
Available online at www.keaipublishing.com/en/journals/journal-of-magnesium-and-alloys/ 

Journal of Magnesium and Alloys 13 (2025) 1721–1742 
www.elsevier.com/locate/jma 

Full Length Article 

Indentation-induced deformation twinning in magnesium: Phase-field 

modeling of microstructure evolution and size effects 

Mohsen Rezaee-Hajidehi, Przemysław Sadowski, Stanisław Stupkiewicz 

∗

Institute of Fundamental Technological Research (IPPT), Polish Academy of Sciences, Pawińskiego 5B, 02-106 Warsaw, Poland 
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Abstract 

Magnesium is distinguished by its highly anisotropic inelastic deformation involving a profuse activity of deformation twinning. Instru- 
mented micro/nano-indentation technique has been widely applied to characterize the mechanical properties of magnesium, typically through 
the analysis of the indentation load–depth response, surface topography, and less commonly, the post-mortem microstructure within the bulk 
material. However, experimental limitations prevent the real-time observation of the evolving microstructure. To bridge this gap, we employ 
a recently-developed finite-strain model that couples the phase-field method and conventional crystal plasticity to simulate the evolution of 
the indentation-induced twin microstructure and its interaction with plastic slip in a magnesium single-crystal. Particular emphasis is placed 
on two aspects: orientation-dependent inelastic deformation and indentation size effects. Several outcomes of our 2D computational study 
are consistent with prior experimental observations. Chief among them is the intricate morphology of twin microstructure obtained at large 
spatial scales, which, to our knowledge, represents a level of detail that has not been captured in previous modeling studies. To further 
elucidate on size effects, we extend the model by incorporating gradient-enhanced crystal plasticity, and re-examine the notion of ‘smaller is 
stronger’. The corresponding results underscore the dominant influence of gradient plasticity over the interfacial energy of twin boundaries 
in governing the size-dependent mechanical response. 
© 2025 Chongqing University. Publishing services provided by Elsevier B.V. on behalf of KeAi Communications Co. Ltd. 
This is an open access article under the CC BY license ( http://creativecommons.org/licenses/by/4.0/ ) 
Peer review under responsibility of Chongqing University 
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. Introduction 

Inelastic deformation in magnesium and its alloys proceeds
redominantly through the activation and interaction of dis-
ocation slip and deformation twinning. In magnesium, with
 low-symmetry hexagonal close-packed (HCP) crystal struc-
ure, dislocation slip occurs on crystallographic planes and
long crystallographic directions with varying atomic packing
ensities. As a result, the activation barrier, i.e., the critical re-
olved shear stress (CRSS), differs significantly between basal
nd non-basal slip systems [1,2] . At room temperature, due
o the high CRSS required to activate non-basal slip systems,
eformation twinning, and in particular the { 101̄ 2}〈1̄ 011 〉 ten-
∗ Corresponding author. 
E-mail addresses: mrezaee@ippt.pan.pl (M. Rezaee-Hajidehi), 

sad@ippt.pan.pl (P. Sadowski), sstupkie@ippt.pan.pl (S. Stupkiewicz) . 

e  

t  

p  

i  

ttps://doi.org/10.1016/j.jma.2025.02.016 
213-9567/© 2025 Chongqing University. Publishing services provided by Elsevie
rticle under the CC BY license ( http://creativecommons.org/licenses/by/4.0/ ) Peer
ile twinning, emerges as a dominant inelastic mechanism to
ccommodate strains along the c-axis of the HCP lattice. It
hus compensates for the scarcity of easily-activated non-basal
lip systems [3–5] . Twinning is characterized by a constant
hear, imposes an abrupt lattice reorientation of about 86◦,
nd possesses a polar nature, that is, its activation depends
n the shear direction within the twin plane. Collectively, the
forementioned factors give rise to a highly anisotropic inelas-
ic deformation in magnesium. As such, predictive modeling
f the underlying microstructure can play a pivotal role in
nderstanding the mechanical behavior of magnesium, and it
orms the main objective of this work. 

Instrumented micro/nano-indentation technique has been
xtensively applied to single- and poly-crystalline magnesium
o identify the primary inelastic contributors to deformation,
robe their inherent characteristics, and thereby, gain deeper
nsights into the macroscopic mechanical behavior. Several
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ey observations have been drawn from numerous indenta-
ion studies on magnesium alloys. (i) At small scales, the
nitial yielding is often accompanied by an abrupt displace-
ent burst, known as pop-in, in the indentation load–depth

esponse. Pop-ins not only mark the onset of dislocation
lide but also the twin nucleation, e.g., [6–8] . Interestingly,
op-ins have been also detected during indentation unloading
nd have been attributed to detwinning, i.e., the retraction of
win boundaries [9] . (ii) Magnesium alloys exhibit a strong
rientation-dependent behavior. The load–depth response, the
op-ins, the morphology of the indent, and the active slip
ystems and twin variants are all strongly influenced by the
rystallographic orientation on which the indentation is per-
ormed, e.g., [10–14] . Notably, indentation perpendicular to
he c-axis is most favorable for the activation of tensile twins.
iii) In addition to the well-documented size effects associated
ith dislocation mobility, twinning is also subject to strong

ize effects. The contribution of twinning to deformation has
een shown to diminish with decreasing indentation depth,
ndenter radius and grain size, e.g., [11,13–16] . 

Combining instrumented indentation with advanced imag-
ng and visualization techniques provides valuable informa-
ion about the indentation-induced microstructure, which com-
lements the measured load–depth response and facilitates the
dentification of active inelastic mechanisms. Unlike uniax-
al tension/compression tests, indentation generates a com-
lex stress state beneath the indenter, leading to intricate mi-
rostructural changes driven by the intertwined action of mul-
iple mechanisms [11] . This complexity underscores the im-
ortance of combining instrumented indentation with imaging
echniques for a more comprehensive analysis. Imaging can
e performed during the indentation test to track the topo-
raphical changes near the indent surface, or afterward to
xamine the residual imprint or the microstructural changes
eep inside the bulk material. For instance, using optical mi-
roscopy and electron backscatter diffraction (EBSD) anal-
sis, Kitahara et al. [17] delivered unprecedented visualiza-
ion of the remnant twin microstructure within cross-sectional
uts of indented magnesium. The observed microstructure, as
epicted in Fig. 1 , revealed important details, including the
verall microstructural pattern, the participating twin variants,
nd the characteristic lenticular morphology of the individual
wins. 

Despite the valuable insights gleaned from in-situ and ex-
itu analyses, there remains ambiguity concerning how the mi-
rostructure evolves beneath the indenter. Indeed, a thorough
nderstanding of phenomena such as pop-ins, orientation-
ependent behavior, and size effects hinges on linking macro-
copic observations with underlying microstructural events,
hich is only feasible when real-time data on the evolu-

ion of twinning/detwinning and dislocation slip is available.
oreover, it is important to acknowledge that microstructural

hanges may arise during the indentation unloading [9,18,19] ,
s well as during the subsequent cross-sectional cutting pro-
ess. Consequently, the extracted microstructure may not fully
epresent the state of the material at the end of the loading
tage. One possible approach to overcome this constraint is to
mploy geometries with a sufficiently large field of view, such
s micro/nano-pillars, which allow for a transparent tracking
f the microstructure on free surfaces. However, in view of
he strong influence of pre-existing defects and the presence
f free surfaces, the nucleation stresses measured in these ex-
eriments deviate significantly from those in indentation ex-
eriments and from theoretical predictions [19–21] . This dis-
repancy rules out the possibility of inferring the indentation-
nduced microstructure evolution from micro/nano-pillar ex-
eriments. 

Given that none of the available imaging techniques can
apture the in-depth microstructure evolution during inden-
ation, modeling stands as the only viable tool to address
his need. Current modeling efforts mainly rely on either
tomistic simulations using molecular dynamics (MD) or the
nite-element-based crystal plasticity approach. At the nano-
cale, MD is particularly effective for investigating the pro-
esses of twin nucleation, growth, propagation and its inter-
ction with various slip modes, e.g., [19,22,23] . On the other
and, at a sufficiently high scale, where spatial heterogeneities
ithin the twin microstructure can be reasonably disregarded,
eformation twinning is typically modeled via the crystal
lasticity approach, such that twins are treated as additional
pseudo-)slip systems, and thereby, the twin microstructure is
epresented in an average sense. Indeed, the crystal plasticity
pproach has been widely utilized to corroborate various as-
ects of inelastic deformation during indentation experiments,
ncluding the propensity towards twin formation at different
ndentation depths and declination angles [6,11,12,24] , the
istribution of twins and dislocation slips beneath the indenter
17] , and the characterization of the twin nucleation and slip
ctivation stresses [25] . While these studies provide important
uantitative support for experimental observations, they fall
hort in explicitly representing the twin-boundary interfaces,
eaving the true intricacies of the evolving twin microstructure
naccounted for. 

Recently, the phase-field method has made its way into the
odeling of deformation twinning. It offers a robust computa-

ional scheme based on the notion of diffuse interfaces, where
ontinuous (non-conserved) order parameters are employed to
istinguish between the twinned and untwinned regions, with
heir evolution governed by the Ginzburg–Landau-type equa-
ion [26] . The diffuse interfaces carry the interfacial energy
ssociated with twin boundaries, and as a result, introduce
n internal length-scale into the problem. This renders the
hase-field method particularly useful for examining the size
ffects associated with deformation twinning. The method is
deally suited at an intermediate scale between the nano and
acro levels, where resolving the spatial structure of twin

oundaries is relevant. Moreover, it overcomes the space and
ime limitations of atomistic simulations and allows for the
imulation of twin microstructure at practical scales. 

The integration of the phase-field method with crystal plas-
icity has opened up new avenues for exploring the cou-
led evolution of twinning and plastic slip. To date, a num-
er of models have been built within this framework, e.g.,
27–30] , including our recently-developed model based on
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Fig. 1. Indentation-induced twin microstructure in pure magnesium obtained in the experiment of Kitahara et al. [17] : (a) cross-sectional optical micrograph, 
and (b) the corresponding EBSD inverse pole figure (IPF) map (reproduced with permission from Elsevier). The colors in the IPF show the vertical orientation 
of the sample with respect to the crystal lattice, as indicated by the stereographic triangle. The EBSD map in panel (b) reveals the presence of two families 
of twins, distinguished by different colors. 
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nite-deformation theory [31] . A distinct feature of our model
ies in the treatment of the kinematics of deformation twin-
ing, which, rather than being expressed as a conventional
hear-based deformation, is formulated as a sequential oper-
tion of an isochoric stretch and a rigid-body rotation. This
eformulation has also been adopted by others, in the con-
ext of coupled twinning and plastic slip [32] , as well as
n the context of twinning only [33] . The constitutive de-
cription of our model follows a variational form, defined in
erms of the Helmholtz free energy function and the dissi-
ation potential. The capability of the model to capture the
ucleation, growth and propagation of twins, their interaction
ith plastic slip, and the twin’s transmission across the grain
oundaries has been demonstrated in the previous work [31] .
 subsequent investigation [34] expanded on the computa-

ional aspects. Therein, the incremental energy formulation
nd computational treatments were elaborated and a detailed
umerical study was carried out to assess the efficiency and
erformance of different finite-element discretizations. 

Building upon this foundation, we here employ the model
o simulate the evolution of indentation-induced twin mi-
rostructure in magnesium. To the best of our knowledge,
his study marks the first continuum-based modeling effort
o spatially-resolved twin microstructures during the inden-
ation while accounting for plastic slip. Our computational
tudy focuses on two specific aspects: (i) indentation at
arious declination angles, with the aim to investigate the
rientation-dependent indentation behavior, and (ii) indenta-
ion size effects. Both aspects are systematically addressed,
ielding results that align, to some extent, with prior experi-
ental observations, while also providing fresh insights into

he indentation-induced deformation behavior of the material.
o further explore the size effects, the original model is pro-
oted by switching from conventional crystal plasticity to
radient-enhanced crystal plasticity. As far as we are aware,
his is the first time that the gradient-enhanced crystal plastic-
ty joins forces with the phase-field method for microstructure
volution. Upon an efficient finite-element implementation of
he extended model, a robust modeling framework is estab-
ished that allows for a more holistic analysis of the indenta-
ion size effects, with the interfacial energy of twin boundaries
nd the gradient plasticity acting as the (coupled) sources of
ize effects. 

The remainder of the paper is organized as follows. De-
ails of the model formulation and finite-element treatment
re provided in Section 2 . The results of our computational
tudy are reported in Section 3 . Finally, concluding remarks
re given in Section 4 . 

. Phase-field model of twinning coupled with crystal 
lasticity 

A brief overview of the original model and its extension
o gradient crystal plasticity are provided in Sections 2.1 and
.2 , respectively. The micromorphic regularization, which is
 pivotal element of the computational model, is discussed
n Section 2.3 . Finally, the finite-element implementation is
utlined in Section 2.4 . 

.1. The original model 

We limit our discussion to a concise presentation of the
riginal model, with its main ingredients summarized in
able 1 . To begin with, let us briefly recapitulate the stretch-
ased kinematics of deformation twinning. In line with the
bjectives of the current investigation, we focus our attention
n one tensile twin variant, encompassing two conjugate twin-
ing systems ( i = 1 , 2), in magnesium with an HCP crystal
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Table 1 
Phase-field model of twinning coupled with crystal plasticity: a summary of the original model formulation. 

Model unknowns 

ϕ deformation mapping from reference to current configuration 
η order parameter (twin volume fraction), 0 ≤ η ≤ 1 
γ̇ s 

m 

, γ̇ s 
p slip rate of the slip system s in the matrix (m) and twin (p) 

Model equations 

Kinematics 
(T.1) F = Fe Fin multiplicative decomposition of the deformation gradient F = ∇ϕ 

(T.2) Lin = Ḟin F−1 
in = Lm 

+ Lp + Ltw inelastic velocity gradient Lin 

(T.3) Lm 

= (1 − η)

ns ∑ 

s=1 

γ̇ s 
m 

ss 
m 

� ns 
m 

– contribution from plastic slip in the matrix 

(T.4) Lp = η

ns ∑ 

s=1 

γ̇ s 
p s

s 
p � ns 

p – contribution from plastic slip in the twin 

(T.5) Ltw = η̇ log Utw – contribution from deformation twinning 

Free energy 
(T.6) ψ = ψel + ψh + ψ� free energy function 

(T.7) ψel = 1 

2 
He · L He , He = 1 

2 
log (FT 

e Fe ) – Hencky-type elastic strain energy 

(T.8) L = (1 − η) Lm 

+ ηLp – fourth-rank elasticity tensor 

(T.9) ψh = 1 

2 
H γ̄ 2 – stored energy leading to isotropic (linear) hardening 

(T.10) ˙̄γ = (1 − η)

ns ∑ 

s=1 

|γ̇ s 
m 

| + η

ns ∑ 

s=1 

|γ̇ s 
p | – accumulated plastic slip 

(T.11) ψ� = 4�

π� 

(
η(1 − η) + �2 ∇η · ∇η

)
– interfacial energy (double-obstacle potential) 

Dissipation 
(T.12) D = Dm 

+ Dp + Dtw dissipation potential 

(T.13) Dm 

= (1 − η)

ns ∑ 

s=1 

τ c ,s 
m 

(
|γ̇ s 

m 

| + (γ̇ s 
m 

)2 

2γ̇0 

)
– contribution from plastic slip in the matrix 

(T.14) Dp = η

ns ∑ 

s=1 

τ c ,s 
p 

( 

|γ̇ s 
p | +

(γ̇ s 
p )

2 

2γ̇0 

) 

– contribution from plastic slip in the twin 

(T.15) Dtw = τ c 
tw γtw 

(
|η̇| + η̇2 

2η̇0 

)
– contribution from deformation twinning 

Model constants 

ss 
m 

, ss 
p slip direction of the slip system s in the matrix and twin 

ns 
m 

, ns 
p slip plane-normal of the system s in the matrix and twin 

Utw deformation twinning stretch tensor 
Lm 

, Lp fourth-rank elasticity tensor of the pure matrix and twin 
H isotropic hardening coefficient 
� twin-boundary interfacial energy density 
� twin-boundary interface thickness parameter 
τ c ,s 

m 

, τ c ,s 
p CRSS of the slip system s in the matrix and twin 

τ c 
tw CRSS for deformation twinning 

γ̇0 reference slip rate 
η̇0 reference twinning rate 

s  

t  

a

F

w  

r  

a  

s  

m
 

s  

r

F

I

U  
tructure. In the conventional approach, the inelastic deforma-
ion associated with each twinning system i is described by
 simple shear, 

(i) 
tw 

= I + γtw 

a(i) 
� m(i) , 

γtw 

= 

α2 − 1 

α
=

√ 

3 a 

c 
− c √ 

3 a 

, α =
√ 

3 a 

c 
> 1 , (1) 

here a(i) and m(i) are, respectively, the twinning shear di-
ection and twin plane normal, γtw 

is the shear magnitude,
nd a and c are lattice constants. The two conjugate twinning
ystems share the same plane of shear, i.e., the vectors a(1) ,
(1) , a(2) , and m(2) are coplanar. 
Using the polar decomposition, F(i) 

tw 

can be uniquely re-
olved into a volume-preserving stretch U(i) 

tw 

and a rigid-body
otation R(i) 

tw 

, 

(i) 
tw 

= R(i) 
tw 

U(i) 
tw 

. (2) 

t can be readily shown that 

(1) = U(2) = Utw 

, R(1) = (R(2) 
)T = Rtw 

, (3)
tw tw tw tw 
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hus 
(1) 
tw 

= Rtw 

Utw 

, F(2) 
tw 

= RT 
tw 

Utw 

. (4)

This signifies that the conventional shear-based kinematics,
nvolving two distinct shear deformations for the two conju-
ate twinning systems, can be reformulated into the stretch-
ased kinematics, where the two conjugate twinning systems
eature an identical stretch Utw 

while being distinguished by
heir rigid-body rotations Rtw 

and RT 
tw 

. 
Note that within the sharp-interface description, the stretch-

ased and shear-based approaches are fully equivalent. This
quivalence, however, does not extend to the diffuse-interface
phase-field) description due to the incompatibilities present
ithin the diffuse interfaces, see Remark 2.5 in [31] for a
ore detailed discussion, see also [32,33] . In the phase-field

ramework, the stretch-based kinematics offers a distinct com-
utational advantage over its shear-based counterpart, as it
llows the two conjugate twinning systems to be described
n an equivalent manner using just a single order parameter
31] . While this advantage may appear less significant in a
D setting, it becomes significant in the full 3D setting, where
he model must account for three pairs of conjugate twinning
ystems in HCP crystals and for six pairs in FCC and BCC
rystals. 

Let us now introduce the phase-field order parameter η,
hich describes the twin volume fraction, with η = 0 repre-

enting the matrix (untwinned material), η = 1 representing
he twin, and 0 < η < 1 representing diffuse matrix–twin in-
erfaces. In the context of coupled twinning and plasticity, the
nelastic deformation gradient Fin arises from the plastic slip
n the matrix, deformation twinning, and plastic slip in the
win. The contributions of plastic slip to the inelastic velocity
radient Lin , namely Lm 

(for plastic slip in the matrix) and
p (for plastic slip in the twin), are derived from the classi-
al crystal plasticity theory and include the weights (1 − η)

nd η, respectively, see Eqs. (T.3) and (T.4) in Table 1 . To
llustrate the contribution of deformation twinning, Ltw 

, let
s consider the scenario of twinning only, i.e., without plas-
ic slip, where Fin = Ftw 

(η) such that Ftw 

depends now on
within diffuse interfaces. Consistent with the stretch-based

inematics, Ftw 

is defined such that Ftw 

= I when η = 0 and
tw 

= Utw 

when η = 1 , and it is appropriately interpolated
etween these values when 0 < η < 1 . Among the possible
hoices, the logarithmic mixing is selected for Ftw 

[35] , 

tw 

(η) = exp (η log Utw 

) , (5)

hich leads to 

tw 

= Ḟtw 

F−1 
tw 

= η̇ log Utw 

. (6) 

Eq. (6) is then used as the contribution of deformation
winning to the inelastic velocity gradient Lin in the general
ase of twinning and plastic slip, Eq. (T.2) . It is important
o note that the rigid-body rotations R(i) 

tw 

do not enter the
inematics of inelastic deformation. Instead, they contribute
o the elastic deformation gradient Fe , emerging as a part of
he solution to preserve the displacement continuity. 

The model possesses a variational structure, with the
elmholtz free energy ψ and the dissipation potential D as
he main constituents. The free energy function ψ comprises
he elastic strain energy ψel , stored energy induced by plastic
lip (stored energy of cold work) ψh , and twin-boundary in-
erfacial energy ψ� . A Hencky-type elastic strain energy ψel 

s adopted, Eq. (T.7) , ψh is defined as a quadratic function of
he accumulated plastic slip γ̄ , Eqs. (T.9) and (T.10) , leading
o an isotropic (linear) hardening law, and ψ� takes the form
f the double-obstacle potential, Eq. (T.11) , with parameters

and � characterizing the energy and thickness of the dif-
use interfaces, respectively. At the same time, the dissipation
otential D accounts for the contributions from plastic slip in
he matrix, deformation twinning, and plastic slip in the twin,
ith each contribution defined as a mixture of viscous and

ate-independent dissipation terms, Eqs. (T.12) –(T.15) . The
lobal counterparts of the Helmholtz free energy function,
= ∫ 

B ψ dV , and of the dissipation potential, D = ∫ 
B D dV ,

re subsequently derived and used to construct the global rate
otential �. The solution of the problem is then obtained by
inimizing � with respect to the problem unknowns, namely

he rates ϕ̇ , γ̇ and η̇, viz., 

= 
̇ + D + �̇ → min 

ϕ̇ ,γ̇,η̇
(7)

here γ̇ = {γ̇m 

, γ̇p } collects the slip rates associated with
he matrix and with the twin, γ̇m 

= {γ̇ 1 
m 

, . . . , γ̇ ns 
m 

} and γ̇p =
γ̇ 1 

p , . . . , γ̇
ns 
p } , and � denotes the potential of the external

oads (assumed conservative). 
The minimization problem (7) yields the governing equa-

ions of the rate problem. Specifically, minimizing � with
espect to ϕ̇ establishes the weak form of mechanical equi-
ibrium (virtual work principle), and minimization with re-
pect to the slip rates γ̇ and with respect to the rate of the
rder parameter η̇ gives rise to Perzyna-type evolution equa-
ions for the corresponding rates, each characterized by a rate-
ndependent threshold and a viscous contribution proportional
o the overstress. The explicit forms of the governing equa-
ions are not provided here, see [31] for details. 

emark 2.1. The evolution law for the order parameter η

llows for both its increase and decrease, corresponding to
winning and detwinning, respectively, with both processes
eing treated identically in the model. Detwinning may pro-
eed either by reverse motion of an existing twin boundary
r by nucleation of the matrix phase (a kind of a secondary
win) within an existing twin. In the present context of in-
entation, the former mechanism is observed, albeit weakly,
hile the latter is not observed. 

emark 2.2. The present model eliminates the need for a
articular treatment of twin nucleation. This is because the
rder parameter ( η) itself is used as the interpolation function
ithin the logarithmic mixing rule (5) , rather than a special
onlinear polynomial of η as commonly employed in phase-
eld models of twinning [28,30,36,37] . Consequently, twin
ucleation occurs automatically once the twin transformation
ondition is met, i.e., once the total driving force for twin-
ing at η = 0 (or at η = 1 for detwinning) surpasses the rate-
ndependent threshold τ c 

tw 

γtw 

, cf. Eq. (T.15) . In the indentation
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roblem studied here, an inhomogeneous stress state naturally
evelops beneath the indenter, and this is sufficient to trigger
win nucleation. Note, however, that the nucleation stress de-
ends on the interface thickness parameter � and cannot be
ontrolled independently. A more physically plausible strategy
ould be to decouple the twin nucleation and twin evolution
rocesses, for instance, by introducing an independent twin
ucleation model [37] . For a more detailed discussion on this
spect of the model, the reader is referred to Remark 3.1 and
ection 5.3 in our previous study [31] . 

.2. Extension to gradient-enhanced crystal plasticity 

The original model discussed above is based on the con-
entional (size-invariant) crystal plasticity theory. Accord-
ngly, the potential size effects are solely attributed to twin-
ing, arising from the size-dependent contribution of the in-
erfacial energy of twin boundaries. To account for the size
ffects related to plastic slip, the model is here extended to
radient-enhanced crystal plasticity. This enhancement fol-
ows the simplified approach of Wulfinghoff and Böhlke [38] ,
ee also [39] , where only the gradient of the accumulated
lastic slip, ∇γ̄ , enters the constitutive equations. Although
ore sophisticated approaches based on various measures of

lastic strain incompatibility or gradients of individual dislo-
ation densities are more appropriate from a physical stand-
oint, see e.g., [40–45] as representative examples, they are
ore complex and increase considerably the cost of the finite-

lement computations, and are thus not pursued here. 
To incorporate the gradient effects, an additional energy

erm ψg is defined as a quadratic function of ∇γ̄ , taking the
orm 

g = 1 

2 

A ∇γ̄ · ∇γ̄ , (8)

here A > 0 represents the corresponding gradient energy co-
fficient. The new term ψg is then added to the total free en-
rgy function ψ , thus ψ = ψel + ψh + ψ� + ψg , cf. Eq. (T.6) .
his, as a result, introduces a characteristic length �g into

he model, defined as �g =
√ 

A/H , where H is the isotropic
ardening modulus, see Eq. (T.9) . In fact, the parameter �g 

etermines the spatial scale at which the material exhibits
ize-dependent plasticity. 

.3. Micromorphic regularization 

The finite-element implementation of the present model is
articularly challenging due to the inherent complexities in-
olved. The complexities arise from the strong coupling in the
volution equations of twinning and plastic slips, the presence
f the non-differentiable rate-independent dissipation contri-
utions, the bound constraints on the order parameter η, and
ast but not least, the extension to gradient crystal plasticity.
irect implementation of the model specified above is not

traightforward, if possible at all, and an efficient strategy
s to resort to the micromorphic regularization technique, as
ntroduced by Forest [46] , which significantly facilitates the
nite-element treatment. In our previous study involving the
riginal model with conventional crystal plasticity [31] , the
icromorphic regularization was applied to the phase-field

rder parameter η only. Here, with the extension to gradient
rystal plasticity, we apply the regularization to both the order
arameter η and the accumulated plastic slip γ̄ . For earlier
pplications of the micromorphic regularization to gradient
rystal plasticity, see [38,39,47] . 

The micromorphic regularization is performed by intro-
ucing additional degrees of freedom, specifically ηχ and γ̄χ ,
hich are conjugate to the order parameter η and to the ac-

umulated plastic slip γ̄ , respectively. The equality between
he original variables and their micromorphic counterparts is
nforced via the penalty method. To this end, a penalty term,
pen , is defined and is added to the free energy ψ , 

pen = 1 

2 

χη(η − ηχ )2 + 1 

2 

χγ (γ̄ − γ̄χ )2 , (9) 

here χη and χγ are the penalty parameters. This enforce-
ent can be also done by using Lagrange multipliers [38,39] ,

owever, the penalty method is here preferred due to its sim-
licity and satisfactory performance. Next, the gradient of the
rder parameter, ∇η, in the interfacial energy term ψ� , and
he gradient of the accumulated plastic slip, ∇γ̄ , in the gra-
ient energy term ψg are replaced by the gradients of their
icromorphic counterparts. The corresponding energy terms

re thus redefined as 

� = 4�

π� 

(
η(1 − η) + �2 ∇ηχ · ∇ηχ

)
, (10) 

nd 

g = 1 

2 

A ∇γ̄χ · ∇γ̄χ . (11) 

With their gradients removed from the constitutive equa-
ions, the variables η and γ̄ can be considered as local vari-
bles and their evolution equations can be solved at the lo-
al integration-point level, enabling a more efficient handling
f the associated complexities. It is worth noting that in the
nite-element computations, the penalty parameters χη and
γ are chosen sufficiently large to ensure a close correlation
etween the original variables and the micromorphic counter-
arts, and thereby, to effectively capture the related gradient
ffects. 

.4. Finite-element implementation 

We now briefly discuss the main aspects of the finite-
lement implementation. For a more detailed discussion, read-
rs are referred to [34] . The implementation begins by the
ime-discretization of the rate problem. The time-integration
cheme is based on the implicit backward-Euler method. The
ate variables, the accumulated plastic slip γ̄ , and the dissi-
ation potential D are approximated by the respective incre-
ental forms. To compute the (current) inelastic deformation

radient Fin , see Eq. (T.2) , a volume-preserving exponential
apping is adopted [48,49] . The problem at hand possesses
 local–global structure. At the local level, the unknowns are
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he order parameter and slip increments, namely �η, �γ s 
m 

nd �γ s 
p , while the global unknowns consist of the displace-

ent u = ϕ − X and the micromorphic variables ηχ and γ̄χ .
his structure prompts an iterative–subiterative solution strat-
gy, wherein both the global and local problems are solved
y means of the Newton method. 

A crucial aspect that demands careful consideration is the
on-differentiability of the local problem, which stems from
he rate-independent dissipation contributions, Eqs. (T.13) –
T.15) , the inequality constraints on the order parameter η,
 ≤ η ≤ 1 , and the absolute-value function in the equation
or the accumulated plastic slip, cf. Eq. (T.10) . The aug-
ented Lagrangian method is employed to overcome the non-

ifferentiability associated with the rate-independent dissipa-
ion and with the inequality constraints [50] . Moreover, we
xpand the model to consider 2ns slip systems (separately
ithin the matrix and twin) by accounting for positive and
egative slip directions, thus restricting the slip increments to
e non-negative. This, as a result, eliminates the need for the
bsolute-value function in the calculation of the accumulated
lastic slip γ̄ . It is important to note that this representation,
lthough more costly as it doubles the number of plastic slip
nknowns, was found crucial for the successful implementa-
ion of the gradient crystal plasticity. Without it, the model
ould suffer from severe convergence issues. 
The finite-element simulations in the present study pertain

o a 2D plane-strain indentation problem. Thus, for spatial
iscretization, 8-noded elements with quadratic serendipity
hape functions (and a reduced 2 × 2 Gauss integration rule)
re used for the displacement, while 4-noded elements with
inear shape functions are used for the micromorphic vari-
bles. This specific element combination is selected due to
ts superior efficiency [34] . Meanwhile, the contact problem
f indentation is solved by satisfying the unilateral contact
ondition at the potential contact surface. The indenter is as-
umed as a rigid and frictionless cylinder. Hence, only the
ormal contact condition is enforced, and this is done by the
ugmented Lagrangian method [51] . 

The model is written as a computer code within the Mathe-
atica package AceGen and the finite-element simulations are

arried out in AceFEM [52] . Upon leveraging the automatic
ifferentiation and code simplification attributes of AceGen ,
he computer coding process is greatly streamlined and the ef-
ciency of the resulting computational model is significantly
nhanced. It is worth noting that our simulations address a
ide range of problem sizes, as detailed in Section 3.4 , with

he most computationally demanding cases involving over 10
illion degrees of freedom. Without an efficient implementa-

ion, successful completion of such large simulations would
ot be feasible. 

. Indentation of a magnesium single-crystal 

In this section, we present and discuss the simulation re-
ults for the indentation of a magnesium single-crystal. The
etup of the problem, including the geometry, mesh, material
arameters and loading, is described in Section 3.1 . We be-
in the analysis by showcasing the results of a representative
imulation in Section 3.2 , which serves as a basis for sub-
equent analyses and comparisons. Section 3.3 investigates
he indentation behavior across various crystal orientations.
ndentation size-effects are the subject of the study in Sec-
ion 3.4 . The results presented in these sections are obtained
sing the model with conventional crystal plasticity, i.e., with
o gradient plasticity effects. Finally, in Section 3.5 , we in-
orporate the gradient-enhanced crystal plasticity and revisit
he size effects. 

.1. Setup of the problem 

A schematic of the problem under study is presented in
ig. 2 (a). The problem concerns the indentation of a magne-
ium single-crystal within a rectangular domain of dimen-
ions 2L × L = 40 × 20 μm 

2 . A rigid cylindrical indenter,
ith a radius R = 2 μm, is pressed against the top edge of

he domain at its center. Note that the indenter radius and
omain size specified above pertain to the studies reported
n Sections 3.2 and 3.3 . In the study of size effects in Sec-
ions 3.4 and 3.5 , the dimensions are scaled proportionally,
s specified in Section 3.4 . 

The simulations account for one loading–unloading cycle,
ith the indentation speed set to Vind = 50 nm/s. In all the

imulations, the loading continues until the normalized in-
entation depth reaches δ/R = 0. 06 . Boundary conditions are
pplied such that all edges, except the top edge undergoing
ndentation, are constrained to zero displacement in the re-
pective normal direction. A non-uniform finite-element mesh
s employed, with the highest mesh density in the region be-
eath the indenter where the microstructure develops (the cen-
ral rectangular region with the dimensions of 3 . 3 × 5 μm 

2 )
nd with a gradual coarsening of the mesh away from this
egion, see Fig. 2 (a). Note that a very coarse mesh is shown
n Fig. 2 (a), and a much finer mesh is used in the computa-
ions, as specified below. The domain is chosen large enough
o eliminate the artificial effects of the boundaries on the re-
ults, while the computational cost is significantly reduced via
he mesh coarsening. The element size h in the finest mesh
egion is defined in relation to the twin-boundary interface
hickness parameter � . To properly capture the intricate mi-
rostructural features, a ratio of �/h = 1 . 3 is fixed, leading to
 ratio of about π�/h = 4, with π� denoting the theoretical
stress-free) interface thickness. 

The operative conjugate twinning systems and the opera-
ive slip systems are illustrated in Fig. 2 (b). Following our
revious study [31] , a single twin deformation variant, cor-
esponding to two conjugate twinning systems, is considered
n our 2D plane-strain problem. Specifically, we focus on the
air with the twin plane normals (101̄ 2) and (1̄ 012) . This
onfiguration places our 2D plane strain problem within the

(1̄ 21̄ 0) plane, which corresponds to the plane of shear of the
elected conjugate twinning systems. The sketch in Fig. 2 (b)
hows the two twin planes and the plane of shear, the latter
epicted in gray. Three effective slip systems are considered,
amely one (easy) basal slip system and two symmetric (hard)
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Fig. 2. (a) Setup of the 2D indentation problem, and (b) operative twins and slip systems in our 2D plane strain configuration. For a better illustration, panel 
(a) displays a much coarser mesh than the one used in the actual computations. In panel (b), only one effective pyramidal slip system is shown, as the second 
one resides symmetrically with respect to it. Note also that the gray plane depicted in panel (b) indicates the plane of our 2D simulations. 
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yramidal slip systems. Each effective basal/pyramidal slip
ystem represents two co-planar (concurrently-active) crys-
allographic basal/pyramidal slip systems, as illustrated in
ig. 2 (b). The effective (0001)[1̄ 010] basal slip system con-
idered is representative of two co-planar basal slip systems
ith [2̄ 110] and [1̄ ̄1 20] slip directions. Similarly, the effec-

ive (101̄ 1)[1̄ 012] and (1̄ 011)[101̄ 2] pyramidal slip systems
ccount for two 〈 a + c〉 pyramidal slip systems each, the for-
er for the co-planar (101̄ 1)[2̄ 113] and (101̄ 1)[1̄ ̄1 23] slip

ystems and the latter for the co-planar (1̄ 011)[21̄ ̄1 3] and
(1̄ 011)[112̄ 3] slip systems. Note that other slip systems, for
nstance, the prismatic slip systems, cannot be considered in
he 2D plane strain setup adopted here, as they would neces-
arily induce an out-of-plane strain component, thus violating
he plane-strain conditions. 

The material parameters used in the simulations are typical
or magnesium. The twinning shear magnitude γtw 

= 0. 129 is
erived from the lattice parameters ratio of c/a = 1 . 624. The
ritical resolved shear stress (CRSS) for twinning is adopted
s τ c 

tw 

= 15 MPa. Identical CRSS values are assumed for plas-
ic slips in the matrix and in the twin. Specifically, for the
ffective basal slip we use τ c,b 

m 

= τ c,b 
p = 15 MPa, i.e., equal

o that of twinning, and for the effective pyramidal slips
e use τ c,p 

m 

= τ
c,p 
p = 150 MPa. The magnesium HCP crys-

al structure is regarded as having a transversely isotropic
lasticity, with five independent elastic constants taken as
11 = 63 . 5 GPa, c33 = 66 . 5 GPa, c12 = 25 . 9 GPa, c13 = 21 . 7
Pa and c44 = 18 . 4 GPa. The isotropic hardening coefficient

s set to H = 0. 4 GPa. The twin-boundary interfacial energy
s adopted as � = 0. 15 J/m 

2 , and the interface thickness pa-
ameter as � = 10 nm (note that in the study of size effects in
ections 3.4 and 3.5 , the parameter � takes also other values).
he reference slip rate is chosen as γ̇0 = 1 s −1 , while the ref-
rence twinning rate of about η̇0 = 20 s −1 is calculated from
he reference interface propagation speed, v0 = 500 nm/s, ac-
ording to the relation η̇0 = πv0 / 8 � [31] , see also [53] . More-
ver, the micromorphic penalty parameter is taken as χη = 2
Pa. All these parameters are the same as those in our pre-
ious study [31] , where detailed justifications and references
re provided. The exceptions are the interface thickness pa-
ameter � and the micromorphic penalty parameter χη. 

Parameter � has been carefully adjusted to ensure that the
win microstructure is not overly diffuse, and at the same
ime, the computational effort is manageable. Recall that the
atio between the element size h and � is fixed at �/h = 1 . 3
ithin the finest-mesh region, leading to an element size of
 = 7 . 7 nm, and thus 432 × 576 elements in this region. 

Concerning the micromorphic penalty parameter χη, a de-
ailed parametric study reported in [34] demonstrates that the
imulation results remain practically insensitive to the value
f χη for χη > 0. 5 GPa. However, when χη is increased well
eyond this limit, a substantial rise in the computational cost
s observed, see Section 4.3 in [34] . Based on these indica-
ions, a value of χη = 2 GPa is adopted in this work, which is
omewhat lower than the value of 5 GPa used in our previous
odeling study [31] . The computational cost is thus reduced

ompared to that study, while the accuracy of the results is
ot compromised. 

Finally, the parameter governing the gradient plasticity ef-
ects is set to A = 0. 4 GPa μm 

2 , so that the corresponding
ength scale is obtained as �g = 1 μm. In addition, the related

icromorphic penalty parameter is calibrated as χγ = 100
Pa. 
It is of note that our initial analyses confirm that, with the

ate parameters γ̇0 = 1 s −1 and η̇0 = 20 s −1 and the indenta-
ion speed Vind = 50 nm/s assigned here, the viscous effects
re not noticeable. This conclusion has been drawn by in-
reasing/decreasing the indentation speed Vind by a factor of
0, and observing no major changes in the simulation results,
articularly in terms of the microstructure evolution. However,
ncreasing the speed by a factor of 100 does introduce notice-
ble rate effects. The simulations are thus carried out close
o the rate-independent limit. It is important to stress that too
ow rate effects can adversely influence the performance of
he Newton method. Therefore, the parameters controlling the
ate effects must be carefully calibrated to achieve an optimal
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Fig. 3. Indentation of a magnesium single-crystal with a declination angle of θ0 = 90◦: evolution snapshots of twin microstructure (top), accumulated plastic 
slip (middle) and shear stress (bottom). Here and in the subsequent figures, the stress is given in GPa. 
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alance between accuracy and computational efficiency, see
he related discussion in [34] . 

.2. Microstructure evolution and mechanical response 

We begin by analyzing the indentation-induced microstruc-
ure for the crystal lattice oriented at θ0 = 90◦, where θ0 refers
o the angle between the crystal’s c-axis and the indentation
oading direction and is typically referred to as declination
ngle. This orientation is the most favorable for the activa-
ion of tensile twins. Fig. 3 illustrates the evolution of the
win microstructure, plastic slip activity, and shear stress for
elected indentation depths δ. The twin microstructure is rep-
esented by the spatial distribution of the twin volume fraction
, plastic slip activity is simply represented by the accumu-

ated plastic slip γ̄ , and the shear stress by the respective
omponent of the Cauchy stress tensor, σ12 (in GPa). Here
nd in the remaining figures, the spatial distributions are dis-
layed only in the vicinity of the indenter. 

Of particular interest in Fig. 3 is the evolution of twin
icrostructure. The initial microstructure appears by the for-
ation of a scissors-shaped twin beneath the indenter. The
icrostructure evolves, in an apparently symmetric manner,

ntil around halfway through the indentation loading, i.e., up
o the normalized indentation depth of about δ/R = 0. 03 . Dur-
ng this stage, the evolution is marked by the nucleation of a
ew scissors-shaped twin beneath the existing twin domain.
owever, upon further loading, the microstructure breaks the

ymmetry (a more detailed analysis of the symmetry break-
own is provided in Appendix A ). From this point forward,
he evolution shifts towards the growth of a single lenticular-
haped twin, rather than the nucleation of new twins. It is
oteworthy that the individual arms of the scissors-shaped
wins form an angle of about 42◦ with respect to the inden-
ation direction, which is close to the theoretical matrix-twin
nterface orientation of 43 . 2◦. 

The evolution of the twin microstructure and its spatial
nhomogeneity have a significant impact on the accumulated
lip ( ̄γ ) and stress ( σ12 ) distributions beneath the indenter. As
hown in Fig. 3 , both fields develop highly inhomogeneous
atterns which are synchronized with the evolving twin mi-
rostructure. However, both γ̄ and σ12 exhibit additional fine-
cale features that extend beyond the resolution of the twin
icrostructure. These fine features seem to be related to the

ocal stress redistribution associated with abrupt events such
s twin nucleation and interface annihilation. Plastic slip thus
roceeds in a highly inhomogeneous manner, and the related
ncompatibility of the plastic strain induces fine-scale inhomo-
eneity of the stress, which persists upon unloading, result-
ng in a highly non-uniform residual stress distribution. Note
hat such level of detail is available thanks to the spatially-
esolved modeling of twinning, as delivered by the phase-field
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Fig. 4. Normalized indentation load–depth ( P/R–δ/R) response for two 
slightly different declination angles. The black dashed line represents the 
elastic response (almost identical for the two declination angles). The ver- 
tical arrows indicate the sudden load changes associated with major twin 
nucleation events. 
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ethod, and is not achievable in the mean-field-like crys-
al plasticity approaches that treat twinning as a pseudo-slip
54] . Recall that Fig. 3 shows only the region in the vicinity
f the indenter, and both γ̄ and σ12 gradually fade to zero
s they approach the boundary of the actual computational
omain. 

During unloading, the deformation remains predominantly
lastic, characterized by a significant stress relaxation and
o discernible change in the twin microstructure and plas-
ic slip activity. In fact, unloading is accompanied by weak
etwinning, which occurs through a slight reverse motion of
win boundaries. The related changes in the microstructure
re hardly visible in Fig. 3 , and a detailed comparison would
e needed to reveal the changes in the interface positions.
verall, it has been checked that the total volume of twins de-

reases by 4.3% during unloading (the total volume of twins
s calculated by simply integrating the field of η). A more
ronounced detwinning during unloading is observed in some
ases studied below, in particular, when gradient plasticity ef-
ects are included in the model. The maximum load and the
tresses are then noticeably higher, and stress relaxation dur-
ng unloading induces more pronounced detwinning. Anyway,
he related changes in the appearance of the microstructure
re still not significant, and this effect is thus not examined
n detail. 

The indentation load–depth response shown in Fig. 4 re-
eals interesting observations that aid in characterizing the
ndentation-induced inelastic deformation. The foremost ob-
ervation from Fig. 4 is that each twin nucleation is associ-
ted with a sudden load drop in the response (see the arrows).
hese load drops resemble pop-ins which are commonly ob-
erved in the experiments and are linked to the twin nucle-
tion events, e.g., [6,8,9] . In fact, in our simulation, each in-
tance of twin nucleation or rearrangement during the loading
rocess is registered as a distinct load event in Fig. 4 . Since
he indentation process is here controlled by prescribing the
osition of the indenter (kinematic control), the nucleation
vents are accompanied by load drops. In the case of force-
ontrol indentation, commonly applied in experiments, such
brupt microstructural events induce pop-ins, i.e., sudden in-
rease of the indentation depth at an approximately constant
oad, see the related discussion in [55] . It is important to note
hat pop-ins can be also linked to the activation of disloca-
ions, e.g., [10,56] . However, within the continuum crystal
lasticity framework adopted here, dislocation pop-ins cannot
e described. As can be seen in Fig. 4 , plastic slip precedes
he first twin nucleation, with its onset characterized by a
radual deviation from the purely elastic response, see the
ashed line. 

Despite the symmetry of the system implied by the decli-
ation angle of θ0 = 90◦, the twin microstructure evolution in
ig. 3 exhibits the breakdown of symmetry, as a way to reduce

he incremental work supplied to the system, see Appendix A .
he precise control of the declination angle is, however, diffi-
ult in practice, and a certain degree of misalignment is typ-
cally unavoidable [14,57] . This would thus essentially lead
o the development of non-symmetric microstructures right
rom the start. To explore the effect of a slight misalign-
ent of the crystal, an additional simulation is carried out

or θ0 = 88◦, i.e., deviating by 2 

◦ from the ideal case. The
orresponding indentation load–depth response is compared
ith that of θ0 = 90◦ in Fig. 4 , while the evolution of the

esulting twin microstructure, plastic slip and shear stress is
llustrated in Fig. 5 . It follows that, although the twin mor-
hology obtained for θ0 = 88◦ is obviously different than that
f θ0 = 90◦, the plastic slip activity and the intensity of shear
tress remain quite similar (see Fig. 3 ). However, the fine-
cale inhomogeneity of both the accumulated slip γ̄ and the
hear stress σ12 is less pronounced compared to the symmet-
ic case of θ0 = 90◦. It can be seen that the twin microstruc-
ure evolves in a non-symmetric manner from the very on-
et, through the nucleation of a lenticular-shaped domain, see
he left-most snapshots in Fig. 5 (our auxiliary simulation
or a declination angle of θ0 = 89 . 75◦ confirms that even a
inor deviation of 0. 25◦ from 90◦ is sufficient to trigger a

on-symmetric twin microstructure initiation and evolution).
he entire twin evolution process is then characterized by

hree major nucleations, with twins nucleating consistently
s lenticular-shaped domains. Each newly-nucleated twin is
riented almost perpendicular to the preceding one, thus cre-
ting a zigzag pattern of nucleation. At the same time, the
ndentation load–depth responses (see Fig. 4 ) follow a con-
istent overall trend. Of course, given the different twin mi-
rostructures, the distinct load events occur at different in-
entation depths, causing some variations between the two
urves. During unloading, the two curves almost coincide
nd end up at nearly the same residual indentation depth,
/R ≈ 0. 05 . 
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Fig. 5. Indentation of a magnesium single-crystal with a declination angle of θ0 = 88◦: evolution snapshots of twin microstructure (top), accumulated plastic 
slip (middle) and shear stress (bottom). 
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.3. Indentation at different declination angles 

Several experimental studies on magnesium have found
hat the indentation-induced microstructure and mechanical
esponse are greatly influenced by the declination angle,
.g., [10,12,14,17,58,59] . This effect arises from the highly
nisotropic behavior of the material, whereby indenting along
ifferent crystallographic orientations alters the propensity of
he material to deform by twinning or plastic slip. 

The aim of the analysis in this section is thus to delineate
he role of declination angle θ0 in controlling the deformation
echanism. We examine the declination angle θ0 within the

ange from θ0 = 0◦ (with the c-axis parallel to the indentation
irection) to θ0 ≈ 90◦ (with the c-axis nearly perpendicular to
he indentation direction). A summary of the simulation re-
ults is presented in Fig. 6 . Here, the twin microstructure is
epresented by the spatial distribution of the lattice orienta-
ion angle θlat , defined as the angle between the indentation
irection and the c-axis in the deformed configuration. This
epresentation enables us to visualize the lattice reorientation
ffects caused by twinning and plastic slip within the mi-
rostructure. 

It is important to recognize that for θ0 = 0◦ the predom-
nantly compressive deformation induced by the indentation
oad cannot be accommodated by (tensile) twinning nor by
asal slip with vanishing Schmid factors. Accordingly, only
he (hard) pyramidal slip can accommodate such deformation,
ossibly with small contribution of the basal slip compensat-
ng local incompatibilities. Accordingly, the indentation load
s the highest for θ0 = 0◦, Fig. 6 (a). At the same time, it is
vident in Fig. 6 (b) that no twinning is activated for θ0 = 0◦

nd only plastic slip is evolved. The crystallographic sym-
etry characteristic for the declination angle θ0 = 0◦ implies

hat plastic slip evolves in a symmetric manner, while the
hear stress σ12 is anti-symmetric, with equal magnitudes on
he left and right sides of the indent but opposite signs. Since
here is no twinning, both fields do not exhibit the fine-scale
nhomogeneities discussed earlier in the case of θ0 = 90◦ and
lso observed for other declination angles, see Fig. 6 (b). 

As mentioned above, for θ0 = 0◦, compression along the c-
xis does not favor twinning in the area beneath the indenter.
n fact, experiments [9,13] and theoretical analysis [13] in-
icate that tensile twins can appear at the sides of the in-
ent, although typically at higher indentation depths. While
o twinning is observed for θ0 = 0◦ in the present simula-
ions, an additional simulation carried out for � = 40 nm (not
eported here) shows that small diffuse twins are formed at
he sides of the indent (note that twin nucleation is easier
or larger � ), confirming that a favorable stress state indeed
evelops in these areas. Accordingly, it is also expected that
winning would be predicted for θ0 = 0◦ at larger indentation
epths and larger indenter radii. 



1732 M. Rezaee-Hajidehi, P. Sadowski and S. Stupkiewicz / Journal of Magnesium and Alloys 13 (2025) 1721–1742 

Fig. 6. Effect of declination angle θ0 on: (a) the indentation load–depth response, and (b) the microstructural features. In panel (b), the first row depicts the 
twin microstructure (in terms of the lattice orientation angle θlat ), the second row depicts the plastic slip activity, and the third row depicts the shear stress 
distribution. The snapshots are taken at the fully-unloaded state. 
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Fig. 7. Variation of maximum indentation load Pmax as a function of the 
declination angle θ0 . The load Pmax is normalized by the maximum inden- 
tation load obtained for the case with θ0 = 0◦, which is denoted by P0 . The 
experimental data are taken from [13] . 
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As θ0 increases, twinning becomes more prominent. The
volved twin microstructure then leads to a complex plastic
lip pattern and stress distribution, both exhibiting fine-scale
nhomogeneities discussed earlier. Interestingly, for θ0 = 30◦

nd θ0 = 60◦, twinning is localized at one side of the indent,
nducing a distinct pile-up on the surface. This observation
grees with the analysis in [13] , see their Fig. 6(b). The oppo-
ite side of the indent experiences a profuse activity of plastic
lip. Notably, for the case with θ0 = 30◦, the side dominated
y plastic slip shows traces of lattice rotation (see the related
lat snapshot), which is not observable for θ0 = 60◦. The mi-
rostructural characteristics observed here and the correspond-
ng effects on the mechanical response resemble, at least to
ome qualitative extent, the experimental findings [10,12,59] .

As commented above, θ0 = 0◦ demonstrates the largest in-
entation load, driven by the lack of twinning, a relatively soft
nelastic mechanism. Then follows θ0 = 30◦, with its maxi-
um indentation load reduced by about 23% compared to

0 = 0◦. Similar hardening rates are captured for θ0 = 60◦ and
0 = 90◦, with their maximum indentation loads being quite
lose to each other. To validate the simulation results, we plot
n Fig. 7 the variation of the maximum indentation load Pmax 

s a function of the declination angle θ0 and compare it with
he experimental data of Sánchez-Martín et al. [ 13 ]. In line
ith the experiment, the maximum load for θ0 = 0◦ (denoted

s P0 ) serves as a normalization factor for Pmax . The experi-
ental data correspond to deep indents (with a maximum in-

entation depth of 2 μm), and a high degree of twinning activ-
ty has been reported. Indeed, a very good agreement between
he simulation and experimental results is evident. Fig. 7 also
resents predictions obtained by the model incorporating gra-
ient plasticity effects (see Section 2.2 ), which demonstrate
 trend consistent with that obtained by the model with con-
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Fig. 8. Indentation size effects with varying indenter radius R: (a) load–depth ( P–δ) responses, and (b) the final twin microstructures. The interface thickness 
parameter is set to � = 10 nm. The scale bar in panel (b) applies to all subfigures. 
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entional (non-gradient) plasticity (the corresponding detailed
esults are reported in Appendix B ). Note that Sánchez-Martín
t al. [ 13 ] also conducted experiments with shallow indents
maximum indentation depth of 0.3 μm), where plastic slip
ominated and twinning was inhibited. As these experiments
id not exhibit significant twinning activity, the corresponding
ata points have not been included in Fig. 7 . 

.4. Size effects 

It is well-known that under indentation at micron and sub-
icron scales, crystalline metals exhibit indentation size ef-

ects, manifested by an increase in indentation hardness as
he indent size, and accordingly the contact interaction zone,
ecreases [60] which is often associated with the notion that
smaller is stronger’. The size effects are typically attributed
o strain gradients and to the related geometrically necessary
islocations (GNDs) [61] . Additionally, twinning, and equally
mportantly the interplay between twinning and plastic slip,
lso contribute to size effects, e.g., [15,62,63] . Nevertheless,
t appears that the role of twinning in governing the indenta-
ion size effects in magnesium has received limited attention,
ith only a few experimental studies addressing it [11,13,14] .
he present analysis is thus devoted to the size effects in re-

ation to indenter radius R, and correspondingly, in relation
o indentation depth δ. The analysis is divided in two parts.
n the first part, presented in this section, the twin boundary
nergy acts as the sole source of size effects in the model.
he second part, presented in Section 3.5 , extends the analy-
is by incorporating gradient plasticity as an additional source
f size effects. 

For this analysis, the declination angle of θ0 = 88◦ is se-
ected. We explore a range of indenter radius, from R =
. 5 μm to R = 16 μm. The computational domain 2L × L is
caled proportionally with R so that geometrical similarity is
reserved, thus L = 5 μm for R = 0. 5 μm and L = 160 μm
or R = 16 μm. As explained in Section 3.1 , the resolution
f twin-boundary interfaces is maintained by fixing the ra-
io �/h = 1 . 3 in the finest-mesh region. Given an interface
hickness parameter of � = 10 nm, the ratio �/h = 1 . 3 would
esult in too demanding computations for large radii. To mit-
gate this issue, following previous studies [35,55] , we adopt
 strategy that involves increasing the interface thickness pa-
ameter � , and proportionally, the element size h. Specifically,
hree interface thickness parameters are considered, namely
 = 10 nm, � = 20 nm and � = 40 nm. This strategy not
nly allows us to examine large indenter radii but also to as-
ess the impact of � on the simulation results. The reference
winning rate η̇0 is changed in line with � following the re-
ation η̇0 = πv0 / 8 � . At the same time, the indentation speed
ind = 50 nm/s is maintained across all simulations, and so
s the reference slip rate γ̇0 = 1 s −1 ; both parameters are the
ame as in the preceding analyses. Note that the maximum
ndentation depth is kept fixed at δmax /R = 0. 06 . 

As mentioned above, the element size h is varied along
ith � , so that h = 7 . 7 nm for � = 10 nm and h = 31 nm

or � = 40 nm. On the other hand, for a prescribed element
ize h, the total number of elements depends directly on the
ndenter radius R (since the dimensions of the problem, 2L ×
, are scaled with R). Depending on R and � , the number
f elements within the finest-mesh region thus varies from
08 × 144 to 864 × 1152 and the total number of degrees of
reedom varies from 162 thousand to 10.1 million (and from
85 thousand to 11.5 million in the case of the gradient-
nhanced crystal plasticity model considered in Section 3.5 ). 

We begin our discussion with Fig. 8 which illustrates the
ndentation load–depth response and the final twin microstruc-
ure for � = 10 nm across various indenter radii R. Both the
icrostructure and the indentation response display size ef-

ects. Notably, for the smallest indenter radius ( R = 0. 5 μm),
he twin microstructure takes on a bulky morphology. The
arger the radius R, the richer the microstructure, such that for
he largest radius ( R = 4 μm), an intriguing branched mor-
hology emerges, with each twin branch having a lenticular
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Fig. 9. The final twin microstructure as a function of indenter radius R and interface thickness parameter � . 

s  

h  

d  

c  

s  

o  

e  

e  

c  

t  

r  

C  

l  

f
 

t  

t  

F  

t  

t  

b  

I  

t  

a  

c  

i  

p  

l  

a
 

t  

m  

m  

M  

t  

5  

c
 

p  

e  

I  

t  
hape. In tandem, the indentation load–depth response ex-
ibits more identifiable abrupt load events, each linked to a
istinct twin nucleation (or twin rearrangement). This is in
ontrast to R = 0. 5 μm where the response has a relatively
mooth inelastic branch, reflecting the more uniform growth
f the twin domain. The rationale behind the observed size
ffects is traced to the competition between the interfacial
nergy of twin boundaries and other contributions to the (in-
remental) energy balance. At smaller spatial scales, the in-
erfacial energy plays a dominant role, prompting the mate-
ial to minimize its energy by forming fewer twin interfaces.
onversely, at larger spatial scales, the interfacial energy is

ess dominant and does not prohibit the microstructure from
orming twin interfaces. 

The same trend of microstructural changes, i.e., from bulky
o intricate branched morphology, is observed for other in-
erface thickness parameters, � = 20 nm and � = 40 nm.
ig. 9 presents the complete map of final twin microstruc-

ures for different � and R. Of particular interest in Fig. 9 are
he microstructures that develop a dense network of twin
ranches, see e.g., the case with R = 16 μm and � = 40 nm.
nterestingly, the twin microstructure extends deep beneath
he indent, forming elongated lenticular-shaped domains that
re arranged in a zigzag pattern. Such microstructures bear a
lose qualitative resemblance to the microstructure observed
n the experiment of Kitahara et al. [17] , see Fig. 1 . A sup-
lementary movie showing the complete microstructure evo-
ution for the case with R = 16 μm and � = 40 nm is made
vailable alongside this paper. 

Yet another observation from Fig. 9 is the diffuseness of
he microstructure as a function of � . While the overall twin
orphology remains fairly consistent across different � , the
icrostructure becomes clearly more diffuse as � increases.
oreover, since � directly influences the energy barrier for

win nucleation (see Remark 2.2 in this paper and Section
.3 in [31] ), larger values of � result in more developed mi-
rostructures. 

Another important point to mention regards the activity of
lastic slip and shear stress distribution in relation to size
ffects (separate figures illustrating them are not provided).
t is essential to acknowledge that the corresponding pat-
erns are closely intertwined with the twin microstructure (see
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Fig. 10. Normalized indentation load–depth ( P/R–δ/R) response as a function of indenter radius R and interface thickness parameter � . 

Fig. 11. The effect of the indenter radius R on the nominal indentation hardness Hnom 

: (a) the model with conventional crystal plasticity, and (b) the model 
with gradient-enhanced crystal plasticity. 
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he related discussions in Sections 3.2 and 3.3 ), and thereby,
ome microstructural adaptations are expected across differ-
nt R and � . Yet, the results show that general characteristics,
n terms of both distribution and intensity, remain consistent
hroughout. 

The normalized indentation load–depth ( P/R–δ/R) re-
ponses for various � and R are compared in Fig. 10 . Nor-
alizing by R filters out the first-order geometrical effects,

llowing for a clearer assessment of the size effects in the re-
ponses. Somewhat surprisingly, the related effects appear less
ronounced than anticipated. However, certain trends remain
oticeable, particularly for the smallest � = 10 nm. Specif-
cally, it is seen that as R increases, the normalized load
 P/R) required for twin nucleation and subsequent growth
f twin microstructure decreases. In addition, aside from the
mallest radius ( R = 0. 5 μm), the maximum load reached in
ll cases is nearly the same, and the difference in the re-
ponses is primarily due to the deviation in the location of
brupt load events. A similar observation can be made for
ther � values, where the responses exhibit even a closer
lignment across different radii. To complete our assessment,
e provide in Fig. 11 (a) the plot of the nominal indenta-

ion hardness Hnom 

as a function of radius R. The nomi-
al hardness is defined as Hnom 

= Pmax /Anom 

, with Anom 

=√ 

δmax (2R − δmax ) ≈ 0. 7 R denoting the nominal contact area
ssociated with the maximum load Pmax . Indeed, Fig. 11 (a)
onfirms the mild size effects reported in Fig. 10 . 

The size effects discussed above are governed solely by
he interfacial energy of twin boundaries, and the general ob-
ervation is that the microstructure shows a significant size-
ependence while the normalized indentation load–depth re-
ponse and hardness are only weakly affected. A more pro-
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Fig. 12. Indentation size effects captured by the model with gradient-enhanced crystal plasticity: normalized indentation load–depth ( P/R–δ/R) response as a 
function of indenter radius R and interface thickness parameter � . 

Fig. 13. Comparison of twin microstructure, plastic slip activity and shear stress distribution between the model with conventional crystal plasticity (top row) 
and the model with gradient-enhanced crystal plasticity (bottom row). The results correspond to simulations with R = 4 μm and � = 10 nm. The snapshots 
are taken at the fully-unloaded state. 
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Fig. 14. Comparison of twin microstructure, plastic slip activity and shear stress distribution between the model with conventional crystal plasticity (top row) 
and the model with gradient-enhanced crystal plasticity (bottom row). The results correspond to simulations with R = 16 μm and � = 40 nm. The snapshots 
are taken at the fully-unloaded state. 
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ounced impact of the interfacial energy on the indentation
esponse has been predicted in pseudoelastic shape memory
lloys (SMAs) [55] . It is, however, important to note that the
artensitic transformation (which is a displacive transforma-

ion, just like deformation twinning) stands as the prevailing,
f not the only, inelastic mechanism in SMAs, and the con-
ribution of plasticity is then minimal, if not absent. Conse-
uently, the interplay between the size-dependent interfacial
nergy and the elastic strain energy is more visibly reflected
n the resulting indentation load–depth response, and thereby,
n the trend of indentation hardness, see [55] . 

We now direct the attention to Fig. 11 (b), where pro-
ounced size effects are evident in the plot of the nominal
ardness Hnom 

as a function of the indenter radius R. This
merges as a result of incorporating gradient plasticity as a
econd key contributor to size effects, see Section 2.2 . A de-
ailed discussion of the corresponding results is provided in
he following subsection. 
.5. Size effects: with the contribution from gradient 
lasticity 

It follows from Fig. 11 (b) that incorporating gradient plas-
icity amplifies the indentation size effect, allowing for a more
ffective representation of the increase in the indentation hard-
ess with decreasing indenter radius. To gain a deeper in-
ight into the trend illustrated in Fig. 11 (b), we examine the
orresponding normalized load–depth responses, presented in
ig. 12 . A comparison between Fig. 12 and Fig. 10 high-

ights the substantial impact induced by gradient plasticity on
he responses, with the size effects remaining evident even at
he largest scale examined. 

To conclude our analysis, it is pertinent to examine the mi-
rostructure when gradient plasticity effects are at play. For
his purpose, we compare the twin microstructure, the activity
f plastic slip and the shear stress distribution for the cases
ith and without gradient plasticity. Comparisons are made
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or two indenter radii, namely R = 4 μm and R = 16 μm, as
hown in Figs. 13 and 14 , respectively. The impact of gradient
lasticity on the microstructure is obviously more pronounced
t the smaller scale of R = 4 μm. Specifically, the twin mi-
rostructure adopts a markedly different morphology, featur-
ng multiple small twin branches and more elongated large
win domains. Moreover, the accumulated plastic slip γ̄ dis-
lays a more spread-out distribution beneath the indenter, and
 reduced magnitude, whereas the shear stress σ12 is more in-
ense and exhibits pronounced fine-scale inhomogeneities, as
n the case with no gradient plasticity. The observed effects
re more weakly produced at the larger scale of R = 16 μm.
otably, as shown in Fig. 14 , while the overall twin morphol-
gy remains consistent between the two cases, the incorpo-
ation of gradient plasticity results in the formation of small
win branches dispersed across the microstructure, which are
therwise absent. 

. Summary and concluding remarks 

The real-time visualization of the indentation-induced mi-
rostructure evolution allows to establish the link between mi-
rostructural changes and macroscopic events, which is essen-
ial for fully characterizing the material’s behavior, especially
n HCP metals where deformation is highly anisotropic and is
ominated by twinning. The phase-field method has emerged
s a promising continuum-based computational tool for pre-
icting the twin microstructure. When coupled with crystal
lasticity, it offers a viable framework for simulating the com-
lex interplay between deformation twinning and plastic slip.
n this study, we leveraged a recently-developed finite-strain
odel of this kind to simulate the indentation-induced mi-

rostructure evolution in a magnesium single-crystal. Finite-
lement simulations have been carried out in a 2D plane-strain
etting, leading to several intriguing findings. 

(i) The foremost attention has been placed on the evolution
of twin microstructure during indentation, on the corre-
sponding load–depth response, and on how the plastic
slip activity and stress distribution are intricately con-
nected with the twin morphology. It has been observed
that each major twin nucleation is marked by a distinct
load drop, resembling the pop-in event, in the load–
depth response. Interestingly, despite the symmetry of
the problem setup imposed by the declination angle of
θ0 = 90◦, symmetry breaking of the twin microstructure
occurs midway through the indentation loading. 

(ii) The simulation results demonstrate an orientation-
dependent behavior that aligns with prior experimen-
tal observations. As expected, and quite naturally, twin-
ning is most favorable when the indentation is applied
perpendicular to the c-axis, while it is practically sup-
pressed when the indentation is applied parallel to the
c-axis. At intermediate declination angles, twinning is
localized on one side of the indent, while the oppo-
site side experiences a profuse activity of plastic slip, a
combination of actions that leads to an uneven pile-up
pattern. Moreover, the trend of maximum indentation
load as a function of declination angle follows a pre-
dictable trajectory, with θ0 = 0◦ exhibiting the hardest
response and θ0 ≈ 90◦ the softest, in a close agreement
with the experimental findings of Sánchez-Martín et al.
[13] . 

(iii) An unexpected yet intriguing outcome emerges from the
study of indentation size effects when the interfacial en-
ergy of twin boundaries is the sole source of size effects.
Although the twin microstructure exhibits clear size-
dependent morphology, the corresponding plot of nom-
inal hardness does not adhere to an appreciable ‘smaller
is stronger’ trend. Extending the model to incorporate
gradient crystal plasticity provides further insight. With
the introduction of a length scale of �g = 1 μm, it be-
comes clear that gradient plasticity plays a more dom-
inant role in governing size effects, with its impact on
the nominal hardness being more pronounced compared
to that of the interfacial energy of twin boundaries. 

(iv) A particularly striking outcome of the simulations is
the remarkable richness of the twin microstructure at
large dimensions. For a sufficiently large indenter ra-
dius R and an appropriately selected interface thickness
parameter � (and accordingly, an appropriately selected
finite-element mesh density), the resulting microstruc-
ture exhibits an intricate array of twin domains, bearing
a strong qualitative resemblance to the experimentally-
observed remnant twin microstructure of Kitahara et al.
[17] . The microstructure is enriched even further when
gradient crystal plasticity is incorporated in the model. 

(v) Important to highlight is the dual role of the parameter �
in controlling both the diffusivity of the twin interfaces
and the driving force for twin nucleation and propa-
gation. Therefore, careful consideration must be given
to the choice of � , as an inappropriate selection could
compromise the spatial resolution of the microstructure
and undermine its physical relevance. A related observa-
tion in this respect is that at large spatial scales (when
larger � is used), the indentation load–depth response
is noticeably smoother compared to small scales. How-
ever, when � is chosen such that the interfaces remain
reasonably sharp, the major microstructural events, i.e.,
the nucleation of distinct lenticular–shaped twins, still
leave discernible macroscopic signatures, even when
they occur deep inside the bulk of the material. This
behavior is clearly demonstrated in the supplementary
movie. Furthermore, while some experimental studies
have noted microstructural changes during indentation
unloading [9] , our simulations detect such changes only
to a negligible extent. 

To wrap up the discussion, we stress that our model and
imulations pertain to a 2D plane-strain setting, which in-
erently limits the complexity of the problem. Only one
win variant, representing two conjugate twinning systems,
long with three effective slip systems, each representing two
oncurrently-active slip systems, are considered. Despite these
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implifications, the predictions proved satisfactory, with sev-
ral aspects aligning with experimental evidence. Neverthe-
ess, more realistic 3D simulations, featuring a more accurate
epresentation of twinning and slip mechanisms, are essential
o achieve more insightful and accurate predictions. A full
D simulation of magnesium with an HCP crystal structure
ould require the inclusion of three (primary) twin variants

nd at least 12 slip systems (separately in the matrix and in
he twins), which would significantly complicate the model
nd render the finite-element computations formidably chal-
enging. Efforts towards a 3D extension are currently under-
ay. 
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ig. A.1. (a) Normalized indentation load–depth curves corresponding to the non-
icrostructure developed in the half domain. (b) The difference between the two

oad). The inset in panel (b) shows an enlarged part marked by a box. 
ppendix A. Twin microstructure: analysis of symmetry 

reakdown 

In this appendix, we carry out a detailed analysis of the mi-
rostructure symmetry breakdown observed in Section 3.2 for
0 = 90◦. To this end, an extra simulation has been carried
ut for one half of the domain with the symmetry conditions
nforced along the symmetry axis. This setup effectively en-
orces development of a symmetric microstructure, thus pre-
enting the symmetry breakdown. 

Fig. A.1 (a) compares the indentation load–depth curves
or the two cases, i.e., the full domain (non-symmetric mi-
rostructure) and the half domain (symmetric microstructure).
he two curves are apparently identical up to δ/R ≈ 0. 03 ,
arked by letter B. However, a more detailed examination

eveals that a bifurcation actually appears earlier, at the in-
tant marked by letter A. This is illustrated in Fig. A.1 (b),
hich shows the difference between the two curves. Indeed,
ntil instant A, the two solutions are identical, see the inset
n Fig. A.1 (b). Afterwards, the load corresponding to the full
omain becomes lower than that corresponding to the half do-
ain. This means that the non-symmetric solution obtained

or the full domain is energetically favorable, as the incre-
ental work supplied to the system is lower in the case of

on-symmetric microstructure. Note that the load difference
s initially small and thus not visible on the overall diagram in
ig. A.1 (a), and it becomes visible only after instant B. Actu-
lly, the difference changes the sign several times during the
volution, but it is the negative sign of the load difference
t the bifurcation point A that confirms that the symmetry
reakdown is indeed energetically preferable. 

Fig. A.2 shows the microstructures corresponding to in-
tants A, B and C, as well as the final microstructure at the
aximum load. The difference between the microstructures at

nstant B is not directly visible, and only a small difference
an be appreciated at instant C, compare the new twins form-
ng below the existing twin structure. The small difference in
symmetric microstructure developed in the full domain and to the symmetric 
 loads (negative when the full-domain load is smaller than the half-domain 
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Fig. A.2. Comparison of the non-symmetric and symmetric microstructures developed, respectively, in the full domain and half domain. The instants A, B 

and C refer to Fig. A.1 . 
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he microstructure is consistent with the small load difference
etween instants A and B. 

A general observation from the simulations carried out
ithin this work, including those not reported in the paper,

s that the symmetry breakdown is hindered at smaller scales
nd for larger values of the interface thickness parameter � ,
ig. B.1. Effect of declination angle θ0 on: (a) the indentation load–depth response
radient plasticity effects. In panel (b), the first row depicts the lattice orientation 
epicts the shear stress distribution. The snapshots are taken at the fully-unloaded
.e., for more diffuse interfaces. These observations are con-
istent with those reported in [55] in the case of phase-field
odeling of martensitic transformation. As shown in [55] , the

ndentation speed is an additional factor influencing propen-
ity to symmetry breakdown (the lower the speed, the easier
he breakdown); the related study is out of scope of this work.
, and (b) the microstructural features, as predicted by the model incorporating 
angle θlat , the second row depicts the plastic slip activity, and the third row 

 state. 
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ppendix B. Indentation at different declination angles: 
radient crystal plasticity 

In this appendix, we provide additional results comple-
enting the study of the effect of declination angle θ0 re-

orted in Section 3.3 . The setup of the problem is identical
o that in Section 3.3 , except that the gradient-enhanced crys-
al plasticity model is used instead of the conventional one,
ee also Section 3.5 . In particular, the same range of decli-
ation angles is analyzed for the indenter radius R = 2 μm.
he results are summarized in Fig. B.1 . 

Qualitatively, the results are similar to those shown in
ig. 6 . There is no twinning for θ0 = 0◦. The microstruc-

ures corresponding to the other declination angles show some
ifferences, yet the orientations of lenticular-shaped twins ap-
ear to be consistent with those in the reference non-gradient
lasticity simulations. The accumulated plastic slip γ̄ exhibits
ere a more spread-out distribution, an effect illustrated al-
eady in Fig. 13 . As in the case of the conventional crys-
al plasticity, the case of θ0 = 0◦ is characterized by the
ighest load, while the load is the lowest for θ0 = 60◦ and
0 ≈ 90◦, see Fig. 7 . At the same time, since the indenter
adius ( R = 2 μm) is relatively small, the actual value of the
ndentation load is visibly affected by the gradient plasticity
ffects; the maximum load is here 15–25% higher depending
n the declination angle, compare Figs. 6 (a) and B.1 (a). 

upplementary material 

Supplementary material associated with this article can be
ound, in the online version, at 10.1016/j.jma.2025.02.016 

eferences 

[1] P.G. Partridge, Metall. Rev. 12 (1967) 169–194 . 
[2] Reed-Hill, R. E., & Abbaschian, R. (1973). Physical metallurgy princi-

ples. Van Nostrand. 17 
[3] S. Mahajan, D.F. Williams, Int. Metall. Rev. 18 (1973) 43–61 . 
[4] M.H. Yoo, Metall. Trans. A 12 (1981) 409–418 . 
[5] M.H. Yoo, J.K. Lee, Philos. Mag. A 63 (1991) 987–1000 . 
[6] T. Guo, F. Siska, M.R. Barnett, Scr. Mater. 110 (2016) 10–13 . 
[7] T. Guo, F. Siska, J. Cheng, M. Barnett, J. Alloys Compd. 731 (2018)

620–630 . 
[8] J. Cheng, T. Guo, M.R. Barnett, J. Magn. Alloys 10 (2022) 169–179 . 
[9] G. Nayyeri, W.J. Poole, C.W. Sinclair, S. Zaefferer, P.J. Konijnenberg,

C. Zambaldi, Mat. Sci. Engng. A 670 (2016) 132–145 . 
10] D. Catoor, Y.F. Gao, J. Geng, M.J.N.V. Prasad, E.G. Herbert, K.S. Ku-

mar, G.M. Pharr, E.P. George, Acta Mater. 61 (2013) 2953–2965 . 
11] R. Sánchez-Martin, M.T. Pérez-Prado, J. Segurado, J. Bohlen, I. Gutiér-

rez-Urrutia, J. Llorca, J.M. Molina-Aldareguia, Acta Mater. 71 (2014)
283–292 . 

12] C. Zambaldi, C. Zehnder, D. Raabe, Acta Mater. 91 (2015) 267–288 . 
13] R. Sánchez-Martín, M.T. Pérez-Prado, J. Segurado, J.M. Molina-Al-

dareguia, Acta Mater. 93 (2015) 114–128 . 
14] K.P. Raineesh, K.E. Prasad, J. Mat. Res. 37 (2022) 728–736 . 
15] H. Fan, S. Aubry, A. Arsenlis, J.A. El-Awady, Scr. Mater. 112 (2016)

50–53 . 
16] G. Nayyeri, W.J. Poole, C.W. Sinclair, S. Zaefferer, Scr. Mater. 137

(2017) 119–122 . 
17] H. Kitahara, T. Mayama, K. Okumura, Y. Tadano, M. Tsushida,

S. Ando, Acta Mater. 78 (2014) 290–300 . 
18] B.L. Wu, G.S. Duan, X.H. Du, L.H. Song, Y.D. Zhang, M.J. Philippe,
C. Esling, Mat. Des. 132 (2017) 57–65 . 

19] Y.C. Lai, Y. Ying, D. Yadav, J. Guerrero, Y.J. Hu, K.Y. Xie, J. Magn.
Alloys 11 (2023) 4513–4524 . 

20] H. Bei, Y.F. Gao, S. Shim, E.P. George, G.M. Pharr, Phys. Rev. B 77
(2008) 060103 . 

21] Y. Gao, H. Bei, Prog. Mat. Sci. 82 (2016) 118–150 . 
22] I.A. Alhafez, C.J. Ruestes, Y. Gao, H.M. Urbassek, Nanotechnology 27

(2015) 045706 . 
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