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Chapter 1

Introduction

1.1 Motivation

Problems considered in herein dissertation are closely related with develop-
ment of a concept of structural health monitoring system, named in short
as the ELGRID system, which is based on the idea of embedded electri-
cal sensing network. According to the concept, a structural element being
the object of inspection is equipped with a sensing circuitry in a form of
spatially-distributed, interconnected electrical sensors/components which are
expected to sustain damages along with the appearance or growth of mechan-
ical defects. Problem of health monitoring is simply reduced to localization of
damage-induced modifications of electrical parameters within the structure
of the sensing network. In the simplest form, the ELGRID system may be
considered as an array of crack wires monitored for the occurrence of breaks
resulting from crack propagation. In a more general picture, branches of the
network may contain various electrical sensors/transducers and mechanical
defects (cracks, delamination, debonding) are indicated by changes of differ-
ent electrical parameters (resistance, capacitance). Diagnosis of the network
is performed by the accompanying signal processing unit which invokes pre-
defined test signals in the network, collects the responses and runs a model-
based inverse analysis to locate the occurred faults. The system is intended
to be a cheap and special-purpose alternative to the main-stream sensing
technologies based on piezoelectric transducers or optical fibers, aimed at
detection and localization of damages in composite materials. Economical as-
pect is apparent as the cost of electric/electronic materials, components and
equipment should be substantial lower than in the case of piezoceramic and
optical technologies. However, the main strength of the proposed approach
lies in the fact that no reference to mechanical properties of the monitored
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material or a structure is made at any stage of monitoring process. Taking
into account that composites are usually non-homogeneous and anisotropic
materials, whose characteristics and parameters frequently can only be ap-
proximated, identification and validation of mechanical model is often the
most difficult task, having the crucial impact on accuracy and reliability
of health assessment procedure. In this sense, model of electrical sensing
network can be much accurately determined, and moreover, topology and
parameters of the network can be chosen at the design stage in order to
facilitate the procedure of damage identification. As a trade-off, natural de-
ficiency of the proposed system is its lack of prediction – as a stand-alone
unit, it will assumedly be able to detect and localize damages, and to some
extent specify their type and size, but without assessing their influence on
the overall condition of the monitored structure. The most prospective area
of system application is detection of defects in crucial components or joints
of a structure. Also, it may possibly work as an auxiliary module enhancing
performance of other monitoring systems (e.g. to confirm or verify locations
of defects).

An essential issue in the concept of the ELGRID system is a manner
of interaction between mechanical and electrical defects, namely the type of
applied sensors, their integration with monitored structure and how particu-
lar kind of damages will translate into modifications of electrical properties.
However, technological issues will not be discussed in detail – at the time
of this writing, they are still under development and are intended to be an
object of future patent claims, hence only vague hints about possible hard-
ware implementation will be delivered. The aim of the work is to investigate
the problem of defect identification for some general class of electrical cir-
cuits, simulating construction and performance of the ELGRID system, and
to propose, develop and verify a numerical technique which will provide an
effective and reliable solution. The ultimate goal is to formulate an algorithm
of self-diagnosis which could be implemented in the signal processing unit of
the system, as well as to specify guidelines concerning topology design and
selection of parameters of the sensing network. The main assumption re-
garding the sensing network is that it can be built-in within the structural
material (for example inside a block of concrete or between plies of laminated
composite panel), hence particular sensors/components may not be directly
accessible for reading/testing. Thus, the idea was to design the sensing layer
not as an array of individual sensors but as a compact network of some pre-
defined topology, where damage identification problem can be solved through
inverse analysis. An approach based on the adapted algorithms of the Vir-
tual Distortion Method has been chosen as the core of proposed methodology.
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VDM has been successfully applied in structural mechanics to solve similar
problems, particularly in the case of truss structures, which from the point of
view of structural analogies, are equivalents of resistive circuits. Taking into
account that VDM can handle multiple, simultaneous damages and may be
formulated both in steady-state and dynamic case, it was expected that the
method would provide a viable solution to the posed problem.

The title of dissertation, enigmatic as it may seem at the first sight,
precisely defines the scope and purpose of the work. The aim is to develop
the methodology of solving the inverse problem (Damage Identification) for
a model of certain sensing device (Electrical Network), which is intended to
be applied in specific engineering area (Structural Health Monitoring).

1.2 Structural Health Monitoring

Motivation behind the work, techniques which are going to be utilized and
possible resulting applications all refer or belong to the scope of problems
considered within the art of Structural Health Monitoring [1, 2, 3]. It is
rapidly developing branch of engineering which combine various measuring
and signal processing techniques in the aim to provide technologies capable to
detect, localize and identify damages, assess the condition and predict a fail-
ure of structures, machines or crucial structural components. A motivation
is not only to increase safety and life cycle of the infrastructure but also to
reduce time and cost of maintenance and periodical inspections. Most of the
utilized methods and technologies origin from vibroacoustics and NDT/E
(Non-Destructive Testing/Evaluation), but the ultimate goal is to develop
autonomous systems which could be integrated with the structure and per-
form the diagnosis automatically (without human attendance), preferably in
global scale and during normal operation of a structure (monitoring on-line).
Monitoring of structural health is a complex and multidisciplinary problem
involving issues from the areas of mechanics, electronics, signal processing
and computer science. After [4], the process of health monitoring may be
described as “(...) the observation of a system over time using periodically
sampled dynamic response measurements from an array of sensors, the ex-
traction of damage-sensitive features from these measurements, and the sta-
tistical analysis of these features to determine the current state of the sys-
tem’s health”. Taking into account all the relevant issues, any SHM system
may be considered from the perspective of:

• the monitored structure itself (e.g. size, shape, material and mechanical
properties, load and environmental conditions),
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• type of expected damages (e.g. cracks, corrosion, delamination, fatigue)
or external dangers (overload, impact),

• physical phenomenon being the basis of identification method (e.g. vi-
brations, elastic wave propagation, acoustic emission),

• type of sensors (e.g. piezoelectric, optical fibers, MEMS) and measured
quantities (e.g. strains, accelerations, electromechanical impedance)

• data collection and signal processing (e.g. modal or wavelet analysis)

• damage identification method (e.g. pattern recognition, gradient-based
model updating)

Main areas of SHM applications are mechanical, civil and aerospace engineer-
ing. In mechanical engineering [5, 6], SHM concepts are mostly applied to
diagnosis of rotating machinery (turbines, power generators). Standard meth-
ods are based on observation of vibro-acoustical characteristics of operating
machines, which are usually self-excited systems. In civil engineering [7, 8],
the objects of inspection are usually large, massive, concrete and metallic
structures (bridges, buildings, dams, storage tanks). Vibration-based modal
analysis is a standard tool for system identification and health assessment.
In aerospace applications [9], usually thin-walled, metallic and composite
aircraft components (fuselage, wings, rotor blades) are the objects of diagno-
sis. Most common methods are based on guided waves and acoustic emission.

Low-frequency vibration-based methods, which origin from machine di-
agnostics, and high-frequency wave propagation methods, which origin from
ultrasonic non-destructive testing, may be distinguished as main-stream SHM
methodologies. Vibration-based methods are suited for civil engineering ap-
plications where they provide global monitoring of a structure. Wave prop-
agation methods, which include guided Lamb waves, acoustic emission and
impedance-based approach, are suited for aerospace applications for detection
of local defects (cracks, delamination). Other techniques include electrical
resistance measurements, vibro-thermography, electro-magnetic tomography
and optical holography.

The most commonly used measuring devices are piezoelectric transduc-
ers and optical fibers. Piezoelectric sensors [10], based on natural crystals
(quartz), ceramic (PZT) or thin films (PVDF) can directly measure strains,
forces and accelerations. Piezo-Wafer Active Sensor (PWAS) [11] is a concept
of a network of piezo-elements which operate both as sensors and actuators,
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finding application in guided waves methods or electromechanical impedance
approach. Examples of commercially available SHM systems based on the
PWAS concept are SMART Layer by Accelent Technologies and SWISS by
EADS/Siemens NDT. Fiber optic sensors [12, 13] include intensity-based,
phase-modulated (interferometric) and Fiber Bragg Grating (FBG) sensors
for measurement of strains, pressure and environmental conditions (tem-
perature, humidity). Other emerging sensing technologies are micro electro-
mechanical systems (MEMS) and laser vibrometers. Along with the sensing
technologies, there is extensive development of hardware and software de-
voted to acquisition, conditioning, filtering, reduction and pre-processing of
measured data. Wireless transmission between the network of sensors and
signal processing unit becomes a standard in modern SHM systems.

1.3 Methods of damage identification

SHM system should provide an answer to at least one of the three main prob-
lems: detection, localization and quantification of the occurring damages. The
next step – estimation of the system’s remaining useful life, belongs to the
new developing art of Damage Prognosis [14, 15]. Measurements registered
on real structures consists of local strains or accelerations, as well as envi-
ronmental conditions. The next step is extraction and selection of features
which are sensitive to structural modifications (e.g. eigen frequencies, modal
shapes). In low-frequency methods, system identification is usually required
to fit the numerical model with experimental data. The last step is analytical
or statistical analysis providing a solution to identification problem. Gen-
erally, two main approaches can be distinguished: sensitivity-based inverse
analysis, which utilize analytical formulation of the problem, and methods
of artificial intelligence: statistical pattern recognition, artificial neural net-
works and soft computing (genetic algorithms, simulated annealing, swarm
intelligence).

From the point of view of electrical engineering, problem considered in
this work belongs to the area of analog fault diagnosis [16, 17, 18, 19], which
encapsulates techniques of detection, location and prediction of electrical
faults in analog and mixed-signal circuits. Fault diagnosis is usually aimed
at identification of hard faults (open and short circuits) using DC, single-
and multi-frequency AC, transient time domain or noise measurements. In
Fault Dictionary approach, a collection of nominal circuit behaviors for vari-
ous scenarios of fault locations is compiled and post-test algorithm compares
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the measured responses with dictionary signatures to isolate a fault. Fault
Dictionary is usually applied to diagnose single, hard faults and is consid-
ered incapable of detection of parameter drifts. In Parameter Identification
approach, the inverse problem is solved based on model of a circuit and re-
sponses registered for known test signals. Fault Verification approach uses
the same methods as parameter identification but assumes some restrictions
on the number and location of faults. Artificial neural networks and statis-
tical methods are frequently used in all the approaches. A common problem
in fault diagnosis is limited accessibility of internal nodes (e.g. in integrated
circuits) for signal measurements. Testability studies [20, 21], based on topo-
logical analysis, provides theoretical conditions of circuit diagnosability and
also give specifications for test signal selection.

1.4 Objectives and scope

The main goal of the work is to solve the inverse problem of defect identifica-
tion within the electrical circuit being the model of electrical sensing network.
Generally, solution to any numerical problem, the inverse one in particular,
depends not only on the applied algorithm but on the conditioning of the
problem itself. It is assumed that most or all of the internal nodes of the
network will be inaccessible, only selected terminals on external edges will
be available for test signal supply and response measurements. Also, system
functionality dictates that sensors within the network should be preferably
distributed in some regular fashion (e.g. in a grid pattern) and be of similar
electrical characteristics. Under such conditions, problem of damage identifi-
cation is expected to be not only severely ill-conditioned, but even ill-posed
(in a sense that there is no unique solution). In answer to this challenge, the
main thesis of the work is stated as follows:

If configuration of the electrical sensing network complies with
some pre-defined design rules, then a problem of damage identifi-
cation can be efficiently solved through dynamic inverse analysis.

In fact, it is claimed that the overall goal of the work can be reached in two
major steps. First one is to propose the method of solving the damage identifi-
cation problem for a generally formulated model of electrical sensing network.
This will be accomplished by providing the algorithm of dynamic, gradient-
based model updating. Second task is to optimize/design the sensing network
in order to make it diagnosable. This will be accomplished by selection of
proper topological pattern defining locations and interconnections of sensing
elements within the network. Overall diagnosability of a circuit depends on
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its configuration (topology and parameters of components), shape of test sig-
nals and measured responses (number, kind and locations), hence the task of
network design should be considered as a multi-criteria optimization prob-
lem. However, issues of optimal topology or optimal sensor placement are by
themselves very difficult inverse problems which cannot be formulated ana-
lytically and require combinatronics or heuristic approach. That’s why the
task of system optimization will not be solved sensu stricto. Rather, based
on topological and inverse analysis of several network configurations, some
general conclusions will be derived and a set of heuristic rules/guidelines will
be prescribed. Combination of these rules along with the proposed damage
identification procedure will enable to define a class of diagnosable network
configurations, satisfying conceptual and functional requirements of the EL-
GRID system.

Validation of the thesis will be achieved by accomplishing the following
objectives:

• A damage identification problem in electrical sensing networks comply-
ing with the concept of the ELGRID system will be formulated.

• Virtual Distortion Method will be adapted to electrical circuit analysis,
including DC, AC and transient, time-domain case.

• An original methodology of damage identification in electrical sensing
networks, based on the adapted VDM algorithms, will be developed.

• Numerical and experimental verification of the method will be per-
formed.

• Topological and inverse analysis of different network configurations will
be performed and a set of rules concerning network design will be de-
rived.

• Diagnosable configurations of sensing networks will be identified and
possible implementations in monitoring system will be proposed.

Problems discussed in the work concern mainly the issues from the area of
electrical circuit analysis and optimization. Thus, to ensure the logical order
of presented problems, the dissertation is organized as follows:

Chapter 2 provides some notions from circuit theory necessary from the
perspective of considered problems. Physical quantities, parameters,
laws and relations which enable to describe and analyze linear models
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of RLC circuits are provided. Procedures for steady-state DC, AC and
transient, discrete-time domain analysis, based on the modified nodal
approach, are presented. In the last section, the concept of electro-
mechanical analogies is explored, with the emphasis on structural sim-
ilarities between electrical circuits and plane truss structures.

Chapter 3 introduces the basic notions of the Virtual Distortion Method.
Electrical equivalents of virtual distortions and influence matrices are
defined and implemented as efficient numerical tools which enable to
simulate modifications of circuit parameters. VDM-based algorithms of
quick re-analysis and sensitivity analysis are consequently adapted for
the case of DC, AC and dynamic circuits.

Chapter 4 is devoted to the inverse problem of damage identification in
electrical circuits. At the beginning, a general concept of the ELGRID
system is presented, along with considerations regarding possible hard-
ware implementation. Next, the problem of damage identification is
formulated. Steady-state approach, being of less practical importance,
enables to explain the overall concept of damage identification algo-
rithm and the related issues and problems (conditioning, uniqueness of
solution). Dynamic approach, based on gradient optimization, is pro-
jected to be the core of the algorithm applied in signal-processing unit
of the monitoring system. The method is illustrated on numerical ex-
amples and verified on experimental setup. Rules of topological design
are specified and several different network configurations are examined.
Possible implementations of electrical sensing networks are presented.
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Chapter 2

Excerpts from circuit theory

In Chapter 4, the concept of monitoring system utilizing embedded electrical
sensing network will be presented. In brief, the problem of health monitoring
will be formulated as a search for damage-induced modifications of param-
eters within the sensing network considered as a purely electrical system.
The assumed model of the network will have a form of time-invariant linear
circuit consisting of ideal, two-terminal, discrete elements: resistors, capaci-
tors, coils and independent sources. Conceptual and technological arguments
which support this assumtion will be discussed in Chapter 4. In the following
sections, all notions and relations necessary to describe and analize the said
model of the network will be provided. Also, a system of structural analogies
between electrical circuits and truss structures, which establishes a basis for
adaptation of the Virtual Distortion Method, will be discussed.

2.1 Basic notions

Circuit description

Electrical circuit/network is a collection of interconnected components and
devices which are capable to conduct, store, enforce or control the movement
of electric charges. A graphical representation of a circuit is schematic dia-
gram, where various types of components are depicted by predefined symbols.
An exemplary circuit diagram shown in Figure 2.1 includes at least one rep-
resentative from the assumed set of considered components. Namely, there
are six resistors R1÷R6, two capacitors C1,C2, a coil L, a source of voltage E
and a source of current J. All the elements are two-terminal models of ideal
components, which means they are characterized entirely by a single lumped
parameters. Connecting wires are considered to be ideal conductors. Node

10



R

4

1

E J

R
4

6

53
1

2

L

R
6

C
1 2

C

R
3

R R2 5

Figure 2.1: Exemplary circuit diagram

is a point of connection of at least two terminals which belong to different
components. There are six distinct nodes in the exemplary circuit and node
number 1 has been chosen as a common ground. Loop is a set of elements
comprising a closed path. It is assumed that there are no self-loops, i.e. ter-
minals of every component are associated with a pair of different nodes.

Electrical quantities

The scope of considerations is limited to macroscopic quantities describing
causes and effects of electron movement in a circuit of discrete structure.

Electric charge (symbol Q, unit coulomb [C]) is an amount of uncompen-
sated particles (electrons, protons, ions) within the considered compo-
nent or space, being a multiple of elementary charge e = 1.602×10−19C.

Intensity of current (symbol I, unit ampere [A]) is a rate of flow of electric
charge through a cross-section of a conductor or component: I = dQ

dt

Electric potential (symbol V, unit volt [V]) at a given point of electric field
is a measure of potential energy per unit charge, defined with regard
to some reference level. Electric potentials are associated with circuit
nodes and zero reference level is assumed for grounded nodes.

Voltage (symbol U, unit volt [V]) is a difference of electric potentials be-
tween two points of electric field. Voltage across circuit component is a
measure of energy required to move a unit charge through it.

Magnetic flux (symbol Φ, unit weber [W]) is a measure of magnetic field
per unit area. According to Faraday’s law of induction, alternating
magnetic flux acting on conductive element produces voltage: U = dΦ

dt

11



Components and parameters

The object of consideration are stationary linear circuits where parameters
of components are assumed to be time-invariant and independent of the level
of current or voltage, type of excitation signal or ambient conditions (tem-
perature, humidity, electric/magnetic fields, etc.).

Resistors are components able to conduct electric charge which is accom-
panied by the dissipation of energy in a form of a heat. In the simplest
form, resistor is a piece of a wire made of resistive material. Resis-
tance (symbol R, unit ohm [Ω]) determines the level of voltage which
needs to applied across resistor terminals in order to obtain a given
level of current (U = RI). Resistance depends mainly on geometrical
dimensions of resistor (length and cross-section area) and conductivity
of the material. A reciprocal of resistance is conductance (symbol G,
unit siemens [S]).

Capacitors are components able to store electric charge. In the simplest
form, capacitor consists of two over-lapping conductive plates (elec-
trodes), separated by a thin dielectric layer. Voltage applied across
capacitor results in polarization of the insulating layer and occurence
of opposite electrical charges on electrodes. Capacitance (symbol C,
unit farad [F]) determines the amount of charge stored in capacitor
for the given level of applied voltage (Q = CU). Capacitance depends
mainly on the area of overlapping plates, thickness of insulating layer
and permittivity of dielectric material.

Coils (inductors) are components able to produce magnetic field. In the
simplest form, inductor is a piece of spiral-shaped wire, with or without
an inside core. Current flowing through a coil wire results in magnetic
field produced inside the core. Inductance (symbol L, unit henry [H])
determine the intensity of magnetic flux produced in coil for a given
level of current (Φ = LI). Inductance depends mainly on geometrical
dimensions of a coil (length, area of a single turn), number of turns and
permeability of a core material.

Voltage sources are active components, characterized by electromotive force
(symbol E, unit volt [V]), which defines the difference of electric poten-
tials enforced on source terminals.

Current source are active components, characterized by source intensity
(symbol J, unit amper [A]), which describes the intensity of current
enforced through source terminals.
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Types of analysis

Type of signals generated in a circuit by active sources determines the math-
ematical form of equations describing circuit behaviour and consequently,
a numerical technique which need to be applied to obtain a solution. The
following types of circuits will be considered:

Direct Current (DC) circuit is supplied by sources of constant values of
electromotive forces or current intensities. Responses of the circuit are
also constant. More precisely, it is assumed that analysis is conducted
long after any switching operation, when the unsteady component of
responses can be neglected. DC circuit is described by a system of
algebraic equations and solved using algorithms of linear algebra (e.g.
Gaussian elimination or LU decomposition).

Alternating Current (AC) circuit is supplied by harmonic sources of
fixed frequency and constant amplitudes and phases. Responses of the
circuit are also harmonic of the same frequency. The standard method
of analysis is the symbolic method where signals and parameters are
expressed using complex numbers. Single-frequency AC circuit is de-
scribed by a system of algebraic equations and solved using algorithms
of linear algebra in the complex number domain.

Dynamic circuit is supplied by sources of arbitrary shape of input signals.
Functions of responses are generally different then input functions. Dy-
namic circuit is described by a system of ordinary differential equations,
which can be solved using various method, either in time domain (e.g.
direct numerical integration or in the state-space representation) or in
frequency domain (using Laplace or Fourier transform). In this work,
transient analysis in discrete-time domain will be performed with solu-
tion obtained through direct numerical integration.

Different notation of electrical quantities will be used for every type of anal-
ysis (Table 2.1). In DC case, a single electrical quantity will be denoted by
a capital letter. In AC case, underlined capital letters will be used to denote
complex representation of signals. In dynamic case, small letters with direct
relation of time will be used. Interrelations between various quantities will
be described using matrix notation. Quantities will be gathered in column
vectors denoted by small bold letters, underlined in AC case and with rela-
tion of time in dynamic case. Vectors of voltages and currents will also have
additional subscript indicating the type of component which they refer to.
Matrices of parameters will be donoted by bold capital letters.
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DC AC dynamic

Single quantity V, U, I, E, J V , U, I, E, J v(t), u(t), i(t), e(t), j(t)

Matrix form v,uR, iC, e, j v,uR, iC, e, j v(t),uR(t), iC(t), e(t), j(t)

Table 2.1: Notations for different types of analysis

Flow notation

Historically, Benjamin Franklin, one of the pioneers in studies of electricity,
postulated that electrical phenomena are related with movement of some hy-
potethical carriers – an excess of these carriers makes an object positively
charged while a deficiency makes it negatively charged. Later studies demon-
strated that, according to this convention, electrons have to be denoted as
carriers of negative charge. This introduced a confusion concerning the di-
rection of current flow. In the electron flow notation, the direction of current
is in accordance with actual motion of electrons, that is from the negative
toward positive potential. In the conventional flow notation, which complies
with Franklin’s assumption, current flows from positive toward negative po-
tential. Regardless of convention, the arrow of voltage which denotes polarity,
points toward positive or higher potential (Figure 2.2). Since the conventional

U

I

v(−) v(+)

U

I

v(−) v(+)

Figure 2.2: Conventional (left) vs electron (right) flow notation

flow notation is more popular and widely used (e.g. unified graphical symbols
of electrical components are in accordance with it) and the fact that actual
direction of electron flow is of no importance to the considered problems, the
conventional notation will be used throughout the work.

Topology description

To describe a scheme of connections between components, the notions of di-
rected graph and incidence matrix will be applied. If every component of a
circuit is represented as an edge of fixed orientation which links a pair of
nodes, the directed graph is obtained (Figure 2.3). Orientation of edges de-
fines a reference for assigning directions of currents and polarities of voltages:
the positive instantenous value of the quantity means that it complies with
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Figure 2.3: Scheme of a circuit and its oriented graph

the assumed orientation. In this and all the following examples, every edge
of a graph is initialy oriented toward the node of a higher index. Since the
conventional flow notation will be used, the sign of current will be always
opposite to the sign of voltage.

The structure of a graph can be described in the form of incidence matrix
M. Rows of the matrix correspond to nodes and columns to edges. If k -th
edge leaves i -th node and enters j -th node then Mik = −1, Mjk = 1 and all
other entries in the k -th column equal zero. For every kind of component, a
separate incidence matrix will be used – a letter above the matrix will indi-

cate the considered components (
R

M for resistors,
C

M for capacitors etc.). In
Figure 2.4, a subgraph obtained for resistors from the exemplary circuit and
a corresponding incidence matrix are presented.

31

2 6

5

4

1

2

3

4

5

6

R

M =


−1 0 0 0 0 0

0 −1 0 0 0 0
1 0 −1 −1 0 0
0 1 1 0 −1 0
0 0 0 1 0 −1
0 0 0 0 1 1


Figure 2.4: Oriented graph and the corresponding incidence matrix

Incidence matrices enable to formulate relations between quantities asso-
ciated with nodes and components. Namely, vector of voltages across a given
set of components (for example resistors) and vector of nodal potentials can
be related as follows:

uR(t) =
R

MTv(t) (2.1)

while the product of incidence matrix and vector of currents (e.g.
R

MiR) con-
veys a relation for algebraic sums of currents entering/exiting nodes from the
given set of components.
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2.2 Laws, relations and theorems

There are two sets of rules which determine the behavior of a circuit. First
one results from mathematical modeling of circuit elements which leads to
formulation of local current-voltage relationships. Second one results from
topological constraints which govern global states of currents and voltages.
A fundamental principle in analysis of linear circuits is superposition theorem
which also constitutes a basis of the Virtual Distortion Method. From the
perspective of later considerations, some principles regarding handling and
transformation of sources are also worth mentioning.

Constitutive equations

Relations between currents and voltages for ideal passive components in dif-
ferent types of analysis have been gathered in Table 2.2. Ohm’s law, presented
here in the conductance form, states that for resistors current and voltage
are proportional regardless of signals variation. Relations for capacitors and
coils, in a general case, are described by integral or differential equations,
but in the steady-state analysis they reduce to algebraic equations. In DC
case, charged capacitor prevents current flow (it acts as a break) while in coil
no voltage is induced (it acts as a short-circuit). In AC case, relations are
formulated with respect to complex amplitudes of signals (see Section 2.3).

Resistor Capacitor Coil

General case i(t) = Gu(t) i(t) = C
du(t)

dt
i(t) =

1

L

∫
u(t)dt

DC case I = GU I = 0 U = 0

AC case I = GU I = jωC U I =
1

jωL
U

Table 2.2: Constitutive relations

Capacitors and coils are components which store energy – capacitors in
the form of electric field, coils in the form of magnetic field. Level of stored
energy is determined by the voltage across capacitor and current in coil:

WC =
1

2
CU2; WL =

1

2
LI2; (2.2)

Just as the changes of energy must be continuous, so do changes of voltage
across capacitor and current in coil. In a case of a sudden modification in
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circuit structure (e.g. opening a switch) or non-continuity in supply signal
(e.g. excitation by a step function), values of the mentioned quantities are
preserved – they determine initial conditions after the switching operation.
Both current in capacitor and voltage across coil may however change in
any way possible. There are switching operations which result in non-linear
behavior. Opening of saturated coil, short-circuit of charged capacitor, con-
nection of a capacitor to DC voltage source or connection of a coil to DC
current source will be accompanied by a sudden release of energy, which
usually takes a form of electric arc (non-linear resistance). Such pathological
switching operations will not be considered in this work.

Kirchhoff’s laws

Global states of currents and voltages in a circuit are governed by the rules
known as Kirchhoff’s laws:

Kirchhoff’s Current Law (KCL):

An algebraic sum of currents entering/exiting a node equals zero.

Kirchhoff’s Voltage Law (KVL):

An algebraic sum of voltage drops in a loop equals zero.

KCL results from the principle of conservation of electric charge (nodes can-
not store charge) while KVL is a consequence of the principle of conservation
of energy (in potential field, sum of energy gained/lost by a charge moving
in a closed path is zero). Kirchhoff’s laws hold true regardless of the type of
circuit and signals variation, and are fulfilled for every node and arbitrary
path comprising a loop. However, in a circuit consisting of n nodes and b
branches, there are at most (n-1) independent KCL equations and (b-n+1)
independent KVL equations.

Superposition theorem

In linear systems, the outputs produced by individual inputs are additive. In
regard to electrical circuits, superposition theorem can be stated as follows:

The overall response of a circuit supplied by multiple sources
equals to the algebraic sum of responses generated by individual
sources acting alone (other voltage sources shpuld be replaced by
short-circuits and current sources by breaks).
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Superposition principle enables also to solve circuits supplied by mixed kinds
of sources. For example, any periodical supply signal can be decomposed on a
sum of harmonic functions (Fourier transform) hence the overall response of
a circuit can be calculated as a sum of independent AC responses generated
by individual harmonics.

Equivalent sources

Model of real source should at least include an inner resistance which enables
to simulate losses of power and changes of nominal value due to the load.
Model of real voltage source includes resistance Re in series while real current
source contains conductance Gj in parallel (Figure 2.5). Let suppose that R
represents total resistance of the load. State of current/voltage in the load
can be described by the following relations:

I
R

RU R

I

U
Gj

e J

E

Figure 2.5: Models of real sources

E = I (Re +R) ; J = U

(
Gj +

1

R

)
; U = RI (2.3)

Eliminating resistance of the load we obtain:

I +
U

Re

=
E

Re

; I +GjU = J (2.4)

Comparing coefficients standing by respective quantities, the following con-
ditions can be obtained:

Gj =
1

Re

; J =
E

Re

(2.5)

If parameters of sources fulfill the above conditions then, regardless of resis-
tance of the load, they both produce the same state of current and voltage.
The principle is valid only for models of real sources, ideal sources have no
equivalents.
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Figure 2.6: Impotent sets of sources

Impotent sources

There are certain configurations of sources which have a specific influence on
circuit behavior. The so-called impotent set of sources don’t generate certain
responses at all:

• A set of ideal voltage sources inserted in series with all branches com-
prising a node cutset (Figure 2.6 – left) will not affect the state of
currents in a circuit (sources are of equal instantenous value and the
same polarity with respect to the node). The principle results from the
fact that in every loop which contains the common node, there are two
equal voltage sources of opposite polarity, hence they cancel each other
in Kirchhoff’s voltage law. The only affected responses are potential in
the common node and voltages in the branches comprising the cutset.

• A set of ideal current sources inserted in parallel with all branches com-
prising a loop (Figure 2.6 – right) will not affect the state of voltages in
a circuit (sources are of equal intensities and of the same directions with
respect to the loop). The principle results from the fact that every node
which belongs to the loop is connected with two equal current sources of
opposite directions, hence they cancel each other in Kirchhoff’s current
law. The only affected responses are currents in the branches compris-
ing the loop.

The above principles allow to explain the concept of impotent states of virtual
distortions, which will be discussed in Chapter 4.

Reciprocity principles for sources

The following principles are simplified cases of general Lorentz reciprocity
theorem:
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• If a current source J inserted in parallel with i-th branch of a circuit
invokes voltage U in j-th branch, then the same source J inserted with
j-th branch will invoke the same voltage U in i-th branch.

• If a voltage source E inserted in series with i-th branch of a circuit
invokes current I in j-th branch, then the same source E inserted with
j-th branch will invoke the same current I in i-th branch.

2.3 Network analysis

To evaluate an overall state of currents and voltages in a circuit of known
configuration (global direct problem), it is required to formulate and solve
a system of simultaneous equations (algebraic or differential) resulting from
Kirchhoff’s laws and constitutive relations. From the practical perspective,
an efficient procedure of analysis should enable to formulate circuit equations
in a systematic way and to solve them at reduced numerical cost. In profe-
sional literature [25, 26], two popular approaches are distinguished: Sparse
Tableau Analysis (STA) and Modified Nodal Analysis (MNA). STA, formu-
lated by Hachtel et al. [27], is based on sparse matrix techniques. System of
equations (in a complete form) is formulated with respect to all unknown
quantities – currents, voltages and nodal potentials. Although the resulting
global matrices are of large dimension, the problem can be effectively solved
using dedicated sparse algorithms. MNA, formulated by Ho et al.[28], is an
extension of classical nodal analysis which aims at reducing the dimension of
the system. Equations are formulated with respect only to nodal potentials
and selected branch currents. The remaining unknown quantities are found
in post-processing.

Nodal approach has some useful features which are essential from the per-
spective of problems considered in this work. As it will be demonstrated in
the next section, nodal method may be viewed as an equivalent of the Finite
Element Method approach to truss structure analysis. This feature is a basis
for adaptation of VDM concepts to circuit simulation. Also, nodal potentials
are physical quantities which can be easily and practically measured in real
circuits. Damage identification procedure, which is going to be developed and
applied in the monitoring system, is intended to be based on measurements
of electric potentials in selected nodes of a sensing network. From the point
of view of numerical algorithms, MNA-based formulation of circuit equation
is natural and most efficient.

20



Modified Nodal Analysis

Let suppose that the considered circuit is represented by a graph consisting
of n nodes and m edges representing passive components. In general, there
are 2m unknown quantities to be found: m currents and m voltages in all
the edges. To this end:

• n-1 Kirchhoff’s current laws, formulated for independent nodes,

• m-n+1 Kirchhoff’s voltage laws, formulated for independent loops,

• m constitutive relations, formulated for every edge,

producing together a set of 2m independent equations, can be applied. In
practice, the overall number of unknown variables and particular numbers
of independent equations may be lower because of specific interconnections
between components or supply conditions (for example, ideal sources enforce
fixed currents or voltages, components in parallel share the same voltage, in
DC analysis current in capacitor is zero, etc.). However, regardless of circuit
configuration, there are always as many independent equations as there are
unknown quantities and, barring a case of pathological switching operation,
a well-posed system of equations may be formulated.

Let notice that constitutive relations for the considered set of passive
components are decoupled. Kirchhoff’s laws can be then formulated with re-
spect to either currents or voltages and the problem reduces to m-dimensional
system of equations (the omitted responses can be easily calculated in post-
procesing using constitutive relations). Even further reduction of system di-
mension may be obtained by applying one of the two complimentary ap-
proaches: mesh method (up to m-n+1 equations) or nodal method (up to
n-1 equations). In either case, only one of Kirchhoff’s law is used and equa-
tions are formulated with respect to some intermediate variables. In mesh
method, based on KVL, the unknown variables are mesh currents, which are
virtual flows assumed in every independent loop of a circuit. Any branch
current is an algebraic sum of mesh currents flowing through the component.
In nodal method, based on KCL, the unknown variables are electric poten-
tials in nodes, with grounded nodes having zero reference value. Any branch
voltage is a difference of potentials on components’ terminals.

However, classical nodal approach can only be applied if constitutive rela-
tions for all components have an admittance representation, i.e. it is possible
to express branch current as a function of voltage. Moreover, voltage sources
have to be transformed into equivalent currents sources or, in a case of ideal
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sources, special nodal conditions need to be applied. Nodal approach pro-
duces a system of linear algebraic or differential equations, with symmetric
matrices of parameters (positive-definite in steady-state analysis), vector of
unknown nodal potentials and input vector of node-reduced current exci-
tations. The Modified Nodal Analysis [28, 29] is an extension of the nodal
approach which enables to aggregate electrical components which don’t have
admittance representation or are described by coupled equations (e.g. con-
trolled sources, coupled inductors, ideal transformers, transmission lines or
operational amplifiers). It is accomplished by introducing additional vari-
ables and nodal conditions associated with a given kind of component (the
so-called stamps) into the system of nodal equations. The main matrices
lose the character of pure parameter matrix (they may contain numbers,
resistances or gain factors) and the vector of unknowns includes variables
other then nodal potentials (usually currents through components). More-
over, main matrices are no longer symmetrical and can have zero diagonal
elements which complicates the solution from the point of view of numerics
(e.g. pivoting is required in LU decomposition). However, because of general
formulation and compactness, the MNA-based approach is a computational
basis in most popular circuit simulators (e.g. SPICE [53], Gnucap [54] or
Qucs [55] to name a few examples of freeware packages).

In the following subsections, the MNA-based approach will be applied
to formulate circuit equations in the case of DC, AC and transient time-
domain analysis. The starting point is always Kirchhoff’s current law, which
in general case can be formulated as follows:

R

M iR(t) +
C

M iC(t) +
L

M iL(t) +
E

M iE(t) +
J

M j(t) = [0] (2.6)

The further procedure involves substitution of currents by voltages (based on
constitutive relations) and expressing voltages in terms of nodal potentials
(based on Equation 2.1). If some currents cannot be directly expressed in
terms of nodal potentials, they will be treated as unknown variables and
additional nodal conditions will be introduced.

DC case

In the steady-state DC analysis, ideal capacitor acts as a break (current
equals zero) while ideal coil acts as a short-circuit (drop of voltage equals
zero). Constitutive relations, described in the matrix form, can be expressed
as follows:

iR = −G uR; iC = [0]; uL = [0] (2.7)
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The negative sign in Ohm’s law results from the assumed conventional flow
notation and G is a diagonal matrix of conductances. Kirchhoff’s current law
has the following form:

R

M iR +
L

M iL +
E

M iE +
J

M j = [0] . (2.8)

Since currents in coils and in voltage sources cannot be directly related with
nodal potentials, they will be treated as additional unknown variables and
the following nodal conditions will be introduced:

L

MT v = [0] ;
E

MT v = e (2.9)

Combining the above relations, the following system of equations can be
formulated:  G̃ −

L

M −
E

M
L

MT 0 0
E

MT 0 0


v

iL
iE

 =

 J

M j
0
e

 (2.10)

where the aggregated matrix of conductances G̃ =
R

M G
R

MT.

Equation (2.10) is a system of linear algebraic equations, of dimension equal
to the total number of nodes, coils and voltage sources. In a more compact
form, it can be expressed as:

A x = z (2.11)

A will be called the main matrix, z – an input vector and x – a vector of
unknowns or a vector of base solution (depending if it is considered before or
after the solution). Main matrix A, in a form presented in Equation (2.10),
is singular. This results from the fact that the number of independent Kirch-
hoff’s current laws is always lower then the number of nodes while Equa-
tion (2.8) has been formulated with respect to all nodes. At least one node
in a circuit need to be chosen as a reference – usually it is a node connected
to a common ground where the value of potential is assumed zero. There are
two ways to implement the condition for the ith grounded node:

1. all entries in the ith row and the ith column of the main matrix, as well
as the entry zi in the input vector are set to zero, except the diagonal
entry Aii which is set to one.

2. ith row and ith column of the main matrix and the entry zi in the input
vector are removed.
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In the latter case, the dimension of the system can be reduced (especially
if there are multiple ground nodes) but in numerical implementation, re-
indexing of nodes is required hence computational effort is similar. After
imposing ground conditions, Equation (2.11) can be solved using standard
routines and algorithms for linear systems (e.g. Gaussian elimination or LU
decompozition). From the perspective of VDM-based algorithms, it is conve-
nient to decompose the main matrix A or even to calculate its full inverse, as
it is used for calculations of both linear responses and influence matrices (vide
Chapter 3). The computed vector of base solution consist of nodal potentials,
currents in coils and currents in voltage sources. Other circuit responses can
be calculated using voltage-potential relation and constitutive equations.

Example 1

To find base DC solution for the circuit of configuration presented in Fig-
ure 2.7. Parameters of sources are: E = 5V, J = 2mA.

R

4

1

E J

R
4

6

53
1

2

L

R
6

C
1 2

C

R
3

R R2 5

Ri = 1 kΩ i = 1 . . . 6
C1 = C2 = 1µF
L = 1 mH

Figure 2.7: Exemplary circuit

System of equations for the given set of parameters and ground conditions
(V1 = 0) has the following form:

1 0 0 0 0 0 0 0
0 0.001 0 −0.001 0 0 1 −1
0 0 0.003 −0.001 −0.001 0 0 0
0 −0.001 −0.001 0.003 0 −0.001 0 0
0 0 −0.001 0 0.002 −0.001 0 0
0 0 0 −0.001 −0.001 0.002 −1 0
0 −1 0 0 0 1 0 0
0 1 0 0 0 0 0 0





V1

V2

V3

V4

V5

V6

IL
IE


=



0
0
0
0

−0.002
0.002

0
5


The solution is:

v = [ 0 5 2.23 4.08 2.62 5 ]T iL = [1.31]×10−3 iE = [2.23]×10−3
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Potentials are given in volts and currents in amperes. Additionally, let cal-
culate the state of currents in resistors and voltages across capacitors:

iR = −G
R

MT v =
[
−2.23 0.92 −1.85 −0.38 −0.92 −2.38

]T × 10−3

uC =
C

MT v = [4.08 2.77]T

The positive value of current/voltage means that its direction/polarity is in
accordance with initial graph orientation (every edge of the graph is assumed
to point toward the node of higher index).

AC case

In the steady-state AC analysis, all signals are harmonic of fixed frequency
and constant amplitudes and phases. A standard approach is symbolic method
based on complex numbers theory. Using the Euler’s formula, harmonic sig-
nal of amplitude U, frequency f and initial phase ϕ can be expressed in the
following form:

u(t) = U sin(ωt+ ϕ) = Im
[
U ejϕ ejωt

]
(2.12)

where ω = 2πf is angular frequency and j is an imaginary unit. A graphical
interpretation of the formula is presented in Figure 2.8. On the right-hand

t=τ

tω

ϕ

ϕ

U

Re

Imu(t)

U

ω

ωτ

t=0

Figure 2.8

side, a vector of the length equal to the value of amplitude rotates counter-
clock-wise with angular velocity ω in the complex plane. Sinusoidal func-
tion describes the projection of the vector on imaginary axis. The quantity
U = U ejϕ, defined as a complex amplitude of a signal, represents the posi-
tion of rotating vector in the time instant t= 0. It is a complex number of
modulus and argument corresponding to amplitude and initial phase of the
signal. Inserting complex form of signals into general form of constitutive
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relations and taking into account that only component ejωt depends on time,
the following relations are obtained:

IR e
jωt = −GUR e

jωt

IC e
jωt = −C d

dt
UC e

jωt = −jωC UC e
jωt

IL e
jωt = − 1

L

∫
UL e

jωtdt = − 1

jωL
UL e

jωt

Disregarding time component, which is the same for all considered signals
(or assuming t = 0), algebraic relations between currents and voltages with
respect to complex amplitudes are obtained. In matrix notation, they can be
formulated as follows:

iR = −YR uR; iC = −YC uC; iL = −YL uL; (2.13)

where the diagonal matrices of admittances are:

YR = G; YC = jωC; YL =
1

jω
L−1; (2.14)

Modulus of admittance is a ratio of amplitudes and argument defines a phase
shift between current and voltage. Admittance of capacitor and coil depends
on frequency – capacitor attenuates low-frequency signals while coil attenu-
ates high-frequency signals. In resistor, current and voltage are in counter-
phase (ϕi = −ϕu), in ideal capacitor current is delayed by a quarter of period
(ϕi = ϕu − π

2
) while in ideal coil current is ahead of voltage by a quarter of

period (ϕi = ϕu + π
2
).

Complex amplitudes describe instantenous states of signals, hence they
have to comply with topological constraints of the circuit. Kirchhoff’s current
law expressed with respect to complex amplitudes is as follows:

R

M iR +
C

M iC +
L

M iL +
E

M iE +
J

M j = [0] . (2.15)

Applying voltage–potential and constitutive relations, as well as nodal con-
dition related with voltage sources, the following system of equations can be
formulated: [

Ỹ −
E

M
E

MT 0

][
v
iE

]
=

[
J

M j
e

]
(2.16)

where the aggregated admittance matrix is:

Ỹ =
R

M YR

R

MT +
C

M YC

C

MT +
L

M YL

L

MT
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It is a linear system of algebraic equations in complex number domain which
can be expressed in more compact form as:

A x = z (2.17)

The same as in the DC case, the main matrix A is singular because KCL
equations (2.15) have been formulated with respect to all nodes. In order
to solve the system, ground conditions need to be applied. The procedure is
exactly the same as in the DC case.

Example 2

To find base AC solution for the circuit of configuration presented in Fig-
ure 2.7. Parameters of sources are: E = 5V, J = 2j mA and frequency 200Hz.

Admittances of elements are: YR = 1 mS, YC = 1.26j mS, YL = −796j mS.
A solution to the system of equations (2.16) is:

v = [ 0 5 2.57 + 0.25j 3.60− 1.42j 3.79− 0.87j 5.00− 0.004j ]T

iE = [4.36 + 4.77j]× 10−3

Let also calculate responses in capacitors:

uC =
C

MTv =

[
3.60− 1.42j
2.44− 0.26j

]
iC = −YCuC =

[
−1.79− 4.52j
−0.32− 3.06j

]
× 10−3
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Figure 2.9: AC solution for Example 2

Solutions for nodal potentials and responses in capacitors, in the form of
rotating vectors in complex plane (also called phasors), are presented in
Figure 2.9. Length of the phasor defines amplitude and angle with respect to
real axis – initial phase of the signal.
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Transient analysis in discrete time domain

In a general case of arbitrary input signals, constitutive relations for circuit
elements have the following form:

iR(t) = −G uR(t); iC(t) = −C
d

dt
uC(t); iL(t) = −L−1

∫
uL(t) dt

(2.18)
Inserting them into Kirchhoff’s current law (Equation 2.6), along with the
voltage–potential relation, gives the following relation:

C̃ v̇(t) + G̃ v(t) + K̃

∫
v(t)dt−

E

M iE(t) =
J

M j(t) (2.19)

where aggregated matrices of parameters are:

C̃ =
C

M C
C

MT; G̃ =
R

M G
R

MT; K̃ =
L

M L−1
L

MT

Once again, currents in voltage sources have to be assigned as additional
unknown variables and related nodal conditions have to be introduced. Ul-
timately, the following system of second-order differential equations can be
obtained:[

C̃ 0
0 0

]
ẍ(t) +

[
G̃ −

E

M
E

MT 0

]
ẋ(t) +

[
K̃ 0
0 0

]
x(t) = z(t) (2.20)

where the new variables are:

ẋ(t) =

[
v(t)
iE(t)

]
; z(t) =

[
J

M j(t)
e(t)

]
; (2.21)

Ground conditions are of the form ẋi(t) = 0, hence i-th row and i-th colmun
in all matrices should be set to zero, as well as zi(t) = 0, except an entry
G̃ii = 1.

Solution for the arbitrary dynamic input signals, defined over uniformly
discretized time domain, will be obtained using the Newmark algorithm (im-
plicit numerical integration). Newmark algorithm enables to directly inte-
grate the obtained system of equations, other integration procedures (e.g.
Runge-Kutta) would require to transform the system into the first-order dif-
ferential equations in the normal form (which may require reformulation with
respect to state variables using the SVD).
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Example 3

To find nodal potentials for the circuit of configuration presented in Fig-
ure 2.7, for input signals presented in Figure 2.10. Voltage source supplies
one sine wave of amplitude 5V and current source supplies step function of
intensity 4mA. Time instants are: t1 = 2ms, t2 = 5ms, t3 = 8ms. Assume to-
tal time of analysis T=10ms and zero initial conditions (non-energetic state).
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Figure 2.10: Scenario of dynamic excitation

Time of analysis has been discretized into 100 time steps of 0.1ms. The results
are presented in Figure 2.11.
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Figure 2.11: Results of transient analysis
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2.4 Electro-mechanical analogies

It is a common occurrence that simple models of various physical systems
(mechanical, electrical, magnetic, hydraulic, acoustic) are described by rela-
tions of the same mathematical form. The similarities can be noticed both
in the form of constitutive relations, which describe models of elementary
components, as well as in the form of physical constraints, which govern
global system behavior. For example, truss structures, resistive circuits or
water pipelines may be considered as discrete systems of skeletal topology
(represented in a form of a graph), whose elements/branches are described
by linear constitutive relations (Hooke’s law, Ohm’s law, flow equation) and
global behavior is governed by topological constraints (equilibrium of forces,
currents and flows in nodes and compatibility of deformations, voltages and
pressures around loops). As a consequence, they all can be analyzed us-
ing general network theory and the obtained global states of responses are
mutually equivalent (states of strains/stresses, voltages/currents, pressure
heads/flow rates).

Electro-mechanical analogies [30, 31, 32] is a well known and established
concept, developed at the beginning of the 20th century. At that time, stud-
ies on mechanical and electrical vibratory systems were strongly motivated
by the development of electro-mechanical and electro-acoustic transducers
and devices such as telephone, telegraph or motion pictures [33]. Since the
methods of circuit analysis were much better developed, analysis of mechan-
ical and electromechanical systems was carried out using network theory.
Namely, the methodology was to formulate an electrical equivalent circuit,
analyze it and translate the solution back into mechanical terms. The basis
of the methodology was recognition of similarities between parameters and
physical quantities occurring in mathematical description of electrical and
mechanical systems. In the first approach, depicted later as a direct analogy,
a single-degree-of-freedom mass-spring-damper system, excited by an exter-
nal force, was considered an mechanical equivalent of a serial connection of
resistor, capacitor and coil, supplied by voltage source (Figure 2.12).

f(t) =mẍ(t) + cẋ(t) + kx(t)

e(t) = Lq̈(t) +Rq̇(t) +
1

C
q(t)

(2.22)

Dynamic behavior of both systems is expressed in a form of ordinary, second-
order differential equations (2.22), where independent variables are displace-
ment x(t) of a mass and electric charge q(t) in capacitor. In mechanical
system, the relation describes a state of equilibrium between the external
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Figure 2.12: Direct electro-mechanical analogy

force and the sum of inertial, elastic and damping forces, while in electrical
system, the relation expresses Kirchhoff’s voltage law (electromotive force
of a source is balanced by the sum of voltages across RLC components). It
means that equilibrium condition in node is equivalent to continuity condition
along a loop. As a result, in direct analogy, junctions in mechanical system
have to be modeled as loops in electrical circuit and vice-versa. To overcome
this drawback, the concept of inverse analogy was proposed, where the same
mechanical system had an equivalent in parallel RLC circuit, supplied by a
current source (Figure 2.13).
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R C u(t)
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L

Figure 2.13: Inverse electro-mechanical analogy

f(t) =mẍ(t) + cẋ(t) + kx(t)

j(t) =Cϕ̈(t) +
1

R
ϕ̇(t) +

1

L
ϕ(t)

(2.23)

This time, nodal principle of force equilibrium is equivalent with Kirchhoff’s
Current Law (Equation 2.23), where independent variable for electrical sys-
tem is magnetic flux ϕ(t) in coil. Electric charge or magnetic flux are not
convenient variables in circuit analysis, hence expressing the relations with
respect to velocity v(t), current i(t) in serial circuit and voltage u(t) in par-
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allel circuit, the following equivalent equations can be obtained:

f(t) =m
dv(t)

dt
+ cv(t) + k

∫
v(t)dt

e(t) = L
di(t)

dt
+ Ri(t) +

1

C

∫
i(t)dt

j(t) =C
du(t)

dt
+

1

R
u(t) +

1

L

∫
u(t)dt

(2.24)

In analysis of oscillating systems, there is also an intuitive analogy from
the point of view of energetic tranformations. In mechanical case, kinetic
energy of a mass changes into potential energy accumulated in a spring and
is partialy dissipated by a damper. In electrical case, energy is transferred
between capacitor (electrical field) and coil (magnetic field) and is partialy
dissipated by resistor (heat).

Truss-circuit analogy

Electromechanical inverse analogy ensures topological conformity between
models of truss structures and electrical circuits. In order to define full set of
equivalent quantities, simple static truss structures and resistive DC circuits
will be compared. Let consider two examples of one-dimensional structures
made of two bar members of the same initial length L and different stiffnesses
k1 and k2. In the first configuration (Figure 2.14), elements are in parallel,

I1

2
v

I 2x1

k2

1k

x2

N2

U2

U1

N1 J

v1
R

R2

P

L

1

Figure 2.14: Truss - circuit analogy: parallel system

fixed at one end and sharing the same node at free end, and are subjected to
external force P. Both elements are equally strained and internal forces are
in equilibrium with external force:

ε1 = ε2 ; Ni = kiεiL ; N1 +N2 = P (2.25)

Geometrical relations and boundary conditions are:

εiL = x2 − x1 ; x1 = 0 (2.26)
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An equivalent electrical circuit consists of two resistors in parallel, supplied
by ideal current source. Elements share the same voltage and the state of
currents follows the KCL:

U1 = U2; Ii =
Ui
Ri

; I1 + I2 = J (2.27)

Relation between voltage and nodal potentials, as well as ground conditions
are:

Ui = v2 − v1; v1 = 0 (2.28)

x1
x3x2

1k

N1 N2

k2

∆L

v1

2
v

v
3

I1 I 2

U1 U2

L L
E

R R21

Figure 2.15: Truss - circuit analogy: serial system

In the second configuration (Figure 2.15), bar elements are in series and are
subjected to some initial deformation ε0 = ∆L/2L. This time, internal forces
are equal but strains are different:

N1 = N2; εiL = Ni/ki; ε1L+ ε2L = 2Lε0 (2.29)

Geometrical relations are:

ε1L = x2 − x1; ε2L = x3 − x2; x1 = 0 (2.30)

In equivalent circuit, resistors are also in series and are supplied by ideal
voltage source. Elements share the same current and the state of voltages
follows the KVL:

I1 = I2; Ui = RiIi; U1 + U2 = E; (2.31)

Voltage-potential relations and ground conditions are:

U1 = v2 − v1; U2 = v3 − v2; v1 = 0 (2.32)

Comparing the relations, a full system of equivalent parameters, quan-
tities and governing principles between static truss structures and resistive
DC circuits can be established (Table 2.3). Naturally, such ideal system of
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Truss Circuit

Parameter Stiffness Conductance

External load Force Current source

Initial strain Voltage source

Responses Strain Voltage

Axial force Current

Nodal quantity Displacement Electric potential

Constitutive relation Hooke’s law Ohm’s law

Global principles Equilibrium of forces Kirchhoff’s Current Law

Continuity of deformations Kirchhoff’s Voltage Law

Boundary conditions Blocked displacement Ground

Table 2.3: Truss-circuit analogy

analogies exists only for simple one dimensional systems. Forces and displace-
ments are vector quantities, hence in the case of 2D plane structures, there
are two degrees of freedom in every node and two independent equilibrium
conditions. Currents and electric potentials are scalars, hence regardless of
topology and spatial arrangement of circuit components, there is always a
single “degree of freedom“ in a node. Another intriguing aspect is the con-
dition of truss stability, i.e. mutual relation between numbers of members,
joints and reactions makes a structure statically determinate, indeterminate
or a mechanism. In electrical circuits, numbers of nodes and elements aren’t
related by any similar condition – circuit can always be solved based on
Kirchhoff’s laws. Statically determinate structure can be solved based only
on force equilibrium equations – in extreme assumption, an equivalent circuit
would have to be solved based only on Kirchhoff’s current laws, but such a
circuit couldn’t contain any loops and any topological similarities would be
lost. However, there can be defined an analogy concerning local static deter-
minacy. This is a case when deformation or load imposed on truss member
influences only geometry of a structure (modifies nodal displacements) with-
out generating strains or stresses in other members. An electrical equivalent
is a component with imposed source that doesn’t generate responses in other
components, only modifies distribution of potentials in nodes. Such scenario
may occur if component has one ”loose” terminal, not connected to any node
of a circuit. There are also some other minor differences which imply that
exact physical interpretation of analogies may be sometimes tricky, difficult
or even impossible. The examples are:
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• An equivalent of ideal source of voltage inserted between a pair of circuit
nodes is a rigid truss member which enforces fixed distance between
nodes or degrees of freedom and may carry arbitrary axial force.

• Source of current is a two-terminal element, hence current supplied
through one node of a circuit is taken back from another node. De-
pending on boundary conditions, analogous excitation by external force
imposed on a junction of a truss structure may be globally compensated
by several reactions in different nodes. System of load–reactions may
be then considered like a multi-terminal current source of one output
and several inputs.

• Masses of truss members are lumped in nodes so that way inertial forces
are reduced to nodes. Nodes in circuits cannot be associated with any
electrical parameter.

The most significant problem is however the interpretation of dynamical
analogies. In the case of static truss/DC circuit, stiffness has been assumed
to be an equivalent of conductance. However, from Equation (2.24) results
that in dynamic system, conductance should be considered as an equivalent
of damping coefficient (both damper and resistors are elements which dis-
sipate energy). To keep the compatibility with statics, let rewrite dynamic
equations for inverse analogy with respect to new independent variables: dis-
placement x(t) and electric potential v(t) in free nodes of the systems:

f(t) =mẍ(t) + cẋ(t) + kx(t) + . . .

j(t) = . . . +Cv̇(t) +
1

R
v(t) +

1

L

∫
v(t)dt

(2.33)

In such interpretation, resistor corresponds to spring, capacitor to damper
but no electrical equivalent of mass and no mechanical equivalent of inductor
are defined. Although the discrepancy of parameters, consistent analogies for
basic electrical and mechanical quantities are obtained: currents are equiva-
lents of forces, voltages of strains, electric potentials of nodal displacements,
supply by current source is an equivalent of external force and supply by
voltage source is an equivalent of initial deformation.

FEM vs. MNA

Analogies between trusses and circuits can be also noticed in the form of
equations obtained from standard methods of analysis. In the simplest case
of plane truss structure subjected to static load and resistive DC circuit
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supplied by current sources, global systems of equations produced by Direct
Stiffness Method and classical Nodal Analysis are:

K̃x = f G̃v = j

Global stiffness matrix K̃ corresponds to global conductance matrix G̃, vector
of unknown nodal displacements x to vector of unknown electric potentials v
and input vector of external nodal forces f to input vector of source currents j.
It is evident that all quantities comply with the assumed system of truss-
circuit analogies (Table 2.3). Global matrices of parameters are aggregated
in the following way:

K̃ = BT K B G̃ = M G MT

where B is geometric matrix, M is incidence matrix and K and G are di-
agonal matrices of stiffnesses and conductances in elements. The natural
difference is that for trusses both topological and geometrical transformation
from local to global coordination system is required while in circuits only
topological association of elements with nodes takes place.

In a more general case, Modified Nodal Analysis may be viewed as an
equivalent of the Finite Element Method. The similarities are apparent in
mathematical form of global system of equations, general scheme of matrix
aggregation or handling boundary conditions (for example, system of equa-
tions (2.20) resembles equations of motion for mechanical systems). Virtual
Distortion Method operates on FEM-based models of truss or frame struc-
tures. It introduces some concepts and quantities which are strictly associated
with parameters of mechanical model and its input and output functions. In
spite of some discrepancies in details, the overall consistency of assumed
analogies between trusses and circuits not only will enable to adapt the con-
cepts of VDM but will also provide their simple and intuitive interpretation.

36



Chapter 3

Virtual Distortion Method in
circuit analysis

Virtual Distortion Method is classified as a technique of fast, exact, static and
dynamic re-analysis, but its scope of applications includes many other numer-
ical problems (e.g. sensitivity analysis, topological optimization or damage
identification). In essence, the method uses a discrete model of a system in the
original configuration and introduces a field of virtual distortions to simulate
effects caused by modifications of structural parameters. Virtual distortions
can be interpreted as some external perturbations imposed locally on system
elements which affect the global state of responses. In structural mechanics,
distortions are associated with deformation modes possible for a given kind
of finite element (e.g. initial strains in bars). Simulated behavior of modified
system is obtained as a superposition of primary responses produced by real
excitations and residual responses invoked by virtual distortions. From the
perspective of numerics, global matrices of parameters occurring in math-
ematical description of a system remain unchanged since the modifications
are introduced through equivalent input vectors. That way, not only time-
consuming matrix operations can be avoided, most of applied algorithms can
be formulated with regard to pre-selected sets of elements and responses,
hence dimensions of considered problems can be substantially reduced. It
was demonstrated in [22] that VDM-based approach complies with a general
Sherman-Morrison and Woodbury formulas, which enble to calculate an in-
version of a matrix subjected to variations. In this sense, VDM belongs to
the family of methods of exact re-analysis which are especially effective if the
number of modifications is significantly lower then the dimension of original
problem. Similar methods from the same group are second theorem of struc-
tural variation [23] and pseudoforce method [24] which, in general scheme,
are almost identical but have been developed independently and hence use
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different notions and nomenclature. A distinctive feature of the VDM is the
concept of influence matrix which reflects local-global interrelations between
normalized states of virtual distortions and selected system responses. In-
fluence matrices comprise a computational core for all numerical algorithms
formulated within the method – they are used to evaluate distortions, up-
date responses and calculate sensitivity. Also, their properties provide crucial
information about system characteristics or conditioning of considered prob-
lem.

Foundations of the Virtual Distortion Method were initiated in early
works by Holnicki-Szulc et al. [34, 35, 36]. First engineering applications in-
cluded remodeling, simulation of progressive collapse, topological optimiza-
tion and sensitivity analysis. VDM operates mainly on models of skeletal
structures (trusses, frames) where the number of independent distortions to
be imposed on finite element is small, i.e one for bars (initial strains), three
for beams (axial, bending and bending/shear modes). At a current stage of
development, VDM enables to simulate modifications of stiffness and mass,
as well as the occurrence of plastic thresholds (i.e. elements of characteristic
approximated by piecewise linear sections may be included in analysis). In re-
cent years, VDM has been successfully applied to solve some inverse problems
including model updating, damage identification and load reconstruction.
Procedures of damage identification have been formulated for statics [37],
dynamics in time domain [38] and quasi-statics in frequency domain [39].
Problem of dynamic load reconstruction was discussed in [40] while the com-
bined load and damage identification procedure was demonstrated in [41].
Other recent developments include design of adaptive structures for impact
loads [42, 43], modeling and detection of delamination [44] and model-less
identification of mass modifications [45]. Thanks to structural analogies, the
method has been also adapted to analysis of other engineering systems. In pa-
per [46], an application to leakage detection in water networks was presented.
First attempts to apply VDM concepts in the area of electrical circuit anal-
ysis were demonstrated in [47, 48]. The most comprehensive and up-to-date
overview of the method and its application in various engineering systems
can be found in [49] or [50].

3.1 Overview for truss structures

Main notions and concepts of the VDM are easiest to demonstrate on the
example of linear plane truss structure, of some redundancy, subjected to
static load. In this case, virtual distortions are interpreted as a field of initial
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strains imposed on the model of original structure in order to simulate mod-
ifications of stiffness. A conceptual scheme of the method is demonstrated
in Figure 3.1. If the original unloaded structure (Fig 3.1a) is subjected to

a) c) e)

b) d) f)
P

P

P

Figure 3.1: Conceptual scheme of the VDM: a) original structure, b) loaded
structure, c) virtual distortion, d) pre-stressed structure, e) modified struc-
ture, f) simulated structure

some external load, for example static force P depicted in Fig 3.1b, then
it will undergo deformation and the accompanying state of strains/forces in
elements, called a linear response, will occur. Changes of shape depicted in
the figure are naturally exaggerated just to better visualize the concept, in
any case small deformations, i.e. geometrical constancy and elastic range of
strains/stresses, are assumed. If properties of some members were different,
for example there was a loss of stiffness in bar element depicted by a slashed
line in Fig 3.1e, then under the same load and boundary conditions, a modi-
fied response would be produced. Let suppose that the same element was set
free from the original structure and initially strained (Fig 3.1c). It is said that
virtual distortion, which can be interpreted as a thermal expansion caused
by homogenous heating, have been imposed on the element. If such initially
strained element is assembled again in the original, unloaded structure, then
as a result of geometrical incompatibility, some residual response will occur –
a structure is said to be in a pre-stressed state (Fig 3.1d). Simulated response
obtained in the case of simultaneously pre-stressed and loaded structure (su-
perposition of linear and residual responses – Fig 3.1f) is assumed to be the
same as the response in modified structure.
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Basically, VDM postulates that there exists a field of virtual distortions,
which for a fixed load scenario, introduces the same global changes in struc-
tural responses as modifications of parameters. The postulated equality be-
tween models of modified and simulated structure is valid for multiple, simul-
taneous modifications and arbitrary kind of external load. In dynamic anal-
ysis, virtual distortions become time-dependent functions (generally, form of
distortions imitates the form of response functions). Computational efficiency
of the VDM results from the fact that responses generated by external loads
and virtual distortions are considered independently – linear responses are
evaluated from the finite element model at the initial stage of analysis while
for every set of modifications (e.g. damage scenarios), VDM-based algorithms
are used to calculate equivalent field of virtual distortions and the resulting
state of residual responses. Another upside of the approach is the capability
to analytically calculate gradients of circuit responses with respect to virtual
distortions, hence they may serve as effective steering variables in various
optimization procedures.

In static or quasi-static analysis (constant, harmonic loads), residual re-
sponse is simply a linear combination of virtual distortions, where coefficients
of the combination, comprising an influence matrix, are stationary and evalu-
ated from the model of original structure. State of strains in a truss structure
under static load with imposed field of virtual distortions can be expressed
as follows:

εi = εLi +
∑
j

Dijε
0
j (3.1)

where εLi is a vector of linear responses, ε0
j is a vector of virtual distortions and

Dij is the influence matrix. Columns of the matrix, called influence vectors,
store strain responses produced by unit virtual distortions (ε0 = 1) imposed
selectively on truss members in the case of original, unloaded structure. Com-
paring strain-force relations in modified and simulated configurations, the
following relation for virtual distortions can be derived:

ε0
i = (1− µi) εi (3.2)

where parameter µi is a measure of stiffness modification (a ratio of modified
versus original value), which may as well describe modifications of Young’s
modulus E or cross-sectional area A of bar element:

µi =
k̃i
ki

=
ẼiÃi
EiAi

(3.3)

In Equation (3.2), virtual distortion is related with simulated strain response
which, vide Equation (3.1), depends on all active distortions. Combining both
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equations, a system of linear equations which directly relates distortions with
modifications parameters can be derived:∑

j

[
Iij − (1− µi)Dij

]
ε0
j = (1− µi) εLi (3.4)

The above system may be formulated locally, with respect to modified el-
ements only. This forms a basis for algorithm of quick re-analysis: instead
of full system recalculation with new modified global stiffness matrix, two
smaller system need to be solved – one to evaluate distortions and another
to update responses.

In dynamic analysis, virtual distortions, being in general continuous, time-
dependent functions, are discretized and treated as sequences of impulses.
Residual responses are calculated as a superposition of impulse responses,
making use of the concept of dynamic influence matrix. Strain responses in
simulated structure can be expressed as follows:

εi(t) = εLi (t) +
t∑

τ=0

∑
j

Dij(t− τ)ε0
j(τ) (3.5)

In this case, influence vectors store dynamic strain responses produced by
unit impulse virtual distortions imposed selectively on truss members in the
first time instant. Relation for distortion resulting from comparison of strain-
force relations in modified and simulated structures is as follows:

ε0
i (t) = (1− µi) εi(t) (3.6)

Again, in order to obtain direct relation between distortions and modification
parameters, Equations (3.5) and (3.6) can be combined and a set of linear
systems, specified for every time instant, can be derived.

∑
j

[
Iij−(1−µi)Dij(0)

]
ε0
j(t) = (1−µi)

[
εLi (t)+

t−1∑
τ=0

∑
j

Dij(t−τ)ε0
j(τ)

]
(3.7)

The above set of equations has been formulated is such a way as to obtain
the same main matrix for each time step. As a result, it needs to be solved
sequentially but only right-hand-side vector needs to updated in successive
time steps.
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3.2 Electrical virtual distortions

In a most general sense, regardless of physical nature of considered system,
virtual distortions may be defined as additional input functions which imi-
tate the influence of local structural modifications on global system response.
In structural mechanics, virtual distortions are associated with deformation
modes possible for a given kind of finite element. Particularly, in a case of
truss structures, they take a form of initial strains which simulate the influ-
ence of stiffness modifications on strain/stress distribution. In water networks
(see [46] for reference), virtual distortions are interpreted as additional pres-
sure heads enforced in network branches, which simulate effects exerted by
modifications of hydraulic compliance or local leakages on pressure/flow dis-
tribution. Generally, introduction of virtual distortions results in generation
of some additional states of responses, which can be next superposed with
primary responses produced by real excitations (acting loads, active pumps)
in order to obtain simulated behavior of modified system.

Following the idea, electrical virtual distortions may be considered as
some perturbations which affect the state of currents/voltages in the same
way as modifications of electrical parameters in passive elements of a circuit.
Implementation of the concept will be done using the system of electro-
mechanical analogies (vide Section 2.4). A base for considerations is a model
of linear truss structure under static load and a comparative model of linear
DC circuit. In trusses, virtual distortion simulates modification of stiffness k
and is considered as an initial strain ε0 imposed on the bar element taken
out of a structure (Figure 3.2). State of the element with imposed virtual
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p p

e

j
0

0
ε

0 L

0 0

k

k

R

R

Figure 3.2: Virtual distortions in trusses and circuits

distortion can be interpreted as an elongation/shrinkage caused by homoge-
neous heating/cooling – it means that element is deformed (ε= ε0) without
the occurence of internal force (N=0). The same state of initial deformation
may be also realized by a pair of self-equilibrated virtual forces p0 = k ε0L
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applied in the nodes associated with the element. Practically, this is the way
of introducing initial strain into the finite element model of a structure. Even
though virtual forces introduce both strain and internal force in a freed ele-
ment (ε= ε0, N = p0), overall effect exerted on a structure, after reassembly
of the distorted element, will be exactly the same for both kinds of perturba-
tions. Naturally, strains and stresses will be invoked in other truss members
only in the case of statically undetermined structure. In the case of local
static determinacy, imposed distortion will only affect geometry of a struc-
ture (displacements of nodes).

According to the defined truss–circuit analogy (Table 2.3), electrical equiv-
alent of initial strain in bar element is ideal source of voltage e0 inserted in
series with resistor, while equivalent of a pair of axial forces is ideal source of
current j0 inserted in parallel. In this arrangement, a direct equivalent of stiff-
ness is conductance. Let notice that resistor with imposed virtual distortion
can be considered as a model of real source, where resistance of component
acts as an inner resistance of source. Current and voltage distortions can be
then easily interchanged, i.e. the condition e0 = R j0 need to be satisfied.
Although responses in a component taken out of a circuit are different for
different kind of imposed distortion (U = e0, I = 0 for voltage distortion,
U = e0, I = j0 for current distortion), overall impact on circuit reponses by
both perturbations will be the same.

VDM-based algorithms used in truss structure analysis are usually for-
mulated with regard to virtual distortions in a form of initial strains. Hence,
following strictly the analogy, further consideration should be proceed us-
ing voltage distortions. However, in the MNA-based formulation of circuit
equations (vide Section 2.3), current sources are much easier to handle nu-
merically, since only the right-hand side vector of excitations need to be
updated, while aggregation of voltage sources would require to extend sys-
tem dimension by introducing additional nodal constraints. For this reason,
in further considerations, electrical virtual distortions will be implemented
only in the form of additional current sources.

Let now extend the concept onto more general case of linear RLC cir-
cuits, supplied by arbitrary kind of excitation signals, where modifications of
both conductance and capacitance are assumed. On one hand, let consider
a model of modified circuit, where some components, due to damage or a
purposeful change, are of modified values of conductance Ĝ or capacitance Ĉ
(Figure 3.3). On the other hand, let introduce an equivalent VDM-based
model, where modified components are simulated by original components
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Figure 3.3: Modified vs. simulated model of a circuit

(G or C) coupled with virtual distortions ε(t) (simulating modification of
conductance) or ξ(t) (simulating modification of capacitance). Both ε(t) and
ξ(t) are considered as ideal current sources, generally time-dependent, in-
serted in parallel. A sufficient condition for the equivalence of both models
is that currents and voltages registered on terminals of modified/simulated
components are identical. If the condition is fulfilled then all global relations
(resulting from Kirchhoff’s laws) are intact and consequently, all responses
in other parts of a circuit remain unchanged. The following relations can be
written:

Resistor Capacitor

Modified component iR(t) = −Ĝ uR(t) iC(t) = −Ĉ u̇C(t)

Distorted component iR(t)− ε(t) = −GuR(t) iC(t)− ξ(t) = −C u̇C(t)

Assuming equality of corresponding currents and voltages, the following con-
ditions can be derived:

ε(t) = (1− µ)GuR(t) (3.8a)

ξ(t) = (1− ν)C u̇C(t) (3.8b)

where parameters µ and ν define magnitudes of conductance and capacitance
modifications:

µ =
Ĝ

G
; ν =

Ĉ

C
(3.9)

Shape of a function describing virtual distortion is the same as the shape of
voltage response in resistor uR(t) or derivative of voltage in capacitor u̇C(t).
Since these responses refer to modified/simulated circuit configuration, they
depend on all introduced modifications/distortions. Direct relations between
virtual distortions and modification parameters will be derived in Section 3.4,
after the adaptation of the concept of influence matrix. Temporarily, it can
be concluded that virtual distortions appear in simulated circuit in exactly

44



the same elements where modifications of parameters take place in modified
circuit. However, their values depend not only on magnitudes of simulated
modifications but also on the presence of other distortions. Naturally, the
form of distortions is strictly related with the type of input signals produced
by real sources. In the steady-state DC analysis, relations (3.8) will have the
following form:

ε = (1− µ)GUR (3.10a)

ξ = 0 (3.10b)

Since the value of capacitance doesn’t influence DC circuit responses (it only
affects the amount of charge stored in capacitor), the concept of virtual dis-
tortions is of no use – only modifications of conductance can be simulated.
Virtual distortions naturally take the form of ideal current sources of constant
intensity. In the steady-state AC analysis, the relations are:

ε = (1− µ)YR UR (3.11a)

ξ = (1− ν)YC UC (3.11b)

In this case, virtual distortions, as all other signals, are expressed in a form
of complex amplitudes – it means they are harmonic sources of some am-
plitude and phase and of frequency conforming with the frequency of acting
real sources.

In any case, introduction of virtual distortions into the model of a cir-
cuit will result in generation of some additional states of currents/voltages.
Adapting the VDM-based nomenclature, the following notions concerning
circuit responses will be used:

Linear response is a state of response (currents, voltages, nodal potentials)
generated by real sources in a circuit of original configuration.

Modified response is a state of response generated by real sources in a
circuit of modified configuration.

Residual response is a state of response generated by virtual distortions
in a circuit of original configuration with real sources discarded (i.e.
sources of voltage are replaced by short-circuits, sources of current are
replaced by breaks).

Simulated response is a state of response generated by real sources and
virtual distortions in a circuit of original configuration.

Reiterating the main VDM postulate, responses in modified circuit are as-
sumed to be globally equal with simulated responses, which are superposi-
tions of linear and residual responses.
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3.3 Electrical influence matrices

In general idea, influence matrices define local-global interrelations between
selected system responses and normalized states of virtual distortions. For
example, a single entry Dij of the static strain influence matrix (vide Equa-
tion 3.1) defines strain response in the i-th element of truss structure, invoked
by unit virtual distortion (unit initial strain) imposed on the j-th element.
Values of responses storied in influence matrices are pure virtual since the unit
strain implies that the distorted element is twice its initial length. Not only
it doesn’t reflect any physically possible modification of stiffness, it violates
the assumption of small deformations. Influence matrix is just a collection
of lineary scaled responses on globally normalized perturbation, identical for
all considered locations. Depending on the content and application, different
types of influence matrices can be defined. In truss structure analysis, the
notions of strain influence matrix, which is used to evaluate distortions, and
general influence matrix, which is used to update responses or calculate gra-
dients, are distinguished.

Taking into account the interpretation of electrical virtual distortion, a
single influence vector, comprising the column of electrical influence matrix,
may be considered as a set of circuit responses caused by unit ideal current
source (constant, harmonic or impulse, depending on type of analysis) in-
serted in parallel with selected component. Again, entries of the influence
matrix should be treated as lineary scaled responses on globally normalized
input function, which are pure virtual and hence don’t violate any physical
limitations (e.g. power-rating of circuit components or ampacity of connect-
ing wires). In DC/AC case, the relation for influence matrix can be derived
directly from circuit equations describing its original, modified and simulated
configuration. In dynamic case, interpretation and procedure of computing
the dynamic influence matrix will be based on the idea of Duhamel’s integral
and analogies with truss structures.

DC case

Let consider a steady-state DC circuit with assumed modifications of conduc-
tances. In the original configuration, circuit is described by the MNA-based
system of linear algebraic equations (vide Section 2.3, Equation 2.11). In the
case of modified circuit, a new main matrix, reflecting the introduced changes
of conductances, has to be assembled. In the case of simulated circuit, the
main matrix is the same as for the initial configuration but additional input
vector, reflecting the influence of virtual distortions, has to be set up. Equa-
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tions describing initial, modified and simulated circuit configurations are as
follows:

Initial circuit Modified circuit Simulated circuit

AxL = z Ãx = z Ax = z + zε

A and Ã are main matrices assembled for the original and modified sets of
parameters, xL is a base solution for original circuit configuration (linear re-
sponse), x is a modified/simulated response, z is an input vector comprising
active sources and zε is an additional input vector comprising virtual dis-
tortions. Since virtual distortions are implemented as ideal current sources
inserted in parallel with resistors, the additional input vector can be formu-
lated as:

zε =

[
R

M ε
0

]
(3.12)

where the number of additional zero entries is equal to the total number of
voltage sources and coils (i.e. it is the number of additional unknown vari-
ables beside nodal potentials). Vector of distortions ε is defined globally with
respect to all resistors. It is also assumed that matrices A and Ã, as well
as vectors z and zε, include ground conditions (i.e. entries in the vector zε

associated with grounded nodes should be set to zero).

A base solution for the simulated circuit configuration can be calculated as:

x = A−1(z + zε) = xL + Dxε (3.13)

In accordance with the VDM concept, response in simulated circuit is a super-
position of linear response (generated by real sources) and residual response
(generated by virtual distortions). Residual response can be expressed as a
linear combination of distortions, where matrix of coefficients Dx, called from
now on a base influence matrix, is described by the following relation:

Dx = A−1

[
R

M
0

]
(3.14)

Column of the matrix Dx can be interpreted as a base solution obtained for
the original main matrix and input vector equal to the column of incidence

matrix
R

M (extended by a number of zero entries to equalize dimensions).
Such an input vector can be in turn interpreted as an excitation produced
by ideal current source of unit intensity inserted in parallel with selected re-
sistor. An entry Dx

ij of the matrix can be then considered as a scaling factor
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which defines the inflence of virtual distortion imposed in j-th component
on i-th circuit response. Let notice that influence matrix depends only on
original circuit configuration (more precisly, only on the features reflected in
the main matrix A – that is topology, parameters of passive components,
ground conditions but not the values of active sources).

The concept of influence matrix and residual responses can be easily ex-
tended on any kind of circuit responses. Vector f containing arbitrary signals
(currents, voltages or potentials) can be expressed as:

f = fL + Df ε; fL = T xL; Df = T Dx (3.15)

where T is a certain matrix of linear transformation which reflects relations
between arbitrary circuit responses and a base solution. In order to distin-
guish between various kind of influence matrices, the additional sub- and
superscripts will used in further considerations. Superscript will denote the
type of quantities storied in the matrix, first subscript – a set of locations
these quantities refer to (aprioprate component, nodes or mixed set) and
second subscript – a set of components where virtual distortions have been
imposed (resistors or capacitors). According to the notation, matrix Dv

nR

means DC influence matrix of nodal potentials for virtual distortions im-
posed on resistors, while Di

RC will mean AC influence matrix of currents in
resistors for virtual distortions imposed on capacitors. The following relations
between various kinds of DC influence matrices can be written:

Dx
iR =

Dv
nR

Di
LR

Di
ER

 ; Du
RR =

R

MT Dv
nR; Di

RR = I−GDu
RR (3.16)

Subscripts n and i refer accordingly to nodes and arbitrary, mixed set of
locations. Identity matrix I occuring in relation for the influence matrix of
currents in resistors Di

RR results from the fact that distortion imposed on
the element is also a constituent of the simulated current response in this
element.

Example 4

To find DC base influence matrix Dx
iR and DC voltage influence matrix Du

RR

for a circuit presented in Figure 3.4.

Main matrix A of the circuit has been previously presented in Example 1,
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page 24. Base influence matrix, calculated from Equation (3.14), is as follows:

Dx
iR =



0 0 0 0 0 0
0 0 0 0 0 0

461.54 153.85 −307.69 −230.77 −153.85 −230.77
153.85 384.62 230.77 −76.92 −384.62 −76.92
230.77 76.92 −153.85 384.62 −76.92 −615.38

0 0 0 0 0 0
−0.385 −0.462 −0.077 −0.308 −0.538 −0.308
−0.538 0.154 −0.308 −0.231 −0.154 −0.231


First six rows of the matrix Dx

iR refer to potentials in nodes, seventh row
to current in coil and eighth row to current in voltage source. First column
refers to unit virtual distortion imposed on first resistor, second column to
unit virtual distortion imposed on second resistor etc.. First node is grounded,
second node is connected with the first one through short-circuited voltage
source and sixth node is short-circuited with the second one through coil,
hence electric potentials in all these nodes are equal zero.

Influence matrix of voltages in resistors is:

Du
RR =


461.54 153.85 −307.69 −230.77 −153.85 −230.77
153.85 384.62 230.77 −76.92 −384.62 −76.92
−307.69 230.77 538.46 153.85 −230.77 153.85
−230.77 −76.92 153.85 615.38 76.92 −384.62
−153.85 −384.62 −230.77 76.92 384.62 76.92
−230.77 −76.92 153.85 −384.62 76.92 615.38


Not coincidentally, the matrix is symmetric, which is a result of reciprocity
principle. Matrix Du

RR is an equivalent of strain influence matrix – it will be
used to calculate distortions.
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AC case

Procedure to derive the relation for influence matrix is quite similar as in the
DC case, but this time two vectors of distortions will be taken into consid-
eration – one simulating modifications of conductance ε and one simulating
modifications of capacitance ξ. Systems of equations for different circuit con-
figurations (vide Section 2.3, Equation 2.17) are as follows:

Initial circuit Modified circuit Simulated circuit

A xL = z Ã x = z A x = z + zε + zξ

In a case of modified circuit, changes of both conductance and capacitance
are reflected in the modified main matrix Ã, while in the case of simulated
circuit, two additional input vectors are introduced:

zε =

[
R

M ε
0

]
zξ =

[
C

M ξ
0

]
(3.17)

Simulated response can be calculated as a superposition of linear and residual
responses:

x = xL + Dx
iR ε+ Dx

iC ξ (3.18)

where the base influence matrices are:

Dx
iR = A−1

[
R

M
0

]
; Dx

iC = A−1

[
C

M
0

]
(3.19)

Again, column of the influence matrix may be interpreted as a response
of original circuit on unit ideal current source (unit distortion) inserted in
parallel with a given component. Unit distortion is here interpreted as a
source of unit complex amplitude, i.e. it has an unit amplitde, zero phase and
the same frequency as active sources. Relations between various kinds of AC
influence matrices are as follows:

Dx
iR =

[
Dv

nR

Di
ER

]
; Du

RR =
R

MT Dv
nR; Di

RR = I−YRDu
RR (3.20)

Dx
iC =

[
Dv

nC

Di
EC

]
; Du

CC =
C

MT Dv
nC; Di

CC = I−YCDu
CC (3.21)

The same as in the DC case, any simulated circuit response can be expressed
as a sum of linear response and combination of virtual distortions. For ex-
ample, voltages across capacitors may be calculated as:

uC = uL
C + Du

CR ε+ Du
CC ξ (3.22)
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Example 5

To find influence matrices Dx
iC and Di

CC for a circuit from the Example 4
(Figure 3.4, page 49). Frequency of real sources f = 200Hz.

Base influence matrix for virtual distortions simulating modifications in ca-
pacitors is calculated from Equation (3.19):

Dx
iC =



0 0
0 0

68.3− 95.7j −325.7 + 202.5j
291.7− 153.9j −68.2 + 96.3j
34.2− 47.6j −162.7 + 101.6j
0.15 + 0.56j 0.27 + 0.65j
−0.74 + 0.27j −0.45 + 0.12j


First six rows refer to potentials in nodes and last row to current in voltage
source. Influence matrix of currents in capacitors is obtained from Equa-
tion (3.21):

Di
CC =

[
0.807− 0.367j 0.121 + 0.086j
0.121 + 0.086j 0.746− 0.410j

]
Dynamic case

In any linear, time-invariant system, an output y(t) can be calculated as a
convolution of a given input x(t) and unit-impulse response function h(t):

y(t) =

∫ ∞
0

h(t− τ)x(τ)dτ (3.23)

Function h(t) is a response of non-energized system on impulse input signal
modeled by Dirac delta function δ(t). In mechanical and electrical engineer-
ing, relation (3.23) is called a Duhamel’s integral. In discrete-time domain,
the integral can be approximated by a series:

y[t] =
t∑

τ=t0

∆τ h[t− τ ]x[τ ] (3.24)

where ∆τ is the length of the time step. Square brackets denote that the
relation is formulated for discrete time instants t = {t0, t1 = t0+∆τ, . . . , tn}.

Equation (3.24) constitutes a basis for the concept of dynamic influence
matrix. In transient analysis, virtual distortions are time-dependent func-
tions. In discrete time domain, they may be approximated by sequences of
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successive impulses of values being average values of distortions at a given
time step (Figure 3.5). Residual response invoked by virtual distortion can be

ε(τ)

τ
t

ε(t)

∆τ

Figure 3.5: Virtual distortion as a sequence of impulses

then considered as a superposition of responses caused by successive impulses.
Using the analogous relation for truss structures (Equation 3.7), simulated
circuit responses can be formulated as follows:

f [t] = fL[t] +
t∑

τ=t0

(
Df

iR[t− τ ] ε[τ ] + Df
iC[t− τ ] ξ[τ ]

)
(3.25)

Dynamic influence matrices Df
iR[t] and Df

iC[t] are collections of discretized
time responses invoked by unit impulse virtual distortions imposed on cir-
cuit elements in the first time step of analysis. The value of residual response
at the given time step tn depends on all impulses of distortion from previous
time steps ti<n. Dynamic influence matrices are approximated numericaly
using the Newmark algorithm – column of the matrix is a solution of circuit
equations for discretized input vector z[t], consisting of unit impulse distor-
tion defined in the first time step (zeros in all other steps), with real sources
discarded and zero initial conditions assumed.

As an example, in Figure 3.6, nodal potentials for unit impulse virtual
distortions imposed on capacitors C1 (left) and C2 (right) of the exemplary
circuit, which form the columns of dynamic influence matrix Dv

nC[t], have
been presented. Time step ∆τ = 0.1ms was assumed.

3.4 Evaluation of distortions, re-analysis

Thus far, the concept of virtual distortions has been introduced but without
providing a direct procedure for their evaluation. Relations between virtual
distortions and modification parameters derived in Section 3.2 include simu-
lated circuit responses which also depend on distortions. Now, knowing that
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Figure 3.6: Potential responses for unit impulse distortions imposed on ca-
pacitors C1 (left) and C2 (right) from the exemplary circuit.

simulated responses can be expressed as a superposition of linear and resid-
ual responses, it is possible to formulate a system of equations which directly
relates virtual distortions with modification parameters, where all other re-
quired quantities are obtained from the model of original circuit.

DC circuits

Equations (3.10), limited to modifications of conductance, can be rewritten
in matrix notation in the following form:

ε =
(
I− [µ]

)
G uR (3.26)

where I denotes the identity matrix, [µ] is a diagonal matrix created from
the vector of parameters of conductance modifications µ and uR is a vector
of voltages across resistors. Vector of distortions ε is defined with respect to
all resistors. Voltages uR refer to simulated circuit configuration, hence they
can be expressed in terms of virtual distortions:

uR = uL
R + Du

RR ε (3.27)

Inserting (3.27) into (3.26) and organizing variables with respect to virtual
distortions, the following system of linear equations can be obtained:

H ε = b (3.28)

where:

H = I−∆G Du
RR (3.29a)

b = ∆G uL
R (3.29b)

∆G =
(
I− [µ]

)
G (3.29c)
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System of equations (3.28) enables to evaluate virtual distortions ε which
correspond to a given set of modification parameters µ. Other required quan-
tities, which need to be pre-computed from the model of original circuit, are
linear voltage responses in resistors uL

R and voltage influence matrix Du
RR.

Although the system has been formulated globally, it may include only mod-
ified components. Let notice that if there is no modification of conductance in
the k-th element of a circuit (µk=1) then Hkj =Ikj, bk=0 and immediately
εk = 0. This feature is a basis of quick re-analysis algorithm, which enables
to find local responses of the circuit on local modifications of parameters.
In the first step of the algorithm, virtual distortions are calculated by solv-
ing locally formulated system of equations (3.28) and next, selected circuit
responses are updated as a superposition of linear and residual responses.

Example 6

To evaluate distortions and recalculate voltages across capacitors in a cir-
cuit from Figure 3.7 for the given set of modifications: µ1 = 0.2 and µ4 = 3
(conductance in R1 decreased five times, conductance in R4 increased three
times).
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L = 1 mH
E = 5 V
J = 2 mA

Figure 3.7: Exemplary circuit

At the beginning, let introduce the index α which defines the set of modified
elements (locations of distortions): α = {R1, R4}. In the first step, distortions
will be calculated. To this end, linear voltage responses and voltage influence
matrix for distortion locations need to pre-computed:

uL
α =

[
2.23
0.38

]
; Du

αα =

[
461.5 −230.8
−230.8 615.4

]
Formulating and solving the system of equations (3.28), the following values
of virtual distortions are obtained:

εα =

[
2.763
0.227

]
× 10−3
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In the second step, voltage responses across capacitors will be updated. To
this end, corresponding linear responses and influence matrix are required:

uL
C =

[
4.08
2.77

]
; Du

Cα =

[
153.8 −76.9
−461.5 230.8

]
Simulated responses are superposition of linear and residual responses:

uC = uL
C + Du

Cαεα =

[
4.48
1.55

]
Example 7

For the same exemplary circuit (Figure 3.7), evaluate distortions which cor-
respond to single breaks in resistors.

For every k-th resistor (k = 1 . . . 6), the following procedure is applied:

• a break in a single resistor is assumed: µk=0

• Equation (3.28) is formulated: ∆k=Gk, bk=GkU
L
k , Hkk=1−GkD

u
kk

• distortion is calculated: εk = bk/Hkk

Virtual distortions which simulate single breaks in a circuit are:

ε1(µ1 =0) ε2(µ2 =0) ε3(µ3 =0) ε4(µ4 =0) ε5(µ5 =0) ε6(µ6 =0)

0.0041 -0.0015 0.004 0.001 0.0015 0.0062

Virtual distortion depends on several factors (e.g. conductance and linear
voltage response in the related component), hence its plain value doesn’t tell
much about the magnitude or direction of the modeled modification, or even
if it lies wihin the feasible domain. Figure 3.8 presents relations between vir-
tual distortion and parameter of conductance modification for every resistor
from the exemplary circuit, for a case of a single modification (i.e distortions
are considered independently and are not mutually interrelated).

AC circuits

The procedure leading to formulation of relation between virtual distortions
and parameters of modifications is similar as in the DC case, but it is now
assumed that both modifications of conductance and capacitance may occur
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Figure 3.8: Virtual distortions for single modification scenarios

simultaneously. Equations (3.11), combined in a one matrix equation, are as
follows: [

ε
ξ

]
=

(
I−

[
[µ] 0
0 [ν]

])[
YR 0
0 YC

] [
uR

uC

]
(3.30)

Simulated voltage responses in resistors and capacitors are:[
uR

uC

]
=

[
uL

R

uL
C

]
+

[
Du

RR Du
RC

Du
CR Du

CC

] [
ε
ξ

]
(3.31)

Combining and organizing the equations with respect to distortions, the fol-
lowing system is obtained:

H

[
ε
ξ

]
= b (3.32)

where:

H = I−∆Y

[
Du

RR Du
RC

Du
CR Du

CC

]
(3.33a)

b = ∆Y

[
uL

R

uL
C

]
(3.33b)

∆Y =

(
I−

[
[µ] 0
0 [ν]

])[
YR 0
0 YC

]
(3.33c)

The same as in the DC case, the system may be formulated locally, with
respect to modified elements only.
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Example 8

Evaluate distortions and recalculate responses in a coil in a circuit from Fig-
ure 3.4 for the given modifications: µ1 = 3 and ν1 = 0.25 (conductance in R1

increased three times, capacitance in C1 decreased four times). Parameters
of sources are: E = 5V, J = 2j mA and frequency 200Hz.

Let the index α define the set of modified elements: α = {R1, C1}. Linear
voltage responses and voltage influence matrix required to evaluate distor-
tions are as follows:

uL
α =

[
2.57 + 0.25j
3.60− 1.42j

]
; Du

αα =

[
325.5− 210.9j 68.3− 95.7j
68.3− 95.7j 291.7− 153.9j

]
Solution to the system of equations (3.32) produces the following values of
virtual distortions: [

ε1

ξ
1

]
=

[
−3.21 − 1.37j

0.17 + 3.63j

]
× 10−3

To update the responses in a coil, the following quantities are required:

uL
L = [4.21− 3.71j]× 10−3; Du

Lα = [−0.27 + 0.61j 0.15 + 0.56j]

iLL = [2.95 + 3.35j]× 10−3; Di
Lα = [−0.49− 0.21j 0.45 + 0.12j]

Superposition of linear and residual responses produces:

uL = [3.89− 4.68j]× 10−3; iL = [3.72 + 3.10j]× 10−3

Dynamic circuits

In transient case, modifications of conductance and capacitance are modeled
by time-dependent virtual distortions (Equations 3.8). Combined in a one
matrix equation and defined in discrete time domain, they are as follows:[

ε[t]
ξ[t]

]
=

(
I−

[
[µ] 0
0 [ν]

])[
G 0
0 C

] [
uR[t]
u̇C[t]

]
(3.34)

Simulated responses in resistors and capacitors are approximated using dy-
namic influence matrices:[

uR[t]
u̇C[t]

]
=

[
uL

R[t]
u̇L

C[t]

]
+

t∑
τ=0

[
Du

RR[t− τ ] Du
RC[t− τ ]

Ḋ
u

CR[t− τ ] Ḋ
u

CC[t− τ ]

] [
ε[τ ]
ξ[τ ]

]
(3.35)
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Inserting (3.35) into (3.34) and organizing the equations with respect to a
given time step, the following sequence of linear systems can be obtained:

H

[
ε[t]
ξ[t]

]
= b[t] (3.36)

where:

H = I−∆

[
Du

RR[0] Du
RC[0]

Ḋ
u

CR[0] Ḋ
u

CC[0]

]
(3.37a)

b[t] = ∆

([
uL

R[t]
u̇L

C[t]

]
+

t−1∑
τ=0

[
Du

RR[t− τ ] Du
RC[t− τ ]

Ḋ
u

CR[t− τ ] Ḋ
u

CC[t− τ ]

] [
ε[τ ]
ν[τ ]

])
(3.37b)

∆ =

(
I−

[
[µ] 0
0 [ν]

])[
G 0
0 C

]
(3.37c)

Dynamic virtual distortions are calculated by solving sequentially the system
of equations (3.36) for every time step starting from t= t0. Main matrix H is
the same for every step, only left-hand side vector b[t] need to updated using
the values of distortions calculated in previous steps. The same as in steady-
state, the systems may be formulated with respect to modified elements only.

Example 9

To calculate dynamic virtual distortion which model single breaks in resistors
for a circuit and excitation scenario from the Example 3 (page 29).

Assuming a break in a single resistor (µk = 0), the system (3.36) reduces to
the sequence of equations:

εk[t] =
bk[t]

Hkk

; Hkk = 1−GkD
u
kk[0]; b[t] = Gk

(
uLk [t] +

t−1∑
τ=0

Du
kk[t−τ ]εk[τ ]

)

Linear responses, influence matrices and the resulting distortions are defined
over the previously assumed discrete time domain (100 time steps, 0.1ms
each, total time of analysis 10ms). The results are presented in Figure 3.9.

3.5 Sensitivity analysis

The aim of sensitivity analysis is to find derivatives of system responses with
respect to selected parameters. It is a crucial issue in many optimization
problems, in which the objective function, and hence its gradient, depends
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Figure 3.9: Dynamic virtual distortions simulating single breaks in resistors

on responses of the system (e.g. typical problem of fitting the numerical and
experimental data in system or input identification). In damage identification
problem, sensitivity analysis enables also to select optimal points of measure-
ment (sensor placement). In this section, the VDM-based approach will be
applied to find the derivatives of arbitrary circuit responses with respect to
parameters of conductance and capacitance modifications:

∂ fi
∂ µj

= . . .
∂ fi
∂ νj

= . . .

A classical formulation of the problem, Finite Difference Approximation,
has the following form:

∂fi(µ)

∂µj
= lim

∆µ→0

fi(µ; µj + ∆µ)− fi(µ)

∆µ
(3.38)

The above formula provides a numerical approximation of the derivative, of
accuracy strongly dependent on proper selection of the value of finite incre-
ment ∆µ. Also, the method requires recalculation of the response for every
perturbed variable.
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DC case

It has been demonstrated in the previous sections that simulated circuit
responses can be expressed as linear functions of virtual distortions:

f = fL + Df
iR ε (3.39)

Linear responses fL and influence matrix Df
iR are calculated from the model

of original circuit, hence they are independent of the introduced modifica-
tions. The Jacobi matrix of derivatives of responses with respect to virtual
distortions equals then to the influence matrix:

∂ f

∂ ε
= Df

iR (3.40)

Derivatives of responses with respect to modification parameters µ can be
calculated using the chain rule:

∂ f

∂µ
=
∂ f

∂ε

∂ ε

∂µ
= Df

iR

∂ ε

∂µ
(3.41)

Let denote the unknown quantity ∂ ε/∂µ as a gradient of distortions. Com-
ponent of the gradient defines the influence of conductance modification in
one resistor on the value of virtual distortion in other resistor. Since values
of distortions are mutually interrelated, so do components of the gradient
and global approach is required. To derive the formula for the gradient of
distortions, let differentiate both sides of the Equation (3.26):

∂ ε

∂µ
=

∂

∂µ

[
∆G uR

]
(3.42)

where ∆G =
(
I− [µ]

)
G and uR =uL

R + Du
RR ε. Calculating the derivative of

the right-hand side of equation we obtain:

∂ ε

∂µ
= −diag

{
GuR

}
+ ∆G Du

RR

∂ ε

∂µ
(3.43)

The term “diag{x}“ denotes a diagonal matrix created from the vector x.
Organizing the variables with respect to components of the gradient, the
following system of linear equations can be formulated:

H
∂ ε

∂µ
= B (3.44)
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where:

H = I−∆G Du
RR (3.45a)

B = diag
{
−G

(
uL

R + Du
RR ε

)}
(3.45b)

∆G =
(
I− [µ]

)
G (3.45c)

Matrix H is the same matrix as in the system of equations used to calculate
distortions (Equation 3.29a) and B is a diagonal matrix which depends on
the simulated voltage responses in resistors. Components of the gradient are
strictly related with the actual state of distortions. In the case of original
circuit configuration where [µ] = I, H = I and ε = [0], components of the
gradient of distortions can be found from the simplified equation:

∂ ε

∂µ
= diag

{
−G uL

R

}
(3.46)

Example 10

To calculate sensitivity of voltages across capacitors for the exemplary circuit
in the original configuration (Figure 3.4, page 49).

According to Equation (3.41):

∂ uC

∂µ
= Du

CR

∂ ε

∂µ

and gradient of distortion is can be calculated from the simplified relation
(3.46). Ultimately, the following results are obtained:

∂ uC

∂µ
=

[
−0.34 0.36 −0.43 0.03 0.36 0.18

1.02 −0.14 −0.57 −0.09 −0.14 −0.55

]
AC case

Simulated responses are functions of distortions:

f = fL + Df
iR ε+ Df

iC ξ (3.47)

From the point of view of mathematics, partial derivative of AC response
(complex number) with respect to parameter of conductance or capacitance
modification (real numbers) is a directional derivative (Gâteaux). Since lin-
ear responses and influence matrices are independent of modifications, the
derivatives are as follows:

∂ f

∂µ
= Df

iR

∂ ε

∂µ
+ Df

iC

∂ ξ

∂µ
;

∂ f

∂ν
= Df

iR

∂ ε

∂ν
+ Df

iC

∂ ξ

∂ν
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Again, the problem is to formulate the relation for gradients of distortions.
To this end, let consider the Equation (3.30), which relates distortions with
modification parameters, and Equation (3.31), which describes voltage re-
sponses in resistors and capacitors. Particular components of the gradient of
distortions may be obtained by differentiation of appropriate constituents of
the Equation (3.30):

∂ ε

∂ µ
=

∂

∂ µ

{
∆RuR

}
= −diag

{
YRuR

}
+ ∆R

∂ uR

∂ µ
∂ ξ

∂ µ
=

∂

∂ µ

{
∆CuC

}
= ∆C

∂ uC

∂ µ
∂ ε

∂ ν
=

∂

∂ ν

{
∆RuR

}
= ∆R

∂ uR

∂ ν
∂ ξ

∂ ν
=

∂

∂ ν

{
∆CuC

}
= −diag

{
YCuC

}
+ ∆C

∂ uC

∂ ν

where ∆R = (I − [µ])YR and ∆C = (I − [ν])YC. Derivatives of voltage
responses in elements are:

∂ uR

∂µ
= Du

RR

∂ ε

∂µ
+ Du

RC

∂ ξ

∂µ
;

∂ uR

∂ν
= Du

RR

∂ ε

∂ ν
+ Du

RC

∂ ξ

∂ ν

∂ uC

∂µ
= Du

CR

∂ ε

∂µ
+ Du

CC

∂ ξ

∂µ
;

∂ uC

∂ν
= Du

CR

∂ ε

∂ ν
+ Du

CC

∂ ξ

∂ ν

Combining the above relations and organizing the variables with respect to
components of the gradient of distortions, the following system of equations
can be formulated:

H


∂ ε

∂µ

∂ ε

∂ν

∂ ξ

∂µ

∂ ξ

∂ν

 = −diag

{[
YRuR

YCuC

]}
(3.49)

The main matrix of the system H is the same matrix as in the system of
equations for distortion calculation (Equation 3.32).

Dynamic case

Simulated transient responses of the circuit are:

f [t] = fL[t] +
t∑

τ=t0

(
Df

iR[t− τ ] ε[τ ] + Df
iC[t− τ ] ξ[τ ]

)
(3.50)
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Partial derivatives of responses with respect to impulses of distortions are
equal to appropriate components of the dynamic influence matrices:

∂ f [t]

∂ ε[τ ]
= Df

iR[t− τ ];
∂ f [t]

∂ ξ[τ ]
= Df

iC[t− τ ] (3.51)

Applying the chain rule of differentiation, derivatives of responses with re-
spect to modification parameters can be calculated as follows:

∂ f [t]

∂ µ
=

t∑
τ=0

[
Df

iR[t− τ ]
∂ ε[τ ]

∂ µ
+ Df

iC[t− τ ]
∂ ξ[τ ]

∂ µ

]
(3.52)

∂ f [t]

∂ ν
=

t∑
τ=0

[
Df

iR[t− τ ]
∂ ε[τ ]

∂ ν
+ Df

iC[t− τ ]
∂ ξ[τ ]

∂ ν

]
(3.53)

Once again, the problem reduces to formulation of relations for components
of the gradient of distortions The appropriate formulas can be obtained by
differentiation of the Equation (3.34):

∂ ε[t]

∂ µ
= −diag

{
G uR[t]

}
+ ∆G

∂ uR[t]

∂ µ
(3.54a)

∂ ξ[t]

∂ µ
= ∆C

∂ u̇C[t]

∂ µ
(3.54b)

∂ ε[t]

∂ ν
= ∆G

∂ uR[t]

∂ ν
(3.54c)

∂ ξ(t)

∂ ν
= −diag

{
C u̇C[t]

}
+ ∆C

∂ u̇C(t)

∂ ν
(3.54d)

where ∆G = (I − [µ])G and ∆C = (I − [ν])C and derivatives of responses
uR[t] and u̇C[t] can be calculated based on Equations (3.52) and (3.53). The
general procedure is to combine all the relations and organize the variables
with respect to components of the gradient at the given time step t, simi-
larly as it has been done in the system of equations for distortion evaluation
(Equation 3.36). Ultimately, the following sequence of linear systems can be
obtained:

H


∂ ε[t]

∂µ

∂ ε[t]

∂ν

∂ ξ[t]

∂µ

∂ ξ[t]

∂ν

 = Bd[t] + Bg[t−1] (3.55)
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where:

H = I−∆

[
Du

RR[0] Du
RC[0]

Ḋ
u

CR[0] Ḋ
u

CC[0]

]
(3.56a)

Bd[t] = −diag

{[
GuR[t]
Cu̇C[t]

]}
(3.56b)

Bg[t−1] = ∆
t−1∑
τ−0

[
Du

RR[t−τ ] Du
RC[t−τ ]

Ḋ
u

CR[t−τ ] Ḋ
u

CC[t−τ ]

]
∂ ε[τ ]

∂µ

∂ ε[τ ]

∂ν

∂ ξ[τ ]

∂µ

∂ ξ[τ ]

∂ν

 (3.56c)

∆ =

(
I−

[
[µ] 0
0 [ν]

])[
G 0
0 C

]
(3.56d)

The system needs to be solved sequentially for every time step. Main matrix
H is time-invariant and the same the for every step. Diagonal matrix Bd[t]
depends on simulated circuit responses. Matrix Bg[t] depends on values of
gradients from previous time steps.
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Chapter 4

Inverse analysis and damage
identification

4.1 The ELGRID system – general concept

The acronym ELGRID refers to a concept of structural health monitoring
system which postulates to utilize an electrical network as an embedded
distributed sensor of mechanical defects. The idea is that the branches of
the network sustain electrical faults along with the occurrence or growth of
structural damages like cracks, delamination or debonding. The problem of
detection and localization of structural damages is simply formulated as an
identification of coupled electrical faults in the sensing network. Schemati-
cally, the concept of the ELGRID system is presented in Figure 4.1

The electrical sensing network (1), deposited on the surface or embedded
within the matrix of composite material, is a compact, passive, analog cir-
cuit which contains a plurality of resistive or capacitive sensors, arranged in
some regular pattern to uniformly cover the monitored area of a structure.
Topology and electrical characteristics of the network in the original config-
uration are known in advance and it is expected that occurring damages will
result in local modifications of resistance and/or capacitance. The network is
periodically excited by the predefined test stimuli from the signal generation
unit (2) and responses of the network are collected by the data acquisition
unit (3). Diagnosis of the network is performed in the signal processing unit
(4), which compares the registered responses with the reference signature and
runs a dedicated algorithm to localize the damaged branches.
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Figure 4.1: The ELGRID system - concept

Hardware considerations

The concept of the ELGRID system doesn’t refer to any particular type of
sensors or technological solutions. The sensing layer is generally considered
as an electrical network in which parameters of branches are modified by
the occurring structural damages. In the simplest but also the most applica-
ble implementation, the sensing branch includes a crack wire. Break of the
wire introduces a discontinuity in the electrical path and, if connected with
other electrical component, results in local loss of conductance or capaci-
tance. There are several technologies of crack wires which may be applied –
plain resistive wires, conductive paths printed or sprayed on elastic substrate,
conductive adhesives, polymers with metallic or carbon particles or nanoma-
terials. According to the system concept, the electrical model of the sensing
network is viewed as an analog RC circuit which, in the ultimate form, will be
diagnosed using dynamic inverse analysis in time domain. Hence, it need to
include components of relatively high values of resistances and capacitances
in order to obtain time constants enabling non-stationary responses to be
invoked and registered. On the other hand, since the network is assumed to
be embedded within the composite material, all components should be of the
smallest possible dimensions. Resistors and capacitors made in the surface
mount technology are planned to be utilized. From practical reasons, induc-
tors, although included in the theoretical formulation of the problem, are not
going to be used at all.
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Sensing network is considered to be a passive circuit, excited periodically
from the external test generation unit. Low power signals are going to be ap-
plied, with maximum amplitudes of voltages around 20 volts and maximum
amplitudes of currents around 5 miliamperes. Responses of the network will
be measured by the multi-channel data acquisition unit, of required sam-
pling rate up to 100kHz. From the practical perspective, the easiest measur-
able quantities are electric potentials – the least number of connections is
required (one for every potential plus one to a common ground). Measure-
ments of currents will not be included since they require an integration within
the circuit (inserting shunt resistor) which may not be possible because of
unbreakable connections.

Model assumptions

It is assumed that the electrical model of the sensing network is linear, time-
invariant circuit, consisting of ideal lumped resistors, capacitors and coils,
supplied by ideal sources of voltage or current.

Linearity implies that parameters of passive components (resistance, ca-
pacitance, inductance) are independent of the level of current or voltage or
ambient conditions (temperature, humidity). Flow of electric current is al-
ways accompanied by energy dissipation on the resistance and heating of
components. For most metals, resistance increases with temperature. Since
the network is projected to work with low power signals, it may be assumed
that the system operates within the linear part of global characteristic.

Ideal components are characterized by a single parameter which describe
its dominant feature. In practice, parasitic properties may reveal. Models of
real-life components consists of ideal elements which represent these addi-
tional features. In Figure 4.2, the exemplary models of real capacitor and
coil with ferromagnetic core are presented:

C

Rleak

Rloss

(a)

L FeRRL

CL

(b)

Figure 4.2: Real models of capacitor (a) and coil (b)
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In the case of real capacitor, Rleak simulates finite resistance of the insulator
an the related leakage current, while Rloss simulate resistances of contacts
and electrodes. In the case of real coil with ferromagnetic core, RL represents
resistance of coil wire, CL represents the in-between-turns capacitance, while
RFe (non-linear!) simulates losses in the core related with hysteresis and eddy
currents. Parasite parameters, as well as non-linearities, usually occur in high
frequency range (MHz), which is not the considered case. However, even if
parasitic parameters cannot be neglected, they may be fairly easy incorpo-
rated into the MNA-based system of equations. In the steady-state analysis,
an equivalent conductance or admittance of the model of real component
need only to be evaluated. In dynamic analysis, additional internal nodes
in the models of components may be required to be introduced into global
system of circuit equations.

4.2 Problem formulation

The main goal of the work is to solve the problem of damage identification
in a circuit being the model of electrical sensing network. The term damage
is understood as a modification of conductance or capacitance within the
network, invoked by physical failure of constituent component (e.g. caused
by its gradual degradation, fracture or break of connections). It is assumed
that numerical model of the network is known in advance (it takes a form
of linear RLC circuit supplied by independent sources) and it is possible to
simulate any response on any scenario of excitation (using the MNA-based
procedures of DC, AC or transient, time domain analysis). The input data
includes also a set of responses measured for the damaged configuration of
the network, invoked by known pre-defined test signals.

From the numerical perspective, the task can be formulated as an in-
verse problem of model updating: the goal is to find modifications of pa-
rameters which ensure a good fit between responses simulated from the nu-
merical model and responses measured in real, damaged system. Preferably,
the solution should involve both localization and quantification of simultane-
ously occurring damages, without restrictions on their number and intensity.
Moreover, it is desired that the least possible number of testing signals and
measurements should be involved, both from the practical perspective and
because of limited accessibility of internal nodes of the network. Under such
conditions, even for typical and relatively simple topologies of networks, the
problem is ill-posed (cannot be uniquely solved). In order to ensure well-
posedness, some additional constraints and limitations need to be introduced.
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Some of them are natural consequences resulting from conceptual assump-
tions and practical functioning of the monitoring system, other will have to
be enforced through adequate selection of network topology, parameters of
elements, test signals and measurement strategy. These rules/guidelines of
network design will be formulated based on theoretical conditions of circuit
testability (topological analysis) and conclusions drawn from the VDM-based
inverse analysis.

The concept of virtual distortions is well suited to formulate and solve
the problem of damage identification – virtual distortions appear in exactly
the same elements where modifications of parameters take place, simulated
responses are linear functions of distortions and gradients of responses may
be calculated. As a result, the problem can be considered as a search for the
equivalent distribution of virtual distortions and solved from the transformed
system of linear equations or through the gradient-based optimization. Let
introduce the following notions which enable to formulate the problem in
VDM nomenclature:

Distortion locations are a set of circuit components where the possibility
of damage occurrence is assumed and hence, distortions are allowed to
appear during the identification process. Components not included in
a set of distortion locations are considered unalterable.

Reference responses are a set of selected circuit responses which are the
input data for the identification procedure. It is assumed that reference
response can be measured in a real circuit.

Linear responses are a set of reference responses obtained for the original
circuit configuration. They are calculated from the numerical model or
are measured in undamaged circuit.

Modified responses are a set of reference responses measured for the dam-
aged circuit configuration.

Test stimuli is a set of input test signals which invoke the reference re-
sponses.

The assumption of limited number of possible distortion locations is natural
since the considered circuits are models of sensing networks where some el-
ements are expected to be damaged while other just play an auxiliary role.
Number of distortion locations determines the dimension of the problem
hence its reduction facilitates the practical implementation (e.g. lowers the
number of required measurements and numerical cost of algorithm). It may
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be however assumed that all components of the circuit belong to the set of
distortion locations. In theoretical considerations, reference responses may
include arbitrary electrical signals: potentials in nodes, voltages or currents
in any kind of component. Practically, as the number, kind and locations
of possible response measurements and input signal supply are determined
by the accessibility of network nodes, nodal potentials will be preferred as
reference responses. The kind of test stimuli is strictly related with the iden-
tifications procedure. Steady-state DC/AC and dynamic test signals will be
considered. As a measure of damage intensity, parameters of conductance and
capacitance modifications µ and ν, introduced in Section 3.2 (Equation 3.9)
will be used. Natural constraints are µ, ν > 0, where zero means electrical
break. Practically, physical deterioration of real components usually leads to
losses of conductance and capacitance, hence the scope of parameter modifi-
cations can be constrained to µ, ν ∈ (0; 1).

Let consider a circuit shown in Figure (4.3) as an example of a model
of very simple sensing network made of resistive components. It is assumed
that 7 inner resistors (depicted in black) are embedded within the structural
material and operate as sensors of cracks – they form a set of distortion
locations. The remaining components are just additional connections and
are assumed to be unalterable. It is further assumed that only 6 nodes on
the outer edges of the network are accessible. One of them will be used to
set a common ground and one to supply a test stimuli. Electric potentials in
the remaining nodes (v1÷v4) are assigned as a set of reference responses.

+E
R

R3

R2

R4

5

R6

R1 R7

V2V1

V3 V4

Figure 4.3: Simple model of sensing network

The question to be answered in the following sections is: is it possible to
uniquely solve the problem for the arbitrary scenario of occurred damages?
And if not – what conditions (concerning topology, parameters, test signal)
have to be fulfilled in order for the network to be diagnosable?
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4.3 Steady-state inverse analysis

Let start the analysis of the identification problem for a case where both test
stimuli and reference responses are steady-state, constant or single-frequency
harmonic signals. The discussion will be carried out with respect to DC cir-
cuits, but most of the derived relations and resulting conclusions also apply
to AC circuits. Obviously, in the AC case, the equivalent relations would be
defined with respect to complex amplitudes of signals, as well as both modifi-
cations of conductance and capacitance could be considered. The additional
subscripts appearing in the following relations refer to the assumed sets of
reference responses (α) and distortion locations (β).

Let suppose that a set of modified responses fM
α , invoked by a fixed DC

test stimuli, has been registered in a circuit. These responses refer to a certain
unknown state of parameters µβ which describe the occurred damages in
terms of conductance modifications. Using the VDM approach, the influence
of damages on circuit responses can be simulated by the equivalent vector of
virtual distortions εβ imposed on the model of original circuit:

fM
α = fα(µβ) = fα(εβ) (4.1)

Simulated responses of a circuit consist of linear and residual part:

fα(εβ) = fL
α + Df

αβ εβ (4.2)

Linear responses fL
α and influence matrix Df

αβ are calculated from the model
of original circuit. By simple substitution and transformation, vector of dis-
tortions can be calculated as:

εβ =
(
Df
αβ

)−1 (
fM
α − fL

α

)
(4.3)

Naturally, this operation is allowed and produces a unique solution only if the
influence matrix Df

αβ is square and non-singular. Dimensions of the matrix
depend on the number of reference responses (rows) and distortion loca-
tions (columns) while rank of the matrix depends on mutual independence
of reference responses, their sensitivity on occurring modifications and dis-
tinguishability of distortion locations. It may be concluded from the general
analysis of topological constraints that the full-rank influence matrix can be
obtained if all the following conditions are fulfilled:

1. Reference responses are not determined exclusively by supply or ground
conditions.
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2. Reference responses are sensitive to possible damage scenarios (i.e.
modification of parameter in any distortion locations is observable in a
set of reference responses).

3. Reference responses are linearly independent (i.e. any reference re-
sponse cannot be determined from the others using Kirchhoff’s laws
or constitutive equations)

4. Distortion locations are distinct (i.e. distortions simulating modifica-
tions in different elements are not related with the same pair of nodes).

Let discuss the above conditions taking into account the exemplary circuit
(Figure 4.4) and its base influence matrix Dx

iR (taken from the Example 4,
page 49).
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Figure 4.4: Exemplary circuit and its oriented graph

Dx
iR =



0 0 0 0 0 0
0 0 0 0 0 0

461.54 153.85 −307.69 −230.77 −153.85 −230.77
153.85 384.62 230.77 −76.92 −384.62 −76.92
230.77 76.92 −153.85 384.62 −76.92 −615.38

0 0 0 0 0 0
−0.385 −0.462 −0.077 −0.308 −0.538 −0.308
−0.538 0.154 −0.308 −0.231 −0.154 −0.231


First of the conditions simply excludes all the responses which are not affected
by the occurring modifications: these are potentials in grounded nodes (e.g.
1-st row in the exemplary matrix), voltages in components in parallel with
ideal voltage source (U =E) or currents in components in series with ideal
current source (I=J). Second condition refer to a general rule which states
that influence of parameter modification may be of local range and changes
in responses registered in distant points may be of similar magnitude as the
errors resulting from measurements or inaccuracy of numerical model. Hence,
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in a case of large network with a small number of remotely placed points of re-
sponse measurements, the influence matrix may be extremely ill-conditioned.
Third condition refers to topological constraints which govern global states
of currents and voltages and determine their mutual dependencies. Simply
put – a set of reference responses cannot contain voltages across components
which form a loop and cannot contain currents in components which form a
node cutset. If the rule is not fulfilled then the associated rows of the influ-
ence matrix will be linearly dependent (in accordance with Kirchhoff’s laws,
their sum will be zero). Also, current and voltage in the same component
can be included in the set of reference responses only if the component be-
longs to the set of distortion locations (in other case, value of parameter is
invariable and quantities are related by constitutive equation). Potentials in
nodes are mutually dependent if they are connected by ideal voltage source
(Vi=Vj +E) or are shorted (Vi=Vj) (e.g. the 2-nd and 6-th row in the exem-
plary matrix). The last condition brings up the fact that responses generated
by unit distortions imposed on components which are in parallel or in series
are almost identical. In the exemplary circuit, resistors R2 and R5 are in fact
in parallel (they share the 4-th node while 2-nd and 6-th node are shorted),
whereas resistors R4 and R6 are in series. As a result, the corresponding
columns of the influence matrix differ only by the values of current in coil
(7-th row) or potential in 5-th node. If these responses were omitted from
the influence matrix, the corresponding columns would be linearly dependent.

The procedure of solving the inverse problem based on the Equation (4.3)
requires that for the assumed set of distortion locations, an equal number of
independent reference responses need to be selected. Selection of reference
responses can be based on graph analysis and the following rules, which result
from topological constraints:

1. The number of independent voltage responses equals to the number of
independent nodal potentials, which is equal to the number of indepen-
dent Kirchhoff’s current laws.

2. The number of independent current responses equals to the number of
independent mesh currents, which is equal to the number of indepen-
dent Kirchhoff’s voltage laws.

Let consider the process of selection of reference responses for the exemplary
circuit in the DC and AC case, assuming that the set of distortion locations
includes all resistors. Full graph of the circuit, shown in Figure 4.4, con-
sists of 11 edges, 6 nodes and 6 loops. The goal is to distinguish dependent
nodes, which are determined by ground conditions and voltage constraints,
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and eliminate redundant loops, which are determined by current constraints.
To this end, let eliminate from the graph all break-equivalent edges for which
currents are of fixed values – that means edges representing ideal current
sources (I=J) and capacitors in DC case (I=0). Secondly, let distinguish all
short-equivalent edges for which voltages are of fixed values – that means
edges representing ideal voltage sources (U=E) and coils in DC case (U=0).
The applied names of edges refer to the fact that during calculation of the
influence matrix, the associated components act like breaks or short-circuits.
At last, let distinguish all dependent nodes – that means grounded ones and
one out of each pair connected by the short-equivalent edge. The reduced
graphs for DC and AC case are presented in Figure 4.5 (short-equivalent
edges and dependent nodes are depicted in red). Numbers of independent
nodes and elementary loops in reduced graph define numbers of independent
voltage and current responses. In the DC case, 3 independent nodes and 3
elementary loops are obtained, while in the AC case, there are 4 independent
nodes and 5 elementary loops. To identify changes of resistances in all resis-
tors, six independent reference responses need to be selected. In DC case, the
only choice is to measure 3 voltages and 3 currents, while in AC case, 6 out of
9 available independent responses may be used. To determine which branch
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Figure 4.5: Reduced graphs for DC (left) and AC case (right)

voltages and branch currents are independent of each other, the concept of
a tree of the graph may be applied. Tree is a set of edges which connect
all independent nodes of a graph but don’t comprise a loop. The remaining
edges belong to the set of closing branches (short-equivalent edges are not
taken into account). Any closing branch comprises an independent loop with
tree edges. Tree of a graph may be distinguished in multiple variants – the
examples of trees in the reduced graph for the exemplary circuit in AC case
are presented in Figure 4.6 (edges of a tree are depicted by thick solid lines
and closing branches by thin dashed lines). Voltages in tree edges and cur-
rents in closing branches comprise a complete set of mutually independent
responses.
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Figure 4.6: Examples of trees in reduced graph (AC case)

Despite the fact that Equation (4.3) enables to uniquely solve the inverse
problem, its practical application is limited to the case of small number of dis-
tortion locations. For numerous locations, the same amount of independent
reference responses need to acquired, which may be difficult or even impossi-
ble (measurements of voltage and current may be necessary, both amplitude
and phase are required in AC case, internal nodes of the circuit may be
inaccessible). Moreover, modified responses will be perturbed by measure-
ment errors while linear responses and influence matrix by numerical errors
and model inaccuracy (e.g. tolerances of circuit elements). If additionally the
influence matrix is ill-conditioned, the obtained solution may be highly in-
accurate and even lie beyond the natural constraints. As an alternative, an
iterative, sensitivity-based optimization procedure may be proposed.

Gradient based approach

Let the vector of distance functions dα defines differences between responses
simulated by a temporary state of virtual distortions and responses measured
in modified circuit:

dα = fα(εβ)− fM
α (4.4)

Objective function g is defined as the least square problem:

g = (dα)Tdα =
∑
i∈α

(di)
2 (4.5)

As optimization variables, virtual distortions εβ or modification parame-
ters µβ may be assigned. Gradients of the objective function with respect
to distortions or modification parameters can be calculated from the follow-
ing relations:

∂ g

∂ εβ
= 2

(
∂ dα
∂ εβ

)T

dα;
∂ g

∂ µβ
= 2

(
∂ dα
∂ µβ

)T

dα (4.6)
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where partial derivatives of the distance functions are:

∂ dα
∂ εβ

=
∂ fα
∂ εβ

= Df
αβ;

∂ dα
∂ µβ

= Df
αβ

∂ εβ
∂µβ

(4.7)

Gradient of objective function with respect to modification parameter is more
demanding numerically as it requires that gradient of distortions to be cal-
culated at every iteration. However, with modification parameters as opti-
mization variables, constraints can be easily defined.

Let formulate the algorithm of damage identification making use of the
steepest-descent approach. In every iteration, optimization variables (e.g.
modification parameters) will be updated according to the formula:

µ
(p)
β = µ

(p−1)
β − λ(p) ∂ g

∂ µβ
(4.8)

where p denotes the iteration step and λ(p) is a non-negative step length. Full
procedure is as follows:

Initial settings and data:

• reference responses α and distortion locations β

• measured reference responses fM
α

Initial computations:

• Linear responses uL
β and fL

α

• Influence matrices Du
ββ and Df

αβ

Initialization: εβ = [0]; µβ = [1]; fα = fL
α

Main procedure : in every iteration step p:

• Calculate distance functions: dα = fα − fM
α

• Calculate gradient:
∂ g

∂ µβ
= 2

(
∂ dα
∂ µβ

)T

dα

• Update optimization variables: µ
(p)
β = µ

(p−1)
β − λ(p) ∂ g

∂ µβ

• Calculate distortions (Eq. 3.28):
[
I−∆G Du

ββ

]
εβ =∆GuL

β

• Update simulated responses: fα = fL
α + Df

αβεβ
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The procedure of gradient-based optimization usually also demand that
the number of reference responses to be equal to the number of distortion
locations (if the system is under-determined, then optimization may result
in local minimum of objective function). Nevertheless, let run the procedure
for the example of a network defined during the formulation of identifica-
tion problem (Figure 4.7). Distortion locations were assumed in seven inner
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V2V1

V3 V4

Figure 4.7: Simple model of sensing network

resistors and potentials in four external nodes were assigned as reference
responses. Let all resistances are 10kΩ and DC test stimuli is E = +20V.
Let the simulated damage scenario is defined by the following modifications:
µ2 =0.1 and µ6 =0.2. Linear and simulated reference responses are:

fL
β =


7.742

12.258
7.742

12.258

 ; fM
β =


7.486

11.822
8.260

12.527


while the response influence matrix is:

Df
αβ =


2323 −897 −3865 −645 −436 −1469 −1677
1677 −436 −1469 645 −897 −3865 −2323
2323 3865 897 −645 1469 436 −1677
1677 1469 436 645 3864 897 −2323


The procedure of optimization was run as an unconstrained problem, with
distortions as optimized variables. The results, after 20 iterations, are pre-
sented in Figures 4.8 and 4.9 and in Table 4.1. Even though the objective
function was completely minimized (g(0) = 0.597, g(20) = 1.27×10−11), the
identified state of damages is far from the actual. However, an interesting fea-
tures may be noticed in the vector of virtual distortions which is equivalent
to the identified state of damages.
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Distortion µβ µβ εβ εβ
location simulated identified simulated identified

1 1 0.963 0 0.0000262
2 0.1 0.124 0.0001230 0.0000968
3 1 1.793 0 0.0000262
4 1 1.078 0 −0.0000444
5 1 1.520 0 0.0000182
6 0.2 0.234 0.0000988 0.0000807
7 1 0.975 0 0.0000182

Table 4.1: Simulated and identified parameters
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Figure 4.8: Evolution of parameters during optimization
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Figure 4.9: Identified state of damages
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Impotent states of distortions

Let the vector of distortions ε̂β refers to the actual, simulated damage sce-
nario, while εβ refers to damages identified during optimization. From the
numerical experiment (Table 4.1) results that both vectors may be related
as follows:

εβ = ε̂β + 0.0000262 ε0
1 − 0.0000182 ε0

2

where the vectors of impotent virtual distortions are:

ε0
1 =

[
1 −1 1 −1 0 0 0

]T
ε0

2 =
[
0 0 0 1 −1 1 −1

]T
Vectors ε0

1 and ε0
2 belong to the null-space of the response influence matrix:

Df
αβ ε

0
1 = [0]; Df

αβ ε
0
2 = [0]

It means that they don’t generate responses which can be observed in the
selected set of reference responses. Another such vector is:

ε0
3 =

[
1 0 0 1 0 0 1

]T
If the impotent states of distortions are referred to the subgraph of distortion
locations (Figure 4.10), it will occur that they comprise node cutsets or loops
(vector ε0

3 comprises a loop through a shorted voltage source). Hence, they
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4

5

6

7

Figure 4.10: Impotent states of distortions

may be interpreted in the same way as impotent sources (see Section 2.2).
Namely, impotent distortions comprising node cutset don’t affect state of cur-
rents (only potential in the node and voltages in incident branches), while
impotent distortions comprising loop don’t affect state of voltages (only cur-
rents in the loop). This fundamental impotent states occur in strictly defined
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configurations: in loop-type impotent states, distortions are of equal values
and the same direction with respect to loop circulation, while in cutset-type
impotent states, their values divided by branch conductances are equal and
are of the same orientation with respect to the common node (i.e. equivalent
voltage distortions would be of the same values and polarity).

The solution obtained from optimization may be perturbed by the arbi-
trary linear combination of impotent distortions:

εβ = ε̂β +
∑
i

λiε
0
i

where ε0
i is fundamental vector of impotent distortions (e.g. it defines a loop

or node cutset within the set of distortion locations) and λi is a scaling factor
defining the intensity of distortions in a given impotent state. Generally,
λi can be of arbitrary value and not all fundamental vectors can be easily
distinguished, hence extraction of actual solution from the optimized one is
generally impossible. However, the concept behind the proposed methodology
of damage identification is to design the sensing network in such a way as to
eliminate the possibility of generation of impotent states during optimization
(e.g. by proper selection of distortion locations and reference responses).

4.4 Transient inverse analysis (time domain)

The relation for simulated responses with dynamic influence matrix (Equa-
tion 3.25), which is a discrete version of convolution operation, could have
been transformed into the linear system with lower-triangular block matrix
of Toeplitz blocks, but it would be of huge dimension (original dimension
times number of time steps), probably extremely ill-conditioned and itera-
tive methods would have to be applied to calculate distortions. From this
reason, the problem of damage identification in dynamic case will only be
approached using gradient-based optimization.

Let the vectors of distance functions dα[t] define differences between in-
stantaneous values of responses simulated by the actual state of virtual dis-
tortions and responses measured in the modified circuit:

dα[t] = fα[t]− fM
α [t] (4.9)

The objective function g is defined as the least square problem:

g =
∑
t

dT
α [t] dα[t] (4.10)
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Gradients of the objective function with respect to parameters of conductance
and capacitance modifications can be calculated from the following relations:

∂ g

∂ µβ
= 2

∑
t

[
∂ fα[t]

∂ µβ

]T
dα[t];

∂ g

∂ νβ
= 2

∑
t

[
∂ fα[t]

∂ νβ

]T
dα[t] (4.11)

The procedure of calculation of derivatives of responses with respect to mod-
ification parameters was presented in the Section 3.5 (Equations 3.52, 3.53
and 3.55). A general scheme of optimization procedure, based on steepest
descent approach, may be formulated similarly as in the steady-state.
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Figure 4.11: Simple model of dynamic sensing network

Let apply the procedure to solve the identification problem for the exam-
ple of a sensing network excited by dynamic test stimuli shown in Figure 4.11.
Naturally, dynamic analysis only makes sense if the circuit is also dynamic,
hence the model of a network has been equipped with additional capacitors.
Distortion locations are in 7 internal resistors, reference responses are po-
tentials in 4 external nodes and the assumed damage scenario is µ2 = 0.1
and µ6 = 0.2. The results of identification are presented in Figures 4.12 and
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Figure 4.12: Identified state of damages
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4.13. An almost exact solution have been reached – the applied procedure
hasn’t used step length control hence the solution oscillated around global
minimum. Let notice that impotent states of distortions (node cutset type)
couldn’t be generated in this case because internal nodes were incident with
inalterable capacitors.
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Figure 4.13: Evolution of parameters during optimization

Experimental verification

In order to check the algorithms of simulation and verify the developed
methodology of damage identification, an experimental setup has been assem-
bled. The setup included a programmable function generator to supply test
stimuli and multi-channel data acquisition board connected to PC computer
with NI Signal Express software for data handling. Numerical algorithms
have been implemented and executed under Scilab environment. The circuit
under test (Figure 4.14), simulating physical model of a sensing network,
consisted of 40 discrete resistors (10kΩ± 10%), arranged in rectangular grid
of 4-on-4 blocks, and 16 capacitors (1µF±10%) across every block. Every
component was equipped with hardware jumper (placed on the other side
of a board), which enabled to simulate a break in the component or to re-
arrange the topology of the circuit. All internal nodes were accessible.

To ensure a good agreement between numerical and experimental results,
parameters of all components have been precisely measured and fed into the
numerical model. In Figure 4.15, an example of measured reference responses
for dynamic test stimuli and a comparison with responses simulated numer-
ically, are presented. The obtained differences were below 1%.
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Figure 4.14: Experimental grid – a view and circuit diagram

Examples of damage identification

Experimental setup enabled to investigate the damage identification problem
in typical grid network for various configurations of test stimuli and response
measurements. The problem was formulated as a search for damages in 24
internal resistors (depicted in black – Figure 4.16) while locations of test
stimuli and reference responses were assumed only in external nodes of a
network. The exemplary results of identification for two different scenarios
of damages (breaks in resistors depicted in red) and locations of test stimuli
are presented in Figures 4.17 and 4.18 – red bars correspond to assumed
modifications of conductances and green bars are the results of identification.
In all cases, the set of reference responses included electric potentials in four
external nodes (A,B,C,D) on every side of the network and a windowed sine
voltage signal of base frequency 50Hz and two-period length was used as a
test stimuli (Fig. 4.16). An equal number of iterations was performed, with
the value of objective function reduced approximately by the factor of 104.

The general conclusion derived from the conducted experiments is that
grid configuration is not diagnosable. Regardless of the shape and location of
applied test stimuli (square, triangle and ramp waves, as well as combinations
of harmonic functions were applied) it was impossible to identify single fault
scenarios as well as multiple, separated damages. In a case of several clustered
damages (Fig. 4.17), the procedure of identification sometimes produced good
results, but it strictly depended on location of applied stimuli.
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Figure 4.17: Identification in grid network, damage scenario 1
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Figure 4.18: Identification in grid network, damage scenario 2
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4.5 Optimal network topology

Numerical simulations and experimental tests confirmed the expected fact
that for typical regular configurations of networks, the problem of damage
identification is ill-posed – the solution obtained from the gradient-based op-
timization, although minimizes the objective function, may not be equal to
the actual damage scenario. VDM-based inverse analysis gives a simple and
intuitive interpretation for one of the reasons of ambiguity of the problem
of damage identification – vector of virtual distortions, which corresponds
to the vector of optimized modification parameters, is a sum of exact and
spurious solutions. Exact solution is associated with virtual distortions which
simulate the occurred damages while spurious solution is associated with im-
potent states of virtual distortions. Impotent states of distortions belong to
the null-space of the response influence matrix. As a result, they don’t in-
voke any changes in the selected set of reference responses. Consequently,
they don’t affect the value of objective function and may freely evolve during
optimization (although will be suppressed if violate the imposed constraints).
Impotent states of distortions form two different configurations: they appear
in loops or in node cutsets. Values and directions of distortions comprising
an impotent state are mutually coupled by topological constrains (i.e. they
need to cancel each other in Kirchhoff’s laws).

Based on this knowledge, it may be deduced that impotent states may
be eliminated by imposing topological restrictions on the set of distortion
locations or by applying an adequate measuring strategy. Let denote ele-
ments which belong to the set of distortion locations as sensors (such is
their assumed function in the sensing network) and other elements as links.
Topological restrictions dictate that a subgraph defined by sensors cannot
include loops and node cutsets. In other words, in full graph of the sensing
network, distortion locations should comprise a section of a tree and every
node should be incident with at least one link. These are however not suffi-
cient conditions because impotent states may be also formed through links
– let consider such instance illustrated in Figure (4.19). If a link completes
node cutsets in adjacent nodes, then despite the fact that distortions cannot
be generated in links, impotent states may appear in such configurations that
distortions associated with links cancel each other.
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Figure 4.19: Impotent states through links

Although impotent states barely influence global circuit responses, they
do introduce some local perturbations. Namely, loop-type impotent states
changes currents in associated elements and node cutset-type states changes
voltages in associated elements, as well as potential in the node. If the set
of reference responses includes current measurement in sensor loop and volt-
age/potential measurement in sensor node cutset, generation of impotent
states during optimization will be suppressed.

Rules of design for diagnosability

The conclusion of the analysis is that the topology of the sensing network
should be designed in such a way as to eliminate all configurations which
introduce ambiguity of solution. First of all, the generation of impotent states
of distortions during optimization should be suppressed. Secondly, indistinct
distortion locations should be eliminated. To accomplish these objectives,
layout of the sensing network should comply with the following set of rules:

• No two sensors are in series or in parallel.

• Linear responses in every sensor are non-zero (no bridge configura-
tions).

• Sensors don’t comprise a loop or current in the loop is included in the
set of reference responses.

• Sensors don’t comprise a node cutset or potential in the node is included
in the set of reference responses.

• Links cannot complete node cutsets.

The problem of finding optimal network layout may be considered as a task
of topological optimization based on graph or system theory [51, 52]. Namely,
starting from the base topology of sensing network, where all elements are
included in the set of distortion locations (e.g. sensors arranged in dense grid
pattern), the aim of optimization is to exclude a minimal number of elements
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to obtain topological configuration which satisfies the postulated conditions.

The above rules cover only topological conditions of diagnosability. Unique-
ness and accuracy of identification are also related with sensitivity of refer-
ence responses on occurring damages. This problem can be in turn considered
as task of selection of optimal shape and location of test stimuli and optimal
number and locations of reference responses. In general, design of optimal
network layout can be considered as a combination of input identification,
system optimization and sensor placement problems, which include contin-
uous and discrete variables and opposing objective functions, expressed in
terms of both system characteristics and responses. Because of its complex-
ity, formulation of such a problem has not be attempted. The issue of finding
optimal network configurations has been approached through case studies.

Case studies

Grids

Figure 4.20: Grid patterns

From the point of view of health monitoring, branches of the sensing
network which are expected to operate as sensors of damages, should be
preferably arranged in some regular fashion in order to uniformly cover the
monitored area. Typical grid patterns of triangular, rectangular or hexago-
nal type ideally meet this request. However, from the point of view of dam-
age identification, grids are the worst possible topologies to diagnose: they
contain loops, node cutsets, symmetry and with additional assumption of
inaccessible internal nodes for response measurements, can be considered as
non-diagnosable. The results obtained for a simple grid network (Figures 4.17
and 4.18) confirm the fact of high ambiguity of damage identification. Grid
patterns provide however good base structures which can be redesigned in
order to obtain optimal topological configuration (from the point of view of
diagnosability).
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Trees

Tree structures are natural configurations satisfying the defined rules of de-
sign. Starting from the base grid pattern, let select the same amount of 24
distortion locations, re-arranged in a form a tree (there are no internal loops
and most of possible node cutsets have been concentrated around points
where reference response are measured). Exemplary results of identification
for various damage scenarios are presented in Figures 4.21 and 4.22.
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Figure 4.21: Identification in tree network, damage scenario 1

Again, the results of identification strongly depend on the location of test
stimuli. In most cases, a solution close to the actual have been obtained for at
least one test signal configuration. This suggests that accuracy of solution is
more affected by sensitivity of responses than topological conditions and the
tree networks could have been possibly uniquely diagnosed if the locations
of test stimuli and response measurements had been optimized.

Ladders and ribbons

In the case of two-dimensional networks, without an access to the internal
nodes, the main problem is low sensitivity of measured responses on dam-
ages occurring within the network. Alternative idea is to design the network

89



0.0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1.0

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24
A

D

B C

1

8

24

2

3

4

5 7

6

9

10

12

11

13

14 15

16

17

18

19

20

21 23

22
+E

0.0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1.0

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24
A

D

B C

1

8

24

2

3

4

5 7

6

9

10

12

11

13

14 15

16

17

18

19

20

21 23

22
+E

Figure 4.22: Identification in tree network, damage scenario 2

as an elongated structure, where possible damage lie on the path of test
signal propagation and hence introduces significant perturbations in circuit
responses. The possible configuration of ladder- and ribbon-like topologies
are presented in Figure 4.23 (resistors in black define a set of distortion lo-
cations). Such configurations fulfill the proposed rules of design – there are
no loops and node-cutsets comprised by distortion locations.

+E

+E

Figure 4.23: Ladder and ribbon patterns

In Figure 4.24, the exemplary results of damage identification for simple
6-block ladder network with 11 distortion locations are presented. Based only
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on two reference responses (nodes A, B), it was possible to identify arbitrary
single fault scenario, but in case of multiple damages the procedure produced
false results. In a case o three reference responses located regularly along the
network (nodes A,B,C), an arbitrary damage scenario was exactly identified.

Concept of switchable networks

The general conclusion of the study is that the problem of damage identifi-
cation in electrical networks can be uniquely solved only for a case of simple,
one-dimensional topological configurations like ladders or ribbons. Networks
of typical grid topologies are not diagnosable (problem is ill-posed) and re-
design of grid (e.g. into tree), without simultaneous selection of optimal test
stimuli and measuring strategy, may also not ensure the correctness of solu-
tion because of low sensitivity of responses on occurring damages. An answer
to this problem is the concept of switchable sensing networks. According to
the concept, the base sensing network of arbitrary topology is controlled
by another circuitry which separates (isolates electrically) easily diagnosable
parts or blocks for local search of damages. For example, blocks of ladder-like
topologies are isolated from the base grid network (Figure 4.25).

The problem of damage identification in global base network is formu-
lated as local searches of damages in isolated subnetworks. Decomposition
of the base network need to ensure that any global distortion location is
included in one of the locally defined sets of distortion locations. It is also
assumed that all isolated subnetworks use the same terminals for test stim-
uli supply and response measurements. In the example, any subnetwork is
supplied through the same pair of nodes and is monitored using two out of
four available reference responses. Practically, subnetworks localized close to
external edges of base network can be diagnosed more precisely (e.g. because
greater number of reference responses may be available), hence the identified
elements which are common for different subnetworks, can be excluded from
distortion locations in successive isolations.

At the time of the writing, technical solutions for the controlling circuitry
are still under development (patent procedure) hence will not be discussed in
detail. It can be only mentioned that isolation of subnetworks will be done
through a system of electrical switches localized in the nodes of the base
network. The concept of switchable network, of configuration as in the Fig-
ure 4.25, was positively verified on experimental setup (a system of jumpers
was utilized to isolate successive ladder subnetworks from the base grid).
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Figure 4.24: Identification in ladder network for various damage scenarios
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Summary

Original achievements

The main thesis of the work postulated that the problem of damage identifi-
cation in electrical networks can be solved through dynamic inverse analysis,
providing that configuration of the network complies with some pre-defined
conditions. In the course of dissertation, an original methodology of diag-
nosis, based on the adapted algorithms of the Virtual Distortion Method,
has been developed, verified and successfully applied to identify damages in
electrical networks of tree, ladder and ribbon topology, which all satisfy the
introduced topological conditions of diagnosability. Also, indirectly, based on
the concept of switchable networks, the developed methodology can be ap-
plied to diagnose networks of grid topologies. In author opinion, the thesis
has been validated and all assumed objectives have been accomplished.

Particularly, the following original achievements can be distinguished:

• The concept of electrical virtual distortions, which enable to simulate
modifications of conductance and/or capacitance, has been adapted to
DC, AC and dynamic circuit analysis.

• The concept of electrical influence matrices has been adapted.

• VDM-based procedures of reanalysis, which enables to quickly recal-
culate selected circuit responses on local modifications of parameters,
have been implemented.

• VDM-based procedures of sensitivity analysis with respect to param-
eters of conductance or capacitance modifications, have been imple-
mented.

• A gradient-based optimization procedures for solving the problem of
damage identification in steady-state and dynamic circuits have been
implemented.
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• The concept of impotent states of distortions, which enables to explain
the source of non-uniqueness of solution to damage identification prob-
lem, has been introduced.

• A set of rules for design of diagnosable sensing networks, has been
formulated.

• Topological configurations of trees, ladders and ribbons have been iden-
tified as possible applicable solutions of electrical sensing networks.
Electrical sensors in the form of tree and ladder networks, as well as
the method of monitoring of structural elements with the said sensors,
are patent pending solutions1

• The concept of structural health monitoring (ELGRID) system based
on electrical sensing networks (plain and switchable) has been intro-
duced.

• New problems of topological and multi-criteria optimization for diag-
nosability and design of switchable networks have been identified.

In practical aspect, a package of numerical tools for analysis and diagno-
sis of electrical sensing networks have been developed and implemented in
Scilab [56] environment.

Further development

The assumed model of electrical sensing network was intentionally limited
to simple models of linear RLC circuits. However, capabilities of both MNA
and VDM are much wider and the developed methodology of network diag-
nosis may be extended to include more complicated circuit configurations.
On the one hand, all linear components or devices which can be handled
by the Modified Nodal Analysis (e.g. controlled sources, mutual inductors or
operational amplifiers) may be incorporated. On the other hand, Virtual Dis-
tortion Method utilizes the concept of plastic-like virtual distortions which
enable to simulate finite elements with piece-wise linear characteristics. As a
result, simple models of diodes, switches or circuit breakers could be possibly
implemented.

The proposed methodology of damage identification has been based on
the steepest descent approach, which is slowly convergent and requires many

1Polish patent application no. P-390193
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iterations. The heaviest computational effort in VDM-based procedures is
related with calculation of gradient of objective function, which needs to be
done at every iteration. In order to accelerate the convergence, it is planned
to implement procedures with optimized or adaptive step length, or to ap-
ply other optimization approaches (e.g conjugate gradients or quasi-Newton
methods). The methodology has been formulated to identify arbitrary mod-
ifications of parameters within the network, which is the most general case
and allows to assume any damage scenario, but usually results in minor in-
accuracies of the obtained solution (e.g. residual deviations of parameters
in non-modified elements). In practical implementation in the monitoring
system, where particular types of damages can be expected (e.g. breaks),
introduction of additional constraints or penalty functions on optimized pa-
rameters should lead to more precise results of identification.

Another step will be formulation of algorithms for automatic generation of
optimal network layouts. This will be considered as a single- or multi-criteria
optimization problems involving topological conditions of diagnosability but
also the issues of selection of optimal test stimuli and reference responses.
From practical reasons, an important aspect will be minimization of the
number of required test stimuli supply and response measurement, which is
however opposed to the problem of diagnosability. In the case of switchable
networks, a new problem is to determine the optimal decomposition of the
base layout into subnetworks, which will enable to identify any combination
of defects within the assumed global set of distortion locations, for the fixed
locations of test stimuli and response measurements.

Ultimately, the developed methodology is intended to be applied in the
ELGRID monitoring system, particularly in the implementation based on
the concept switchable networks. The ELGRID system is developed within
two Polish research projects which involve the problem of health monitor-
ing of aerospace materials and civil engineering infrastructure. Namely, the
system will be applied to detection of cracks and delamination in laminated
composite panels and detection of cracks in concrete structures.
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