This is because of the strong plastic anisotropy induced by tensile twinning.
For higher 7, the mode of coalescence is by necking of the transverse ligament

normal to the principal loading direction, same as for orientation A.

4) For orientation A, the results are in good agreement with the work of Prasad et al.
(2015). For orientation B due to the different problem formulation and reorientation
scheme, there is slight differences in the results. Nevertheless the final observations

are qualitatively the same.

5.2 Numerical analyses of a 3D unit cell with spherical void

For the analysis, a 3D unit cell with one spherical void is employed (refer to the
schematic in Fig. 3.2 and the mesh in Fig. 3.4). An initial void volume fraction of f, = 1%
is considered in the calculations. Similar to the 2D case, the same deformation modes are
considered (refer to Section 5.1). The same material and hardening parameters as used in
the 2D case are employed in the calculations (refer to Tab. 5.2 and Tab. 5.3). Concerning
loading, uniaxial tension is imposed based on the stress-controlled boundary conditions
detailed in Subsection 3.2.6 and Eq. (3.17). As explained in Subsection 3.2.6, the crystal
orientation is fixed, and the loading direction is varied to study the anisotropic response
of the porous unit cell. The prismatic axis of a HCP crystal is directed in the y direction,
whereas the c-axis is orientated in the z direction. The current study considers five uniaxial

loading scenarios in the yz plane which is in the form:
Y =¥n®n,

where n is the direction of loading and, in general, it has following components in sample
frame: [cos[u]sin[v], sin[u]sin[v], cos[v]]. In the present study angle u is considered as
/2 and angle v varies from 0° to 90°. 0° case corresponds to prismatic loading and
90° case corresponds to c-axis loading. Other loading scenarios include 30°,45°, and 60°
cases. From now on, loading is addressed in terms of angles. The results for 0° and 90°
loading are qualitatively compared to those of Selvarajou et al. (2019). Please note that
the results presented here differ from those of Selvarajou et al. (2019) due to differences

in the constitutive model, slip and twin systems considered (compression twinning and
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FIGURE 5.11 Uniaxial stress strain response for the porous single crystal with the void volume
fraction of 1% for different orientation of loading direction with respect to crystal axes. Thick
line represents response for porous crystal and dashed line represents response for pristine single
crystal.

pyramidal (a) are not considered in the present study), reorientation scheme, material

parameters, and applied strain level, so the quantitative comparison is not possible.

5.2.1 Stress vs strain response

First of all, the results of the uniaxial stress and strain response along the applied
loading direction are reviewed. Fig. 5.11 illustrates the uniaxial stress and strain response of
pristine (void-free) and porous crystals. The findings for anisotropic matrices reported here
are qualitatively different from those for isotropic matrices. As observed, the responses
vary depending on the loading direction. Loading at 90° exhibits a harder response, while
loading at 45° and 60° produces a softer response. These findings must be interpreted in
conjunction with slip system activity. The porous crystal exhibits a slightly harder response
to 90° loading than its pristine equivalent. In 0° loading, the pristine crystal exhibits a
slightly harder response than the porous material, particularly at higher applied strains.
Due to small void volume fraction at lower strains, the difference is negligible for both

loading conditions. When these results are compared to those of Selvarajou et al. (2019),
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comparable responses are observed, but the difference between the responses of porous
and pristine crystals is more substantial in Selvarajou et al. (2019), especially for c-axis
loading. Also in that paper, the activation of tougher pyramidal slip causes the porous
crystal to harden more than the pristine crystal at high strains over 0.7. In the case of
present results this happens due to the reorientation of the twins and the void’s induction
of a local triaxial stress state for 90° loading, tougher slip systems are triggered, leading to
a harder stress-strain response. Additionally, both pristine and porous crystals respond in
similar ways to loading at 30°, 45°, and 60°. For 30° loading, slight hardening is observed
above 0.25 strains. For 45° and 60° loading, the response is almost linear, and compared
to all loading cases, they exhibit a softer response. This happens due to activation of easy
basal slip for these cases.

5.2.2 Normalized void volume fraction plots

In Fig. 5.12, the porosity evolution for various loading scenarios under applied strain
is presented. A substantial anisotropic response as concerns void evolution is observed,
similarly to the stress-strain response. A comparable response in anisotropic crystals was
reported by Prasad et al. (2015); Selvarajou et al. (2019). Under 0° loading, the void
grows monotonically, whereas under 90° loading, non-monotonic void volume evolution
is observed. After the initial increase the void volume decreases, and then around the
strain level of 0.05 it starts to steadily increasing. The strain level of 0.05 marks the
end of the regime of strong twinning activity after which the accumulated twin volume
fraction reaches the saturation value. So, the regime of decreasing void volume fraction
coincides with the regime of intensive reorientation due to twinning. For loading cases of
30°, 45°, and 60° under which crystal response is very soft (see Fig. 5.11), void evolution
is essentially non-existent and asymptotically ceases. Similarly, a minimal void volume
fraction evolution was also seen in porous isotropic materials subjected to uniaxial loading
(Pardoen and Hutchinson, 2000). When compared to the results of Selvarajou et al. (2019),
a similar response to prismatic loading was noted, but the response to c-axis loading
differed considerably, and minimal reporting was provided in their work as void collapse
was observed.

5.2.3 Relative activity plots

The aforementioned stress and void evolution responses are well characterized by
respective activity of deformation mechanisms. Under 0° loading, prismatic slip is the

dominant mechanism in both pristine and porous crystals, as shown in Fig. 5.13. During
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FIGURE 5.12 Evolution of normalized void volume fraction with the applied uniaxial strain
corresponding to initial void volume fraction of 1%.

the early stage of 90° loading, twinning is activated, followed by harder prismatic and
pyramidal slip systems after reorientation, resulting in a harder stress-strain response.
Additionally, void-induced hardening is observed in the porous crystal under 90° loading.
When these results are compared to those of Selvarajou et al. (2019), a similar response
is noted. However, Selvarajou et al. (2019) included the additional pyramidal (a) slip
mechanism, which accounts for the differences in responses between porous and pristine
crystals. In Selvarajou et al. (2019), under prismatic loading, the porous crystal exhibits a
harder response than the pristine crystal, particularly at higher strains due to the activity
of hard pyramidal (a) slip, which is not considered in the present study. Consequently,
only prismatic slip carries the deformation in the current analysis. Moreover in their
work, extension twinning is activated under prismatic loading even though it is not
highly favorable. In contrast, in the current simulations, the activity of twinning is not
significant under 0° loading, as shown in Fig. 5.13. It should also be noted that the
material parameters and the reorientation scheme considered in this study differ from those
reported in Selvarajou et al. (2019). For the 30°, 45°, and 60° loading cases, the easy
basal slip system is triggered, while the other harder slip systems remain inactive. This is
evident from the geometrical nature of the slip systems. For loading directions between

inclined to both prismatic direction and c-axis, basal slip serves as the easiest way for
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FIGURE 5.13 Relative activity plots, £, of deformation mechanisms. Thick line represents response
for porous crystal and dashed line represents response for pristine single crystal.

slip accumulation. Under these loading scenarios, void growth is almost negligible, and a

much softer stress-strain response is observed.

5.2.4 Local response of a 3D unit cell

Figs. 5.15-5.21 illustrate the contours depicting key slip activities for five loading
scenarios. Figs. 5.15, 5.19, 5.20, and 5.21 display three orthogonal midplane sections of
the deformed cubic unit cell. These figures, specifically 5.15, 5.16a, 5.17a, and 5.19,
are subdivided into four quadrants illustrating total accumulated slip (top left), basal slip
(top right), prismatic slip (bottom left), and pyramidal slip (bottom right), respectively. It
is important to observe that these distributions exhibit symmetry about the three planes,

although symmetry may not be perfect in cases involving twinning due to the random
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Acc. slip Basal

Prismatic | Pyramidal
(a) (c+a)

(b)

FIGURE 5.14 (a) Schematic representation of cross-sectional views of the unit cell cut along its
midplanes in the deformed configuration (b) Divided compartments in the xz plane, illustrating
deformation mechanisms with labeled regions corresponding to slip activities: “Acc. Slip”, “Basal”,
“Prismatic”, and “Pyramidal”.

Acc. shear

Pris <a > Pyr < c+a >

Pris <a > Pyr < ct+a > Pris <a>

FIGURE 5.15 Contour plots of total accumulated slip, basal, prismatic and pyramidal slip in the
midplanes divided into four compartments under uniaxial loading along prismatic direction (0°)
in yz plane at the strain level of 0.3. Three figures represent the corresponding accumulated slips
in the three midplanes of the deformed porous cubic unit cell.

nature of twin reorientation. For the loading scenarios at 30°, 45°, and 60° only one
midplane yz is selected. The other two figures represent views along the y-y and z-z
directions as marked in the left figure. Additionally, please note that the contour plots
depict the final state of deformation. It is seen that for these three loading scenario the

void deforms together with the surrounding material changing its shape to ellipsoidal with
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FIGURE 5.16 Contour plots of accumulated slip, basal, prismatic and pyramidal divided into four
compartments under uniaxial loading along the direction inclined at an angle of 30° to the y axis
in yz plane at the strain level of 0.3. First figure represent the midplane with z-axis unit normal.
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- .
0.540
FIGURE 5.17 Contour plots of accumulated slip, basal, prismatic and pyramidal divided into four

compartments under uniaxial loading along the direction inclined at an angle of 45° to the y axis
in yz plane at the strain level of 0.3. First figure represent the midplane with z-axis unit normal.

almost no volume change.

Fig. 5.15 illustrates the contour plots of slip activities under 0° loading (along prismatic
direction). The dominant slip activity observed across all three planes is prismatic slip,
showing a highly uniform distribution. This trend is also reflected in the relative activity
plots (see Fig. 5.13). Besides prismatic slip, there is minor activity of harder pyramidal
and basal slips in the yz plane near the void vicinity. Similar responses have been reported
in studies by Selvarajou et al. (2019). However, in the work of Selvarajou et al. (2019),
extension twinning occurs at higher strain levels, resulting in reorientation around the void
tip. In the current study under prismatic loading, no twinning activity is observed. Under
0° loading, void volume growth is notably pronounced, resulting in an ellipsoidal void
shape.

107



View Y-Y 0.560

—

~0.555

Acc. shear

Acc. shear

g K

0.550

0.545

-

y/.7:

0.540

FIGURE 5.18 Contour plots of accumulated slip under uniaxial loading along the direction inclined
at an angle of 60° to the y axis in yz plane at the strain level of 0.3. First figure represent the

midplane with z-axis unit normal.
2
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FIGURE 5.19 Contour plots of accumulated slip, basal, prismatic and pyramidal divided into four
compartments under uniaxial loading along the c-axis direction(z axis) in yz plane at the strain
level of 0.3. Three figures represent the corresponding accumulated slips in the midplanes of the
deformed porous cubic unit cell.

The contour plot of key slip activities under 30° stress is shown in Fig. 5.16. The
major slip mechanism is obviously evident to be an easy basal slip, and all other slip
systems are dormant. The unit cell is sheared in the yz plane, and the void is elongated in
the loading direction. An accumulated slip is uniformly distributed over the entire plane
in the z-z view. Similarly, in view y-y, shear accumulates in the transverse direction close
to the void. As previously stated, void growth is insignificant in this loading case.

Figs. 5.17 and 5.18 show contour plots of accumulated slip under 45° and 60° loading,
respectively. Again, the same response as with 30° loading is observed, with the unit cell

sheared in the yz plane. The dominant basal slip activity contributes to the accumulated
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FIGURE 5.20 Contour plots of accumulated twin under uniaxial loading along the c-axis direction (z
axis) in yz plane at the strain level of 0.05. Three figures represent the corresponding accumulated
twin in the midplanes of the deformed porous cubic unit cell.

1

-0.8

-0.6
0.4

0.2

FIGURE 5.21 Contour plots of accumulated twin under uniaxial loading along the c-axis direction (z
axis) in yz plane at the strain level of 0.3. Three figures represent the corresponding accumulated
twin in the midplanes of the deformed porous cubic unit cell.

slip. The entire plane is uniformly distributed with accumulated slip (acc. basal) in the z-z
view. Similarly, slip accumulates in the transverse direction of the void in y-y view; the
similar response is observed under 30° loading.

The distribution of various slip activities under 90° loading is depicted in Fig. 5.19
showing an important activity of twinning. Due to the probabilistic twin orientation
scheme, reorientation is random, and symmetry may not be observed. Initially, basal
slip is triggered, followed by twinning, which causes reorientation. The activation of
the tougher pyramidal and prismatic slip systems in reoriented parts of the cell results in
continued accumulation of slip in these areas, leading to substantial reorientation-induced
hardening. As previously noted, void growth is initially reduced during reorientation

caused by twinning. Subsequently, void growth accelerates due to the activity of tougher

109



slip systems. This behavior contradicts the findings of Selvarajou et al. (2019) for c-axis
loading. The enhanced contraction and pinching at the poles caused by twinning in c-axis
loading, which resulted in the formation of a star-like shape in the transverse plane as
reported by Selvarajou et al. (2019), are not observed in the current findings. Instead, a
quasi-hexagonal void shape is seen in the transverse xy plane (refer to Fig. 5.19). It should
be noted that the constant reorientation scheme was used by Selvarajou et al. (2019),
where reorientation occurs only when the twin volume fraction exceeds 0.9 which results
in perfectly symmetric deformation of the cell.

Figs. 5.20 and 5.21 display contour plots depicting the accumulation of twins at
two different strain levels: 0.05 and 0.3, respectively. At the strain level of 0.05, twin
accumulation is predominantly observed along the outer surfaces, forming a fiber-like
pattern centrally. This distribution is evident in the xz and yz planes, while across the
xy plane, accumulation occurs uniformly except in the vicinity of the void. Fig. 5.21
illustrates widespread twin accumulation across all midplanes throughout the entire region.

In the xz and yz planes, the void appears rectangular hexagonal with rounded corners.

5.3 Conclusions

The evolution of spherical voids in HCP unit cell is investigated under five uniaxial

loading scenarios. The following conclusions can be drawn from the presented analysis:

1) A strong anisotropy in the mechanical response of the 3D unit cell is observed,
depending on the loading direction, as different deformation modes are activated.
Under 90° loading, the stress response is harder due to twin reorientation and the
activation of tougher prismatic and pyramidal slip systems in the reoriented areas.
In contrast, under 30°, 45°, and 60° loading, the stress response is much softer, with
easy basal slip as the dominant mechanism. For 0° loading, prismatic slip is the

primary deformation mechanism.

2) Similarly, void growth is substantially influenced by the loading direction. Under
0° loading, the void volume increases monotonically, while no growth of the void
volume is observed under 30°, 45°, and 60° loading. For 90° loading, the activity of
twinning leads to non-monotonic void growth. Initially, twin reorientation reduces
the void volume, but as tougher slip systems are activated by the evolving local

stress conditions around the void, the void volume gradually increases.

3) The twin gets accumulated in all midplanes at a strain level of 0.3 under 90° loading.
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At the strain level of 0.05, a fiber-like pattern is observed, especially in the zz and

yz planes.

4) Differences are observed when comparing the results, particularly for 0° and 90°
loading, with the recent work by Selvarajou et al. (2019), especially under c-axis
loading most probably as a result of distinct set of potentially active mechanisms

(i.e. pyramidal (a)) and non-probabilistic twin reorientation procedure in the latter

paper.
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CHAPTER 6
Theoretical formulationof a
micromechanical mean-field model

of polycrystals with voids

So far, the mechanics of FCC and HCP voided single crystals deformed by slip
and twinning under various loading conditions have been studied using CPFEM with
the unit cell methodology. In this chapter, contrary to the calculations performed in
previous chapters, the theoretical formulation of a micromechanical mean field model
for porous elasto-viscoplastic polycrystals in the small strain regime is presented. A
two-step homogenization procedure is proposed to determine the overall response of the
porous polycrystal. In the first step of homogenization, the overall response of the porous
single crystal is found using the additive Mori-Tanaka scheme. In the second step, the
overall response of the porous polycrystal is predicted using the elasto-viscoplastic self
consistent (EVPSC) scheme (Girard et al., 2021), which relies on the additive interaction
law. Consequently, the Mori-Tanaka formulation is discussed in the first part, and the

EVPSC scheme is presented in the second part.

6.1 Micromechanical mean-field formulation of porous

polycrystals

The proposed two-step homogenization procedure for porous polycrystals is illustrated
in Fig. 6.1. In the first step, shown in Fig. 6.2, the overall elasto-viscoplastic response of
the representative porous single crystal (RPSC) is obtained using the additive Mori-Tanaka
scheme. In the subsequent step, to predict the overall response for the representative
volume element consisting of homogenized porous single crystals (RVE-HPSCs), the



20d step of
homogenization
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(©

FIGURE 6.1 Schematic representation of the two-step homogenization procedure for porous
polycrystal: (a) representative porous polycrystal (RPP), (b) RVE of polycrystal composed of
homogenized porous single crystals (RVE-HPSC), (c) homogenized porous polycrystal (HPPC).

EVPSC scheme is applied (see Fig. 6.3). It is assumed that the RVE considered in the

homogenization procedure is statistically homogeneous and it obeys ergodic hypothesis.

6.1.1 Additive Mori-Tanaka model of voided elasto-viscoplastic crystal

In this section, the framework applied for finding the effective response of the crystal
with the voids of the spherical shape is presented. In this formulation, the bulk crystal plays
a role of a matrix and the void is an inhomogeneity. Let us consider the representative
porous polycrystal (RPP, see Fig. 6.1a) composed of many representative porous single
crystals (RPSCs). The first task is to determine the overall response of an individual RPSC
(see Fig. 6.2) and then apply the same approach to all RPSCs with different orientations.
For convenience, the subscript g, which represents each porous single crystal (it is also
referred as grain / porous grain in the description), is dropped in this section.

The local constitutive relation of the bulk crystal is of the Maxwell-type form obtained

by the additive decomposition of the total strain rate into elastic and viscoplastic parts:
Ec=€.+e& =M 0.+ f(o), (6.1)

where €. is the strain rate in the bulk crystal. The anisotropic linear constitutive law is
used for the elastic part of strain rate, where ¢ refers to the elastic compliance of the bulk
crystal. Regarding the viscoplastic component of the strain rate, the non-linear power law
is employed (refer to Eq. (2.7)), so it is formulated as follows:

2N+M <7_r

U > " T ' T ' 1 T T ' s
el = floe) =% Y, ) p', 7" =(o.-P), P =§(m ®n"+n"@m"). (6.2)

T
r=1 cr
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FIGURE 6.2 Schematic representation of the first step of homogenization procedure using additive
Mori-Tanka scheme: (a) representative porous single crystal (RPSC), (b) homogenized porous
single crystal (HPSC).

The reference strain rate on the slip or twin system is denoted by 7, and the rate sensitivity
exponent by n. In the above equation, slip and twinning are unified by distinguishing slip
in the m direction from slip in the —m direction. The number of slip and twin systems
are represented by N and M, respectively. The symmetric part of the Schmid tensor is
symbolized by p”. The resolved shear stress, denoted as 7", is determined by the scalar
product of stress (o) and the symmetric part of the Schmid tensor (p”), which is comprised
of the slip plane (n) and slip direction (m). The Macaulay operation (< - >) is defined as
= 2((-)+|- ). The model formulation is thus equivalent to the one presented in Chapter 2,
however, reduced to the small strain framework. The critical resolved shear stress (CRSS)
is represented by 7. When hardening phenomenon is considered, its evolution in relation
to the accumulation of slip or twin volume fraction has been previously presented in
Chapter 2.

When n = 1, the following piecewise-linear law is obtained:

2N+M r
. . sgn({r"))
Ec=M-o, M= Z TPT @p". (6.3)
r=1 cr
The bulk crystal viscous compliance is denoted by IM?. For n > 1, various linearization
schemes, such as secant and tangent schemes, can be utilized for the nonlinear function
f (o). For more information about the linearization schemes refer to Kowalczyk-Gajewska

(2011). The respective tangent and secant viscous compliances for the crystal plasticity
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(b)

FIGURE 6.3 Schematic representation of the second step of homogenization procedure using
additive self-consistent scheme: (a) HPSC embedded in homogeneous equivalent medium (HEM),
(b) homogenized porous polycrystal (HPPC).

model with power law for slip and twin systems are formulated as follows:

of (o M sgn((r7 )\
Mz(tg) _ a<o,) = nfp Z 7(-§ >) <<TT>> pr ® pT’ (64)
c r=1 cr cr
an(sc) (O.C>EMZ(W) (a-c)’ (6.5)

where M2(5¢) 119(*9) refers to the secant and tangent viscous compliances of the bulk crystal,
respectively. To apply the Eshelby result, the linearized properties of the crystal must be
uniform. For this purpose, the mean stress (&) in the crystal is utilized to calculate the
viscous compliance. Consequently, for higher rate sensitivity exponents, the viscous strain
rate in the crystal is computed as follows:

e’ = M) (7F,) - o.. (6.6)

C

From this point forward, mean quantities are predominantly utilized in the formulation.
Consequently, Eq. (6.6) can be expressed in terms of mean field quantities as follows:
g = M0 (7,) - T (6.7)

C

For voids the stress field is zero, so
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(6.8)

By applying Eq. (6.8), the overall response of the voided crystal can be determined using
(6.9)
(6.10)

the following averaging equations:
E = f& + (1 - f)&,
(6.11)

¥=(1-f)o.,
3= (]' - f)ﬁm
where E, 3, and X represent the overall (macroscopic) strain rate, stress rate, and stress,

respectively. ., @., and &, are the respective mean field quantities in the bulk crystal,
(6.12)

(+)dV

U
(1)

calculated as volume averages of the form:
fo1
Ve Jv.

and ’ f’ refers to the volume fraction of the voids. Finally, &, is the strain rate of the void,

which can be calculated based on displacements at the void boundary.
The formulation of the additive interaction law of the Mori-Tanaka type for elasto-

viscoplastic materials was proposed by Molinari (2002) and was subsequently developed
(6.13)

in Czarnota et al. (2015), as follows:
gi—€.=—M (o, —0.) — M- (7, —T.),
which after substituting zero stress for void, takes the following form:
g —E. =M -7, + A -7, (6.14)
where M, MY are the inverses of elastic and viscous Hill tensors LS and LY, respectively.
(6.15)

They are calculated using the following equation:
I]_i/v _ ([Pe/v)—l . H—i/va
The polarization tensor P*/V is determined by the shape of

where L&V = (M¢/v)L,
the ellipsoidal inhomogeneity and the linearized properties of the bulk crystal using the
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following relation (Willis, 1981).

1 sym
/v — 1.3 e/v, \—1
= 4dmabe /|y1 [a™ v (U ® W) © V) ds, (6.16)
where

and a is the second-order tensor of principal values a, b, ¢, equal to the ellipsoid semi-axes
(for a spherical inhomogeneity a = b = c and a = al). The integration is over the surface
of the unit sphere || = 1. M¢ is calculated based on the bulk crystal elastic moduli,
whereas M! is calculated based on secant viscous linearized moduli i.e, Mc”(“) (o.) (refer
to Egs. (6.4)—(6.5)), which are functions of &.. Based on the value of /3, two schemes can
be employed for calculating linearized viscous compliance. For the secant scheme, § = 1
is used, whereas for the tangent scheme, § = n is utilized to compute the overall viscous
compliance of the porous crystal. When comparing the two schemes, the secant scheme
exhibits a harder response, while the tangent scheme displays a softer response. The
difference between two schemes increases with n.

The interaction Eq. (6.13) is reformulated, by multiplying the Eq. (6.13) with f and
using the averaging Egs. (6.9)—(6.11), to the following forms valid for the bulk crystal and

void, respectively:
E—g =-M (-0, - M- (Z—-7), (6.18)
E-g=-M -2X—-3M. % (6.19)

Let us assume that the overall constitutive relation has the following form:

E=M -2+E (o)X =01L"-(E-E"), (6.20)

where M° is the overall (homogenized) elastic compliance of the voided crystal and EV is
the overall (homogenized) viscous strain rate of the voided crystal. To specify the quantities
M° and EV we express the linearized local constitutive law for bulk crystal in terms of
mean stress and strain rate:

. =M 7.+ M7, 7. (6.21)

Now substituting Eq. (6.21) into Eq. (6.9) and using Egs. (6.10)—(6.11) the following

relation is obtained:
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E=f& + M -2+ M7, 2. (6.22)

Finally, substituting Equation (6.22) into (6.19), the following overall relation is obtained:

: 1 f : 1 _ f
E= M + M) -2+ [ ——M(F,) + 5M§g> X, (6.23)
(—f 1—f> (—f @)t
By comparing Eq. (6.23) with Eq. (6.20) we identify that
. 1 f
M = Me M¢ 6.24
E' =M -X%, where M’ = —— M2 + BMY. (6.25)
TP

It is emphasized that assuming relation (6.20) is not necessary to derive Eq. (6.23) above;
however, it facilitates the interpretation of elastic and viscoplastic component of Eq. (6.23).
Using the overall relations (6.24) and (6.25), the effective response of RPSCs with different
orientations can be determined. Consequently, we obtain an RVE composed of HPSCs, to

which the next step of the homogenization procedure can be applied.

6.1.2 Micromechanical Model of RVE Composed of HPSCs Using EVPSC
Scheme

In the next step, to predict the overall response for RVE-HPSC (Fig. 6.1b), the elasto-
viscoplastic self-consistent scheme (EVPSC) is considered (see Fig. 6.3). Numerous self-
consistent schemes devoted to elasto-viscoplastic heterogeneous materials are documented
in the literature, such as those in Wang et al. (2010); Kowalczyk-Gajewska and Petryk
(2011); Mareau and Berbenni (2015). The EVPSC scheme developed in the present thesis
is based on the tangent additive interaction law introduced by Molinari et al. (1997);
Molinari (2002) and adopted, combined with the tangent linearization, for non-porous
polycrystalline materials in Girard et al. (2021). In the current formulation similarly to
Girard et al. (2021), tangent linearization is applied to the viscous component in bulk
crystal (i.e. § = n is used in Eq. (6.27) below). As concerns the viscous component of
HPSC, the overall M; in relation (6.27) obtained based on the Mori-Tanaka scheme (refer
to Eq. (6.25)) can be identified as the secant compliance of the porous grain and it will be
used to calculate the overall viscous properties of the homogeneous equivalent medium
(HEM).

Let ¢, be the volume fraction of HPSC in RVE-HPSC with porosity f, and orientation
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¢4, where subscript g denotes the index of HPSC. Overall relations (6.20) and (6.24)—(6.25)
can be used in the second step of homogenization as local compliances. These relations
are as follows (refer to Fig. 6.3a):

ME, + o Me (6.26)

E, =M, -¥, +E;, where M, = 17, eo T e

ne; ™Y IV 1 v(sc Eg fg v

Ej =V, %, where ¥, = — 7 Mg (= fg) + 1= fgﬁMw. (6.27)
All tensorial quantities are already explained in the previous section. Eq. (6.27) resembles
Eq. (6.7), indicating that the viscous compliance of the porous crystal is calculated by

means of secant linearization. The interaction law is as follows for secant linearization:

E,-E=-M -(3,-3)-1(3,-%), (6.28)
where E f, and X denote the overall strain, stress rate and stress in the HPPC, respectively.
All HPSCs treated as inclusions embedded in the HEM are considered spherical in the
current scenario. In the above equation, M, M. are fourth order inverse elastic and viscous
Hill tensor, respectively. The tensor M. is calculated using the overall effective viscous
stiffness L = (ﬁv)_l in Egs. (6.15)—(6.16). Similarly, M is calculated using the overall

e —_—e —1
effective elastic stiffness, L = (M ) in Egs. (6.15)—(6.16).
According to the self-consistent scale transition, M is given by the following formula:

M = (M, 0B,), (6.29)

where the secant local viscous compliance, ﬂ; provided in the Eq. (6.27), depends on
the grain orientation and current values of the mechanical fields in the HPSC. It must
be updated at each step of the calculation. (e) denotes the volume averaging over the
RVE-HPSC and o stands for the double contraction of two fourth order tensors (see
Section 2.1). Ez is the representative stress localization tensor calculated as:

=v i —v\ 1 U v

By = (M, +,) o (M, +). (6.30)
Similarly to ﬁj, the overall elastic compliance M andEZ are obtained by Egs. (6.29) and (6.30)

where the superscript v is replaced by e (for corresponding elastic quantities). Contrary
to the non-porous polycrystal considered in Girard et al. (2021), where M was calculated
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once, in this study, because f, evolves during the process, the quantities M;, EZ, and M
have to be updated at every time step.

Similarly to the proposals applied to the elasto-viscoplastic voided single crystal formulation,
the EVPSC model is completed by the following averaging relations:

E=(B,), Y=(3,) I=(3,) (6.31)

Using the interaction law (6.28), averaging relations (6.31), and the relations (6.26)—(6.27),
the macroscopic response is obtained in the same way as the overall elasto-viscoplastic

single crystal response as follows:

E=M -i—l—ﬁv, where M = <M§ o@;> : E' = <([B;>T. {E; +M.(Z, - E)}> :
(6.32)

This closed-form expression for the macroscopic response of the HPPC is novel. The

derivation of overall relation (6.32) for polycrystals is clearly explained in Appendix B of

Girard et al. (2021).

6.1.3 Evolution of local and overall porosities in the RVE-HPSC

In the preceding section, the formulation for the overall elasto-viscoplastic response of
RVE-HPSC was presented. The subsequent stage involves formulating relations for void
evolution within each HPSC, followed by updating the overall porosity in RVE-HPSC.

6.1.3.1 Evolution of local porosity

Since a mean-field model is utilized, the volume fraction of void (f,) in grain g, which

is defined as the ratio of void volume (V; ,) to the overall volume of HPSC (1), namely:

Vig
v

fg = (6.33)
Then, the relationships describing the evolution of void volume and overall volume of
HPSC can be analogously calculated according to the relation valid for infinitesimal
quantities:

Vig = (Tréig)Viy, V= (E,)V,, (6.34)

where €; , is the strain rate in the void of the given HPSC (g), and it can be found by the
averaging relation:
B, — (1 — f,)E.). (6.35)

N 1
€i79 = fi
g
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Such relation can be used for two phase medium, so considering only single crystal with
void. In general for n phase material one can find this quantity by using concentration

tensors (A; 4, «; ;) and the overall strain in the given HPSC (Eg) by the following relation:
éz‘,g = Ai,g : Eg + (8798 (636)

By taking the material derivative of the Eq. (6.33) and using the relation (6.34) after some

manipulations, the following evolution equation for local porosity is obtained:
fo=(Tr&,, — TrE,) f,. (6.37)

For incompressible matrix, as is the case for rigid plastic material, this equation reduces
to:
fo= (1= f) TrE,, (6.38)

which is the formula used for void evolution in classical GTN model (Li and Wang, 2018).

6.1.3.2 Overall porosity

As outlined earlier, the volume fraction of HPSC (c,) refers to the ratio between the
volume of HPSC (V) and the overall volume of RVE-HPSC (V). It is important to note

that the collective volume fractions of all HPSCs sum up to one.

%
Cg = Vg Yeg=1, Vy=Vig+ Vg, (6.39)
g9
where V; ;, V., refer to the volume of void and crystal respectively in the given HPSC.

Analogously to Eq. (6.37), the following evolution equation is employed for grain volume
fraction evolution (¢,):
¢, = (TrE, — TrE)c,. (6.40)

By using the Eq. (6.39) and after doing some manipulations the following overall porosity

is obtained in terms of f, and c,:
;24 Vi
f= ng = (o) =D _cofy (6.41)
g
In the above relation, f is updated based on the current value of f, and c,, which is
calculated based on volume fraction evolution equation for the pore, Eq. (6.37), and for

the grain, Eq. (6.40). It should be mentioned that during the current deformation step,
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all volume fractions are kept constant and they are updated after the deformation step is
performed, together with mechanical properties like critical resolved shear stress (7,.) if

necessary.

6.2 Summary

In this chapter the mean-field model for porous elasto-viscoplastic polycrystal has been
formulated. The model employs two-step homogenization procedure. In the first step
using the additive Mori-Tanaka scheme a single grain with voids is homogenized, while in
the second step the additive self-consistent scheme is used to find the effective response
of RVE-HPSC. Additionally, the evolution equations for local and overall porosity are
formulated. In the next chapter, the numerical implementation and preliminary validation
for FCC polycrystals will be presented.
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CHAPTER 7
Numerical verification of the mean
field model for FCC crystals

In this chapter, the numerical implementation of the mean field model formulation,

as introduced in the previous chapter for both single and polycrystals, is discussed.

The model’s estimates for both single and polycrystals are next compared with unit cell

calculations for FCC crystals.

Throughout the discussion of numerical procedure below, the following terminology

is employed:

 Superscripts e and v denote the elastic and viscous components, respectively.

* The subscript ¢ indicates the porous grain, while 7, g specifies the void within the

porous grain, and ¢, g identifies the crystal within the porous grain.

« The notations L and M represent the overall stiffness and compliance tensors of the

porous grain, whereas L and M correspond to the overall stiffness and compliance

tensors of the porous polycrystal.

« M, and M, refer to the inverse Hill tensors of the porous grain and the porous

polycrystal, respectively.

« The symbols E and E denote the overall strain in the porous grain and the porous

polycrystal, respectively.

+ Similarly, 3 and X represent the overall stress in the porous grain and the porous

polycrystal, respectively.

» € and & indicate the local average strain and stress for the constituent phases of a

homogenized porous grain.



A and A refer to the strain concentration tensors for the constituent phases of
the porous grain and porous polycrystal, respectively, while B and B refer to the

corresponding stress concentration tensors.

Regarding rate quantities of stress and strain, a similar notation is employed to

maintain consistency across the formulation.

Subscript g is dropped when overall response of porous single crystal is considered,

especially in the following section.

7.1 Numerical implementation of the micromechanical model

for a porous elasto-viscoplastic FCC single crystal

This section comprehensively details the numerical implementation of the proposed

micromechanical model for elasto-viscoplastic porous single crystals, based on the additive

Mori-Tanaka scheme. The numerical scheme is implemented using the symbolic and

algebraic system, Wolfram Mathematica. Before delving into the primary procedure, a

brief explanation of the prerequisites is provided.

1

2)

3)

To facilitate straightforward tensorial operations, all tensor quantities are represented
in the Kelvin-Rychlewski-Cowin (KRC) and deviatoric bases. In these bases,
symmetric second-order tensors are represented as 6-dimensional vectors and fourth-
order tensors are represented as 6x6 second-order tensors. To express tensor
components in different bases, relevant transformations rules are employed. The
utilization of the deviatoric basis allows for a straightforward splitting of the tensor
into its hydrostatic and deviatoric parts. For further information regarding these

bases, please refer to Kowalczyk-Gajewska (2011).

In addition to the basis transformations, the tensorial quantities represented in the
crystal frame are also rotated to the sample frame and vice versa, utilizing Euler
angles.

The polarization tensor (Eq. (6.16)) for both the elastic and viscoplastic components
is computed using numerical integration with n Gauss points through an external
FORTRAN procedure based on the crystal anisotropic elastic and viscous stiffness
tensor as an input. The Hill tensor and its inverse are determined using the
polarization tensor. Regarding the viscoplastic part, the bulk modulus of the Hill

tensor is calculated through the isotropization (refer next chapter for more details). In
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4)

5)

6)

the case where one of the eigenvalues of the secant viscous compliance tensor (112(*?))
is found to be zero, the compliance tensor undergoes a necessary modification to
stabilize numerical calculations in the transient elastic-plastic regime. This involves
replacing the zero eigenvalue with the minimum remaining eigenvalue of the
compliance tensor. By making this adjustment, the inversion of the compliance
tensor becomes feasible, thereby enabling the straightforward calculation of the
viscous inverse Hill tensor using an external FORTRAN procedure.

Once the elastic Hill tensor (L¢) is computed using an external FORTRAN procedure,
using the crystal elastic stiffness tensor(L{) as an input, the determination of the
overall elastic stiffness and compliance (L°, ") for the porous crystal is carried
out using the additive Mori-Tanka scheme. Furthermore, the calculation of elastic
strain concentration tensors is performed. The corresponding equations are provided
below:
M= ey e o= M5~ (7.1)
1—f 1—f " ’
A= (LS + L) "o (L7 + L), (7.2)

where f is the void volume fraction within the grain and the above equations are
recalculated at each time step if the evolution of f is considered. Otherwise the
above equations are calculated only once during the initial step. Concerning elastic
strain concentration tensors (A7), the subscript j denotes the index of void (j = )
and crystal (j = ¢). These concentration tensors are used in the calculation of the
local strain rates in the void, crystal and in turn, these are used in the calculation of
void evolution. Also, it is important to note that the stiffness of the void is set to

Zero.

The forward Euler explicit integration method is utilized to update the quantities at
t + At based on the rate equations calculated at time ¢. Since the explicit method is

conditionally stable, small time increments are considered to ensure stability.

The subsequent stage involves defining the input data for the main procedure. The
input data is divided into three parts, and each part is elaborated as follows:

a) The first part primarily consists of the process control parameters (time (%),
time increment (At), overall strain rate (E), overall initial strain (E(0), if
considered, otherwise assumed as 0) and the stress direction N in terms of
triaxiality and Lode parameter or stress ratios), the initial void volume fraction

(fo), and the Euler angles responsible for rotating the crystal to the sample
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frame and vice versa. In the current approach, the process can be either fully
strain rate controlled or controlled by one of the strain rate components and

the stress direction.

b) The second part consists of the elastic Hill tensor (M), the overall elastic
stiffness (L"), its inverse (M), and the elastic strain concentration tensors, all

of which have been discussed previously.

¢) The third part includes the viscoplastic data, such as the reference shear rate
(%0), dyads of the symmetric Schmid tensor (p” ® p”) in the deviatoric basis
for calculating the secant viscous compliance, predefined formulas for the
resolved shear stress (7") for all slip and twin systems, hardening parameters,
rate sensitivity exponent, and 3 parameter (where 3 = 1 for secant linearization
and n for tangent linearization). Additionally, symmetric Schmid tensors are
represented as 5-dimensional vectors in the deviatoric basis for computing the

viscous strain rate in the crystal.

Main procedure. Up to this point, the essential prerequisites for the main module have

been outlined. The next step presents the main procedure for the additive Mori-Tanaka

scheme, specifically for crystals with a spherical void, in comprehensive detail. Initially,

all the input data described earlier are imported into the module to facilitate the necessary

calculations.

Step 1:

Step 2:

The analysis begins at ¢t = 0 with the assumption of a purely elastic solution. If
not given, the overall strain rate is computed using the provided stress direction

and the component of the imposed strain e.g. E;; in the following manner:

E=at)(M - -N)( E'=0,3 = a(t)N), (7.3)
B

t = = . - 74

OZ( ) MllijNU 74

Developed procedure allows also for using the imposed equivalent strain rate
Eeq = w%E’ . E’, where F' is the deviatoric part of macroscopic strain rate to
calculate «(t). However, in the calculations presented later, one of the strain
rate components is usually assumed in accordance with the reference unit cell
calculations.

If the initial overall strain (E) is zero, all local quantities, including strain (g;, €.),
stress (o;, o, stress in the void is always zero), viscous strain (e}, €/), equivalent

viscous strain (e, ) in both void and crystal, overall viscous strain (E"), and overall

126



Step 3:

stress (X2, calculated based on overall relation), are initialized to zero.
Otherwise, for the given initial strain, the local strains in both void and crystal are
updated using the strain concentration tensors and assuming an elastic step. The

viscous quantities are set to zero. The equations are as follows:
g;=A;-E, (7.5)
o.=L.-e, 0,=0, T=L"-E. (7.6)

Next, the initial secant viscous compliance in the crystal (M2(*?)) is initialized
using the local stresses within the crystal (o) and the known local quantities from
the elastic step.

For power law exponent n > 1:

n—1
1 T
MUt =40 > — <|T |> p'®p", wherer" =o.-p".  (7.7)

T T
T TCT‘ TCT'

Forn = 1: |
Mlc;(secant) =1 Z 7p7" ® pr’ (78)
r

r Ter
where p” is the symmetric part of the Schmid tensor (Eq. (6.2)), 7" is the resolved
shear stress, “, is the reference shear rate and 7. is the critical resolved shear
stress, and it will be updated at each time step based on the accumulated strain.
Note that in the above formulas we assumed deformation by slip only. They
need to be modified when twinning is incorporated. Similarly to the large strain
formulation discussed in Chapter 2, the rate of shear is given by the rate-dependent

viscoplastic power law (Asaro and Needleman, 1985):

7_7'

s
cr

Y" = Josign(7") : (7.9)

where 7y is the material parameter, n is a rate-sensitivity parameter.

Now, based on the initial secant viscous compliance the viscous inverse Hill
tensor is calculated, employing an external FORTRAN procedure. With this,
the initialization steps are completed, and all the global and local quantities are
exported to their respective output vectors.

The following steps are executed in a while loop until the maximum imposed time

is reached.
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Step 4: The viscous strain rate in the crystal is calculated based on the rate of shear on

the slip systems obtained during the previous step:
er=> 4p. (7.10)
The viscous part of the strain rate in the void is assumed to be zero. The overall

viscous strain rate is calculated using the Eq. (6.25):

E’' =M - % where M’ = —— M) )+ f
e

where f refers to the current void volume fraction, I? is the viscous inverse Hill

gy, (71D

tensor calculated based on the secant viscous compliance in the crystal(1M2(*))
as discussed before. For secant linearization, 3 is considered to be equal to 1,

whereas, for tangent linearization, (5 is considered to be equal to n.

Step 5: After determining the overall viscous strain rate, if not imposed, the overall strain
rate is then calculated based on imposing one of the strain rate component, e.g.
Ell, and the stress direction (IN) as follows:

o Ell - Efl

€

— U ., Y=at)N, E=M .2 +E" 7.12
MllijNij ( ) ( )

aft)
Once the overall strain rate is known, the overall stress rate is updated using the
overall relation (Eq. (7.12)).

Step 6: All local quantities are computed using the relations:

&; = 0 (for void),

. 1 .
.= ——% (for bulk crystal),

_i_f (7.13)
g = ?(E — (1 = f)&.)(for void),

g. = M- 7.+ g’(for bulk crystal).

Step 7: After determining the strain rate in the void, the next step is to calculate void
evolution and explicitly update the void volume fraction using the following
equations:

f=(T& —TE)fus, f= faat fAL (7.14)
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Step 8:

Step 9:

Step 10:

Step 11:

After obtaining the local rate quantities, the succeeding step involves explicitly

updating the current local quantities in the following manner:

O'j = Uj,old + d’jAt,
€; = €joa + €;AL,
€’U - 6;{,Old + E:"l]jAt, (7‘15)

2
_ v ) o Y
€ Eogjold T Eeq AL, Where €7 =/ -€Y - €]

v
eq.j 37 "I
An essential point to remember is that the viscous strain (¢}), stress (o), and

stress rate (o) in the void are all zero.

Once the local quantities are updated, the following step is to update the critical
resolved shear stress based on its evolution equation. This can be achieved
using various hardening laws, for instance, as described in Girard et al. (2021);
Virupakshi and Kowalczyk-Gajewska (2023).

In the next step, the overall stress, strain, and viscous strain are explicitly updated
using the rate equations in the following manner:

Y =3+ ZAL
E = E,, + EAt, (7.16)

The final step of the loop involves calculating the secant viscous compliance and
the viscous inverse Hill tensor using Eq. (7.7), based on the updated local quantities.
These results will be applied in the subsequent time increment. Lastly, the overall
elastic stiffness tensor, compliance tensor, and elastic strain concentration tensors
are computed, taking into account the updated void volume fraction. At the end of

the loop all the current quantities are exported as an output for a given time step.

7.2 Numerical implementation of the two-step homogenized

micromechanical model for porous elasto-viscoplastic FCC

polycrystals

In this section, the numerical implementation of the two-step homogenization procedure,

as formulated in Subsections 6.1.1 and 6.1.2 of the previous Chapter 6, is elucidated. As
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outlined earlier, the Mori-Tanaka scheme is employed at the porous single crystal level for

homogenization, while a self-consistent scheme is utilized in the second step to determine

the overall response for the RVE-HPSC. Numerical algorithm for the Mori-Tanaka scheme

was outlined in previous section. Before the main procedure for the self consistent scheme

is addressed, some necessary initializations need to be made, which will lay the foundation

for subsequent calculations.

1

2)

3)

4)

As explained in the previous section, the same prerequisites and input parameters
will be employed in this numerical implementation; only the new additions will be
presented here. In the numerical procedure tensorial quantities are represented using
the KRC and deviatoric basis.

The primary difference is that, unlike the previous case where only one porous grain
with void volume fraction of f;, was homogenized, here each grain with volume
fraction (c,), having different orientations relative to the sample axes and represented
by Euler angles (¢,), needs to be homogenized. Further, each HPSC will be treated
as an inclusion in a homogeneous equivalent medium (HEM) to determine the overall
response of the RVE-HPSC.

The inverse elastic and viscous Hill tensors (Mg ,0M ) for each single porous
grain, based on crystal properties, and for the RVE-HPSC (Mig,ﬂig), based on
the properties of HEM, are calculated using the respective polarization tensors
(Eqg. (6.16)) through an external FORTRAN procedure.

Once the elastic Hill tensor (£ ), based on the crystal property for each porous grain,
has been calculated, the effective properties (stiffness or compliance tensors, I]_Z / M;)
of the porous crystals in the sample frame are determined. This calculation is based on
the initial void volume fraction in each grain and the given orientation of the porous
crystals, using the overall relation from the Mori-Tanaka scheme (Eg. (6.26)). In
the present implementation, the elastic/viscous compliance tensor is predominantly
utilized at both the single crystal and polycrystal levels; consequently, most of the
equations are expressed in terms of stress localization and compliance tensors. These
effective properties then serve as the local compliance for the HPSCs. Subsequently,
the overall elastic compliance (ﬁe) is determined using the self-consistent scale
transition rule, as outlined below:

= (M, o B}),

—e —e\ —1 —e —e —e (717)
=(M+¥,) o(M. +M), where M)

ﬁe
Eg
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where overall elastic compliance of the porous grain (ﬂ;) is calculated using
Eq. (6.26), [BZ is the elastic strain concentration tensor. The self-consistent scale
transition rule Eq. (7.17) is an implicit equation, and it can be solved iteratively
by assuming an initial guess for the overall elastic compliance of the HEM. The
averaging is performed based on the volume fraction of the HPSC (c,;). Another
important point is that the Hill tensor (M) must be updated during each iteration. The
overall viscous compliance (ﬁv) of the HEM is calculated using a similar procedure.

5) The next step consists of defining the input data, which is then provided to the main
procedure. The input data is categorized into three parts, as was outlined in the

previous section.

a) The first part includes process control parameters and Euler angles (¢,) . The
new additions with respect to the Mori-Tanaka model discussed in the previous
section, include the volume fraction of each porous crystal (c,) and the void

volume fraction (f,) within each crystal.

b) The second part consists of the elastic Hill tensors, overall elastic stiffness, its
inverse, and the strain concentration tensors for each porous grain (g). These
are calculated based on the porous grain orientation (¢,) with respect to sample
axes and initial void volume fraction (f,) in each porous grain. Additionally,
the overall compliance, Hill, and concentration tensors for the elastic part,
calculated using the self-consistent scheme, are provided as input for the initial

elastic step.

¢) The third part consists of the viscoplastic data, as detailed in the previous
section.

Main procedure. In this section, the main procedure for the two-step homogenization
process is outlined. Initially, all the input data is loaded as described in the previous

section.

Step 1: At the initial time step ¢ = 0, a purely elastic solution is assumed. Initially, the
overall strain rate (E) is determined based on the specified stress direction (IN)

and the component of the applied strain, as follows:

“I4E, S=a®)N, E=at) -N)(-E'=0) (7.18)

i

E-=
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Step 2:

Step 3:

Step 4:

where «(t) can be calculated as follows:

Ell
—e

—. (7.19)
M, 1ij N

If the initial overall strain is zero, all global and local quantities remain zero.
Otherwise, the overall and local stresses and strains are determined using the

following equations:

— fi’g B Azg ’ Eg
€eg = Ac’g By
1
—>
1—f,7

oy = 0 (stress in void)

[

-E

|
<

E

g

Ocg =

(7.20)
‘B, =

=
®

Q

P

g
S =T -E (based on overall relation).

Next, based on the local and global quantities determined above, the following
step involves calculating the resolved shear stress, rate of shear and the viscous
compliance of the bulk crystal (refer to Egs. (7.7) and (7.9)). Utilizing the viscous
compliance of the bulk crystal (¢ ), the inverse viscous Hill tensor of the porous
grain (M ) is determined (refer to Section 7.1, prerequisites point 3), which is
then used to compute the overall compliance of the porous grain (Wg]) based on
Mori-Tanka scheme (Eq. (6.27)). This procedure is repeated for each porous
grain, considering the specified Euler angles (¢,) to transform and represent the
quantities in the sample frame. After determining the overall viscous compliance
(ﬂ;), the overall viscous strain rate (E;) in the porous grain is calculated using
Eq. (6.27).

With the overall viscous compliance of all the grains now determined, the subsequent
step involves calculating the overall compliance of the porous polycrystal (ﬂv)

using the self-consistent scheme as outlined below.

M= (T B, . , ., (7.21)
@; = (ﬂ:#—ﬁg) o (W:—l—ﬂ ), where M. (M)

v
The procedure for determining IM was already explained in the initialization step,

specifically in point 4 for the elastic part. The same method applies to the viscous
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Step 5:

Step 6:

Step 7:

part as well. With this, the elastic step is completed, and all global and local
quantities are exported to their respective output vectors.

The steps below are executed in each iteration of a while loop until the maximum
imposed time is reached. In each iteration of the loop based on the stress and
strains at time ¢, first, their rates are found, and next used to update these quantities
for t + At.

The viscoplastic strain rate (Eg,g) for each bulk crystal within the porous grains
is calculated based on the rate of shear and the symmetric Schmid tensors (P")
using the Eq. (7.10).

Subsequently, the overall viscous strain rate of the porous polycrystal (ﬁv) is
determined. This is calculated by using the overall viscous strain rate of the
porous grains (E;), the inverse Hill tensor obtained from the prior self-consistent
step (M.), and the elastic strain concentration tensor for porous polycrystal based
on self consistent scheme (@;) as shown below (refer to Eq. (6.32)):

E) =K+ V) (5, - %)

g g
i . (7.22)
= =e\T T

B = <<[Bg) ‘E9>'
Following the determination of the overall viscous strain rate, the overall stress
and strain rate is subsequently calculated by imposing one of the strain rate
components e.g. E; and specifying the stress direction (in terms of triaxiality

and Lode angle), as shown below:

=0

En-E, = —e -
aft) = =1 E=a)(M -N)+E
M,y;;Ni; (7.23)

=L (E-E").

Once the overall stress and strain rates in the porous crystals are determined,
the local rate quantities in the porous grains are calculated using the following

localization and closure relations:

3, =B, S+ (M + M)~ B - EZ) (overall stress rate in the porous grain)

E, =M, - 3, + E! (overall strain rate in the porous grain) 24
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Step 8:

Step 9:

Step 10:

o;, = 0 (for void)

1 -
., = ——, (for bulk crystal)
Pl (7.25)
€y =Mi, Ty + €. (for bulk crystal)
= 1 ~ = .
€ig = f—(Eg — (1 — f4)€.,)(for void).
g

After the strain rate in the void and the porous grain has been determined, the
subsequent step involves calculating the evolution of the void and grain volume
fractions. The void and grain volume fractions are then explicitly updated using

the following equations:

fo=(Trg,y— T E)foldy? fo = foag + foAt (7.26)

¢g=(TrE; — TrE)coag, ¢g = Coag + ¢oAL
After determining the local rate quantities in the porous grains, crystals, and
voids, the subsequent step involves explicitly updating the current local quantities
at t + At using a similar approach as outlined in Eq. (7.15). Once the local
quantities are updated, the next step is to update the critical resolved shear
stress using its evolution equation (refer to Girard et al. (2021); Virupakshi and
Kowalczyk-Gajewska (2023)).

In the final step, based on the updated volume fractions, the overall compliances,
stress concentration tensors, and inverse Hill tensors for the elastic components
of the porous grains and overall porous polycrystal are updated as outlined in the
initialization procedure, point 4 in this section and also Section 7.1. Similarly,
based on the updated local stresses at both the grain and bulk crystal levels, the
overall viscous compliance, concentration, and inverse Hill tensors are computed
for both the porous grain and the overall porous polycrystal, as detailed in
Eq. (7.21). These quantities will be utilized in the subsequent step to calculate the
rate equations. Finally, all the updated quantities are exported to the global and
local output vectors, and this loop will continue to execute until the maximum
imposed time is reached.
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7.3 Numerical verification of mean field model for FCC porous

single crystal

Preliminaries. In this section, the results of the numerical analyses for the FCC porous
single crystal, based on unit cell methodology, are compared with the predictions of the
additive Mori-Tanaka mean field model, discussed in Chapter 6, Subsection 6.1.1. A finite
strain CPFEM formulation, detailed in Chapter 2 (see Section 2.4 for the formulation and
Subsection 2.4.4 for the hardening laws, Eq. (2.15)), has been implemented. For comparison
with the small strain additive Mori-Tanaka mean field model for porous crystals, the FE
model is considered under small strains. A 3D unit cell with a spherical void, as described
in Chapter 3 with an initial volume fraction of f, = 1%, is considered (refer to Section 3.4).
The mesh, generated using ABAQUS, is subsequently exported to the AceFEM package
for further analysis. To control the overall triaxiality and Lode parameter, stress-controlled
boundary conditions are imposed, as detailed in Chapter 3, Subsection 3.2.6. In this
study, the z-direction is designated as the primary loading direction, and the boundary
conditions specified in Eq. (3.15) are applied. Additionally, periodic boundary conditions
are implemented. The parameters of the hardening model, the elastic constants of the
material, and the rate sensitivity coefficient used in the both FE analyses and the MFM
model are presented in Tab. 7.1. The triaxialities T = % and T = 1, along with the Lode
parameter L. = -1 and three crystal orientations A, B, and C, as described in Chapter 4
(refer Tab. 4.2), were considered.

TABLE 7.1 Elastic constants (Cy1, C2, Cyq), initial critical resolved shear stress (7p), hardening

model parameters (7sq¢, ho, h1), latent hardening on non-coplanar and coplanar systems (g, qo),
exponent in the power law (n), and reference shear rate (¥g).

Cis Cha Cua To Tsat ho hy q qo n Yo
GPa | GPa | GPa GPa GPa GPa GPa
170.2 | 30.5 | 114.9 | 0.0384 | 0.05 | 0.0581 | 20.5 x 1073 | 1.4 | 1.4 | 20 | 0.001

Results and Discussion. Fig. 7.1a depicts a comparison of the overall stress vs. strain
response, which is computed using both CPFEM and a micromechanical model, for three
different crystal orientations. This comparison is carried out within the context of a uniaxial
loading scenario, where the triaxiality is set to 1/3, and the Lode parameter is set to -1.
When comparing the three orientations, it is evident that the asymmetric orientation A
exhibits a stiffer stress response in both the numerical and mean field models. Specifically,

the mean field model with secant linearization predicts higher stress values compared to
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FIGURE 7.1 Comparison of a) overall stress response, b) void volume fraction evolution for FCC
porous single crystal using CPFEM and additive Mori-Tanaka scheme with Lode parameter equal
-1, triaxiality equal to 1/3 and the initial void volume fraction of 1%. The thick line represents
tangent linearization with 5 = n, the dashed line represents secant linearization and B represents
the CPFEM results.

both the tangent linearization and the numerical analyses. In contrast, for the symmetric
orientations B and C, the stress response appears to be quite similar. It is evident that
the numerical results and the mean field model results are in good agreement, especially
tangent linearization and CPFEM results almost coincide.

Fig. 7.1b shows the comparison of void evolution for three crystallographic orientations,
calculated using CPFEM and the additive Mori-Tanaka scheme, under a uniaxial loading
scenario (Lode parameter = -1 & triaxiality = 1/3). In the context of asymmetric orientation
A, void growth is notably more pronounced compared to the symmetric orientations B
and C. This holds true for both CPFEM and the micromechanical model. Comparing
numerical results and those obtained from the mean field model, it is evident that the
tangent linearization tends to overestimate the void growth due to high compliance of
the matrix, while the secant linearization results in nearly negligible void expansion. To
harmonize the mean field results with the numerical data, the value of 5 (generalized
linearization exponent) must be adjusted to fall within the range of 1 to n.

Fig. 7.2a illustrates the comparison of the overall stress vs. strain response between the
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FIGURE 7.2 Comparison of a) overall stress response, b) void volume fraction evolution for FCC
porous single crystal using CPFEM and additive Mori-Tanaka scheme with Lode parameter equal
to -1, triaxiality equal to 1 and the initial void volume fraction of 1%. The thick line represents
tangent linearization with 5 = n, the dashed line represents secant linearization and B represents
the CPFEM results.

mean field model and CPFEM for three crystal orientations under higher triaxiality of 1
and a Lode parameter of -1. Similar to Fig. 7.1a, orientation A displays a more pronounced
hard stress response in contrast to the symmetric orientations B and C. When the overall
stress response between uniaxial loading (Fig. 7.1a) and triaxiality equal to 1 is compared,
it becomes apparent that the stress levels along the principal loading direction are higher
for the higher triaxiality loading as compared to uniaxial loading. In the case of orientation
A, the response from secant linearization significantly deviates and overestimates the
numerical response, primarily due to the low compliance of the matrix when compared to
the tangent linearization. Conversely, for symmetric orientations B and C, the disparity
between the numerical and mean field results is less conspicuous.

Fig. 7.2b presents a comparison of void evolution between mean field model and
CPFEM for three crystal orientations under higher triaxiality of 1 and a Lode parameter
of -1. Due to the higher triaxiality, significant void growth is observed when compared to
Fig. 7.1b. Similarly to uniaxial loading in Fig. 7.1b, pronounced void growth is seen for

hard orientation A when compared to soft and symmetric orientations B and C. The soft
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TABLE 7.2 Elastic constants (C11,C12, C44), initial critical resolved shear stress (7p), hardening
model parameters (7sqt, ho, h1), latent hardening on non-coplanar and coplanar systems (g, qo),
exponent in the power law (n), and reference shear rate (4g).

Ci | Cig | Cu 70 Tsat ho hy q qo n Yo
GPa | GPa | GPa | GPa | GPa | GPa GPa
150 75 [ 37.5]0.06|0.097 | 0.0 |0.0x10"2 |14 |14 | 10 | 0.001

compliance of the matrix in the tangent linearization results in an over prediction of void
evolution when compared to numerical analyses, whereas almost negligible void growth is
observed for secant linearization due to the high stiffness of the matrix similarly to results
presented in Fig. 7.1b. As previously discussed, one possibility can be to adjust the value
of the generalized linearization exponent (/3), to match the mean field response with that
of the numerical results. Another possibility is to incorporate second moment of stress to
calculate linearized viscous compliance as proposed in Lebensohn et al. (2011); Bieniek
et al. (2024).

7.4 Numerical verification of homogenized mean field model

results for FCC porous polycrystals

In this section, the results of numerical analyses of FCC porous polycrystals based on
the unit cell methodology are compared with the predictions of the two-step mean field
micromechanical model, as discussed in Chapter 6, Subsection 6.1.2. First, all the details
concerning the full-field FE analyses are elaborated, followed by the implementation of
the MFM model. A finite strain rate-dependent crystal plasticity model is implemented for
FCC crystals, even though small strains are considered for the analyses, as explained in
Chapter 2 (refer to Section 2.4 for the formulation and Subsection 2.4.4 for the hardening
laws). The parameters of the hardening model, the elastic constants of the material, and
the value of the rate sensitivity coefficient used in the FE analyses are shown in Tab. 7.2.
The FE implementation is explained in Chapter 3, Section 3.1.

7.4.1 Finite element mesh and boundary conditions

As explained in Chapter 3, Section 3.3, a 3D unit cell geometry with a spherical
void is generated using the commercial FE package ABAQUS (Version 6.13) (Fig. 3.4).

This unit cell represents a single crystal containing a spherical void. In the present
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(a) (b)

FIGURE 7.3 a) Finite element mesh of 3D porous polycrystal with spherical voids of same overall
and local initial volume fraction (fy = fo = 1%, 3%), b) cross sectional view of the porous
polycrystal unit cell (fo = 1%) cut at z = 0.5, gray spherical ball represents the contact surface
elements in one of the voids.

analysis, two initial void volume fractions of fy = 1% and 3% are considered. The mesh
data is then imported into Wolfram Mathematica for further preprocessing, analysis, and
post-processing.

The resultant mesh data, representing a porous single crystal unit cell, serves as the
building block for generating a porous polycrystal. Through additional preprocessing in
Mathematica, the single unit cell is replicated within a 4x4x4 cube, resulting in 64 porous
unit cells. Each unit cell is then randomly assigned with orientations in terms of Euler
angles, which define the unit cell orientations relative to the sample axes. Fig. 7.3a shows
the 3D porous polycrystal with ”H1” element topology, following the AceGen convention.
Each color represents different orientation of the crystal relative to the sample axes.
Fig. 7.3b presents the cross-sectional view of the unit cell with f, = 1%, cut at z = 0.5.
A special contact surface elements are attached to the void surface to track the current
volume of each void, based on the average deformation gradient of the void, defined as

follows:

1
Fo; :7/ N dS =
d Vo avX®

1

‘/0 Z Xig (024 Nigwig, (727)
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where 1} is the initial void volume, x;, is the current coordinate of the integration point
g, Nj4 is the normal to the contact elements at ¢g in the initial configuration and wj,, is
a Gauss weight defining the area corresponding to ¢¢g in the initial configuration. In the
FE analyses, the numerical integration is carried out at each integration point g of the
contact surface elements corresponding to a given void.

Concerning boundary conditions, to study the overall and local behavior of the porous
polycrystal, different values of the constant Lode parameter and stress triaxialities are
imposed. For this purpose, stress-controlled boundary conditions are utilized, as explained
in Chapter 3, Subsection 3.2.6. In the present study, the x-direction is considered as
the primary loading direction, and the boundary conditions specified in Eq. (3.15) are
applied. Depending on the given Lode parameter and triaxiality, the stress direction,
which is a function of 7; and 7, is defined. In addition to the stress-controlled boundary
conditions, periodic boundary conditions, as discussed in Chapter 3, Subsection 3.2.2, are
also implemented.

The numerical implementation of the two-step homogenized mean field model for
porous polycrystals, as explained in Section 7.2, is executed in Wolfram Mathematica.
The same material parameters presented in Tab. 7.2 and the same Euler angles used in
the unit cell computations are applied. Concerning the boundary conditions, similarly to
the full-field model, the overall stress direction is imposed in terms of the stress ratios 7);
and 72, and the overall strain rate component in the z-direction is applied, as explained in
Eq. (7.23).

7.4.2 Results and Discussion

In the current study, both the crystal plasticity finite element method (CPFEM) and
the mean field model (MFM) were applied using a combination of Lode parameters,
triaxialities, and initial void volume fractions. Specifically, Lode parameters of L = —1,
representing axisymmetric loading, and L = 0, representing pure shear non-axisymmetric
loading, were considered. Additionally, low and high triaxialities of % and 3 were imposed
to examine the overall and local responses of the FCC porous polycrystal. Furthermore,
two initial void volume fractions, f, = 1% and f, = 3%, were considered in the analysis.
Since the MFM is formulated within a small strain framework, an overall strain of 5% was
imposed in both the CPFEM and MFM calculations. Although the main objective is to
compare the global and local responses of the CPFEM and MFM models, full field results
in terms of the space distribution of equivalent Huber-Mises stress are also presented.

In CPFEM, both first and second moment of Huber-Mises equivalent stress are
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calculated, they are defined as follows:

= 3
T = |2 () () -
feq = 2 (s-s),

where s is the deviatoric part of Cauchy stress tensor and the average ((-)) is performed
over all the Gauss points. Y, is the overall first moment of stress and it is calculated
based on average stress tensor over all Gauss points, whereas feq is the overall second
moment of stress, in which square root of the average of square of equivalent stress (i.e,
agq) is performed over all Gauss points.

Fig. 7.4 illustrates the space distribution of equivalent stress for axisymmetric loading
L = —1 with an imposed triaxiality of 7" = 3 at a overall strain level of 5%. Each
slice represents the cross-sectional views cut along the z-direction. The first notable
observation is that, across all cross-sections large differences between voids growth are
observed, some voids exhibit rapid growth, while in few unit cells, the voids do not grow
at all, even though overall high triaxiality is being imposed. Additionally, the distribution
of equivalent stress is heterogeneous, being predominantly localized around the voids
and exhibiting distinctive patterns. Furthermore, the voids are not only rotating but also
evolving into various shapes, particularly polygonal shapes with rounded corners. This
shows that one additional aspect yet to be studied is the influence of the orientations of
neighboring crystals on void growth. In Fig. 7.4c, it can be observed that voids in the
second row are experiencing significant growth and the stress is localized between the
grains. This will lead to onset of intervoid necking-based failure. Similar experimental

observations were reported by Naragani et al. (2020).

7.4.2.1 Macroscopic response

Normalized volume fraction evolution plots. Fig. 7.5(a, b) compares the overall
normalized void volume fraction between two Lode parameters of —1 and 0, with imposed
triaxialities of 1/3 and 3, and initial overall void volume fractions (f;) of 1% and 3%.
The comparison is made between the results from CPFEM and the porous polycrystal
(MFM). For Lode parameters of L = —1 and 0, it is observed that void growth is more
pronounced in CPFEM compared to the mean field model (MFM). CPFEM predictions
are closer to reality due to its full-field nature. When triaxiality is higher (7" = 3), void
growth is significantly more pronounced than at 7" = 1/3 for both Lode cases of L = —1
and 0. Under the higher triaxiality (7" = 3), comparing the Lode cases in MFM shows that
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FIGURE 7.4 Space distribution of equivalent stress (in MPa) for axisymmetric loading (L = —1),
under high triaxiality (7" = 3) at a strain level of 5%, with an initial void volume fraction fo = 1%
(in each grain), cross-sectional view at: a) x = 0.5, b) x = 1.5, ¢) x = 2.5, d) x = 3.5.

L = —1 (the axisymmetric case) results in greater void evolution for both initial volume
fractions of fo = 1% and 3%. In contrast, for CPFEM, at an initial volume fraction of
1%, both L = —1 and 0 exhibit similar high void evolution. However, at 3% void volume
fraction, L = 0 shows slightly higher void evolution than L = —1, although both are
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lower than the 1% case. Therefore, void growth is more rapid in the axisymmetric case
(L = —1) and is particularly pronounced when the initial volume fraction is lower, i.e,

1%. Fig. 7.6(a, b) compares the overall normalized void volume fraction plots for Lode
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FIGURE 7.5 Overall normalized void evolution plots with imposed triaxialities of 1/3 and 3 for

Lode parameter a) L = —1, b) L = 0.
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FIGURE 7.6 Overall normalized void evolution plots with imposed triaxiality of 1/3 for Lode
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parameters L. = —1 and 0, with an imposed triaxiality of 7" = 1/3, and initial volume
fractions of 1% and 3% for both the mean field model and CPFEM. Similar to the case
of higher triaxiality 7" = 3, it is clearly seen that void evolution is greater for CPFEM
compared to the mean field model for both Lode cases 0 and —1. Nevertheless, for both
models, greater void growth is observed under axisymmetric loading conditions (L = —1)
with an initial overall volume fraction of 1%. In contrast, void evolution is less pronounced
for L = 0 and f, = 3%.

Equivalent stress plots. Fig. 7.7 compares the overall first moment equivalent stress
between the mean field and CPFEM models, focusing on Lode parameters L = —1 and
L = 0 under triaxialities 7' = 1/3 and 3 with overall initial volume fractions of 1% and
3%. Additionally, a pristine case is included for L = —1 for verification purpose. A
higher magnitude of equivalent stress is predicted by the mean field model compared to
CPFEM in all scenarios. This difference is also seen for the pristine polycrystal case,
contrary to the porous single crystal analysis in previous section, due to the heterogeneity
of the polycrystalline RVE. It should be reminded that the secant linearization is used
for the self-consistent homogenization of grain aggregate within the second step of MFM
procedure, so this observation is consistent with the literature results showing overly stiff
predictions of secant scheme as compared to full-field results, cf. (Tome and Lebensohn,
2023). When the pristine polycrystal is compared to the polycrystal with an initial overall
void volume fraction of 1% in both MFM and CPFEM, a harder stress response is observed
in the pristine case under triaxialities 7= 1/3 and T = 3, with results nearly coinciding.
In contrast, a noticeable difference in equivalent stress levels is observed for f, = 1%

with triaxiality 7" = 3, exhibiting a lower magnitude. Under triaxiality 7" = 1/3, for the

given initial void volume fraction, L = —1 shows a higher stress magnitude compared
to L = 0. Additionally, for 7" = 1/3 in both MFM and CPFEM models, a harder stress
response is noted for L = —1 and fo = 1%, while a lower magnitude is observed for

L =0 and f; = 3%. A similar response is observed under triaxiality 7 = 3 as well for
mean field model. Furthermore, significant void growth is observed in the CPFEM plots
under 7" = 3, leading to a softening stress response for L = 1 and L = 0, whereas no such
softening is observed in the mean field model plots. Another important observation is that
under high triaxiality (7" = 3), the influence of the Lode parameter is negligible in the
CPFEM. Similar observations were reported by Barsoum and Faleskog (2011); Nahshon
and Hutchinson (2008). Moreover, the softest response is observed for f, = 3% compared
to fy = 1%. In the elastic range, CPFEM predictions closely align with the mean field
model, but they begin to deviate in the viscoplastic range. It is also important to note that,

the differences between the 7" = 1/3 and 7" = 3 cases is larger when the overall mean
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stress value is considered.
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FIGURE 7.7 Overall first moment equivalent stress plots with imposed triaxialities of 1/3 and 3 for
Lode parameter a) L = —1, b) L = 0.

Fig. 7.8 compares the overall equivalent stress plots with parameters similar to those in
Fig. 7.7. The key difference is that the overall first moment equivalent stress from the mean
field model is compared with the overall second moment equivalent stress from CPFEM.
It is important to note that the second moment equivalent stresses are computed only for
CPFEM. When the magnitudes of the first moment equivalent stresses are compared with
the second moment equivalent stresses of the CPFEM, higher values are predicted for the
second moment stresses. This is due to the second moments ability to capture the local
plasticity effects, even under imposed hydrostatic stress state. Additionally, it is interesting
to observe that the predictions of the first moment stresses from the mean field model are
closely aligned with the predictions of the second moment stresses from CPFEM. When
the second moment equivalent stresses are compared between a pristine polycrystal and a
polycrystal with initial void volume fractions of 1% and 3%, under imposed triaxialities
of 1/3 and 3, L = —1, it is observed that the pristine polycrystal exhibits a harder response
for both triaxialities. As explained before, the overall mean stress values provide clearer
distinctions between the high and low triaxiality cases than the equivalent stress. For both
cases of L = —1 and L = 0, and for the given triaxiality, only minimal differences are

observed in the magnitude of the second moment equivalent stresses between the initial
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FIGURE 7.8 Comparison of overall first moment equivalent stress from the mean field model with
the overall second moment equivalent stress from CPFEM under imposed triaxiality of 1/3 , 3 for
Lode parameter a) L = —1, b) L = 0.

volume fractions of 1% and 3%. When comparing the second moment stresses of the
CPFEM model with the first moment stresses of the MFM across both triaxialities and
Lode cases, the mean field model with L = —1 and f, = 1% predicts the stiffest response.
As shown in Fig. 7.8b, a harder response is evident for 7 = 3 and fy = 1,3% in the

second moment equivalent stress from the CPFEM.

7.4.2.2 Local responses of porous grains

Normalized void volume fraction. Figs. 7.9 and 7.10 illustrate the local normalized
void volume fraction plots (i.e. for each grain) for the MFM and CPFEM, respectively,
as a function of the porous grain orientation under an imposed triaxiality of 7' = 3 and
a macroscopic strain of £y; = 5%. The position of each dot in the inverse pole figure
indicates the orientation of the primary loading axis (i.e., the x-axis) relative to the local
crystal axes of the porous grain g. For the whole discussion of local responses, dots
depicted in blue will be referred to as “cold spots”, while those in red will be referred to
as “hot spots” as representing high and low values of a shown quantity, respectively. The

legend for all local plots is generated based on the minimum and maximum values of the
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respective quantities.

For the MFM with a Lode parameter . = 0, the influence of orientation on void
evolution is less significant than with L = —1. For both initial void volume fractions,
fo = 1%and fy = 3%, only selected orientations exhibit void growth, and these orientations
are predominantly located in the same spots in the inverse pole figure (IPF) for both volume
fractions. In contrast, with L. = —1, void growth is observed in specific orientations,
particularly near the [111] direction!, and it happens at the same spot for both fy = 1%
and fy = 3%. Additionally, the trend of void growth for the given orientation is similar for
L = —1 across both volume fractions. A significant amount of void evolution is shown
by groups of orientations near the [111] and [011] directions (see the footnote), compared
to other orientations, when the Lode parameter is L. = —1.

In the CPFEM, significantly more void growth and variability are observed between
the orientations, particularly for f, = 1% (with a maximum of 3.71 and a minimum
of 1.57 for L = 0). For fy = 3%, this variability decreases. In all cases, when the
magnitude is ignored, the positions of the hot and cold spots in the IPF remain almost
the same. Not much difference between L = 0 and L = —1 for both volume fractions is
observed. When the hot spots for both CPFEM and MFM are compared, some deviations
are observed. These differences arise due to neighboring orientation effects, which are
absent in MFM, and it is clearly visible in CPFEM. The influence of the Lode parameter is
less pronounced in CPFEM compared to MFM. When comparing the minimum magnitude
of the normalized void volume fraction between MFM and CPFEM, it is found to be
smaller in MFM, consistently with the overall void volume fraction evolution presented in
Figs. 7.5 and 7.6. Similarly, CPFEM exhibits a higher maximum magnitude than MFM (as
indicated in the IPF legend). Among all the cases, the scenario with L = 0 and fo = 1%
shows the highest maximum magnitude for both CPFEM and MFM.

Equivalent stress plots. Figs. 7.11 and 7.12 depict the local first moment equivalent
stress plots for porous grains on the IPF for both MFM and CPFEM, respectively. These
plots use the same representation as the normalized void volume fraction plots, under an
imposed triaxiality 7" = 3 and a macroscopic strain of Ey; = 5%. For the MFM with
a Lode parameter L = —1, the stiff orientations are located near the [111] and [011]
directions, while the soft orientations are found near the [001] direction, with the void
volume fraction having no influence on these distributions. When the magnitudes for
fo=1% and f, = 3% are ignored, the distributions remain same for L = —1. For L =0
and fo = 1% and 3%, the loading is not axisymmetric, which causes the orientation of

the secondary axis to play a significant role. This asymmetry leads to the observation of

!Note that this observation applies to all symmetrically equivalent directions (111).
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FIGURE 7.9 Local normalized void evolution for the mean field model (MFM) on the inverse pole
figure (IPF) under triaxiality 7" = 3 and macroscopic strain F1; = 5%, showing void growth
across different grain orientations.
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cold spots within the hot spots. Among all the cases, the spread of equivalent stress is the
highest for L = 0 and f; = 1%. Although some grains exhibit a locally stiffer response
(refer hot spots) for L = 0 and f; = 1%, when comparing it with the global plots, the
scenario with L = —1 and f, = 1% demonstrates the stiffest overall response.

In the CPFEM model, similar to the MFM, the stiffer orientations are located near the
[111] and [011] directions, while the softer orientations are found near the [001] direction.
When the magnitude is neglected for L = —1, fy = 1% and 3% cases exhibit a similar
trend of distribution of spots, with no significant effect of void volume fraction on the
cold and hot spots. Like in the MFM, the non-axisymmetric loading causes the secondary
orientation to play a role, resulting in the observation of cold spots within hot spots. The
highest spread of equivalent stress is observed for L = 0, fy = 1%. For CPFEM with
fo = 3%, the spread is similar for L. = 0 and L = —1; however, differences are observed
in the MFM for the same case.

CPFEM generally exhibits a softer response than MFM, leading to more pronounced
void evolution in CPFEM. While there is a good correlation of hot and cold spots between
the CPFEM and MFM models, some discrepancies in magnitude are observed between
the two. This suggests that MFM predictions tend to be harder, indicating a need to
modify the formulation to achieve a softer response for better alignment with CPFEM
results, especially for first moment equivalent stress. Fig. 7.13 outlines the local second
moment equivalent stress plot for porous grains on the IPF for the CPFEM model, under an
imposed triaxiality T = 3 and a macroscopic strain of F1; = 5%. When the first moments
of the CPFEM model are compared with the second moments, a strong correlation is
observed in the locations of the spots across all cases. However, in certain orientations,
the order of magnitude between the first and second moments is reversed i.e., if we take
two orientations A & B, orientation A has larger first moment than orientation B but
smaller second moment than orientation B. It is also noticed that the magnitude of the
second moments in the CPFEM model is greater than that of the first moments in all cases,
although the spread of the second moments is smaller compared to the spread of the first
moments in the CPFEM model. Mathematically, the first moment equivalent stress should
always be less than the second moment equivalent stress (as shown in Eq. (7.28)). Despite
some differences observed between the first moments of MFM and the second moments
of CPFEM locally, it is surprising that the first moments of MFM are nearly equal to the
second moments of the CPFEM model on average across all cases (as indicated by the
global plots). Under a hydrostatic stress state, the first moment may lose the effect of

local plasticity, whereas the second moment will still capture this effect.
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FIGURE 7.11 Local first moment equivalent stress plot for the mean field model (MFM) on the
inverse pole figure (IPF) under triaxiality 7' = 3 and macroscopic strain F1; = 5%, showing void
growth across different grain orientations.
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FIGURE 7.12 Local first moment equivalent stress plot for the CPFEM on the inverse pole figure
(TPF) under triaxiality 7" = 3 and macroscopic strain E1; = 5%, showing void growth across
different grain orientations.
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FIGURE 7.13 Local second moment equivalent stress for the CPFEM on the inverse pole figure
(IPF) under triaxiality 7" = 3 and macroscopic strain F1; = 5%, showing void growth across
different grain orientations.

7.5 Summary and conclusions

The numerical implementation for both of the two-scale micromechanical model for
porous single crystals, based on the additive Mori-Tanaka scheme, and the three-scale
model, which incorporates transition rules at both scales using the additive interaction
law developed in the previous chapter, is thoroughly explained. The presented scheme
for both porous single and polycrystals can be easily followed and implemented in any
computational program. Finally, mean field model predictions were validated with respect
to the CPFEM calculations for FCC crystals and polycrystals. The following important

conclusions are drawn:

 In FCC porous single crystals, the mean field model with tangent linearization over-
predict void evolution due to the soft matrix compliance, while secant linearization

shows minimal void growth because of the high stiffness of the matrix.
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In porous polycrystal unit cells, the numerical calculations predicts heterogeneous
responses across all cross-sections due to the different orientations of the crystals.
Consequently, some voids are observed to exhibit growth, while others are found to

remain unchanged, despite the imposition of high triaxiality.

In unit cell numerical calculations, distribution of stress is heterogeneous being
predominantly localized between the voids, leading to intervoid necking failure.
This is in agreement with experimental observations were reported by Naragani
et al. (2020).

The mean field model of porous polycrystal underestimates the overall void volume
fraction compared to CPFEM, while overestimating the overall equivalent stress
levels. This happens mainly due to neglecting local heterogeneities of plastic

flow and use of the secant linearization.

Regarding the local equivalent stress response, a strong correlation is observed, as
the orientations on the inverse pole figure with high equivalent stress magnitude
(hot spots) and those with low magnitude (cold spots) match closely between the
CPFEM and mean field models.

It is observed in the literature that mean field models incorporating second moments,
as seen for instance in Bieniek et al. (2024), produce a softer response compared
to models that rely solely on first moment mean values. Therefore, in the future
incorporating the second moment of stress to enhance mean field model predictions

seems to be necessary.
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CHAPTER 8
Phenomenological yield criterion for

porous single crystals

In this chapter, the physically-based yield criteria for porous single crystals are discussed.
First, two GTN-type yield surfaces for porous single crystals, proposed by Han et al. (2013)
and Paux et al. (2018) and already discussed in Chapter 1 (State of the Art), are briefly
revisited alongside the constitutive relations. Then, a new yield surface for porous single
crystals, derived using a micro-mechanical approach as outlined in Chapter 6, is presented
in detail. Following this presentation, the calibration of tuning or fitting parameters is
conducted using unit cell calculations for HCP porous single crystals deforming by slip
and twinning. Finally, the predictions of the proposed yield criterion are compared with
existing models proposed by Han et al. (2013) and Paux et al. (2018) for FCC porous

single crystals undergoing deformation by slip.

8.1 GTN-type plastic yield criteria for porous single crystals

Han et al. (2013) multi-surface yield criterion. The formulation proposed by Han et al.
(2013) is based on the classical Schmid condition for slip initiation and results in a
multi-surface formulation of crystal plasticity. However, this yield criterion has issues
related to the non-unique selection of active slip systems, so some energy-based criterion
is added to select such systems. As demonstrated in Han et al. (2013), the initiation of
plastic slip in FCC porous single crystals is proposed to be governed by the following

multi-criterion:

2 2
T 2 Yequ 3 Xy 2
o = 2) h — =0 - —1< =1,...,12
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where f is the volume fraction of voids, 7¢ is the resolved shear stress, 7. - its critical value,
Yeqv and X, - equivalent Huber-Mises and mean stress, respectively. Tuning parameters:
a = 6.456, q¢; = 1.471, g5 = 1.325 have been identified by Han et al. (2013) by means of
unit cell calculations for FCC porous single crystals. The criterion was developed based on
the micromechanical variational homogenization method of Ponte Castafieda and Suquet
(1998). It should be noted that the initial result of this method is the quadratic criterion

which depends on the void volume fraction as shown below:

T 2, (Zeq 3 (S, )
45 20 Y - - < - . e .
<T§f«> +45f<rg;> /5 <7a> (1-f)P?<0, a=1,...,12 (82

and which is next modified towards the Gurson-type model (for which ¢; = gs = a =1 in

Eq. (8.1)), relaying on the power expansion of the function cosh(z) ~ 1+ 1/2x2. Finally,
similarly to the classical GTN approach tuning parameters a, g1, ¢ are introduced. This
crystal plasticity GTN-type model was incorporated into the large strain constitutive model
and implemented into the finite element code in (Ling et al., 2016). Recently, Khadyko
et al. (2021) modified this porous crystal plasticity model through regularization by using
KS-function (Kreisselmeier and Steinhauser, 1980) which replaces multi surface condition
by a smooth envelope and used it to study ductile fracture in polycrystalline materials.

Paux et al. (2018) yield criterion. The second formulation is based on the regularized
Schmid law (Arminjon and Bacroix, 1991; Gambin, 1991) and results in a single yield
surface, which enables to avoid the problem of non-unique selection of active slip systems.
The corresponding yield criterion takes the form (cited after Paux et al. (2018) in which
slightly modified relation as compared to (Paux et al., 2015) was used),

(67

ol

o cr

ny\ 2/n
) +2qf cosh [K'S5] — (¢f)* —1 <0, (8.3)

where ¢, <’ are fitting parameters (¢ plays a similar role as a ¢; parameter in the first
formulation and all other GTN-type approaches, so that it modifies the volume fraction of
voids: f — ¢f). This model is a phenomenological extension of the anisotropic Benzerga-
Besson porous yield criterion Benzerga and Besson (2001), which was developed on the
basis of the quadratic orthotropic yield criterion due to Hill. For hydrostatic loading,
it employs the limit analysis calculation for a hollow sphere whose matrix presents the
original (multi-surface and non-porous) Schmid yield locus. More details of the model
are to be found in Paux et al. (2018). The proposed model is applicable to crystals of
any symmetry; for example, it is used in this thesis for both FCC and HCP porous single
crystals.
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New proposed criterion based on micromechanical homogenization. The overall viscous
compliance of the elasto-viscoplastic porous single crystal has already been formulated
in Chapter 6, relaying on the micromechanical model based on the additive Mori-Tanaka
scheme. With the use of Egs. (6.11) and (6.25), the corresponding overall equation for the
viscous strain rate takes the form provided below:

o - 1 b
E’' =M -%, where M" = —— MV )+ /
1—f 1—f —f

where all the quantities have already been defined in Chapter 6. Consider the limit

el (8.4)

creep-like scenario where 3 = 0, which implies that E = E¥. Let’s calculate the stress
power at this stage of the loading using the formula 3 - E = ¥ - E¥, where EV = M’ - %,
so the stress power will be X - M’ - X, Employing this quantity as indicator of material

effort, the following yield surface is proposed:
= 1. (8.5)

Note that the denominator includes a local reference stress power for bulk crystal. Here,
represents the reference shear rate, 7, denotes the minimum critical resolved shear stress
chosen from the provided CRSS of slip and twin systems, X is the overall macroscopic
stress imposed.

The quadratic like form X - M" - 3 is to be expanded for a macroscopic stress defined as
3} = alN, where « represents the magnitude of the overall stress and N denotes the stress
direction. By considering NV slip systems and M twin systems separately, the following
form for 1M(*) is adopted (see Eq. (6.4)):

e =503 (12 ')nlp BB 0> (“”)Msgn<<f>>p’"®p’i 5

r
r=1 cr r=1 cr Tcr

For the considered stress direction, utilizing the resolved shear stress relation
T =T, p = ipfr = o ?T, and by defining the critical resolved shear stress

(CRSS) in terms of the CRSS ratio (") as 7. = "7, Eq. (8.6) can be expanded as
follows:

wise) otz [ & P\ 'prep L ((N-p)\" P P
M) = St Z( 3 ’) B +2 <5T> SQ”(W'PDT

r=1 r=1

Ifxlv

c

(8.7)
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Similarly, by using the fact that M is a linear function of M., we may write that

n—1

Ve — Yo(5)

; WM:(M (8.8)

Using Egs. (8.7) and (8.8), the overall viscous compliance in Eq. (8.4) can be calculated

as:
MY — ’70( )n !
To(l—f)

In general, D~’l§ is anisotropic, so the Hill tensor IM? must be obtained performing numerical

M2 + B (8.9)

integration of respective polarization tensor (see Eq. (6.16)). At this stage, to simplify the
calculations, M will be obtained by performing isotropization of Mg, assuming spherical
shape of the void and using the closed form result (8.10) of Eq. (6.16) for such case.

For isotropic HN’IZ;, the inverse Hill tensor (M?) written in terms of hydrostatic and

deviatoric projectors (17, 17) is:

My = (p) 17 4 (h7) 7, (8.10)

where K", h?~" can be calculated as follows :

*

1

-
e po~! ghD ! (8.11)

1 1
hy =T, - 1°]/5, by 5 3

In the case of FCC crystals for which only slip systems are active, the M, calculated for
n = 1 is not influenced by the stress direction, thereby exhibiting cubic symmetry. For
the n = 1 case in HCP crystals, the twin contribution is influenced by the stress direction
through the factor sgn((IN - p”)) in the second term in Eq. (8.7). The inactivity of certain
twin systems may result in a loss of hexagonal symmetry. On the other hand, since the
slip mechanism remains unaffected by the stress direction, transverse isotropy is retained
for the slip component in Eq. (8.7).

Finally, by substituting all terms into the proposed yield surface (Eg. (8.5)), and
applying the binomial expansion for (1 — x)™ as well as the hyperbolic cosine expansion
into a power series (coshx ~ 1 + %2), the following Gurson-type yield criterion in terms

of the equivalent stress (>.,) and the mean stress (3,;,) is obtained:

o)™ | BHE 2N b6 s, n(n+1) o def
(%) [ - F g | Tt 1) cosh <\/ (%) hP<n+1>> Bl S e
(8.12)
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By substituting n = 1 and 8 = 1, the following quadratic form is recovered:

XM -2 232, 3% def
¢ 449 h{/—=="2]-1-712=0. 8.13
e + 3hPre +2f cos hE f ( )

It should be reminded that If/ljj is independent of 3 when only slip is considered. By

comparing the cosine hyperbolic term in Egs. (8.12) and (8.13), it was decided to replace

n+1

non-linear coefficient (%)n by a single scalar parameter ¢,. Then Eq. (8.12)

simplifies to:

o n—1 3 Mv DY 2f/822q 3 q22m 2 def
¢ = 2 h — —1-— = 0. 8.14
<7’0) [ e + 3hbre +2/ cos hf 1 / ( )

Note that similar form of cosine hyperbolic term was obtained by Paux et al. (2018) when
generalizing the non-linear regularized Schmid law for porous polycrystals. Moreover,
similar to the previous works of Tvergaard and Needleman (1984); Han et al. (2013);
Paux et al. (2018) to obtain an agreement with the unit cell numerical calculations, it is

proposed to introduce two additional tuning parameters ¢; and ~ as follows:

3 X,
]+2fqlcosh< e

T8 3hPre hP

To

n— -77}' 2
(2) 1[2 Ve X Bl )—1—<q1f)2“:efo, (8.15)

where ¢; modifies volume fraction (porosity enhancement), ¢- is related to the anisotropic
parameter and modifies the volumetric term, and « is controlling the impact of deviatoric
term stemming from the interaction between the bulk crystal and the void. One important
remark is that the effect of S which is constant depending on the linearization scheme
used in the Mori-Tanaka additive model, is incorporated into the tuning parameter «, and
thus, it is not explicitly included in the above equation.

The GTN-type yield criterion proposed above is generally applicable to anisotropic
porous crystals with various lattice symmetries deforming by both slip and twinning.
However, in the present study, the proposed criterion has been verified only for FCC single

porous crystals, focusing solely on deformation by slip mechanism.

8.2 Yield surface of HCP porous crystals deforming by slip and

twinning

In the present study, the yield criterion for HCP porous single crystals, as proposed by
Paux et al. (2018), is considered. While Paux et al. (2018) considered only slip systems for
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the calibration of the yield surface for HCP crystals, the current work incorporated both slip
and twinning in Eq. (8.3) to calibrate tuning parameters ' = k72 (where 70 = min,(7%.))
and ¢ using unit cell CPFEM calculations.

Again, the rate-dependent crystal plasticity model, which accounts for both slip and
twinning as detailed in Chapter 2, is employed to determine the yield point under varying
overall stress ratios based on unit cell computations. The elastic constants as outlined in
Chapter 5, Tab. 5.2 and the CRSS ratios Zf = 38.6, T = 46.5, “ = 22.3 with
rBas — 2 9MPa, were applied in the comput;tions. To ensﬁre a perfectlywplastic behavior,

hardening was suppressed. Furthermore, as the initial plastic strain regime was considered
for assessing the yield stress, reorientation due to twinning were also suppressed in the
model. Slip and twin systems, as mentioned in Chapter 2, Tab. 2.3, were considered as
the primary deformation mechanisms for HCP crystals. In the calculations, overall strain
of 2% is imposed along the primary loading direction (i.e, along z direction). To achieve
nearly rate-independent behavior, a relatively high value of n (rate exponent) was selected.
Additionally, the reference shear rate on the slip systems and an overall imposed strain rate
of 0.001 were chosen. When the plastic strain along the principal loading direction reaches
0.2%, the corresponding yield stress values are determined from unit cell calculations
for various loading conditions, volume fractions and crystal orientations with respective
sample axes. These yield stress values are then used to calibrate the tuning parameters in
the yield criterion.

A 3D unit cell with a spherical void was considered. The initial void volume fraction
was defined as the ratio of the spherical void volume to the cubic unit cell volume. A
finite element model utilizing 3D hexahedral elements, as described in Chapter 3, Fig. 3.4,
was employed. Two initial void volume fractions of 1 and 5% were considered. The
crystallographic orientations considered in this study are presented in Tab. 8.1. Two crystal
orientations are used for calibration, while the third orientation is used for validation of

yield surface.

TABLE 8.1 Crystal orientations along with Euler angles (z axes as primary loading direction).

. ) ) Euler angles

Crystal orientation with respect to global sample axes
o1 | @ | P2
Orientation 1 (c-axis loading) 0° [ 0° |0°
Orientation 2 (Prismatic loading) 0° | 90° | 0°
Orientation 3 (45° loading) 0° | 45° | 0°

As mentioned in Chapter 3, Subsection 3.2.6, stress-controlled boundary conditions

are imposed using stress ratios 7; and 7),, implemented through a spring element (refer to
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the schematic in Fig. 3.2). Consequently, the overall macroscopic Cauchy stress in terms
of these stress ratios and the overall macroscopic displacement gradient are represented
in Eq. (3.16). By varying the stress ratios, i.e., by imposing different triaxialities,
corresponding yield values are obtained from the unit cell computations. Both 7; and 7,
range from -0.5 to 1. Two cases are considered in this study: one with axisymmetric
loading where 7; = 72, and the other with 77, = 0.4 and 7, varying. Note that when
1m = ne = 1 for the axisymmetric loading case, purely hydrostatic stress state is imposed
on the unit cell. The z-direction is defined as the primary loading direction, and periodic

boundary conditions are imposed, as described in Eqg. (3.3).

8.2.1 ldentification of tuning parameters

The unit cell computations are carried out using the AceFEM package, as described
in Chapter 3, Section 3.1. A total of 85 unit cell calculations were performed based on
different combinations of crystal orientations, volume fractions, and stress ratios, covering
a wide range of stress triaxiality ratios. Out of the 85 unit cell calculations, 65 are used
for calibration and the remaining 25 are used to test the model using the obtained tuning
parameters. Based on the obtained yield points, the tuning parameters in the yield criterion
can be determined using various methods, such as the evolutionary algorithm (e.g., as
utilized in Frydrych et al. (2021)) or the Levenberg-Marquardt method. In the present
scenario, a non-linear least square error cost function with unknown tuning parameters is
constructed using the yield stress values obtained from unit cell calculations, along with
the corresponding stress ratios, volume fractions, and crystallographic orientations. The

tuning parameters are calculated by minimizing the following cost function:

n
Cost function = (Fpregicted — Factual)” = D (F(0y,, &0, fis s Mo, b1, @iy d2,) — 0)7.
=1

This approach is similar to solving a regression problem, where the objective is to reduce
the discrepancy between the model results and FE unit cell yield stress values through
parameter optimization. In Wolfram Mathematica, the "NMinimize” function is utilized
with the Differential Evolution algorithm to minimize the cost function, thereby identifying
the optimal tuning parameters for the yield function. The optimized tuning parameters
obtained in this way are presented in Tab. 8.2.

The anisotropic parameter «’ is also alternatively determined by performing a numerical
limit-analysis calculation on a single crystal hollow sphere. This process involves the
numerical integration of plastic dissipation over all the vertices of the Schmid polyhedron.
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TABLE 8.2 Calibrated values of tuning parameters.

/

K q
0.022 2.224

The set of vertices, which is required for the integration, depends on the crystal structure
Pris Pyr TTwin

(here: HCP) and the ratio of the CRSS, i.e. >4 , 2%~ , “%—. More details regarding the

Bas y» rBas ) Bas
TC’I‘ TC’!‘ TCT

limit analysis under hydrostatic loading can be found in Paux et al. (2018). While Paux

et al. (2018) considered only slip systems, twinning has also been included in the present
work to perform the numerical integration. It is significant that the anisotropic parameter
' value of 0.023, obtained through the analytical method, is found to be close to the value
obtained from finite element calibration (0.022). This serves as additional verification of

the tuning parameters obtained through unit cell FE computations.

8.2.2 Results and discussion

In this section, the yield stress predicted by the extended Paux et al. (2018) criterion
(Eq. (8.3)) are compared with FE unit cell calculations for two loading cases to investigate
the effects of crystallographic orientation and porosity on the resulting yield surface. As
discussed earlier, nearly perfectly plastic behavior is maintained in the unit cell calculations,
and the yield point is extracted. Finally, the physical interpretation of the tuning parameters
is discussed and compared with the results of Paux et al. (2018).

In contrast to the multi surface yield criterion for porous single crystals proposed by
Han et al. (2013), the Paux et al. (2018) model is based on the regularized Schmid criterion
to benefit from a single yield surface for porous single crystals and to avoid non-uniqueness
problem. The macroscopic stress in the primary loading direction, as a function of the

stress ratios 7; and 7),, will serve as a representation of the yield surface:

o33 = F(n1,m2). (8.16)

The macroscopic stress is simply a function of 7 (71 = 1, = n) in the case of axisymmetric
loading:
o33 = F(n). (8.17)

The above relations (8.16) and (8.17) are obtained by substituting the stress tensor given
by Eq. (3.16) to the yield function (8.3) and finding o33 as fulfilling the yield conditions.

The results of unit cell calculations and predictions of the proposed yield surface for
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FIGURE 8.1 Yield surfaces for HCP porous single crystals with f = 1% and 5% under loading
cases with 171 = 12 and 77 = 0.4 for a) orientation 1 b) orientation 2. The finite element unit
cell calculations are represented by closed and open circles, while the model predictions are
represented by thick and dashed lines.

orientations 1 and 2 under axisymmetric loading and 7; = 0.4 with volume fractions of
1% and 5% are shown in Fig. 8.1. An anisotropic response is observed for different
crystallographic orientations due to strong plastic anisotropy of HCP crystals. The yield
surface for the model is plotted based on the tuning parameters found (refer to Tab. 8.2).
A fairly good fit between the model and unit cell results is evident for both orientations.
In orientation 1, the c-axis is aligned along the primary loading direction, z, which makes
this orientation more favorable for twinning activity. The yield surface is observed to be
smooth, continuous, and differentiable under axisymmetric loading for both 1% and 5%
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Orientation 3 (45° loading)
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FIGURE 8.2 Yield surfaces for HCP porous single crystals with f = 1 % under loading cases with
11 = 12 and n; = 0.4 for orientation 3. The finite element unit cell calculations are represented by
closed circles, while the model predictions are represented by thick line. The lines representing
the pristine crystal response coincide with those of the new model in the plot (except of infinite
value for hydrostatic stress state).

volume fractions. Under 7; = 0.4 loading, a rounded-off kink is observed at 17, = 0.4. In
the multi-surface description of Han et al. (2013) for FCC crystals, the model yield surface
is not differentiable at 7, = 0.4 under similar loading conditions. In contrast, since the
proposed criterion is based on the regularized Schmid law with an exponent n linked to the
approximation of the yield surface, the yield surface remains differentiable, even though
a kink is still observed at this point. This kink marks the loading case under which the set
of active systems changes. In both the model and unit cell calculations, the yield stress
is observed to decrease as porosity increases. Importantly, while the yield stress tends
to approach infinity in bulk crystals at higher values of 7 i.e., approaching hydrostatic
loading, it remains finite in porous single crystals under the same loading conditions.

In orientation 2 the prismatic axis is oriented along the primary loading direction z.

Prismatic slip is the primary slip activity for this orientation. A good fit between model
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and unit cell calculations is observed, as in orientation 1. The yield curve remains smooth
under axisymmetric loading for both 1% and 5% volume fractions, whereas a rounded-off
kink is observed under 77; = 0.4 loading, similarly to c-axis loading. As previously, this
point physically corresponds to a change in the predominant activity of slip and twin
systems. Additionally, as porosity increases, the yield stress value decreases.

The yield surface plots for orientation 3 with a volume fraction of 1% are presented
in Fig. 8.2. In this orientation, the primary loading axis is oriented at 45° between the
prismatic and c-axis. The primary deformation activity for this orientation is easy basal
slip (refer to Chapter 5, Fig. 5.13). This orientation is referred to as the soft orientation.
It is observed that the response is similar to that of the bulk crystal in both the model and
unit cell calculations. The results from both axisymmetric and 7; = 0.4 loading cases are
similar for both the unit cell and model calculations. Since the analyzed orientation is a
soft one, and the anisotropic parameter (x’) is low, the hyperbolic cosine term in the yield
function becomes insignificant over a large range of 7, resulting in behavior similar to that
of bulk crystals. The hyperbolic cosine term only becomes significant as 7 approaches the
hydrostatic stress state.

The physical significance of the ' parameter is that as single crystal anisotropy increases,
' decreases. Consequently, greater plastic anisotropy is associated with higher yield strength
under hydrostatic loading, resulting in porous crystals being nearly incompressible (Mbiakop
et al. (2015b)). Furthermore, it has been demonstrated that this property is present in low
lattice symmetry crystals, such as HCP crystals, which lack five independent slip systems.
Orientation 3 demonstrates that for large scope of loading conditions the yield stress is
much lower than for the hydrostatic loading conditions, so Mg crystal exhibits similar
behavior.

The calculated «’ value for Mg crystals, as reported by Paux et al. (2018), is 0.14.

Pris

They used CRSS ratios of . = 5.5 and

Bas ~
Ter

Pyr
:ngs = 6, which differ from the values used in
the current work. This indicates a higher anisotropy in the current study and accounts for
the inclusion of twinning in the calculations. Furthermore, the predicted ¢ value in Paux

et al. (2018) is of the order of 2, which is consistent with the findings of the current work.

8.3 Comparison of proposed model predictions with existing

proposals for FCC porous crystals

In this section, the proposed yield criterion is compared with the existing proposals of
Han et al. (2013) and Paux et al. (2018) for FCC porous crystals deformed by slip. First,
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some verification studies on the quality of CPFEM unit cell calculations are reported.
The data points obtained from unit cell calculations using H1 elements with linear shape
functions and H2S 20-node serendipity elements with quadratic shape functions, following
the AceGen convention, are compared. Subsequently, the data points calculated using
CPFEM are compared with the unit cell calculations of Han et al. (2013). In next part
the impact of individual terms in the proposed criterion is briefly discussed, along with a
comparison of the three models for a particular crystal orientation with CPFEM results.

The crystal plasticity model and its implementation, the unit cell model, as well as
the stress-controlled and periodic boundary conditions for FCC crystals deformed by slip,
have already been explained in Chapters 2—4. Additionally, the method for extracting
yield points has been described in the previous section. The elastic constants are the same
as those considered by Han et al. (2013) whereas the hardening parameters are mentioned
in Chapter 4, Tab. 4.1.

In the unit cell computations, the x axis is taken as the primary loading direction (refer
to Chapter 3, Eq. (3.15)). Combinations of three loading cases in terms of stress ratios
N = 1n3, N2 = 0.4, and 1y = 0.727 with three crystallographic orientations (A, B, and C,
as outlined in Chapter 4, Tab. 4.2) and five void volume fractions (1%, 3%, 5%, 7%, and
10%) were analyzed. For calibration purposes, last four volume fractions were applied
only to crystal orientation B under axisymmetric loading (72 = n3). This allowed for a
comprehensive evaluation of the interactions between crystallographic orientation, loading

conditions, and porosity.

8.3.1 Verification of unit cell calculations

Han et al. (2013) used 20-node quadratic serendipity elements with reduced integration
for their unit cell calculations on FCC single crystals. Similar elements with reduced
integration were used in current CPFEM calculations, and the results of these calculations
are presented. The same boundary conditions and material parameters as for the linear
H1 element were used. Figs. 8.3a and 8.3b depict the yield stress plots for a 1% volume
fraction under various loading conditions for both H1 and H2S elements. The yield stress
is represented by macroscopic stress component at yielding along the primary loading
direction normalized by the initial CRSS. These plots show two crystal orientations, with
[100] and [111] crystallographic directions along the main loading direction, respectively.
In addition, Fig. 8.4 illustrates the yield stress plot for different volume fractions under
axisymmetric loading (where 7, = 73) for both H1 and H2S elements. This plot specifically
showcases the [100] crystal direction along the main loading direction. By observing the
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FIGURE 8.3 Yield stress for FCC porous single crystal based on unit cell calculations with f =
1% under different loading cases for two crystal orientations (a) [100] main loading direction, (b)
[111] main loading direction.

results, it is evident that there is minimal deviation between the outcomes of H1 and H2S
elements. However, in Fig. 8.4, a minor difference is noticeable for a higher volume
fraction of 10%, especially for n values exceeding 0.7. As there is minimal deviation
observed with the data points obtained using H2S element, the tuning parameters were
calibrated using data points acquired from unit cell calculations with the H1 element.

In this section, a comparison is made between the unit cell calculations performed in
this work and those by Han et al. (2013) for various volume fractions and loading cases.
The data points are used to calibrate the tuning parameters in the proposed yield criterion.
The elasto-viscoplastic crystal plasticity model, based on Schmid law with a plasticity
threshold value, was employed by Han et al. (2013). The elastic moduli are chosen for
300 series stainless steel. Han et al. (2013) provide more information about the model and
the parameters considered for analysis. Unlike Han et al. (2013), the elasto-viscoplastic
crystal plasticity model, which is based on the rate dependent visco-plastic power law
was used in this work. As already mentioned, the elastic constants are the same as those
considered by Han et al. (2013). In the model, hardening is suppressed to achieve perfect
creep-like behavior, and a plastic strain level of 0.2% is selected to identify the yield stress.
Additionally, the same strain rate and reference shear rate in the power law are selected.
In contrast, Han et al. (2013) achieved nearly perfectly plastic behavior by ensuring the
viscous stress is less than 1% of the critical resolved shear stress. This was accomplished
by selecting a very large reference shear rate value in their model. Figs. 8.5a and 8.5b

show yield stress plots for 1% volume fraction under various loading cases for two crystal
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FIGURE 8.4 Yield stress for FCC porous single crystals based on unit cell calculations with different
volume fractions f = 1, 5, 10% under loading case with 75 = 73 for crystal orientation [100]
along main loading direction.

orientations with [100] and [111] along the main loading direction, respectively. Fig. 8.6
shows the yield stress plot for various volume fractions under axisymmetric loading
(n2 = n3) with [100] crystal direction along the main loading direction. At low values of
73, less than 0.5, both unit cell calculations agree well, but at higher values of 73, slight
deviations between the two data points are observed. The data points obtained from our
unit cell calculations are found to be higher than those reported by Han et al. (2013),
particularly for higher 75 values under axisymmetric loading. A similar trend is observed
for crystal orientation A ([111]) under non-axisymmetric loading conditions. The slight
differences between the data points are likely attributed to the use of different constitutive
models and boundary conditions in the unit cell calculations. It should be mentioned that
the similar mesh density was applied in both cases. In general, good agreement is observed

between both sets of data points.

8.3.2 Comparison of proposed model predictions with the existing models

and unit cell results

The predictions of the newly proposed yield criterion for different loading cases and
volume fractions are compared to the existing models of Han et al. (2013), and Paux et al.
(2018), particularly for symmetric orientation B ([100]). Moreover, the significance of

166



[100] — [010] — [001]

, Volume fraction = 0.01

[111] — [211] — [011], Volume fraction = 0.01

14 F F
12 - 12 -
10 + . 10 a m O 7y =713 Han et al.
|
b ®m 72 = 0.4 Han et al.
sl P O m sk
£ n £ - 1 = 0.727 Han et al.
€ € A
6L [ | 6L w o=
gm 72 = 0.4
L 5 B L (]
4 4 o B = 0.727
ol | o
L Il Il Il Il Il Il Il Il Il Il Il Il Il Il Il Il Il
-05 -03 —-01 0.1 0.3 0.5 0.7 0.9 1.1 -05 -03 —-0.1 0.1 0.3 0.5 0.7 0.9 1.1
73 "3
() (b)

FIGURE 8.5 Yield stress for FCC porous single crystal with f = 1% under different loading cases
for two crystal orientations: a) orientation B with [100] as main loading direction, b) orientation

A with [111] as main loading direction (ll - model).
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FIGURE 8.6 Yield stress for FCC porous single crystals with different volume fractions f = 1, 5,
10% under loading case with 75 = 53 for crystal orientation B with [100] along main loading
direction (M - model).

individual terms in the proposed yield criterion is also discussed briefly in this section.
The tuning parameters in the proposed criterion are determined using the numerical data
presented in the previous section. For the yield functions of Han et al. (2013), and Paux
et al. (2018), the tuning parameters are taken from their respective works. The differential

evolution algorithm, available in Mathematica, is employed for calibration of the proposed
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FIGURE 8.7 Significance of different terms in the proposed model under loading cases of (a)
n2 =13, (b) m2 = 0.727.
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FIGURE 8.8 Comparison of three yield surface models for FCC porous single crystals with (a)
Different volume fractions f =1, 3, 5, 10% under loading case with 72 = 73 for crystal orientation
[100] along main loading direction, (b) different loading cases for volume fraction of 1%.

condition (Eq. (8.15)). Additionally, only the symmetric orientation B ([100]) with varying
7 loading cases and volume fractions is selected for yield function calibration. The tuned
values of three tuning parameters are ¢, = 2.651, ¢y = 0.2762, and x = 3.137 x 1077,
respectively.

Three terms can be distinguished in the proposed yield criterion Eq. (8.15): the so-called
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bulk crystal term which remains even when the void volume fraction is zero (f=0), the
> ¢4 term depending on the macroscopic equivalent stress, and the ¥,,, term which through
cosh function depends on the macroscopic mean stress. Their relative importance has been

studied by considering separately three trial yield functions:

SNE V. %1 o,

To e

(a)”‘l [%ﬂgq} —1—(qf)? %o, (8.18)

To 3P

3 pXm e
2fq cosh ( hfq27'0 ) —1—(quf)? def .

Fig. 8.7 illustrates the regimes of 73 where the subsequent terms in the proposed yield
criterion become decisive for crystal yielding. It is observed that for 73 values ranging
from -0.5 to 0.5, only the bulk crystal term is relevant. The term >, becomes important
for n3 values between 0.5 and 0.9, while the Cosh term determines the yield stress value
under hydrostatic loading. For axisymmetric loading (Fig. 8.7a), the bulk term approaches
infinity as the n3; value tends toward one, corresponding to the hydrostatic loading case.
In the case of 1, = 0.727 (Fig. 8.7b), the response differs at higher 73 values compared to
the axisymmetric loading scenario.

In Fig. 8.8, the predictions of the newly proposed yield criterion are compared to
those of Han et al. (2013), and Paux et al. (2018) for various volume fractions under
axisymmetric loading (7, = 73). Additionally, comparisons are made for different loading
cases at the 1% volume fraction for symmetric orientation B [100]. At low 73 values,
below 0.5, all models nearly coincide, with the response of the Han et al. (2013) model
being slightly higher. The bulk crystal response is observed in this range, but deviations
begin to appear at higher 73 values. When referring to FE calculations, the model by Han
et al. (2013) is delivering higher values than our calculations at low 73, with the trend
reversing at higher triaxialities. To fit present numerical data, the proposed yield criterion
predicts larger values for 7, = 73 loading at high 73 values compared to the models of
Han et al. (2013), and Paux et al. (2018). Under the 7, = 0.4 loading case, predictions
of new model are lower than those of Han et al. (2013). Furthermore, for 7, = 0.4, they
are very close to Paux et al. (2018). This is because only the term related to bulk crystal
response plays a role in predicting the yielding of porous crystals for this case.

Fig. 8.9 depicts the yield stress based on the proposed model and its comparison with
present unit cell data points and those of Han et al. (2013) for the asymmetric orientation

A [111] under different loading scenarios at the 1% volume fraction. It is evident that
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FIGURE 8.9 Yield stress for the proposed model for asymmetric orientation A[111] with 1% volume
fraction under different loading scenarios (M present unit cell model results, (] Han et al. unit cell
model results).

for different orientations of loading directions, the proposed model predicts an anisotropic
response. The model closely matches the unit cell model results, using only the calibrated
parameters based on crystal orientation B [100]. The cases dominated by a deviatoric part
of stress, i.e., low 73 values across all loading scenarios, are well captured by the model.
However, at high 73 values, some deviations are observed due to the influence of the >,
term. For the 1, = 0.4 and 7, = 0.727 loading cases, the model results are closer to the
unit cell data points of Han et al. (2013), particularly at high 73 values with an increased
hydrostatic part, compared to our unit cell model results.

8.4 Summary

In this chapter, a new yield criterion based on a micromechanical approach has been
formulated for porous single crystals. The criterion is applicable to porous crystals with
arbitrary lattice symmetry. Additionally, the Paux et al. (2018) yield criterion is extended
to account for twinning and calibrated using CPFEM unit cell calculations for HCP porous
crystals of high anisotropy. Note that Paux et al. (2018) considered only slip systems and
calibrated the tuning parameters using FFT-based unit cell computations. Additionally,
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the calibrated anisotropic parameter is verified through both CPFEM-based optimization
and a kinematic limit analysis approach for hydrostatic loading. Finally, the proposed
yield criterion is analyzed, and compared with other existing proposals and validated with
respect to unit cell calculations for the set of orientations and loading conditions, on the
example of FCC porous crystal.
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CHAPTER 9

Summary and future works

In this thesis, numerical analyses and a micromechanical approach were employed to
unravel the mechanisms governing the ductile failure and its impact on the macroscopic
response of porous single and polycrystals with FCC and HCP lattice symmetries. In the
performed analyses relevant deformation mechanisms at the local level were considered,
and appropriate micro-macro transition schemes were applied. A rate-dependent crystal
plasticity constitutive model was employed, incorporating slip and twin mechanisms. In
the model the evolution of the critical resolved shear stress (CRSS), influenced by the
interaction between various slip and twin systems, and crystal reorientation scheme due to
twinning were accounted for. Detailed results from numerical simulations on single and
polycrystal unit cell models, conducted using the crystal plasticity finite element method
(CPFEM), are presented, analyzing how plastic anisotropy, stress state, and boundary
conditions affect void growth, coalescence, and collapse in porous FCC and HCP single
and polycrystals.

The work also explores the possibility of describing the macroscopic responses of porous
crystals and polycrystals through micromechanical mean field models. The formulated
mean field model uses the additive Mori-Tanaka scheme for porous single crystals and
a three-scale model based on the additive self-consistent scheme for porous polycrystals.
They are both validated against full-field numerical analyses. Additionally, using the
proposed micromechanical model, a GTN-like yield criterion for porous crystals was
formulated, and its predictions were compared with existing models and validated with
respect to numerical unit cell results. This newly proposed yield condition is well suited for
the implementation into the finite element framework, following similar implementations
by Ling et al. (2016) to predict damage in porous crystals. The results demonstrate that the
numerical analyses and micromechanical approach are effective tools for understanding
the relation between material microstructure, including the crystal lattice symmetry, and

the developed scenarios of void growth and related changes in macroscopic response of



metallic materials. Key findings and conclusions from each chapter are outlined below.

Numerical analyses reported in chapters 4 and 5 demonstrated that:

* In FCC crystals with cylindrical voids, analyzed using 2D unit cells under plane
strain condition, softening is observed at higher stress and displacement biaxiality
ratios, induced by significant void growth and coalescence, with the impact of

crystallographic orientation becoming less pronounced.

* However, at lower stress and displacement biaxiality values, an anisotropic response
is observed, where the strain-stress behavior remains strongly dependent on crystal-
lographic orientation. Especially, crystals with the main lattice directions inclined
with respect to the loading axes (i.e. non-symmetric orientations) show the greatest
plastic heterogeneity, resulting in noticeable lattice rotation and grain fragmentation

induced by the presence of void across different loading conditions.

* In HCP crystals with cylindrical voids, analyzed using 2D unit cells under plane
strain condition strongly anisotropic void growth is observed depending if twinning

mechanisms is activated or remains inactive, namely:

a) under low stress biaxiality with loading along the c-axis of the crystal, alternating
bands of twinned and untwinned regions are observed. In the twinned regions
the activity of pyramidal and prismatic slip systems has been triggered. The
void experiences slight rotation in the primary loading direction and deforms
into a prolate shape. Failure occurs through shear localization, with an
inclined band connecting neighboring voided cells diagonally. For higher
stress biaxiality, following the predicted stress-strain response, evolution of
porosity is non-monotonous, with the accelerated growth once the twinning is

completed within the unit cell.

b) Onthe other hand, irrespective of stress biaxiality, under loading along prismatic
direction, with no twinning being active, void coalescence occurs by necking
of the internal ligament normal to the principal stress direction, similarly to

FCC crystals deforming by slip.

 Similarly, in HCP 3D unit cells, a harder stress response is observed under uniaxial
loading along the c-axis due to twin reorientation, while a much softer response
is observed when the loading axis is inclined between the prismatic plane and the

c-axis.
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« It was observed that for hard orientations at 0° and 90° loading, void evolution was
more significant as compared to soft orientations (30°, 45°, 60°), where negligible
void growth was observed. Furthermore, in cases where twinning was active, the

void growth exhibited a non-monotonic behavior.
Micro-mechanical modeling performed in Chapters 6-8 demonstrated that:

* In FCC porous single crystals, the mean-field model using tangent linearization
tends to overestimate void evolution due to the relatively high compliance of the
matrix. In contrast, the secant linearization approach demonstrates minimal void

growth, due to the relatively high stiffness.

* In FCC porous polycrystals, the mean-field model tends to under predict the overall
void volume fraction when compared to CPFEM results, while simultaneously
overestimating the equivalent stress levels. However, a strong correlation is found
in terms of the local equivalent stress response, where orientations with high and
low stress magnitudes on the inverse pole figure align closely between both CPFEM

and mean-field models.

» The comparison of the newly calculated anisotropic parameter with that of Paux et al.
(2018) reveals that the parameter decreases as anisotropy increases. Consequently,
higher plastic anisotropy corresponds to greater yield strength under hydrostatic
loading, leading to nearly incompressible response of porous crystal. A similar
behavior is noted for these cases where the loading axis is inclined between the

prismatic and c-axis in HCP crystals.

* The predictions of newly proposed yield criterion is compared with the existing
proposals of Han et al. (2013) and Paux et al. (2018) for FCC crystals. The model
correctly predicts an anisotropic response for different orientations across various

loading scenarios, exhibiting strong agreement with the unit cell data points.

Key contributions. The following points highlight the key novel contributions of the
thesis:

» The effect of crystallographic orientation and different boundary conditions on
void growth and coalescence, along with related microstructural evolution due to
heterogeneous lattice rotation, has been thoroughly examined employing full-field
large strain CPFEM for 2D plane strain unit cell model of FCC crystal.
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* The impact of twinning activity and insufficient number of easy slip modes on
the void growth and possible ductile failure scenario in HCP crystals have been
investigated using large strain CPFEM equipped with a PTVC reorientation scheme
and employing a unit cell methodology. Both a 2D plane strain unit cell with a
cylindrical void and a 3D unit cell with a spherical void have been considered in
this analysis. The influence of active deformation mechanisms, stress heterogeneity,
and twinning-induced lattice rotation have also been examined, highlighting critical
role of strong crystal anisotropy in void behavior.

* A new micromechanical mean-field model for porous elasto-viscoplastic polycrystals
has been formulated in small strain format. The closed-form of macroscopic
constitutive law for porous polycrystals has been obtained from the proposed
three-scale micro-macro transition scheme.

* The predictions of the proposed mean-field model have been validated with respect
to the corresponding full-field unit cell CPFEM computations for both FCC crystals
and polycrystals in terms of the overall and per-grain stress-strain responses.

» The extension of the yield criterion proposed by Paux et al. (2018), enabling its
application to crystals deforming by slip and twinning, has been formulated. The
tuning parameters in the extended Paux et al. (2018) yield surface have been calibrated
by considering both slip and twinning in HCP crystals of high plastic anisotropy
independently employing two methods: numerical one based on CPFEM analysis of
3D unit cell and analytical one through kinematic limit analysis. For the application
of the latter method a new numerical scheme has been developed to determine the
so-called anisotropy parameter in the yield surface. Parameters obtained by two
methods were in very good agreement.

+ Additionally, a new GTN-type yield criterion has been formulated based on the
proposed micromechanical approach for voided elasto-viscoplastic crystals, with the
tuning parameters calibrated using full-field finite element analyses. The predictions
of the proposed criterion have been compared with existing models of Han et al.
(2013) and Paux et al. (2018) for FCC crystals.

Future works. Building on the novel micromechanical mean-field model and the
analysis of the results, there is clear potential for future research. It can be pursued in the
following direction:

» The proposed yield criterion for porous crystals can be further enhanced and

incorporated into a finite element framework with the large strain crystal plasticity,

175



enabling accurate predictions of damage in single crystal and polycrystal models
that exhibit both HCP and FCC symmetry.

In the context of the micromechanical mean field model, depending on the relation
between void and grain size, the reverse order of homogenization steps can be
employed. Accordingly, if the void size is much larger than the grain size, this
approach will involve applying a self-consistent scheme for grain aggregate without
voids, and next the obtained effective properties of the polycrystal will be used as a
matrix material, into which voids are incorporated. Next, the Mori-Tanaka scheme
will be employed to compute the effective properties of the resulting porous material.
Finally, if voids are of similar size as grains then the one-step homogenization with

the self-consistent scheme can be applied.

It has been noted in the literature that mean field models incorporating second
moments of stress yield a softer response compared to those relying solely on first
moment of stress (i.e. mean values) and enable to predict yielding under purely
hydrostatic loading. Consequently, attention should be directed toward incorporating
the second moment of stress in the proposed mean field models to improve their
predictions.

In the context of porous polycrystal unit cells analyzed by full-field methods, like
CPFEM, RVEs can be developed using Voronoi tessellations instead of regular cubic
unit cells. This allows for a more accurate representation of actual microstructures
and facilitating the study of the local mechanics of porous evolution in polycrystal
materials.

It is also interesting to analyze the macroscopic response of porous crystals under
cyclic and non proportional loading using both, proposed micromechanical models,

and full-field unit cell computations.

As our study focuses on micro-scale problems, it is crucial to consider length scales.
Incorporating the gradient effects of field quantities will facilitate the development

of non-local crystal plasticity models incorporating damage.

176



177

Bibliography

Agnew, S., Yoo, M., and Tome, C. (2001). Application of texture simulation to understanding
mechanical behavior of Mg and solid solution alloys containing Li or Y. Acta Materialia,
49(20):4277-4289.

Agoras, M. and Ponte Castafieda, P.(2013). Iterated linear comparison bounds forviscoplastic
porous materials with “ellipsoidal” microstructures. Journal of the Mechanics and Physics
of Solids, 61(3):701-725.

Agoras, M. and Ponte Castafieda, P. (2014). Anisotropic finite-strain models for porous
viscoplastic materials with microstructure evolution. International Journal of Solids
and Structures, 51(5):981-1002.

Alharbi, K., Ghadbeigi, H., Efthymiadis, P., Zanganeh, M., Celotto, S., Dashwood, R.,
and Pinna, C. (2015). Damage in dual phase steel dp1000 investigated using digital
image correlation and microstructure simulation. Modelling and Simulation in Materials
Science and Engineering, 23(8):085005.

Appel, F. and Wagner, R. (1998). Microstructure and deformation of two-phase ~-titanium
aluminides. Materials science and engineering: r: reports, 22(5):187-268.

Argon, A., Im, J., and Safoglu, R. (1975). Cavity formation from inclusions in ductile
fracture. Metallurgical transactions A, 6:825-837.

Arminjon, M. and Bacroix, B. (1991). On plastic potentials for anisotropic metals and
their derivation from the texture function. Acta Mechanica, 88(3):219-243.

Asaro, R. and Needleman, A. (1985). Texture development and strain hardening in rate
dependent polycrystals. Acta Metallurgica, 33(6):923-953.

Asaro, R. and Rice, J. (1977). Strain localization in ductile single crystals. Journal of the
Mechanics and Physics of Solids, 25(5):309-338.

Asgari, S., El-Danaf, E., Kalidindi, S. R., Doherty, R. D., and Necker, C. (1997). Strain
hardening regimes and microstructural evolution during large strain compression of

low stacking fault energy fcc alloys that form deformation twins. Metallurgical and



Materials Transactions A, 28:1781-1795.

Barrioz, P., Hure, J., and Tanguy, B. (2019). Effect of dislocation channeling on void growth
to coalescence in fcc crystals. Materials Science and Engineering: A, 749:255-270.
Barsoum, I. and Faleskog, J. (2011). Micromechanical analysis on the influence of the
lode parameter on void growth and coalescence. International Journal of Solids and

Structures, 48(6):925-938.

Basinski, Z., Szczerba, M., Niewczas, M., Embury, J., and Basinski, S. (1997). The
transformation of slip dislocations during twinning of copper-aluminum alloy crystals.
Revue de Metallurgie. Cahiers D’Informations Techniques, 94(9):1037-1044.

Basu, S., Dogan, E., Kondori, B., Karaman, I., and Benzerga, A. (2017). Towards designing
anisotropy for ductility enhancement: A theory-driven investigation in mg-alloys. Acta
Materialia, 131:349-362.

Benzerga, A. and Keralavarma, S. (2009). Finite—element analyses of combined void
shape and plastic anisotropy effects in ductile fracture. In 12th International Conference
on Fracture. National Research Council of Canada, page 10.

Benzerga, A. A. and Besson, J. (2001). Plastic potentials for anisotropic porous solids.
European Journal of Mechanics - A/Solids, 20(3):397 — 434.

Bieniek, K., Majewski, M., Holobut, P., and Kowalczyk-Gajewska, K. (2024). Anisotropic
effect of regular particle distribution in elastic—plastic composites: The modified tangent
cluster model and numerical homogenization. International Journal of Engineering
Science, 203:104118.

Bluhm, J. I. and Morrissey, R. J. (1965). Fracture in a tensile specimen. In Proceedings
of the First Conference on Fracture, volume 3, pages 1739-1780.

Bonfoh, N., Lipinski, P., Carmasol, A., and Tiem, S. (2004). Micromechanical modeling of
ductile damage of polycrystalline materials with heterogeneous particles. International
Journal of Plasticity, 20(1):85-106.

Bringa, E. M., Traiviratana, S., and Meyers, M. A. (2010). Void initiation in fcc metals: effect
of loading orientation and nanocrystalline effects. Acta Materialia, 58(13):4458-4477.

Chan, K. S. and Davidson, D. L. (1999). Evidence of void nucleation and growth on planar
slip bands in a nb-cr-ti alloy. Metallurgical and Materials Transactions A, 30:579-585.

Chang, H.-J., Segurado, J., and LLorca, J. (2015). Three-dimensional dislocation dynamics
analysis of size effects on void growth. Scripta Materialia, 95:11-14.

Chen, D., Zhang, X., Meng, X., Ma, R., Li, R., Wang, Z., Su, B., Lang, D., Yang, T., and
Meng, D. (2018). Mechanisms of void formation during uniaxial tensile testing in a

low-temperature-aged u-nb alloy. Materials Science and Engineering: A, 723:182—193.

178



Chin, G. Y., Hosford, W. F., Mendorf, D. R., and Taylor, G. I. (1969). Accommodation
of constrained deformation in f. c. c. metals by slip and twinning. Proceedings of the
Royal Society of London. A. Mathematical and Physical Sciences, 309(1499):433-456.

Cox, T. and Low, J. R. (1974). An investigation of the plastic fracture of AISI 4340
and 18 Nickel-200 grade maraging steels. Metallurgical and Materials Transactions B,
5:1457-1470.

Cui, B., Kacher, J., McMurtrey, M., Was, G., and Robertson, 1. (2014). Influence of
irradiation damage on slip transfer across grain boundaries. Acta materialia, 65:150—-160.

Czarnota, C., Kowalczyk-Gajewska, K., Salahouelhadj, A., Martiny, M., and Mercier,
S. (2015). Modeling of the cyclic behavior of elastic—viscoplastic composites by the
additive tangent mori—tanaka approach and validation by finite element calculations.
International Journal of Solids and Structures, 56-57:96—117.

Dakshinamurthy, M., Kowalczyk-Gajewska, K., and Vadillo, G. (2021). Influence of
crystallographic orientation on the void growth at the grain boundaries in bi-crystals.
International Journal of Solids and Structures, 212:61-79.

Danas, K. and Aravas, N. (2012). Numerical modeling of elasto-plastic porous materials
with void shape effects at finite deformations. Composites Part B: Engineering,
43(6):2544-2559.

Das, A. (2021). Stress/strain induced void? Archives of Computational Methods in
Engineering, 28(3):1795-1852.

Das, S., Song, D., and Ponte Castafieda, P. (2021). Macroscopic response and microstructure
evolution in viscoplastic polycrystals with pressurized pores. International Journal of
Fracture, pages 1-28.

de Souza Neto, E., Peri¢, D., Dutko, M., and Owen, D. (1996). Design of simple low order
finite elements for large strain analysis of nearly incompressible solids. International
Journal of Solids and Structures, 33(20):3277-3296.

DeBotton, G. and Ponte Castafieda, P. (1995). Variational estimates for the creep behaviour
of polycrystals. Proceedings of the Royal Society of London. Series A: Mathematical
and Physical Sciences, 448(1932):121-142.

El Ghezal, M. and Doghri, I. (2018). Porous plasticity: Predictive second moment
homogenization models coupled with Gurson’s single cavity stress-strain solution.
International Journal of Plasticity, 108:201-221.

Fadida, R., Shirizly, A., and Rittel, D. (2020). Static and dynamic shear-compressionresponse
of additively manufactured Ti6Al4V specimens with embedded voids. Mechanics of
Materials, 147:103413.

179



Faleskog, J., Gao, X., and Shih, C. F. (1998). Cell model for nonlinear fracture analysis—I.
micromechanics calibration. International Journal of Fracture, 89:355-373.

Fischer, F., Schaden, T., Appel, F., and Clemens, H. (2003). Mechanical twins, their
development and growth. European Journal of Mechanics - A/Solids, 22(5):709-726.
General and plenary lectures from the 5th EUROMECH Solid Mechanics Conference.

Fourmeau, M., Bgrvik, T., Benallal, A., and Hopperstad, O. S. (2013). Anisotropic
failure modes of high-strength aluminium alloy under various stress states. International
Journal of Plasticity, 48:34-53.

Fressengeas, C. and Molinari, A. (1985). Inertia and thermal effects on the localization of
plastic flow. Acta Metallurgica, 33(3):387-396.

Frodal, B. H., Lodgaard, L., Langsrud, Y., Barvik, T., and Hopperstad, O. S. (2023).
Inuence of local microstructural variations on the bendability of aluminium extrusions:
experiments and crystal plasticity analyses. Journal of Applied Mechanics, pages 1-21.

Frodal, B. H., Thomesen, S., Bgrvik, T., and Hopperstad, O. S. (2021). On the coupling of
damage and single crystal plasticity for ductile polycrystalline materials. International
Journal of Plasticity, 142:102996.

Frydrych, K. (2017). Modelling of microstructure evolution of high specific strength metals
subjected to severe plastic deformation processes. PhD thesis, Institute of Fundamental
Technological Research, Polish.

Frydrych, K., Jarzebska, A., Virupakshi, S., Kowalczyk-Gajewska, K., Bieda, M., Chulist,
R., Skorupska, M., Schell, N., and Sztwiertnia, K. (2021). Texture-based optimization
of crystal plasticity parameters: application to zinc and its alloy. Metallurgical and
Materials Transactions A, 52(8):3257-3273.

Frydrych, K. and Kowalczyk-Gajewska, K. (2018). Microstructure evolution in cold-rolled
pure titanium: modeling by the three-scale crystal plasticity approach accounting for
twinning. Metallurgical and Materials Transactions A, 49(8):3610-3623.

Frydrych, K., Maj, M., Urbanski, L., and Kowalczyk-Gajewska, K. (2020). Twinning-
induced anisotropy of mechanical response of AZ31B extruded rods. Materials Science
and Engineering: A, 771:138610.

Furukimi, O., Kiattisaksri, C., Takeda, Y., Aramaki, M., Oue, S., Munetoh, S., and Tanaka,
M. (2017). Void nucleation behavior of single-crystal high-purity iron specimens
subjected to tensile deformation. Materials Science and Engineering: A, 701:221-225.

Gambin, W. (1991). Plasticity of crystals with interacting slip systems. Engineering
Transactions, 39(3-4):303—-324.

Gan, Y. X., Kysar, J. W,, and Morse, T. L. (2006). Cylindrical void in a rigid-ideally

180



plastic single crystal II: experiments and simulations. International Journal of Plasticity,
22(1):39-72.

Gardner, R. N., Pollock, T., and Wilsdorf, H. (1977). Crack initiation at dislocation
cell boundaries in the ductile fracture of metals. Materials Science and Engineering,
29(2):169-174.

Girard, G., Frydrych, K., Kowalczyk-Gajewska, K., Martiny, M., and Mercier, S. (2021).
Cyclic response of electrodeposited copper films. experiments and elastic—viscoplastic
mean-field modeling. Mechanics of Materials, 153:103685.

Gladman, T., Holmes, B., and Mclvor, I. (1971). Effects of second-phase particles on
strength, toughness and ductility. In Iron and Steel Institute Conference on Effect of
Second-Phase Particles on the Mechanical Properties of Steel, 1971, 68-78.

Gologanu, M., Leblond, J.-B., and Devaux, J. (1993). Approximate models for ductile
metals containing non-spherical voids—case of axisymmetric prolate ellipsoidal cavities.
Journal of the Mechanics and Physics of Solids, 41(11):1723-1754.

Gologanu, M., Leblond, J.-B., and Devaux, J. (1994). Approximate Models for Ductile
Metals Containing Nonspherical Voids—Case of Axisymmetric Oblate Ellipsoidal
Cavities. Journal of Engineering Materials and Technology, 116(3):290-297.

Gologanu, M., Leblond, J.-B., Perrin, G., and Devaux, J. (1997). Recent extensions
of Gurson’s model for porous ductile metals. In Continuum micromechanics, pages
61-130. Springer.

Guo, T. and Wong, W. (2018). Void-sheet analysis on macroscopic strain localization and
void coalescence. Journal of the Mechanics and Physics of Solids, 118:172-203.

Gurland, J. (1972). Observations on the fracture of cementite particles in a spheroidized
1.05% C steel deformed at room temperature. Acta Metallurgica, 20(5):735-741.

Gurland, J. and Plateau, J. (1963). The mechanism of ductile rupture of metals containing
inclusions. Technical report, Brown Univ., Providence; Institut de Recherches de la
Siderugie, St.-Germain.

Gurson, A. L. (1977). Continuum Theory of Ductile Rupture by Void Nucleation and
Growth: Part I—Yield Criteria and Flow Rules for Porous Ductile Media. Journal of
Engineering Materials and Technology, 99(1):2—15.

Ha, S. and Kim, K. (2010). Void growth and coalescence in FCC single crystals.
International Journal of Mechanical Sciences, 52(7):863—-873.

Han, S., Chang, Y., Wang, C., Han, Y., and Dong, H. (2022). Experimental and numerical
investigations on the damage induced in the shearing process for QP980 steel. Materials,
15(9):3254.

181



Han, X., Besson, J., Forest, S., Tanguy, B., and Bugat, S. (2013). A yield function
for single crystals containing voids. International Journal of Solids and Structures,
50(14):2115-2131.

Hill, R. and Rice, J. (1972). Constitutive analysis of elastic-plastic crystals at arbitrary
strain. Journal of the Mechanics and Physics of Solids, 20(6):401-413.

Hure, J. (2019). A coalescence criterion for porous single crystals. Journal of the Mechanics
and Physics of Solids, 124:505-525.

Hutchinson, J. W. (1976). Bounds and self-consistent estimates for creep of polycrystalline
materials. Proceedings of the Royal Society London A, 348:101-127.

Idiart, M. I. and Ponte Castafieda, P. (2007). Variational linear comparison bounds for
nonlinear composites with anisotropic phases. II. crystalline materials. Proceedings of the
Royal Society A: Mathematical, Physical and Engineering Sciences, 463(2080):925-943.

Jeong, W, Lee, C.-H., Moon, J., Jang, D., and Lee, M.-G. (2018). Grain scale representative
volume element simulation to investigate the effect of crystal orientation on void growth
in single and multi-crystals. Metals, 8(6):436.

Joéssel, L., Vincent, P.-G., Gardjeu, M., and Idiart, M. I. (2018). Viscoplasticity of voided
cubic crystals under hydrostatic loading. International Journal of Solids and Structures,
147:156-165.

Kalidindi, S., Bronkhorst, C., and Anand, L. (1992). Crystallographic texture evolution in
bulk deformation processing of FCC metals. Journal of the Mechanics and Physics of
Solids, 40(3):537-5609.

Kalidindi, S. R. (1998). Incorporation of deformation twinning in crystal plasticity models.
Journal of the Mechanics and Physics of Solids, 46(2):267 — 290.

Kanouté, P., Boso, D., Chaboche, J. L., and Schrefler, B. (2009). Multiscale methods for
composites: A review. Archives of Computational Methods in Engineering, 16:31-75.

Karaman, I., Sehitoglu, H., Beaudoin, A., Chumlyakov, Y., Maier, H., and Tomé, C.
(2000). Modeling the deformation behavior of Hadfield steel single and polycrystals
due to twinning and slip. Acta Materialia, 48(9):2031 — 2047.

Keralavarma, S. and Benzerga, A. (2010). A constitutive model for plastically anisotropic
solids with non-spherical voids. Journal of the Mechanics and Physics of Solids,
58(6):874-901.

Keralavarma, S., Reddi, D., and Benzerga, A. (2020). Ductile failure as a constitutive
instability in porous plastic solids. Journal of the Mechanics and Physics of Solids,
139:103917.

Khadyko, M., Frodal, B. H., and Hopperstad, O. S. (2021). Finite element simulation of

182



ductile fracture in polycrystalline materials using a regularized porous crystal plasticity
model. International Journal of Fracture, 228:15-31.

Kocks, U. F., Tomé, C. N., and Wenk, H.-R. (2000). Texture and Anisotropy. Cambridge
University Press, II edition.

Kondori, B. and Benzerga, A. A. (2014). Effect of stress triaxiality on the flow and fracture
of Mg alloy AZ31. Metallurgical and Materials Transactions A, 45:3292-3307.

Kondori, B., Morgeneyer, T. F., Helfen, L., and Benzerga, A. A. (2018). Void growth and
coalescence in a magnesium alloy studied by synchrotron radiation laminography. Acta
Materialia, 155:80-94.

Kong, X., Morgeneyer, T. F., Missoum-Benziane, D., and Rousselier, G. (2023). A
polycrystalline damage model applied to an anisotropic aluminum alloy 2198 under
non-proportional load path changes. International Journal of Plasticity, 168:103674.

Koplik, J. and Needleman, A. (1988). Void growth and coalescence in porous plastic
solids. International Journal of Solids and Structures, 24(8):835-853.

Korelc, J. (2002). Multi-language and multi-environment generation of nonlinear finite
element codes. Engineering with computers, 18:312-327.

Kowalczyk, K. and Gambin, W. (2004). Model of plastic anisotropy evolution with
texture-dependent yield surface. International Journal of Plasticity, 20(1):19-54.

Kowalczyk-Gajewska, K. (2010). Modelling of texture evolution in metals accounting
for lattice reorientation due to twinning. European Journal of Mechanics - A/Solids,
29(1):28 — 41.

Kowalczyk-Gajewska, K. (2011). Micromechanical modelling of metals and alloys of
high specific strength. Habilitation Thesis 1/2011, IFTR Reports.

Kowalczyk-Gajewska, K. (2013). Crystal plasticity models accounting for twinning.
Computer Methods in Materials Science, 13:436—451.

Kowalczyk-Gajewska, K. and Petryk, H. (2011). Sequential linearization method for
viscous/elastic heterogeneous materials. European Journal of Mechanics - A/Solids,
30(5):650-664.

Kreisselmeier, G. and Steinhauser, R. (1980). Systematic control design by optimizing a
vector performance index. In CUENOD, M., editor, Computer Aided Design of Control
Systems, pages 113-117. Pergamon.

Kysar, J. W, Gan, Y. X., and Mendez-Arzuza, G. (2005). Cylindrical void in a rigid-ideally
plastic single crystal. Part I: Anisotropic slip line theory solution for face-centered cubic
crystals. International Journal of Plasticity, 21(8):1481-1520.

Lebensohn, R. and Tomé, C. (1993). A self-consistent anisotropic approach for the

183



simulation of plastic deformation and texture development of polycrystals: Application
to zirconium alloys. Acta Metallurgica et Materialia, 41(9):2611 — 2624.

Lebensohn, R. A. and Cazacu, O. (2012). Effect of single-crystal plastic deformation
mechanisms on the dilatational plastic response of porous polycrystals. International
Journal of Solids and Structures, 49(26):3838—3852.

Lebensohn, R. A., Escobedo, J. P., Cerreta, E. K., Dennis-Koller, D., Bronkhorst, C. A.,
and Bingert, J. F. (2013). Modeling void growth in polycrystalline materials. Acta
Materialia, 61(18):6918-6932.

Lebensohn, R. A., Idiart, M. 1., and Ponte Castafieda, P. (2012). Modeling microstructural
effects in dilatational plasticity of polycrystalline materials. Procedia IUTAM, 3:314-330.

Lebensohn, R. A., Idiart, M. 1., Ponte Castafieda, P., and Vincent, P.-G. (2011). Dilatational
viscoplasticity of polycrystalline solids with intergranular cavities. Philosophical
Magazine, 91(22):3038-3067.

Leblond, J., Perrin, G., and Suquet, P. (1994). Exact results and approximate models for
porous viscoplastic solids. International Journal of Plasticity, 10(3):213-235.

Lecarme, L., Tekog, C., Pardoen, T, et al. (2011). Void growth and coalescence in ductile
solids with stage III and stage IV strain hardening. International Journal of Plasticity,
27(8):1203-1223.

Leon-Garcia, O., Petrov, R., and Kestens, L. A. (2010). Void initiation at tin precipitates
in if steels during tensile deformation. Materials Science and Engineering: A,
527(16):4202-4209.

Li, S. and Wang, G. (2018). Introduction to Micromechanics and Nanomechanics. WORLD
SCIENTIFIC, 2nd edition.

Ling, C., Besson, J., Forest, S., Tanguy, B., Latourte, F., and Bosso, E. (2016). An
elastoviscoplastic model for porous single crystals at finite strains and its assessment
based on unit cell simulations. International Journal of Plasticity, 84:58-87.

Ling, C., Forest, S., Besson, J., Tanguy, B., and Latourte, F. (2018). A reduced micromorphic
single crystal plasticity model at finite deformations. application to strain localization
and void growth in ductile metals. International Journal of Solids and Structures,
134:43-69.

Liu, W., Zhang, X., and Tang, J. (2009). Study on the growth behavior of voids located at
the grain boundary. Mechanics of materials, 41(7):799-809.

Liu, W.,, Zhang, X., Tang, J., and Du, Y. (2007). Simulation of void growth and
coalescence behavior with 3d crystal plasticity theory. Computational materials science,
40(1):130-139.

184



Liu, Z., Wong, W., and Guo, T. (2016). Void behaviors from low to high triaxialities:
Transition from void collapse to void coalescence. International Journal of Plasticity,
84:183-202.

Madou, K. and Leblond, J.-B. (2012a). A Gurson-type criterion for porous ductile solids
containing arbitrary ellipsoidal voids—I: Limit-analysis of some representative cell.
Journal of the Mechanics and Physics of Solids, 60(5):1020-1036.

Madou, K. and Leblond, J.-B. (2012b). A Gurson-type criterion for porous ductile solids
containing arbitrary ellipsoidal voids—II: Determination of yield criterion parameters.
Journal of the Mechanics and Physics of Solids, 60(5):1037—1058.

Mahajan, S. and Chin, G. (1973). Twin-slip, twin-twin and slip-twin interactions in Co-8
wt.% Fe alloy single crystals. Acta Metallurgica, 21(2):173-179.

Mareau, C. and Berbenni, S. (2015). An affine formulation for the self-consistent modeling
of elasto-viscoplastic heterogeneous materials based on the translated field method.
International Journal of Plasticity, 64:134—150.

Mbiakop, A., Constantinescu, A., and Danas, K. (2015a). An analytical model for porous
single crystals with ellipsoidal voids. Journal of the Mechanics and Physics of Solids,
84:436-467.

Mbiakop, A., Constantinescu, A., and Danas, K. (2015b). A model for porous single
crystals with cylindrical voids of elliptical cross-section. International Journal of Solids
and Structures, 64:100-119.

McClintock, F. A. (1968). A Ciriterion for Ductile Fracture by the Growth of Holes.
Journal of Applied Mechanics, 35(2):363-371.

Mercier, S., Kowalczyk-Gajewska, K., and Czarnota, C. (2019). Effective behavior of
composites with combined kinematic and isotropic hardening based on additive tangent
mori—tanaka scheme. Composites Part B: Engineering, 174:107052.

Molinari, A. (2002). Averaging models for heterogeneous viscoplastic and elastic
viscoplastic materials. Journal of Engineering Materials and Technology, 124:62-70.
Molinari, A., Ahzi, S., and Kouddane, R. (1997). On the self-consistent modeling of

elastic-plastic behavior of polycrystals. Mechanics of Materials, 26:43-62.

Monchiet, V., Cazacu, O., Charkaluk, E., and Kondo, D. (2008). Macroscopic yield criteria
for plastic anisotropic materials containing spheroidal voids. International Journal of
Plasticity, 24(7):1158-1189.

Morin, L., Leblond, J.-B., and Kondo, D. (2015). A Gurson-type criterion for plastically
anisotropic solids containing arbitrary ellipsoidal voids. International Journal of Solids
and Structures, 77:86—101.

185



Morin, L., Michel, J.-C., and Leblond, J.-B. (2017). A Gurson-type layer model for ductile
porous solids with isotropic and kinematic hardening. International Journal of Solids
and Structures, 118:167-178.

Mréz, Z. (2006). State of the art report on knowledge-based multicomponent materials.
Intermetallics: Properties, Modelling and Applications. KMM.

Nahshon, K. and Hutchinson, J. (2008). Modification of the Gurson model for shear
failure. European Journal of Mechanics-A/Solids, 27(1):1-17.

Naragani, D. P., Park, J.-S., Kenesei, P., and Sangid, M. D. (2020). Void coalescence and
ductile failure in IN718 investigated via high-energy synchrotron X-ray tomography
and diffraction. Journal of the Mechanics and Physics of Solids, 145:104155.

Needleman, A. (1972). Void Growth in an Elastic-Plastic Medium. Journal of Applied
Mechanics, 39(4):964-970.

Needleman, A. and Rice, J. R. (1978). Limits to Ductility Set by Plastic Flow Localization,
pages 237-267. Springer US, Boston, MA.

Nemat-Nasser, S. (1999). Averaging theorems in finite deformation plasticity. Mechanics
of Materials, 31(8):493-523.

Nemat-Nasser, S.and Hori, M. (1999). Micromechanics: overall properties of heterogeneous
materials. North-Holland Elsevier.

Nemcko, M. J., Li, J., and Wilkinson, D. S. (2016). Effects of void band orientation and
crystallographic anisotropy on void growth and coalescence. Journal of the Mechanics
and Physics of Solids, 95:270-283.

Nemcko, M. J. and Wilkinson, D. S. (2016). On the damage and fracture of commercially
pure magnesium using x-ray microtomography. Materials Science and Engineering: A,
676:146-155.

Noell, P. J., Sabisch, J. E., Medlin, D. L., and Boyce, B. L. (2020). Nanoscale conditions
for ductile void nucleation in copper: Vacancy condensation and the growth-limited
microstructural state. Acta Materialia, 184:211-224.

O’Regan, T., Quinn, D., Howe, M., and McHugh, P. (1997). Void growth simulations in
single crystals. Computational mechanics, 20(1-2):115-121.

Pala, R. and Dzioba, I. (2018). Influence of delamination on the parameters of triaxial
state of stress before the front of the main crack. In AIP Conference Proceedings. AIP
Publishing.

Pardoen, T. and Hutchinson, J. (2000). An extended model for void growth and coalescence.
Journal of the Mechanics and Physics of Solids, 48(12):2467-2512.

Pathak, N., Adrien, J., Butcher, C., Maire, E., and Worswick, M. (2020). Experimental stress

186



state-dependent void nucleation behavior for advanced high strength steels. International
Journal of Mechanical Sciences, 179:105661.

Paux, J., Brenner, R., and Kondo, D. (2018). Plastic yield criterion and hardening of
porous single crystals. International Journal of Solids and Structures, 132-133:80-95.

Paux, J., Morin, L., Brenner, R., and Kondo, D. (2015). An approximate yield criterion
for porous single crystals. European Journal of Mechanics - A/Solids, 51:1-10.

Perez-Bergquist, A., Cerreta, E. K., Trujillo, C. P,, Cao, F., and Gray III, G. (2011).
Orientation dependence of void formation and substructure deformation in a spalled
copper bicrystal. Scripta Materialia, 65(12):1069-1072.

Pineau, A., Benzerga, A. A., and Pardoen, T. (2016). Failure of metals I: Brittle and ductile
fracture. Acta Materialia, 107:424-483.

Ponte Castafieda, P. and Suquet, P. (1998). Nonlinear composites. Advances in Applied
Mechanics, 34:171-302.

Ponte Castafienda, P. (1991). The effective mechanical properties of nonlinear isotropic
composites. Journal of the Mechanics and Physics of Solids, 39:45-71.

Ponte Castafieda, P. (2015). Fully optimized second-order variational estimates for
the macroscopic response and field statistics in viscoplastic crystalline composites.
Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences,
471(2184):20150665.

Poole, W. and Charras, N. (2005). An experimental study on the effect of damage on the
stress—strain behaviour for Al-Si model composites. Materials Science and Engineering:
A, 406(1-2):300-308.

Potirniche, G., Hearndon, J., Horstemeyer, M., and Ling, X. (2006). Lattice orientation
effects on void growth and coalescence in fcc single crystals. International Journal of
Plasticity, 22(5):921-942.

Prasad, N. S., Narasimhan, R., and Suwas, S. (2015). Numerical simulations of cylindrical
void growth in mg single crystals. International Journal of Fracture, 200:159-183.
Proust, G., Tomé, C., and Kaschner, G. (2007). Modeling texture, twinning and hardening
evolution during deformation of hexagonal materials. Acta Materialia, 55(6):2137 —

2148.

Proust, G., Tomé, C. N, Jain, A., and Agnew, S. R. (2009). Modeling the effect of twinning
and detwinning during strain-path changes of magnesium alloy AZ31. International
Journal of Plasticity, 25(5):861 — 880.

Reboul, J., Srivastava, A., Osovski, S., and Vadillo, G. (2020). Influence of strain rate

sensitivity on localization and void coalescence. International Journal of Plasticity,

187



125:265-279.

Rezaee-Hajidehi, M., Sadowski, P., and Stupkiewicz, S. (2022). Deformation twinning as
a displacive transformation: Finite-strain phase-field model of coupled twinning and
crystal plasticity. Journal of the Mechanics and Physics of Solids, 163:104855.

Rice, J. and Tracey, D. (1969). On the ductile enlargement of voids in triaxial stress fields.
Journal of the Mechanics and Physics of Solids, 17(3):201-217.

Rogers, H. (1960). The tensile fracture of ductile metals. Metallurgical Society of AIME,
218:498-506.

Rousselier, G. (1981). Finite deformation constitutive equations including ductile fracture
damage. Three Dimensional Constitutive Relations and Ductile Fracture, Ed. S.
Nemat-Nasser, North-Holland, 331.

Rousselier, G. (2021). Porous plasticity revisited: Macroscopic and multiscale modeling.
International Journal of Plasticity, 136:102881.

Sahoo, S. K., Toth, L. S., and Biswas, S. (2019). An analytical model to predict strain-
hardening behaviour and twin volume fraction in a profoundly twinning magnesium
alloy. International Journal of Plasticity, 119:273 — 290.

Salem, A., Kalidindi, S., Doherty, R., and Semiatin, S. (2006). Strain hardening due
to deformation twinning in «-titanium: Mechanisms. Metallurgical and Materials
Transactions A: Physical Metallurgy and Materials Science, 37(1):259—-268.

Santos, R. O., da Silveira, L. B., Moreira, L. P.,, Cardoso, M. C., da Silva, F. R. F,,
dos Santos Paula, A., and Albertacci, D. A. (2019). Damage identification parameters
of dual-phase 600—800 steels based on experimental void analysis and finite element
simulations. Journal of Materials Research and Technology, 8(1):644—659.

Sartori, C., Mercier, S., and Molinari, A. (2019). Analytical expression of mechanical
fields for Gurson type porous models. International Journal of Solids and Structures,
163:25-39.

Schacht, T., Untermann, N., and Steck, E. (2003). The influence of crystallographic
orientation on the deformation behaviour of single crystals containing microvoids.
International Journal of Plasticity, 19(10):1605-1626.

Scherer, J.-M., Besson, J., Forest, S., Hure, J., and Tanguy, B. (2019). Strain gradient
crystal plasticity with evolving length scale: Application to voided irradiated materials.
European Journal of Mechanics-A/Solids, 77:103768.

Selvarajou, B., Joshi, S. P., and Benzerga, A. A. (2019). Void growth and coalescence
in hexagonal close packed crystals. Journal of the Mechanics and Physics of Solids,
125:198-224.

188



Shanthraj, P. and Zikry, M. (2012). Dislocation-density mechanisms for void interactions
in crystalline materials. International Journal of Plasticity, 34:154-163.

Siddiqg, A. (2019). A porous crystal plasticity constitutive model for ductile deformation
and failure in porous single crystals. International Journal of Damage Mechanics,
28(2):233-248.

Simo, J. C. and Hughes, T. J. R. (1998). Computational Inelasticity. Springer.

Song, D. and Ponte Castafieda, P. (2017a). A finite-strain homogenization model for
viscoplastic porous single crystals: I-theory. Journal of the Mechanics and Physics of
Solids, 107:560-579.

Song, D. and Ponte Castafieda, P. (2017b). Macroscopic response of strongly anisotropic
porous viscoplastic single crystals and applications to ice. Extreme Mechanics Letters,
10:41-49.

Song, D. and Ponte Castafieda, P. (2018a). A multi-scale homogenization model for
fine-grained porous viscoplastic polycrystals: I-finite-strain theory. Journal of the
Mechanics and Physics of Solids, 115:102-122.

Song, D. and Ponte Castafieda, P. (2018b). A multi-scale homogenization model for fine-
grained porous viscoplastic polycrystals: II-applications to FCC and HCP materials.
Journal of the Mechanics and Physics of Solids, 115:77-101.

Srivastava, A. and Needleman, A. (2013). Void growth versus void collapse in a creeping
single crystal. Journal of the Mechanics and Physics of Solids, 61(5):1169-1184.

Srivastava, A. and Needleman, A. (2015). Effect of crystal orientation on porosity evolution
in a creeping single crystal. Mechanics of Materials, 90:10-29. Proceedings of the
IUTAM Symposium on Micromechanics of Defects in Solids.

Srivastava, A., Revil-Baudard, B., Cazacu, O., and Needleman, A. (2017). A model for
creep of porous crystals with cubic symmetry. International Journal of Solids and
Structures, 110:67-79.

Staroselsky, A. and Anand, L. (1998). Inelastic deformation of polycrystalline face centered
cubic materials by slip and twinning. Journal of the Mechanics and Physics of Solids,
46(4):671 — 696.

Stewart, J. B. and Cazacu, O. (2011). Analytical yield criterion for an anisotropic material
containing spherical voids and exhibiting tension—compression asymmetry. International
Journal of Solids and Structures, 48(2):357-373.

Tancogne-Dejean, T., Roth, C. C., Morgeneyer, T. F., Helfen, L., and Mohr, D. (2021).
Ductile damage of AA2024-T3 under shear loading: Mechanism analysis through in-situ
laminography. Acta Materialia, 205:116556.

189



Tekoglu, C., Hutchinson, J., and Pardoen, T. (2015). On localization and void coalescence
as a precursor to ductile fracture. Philosophical Transactions of the Royal Society A:
Mathematical, Physical and Engineering Sciences, 373(2038):20140121.

Thomason, P. (1985). A three-dimensional model for ductile fracture by the growth and
coalescence of microvoids. Acta Metallurgica, 33(6):1087—-1095.

Thompson, A. W. and Williams, J. C. (1977). Nuclei for ductile fracture in titanium. In:
FOURTH INTERNATIONAL CONFERENCE ON FRACTURE, 2:343-348.

Tipper, C. (1949). The fracture of metals. Metallurgia, 39(231):133-137.

Tome, C. and Lebensohn, R. (2023). Material modelling with the visco-plastic self-consistent
(VPSC) approach. Theory and practical applications. Elsevier.

Tomé, C., Lebensohn, R., and Kocks, U. (1991). A model for texture development
dominated by deformation twinning: Application to zirconium alloys. Acta Metallurgica
et Materialia, 39(11):2667 — 2680.

Torki, M., Keralavarma, S., and Benzerga, A. (2021). An analysis of lode effects in ductile
failure. Journal of the Mechanics and Physics of Solids, 153:104468.

Torki, M. E. (2019). A unified criterion for void growth and coalescence under combined
tension and shear. International Journal of Plasticity, 119:57-84.

Trejo Navas, V. M., Bernacki, M., and Bouchard, P.-O. (2018). Void growth and coalescence
in a three-dimensional non-periodic void cluster. International Journal of Solids and
Structures, 139-140:65-78.

Tvergaard, V. (1981). Influence of voids on shear band instabilities under plane strain
conditions. International Journal of fracture, 17:389-407.

Tvergaard, V. (1982). On localization in ductile materials containing spherical voids.
International Journal of fracture, 18:237-252.

Tvergaard, V. and Needleman, A. (1984). Analysis of the cup-cone fracture in a round
tensile bar. Acta Metallurgica, 32(1):157 — 169.

Van Houtte, P. (1978). Simulation of the rolling and shear texture of brass by the Taylor
theory adapted for mechanical twinning. Acta Metallurgica, 26(4):591 — 604.

Van Stone, R. H., Low, J. R., and Shannon, J. L. (1978). Investigation of the fracture
mechanism of Ti-5A1-2.5Sn at cryogenic temperatures. Metallurgical Transactions A,
9(4):539-552.

Virupakshi, S. and Kowalczyk-Gajewska, K. (2023). Cylindrical void growth vs. grain
fragmentation in FCC single crystals: CPFEM study for two types of loading conditions.
International Journal of Solids and Structures, 280:112397.

Wang, H., Wy, P. D., Tomé, C. N., and Huang, Y. (2010). A finite strain elastic-viscoplastic

190



self-consistent model for polycrystalline materials. Journal of the Mechanics and Physics
of Solids, 58:594-612.

Wcislik, W. and Lipiec, S. (2022). Void-induced ductile fracture of metals: Experimental
observations. Materials, 15(18):6473.

Willis, J. R. (1981). Variational and related methods for the overall properties of composites.
Advances in applied mechanics, 21:1-78.

Wong, W. and Guo, T. (2015). On the energetics of tensile and shear void coalescences.
Journal of the Mechanics and Physics of Solids, 82:259-286.

Yerra, S., Tekog, C., Scheyvaerts, F., Delannay, L., Van Houtte, P., Pardoen, T., et al.
(2010). Void growth and coalescence in single crystals. International Journal of Solids
and Structures, 47(7-8):1016-1029.

Zhang, F., Bower, A., Mishra, R., and Boyle, K. (2009). Numerical simulations of
necking during tensile deformation of aluminum single crystals. International Journal
of Plasticity, 25(1):49-69.

Zhang, J. and Joshi, S. P. (2012). Phenomenological crystal plasticity modeling and
detailed micromechanical investigations of pure magnesium. Journal of the Mechanics
and Physics of Solids, 60:945-972.

191



	Acknowledgements
	Abstract
	Streszczenie
	Introduction
	Motivation
	State of the art
	Experimental research on ductile fracture.
	Macroscopic models for porous ductile materials 
	Macroscopic finite element models for porous ductile materials
	Crystal plasticity FE models for porous crystals
	Crystal plasticity phenomenological models for porous crystals

	Scientific goal and scope of the thesis

	Crystal plasticity model
	Notation
	Abbreviations
	Crystal lattice symmetry
	Rate-dependent crystal plasticity formulation
	Kinematics
	Twin reorientation scheme
	Rate-dependent constitutive law
	Hardening laws


	FE implementation and boundary conditions
	FE implementation
	Unit cell model and boundary conditions
	2D & 3D cell model
	Periodic boundary conditions for both 2D and 3D unit cells
	Imposing stress controlled boundary conditions
	In-plane displacement controlled boundary conditions for 2D plane strain unit cell
	In-plane stress controlled boundary conditions for 2D plane strain unit cell
	Stress controlled boundary conditions for 3D unit cell

	Finite element geometry and mesh

	Cylindrical void growth vs grain fragmentation in FCC single crystals
	Material parameters, crystal orientations and loading cases considered
	Microstructure evolution and void growth in in-plane uniaxial tension and compression
	Void growth and microstructure evolution in in-plane biaxial loading processes
	Overall response of voided crystal
	Local sample response

	Summary and conclusions

	Finite element analyses of HCP crystals with voids
	Numerical analyses of a 2D plane strain unit cell with cylindrical void
	Crystal orientations, material parameters and loading cases considered
	Macroscopic response of voided crystal
	Void growth and coalescence
	Contour plots of accumulated slip for orientation A
	Contour plots of accumulated slip and tensile twin volume fraction for orientation B
	Summary for 2D plane strain unit cell

	Numerical analyses of a 3D unit cell with spherical void
	Stress vs strain response
	Normalized void volume fraction plots
	Relative activity plots
	Local response of a 3D unit cell

	Conclusions

	Theoretical formulation of a micromechanical mean-field model of polycrystals with voids
	Micromechanical mean-field formulation of porous polycrystals
	Additive Mori-Tanaka model of voided elasto-viscoplastic crystal
	Micromechanical Model of RVE Composed of HPSCs Using EVPSC Scheme
	Evolution of local and overall porosities in the RVE-HPSC

	Summary

	Numerical verification of the mean field model for FCC crystals
	Numerical implementation of the micromechanical model for a porous elasto-viscoplastic FCC single crystal
	Numerical implementation of the two-step homogenized micromechanical model for porous elasto-viscoplastic FCC polycrystals
	Numerical verification of mean field model for FCC porous single crystal
	Numerical verification of homogenized mean field model results for FCC porous polycrystals
	Finite element mesh and boundary conditions
	Results and Discussion

	Summary and conclusions

	Phenomenological yield criterion for porous single crystals
	GTN-type plastic yield criteria for porous single crystals
	Yield surface of HCP porous crystals deforming by slip and twinning
	Identification of tuning parameters
	Results and discussion

	Comparison of proposed model predictions with existing proposals for FCC porous crystals
	Verification of unit cell calculations
	Comparison of proposed model predictions with the existing models and unit cell results

	Summary

	Summary and future works
	Bibliography

