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Preface

The thorough Investigations of the new types of materials  –  nano-  and 
ultrafine- grained metallic solids, amorphous metal alloys called glassy 
metals, and high- performance alloys – lead to an essential general conclu-
sion. Observing their failure processes, one may notice that a paradigm 
shift transpires before our eyes regarding the widely known and accepted 
ductile failure micromechanisms as initiation, growth, and coalescence of 
voids. The recent nonstandard experiments confirm the novel observations 
about the vital importance of accompanying shear modes, e.g. stereo digi-
tal image correlation, the tomograms of X- ray, or synchrotron techniques 
related to 3D imaging methods. Dunand and Mohr (2010), using two-  and 
three- dimensional digital image correlation technique, measured the sur-
face strain fields on tensile specimens, including the one with a central 
hole and circular notches. The samples came from TRIP780 steel sheets. 
The authors concluded that the non- porous plasticity model’s numerical 
predictions agree well with all macroscopic measurements for various 
loading conditions. Dunand and Mohr (2011) studied for TRIP780 steel  
the shear- modified Gurson model’s predictive capabilities (Nielsen and 
Tvergaard 2010) and the modified Mohr–Coulomb fracture model (Bai and 
Wierzbicki 2008). The result is that significant differences between the two 
models appear with the less accurate prediction for the shear- modified 
Gurson model. Gorij and Mohr (2017) present a new micro- tension and 
micro- shear testing technique applying aluminium alloy 6016- T4 flat 
dogbone- shaped, as well as notched and central hole samples and smiley- 
shear micro- specimens to identify the parameters of hardening law and 
fracture initiation model. The Hosford–Coulomb damage indicator model 
predicts the ductile fracture initiation that appears imminent with the 
onset of shear localisation.
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It became then evident that the known porous material models, e.g. by 
Shima et al. (1973), Shima and Oyane (1976), or Gurson (1977) extended by 
Tvergaard and Needleman (1984), reveal limited applications besides the 
cases when high triaxiality states are prevalent. Therefore, the studies of 
inelastic deformation and failure of materials should require, in my view, a 
fresh and novel approach. It aims towards a better understanding and 
description of the multilevel character of shear deformation modes. It is 
also worth stressing that Pardoen (2006) emphasizes the role of shear locali-
sation in low- stress triaxiality ductile fracture.

The known experimental data reveal that metallic solids’ inelastic 
deformation appears in the effect of competing mechanisms of slips, 
twinning, and micro- shear banding. Shear banding is a form of instabil-
ity that localises large shear strains in relatively thin bands. The micro- 
shear bands transpire as concentrated shear zones in the form of 
transcrystalline layers of the order 0.1 μm thickness. The observations 
show that a particular micro- shear band operates only once and develops 
rapidly to its full extent. The micro- shear bands, once formed, do not 
contribute further to the increase of inelastic shear strain. Thus, it appears 
that successive generations of active micro- shear bands, competing with 
the mechanisms of multiple crystallographic slips or twinning, are 
responsible for the inelastic deformation of metals. Therefore, identify-
ing the physical origins of the initiation, growth, and evolution of micro- 
shear bands is fundamental for understanding polycrystalline metallic 
solids’ macroscopic behaviour.

A new physical model of multilevel hierarchy and evolution of micro- 
shear bands is at the centre of this work. An original idea of extending the 
representative volume element (RVE) concept using the general theory of 
propagation of the singular surfaces of microscopic velocity field sweeping 
the RVE appears useful for the macroscopic description of shear- banding 
mechanism in viscoplastic flow, cf. Pęcherski (1997,  1998). The essential 
novelty of the presented approach comes from numerous observations 
revealing that the process of shear banding is the driving factor – a cause 
and not a result. So it turns out, in my view, that the successive genera-
tions of micro- shearing processes induced mostly by changing deformation 
path produces and controls viscoplastic flow. On the other hand, one may 
recall many valuable papers containing the results of in- depth analysis, 
modelling of dislocation- mediated multi- slip plastic deformation, and 
numerical simulations of the laminate microstructure, bands, or shear 
strain localisation in crystalline solids cf. Dequiedt (2018), Anand and 
Kothari (1996), Havner (1992), as well as Petryk and Kursa (2013) and the 
wealth of papers cited herein.
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Recent studies reveal that two types of shear banding, generating the ine-
lastic deformation in materials, can play a pivotal role.

 ● The first type corresponds to the rapid formation of the multiscale shear- 
banding systems. It contains micro- shear bands of the thickness of the 
order of the 0.1 μm, which form clusters. The clusters propagate and pro-
duce the discontinuity of microscopic velocity field vm. They spread over 
the RVE of a traditional polycrystalline metallic solid. A detailed discus-
sion of such a case is presented in Pęcherski (1997, 1998). A new concept 
of the RVE with a strong singularity appears, and the instantaneous shear- 
banding contribution function fSB originates.

 ● The second type is a gradual, cumulative shear banding that collects micro- 
shear bands’ particular contributions and clusters. Finally, they accumulate 
in the localisation zone spreading across the macroscopic volume of consid-
ered material. Such a deformation mechanism appears in amorphous solids 
as glassy metals or polymers. It seems that there are the local shear transfor-
mation zones (STZs) behind the cumulative kind of shear banding, cf. Argon 
(1979, 1999), Scudino et al. (2011), and Greer et al. (2013). The volumetric 
contribution function fSB

v  of shear banding appears in such a case.

Often both types of the above- mentioned shearing phenomena appear with 
variable contribution during the deformation processes. During shaping oper-
ations, this situation can arise in polycrystalline metallic s olids, typically 
accompanied by a distinct change of deformation or lo ading paths or a lo ading 
scheme. Also, materials revealing the composed, hybrid structure character-
izing with amorphous, ultra- fine grained (ufg), and nanostructural phases are 
prone to the mixed type of shear banding responsible for inelastic deforma-
tion, cf. the recent results of Orava et al. (2021) and Ziabicki et al. (2016).

The commonly used averaging procedures over the RVE need deeper analy-
sis to account for the multilevel shear- banding phenomena. The RVE of crystal-
line material is the configuration of a body element idealized as a particle. The 
particle becomes a carrier of the inter- scale shearing effect producing the visco-
plastic flow. It leads to an original and novel concept of the particle endowed 
with the transfer of information on a multilevel hierarchy of micro- shear bands 
developing in the body element of crystalline material. The discussion about 
the difficulties and shortcomings of applying a traditional direct multiscale 
integration scheme appears in Chapter 4. The remarks mentioned above moti-
vate the core subject of the work and underline the new way of thinking.

Ryszard B. Pęcherski
2022

Kraków and Warszawa, Poland
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1.1   The Objective of the Work

The subject of the book evolved since the 1990s from the many years’ stud-
ies, in several joint research projects conducted together with the investiga-
tion group of Andrzej Korbel and Włodzimierz Bochniak, professors at the 
Faculty of Non- Ferrous Metals of the AGH University of Science and 
Technology in Kraków, Poland (formerly Akademia Górniczo – Hutnicza, 
in English: Academy of Mining and Metallurgy), cf. Figure 1.1. It concerned 
physics and theoretical description of deformation processes in metals,  
particularly in hard deformable alloys. The long- time joint efforts to under-
stand the physical mechanisms responsible for observed phenomena coined 
the subject of this work. Many years of investigations of metal- forming  
processes based on multilevel observations – on a macroscopic scale with 
the naked eye, microscopic ones using optical microscopy, high- resolution 
transmission electron microscopy, and scanning electron microscopy – led 
to the critical conclusion. The traditional approach of classical plasticity 
theory based solely on crystallographic slip and twinning in separate grains 
is inadequate for predicting and modelling observed deformation processes. 
Such an observation played a pivotal role in developing an innovative metal- 
forming method called KOBO, the acronym of inventors names ‘Korbel’ and 
‘Bochniak’. This book attempts to provide theoretical foundations and 
empirical evidence of viscoplastic flow produced by shear banding. In the 
future, the presented results should make the basis for the formulation of 
computer codes necessary for numerical simulations of deformation pro-
cesses in industrial applications. It seems that this book might fill at least 
partly the mentioned gap.

1

Introduction

c01.indd   1 05-04-2022   10:26:50
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1 Introduction2

1.2   For Whom Is This Work Intended?

The book’s readers may be graduate and postgraduate students in engineer-
ing, particularly material science and mechanical engineering. Researchers 
working on the physical foundations of inelastic deformation of metallic 
solids and numerical simulations of manufacturing processes could also 
benefit from this study. The content of the work is also directed at specialists 
in the field of rational mechanics of materials. The prerequisite knowledge 
of material science and continuum mechanics with related mathematical 
foundations, as vector and tensor algebra and tensor analysis, will appear 
helpful for the readers. The fundamental background may provide the 
recent work written by eminent scholars of great experience, Morton 
E. Gurtin, Eliot Fried, and Lallit Anand (Gurtin et al. 2009). Also, a modern 
and integrated study across the different observation scales of the founda-
tion of solid mechanics applied to the mathematical description of material 
behaviour presented in the pivotal work (Asaro and Lubarda 2006) is rec-
ommendable for the readers. These works comprehensively cover the sub-
ject of rational thermomechanics, being the contemporary approach of 
classical treatises ‘standing on the shoulders of giants’ (https://en.wikipedia. 
org/wiki/Standing_on_the_shoulders_of_giants), cf. Chapter 4 for the dis-
cussion of a historical thread.

Figure 1.1  The historical AGH UST emblem. Source: AGH University of Science 
and Technology (https://www.agh.edu.pl/en/university/history- and- traditions/
emblem- and- symbols/).

c01.indd   2 05-04-2022   10:26:51
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1.3   State of the Art

1.3.1  Motivation Resulting from Industrial Applications

Korbel and Szyndler (2010) presented an overview of the Polish engi-
neering inventions’ contribution to metal- forming technologies. Three 
industrial sectors can play an important role: electrical power plants, 
transportation, and natural environment protection. First of all, one 
should focus on high- quality and energy- saving extrusion and forging 
processes of the elements made of structural steel, non- ferrous metals, 
and light alloys used to produce parts of machines and other equipment 
manufactured by all industry sectors.

There is a need and necessity to implement innovative technical and 
technological solutions into metal- forming practice, making production 
more efficient, energy- saving, and less expensive. So, we face three chal-
lenges with new, non- conventional technologies, such as metal- processing 
technology in the cyclically variable plastic deformation – known as the 
KOBO method, cf. the US and European patents description Korbel and 
Bochniak (1998). The technological solution of metal forming, the KOBO 
method, satisfies both demands: low manufacturing costs and control of 
the metal substructure properties in a single operation. The premises, at 
the background of the method, result from the  thorough experimental 
studies of plastic deformation mechanisms in the course of strain path 
change conditions (Korbel and Szyndler 2010). The change in the mode of 
plastic flow from the crystallographic slip of dislocations within separate 
grains into trans- granular localised shear (shear banding) and associated 
decrease of metal hardening play a controlling role in the KOBO method. 
Figure  1.2 illustrates the extrusion process controlled by strain path 
change due to the reversible twisting of the die in an oscillatory manner. 
The die oscillations’ angle and frequency are the controlling factors of 
the  extrusion process influencing the metal structure and mechanical 
properties.

Figure 1.3 shows that the load of the order of 1MN is sufficient to cold–
extrusion of hardly deformable aluminium alloy 7075 into the billet form 
with 700 times cross- section reduction.

Due to simultaneous measurements of the extrusion force and the die- 
twisting torque, it was possible to evaluate the forming process’s power 
consumption and the dependence upon the extrusion rate. The discussion 
on the power consumption presented in Korbel and Szyndler (2010) illus-
trates the method’s high potential in diminishing the process’s plastic work 
with simultaneous increase of its efficiency. To assess the global effect of 

c01.indd   3 05-04-2022   10:26:51
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energy saving on the KOBO process, one should observe that there is no 
need to heat the billet higher than that in conventional metal extrusion 
processes. The studies of mechanical properties of extruded metals reveal 
additional essential features of KOBO products. Worthwhile mentioning is 
the unexpected thermal stability of the mechanical properties, e.g. plastic 

1

2
4

3

+–

Figure 1.2  Scheme of metal extrusion throughout the oscillating die (KOBO 
method): 1 – billet, 2 – container, 3 – punch, 4 – oscillating die (Korbel and 
Szyndler 2010). Source: Copyright by Aleksandra Manecka – Padaż.

Figure 1.3  The pattern of the aluminium rest and extruded wire. The extrusion 
ratio equals 700. Source: Korbel and Szyndler 2010. Copyright of Włodzimierz 
Bochniak.

c01.indd   4 05-04-2022   10:26:51
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flow limit and ultimate tensile strength are not affected by heating in the 
temperature range where recovery processes are used to produce softening. 
Furthermore, hardly deformable aluminium alloys (e.g. Al 7075) and mag-
nesium alloys (AZ31, AZ91) subjected to KOBO extrusion become super-
plastic at elevated temperature, cf. (Korbel and Szyndler 2010). The careful 
control of the KOBO- forming processes leads to the unique possibility  
of obtaining the extruded or forging products of the desired shape and 
properties. Experiments on extrusion of hardly deformable metallic mate-
rials reveal practically no limits in getting the desired shape of extrudates 
under ‘cold deformation’ conditions. Some chosen examples are displayed 
in Figures 1.4 and 1.5.

The paper (Bochniak et al. 2006) deals with the KOBO method of forming 
bevel gears from structural steel. The study’s subject is a single operation of 
complex forging on a press with the reversible rotating die displayed in 
Figure 1.6. Comparing the KOBO method’s forging process with the con-
ventional ones reveals that the punch pressure and temperature are consid-
erably lower. Despite such a reduction, the products represent the die shape 
correctly, the structure becomes homogeneous, and the material has desired 
mechanical properties (see Figure 1.4) containing an example of the regular 
bevel gear obtained by the KOBO method from structural steel at the stud-
ied temperature of 850 °C (Bochniak et al. 2006). Let us also recall a nice 

Figure 1.4  Examples of the KOBO extrusion and forging products received in 
semi- industrial conditions. Source: Korbel and Szyndler 2010. Copyright of 
Włodzimierz Bochniak.
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illustrative picture of the bevel gear displayed on the book’s cover. The 
image provided kindly by the editorial staff comes from other sources, and 
the shown example of bevel gear is the traditional milling effect.

Summing up, the authors observe the KOBO method’s extrusion or forg-
ing process from the structural point of view. The slips’ organisation with 

Figure 1.5  Fine tube of magnesium alloy AZ91 extruded at room temperature 
using 1MN load capacity press. Source: Korbel and Szyndler 2010. Copyright of 
Włodzimierz Bochniak.

+–

2

1

3

Figure 1.6  Schematic presentation of the forging process by the KOBO method: 
(1) forged material, (2) cyclically rotating punch, and (3) die (anvil). Source: 
(Bochniak et al. 2006). Copyright by Aleksandra Manecka – Padaż.
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increasing strain leads to transgranular, localised plastic strain. Such a 
 localisation appears as growing clusters of micro- shear bands and is related 
to strain softening of metal. The rapid change of the loading scheme and 
corresponding change of the deformation path leads to instantaneous 
localisation of plastic flow in the shear bands irrespective of the deforma-
tion process’s advancement. According to Korbel and Bochniak (2003), the 
mentioned procedure does not guarantee to keep this state for a long time, 
and the cyclic repetition of additional external agents in this process is 
required.

1.3.2  KOBO Processes Resulting in Viscous Effects

The experimental investigations and microscopic analysis of the substruc-
ture of metals and alloys carried out by Korbel and Bochniak investigation 
group led to the novel observation of viscous effects of deformation pro-
cesses by the KOBO method. The results presented in the papers by Korbel 
et al. (2011), Bochniak et al. (2011, 2013) indicate that the point defects of 
supra- equilibrium concentration, generated in periodically variable condi-
tions of plastic flow in the course of the KOBO process, play a decisive role. 
The massive production of point defects leads to the superplastic behaviour 
of metallic solid not observed in other plastic- forming methods. The authors 
state that: ‘It seems reasonable, therefore, to conclude that die oscillation 
frequency (torsion of material) is the determinant of the amount of point 
defects and its increase should enhance the process. The occurrence of dif-
fusing atoms or vacancies stream equalising the concentration leads to a 
significant decrease in viscosity of the material, generating an alternative to 
the dislocation slip mechanism of plastic deformation’, cf. (Korbel 
et al. 2011), p. 2893. The analysis justifies the author’s view that the mecha-
nism of metal extrusion using the mentioned KOBO technology is induced 
by the intensive generation of point defects. Thus, the authors hypothesise 
that a viscous flow with ‘Newtonian fluid’ features is a dominant deforma-
tion mechanism in KOBO processes. Generally, they identify the descrip-
tion of deformation occurring, e.g. during extrusion by the KOBO method 
as viscoplastic flow. However, on the other hand, in deformable solids’ 
mechanics, the early viscoplasticity model belongs to Bingham (1916). It 
shows the linear dependency of shear stress on shear strain rate:

 0 ,

where τ0 is yield stress in shear and   denotes the shear strain rate. Neglecting 
τ0 = 0, one arrives at the linear model of ‘Newtonian fluid’. An analogy with 
magnetorheological materials appears here. From the papers of Frąś (2015), 
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Frąś and Pęcherski (2018), it seems that the linear Bingham model does not 
conform to experimental data contrary to the original nonlinear viscoplastic-
ity model of Perzyna (1963). The similar conclusion leads the above discus-
sion on a viscous flow resulting from the massive production of point defects 
activated in KOBO processes. In my view, a more comprehensive theory of 
the viscoplastic flow produced by shear banding is in order. The observation 
about the importance of viscous effects accompanying rate- dependent plas-
tic flow during KOBO processes is accounted for in the book.

1.4   Summary of the Work Content

The preface introduces novel concepts and the framework of the book. 
Chapter 1 presents the motivation and leading thread of the work related to 
a detailed discussion of the physical basis developed in Chapter  2. This 
chapter contains the synthetic approach to observations that appear helpful 
in formulating the viscoplastic flow description in metallic solids produced 
by shear banding. These views are underlined in the text as the set of state-
ments denoted Observations 2.1, 2.2, . . . 6.1, including the results of own 
inquiries. The heuristic foundations of the theoretical description of large 
inelastic deformations create the rational formulation of a multiscale sys-
tem of shear bands formation. Chapter 3, on the other hand, accounts for 
shear banding in the continuum model of inelastic deformations. This 
chapter contains the results of the earlier author’s investigations related to 
micromechanical foundations of finite plastic deformations theory account-
ing for the shear- banding mechanism summarised in Observation 3.1 and 
Hypothesis 3.1, extending the generally accepted concept of representative 
volume element (RVE). The extension provides the possibility of the exist-
ence in RVE of the singular discontinuity surface of order one of the micro-
scopic velocity field on which the tangential component of velocity 
experiences a jump travelling at the speed Vs. Further, Chapter 4 presents 
the basics of rational mechanics of materials. A small historical account of 
rational mechanics is given here. The continuum mechanics description 
of shear banding is the subject of Chapter 5. The theoretical foundations of 
the deformation of a body due to shear banding are presented in Chapter 6. 
In Chapter 7, the yield limit versus shear banding is considered, and, in 
particular, state of the art regarding the yield condition for modern materi-
als is the subject of thorough study. Viscoplasticity models accounting for 
shear banding with related examples are under investigation in Chapter 8. 
The conclusions and remarks concerning further possible studies are pro-
vided in Chapter 9.
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