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In this work, we consider biased-noise qubits affected only by bit-flip errors, which is motivated by
existing systems of stabilized cat qubits. This property allows us to design a class of noisy Hadamard
tests involving entangling and certain non-Clifford gates, which can be conducted reliably with only a
polynomial overhead in algorithm repetitions. On the flip side, we also found classical algorithms able
to efficiently simulate both the noisy and noiseless versions of our specific variants of the Hadamard
test. We propose to use these algorithms as a benchmark of the biasness of the noise at the scale of
large circuits. The bias being checked on a full computational task makes our benchmark sensitive to
crosstalk or time-correlated errors, which are usually invisible from individual gate tomography. For
realistic noise models, phase-flip will not be negligible, but in the Pauli-Twirling approximation, we
show that our benchmark could check the correctness of circuits containing up to 106 gates, several
orders ofmagnitude larger than circuits not exploiting a noise-bias. Our benchmark is applicable for an
arbitrary noise-bias, beyond Pauli models.

Quantum computers bring the hope of solving useful problems for society
that would be out of reach for classical supercomputers. One can think of
problems in optimization1,2, cryptography3,4, finance5,6, quantum chemistry
or material sciences7–11. The main threats toward the realization of useful
quantum computers are noise and decoherence12, which cause errors and
degrade the quality of the computation. In the long term, this problem will
likely be addressed byquantumerror correction and fault-tolerant quantum
computing13,13–18. Yet, the very high fidelity and considerable overhead this
approach requires make it very challenging to implement.

In this context, the existence of quantum algorithms able to scale up to
a large size, with low-fidelity hardware, would be highly desirable. Unfor-
tunately, various studies showed that polynomial-time classical algorithms
can efficiently simulate the algorithmoutputs of specific circuits in the noisy
case, such as random circuits19,20 or general algorithms under some
assumptions on the noise structure21–23 (see also ref. 24 and refs. 25,26 for
analogous results in the optical setting). All these studies indicate that
without doing error-correction, for realistic noisemodels, it is not possible to
preserve reliable algorithm outputs in a classically intractable regime (see,
however, recent work27, which showed that in certain oracular scenarios
noisy quantumcomputers can offer an advantage over classical computers).
Onemajor difficulty to face is that, for most noise models, the fidelity of the
output state drops exponentially with the number of gates involved in the

computer28, suggesting that a reliable estimation of any expectation value
would require to run exponentially many times the algorithm, ruining any
hope for an exponential speedup. Errormitigation techniques29–36 have been
proposed, with the hope to solve this issue. However, various no-go results
show that, for several noise models, error mitigation techniques are not
scalable33,37: thenumberof samples they require cangrowexponentiallywith
the algorithm’s depth or the number of qubits in the algorithm34,38,39. Other
approaches can be potentially more scalable, but they assume specific noise
models40, require knowledge of the entanglement spectrum of quantum
states41 or have potentially high algorithmic complexity42.

In ourwork,motivated by the limitations of error-correction and error
mitigation, we propose instances of the Hadamard test43,44 that can be
robustly implemented in systems of so-called biased-noise qubits45–47,
affected only by local stochastic bit flip (or phase-flip) errors. In technical
terms, we show that, for suitably designed circuits tailored to a Pauli biased
noise, the outcome of the ideal version of the Hadamard test can be esti-
mated reliably by execution of its noisy versions with only a polynomial
overhead in the number of repetitions of the algorithm. The model of
biased-noise qubits ismotivated by existing hardware realizing stabilized cat
qubits46–48. The key ingredient of our approach is that only specific gates are
allowed, in order to preserve the noise bias along the computation45,49. This
allows us to design circuits in which the measurement will be isolated from
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most of the errors occurring (seeFig. 1). Importantly, the circuits themselves
canbequite complicated: the allowed set of gates cangenerate large amounts
of entanglement and contain certain non-Clifford gates, thus avoiding
natural classical simulation techniques50–52. Nonetheless, the restricted
nature of these circuits allowed us tofind an efficient classical algorithm that
simulates realizations of our family of Hadamard tests, also in the presence
of arbitrary local biased noise. We propose to use this algorithm as a simple
benchmark of the biasness of the noise at the scale of large and complicated
quantumcircuits. The interest of our benchmark is that it is scalable and can
detect some collective effects of the noise that cannot, by definition, be
observed at the level of individual gates. For instance, it can detect some
crosstalk and correlated errors. The overall principle of the benchmark,
summarized at the end of the results section and detailed in the methods
section, is to compare the experiment to the classical simulation, which
assumes the noise model of each gate used inside the complete algorithm is
identical to the one deduced from individual gate tomography. Hence, if the
simulation and experiment differ, it would imply that collective effects are
degrading the quality of the hardware when a complete algorithm is
implemented, indicating a potential threat to the scalability of the hardware.
For pedagogy, in the main text, we mainly focus on the case of Pauli noise,
but our benchmark is applicable for the most general model of local biased
model as explained in the methods section.

Results
Notations and terminology
Let (σ0, σ1, σ2, σ3) ≡ (I, X, Y, Z) denote single-qubit Pauli matrices. Let H
denote the Hadamard gate. We callPX

n the set of X-Pauli operators acting
on n-qubits, PX

n � f�n
k¼1σ ik ; j8k; ik 2 f0; 1gg. We say that fn ∈ poly(n) if

there exist two reals C, a > 0 such that limn!1 f n=ðCnaÞ ¼ 1. Moreover,
when poly(n) appears in an equation, it means that the equation remains
true by replacing poly(n) by any function fn ∈ poly(n). Lastly, we say that

fn =O(gn) if there existsC > 0 such that limn!1jf n=gnj≤C. For any unitary
U, we define its coherently controlled operation in the X-basis as
cXU � ∣þi þh ∣� I þ ∣�i �h ∣� U . LetG be a single-qubit unitary. Unless
stated otherwise,Gi indicates thatG is applied on the i’th qubit in the tensor
product (and I is applied elsewhere). Calling G the unitary map imple-
menting a unitary quantum gateG, and EG the CPTP (Completely Positive
Trace Preserving) operation describing the noisy implementation of the
gate, we define the “noisemapofG” (or the noisemap associatedwithG) the
CPTPNG defined asNG � EG � Gy. Thenoisemapof a state preparation is
the CPTPmap that is applied after a noiseless state preparation, so that the
overall process (noiseless preparation followed byCPTPmap) describes the
noisy state preparation. The noise map of a measurement is the CPTPmap
that must be applied before the noiseless measurement so that the overall
process (CPTPmap followed bynoiselessmeasurement) describes the noisy
measurement (noise maps for state preparation and noisy measurements
are not uniquely defined). We call suppðGÞ the set of qubits over which the
CPTP G acts non-trivially. The notation

P
α�suppðGÞ means that the sum-

mation is over every possible subset of suppðGÞ. For instance, if G is a two-
qubit gate acting on qubits 1 and 2, we have suppðGÞ ¼ f1; 2g, and α will
take every one the 4 values in the following set ff;g; f1g; f2g; f1; 2gg. These 4
values correspond to the 4 possible subsets of suppðGÞ. Finally, IsuppðGÞ is the
identity operator acting on the qubits where the CPTP map G acts non-
trivially.

Introduction to the Hadamard test
TheHadamard test is the task overwhich all our examples are built. It allows
for the estimation of the expectation value ψ

�
∣U ∣ψ

�
of a unitaryU on some

prepared n-qubit state ∣ψ
� ¼ B�n

i¼1∣ϕi
�
(∣ϕi

�
being a single-qubit state, B a

unitary operation), leading to several applications44,53,54. Away to implement
it is represented in Fig. 1. It consists of a “measured” register initialized in ∣0i
combination with a “data” register, where the state ∣ψ

�
has been prepared.

The reduced state of the measured register right before measurement takes
the following form

ρ ¼ 1
2

I þ αn yY þ zZ
� �� �

; ð1Þ

where y ¼ �Imð ψ
�

∣U ∣ψ
�Þ; z ¼ Reð ψ

�
∣U ∣ψ

�Þ and αn = 1 from now on.
Hence, measuring the first register in theY (resp.Z) basis allows to estimate
the imaginary (resp. real) part of ψ

�
∣U ∣ψ

�
. Using Hoeffding’s inequality33

we get that N ¼ 2 logð2=δÞ=ϵ2 experimental repetitions are sufficient to
estimate yor zup to ϵ-precisionwith a probability 1−δ. It iswell-known that
estimating ψ

�
∣U ∣ψ

�
, for a general polynomial circuit U, to additive

precision is a BQP-complete problem53 and therefore, in general, we do not
expect an efficient classical algorithm that would realize this task.

So far, we discussedwhat happenswhen themeasured qubit is noiseless.
Let us now assume that a bit-flip channel right before the measurement
occurs in such a way that 0 < αn < 1 in Eq. (1). Then, repeating the algorithm
Nn ¼ 2 logð2=δÞ=ðαnϵÞ2 times would be sufficient to estimate y and z to ϵ
precisionwithhighprobability (the scaling in1=ðαnϵÞ2 is alsooptimal55). Ifαn
decreases exponentially with n, the total number of algorithm calls will
necessarily grow exponentiallywithn and the algorithmwouldn’t be scalable.
However, forαn= 1/poly(n), only poly(n) overhead in experiment repetitions
would be sufficient to reliably estimate ψ

�
∣U ∣ψ

�
. In this work, we will show

that for biased-noise qubits, it is possible to design a class of non-trivial
Hadamard tests for which αn = 1/poly(n) in the presence of non-vanishing
local biased noise.

Noise model
In general, both B, and cXU have to be decomposed on a gateset imple-
mentable at the experimental level. Let G be a unitary channel describing a
gate belonging to the accessible gateset, and EG be its noisy Completely
PositiveTracePreserving (CPTP) implementation in the laboratory.Wewill
assume a local biased noise model: EG ¼ NG � G, where the CPTP “noise
map”NG will only introduce (possibly correlated) bit-flip errors on the set of

Fig. 1 | The Hadamard test. The Hadamard test represented on this figure allows to
estimate ψ

�
∣U ∣ψ

�
where ∣ψ

� � B�n
i¼1∣ϕi

�
, (∣ϕi

�
being a single-qubit state, B a

unitary). This estimation is being done by initializing a measured register in ∣0i, and
by implementing the unitary cXU (see the paragraph “Notations and terminology” in
the section Results to understand our notations). Finally, measuring the measured
register in PauliY andZ bases gives access to the imaginary and real part of ψ

�
∣U ∣ψ

�
.

We call Ln the number of gates applied on themeasured register (including potential
noisy identity gates), once cXU has been decomposed on an experimentally feasible
gateset. In this paper, we show that for a noise model only composed of bit-flips, and
under some restrictions on the n-qubit unitariesU and B, themeasurement will only
be sensitive to bit-flips produced on themeasured register, and entirely insensitive to
the ones produced on the data register. Nonetheless, some `useful information”
contained in the entangled state ∣ψ

�
will propagate toward the measurement. The

intuitive principle we use is to encode the “useful” information in a “Pauli Z (or Y)
channel”whilemaking sure that any error is inside a “PauliX channel”. If any PauliX
error (i.e., bit-flip) from the data register cannot propagate toward the measurement
while the Pauli Z can, the information will reach the measurements but not the
errors. Overall, if Ln ¼ OðlogðnÞÞ, the noise will only introduce a polynomial over-
head in the number of algorithm repetitions to guarantee a reliable outcome: the
algorithm will be scalable despite the noise. Note that while Ln ¼ OðlogðnÞÞ, the
algorithm can nonetheless have a polynomial depth.
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qubits over which G acts non-trivially. We call this set suppðGÞ. We have:

NGðρÞ ¼
X

α�suppðGÞ
pGαXαρXα; ð2Þ

where the summation is over every possible subsets α of suppðGÞ (we clarify
what itmeans with an example in a few lines).We also haveXα≡∏i∈αXi for
α≠f;g and Xf;g � IsuppðGÞ. Here, IsuppðGÞ is the identity operator acting on
the qubits where G acts non-trivially. Therefore, α denotes the set of qubits
onwhich a bit-flip operator is applied in the summation in (2). Finally, fpGαg
is a probability distribution supported on the subsets of suppðGÞ. For
instance, if G is a two-qubit gate acting on qubits 1 and 2, we have
suppðGÞ ¼ ff1g; f2gg, andαwill take each of the 4 values in the following set
ff;g; f1g; f2g; f1; 2gg. These 4 values correspond to the 4 possible subsets of
suppðGÞ. Itmeans thatNG will be abit-flipnoisemodel having the following
4 Kraus operators:

ffiffiffiffiffiffiffi
pf;g

p
I1 � I2;

ffiffiffiffiffiffiffi
pf1g

p
X1 � I2;

ffiffiffiffiffiffiffi
pf2g

p
I1 � X2 andffiffiffiffiffiffiffiffiffiffi

pf1;2g
p

X1 � X2. Noisy measurements are modeled by a perfect measure-
ment followed by a probability pmeas to flip the outcome. Lastly, we assume
that single-qubit noisy state preparation consists of a perfect state
preparation followed by the application of a Pauli X-error with probability
pprep. Our noise model is based on an idealization of cat qubits that are able
to exponentially suppress other noise channels than bit-flip, at the cost of a
linear increase in bit-flip rate46–48 (or the other way around). It is an
idealization as (i) the Kraus operators are a linear combination of Pauli X
and I operators only: this is what we call a perfect bias, (ii) we also neglect
coherent errors, meaning that our noise model is a Pauli noise. The
assumption (ii) is mainly used for pedagogical purposes in the main text.
Indeed, ourmain result (the benchmarkingprotocol) is applicable for biased
qubits which are designed in such a manner that their noise model is well
approximated by the assumption (i) only (see Theorem 4 andDefinition 4).
We now provide the definition of “an error”.

Definition 1. (Error). Let ∣Ψi be the state the qubits should be in at some
timestep of the algorithm if all the gates were perfect. Because we consider a
probabilistic noise model, the actual n-qubit quantum state will take the
form ρ ¼ P

ipiEi∣Ψi Ψh ∣Ey
i , where Ei is a unitary operator and pi some

probability (pi ≥ 0, ∑ipi = 1). The operator Ei is what we call the error that
affected ∣Ψi.

Designing noise-resilient Hadamard test
The core idea behind our work is to exploit the fact that only bit-flips are
produced, in order to design circuits guaranteeing that most of these errors
will never reach themeasurement in theHadamard test. In order to explain
our results we need to introduce first a number of auxiliary technical
definitions.

Definition 2. (X-type unitary operators and errors).We callX-type unitary
operators the set of unitaries that can be written as a linear combination of
Pauli Xmatrices. For n-qubits, we formally define it as:

UX
n � U ¼

X
i

ciPi; jPi 2 PX
n ; ci 2 C;Uy ¼ U�1

( )
: ð3Þ

Alternatively,UX
n can be understood in terms of unitaries that are diagonal

in the product basis ∣si ¼ ∣s1
�
∣s2
�
. . . ∣sn

�
, where si = ± and ∣± i are

eigenstates of Pauli Xmatrix. We will call “X-error”, an error belonging to
UX

n (if the error is additionally Pauli, wewill call it “PauliX error”, or simply
“bit-flip”).

Whatwe need to do is to guarantee that any error occurring at any step
of the computation is an X-error. It is possible with the use of “bias-pre-
serving” gates: such gates map any initial X-error to another X-error. It
motivates the followingdefinitionandproperty (all our results arederived in
the Supplemental material).

Definition 3. (Bias-preserving gates). LetG be an n-qubit unitary operator.
We say that G preserves the X-errors (or X-bias), if it satisfies the following
property

8P 2 PX
n ; 9A 2 UX

n such that GP ¼ AG: ð4Þ

We denote Bn the set of such gates.

Property 1. (Preservation of the bias). If a quantum circuit is only com-
posed of gates inBn, each subject to a local biased noise model from Eq. (2)
(and the paragraph that follows for measurement and preparation), then
any error affecting the state of the computation is an X-error.

As examples of bias-preserving gates, there are all the unitaries inUX
n ,

the cNOT, and what we call Toffoli0 � H1H2H3 ×Toffoli × ðH1H2H3Þy
(We assume Toffoli’ can be implemented “natively” without having to
actually apply theHadamards (otherwise, becauseHadamardwould also be
noisy, the full sequence wouldn’t be bias-preserving)). An example of a gate
that does not preserve the bias is the Hadamard gate. The existence of gate
preserving the bias also during the gate implementation is not straightfor-
ward, but cat-qubits are able to overcome this complication, at least for
cNOT, Toffoli’ and gates in UX

n : see the section I C in the Supplemental
Material. Finally, bias preserving gates have a nice interpretation: they
correspond to permutations (up to a phase) in the PauliX-eigenstates basis.

Property 2. (Characterization of bias-preserving gates). V 2 Bn if and
only if for any s ∈ {+, −}n, there exists a real phase φs,V such that:
V ∣si ¼ eiφs;V ∣σV ðsÞ

�
where σV is some permutation acting on {+, −}n.

We now sketch the sufficient ingredients guaranteeing the existence of
noise-resilient Hadamard tests. First, (i) assume that individual gate errors,
aswell as individualmeasurement and state-preparation errors, occurwith a
probability smaller than p < 1/2. Furthermore, assume (ii) that onlyX-errors
occur in the algorithm (it can be satisfied with the assumptions of Property
1), (iii) these errors cannot propagate from the data to themeasured register,
(iv) the number of interactions of the measured register with the data
register satisfies Ln ¼ OðlogðnÞÞ (which implies the measured register will
only be impacted by X-errors introduced atOðlogðnÞÞ locations). Subject to
conditions (i–iv) the reduced state ρ will satisfy Eq. (1) with αn efficiently
computable classically, and satisfying αn ≥ 1/poly(n). As explained earlier,
this would guarantee a scalable algorithm to estimate ψ

�
∣U ∣ψ

�
. In parti-

cular, the following Theorem holds.

Theorem 1. (Hadamard test resilient to biased noise). Let:

∣ψ
� ¼ B

NNB

i¼1
∣ϕi

�
;U ¼ W � V ;

W � QNW

i¼1
Wi;V � QNV

i¼1
Vi;

ð5Þ

where B is a product of local bias preserving gates, gates Vi andWi are local
gates and belong toUX

n . In the context of this theorem, the index i onVi and
Wi refers to the i’th gate in the product (it does not necessarilymean the gate
is applied on the i’th qubit). Additionally, the gates Wi are assumed to be
Hermitian. We assume the circuit is implemented as indicated on Fig. 2.
There,W is implemented thanks to the “parallelization register”, while V is
implemented by making the measured and data register directly interact.

Furthermore, we assume the local bias noise model introduced in Eq.
(2), and that state preparation, measurements, and each non-trivial gate
applied on the measurement register have a probability at most p < 1/2 to
introduce a bit-flip on the measured register.

Under these conditions, there exists a quantum circuit realizing a
Hadamard test such that, in the presence of noise, the reduced state ρ
satisfies Eq. (1) with αn ≥ ð1� 2pÞOðNV Þ.

Additionally, αn is efficiently computable classically. Hence, if
NV ¼ OðlogðnÞÞ, it is possible to implement the Hadamard test in such a
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way that running the algorithmpoly(n) times is sufficient to estimate the real
and imaginary parts of ψ

�
∣U ∣ψ

�
to ϵ precision with high probability.

The Hadamard test is implemented with the circuit shown in Fig. 2. It
uses a parallelization register. It is this parallelization register that allows for
the implementation of a unitary acting on all the qubits of the data register
(the unitary W mentioned in the theorem), while keeping a logarithmic
number of interactions with the measured register (this is required to pre-
serve noise-resilience).While Theorem1 assumes the trivial identity gate to
be noiseless, the results can be easily extended if they are noisy (in this case,
W should have a depth inOðlogðnÞÞ, as discussed in the section III C of the
Supplemental Material). Our approach is also scalable in the presence of
noisy measurements (measuring the data register in the X basis to infer
ψ
�

∣U ∣ψ
�
would not be scalable in general in this case: see ref. 56 and the

section IV B of the Supplemental Material).

Efficient simulation of noise-resilient Hadamard test
We just saw that restricted forms of Hadamard tests are resilient to bit-flip
errors occurring throughout the circuit. The following result proves that the
task realized by such a restrictedHadamard test can be efficiently simulated
on a classical computer with polynomial effort.

Theorem2. (Efficient classical simulationof restrictedHadamard test). Let
B 2 Bn;U 2 UX

n be n qubit unitaries specified by RB and RU local qubit
gates (belonging to respective classes Bn and UX

n ). Let ∣ψ0

� ¼
∣ϕ1

�
∣ϕ2

� � � � ∣ϕn� be an initial product state. Then, there exists a randomized
classical algorithm, taking as input classical specifications of circuits defining
B, U, and the initial state ∣ψ0

�
, that efficiently and with a high probability

computes an additive approximation to ψ0

�
∣ByUB∣ψ0

�
. We call C this

approximation. Specifically, we have

Pr j ψ0

�
∣ByUB∣ψ0

�� Cj≤ ϵ� �
≥ 1� δ; ð6Þ

while the running time is T ¼ OðRBþRUþn
ϵ2 logð1=δÞÞ.

The classical simulability of the restricted Hadamard test can be
regarded as the limitation of our approach to constructing quantum circuits
that are robust to biased noise. At the same time, it allows us to introduce an
efficient and scalable benchmarking protocol that is tailored to validating
the assumption of bias noise on the level of thewhole (possibly complicated)
circuit. It allows us to validate this assumption in a manner that individual
gate tomography couldn’t, as we now explain.

Sketch of the benchmarking protocol
For pedagogy, in this section, we give an intuitive sketch of how the
benchmarking would work for the Pauli bit-flip noise model considered so
far. In the method section, we give the details behind the benchmarking
protocol, which applies to the most general case of a biased noise model for
qubits, beyond bit-flip (formally, a noise model satisfying Definition 4). In
the methods section, we also provide the classical algorithms able to effi-
ciently simulate the noisy implementation of the quantum circuit.

The issue with an individual benchmark of quantum gates is that it is
blind to collective effects that canonlybuildupwhena full circuit, composed
of many gates in sequence and in parallel, is implemented. One example is
the presence of correlated errors, or more generally, non-local effects in the
noise, that individual gate tomography cannot usually detect. Another
example of collective effects is the presence of “scale-dependent noise”, i.e., a
noise for which the intensity depends on the number of qubits or sur-
rounding gates used in the algorithm57–59. Note that scale-dependent noise
can sometimes be implied by correlated noise models60. Scale-dependent
noise can be particularly damaging for biased qubits, as it could rule out the
intrinsic interest of using such qubits in the case that the nearly suppressed
error rate happens to grow when the circuits are scaled up. All these
behaviors for the noise represent amajor threat both in the near term, and to
reach the large-scale57,61,62. Our benchmarking protocol, which we now
sketch, allows us to detect some of these effects. The intuitive idea is that we
are able to classically predict the algorithm’s output under the assumption
that the noise deduced from individual gate tomography is still realized for
each gate, but now inside a whole algorithm. A mismatch between the
classical algorithm and the quantum experiment would necessarily indicate
a violation of the assumption behind the noise.

We emphasize here that while there exist scalable protocols able to
benchmark the noise strength at the scale of entire circuits (for instance,
randomized benchmarking63), to our knowledge, there doesn’t exist any
scalable protocol able to see whether or not the noise model is biased, at the
scale of large circuits. Our benchmark is precisely able to do this, which is
something crucial for cat qubit platforms. This is the main reason why our
protocol differs from the existing approaches. Additionally, we are not
aware of other classical simulation methods than the one we developed in
Theorems 2, 3, for the class of circuits affected by biased noise considered by
us. Specifically, none of the existing classical simulation techniques can
efficiently simulate geometrically nonlocal circuits covered by our work,
while such simulations are at the core of our benchmark.

For simplicity of the explanations, in all that follows we propose to
implement our benchmark in the exact circuits we analyzed so far (i.e. the
ones of Fig. 2). However, as mentioned at the end of the third paragraph of
the discussion section, depending on which violation in the noise we aim to
be sensitive to, simpler circuits could potentially be considered.

For a Pauli bit-flip noise, we first need to perform tomography on the
gates that need to be applied on the measured register, in order to find the
probability that each such gate introducesa bit-flip on themeasured register.
Other noise parameters pmeas and pprep would also need to be estimated.
Then, a Hadamard test satisfying the constraints of Theorem 1 is chosen.
Subsequently, one needs to classically compute αn, and estimate y, z up to ϵ-
precision, with high probability (using Theorem 2). The estimates of the

Fig. 2 | Concrete implementation of the noise-resilient Hadamard test. In this
figure, we illustrate howU ¼ W ×V ¼ �NW

i¼1Wi ×�NV
i¼1Vi mentioned in Theorem 1

can be implemented in a noise-resilientmanner. The coherently controlled unitaries
with a blue contour implement the controlled Hermitian unitariesWi, which overall
implement the controlled W. The coherently controlled unitaries with a black
contour implement the controlledVi, which overall implement the controlledV. The
central element in this construction is the parallelization register68, which allows the
implementation of the unitaryW in such a way that it acts upon all the qubits in the
data register while preserving the noise-resilience. Hence, it allows the imple-
mentation of a Hadamard test with U acting on all the qubits of the data register.
Such unitaries are useful for our benchmarking protocol: see the third paragraph in
the discussion section. The key point behind the parallelization register is that, while
it introduces additional components that can introduce bit-flip errors, these bit-flips
cannot, by construction, propagate to the measured register (in practice, they
commute with the last cXX gate drawn, (see the paragraph “Notations and termi-
nology” in the section Results to understand our notations). It is an example where
trading space (using more qubits) to gain time (guaranteeing that the measured
register interacts with OðlogðnÞÞ gates and not poly(n) gates) is worth doing. While
the parallelization register does not propagate bit-flips toward themeasured register,
it will propagate phase-flip errors. We make use of this to easily detect an excessive
production of phase-flip errors in the third paragraph of the discussion section.
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noiselessy, z are compared to values of Tr(ρY)/αn, Tr(ρZ)/αn estimated
experimentally by running the quantum circuit polynomially many times.
The experimental and theoretical predictions are then compared. If they
don’t match (up to error resulting from a finite number of experiments), it
would necessarily indicate a violation of the assumptions behind the
assumednoisemodel (bit-flip) for the circuit participating in theHadamard
test. The precise implementation of the benchmarking protocol is provided
in the methods section.

Discussion
In supplemental V B, we quantify the total number of quantum gates
allowed in the circuit for which our benchmark could be practically useful.
Based on available data in the literature, we show that, under the Pauli-
Twirling approximation, our benchmark could be used for circuits con-
taining 106 gates. As it represents circuits three to four orders of magnitude
bigger than in current experiments64, it is a strong indication of the practical
usefulness of our benchmark for the NISQ regime, and beyond, allowing us
to check the hardware reliability for large circuits. Loosely speaking, our
benchmark shall be used in the regimewhere the suppressed sourceof errors
(phase-flip in our convention) is expected to be negligible. This is because it
relies on the classical simulation, Theorem 3, which assumes a perfect bias,
hence that no phase-flip are produced in the algorithm. This is precisely the
regimewhere having a benchmark is interesting as there are propositions to
use biased-qubits in large-scale algorithms where only the dominant source
of errors is corrected, because the suppressed errors would have a negligible
impact at the level of the algorithm (see supplemental E2 of ref. 65 and
references therein). Hence, our protocol is well-suited to analyze this regime
of interest.

Our protocol can first detect some correlated errors or,more generally,
non-local effects of the noise that are usually invisible from individual gate
tomography.This is becauseour classical simulationalgorithmassumes that
individual gate tomographyprovides a fair description of the behavior of the
noise, as it takes as inputs the noise maps of the gates extracted from
tomography. Thus, if gate tomographydoesnot fairly describe the noise, the
results from simulation and experiment would disagree. To be concrete: if
the noise model satisfies the general definition of perfect bias, beyond bit-
flips, i.e., Definition 4, every gate applied on the measured register intro-
ducesnoise that can impact themeasurement outcomes. Furthermore, these
are the only gates for which the noise can impact the measurement out-
comes. This is because, with a perfect bias, no error produced outside of the
measured register can propagate to the measured register (this is a con-
sequence of how our circuits are built). Hence, we can first detect the
presence of some correlated errors between the gates applied on the mea-
sured register, as they would violate the assumption that each gate can be
described with a noise map independent from the others: this is a first
example of a violation we can detect. We can also detect some violations of
the locality assumptionof thenoise. If there arenon-local effects in thenoise,
the noise maps of the gates applied on the measured register would, in
general, not correctly describe the experimental outcomes. For instance, it
could be that some operations done locally in the parallelization or data
registers introduce unexpected errors in the measured one (because of
crosstalk, for example).Our benchmarkingwill, in general, allowus todetect
such effects. These are just some examples to help the reader understand
what the benchmark can be useful for. Yet, we think that the most useful
application of our protocol is its ability to detect the occurence of phase-flip
errors produced at a higher rate than expected (we recall that having error-
rates growing with the computer’s size is an effect experimentally observed
in superconducting qubits57–59). Indeed, such effectswould in general lead to
a mismatch between the classical simulation and the experiment for algo-
rithms containing less gates than expected, i.e, a total number of gates, N,
smaller than what (9) predicts ((9) quantifies the circuit’s size for which our
benchmarking is applicable). To be concrete, an experimentalist should
choose the largestN so that the bound (9) is saturated. If Δ ≥ 0 (Δ quantifies
howmuch the expectednoisemodel is violated experimentally: it is formally
defined in the paragraph “Principle of the benchmarking” in Theorem 4),

there is a violation of the assumption behind the noise model, indicating a
potential threat to the scalability of the platform. For instance, for ϵ = 1/50,
our quantitatives estimates of supplemental V B indicate that N = 106

would work.
We can also provide a concrete example of a circuit that can be used to

efficiently detect the production of phase-flip at a higher rate than expected.
It would be the one implementing the controlled unitary cXU, with
U ¼ �n

i¼1Xi. This circuit matches the constraints of Theorem 1 (including
its generalization to noisy identity gates mentioned in the paragraph that
follows Theorem 1): we can thus implement it for the benchmarking. The
reason why this circuit is useful is that it would, in general, make the
measurement outcome sensitive to the introduction of phase-flip error on
any of the qubits from the data register, after the preparation unitaryB. This
is because a phase-flip error occuring on any of the qubits from the data
register would first propagate to the parallelization register (through the
blue cNOTs implementingW ¼ U ¼ �n

i¼1Xi in Fig. 2), and finally to the
measured register. Hence, phase-flip errors produced in B will, in general,
modify the measurement outcome probability distribution, allowing to
efficiently detect an excessive production of such errors. An experimentalist
could then see if the circuit composed of bias-preserving gates of interest,
encoded in theunitaryB, does indeedproducemorephase-flip errors than it
should. Detecting such events is crucial for superconducting cat qubits
given the fact their whole scalability strategy precisely relies on keeping
negligible the phase-flip error rates also when used in large-scale circuits65.
Note that if the goal is only todetect the productionof phase-flips at a higher
rate than expected, andnot to see if other non-local effects are occurring (we
can detect some of these other non-local effects with our benchmarking, see
the previous paragraph), simpler circuits than theonesbasedonFig. 2 could
very likely be used for benchmarking. Assuming noiseless measurements,
one could for instance measure the observable X⊗n on the prepared ∣ψ

�
by

directly measuring all the data qubits in the Pauli-X basis (i.e., in this case,
one would remove the parallelization and measured register of Fig. 2). In
presence of a perfect bias, the errors will commute with the measurements.
Hence, the implementation of the circuit would give the same outcome as
the classical simulation algorithm Theorem 2 (for U = X⊗n, B∣ψ0

� ¼ ∣ψ
�
).

For this reason, we believe that a similar benchmarking protocol as Theo-
rem 4 could be derived for this simpler circuit (a mismatch between
the simulation and experiment would indicate a violation). However, we
leave a rigorous proof of this guess for a future work (the proof should in
particular acknowledge what happens if these measurements are noisy—
something we acknowledged in Theorem 4 (See the paragraph preceeding
Theorem 3 and the noise of Definition 4)). This noisemodelmakes Pauli-Y
and Pauli-Z measurements noisy, which are the only ones we use in our
circuit of Fig. 2)—andprecisely quantify the violationwith similar equations
as (9) and (10).

Overall, the important aspect of our benchmark is that it is scalable
(even ifmeasurements and state preparation are noisy), and allows to detect
violation of the noise model in a manner that would not be visible from
individual gate tomography, because some effects of the noise cannot be
detected at this level, as we discussed at the beginning of section sketching
the benchmarking protocol.

Finally, while our circuits are efficiently simulable, their strong noise-
resilience, rigorously proven in presence of a Pauli bit-flip noise (i.e. the
noise model described around (2), which is more restrictive than the one of
Definition 4 for which the benchmark is applicable), makes natural to
wonder if extensions of our work could lead to noise-resilient circuits also
showing a computational interest: thiswork also showswhatwe analyzedon
this question of fundamental interest. For this, we first notice that the set of
bias-preserving gates,Bn can be composed of cXX gates, which combined to
initial states ∣0=1

�
can generate arbitrary graph states (in the localXbasis). It

is known that a typical n-qubit stabilizer state exhibits strong multipartite
entanglement66. This, together with the fact that arbitrary graph states are
locally equivalent to stabilizer states67, implies that, in general bias-
preserving circuits can generate a rich family of highly entangled states
(these graphs states are however not computationally useful for the specific
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task adressed inourpaper, see the section IIBof theSupplementalMaterial).
We can also implement certain non-Clifford gates, and for our task, U 2
UX

n can act non-trivially over all the qubits of the data register, there is no
restriction on the number of gates in the preparation unitary B, and the
circuit is scalable despite noisy measurements. The error rates of the gates
could also growwithn, making our circuits noise-resilient against one of the
main threats to the scalability60 (see section IV A of the Supplemental
Material).

Methods
Benchmarking protocol and simulation of the noisy circuits
In the last part of the results section, we gave a sketch of the benchmarking
protocol for Pauli bit-flip biased noise. Here, we give the technical details
behind the protocol while extending it beyond Pauli bit-flip noise. We also
give the classical simulation algorithm, able to simulate the noisy circuit for
thismore general noisemodel. In general, the noisemodel describing biased
qubits can have its Kraus operators describing the noise map of each gate,
state preparation and measurements that do not exactly correspond to a
Pauli bit-flip channel. We mean that the Kraus operators could be a linear
combination of Pauli bit-flips (i.e., they would follow Definition 4: the bit-
flip channel treated so far was a particular case of the expected noise model
for such hardware). Additionally, there can be imperfections in the bias. It
means that theKraus operators describing the noisemaps couldhave a non-
zero Hilbert-Schmidt inner product with Pauli operators not belonging to
PX

n . For instance, the Kraus operators could have a non-zero overlap with a
multi-qubit Pauli P containing at least one Pauli Z, or one Pauli Y in the
expression of its tensor product (such asP =X⊗Z for instance). If it occurs,
we will say that the noise model also produces phase-flip errors. Our
benchmarking protocol can detect violations of the assumed noisemodel in
thismore general case. The protocol is basedon the fact thatwe can simulate
the outcome of the Hadamard test in the noisy case, under the assumption
that the bias is perfect but not necessarily Pauli (i.e., that it satisfies
Definition4).This classical simulation takes as input thenoisemodel of each
individual gate, approximated to that of a perfect bias. A deviation of this
classical simulation from the experimental outcomes further than an error
budget will imply that the noise model prescribed by individual gate
tomography is not occurring experimentally, identifying a possible threat to
the hardware scalability, due to collective effects occurring at the scale of the
algorithm. This error budget is related to the quality of the approximation of
the noise model taken from individual gate tomography with a perfect bias.
The formal protocol is written in Theorem 4. We now state the definition
and theorems we need.

Definition4. (Perfect bias). LetG be a quantum channel describing either a
noiseless unitary gate belonging to the accessible gateset, or a single-qubit
state preparation, and EG be its noisy implementation in the laboratory.We
say that the noisy implementation of the gate (or state preparation), EG,
follows a perfectly biased noisemodel if EG ¼ NG � G, where the noisemap
NG is a CPTP (Completely Positive Trace Preserving) map that admits the
following Kraus decomposition:

NGðρÞ ¼
P
j
KG

j ρ KG
j

� �y
;

KG
j ¼ P

α�suppðGÞ
cjαXα;

ð7Þ

In (7), we follow thenotations introduced around (2).We also have:8j; cjα 2
C and

P
jðKG

j Þ
y
KG

j ¼ IsuppðGÞ. A quantummap satisfying (7) will be said to
be perfectly biased.

A noisy single-qubit measurement will be modeled as a perfect mea-
surement, preceded by the application of a perfectly biased single-qubit
CPTP map on the qubit being measured. This CPTP channel, called the
noise map of the measurement, represents the noise brought by the
measurement.

To make the formulation of the following theorems simple, we will
assume that state preparation andmeasurements arenoiseless. In the case all
gates are bias-preserving (which is what we consider in all this paper) and if
the noise model satisfies Definition 4, this assumption doesn’t remove
generality from our results. This is because the noise of the state preparation
or measurement can be acknowledged by redefining the noise map of the
following or preceding gate. The newly obtained noise map will still satisfy
Definition 4.

Theorem 3. (Efficient classical simulation of a noisy Hadamard test under
perfect bias). Let B 2 Bn, U ¼ W:V 2 UX

n , NW, NV satisfying the con-
straints of Theorem 1. Let ∣ψ0

� ¼ ∣ϕ1
�
∣ϕ2

� � � � ∣ϕn� be the initial product
state for the data register. IfNV ¼ OðlogðnÞÞ, if the noisemodel of each gate
is perfectly biasedaccording toDefinition4, if the totalnumberof gates in the
algorithm is in Poly(n), and if state preparation and measurements are
noiseless (this is without loss of generality, see the comments before Theo-
rem 3), there exists a randomized classical algorithm taking as input (I)
classical specifications of the circuit implementing theHadamard test for the
chosen ðB;U ; ∣ψ0

�Þ, (II) the quantumchannel describing the noisemodel of
each gate used in the computation, (III) the initial state ∣ψ0

�
such that this

algorithm efficiently and with a high probability computes an additive
approximation to Tr(P1ρX), where ρX is the reduced density matrix of the
measured register at the end of the noisy implementation of the algorithm,
and P1 is a single-qubit Pauli matrix. We call C this classical approximation.

Specifically, we have:

Pr jTrðP1ρXÞ � Cj≤ ϵ� �
≥ 1� δ; ð8Þ

while the running time is T ¼ Oðð1=ϵ2Þ logð1=δÞ× poly ðnÞÞ.

Theorem 4. (Benchmarking protocol). Consider a Hadamard test satis-
fying the constraints of Theorem 1. The circuit is implemented with N
unitary gates represented by the unitary quantum channels fGigNi¼1.We call
NGi

the noise map associated with Gi (extracted from individual gate
tomography) and we assume state preparation and measurements to be
noiseless (this is without loss of generality up to a redefinition of the noise
maps of the quantum gates, see comments before Theorem 3).

Let N X;Gi
be an approximation to NGi

, such that N X;Gi
has a noise

model satisfying Definition 4.
Let ρ be the density matrix of the measured register at the end of the

algorithm if the noisemap of eachGi wasNGi
. Let ρX be the reduceddensity

matrix of the measured register at the end of the algorithm if the noise map
of eachGi wasN X;Gi

. Let ρexp be the reduceddensitymatrix of themeasured
register that exactly predicts the experimental outcomes.More precisely, we
mean that implementing the measurements used in the Hadamard test on
ρexp would exactly reproduce the measurement outcomes experimentally
observed.

Assume that there exist ϵ > 0 such that

max
i

jjN X;Gi
�NGi

jj≤ ϵffiffiffi
2

p
N

ð9Þ

is satisfied. Then, for any single-qubit Pauli P1:

jTrðρP1Þ � TrðρXP1Þj≤ ϵ: ð10Þ

Principle of the benchmarking
The benchmarking protocol works as follow. Tr(ρXP1) corresponds to the
outcome of the circuit with a noisemodel for each gate satisfyingDefinition
4. Hence, it can be classically estimated with Theorem 3. TrðρexpP1Þ is
accessed experimentally. If jTrðρexpP1Þ � TrðρXP1Þj > ϵ, ρexp and ρ neces-
sarily differ, indicating that the noise model predicted by individual gate
tomography (the noise maps fNGi

gN
i¼1

) is not occuring experimentally. It
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thus indicates the presence of collective effects in the noise, possibly
threatening the scalability of the biased-noise qubits.

Noteworthy, Δ � jTrðρexpP1Þ � TrðρXP1Þj � ϵ can quantify how
strong the noise violation is at the scale of the whole circuit (if Δ > 0). It is a
consequence of the fact jTrðρexpP1Þ � TrðρP1Þj≥Δ (the largerΔ, the larger
the violation).
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