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Abstract

Degradation of power engineering steel structures requires constant monitoring of their
mechanical properties to estimate remaining service life. Therefore, the current study
aimed to develop a methodology that will enable for accurate determination of changes
in mechanical properties of 10CrMo9-10 steel after long-term exploitation involving the
Small Punch Test (SPT). Firstly, the as-received 10CrMo9-10 steel was annealed at 770 ◦C
for different periods (1.5, 6 and 24 h) to deteriorate its strength to a level similar to its
exploited counterpart. Then, mechanical properties were characterized by uniaxial tensile
tests and the SPT method using miniaturized discs with a diameter of 8 mm and a thickness
of 0.5 mm as recommended by the EN 10371:2021 standard. It allowed to determine a
formula correlating the SPT results (i.e., elastic–plastic transition force and maximum force)
with the yield and ultimate tensile strength. The βRp0.2 and βRm correlation factors were
equal to 0.437 and 0.255, respectively. Finally, the exploited 10CrMo9-10 steel was tested
by the SPT method. Based on the SPT results, the values of Rp0.2 = 236 ± 27 MPa and
Rm = 459 ± 17 MPa were estimated, which were close to those assessed during the uniaxial
tensile tests (Rp0.2 = 218 ± 3 MPa and Rm = 454 ± 4 MPa). It was shown that the application
of such a relatively simple method is a promising way for determining the changes in
mechanical properties of structural steels after long-term service at elevated temperature.

Keywords: 10CrMo9-10 steel; small punch test; mechanical properties; degradation

1. Introduction
10CrMo9-10 (also known as 10H2M or 1.7380) is a chrome-molybdenum-manganese,

creep-resistant steel which is widely used in thermal power plants due to its ability to
withstand long-term service under elevated temperature and high pressure [1–3]. Typically,
such Cr-Mo-Mn steels are intended for boilers and steam turbine components operating
at temperatures up to 580 ◦C [3,4]. The addition of Cr enhances strength, hardness and
corrosion and oxidation resistance. Molybdenum is particularly effective at improving
strength and impact toughness, while Mn is a key element for increasing weldability and
ductility [5,6]. Moreover, Cr, Mo and Mn significantly enhance hardenability and promote
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the formation of uniform and fine microstructures, such as bainitic and martensitic, with nu-
merous carbide precipitates [5,6]. Depending on the applied normalizing and tempering or
quenching and tempering parameters, 10CrMo9-10 steel may exhibit a martensitic, bainitic
or mixed bainitic–ferritic microstructure [3,7,8]. The microstructure type is controlled by
the applied cooling rate, with faster cooling favouring martensite formation [6].

The degradation of structural steels in thermal power plants is related to different
damage mechanisms, such as creep damage, high temperature fatigue, thermal ageing
and microstructural degradation leading to embrittlement, hydrogen damage, erosion
or high temperature corrosion and oxidation [9]. Cr-Mo steels are mainly susceptible to
microstructural degradation due to coarsening of carbides or impurity segregation at grain
boundaries [10,11]. During long-term exposure at elevated temperature, the microstructure
degradation process results in the coarsening of martensite or bainite laths into broader
ferrite laths and subsequently into equiaxed ferrite grains. Additionally, the coarsening
of M2X carbides into larger M23C6 and/or M6C carbides occurs, leading to the formation
of an equiaxed ferrite grain structure with the coarse carbides concentrated on the ferrite
grain boundaries [1,2,7]. Such microstructure reorganization significantly deteriorates the
mechanical properties of 10CrMo9-10 steel components [2,7]. This implies a need for their
constant monitoring through a series of non-destructive and destructive tests [1]. The
assessment of the current condition of steel is mainly realized by a comparative study of the
as-received and exploited materials with standard requirements [12,13]. It mainly covers
the characterization of microstructural changes and mechanical properties determined
during tensile and Charpy tests [7], or additional fatigue [2,13] and creep tests [14]. This
approach typically requires a relatively high volume of tested material and a long time of
structure shut down in order to perform a complete evaluation of its current condition.

The small punch test (SPT) is a method that enables the characterization of different
mechanical properties of small-scale materials with a limited volume [15,16] or materials
extracted from in-service components [17]. During the SPT, a disc-shaped or rectangular
miniaturized specimen (having a size of a few millimetres) is deformed through a die using
a hemispherical punch. Subsequently, the recorded load–deflection data is adopted for
the estimation of the tensile strength, fracture toughness or creep properties [15,18]. A
successful estimation of a yield strength (Rp0.2) and ultimate tensile strength (Rm) [18,19],
along with the evaluation of fracture toughness [20–22], ductile-to-brittle transition tem-
peratures [23,24] or creep properties [25,26] has been widely reported in recent years. As
a consequence, the European Committee for Standardization has recently approved this
method in the EN 10371:2021 standard [27]. According to this standard, a linear correlations
of the SPT results with the Rp0.2 and Rm values were proposed as follows:

Rp0.2 = βRp0.2 ·
Fe

h0
2 (1)

Rm = βRm·
Fm

(h0·um)
(2)

where h0 is an initial specimen thickness, Fe is an elastic–plastic transition force in the small
punch test, Fm is a maximum force during the test, um is a deflection at the maximum force,
and βRp0.2 and βRm are correlation factors for estimation of Rp0.2 and Rm, respectively.

Kumar et al. [28] reported the βRm value of 0.281 based on the SPT results of 20Mn-
MoNi55, CrMoV and SS304LN steels using miniaturized discs with a diameter of 3 mm
and a thickness of 0.25 mm punched through a die with a diameter of 1.5 mm. In turn,
Garcia et al. [29] used rectangular 10 mm × 10 mm blanks with a thickness of 0.5 mm to
investigate a wide range of steels with a different strength, i.e., two experimental grades
of Eurofer steel, four grades of vanadium-modified 2.25Cr1Mo steels, automobile dual
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phase steels, AISI 304 and D2205 stainless steels, and general structural steels such as
S460, API X70 and AR. The authors obtained the βRp0.2 and βRm factors of 0.442 and 0.277,
respectively, showing that these coefficients are less sensitive to the tested material. Similar
findings were reported by Altstadt et al. [30] who used disc-shaped specimens having a
diameter of 8 mm and a thickness of 0.5 mm made of P91, P92, Eurofer97, 22NiMoCr37
and 15Kh2MFA steels. The βRm factor varied from 0.254 to 0.299 depending on the tested
material, with the average value for all materials equal to 0.278. It was concluded that
the SPT correlation coefficients are more dependent on the geometry parameters of the
testing setup, i.e., the specimen size and thickness, the radius of the punch, a receiving hole
diameter or a chamfer size and shape. It has been clearly shown by Altstadt et al. [31] for
the T91 steel that the βRp0.2 and βRm factors may differ from 0.42 to 0.63 and 0.19 to 0.26,
respectively, depending on the used SPT setup.

Since the SPT proved its efficiency in steel testing, the current study aimed to develop
a methodology for determining changes in the mechanical properties of 10CrMo9-10 steel
after long-term exploitation (280,000 h) at elevated temperature and internal pressure
(540 ◦C and 2.9 MPa) using the SPT method. Since such steel is one of the most popular
steels in the power engineering sector in Poland [32] or Czech Republic [33], the assessment
of its mechanical performance after prolonged service is of great importance. In addition,
to the best of the authors’ knowledge, no literature references provide the exact correlation
factors for estimation of Rp0.2 and Rm from the SPT results according the current EN
10371:2021 standard. So far, Andres et al. [33] and Dymacek et al. [34] have focused on the
creep properties of the exploited 10CrMo9-10 steel, while Kaliciak et al. [35] did not present
any correlation formulas for recalculating the SPT results.

2. Materials and Methods
The chemical composition of the investigated 10CrMo9-10 steel in the as-received

and exploited state was presented in Table 1 with respect to the EN 10028-2:2017 standard
requirements [36]. The exploited material was a part of a pipe having a diameter of about
500 mm and a wall thickness of 20 mm, which operated for 280,000 h at the internal pressure
of 2.9 MPa under a temperature of 540 ◦C. The as-received 10CrMo9-10 steel was cut into
cylindrical slabs with a diameter of 60 mm and a thickness of 25 mm and annealed at 770 ◦C
for 1.5, 6 and 24 h to obtain several conditions with gradually deteriorated mechanical
properties to the final level similar to its exploited counterpart. Furthermore, such different
material states will allow to estimate the linear correlations of the SPT results with the
standard tensile parameters (i.e., Rp0.2 and Rm). The annealing temperature was established
based on the dilatometric measurements performed on a representative sample in the form
of a rod with a diameter of 3 mm and a length of 10 mm using a TA Instruments DIL805L
(TA Instruments, New Castle, DE, USA) dilatometer at a heating rate of 0.3 ◦C/min.

Table 1. Chemical composition of as-received and exploited 10CrMo9-10 steel.

Material C Si Mn Cr Mo Fe

As-received 0.12 0.37 0.42 2.00 0.90 Balanced
Exploited 0.16 0.44 0.61 2.51 0.98 Balanced

EN 10028-2 0.08–0.14 ≤0.50 0.40–0.80 2.00–2.50 0.90–1.10 Balanced

The microstructure of 10CrMo9-10 steel was characterized by a Zeiss Axio Observer
(Carl Zeiss Microscopy GmbH, Jena, Germany) microscope. Sections for microscopic obser-
vations were ground, polished and etched with a solution of 10% nital. The microstructure
was quantified in terms of a mean grain boundary density (SV), carbide precipitate density
(NA) and a fraction of equiaxed ferrite grains (VV) using an ImageJ software (v1.53k). A
line-intercept method was used for the grain boundary density measurement. The Vickers
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hardness measurements (at least 10 indentations per sample) were conducted at a load of
5 kg using an Innovatest Falcon 500 (Innovatest Europe BV, Maastricht, The Netherlands)
hardness tester.

The tensile properties of the as-received state were assessed according to the ISO 6892-1
standard [37] using standard flat samples with a gauge length of 25 mm and a cross section
of 3.8 mm × 5.1 mm as well as miniaturized flat samples with the different gauge length of
8, 4 and 2 mm and proportional cross sections (as shown in Figure 1a). Such tests aimed
to find an optimal sample geometry to minimize the specimen size which can be directly
extracted from in-service components without a need of repair after material removal. A
scoop cutter sampling technique can be used for such purposes [27,38]. It is a unique
hemispherical shell cutter capable of removing a disc-shaped material volume (typically
with a diameter of approximately 40 mm and a thickness of 4 mm) without mechanical
distortion or thermal degradation of the component [27,38]. All other states were examined
using miniaturized test specimens with a gauge length of 8 mm showing the same results
as the standard ones. Uniaxial tensile tests of standard specimens were performed using an
MTS 810 (MTS Systems Corp., Eden Prairie, MN, USA) servo-hydraulic testing machine
equipped with a 100 kN load cell and an MTS 632.24F-50 extensometer. The miniaturized
test specimens were tested using a Zwick Roell Z005 (Zwick GmbH & Co. KG, Ulm,
Germany) testing machine with a 5 kN loading capacity and a digital image correlation
(DIC) system for strain measurements (described in more detail in [39,40]). All tensile tests
were conducted at the initial strain rate of 10−3 s−1. Each material state was represented by
at least five samples cut by the electric discharge machining (EDM) method along the rod
or pipe axis. The measurement uncertainties were calculated according to Annex J from
the ISO 6892-1 standard as the combined uncertainty of the standard deviations and the
accuracy of the measuring equipment, i.e., the load cell (±0.5%), extensometer (±0.5%)
or DIC strain measurement system (±1%), gauge length, and cross section measurements
(±1%).

Figure 1. (a) Technical drawings of flat standard and miniaturized tensile samples and (b) schematic
and general view of the SPT experimental setup.



Materials 2025, 18, 4133 5 of 12

The experimental SPT setup consisted of a lower die with a receiving hole diameter
of 4 mm and a chamfer of 0.2 mm × 45◦ and a spherically ended punch having a radius
of 1.25 mm as recommended by the EN 10371:2021 standard [27] (Figure 1b). The deflec-
tion was measured by an MTS 634.12F-25 extensometer (MTS Systems, Berlin, Germany)
attached to the lower surface of the sample. Before the tests, the disc-shaped SPT samples
with a diameter of 8 mm were ground using 1200-grit SiC paper to obtain the required
thickness of 0.5 ± 0.005 mm. The SPTs were conducted on a Zwick Roell Z005 (Zwick
GmbH & Co. KG, Ulm, Germany) testing machine at a crosshead speed of 0.5 mm/min. At
least five SPT samples were tested from each material state. The measurement uncertain-
ties of the load and deflection were estimated based on the standard deviations and the
equipment errors (i.e., the accuracy of load cell ± 0.5% and extensometer ± 0.5%).

3. Results and Discussion
3.1. Heat Treatment

The dilatometric measurements were firstly performed for the as-received 10CrMo9-10
steel in order to determine the maximum heat treatment temperature to avoid austenitic
transformation. The measured length change as a function of temperature is presented
in Figure 2a. The calculated onset temperature of austenitic transformation was around
781 ◦C, which is very close to the temperature reported by Ławrynowicz [3], i.e., 780 ◦C.
Thus, the as-received 10CrMo9-10 was annealed at 770 ◦C for a specified time of 1.5, 6 and
24 h. The changes in the Vickers hardness of the annealed samples are shown in Figure 2b.
Hardness gradually decreased from 174 ± 2 HV5 for the as-received state to the value of
131 ± 2 HV5 after 24 h of annealing, which was practically the same as the hardness of the
exploited 10CrMo9-10 steel (i.e., 132 ± 3 HV5).

Figure 2. (a) Dilatometric curve of as-received 10CrMo9-10 steel and (b) Vickers hardness changes as
a function of annealing time at 770 ◦C.

3.2. Microstructure

Figure 3a–e presents the microstructure of the 10CrMo9-10 steel in the as-received,
annealed and exploited states. The as-received 10CrMo9-10 steel exhibited a fully bainitic
microstructure with carbides located at grain boundaries and inside grains, which is com-
monly observed in this steel grade, as reported by Gwoździk et al. [7] and Wang et al. [8].
During annealing at 770 ◦C, the bainite laths transformed into broader ones and subse-
quently into equiaxed ferrite grains, while the observed carbides coarsened and segregated
on the ferrite grain boundaries, as presented for the 10CrMo9-10 steel after annealing for
24 h. The calculated grain boundaries density SV and carbide precipitates density NA

gradually decreased for longer annealing periods, as shown in Figure 3f, whereas the
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fraction of equiaxed ferrite grains increased and became a dominant constituent after 24 h
of annealing. In turn, the microstructure of the exploited state consisted of a mixture of
degraded bainite and a lower content of ferrite grains with numerous carbides concentrated
at grain boundaries. Similar microstructural changes during long-term exposure at elevated
temperature of 10CrMo9-10 steel were reported earlier by Brodecki et al. [2], Gwoździk
et al. [7] or Kopec et al. [41], which resulted in a significant deterioration of its mechanical
performance [2,7,41].

Figure 3. Microstructure of (a) as-received, (b–d) annealed and (e) exploited 10CrMo9-10 steel;
(f) grain boundary–carbide precipitates–ferrite fraction relation as a function of annealing time.

3.3. Tensile Properties

The effect of specimen geometry on the tensile properties of the as-received 10CrMo9-
10 steel is presented in Figure 4a and Table 2. The following mechanical parameters were
achieved for the as-received 10CrMo9-10 steel tested by the standard size samples: the 0.2%
offset yield strength Rp0.2 = 407 ± 11 MPa, the ultimate tensile strength Rm = 538 ± 6 MPa,
the uniform elongation Au = 11.7 ± 0.2% and the elongation at break A = 32.1 ± 1.9%. The
miniaturized samples with the gauge length of 8 mm showed very similar mechanical
properties to the standard ones, while all smaller specimens differed significantly. As the
specimen size decreased, the measured strength and elongation values were diminished
compared to the standard samples. Such a tendency is consistent with the findings of
Molak et al. [39] or Kals et al. [42], and it is related to an increasing fraction of surface grains
in smaller samples, which do not strengthen the material so effectively as internal grains.
Thus, all other conditions of the 10CrMo9-10 steel were examined using miniaturized test
specimens with a gauge length of 8 mm, showing the same results as the standard ones.
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Figure 4. Representative stress–strain curves of 10CrMo9-10 steel in: (a) as-received state for different
specimen size, (b) as-received, annealed and exploited conditions.

Table 2. Mechanical properties of as-received, annealed and exploited 10CrMo9-10 steel (Rp0.2—0.2%
offset yield strength, ReH—upper yield strength, ReL—lower yield strength, Rm—ultimate tensile
strength, Au—uniform elongation, A—elongation at break, Fe—elastic–plastic transition force in small
punch test, Fm—maximum force during small punch test, um—deflection at maximum force).

Material Rp0.2 or ReH/ReL
(MPa) Rm (MPa) Au (%) A (%) Fe (N) Fm (N) um (mm)

As-received (25 mm) 407 ± 11 538 ± 6 11.7 ± 0.2 32.1 ± 1.9

234 ± 13 1607 ± 28 1.53 ± 0.02
As-received (8 mm) 421 ± 6 544 ± 7 12.0 ± 0.1 31.7 ± 0.8
As-received (4 mm) 398 ± 8 520 ± 7 11.8 ± 0.3 29.3 ± 1.3
As-received (2 mm) 375 ± 9 484 ± 6 11.0 ± 0.5 27.8 ± 2.0

Annealed 1.5 h 437 ± 14/422 ± 5 539 ± 4 16.1 ± 0.3 34.3 ± 1.5 236 ± 2 1634 ± 25 1.55 ± 0.01
Annealed 6 h 430 ± 10/410 ± 7 517 ± 4 17.4 ± 0.4 34.9 ± 1.3 234 ± 8 1599 ± 13 1.58 ± 0.01
Annealed 24 h 344 ± 7/328 ± 4 467 ± 4 20.3 ± 0.5 37.3 ± 2.1 189 ± 5 1519 ± 25 1.60 ± 0.01

Exploited 218 ± 3 454 ± 4 19.1 ± 0.3 36.6 ± 1.3 135 ± 16 1464 ± 47 1.62 ± 0.02

The comparison of representative stress–strain curves of the as-received, annealed and
exploited 10CrMo9-10 steel is shown in Figure 4b, and the calculated mechanical parame-
ters are summarized in Table 2. All annealed conditions exhibited an upper (ReH) and lower
(ReL) yield strength, whereas the 0.2% offset yield strength (Rp0.2) values were estimated
for the as-received and exploited states. In general, the strength values decreased gradually
with the prolongation of the annealing time, whereas the elongation values showed the
opposite trend. The 10CrMo9-10 steel annealed for the longest period of 24 h exhibited Rm

of 467 ± 4 MPa and A of 37.3 ± 2.1% comparable to the exploited state (Rm = 454 ± 4 MPa,
A = 36.6 ± 1.3%), which is consistent with the hardness measurements presented in Fig-
ure 2b. At the same time, the exploited condition showed much lower Rp0.2 = 218 ± 3 MPa
than the annealed state after 24 h (ReH = 344 ± 7 MPa and ReL = 328 ± 4 MPa).

3.4. SPT Results

In order to determine the linear correlations of the SPT results with the uniaxial tensile
tests, the as-received, annealed and exploited 10CrMo9-10 steel was tested by using the SPT
method. The representative load–deflection curves are shown in Figure 5, while Table 2
presents the average values of the elastic–plastic transition force (Fe), maximum force (Fm)
and deflection at maximum force (um). Four deformation stages, typically observed during
SPT of a ductile material, can be distinguished in the obtained load–deflection curves, i.e.,
(I) elastic bending up to Fe value, (II) plastic bending and (III) membrane stretching until
reaching Fm value and (IV) final plastic instability regime [20,43]. The average Fm and um
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for the as-received state was 1607 ± 28 N and 1.53 ± 0.02 mm. The annealing treatment
for 1.5 h resulted in a slight increase in the Fm value (1634 ± 25 N), but further exposition
at 770 ◦C caused a gradual decrease in the maximum force to 1519 ± 25 N after 24 h. In
turn, the deflection at maximum force was constantly increased due to the longer annealing
treatment (as marked by dotted lines in Figure 5a). It is worth to mention that the changes
in Fm and um values exhibited the same tendencies as the Rm and Au during tensile tests.
This implies that Fm and um values are sensitive to the observed microstructural changes
in the same way as the Rm and Au. The gradual reduction in Fm value and strength of the
10CrMo9-10 steel after longer annealing periods resulted from the gradually decreased
grain boundary density SV and carbide precipitates density NA (as shown in Figure 3).
In turn, the higher content of equiaxed ferrite grains VV contributed to more uniform
deformation and higher um and Au values representing material ductility.

Figure 5. Representative load–deflection curves from SPTs of 10CrMo9-10 steel in as-received,
annealed and exploited conditions: (a) overall view, (b) close-up of elastic bending regime.

The close-up of the elastic bending regime presented in Figure 5b clearly shows that the
transition forces Fe for the as-received and annealed states for 1.5 and 6 h were very similar
(in the range of 234–236 N), whereas they were drastically reduced for SPT specimens after
annealing for 24 h (Fe = 189 ± 5 N) and the exploitation period (Fe = 135 ± 16 N). Such
differences in the Fe value are consistent with the tensile results, especially when the ReL

values for the annealed conditions are considered, as recommended in the EN 10371:2021
standard. The ReL values for the annealed conditions gradually decreased from 422 ± 5
to 410 ± 7 and 328 ± 4 MPa after 1.5, 6 and 24 h at 770 ◦C, respectively, while the Fe

values were 236 ± 2, 234 ± 8 and 189 ± 5 N, respectively. In turn, the exploited condition
clearly showed the lowest values of Fe = 135 ± 16 N and Rp0.2 = 218 ± 3 MPa. Such
differences in the Fe and ReL (or Rp0.2) values can be linked to the gradually decreased grain
boundary density SV, which contributed to less strengthening according to the well-known
Hall–Petch relation [44,45].

Figure 6a presents the correlation function between Rp0.2 (or ReL) from the uniaxial
tensile test and Fe/h0

2 from the SPTs according to the Formula (1). The correlation factor
βRp0.2 was equal to 0.437. In turn, the correlation function between Rm and Fm/(h0 um)
according to the Formula (2) is presented in Figure 6b. The correlation factor βRm was equal
to 0.255. It should be mentioned that both calculated factors are similar to values reported
in the literature. Table 3 summarizes the correlation factors with the geometry parameters
of the used SPT setups. It has already been shown that the SPT correlation coefficients
are more dependent on the SPT setup [31] rather than the investigated material [28–30].
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Alstadt et al. [31] noticed for the T91 steel that the βRp0.2 and βRm factors may significantly
differ from 0.42 to 0.63 and 0.19 to 0.26, respectively, depending on the used SPT setup,
while the effect of the investigated material is less significant (βRm = 0.254 ÷ 0.299 for P91,
P92, Eurofer97, 22NiMoCr37 or 15Kh2MFA steel [30]). In addition, Garcia et al. [29] pointed
out that the influence of specimen size and tested material may also vary depending on the
applied method of strength correlation, but the empirical correlation equations used in the
current SPT standard effectively minimize such effects. According to the EN 10371:2021
standard [27], for the standard geometry used in the current work (i.e., SPT specimen size Φ
8 mm × 0.5 mm, receiving hole diameter 4 mm, chamfer 0.2 × 45◦, punch radius 1.25 mm),
the coefficient βRm should be in the range of 0.19 ≤ βRm ≤ 0.32. The data presented in
Table 3 also shows that the βRm value for the standard geometry of the SPT setup is in the
range from 0.21 to 0.278. Thus, the βRm value of 0.255 obtained in the current study lies
within the expectations. The estimated βRp0.2 coefficient of 0.437 is also consistent with
other literature references reporting values in the range of 0.42–0.49.

Figure 6. Linear correlations of SPT results with (a) yield strength and (b) ultimate tensile strength
from uniaxial tensile tests.

It should be highlighted that the obtained βRp0.2 and βRm factors allowed the calcula-
tion of the Rp0.2 and Rm of the exploited 10CrMo9-10 steel. Based on the SPT results, the
values of Rp0.2 = 236 ± 27 MPa and Rm = 459 ± 17 MPa were estimated, which were close
to Rp0.2 = 218 ± 3 MPa and Rm = 454 ± 4 MPa assessed in the uniaxial tensile tests. This
result proves that the SPT method is a promising way of determining the changes in the
mechanical properties of structural steels after long-term service at elevated temperature.
Moreover, its predictive capability can be enhanced by incorporating machine learning
methods [46,47]. Pan et al. [47] have investigated three different machine learning methods,
such as back propagation (BP) neural network, radial basis function (RBF) network and
random forest (RF) regression model. The prediction accuracy for pressure vessel steels was
in the following order: BP > RBF > RF. The model proposed by Zhong et al. [46] exhibited
the mean absolute percentage error in the SPT force prediction in the range of 0.5–2%.
Finally, the overall assessment of the degradation state of the 10CrMo9-10 steel components
can be improved by additional characterization techniques. The SPT method seems to
be effective in the initial screening of mechanical performance (tensile strength, fracture
toughness or creep properties), but it should to be supported by the precise characterization
of carbide precipitates by transmission electron microscopy, segregation of impurities and
possible depletion of alloying elements near grain boundaries by chemical analysis and
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high temperature corrosion and oxidation tests simulating the operational conditions of
the 10CrMo9-10 steel.

Table 3. Comparison of correlation factors βRp0.2 and βRm reported in the literature.

βRp0.2 βRm
Specimen Size

(mm)

Receiving
Hole Diameter

(mm)

Chamfer Size
or Edge

Radius (mm)

Punch Radius
(mm)

Materials
Tested Reference

0.437 0.255 Φ 8 × 0.5 4 0.2 × 45◦ 1.25 10CrMo9–10 This work

- 0.281 Φ 3 × 0.25 1.5 0.2 0.5
20MnMoNi55,
CrMoV steel,

SS304LN
[28]

0.442 0.277 10 × 10 × 0.5 4 0.2 × 45◦ 1.25

2.25Cr1Mo
steels,

dual phase
steels,

AISI 304,
D2205,

S460, API X70

[29]

- 0.278 Φ 8 × 0.5 4 0.2 × 45◦ 1.25

P91, P92,
Eurofer97,

22NiMoCr37,
15Kh2MFA

[30]

0.63 0.26 3.5 × 3.5 ×
0.25 1.75 0.25 0.5 T91 [31]

0.49 0.26 10 × 10 × 0.5 4 0.5 1.25 T91 [31]
0.48 0.21 Φ 8 × 0.5 4 0.2 × 45◦ 1.25 T91 [31]
0.42 0.19 Φ 3 × 0.25 1.5 0.2 0.5 T91 [31]

4. Conclusions
The aim of this study was to develop a methodology for determining changes in

the mechanical properties of 10CrMo9-10 steel using the SPT method, which was later
successfully applied to estimate its mechanical performance after long-term exploitation
for 280 000 h at 540 ◦C under pressure of 2.9 MPa. The main conclusions were drawn
as follows:

1. The annealing of the as-received 10CrMo9-10 steel (Rm = 544 MPa) at 770 ◦C for 1.5,
6 and 24 h allowed its strength to gradually decrease to Rm = 539, 517 and 467 MPa,
respectively, i.e., to the level similar to the exploited condition (Rm = 454 MPa).

2. The lowered strength resulted from the gradually reduced grain boundary and car-
bide precipitates densities and the increased fraction of equiaxed ferrite grains after
prolonged annealing.

3. The obtained SPT parameters for the as-received, annealed and exploited conditions
(i.e., Fe, Fm, um) exhibited the same tendencies as the Rp0.2 (or ReL), Rm and Au during
tensile tests. The following correlation factors were determined βRp0.2 = 0.437 and
βRm = 0.255 for the estimation of Rp0.2 and Rm, respectively.

4. Mechanical parameters of the exploited 10CrMo9-10 estimated based on the SPT
results (Rp0.2 = 236 ± 27 MPa and Rm = 459 ± 17 MPa) were in a good agreement with
those assessed during the uniaxial tensile tests (218 ± 3 MPa and Rm = 454 ± 4 MPa).
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