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ABSTRACT Biomolecular simulations played a crucial role in advancing our understanding of the complex dynamics in biolog

ical systems with applications ranging from drug discovery to the molecular characterization of virus-host interactions. Despite 

their success, biomolecular simulations face inherent challenges due to the multiscale nature of biological processes, which 

involve intricate interactions across a wide range of length scales and timescales. All-atom (AA) molecular dynamics provides 

detailed insights at atomistic resolution, yet it remains limited by computational constraints, capturing only short timescales and 

small conformational changes. In contrast, coarse-grained (CG) models extend simulations to biologically relevant time and 

length scales by reducing molecular complexity. However, CG models sacrifice atomic-level accuracy, making the parameter

ization of reliable and transferable potentials a persistent challenge. This review discusses recent advancements in machine 

learning (ML)-driven biomolecular simulations, including the development of ML potentials with quantum-mechanical accuracy, 

ML-assisted backmapping strategies from CG to AA resolutions, and widely used CG potentials. By integrating ML and CG ap

proaches, researchers can enhance simulation accuracy while extending time and length scales, overcoming key limitations in 

the study of biomolecular systems.

INTRODUCTION

Biomolecular simulations have enriched our physical and 

chemical understanding of the structure-function relation

ship in biological systems, from single molecules ranging 

from proteins to large molecular assemblies in crowded 

cellular environments (1, 2). In many cases, such knowledge 

has found applications in medical and life sciences over

coming length scale and timescale limitations such as the 

characterization of physicochemical properties of HIV-1 

capsid (3), role of glycans in the activation of severe acute 

respiratory syndrome coronavirus 2 (SARS-CoV-2) spike 

protein for cell recognition (4), the discovery of cryptic 

pockets in protein (5, 6), and unveiling the mechanical sta

bility of pathogen adhesin (7). An essential feature of these 

systems is their multicomponent nature and the interplay of 

different length scales and timescales in the emergence of 

complexity.

The timescales of biological processes, such as protein 

folding, protein recognition, and transitions between 

different metastable states, among others, range from 10− 6 

to 10− 3 s, although certain processes, especially those 

involving larger proteins or more complex systems, can 
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SIGNIFICANCE Machine learning (ML) has emerged as a transformative tool for bridging the gap between high- 

resolution all-atom models—which explicitly represent every atom in a molecular system—and low-resolution coarse- 

grained approaches, which reduce complexity by grouping atoms into larger interaction units. On one hand, ML potentials 

trained on quantum-mechanical data enable accurate energy predictions with high transferability. On the other hand, 

ML also enhances coarse-grained models by improving structure reconstruction through advanced backmapping 

strategies.
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extend to seconds or longer. Thus, they are orders of magni

tude slower than typical molecular motions of interest (e.g., 

backbone fluctuations, side-chain rotations) that typically 

occur on a nanosecond to microsecond timescale (i.e., 

10− 9 − 10− 6 s). The length scales of molecular rearrange

ments are also much smaller in all-atom molecular 

dynamics (AA-MD) simulation than those of larger struc

tural changes typically observed experimentally in biolog

ical systems. Moreover, parameterizing accurate and 

transferable all-atom potentials remains a long-standing 

challenge in biomolecular simulations. On one hand, clas

sical force fields such as AMBER, CHARMM, and OPLS 

rely on a set of physically motivated mathematical functions 

to describe intra- and intermolecular interactions. However, 

applying these models across diverse and complex molecu

lar systems often requires system-specific reparameteriza

tion and extensive fine-tuning to achieve the desired 

accuracy in predicting structural and thermodynamic prop

erties. On the other hand, quantum-mechanical (QM) 

methods (e.g., coupled cluster, density functional theory) 

offer the ability to accurately describe molecular interac

tions across a wide variety of systems. However, they 

remain computationally prohibitive for larger systems 

(greater than thousands of atoms) and long timescales, 

even with the most efficient algorithms and state-of-the-art 

supercomputers (8, 9). This presents a barrier to the applica

tion of QM methods for addressing biomolecular problems, 

such as protein mutations or structural transitions. To miti

gate this issue, QM methods have been integrated with ma

chine learning (ML) techniques, leading to the development 

of well-established approaches aimed at generating effi

cient, accurate, scalable, and transferable (EAST) (10, 11) 

ML models to advance biomolecular simulations with atom

istic resolution. Among them, we have ML models that 

approximate the potential energy surface (PES) of molecu

lar systems using state-of-the-art neural network architec

tures trained on QM property data (commonly referred to 

as machine-learned potentials, MLPs) (12–21), the augmen

tation of semiempirical methods with ML techniques 

(22–29), and the development of hybrid molecular me

chanics/ML approaches (30–35).

Despite their precision, MLPs still face challenges related 

to computational cost relative to classical force fields, which 

can limit their application to smaller systems or shorter simu

lation timescales of only a few nanoseconds. Accessing large 

conformational changes in proteins on the scale of thousands 

of nanoseconds is still not possible with MLPs. In this regard, 

pragmatic coarse-grained (CG) approaches (36–39) enable 

the exploration of large time and length scales while preser

ving a molecular-level representation of the studied systems. 

Several CG potentials have been instrumental in studying 

large-scale processes such as conformational changes in pro

teins and the assembly of macromolecular complexes (40, 41) 

over extended scales such as chromatin organization (≈ 150– 

250 nm) (42), the nanomechanics of microtubes (1–12 μm) on 

the millisecond timescale (43), and the ensemble conforma

tions of intrinsically disordered proteins (IDPs) and multido

main proteins (44). Among these potentials, the CALVADOS 

CG potential (45) employs Bayesian optimization of the hy

drophobicity scale for each amino acid residue, with interac

tion sites optimized to reproduce ensemble conformations 

accurately. Moreover, ML approaches based on neural net

works have been recently applied to define CG potentials 

for proteins. CGnets (46, 47) and its extended version (48) 

were developed to reproduce conformations aligned with 

the free energy landscape, and Boltzmann Generators (49) 

learned transformations for efficient sampling of equilibrium 

states. These methods demonstrate strong progress in 

modeling transitions between metastable states and pave the 

way for their extension to more complex systems such as 

RNA-protein or protein-ligand assemblies. Building on these 

complementary advances, researchers are now integrating the 

strengths of ML and CG approaches to develop hybrid meth

odologies that balance accuracy with computational effi

ciency. ML techniques can help parametrize CG models 

(46), generate CG structures and backmap them to higher res

olutions (50), define optimal parameters and the degree of CG 

resolution (45), evaluate the quality of CG mapping (51), and 

run CG simulations using ML potentials (48). This 

synergy holds the potential to overcome long-standing chal

lenges in biomolecular simulations, enabling detailed interac

tion modeling while accessing extensive configurational 

landscapes.

This short review explores recent strategies aimed at 

enhancing the reliability of biomolecular simulations. It is 

designed for a broad biophysical audience and provides an 

overview of key methodologies that advance biomolecular 

modeling toward larger length scales while maintaining 

high accuracy (see Fig. 1). Bhatia et al. (52) recently pre

sented a review on ML for multiscale modeling and Gkeka 

et al. (53) on the integration of ML with MD more generally. 

We expand on topics from both of these reviews while 

focusing on particular themes in CG simulation. In our 

work, the first section discusses the development of QM- 

based ML potentials for biomolecules and emphasizes suc

cessful applications and limitations. The second section 

highlights several pragmatic CG potentials for multicompo

nent system (36, 54–56) and statistical CG potentials that 

have demonstrated versatility in describing biomolecular 

complexes (57). These include models for lipids, nucleic 

acids, polysaccharides, and their posttranslational modifica

tions of proteins, which have gained increasing support from 

the biophysical and physicochemical communities. The 

third section examines ML-driven approaches for backmap

ping representative structures of the CG trajectories to 

higher-resolution atomistic representations. Finally, we 

conclude by discussing the immediate challenges facing 

ML potentials, CG potentials, and backmapping methods 

in their pursuit of more transferable, accurate, and thermo

dynamically consistent biomolecular potentials.
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ATOMISTIC MACHINE-LEARNED POTENTIALS

Pure quantum-mechanical ML potentials

Building on groundbreaking methods like the high-dimen

sional Behler-Parrinello Neural Network (BPNN) (58) and 

Gaussian Approximation Potentials (GAP) (59), a diverse 

range of methodologies have been developed using kernel 

and deep learning methods to parameterize MLPs that 

meet EAST requirements for performing biomolecular sim

ulations; see Fig. 2. Although BPNNs describe atomic envi

ronments using symmetry functions and element-specific 

NNs to compute atomic energies (58), GAP employs 

Gaussian process regression to model local atomic interac

tions, utilizing descriptors that map Cartesian atomic coor

dinates to invariant representations (59). The outstanding 

progress in MLPs has also been possible due to the 

increased availability of extensive QM datasets of small 

and large molecular complexes for training MLPs (e.g., 

QM7-X (61), ANI (62), QM9 (63), MD17/22 (64, 65), 

DES (66), GEMS (13), QMugs (67), Aquamarine (68), 

SPICE (69)). In this sense, kernel-based approaches such 

as GAP (70) and Gradient Domain Machine Learning 

(GDML) (64) have been successfully demonstrated to pro

duce reliable MLPs for small molecules with reduced 

training sets and at QM accuracy. Unlike GAP, GDML 

learns conservative force fields directly from atomic force 

data, bypassing the need to fit energies explicitly. The incor

poration of spatial and temporal physical symmetries into 

the GDML method, known as the symmetrized GDML 

model (71), along with the optimization of the training algo

rithm, enables the prediction of the PES of molecular sys

tems containing up to a few hundred atoms, such as 

carbohydrates, nucleic acids, and supramolecules (65).

Although powerful and data-efficient, kernel-based ap

proaches are less flexible and can only be used to develop po

tentials for single systems. An alternative that has advanced 

rapidly in recent years is the use of NNs for parameterizing 

MLPs. Accordingly, SchNet (72, 73) and ANI (62, 74) 

models were initially used to reconstruct the PES of small 

molecules at high levels of theory such as coupled cluster 

with single, double, and perturbative triple excitations 

method at the complete basis set limit (CCSD(T)/CBS) and 

density functional theory (DFT) using hybrid PBE0 func

tional supplemented with a many-body dispersion treatment 

(PBE0+MBD). The limitations in scalability and generaliz

ability arising from the molecular representation and archi

tecture design employed in both models motivated the 

development of more physically and chemically inspired 

NN approaches. For instance, the performance of the 

AIMNet model (Atoms-in-Molecules Neural Network) 

(75) relies on multitask learning to simultaneously predict 

molecular and atomic QM properties, including energies, 

atomic charges, and volumes. The second generation of 

this model, namely AIMNet2 (60), extends the chemical 

coverage to 14 atom types and augments the local configura

tional energy (AIM layer) with long-range electrostatics and 

dispersion interactions for investigating organic compounds 

with varied charges and valency. A similar methodology un

derpins PhysNet (76), which refines energy predictions by 

accounting for the physical models of electrostatics and 

FIGURE 1 A cartoon illustrating the approaches for biomolecular simulations discussed in this review: (1) high-resolution models (all-atom MD), which 

are limited to small length scales and timescales but enhanced by machine learning potentials (MLPs), and (2) low-resolution models (coarse-grained MD), 

which enable significantly larger time and length scales, with backmapping to higher resolutions facilitated by ML. The dashed line represents the connection 

between enhanced all-atom MD (via MLP) and the backmapping results at long timescales, which are currently under development.
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van der Waals interactions (DFT-D3) (77) during the training 

procedure. This approach allows PhysNet to capture long- 

range interactions accurately, addressing the limitations pre

sented in earlier models and extending the applicability of 

NN-based potentials to a broader range of molecular systems 

(e.g., polyalanine peptide, SN2 reactions).

More sophisticated NN architectures have recently been 

developed for constructing more generalizable MLPs 

by incorporating equivariance in the molecular representa

tion. Indeed, building on PhysNet, the equivariant model 

SpookyNet (12) incorporates physically inspired modules 

that describe local and nonlocal pairwise interactions such 

as nuclear repulsion, electrostatics, and dispersion. Besides 

achieving state-of-the-art accuracy in energy and force pre

diction on benchmarks such as QM7-X (61) and MD17 (64), 

the SpookyNet model, trained on QM data of bottom-up and 

top-down molecular fragments (GEMS datasets), can 

accurately predict the structural properties of large and com

plex biomolecules such as polyalanine peptides, crambin 

in aqueous solution, and gas-phase binding curves of 

angiotensin-converting enzyme 2 and the receptor-binding 

domain of the SARS-CoV spike protein (13). Allegro (14) 

is another equivariant NN model that combines message 

passing NNs (MPNNs) with strict locality, effectively 

capturing local atomic interactions while maintaining a 

global view of the system. This model has proven transfer

able to high-temperature MD simulations and is scalable 

through GPU parallelization, enabling simulations with 

FIGURE 2 Evolution of the largest (bio)molecular systems investigated using machine learning (ML) potentials with quantum-mechanical (QM) accuracy. 

We highlight the key QM datasets employed in training these potentials. A schematic representation of the ML methodologies employed in related works is 

provided in the graph. The color coding of the ML potentials on the y-axis corresponds to the different ML methodologies. Figures of (bio)molecular systems 

have been adapted from the references corresponding to each ML methodology, except for Crambin (13), Glycoprotein (19), random polymer coil (60), Sat

ellite Tobacco Mosaic Virus (35), and HIV capsid (3) systems, which were extracted from the respective references.
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tens of millions of atoms (e.g., VIH capsid) (15). Using the 

local descriptors defined by the Allegro model, the FENNIX 

model (Force-Field-Enhanced Neural Network InteraXions) 

(16) was developed to predict short-range energy, atomic 

charges, and volume. Similar to SpookyNet, these atomic 

properties are integrated into physically motivated func

tional forms for calculating electrostatic and dispersion en

ergy contributions, enabling the investigation of relevant 

simulations at QM accuracy, such as the torsional free en

ergy profile of solvated alanine dipeptide and bond dissoci

ation energy profiles.

Unlike previous models that explicitly use two-body in

teractions, the MACE (17) model is built on an equivariant 

MPNN, which leverages higher-order symmetric features 

for each atom. This property enables the MACE model to 

more effectively capture QM many-body effects in the 

PES of molecular systems. Indeed, the MACE-OFF23 

model (18) was recently developed using diverse QM data

sets comprising small and large single molecules as well as 

molecular dimers. This flexible model can calculate torsion 

profiles of drug-like molecules, enthalpies of molecular 

crystals, folding dynamics of alanine, and the power spec

trum of crambin in explicit solvent. Following a similar 

reasoning, the SO3LR model (19) was recently developed 

using an updated version of the SO3krates (20, 21) 

equivariant NN architecture, which now incorporates both 

short- and long-range physical models in its design. The 

applicability of the SO3LR model was demonstrated 

through nanosecond-long simulations with QM accuracy 

across a broad chemical space, including small biomole

cular units, polyalanine systems, bulk water, the crambin 

protein, an N-linked glycoprotein, and a lipid bilayer.

ML-augmented semiempirical methods

Semiempirical (SE) methods strike a balance between clas

sical potentials and DFT methods in terms of EAST require

ments. As the simplest form of electronic structure theory, 

SE methods employ integral approximations and predefined 

functional forms of atomic interactions to accelerate calcu

lations. To reduce errors, they incorporate parameterizations 

based on reliable experimental or theoretical reference data 

(78). Although this compromises their accuracy, SE 

methods remain highly efficient for large systems with 

102–104 atoms, where classical treatments would be inade

quate due to complex QM effects. In this context, ML has 

the potential to enhance both the accuracy and transfer

ability of SE methods while preserving their computational 

efficiency (79).

By leveraging the fact that SE methods already capture 

much of the relevant physics, the Δ-learning approach has 

emerged as a powerful strategy for enhancing their accu

racy. In this approach, the target property is the difference 

between SE energies and forces and their DFT counterparts, 

enabling SE methods to achieve higher accuracy in physico

chemical properties with minimal computational overhead. 

An early example of this methodology was demonstrated 

for a set of C7H10O2 isomers from the GDB17 data set 

(22, 23). Here, a KRR model was trained to predict atomi

zation energies at the G4MP2 level (80) by learning the dif

ference between G4MP2 and PM7 (81) semiempirical 

energies, outperforming models trained on absolute en

ergies. Similarly, a BPNN has been used to address the 

limitations of the second-order density functional tight- 

binding (DFTB2) (82) method in describing intramolecular 

hydrogen bonds and torsional potentials of glycine (24). 

Building on this idea, the accuracy of the third-order 

DFTB method (83) was improved by replacing the standard 

pairwise repulsive potential with a many-body NN repulsive 

potential, NNrep (25), trained using the SchNet architecture. 

This advancement achieved hybrid DFT-PBE0-level accu

racy across energetic, structural, and vibrational properties 

of small molecules. To overcome the scalability and trans

ferability limitations of NNrep, the EquiDTB framework 

was recently introduced (26). By leveraging physics- 

inspired equivariant NNs to parameterize many-body ΔTB 

potentials, EquiDTB extends the applicability of this 

ML-corrected DFTB approach to larger molecules and non

covalent systems, surpassing the chemical space covered by 

the original training QM datasets.

Recent advancements in the use of Δ-learning for (bio)mo

lecular simulations have exemplified its great potential to 

develop a more generalizable hybrid QM/ML computational 

method. For instance, the AIQM1 model (general-purpose 

artificial intelligence QM method 1) (27) was developed by 

targeting the energy differences between the orthogonaliza

tion- and dispersion-corrected method 2 Hamiltonian 

(ODM2) (84) and CCSD(T)*/CBS (85) calculations from 

the ANI-1ccx data set (86), yielding ‘‘gold-standard’’ 

coupled-cluster accuracies for the ground-state properties, 

such as energies and geometries, of closed-shell, neutral 

organic compounds like polyynes, molecular dimers, and 

water clusters. Another notable Δ-learning model is PM6- 

ML (28), which integrates the robust PM6-D3H4X semiem

pirical method (87) with the TorchMD-NET architecture (88) 

to achieve DFT-level accuracy. PM6-ML covers a broad 

chemical space, ranging from small peptides to protein-bind

ing complexes, and is capable of predicting interaction 

energies, conformational energies, torsional profiles, and 

optimized geometries. In a similar vein, the XPaiNN model 

(29) was developed to enhance the performance of GFN2- 

xTB (89) using the PaiNN architecture (90). Indeed, 

XPaiNN has demonstrated improved accuracy and transfer

ability in investigating large conjugated compounds, nonco

valent intermolecular interactions, and transition states.

Hybrid MM/ML models

Molecular mechanics (MM) potentials represent molecular 

systems as atomic point masses interacting through physical 
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models that describe bonded and nonbonded interatomic 

interactions. Although efficient and capable of handling 

long-timescale simulations, MM potentials have notable 

limitations in accurately describing QM effects in complex 

(bio)molecules. These limitations arise from geometrical 

and electronic constraints in the parameterization proced

ure, which affect their transferability and generalizability. 

To address these shortcomings, recent efforts have focused 

on using QM-based MLPs to simulate intramolecular inter

actions within the solute, whereas solvent-solvent and sol

vent-solute interactions are treated using MM potentials. 

For instance, the hybrid ANI-2x/AMEBA approach (30) 

was developed to achieve CCSD(T)-level accuracy by 

combining the ANI-2x potential for describing interatomic 

interactions in proteins and nucleic acids with the 

AMEBA polarizable potentials (91) for modeling interac

tions with the chemical environment. This hybrid model 

significantly improves the accuracy of solvation and abso

lute binding free energy calculations compared with using 

AMEBA alone (30).

Unlike the ANI-2x/AMEBA approach, which relies on a 

pretrained ML model, the hybrid ANA2B model (31) is the 

result of a fundamentally different training procedure that 

considers an anisotropic MPNN to estimate intramolecular 

interactions (92), and a fully connected NN to parameterize 

intermolecular short-range pairwise interactions. These 

short-range interactions are further complemented by D3 

dispersion correction and other long-range intermolecular 

interactions, which are modeled using physically motivated 

terms derived from MM potentials. Although ANA2B is not 

explicitly trained on condensed-phase systems, it demon

strates strong transferability, making it a promising candi

date for simulations in such environments. Building on 

this concept, the ONIOM approach (Our own N-layered In

tegrated molecular Orbital and molecular Mechanics) (32) 

combines MLPs at multiple levels of theory (e.g., 

coupled-cluster, DFT) with SE methods and MM potentials 

to describe interatomic interactions in different regions of a 

given biosystem. This multiscale strategy enables highly ac

curate quantum refinement of the crystallographic structures 

of diverse protein-drug/inhibitor systems with computa

tional costs significantly lower than those of pure QM 

methods, paving the way for applications in molecular 

recognition, catalysis, and drug development.

On the other hand, hybrid MM/ML models like Espaloma 

(33) have replaced the discrete atom-typing scheme with 

continuous atomic representations generated by graph 

NNs to construct end-to-end optimizable force fields. These 

representations are trained on small molecules, peptides, 

and nucleic acids and are then mapped to MM parameters 

for atoms, bonds, angles, and torsions. This approach en

hances chemical diversity, improves accuracy, and expands 

the applicability of MM potentials to more relevant biomol

ecular systems, e.g., folded proteins and protein-ligand 

complexes (34). The GRAPPA model (35) adopts a similar 

strategy but includes a graph attention NN, inspired by the 

transformer architecture, to map atom embeddings to MM 

parameters. This design improves expressivity by enforcing 

only the required permutation symmetries, providing 

greater flexibility in learning complex interactions and 

enabling superior performance compared with traditional 

MM potentials such as Amber99SB-ILDN (93) and 

Gaff-2.11 (94). Its capabilities were demonstrated through 

condensed-phase MD simulations of the large and complex 

Satellite Tobacco Mosaic Virus (35), which consists of a sin

gle-stranded RNA genome packaged inside a simple protein 

shell (capsid), totaling approximately one million atoms 

(95)—a suitable biomolecular system for benchmarking 

the computational efficiency of ML approaches.

COARSE-GRAINED POTENTIALS

SIRAH

This CG potential (see Fig. 3) was introduced in 2010 (101) 

for the study of DNA systems. It was later expanded to pro

tein systems (102), and in its last version, SIRAH 2.0 can 

describe metal ion coordination, unbiased conformational 

sampling for free energy calculations, and specific pro

tein-peptide recognition (103, 104). This CG model was 

developed following a top-down approach that fits interac

tions to structural data from sources like the Protein Data 

Bank (PDB) and canonical structures such as B-DNA, α-he

lices, and β-peptides. It avoids using specific algorithms for 

parameter development, allowing flexibility through trial- 

and-error to enhance resolution in key areas. Unlike other 

CG potentials, SIRAH is unbiased, avoiding artificial con

straints on secondary structures (see Table 1 and Fig. 3). Par

tial charges on each bead create effective dipole moments, 

allowing the CG model to mimic dielectric permittivity 

and tune ionic strength in simulations. This capability en

ables ion-specific effects on DNA that are consistent with 

observations from high-resolution structures. A study on 

the single-chain conformational ensembles of an IDP in 

SIRAH (105) showed good agreement with the nuclear 

magnetic resonance (NMR) conformers. However, repro

ducing single-chain properties is not sufficient for interpre

tation of the phase diagram in protein condensates (106), 

particularly when transient secondary protein structures (e. 

g., β, α, and coil) do not switch between themselves in 

CG simulations, which has yet to be captured. Those confor

mational changes are key for the stabilization of protein 

condensates transitioning to the aberrant phase (e.g., β-am

yloid fibrils) and still face real challenges (107). Martins and 

Galamba recently employed SIRAH for the study of the 

monomer and small oligomers of α-synuclein (108). Due 

to the high resolution of the SIRAH protein backbone (i. 

e., N-Cα-O), the model reproduced Rg values in the range 

of ≈ 2 nm according to AA-MD simulations generated by 

Amber99sb and Charmm36m. However, SIRAH model 
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has not yet been used to explore protein condensates, and 

careful interpretation should be done in case of capturing 

single-molecule properties of IDPs for prediction of 

biomolecular phase diagrams (106). Robles et al. (109) 

investigated the conformational changes associated with 

activation or inactivation by an agonist (p-TA) and antago

nists (EPPTB and RTI) in the human trace amine-associated 

receptor (hTAAR1), which is a G-protein-coupled receptor 

(GPCR). Elucidating the mechanics of activation can play 

a role in the development of a treatment of neuropsychiatric 

condition. CG simulations confirmed in timescale of 5 μs 

that G-protein interacts with intracellular loop 3 (ICL3) as 

well as with intracellular segments of several TMDs. 

Agonist binding promotes compact receptor conformations 

associated with activation, whereas antagonists stabilize 

the receptor in an inactive state. These findings illuminate 

the dynamic nature of GPCR modulation and the critical 

role of ICL3 movement in receptor signaling. The CG po

tentials, simulation tools, and parameters can be accessed 

freely from the webpage (https://www.sirahff.com/).

SPICA

The original Shinoda-DeVane-Klein (SDK) framework, 

developed in 2007 for modeling the self-assembly of 

aqueous surfactants (110, 111), served as the foundation 

for the SPICA CG potential. It was parameterized by fitting 

thermodynamic properties such as surface tension, density, 

and transfer free energy. SPICA effectively captures the 

self-assembly processes of surfactants and lipids with real

istic interfacial behavior. Recently, its applications have 

extended beyond its initial scope to include simulations of 

lipids and proteins in a polar solution (112). The SPICA pro

tein model incorporates an elastic network (EN) model to 

maintain the initial secondary and tertiary structure of pro

teins in solution during CG simulations (56). (113). Drawing 

from prior studies that combine the EN model to retain sec

ondary and tertiary structures, as in the Martini model, the 

application of strong harmonic restraints (see Table 1 and 

Fig. 3) has been found to be necessary (114). Notably, 

both the cutoff distance and spring constant in the EN model 

FIGURE 3 CG potentials and their applications in biomolecular systems. Each example shows the AA and CG representations, along with a protein com

plex in CG description. When present, solvent is depicted as a light blue transparent surface. Structures were visualized using ChimeraX (96) and are based on 

open-source PDB entries, which do not require special permission for use. Data sources for protein complex: SIRAH (55) (PDB ID: 1ITY), SPICA (97) (PDB 

ID: 1D6X), G�oMartini 3 (98) (PDB ID: 6ZH9), CABS (57) (PDB ID: 3I40), UNRES (99) (PDB ID: 2E8D), and AWSEM (100) (PDB ID: 2XOV).
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can be adjusted to suit the target system. The application of 

the EN model on top of the SPICA model restricts the study 

of large conformational changes in structured proteins, such 

as protein unfolding driven by temperature or mechanical 

forces.

Nonetheless, SPICA has demonstrated the ability to accu

rately describe protein assemblies in viral capsids. It was 

applied to the poliovirus, an icosahedral capsid consisting 

of 60 copies each of four proteins (VP1, VP2, VP3, and 

VP4). The CG simulation, initialized from an equilibrated 

AA structure and incorporating the intrachain EN bonds, 

maintained a stable capsid over a 1-μs simulation. The 

average capsid radius was 132.8 Å, closely aligning with 

the 133.6 Å observed in AA-MD (112). In the latest version 

of SPICA version 2 (97), several improvements were made to 

better model protein-lipid interactions and IDP systems. The 

previous version tends to over-stabilized protein adsorption 

on lipid membranes, causing soluble proteins to bind too 

tightly. To address this, the Lennard-Jones (LJ) parameters 

for backbone (BB)-lipid interactions were modified to better 

reproduce protein-binding sensitivity. SPICA 2 was tested on 

several proteins: lysozyme, phospholipase A2, the pleckstrin 

homology domain of PDK1, and the human micelle-bound 

α-synuclein (i.e., α-syn). Notably, α-syn chain remains in 

the helical form upon membrane binding.

For IDP systems, SPICA incorporates several key modifi

cations to improve accuracy. These include removing 

the EN model, introducing secondary structure-dependent 

nonbonded interaction parameters for the protein backbone, 

and reoptimizing nonbonded parameters for all amino acids. 

These changes enable SPICA to model the radius of gyration 

of IDPs, the free energy of peptide association in water, and 

interactions between lipids and transmembrane proteins 

more effectively. The latest CG potential parameters can be 

obtained from the webpage (https://www.spica-ff.org/). 

Currently, SPICA does not support posttranslational modifi

cations, and thus their effect on protein conformation remains 

elusive.

G�oMartini 3

To address the limitations of standard Martini 2 in capturing 

large conformational changes in proteins, the G�oMartini 

approach was introduced as an extension of the Martini 

force field (54). In this approach, the EN typically used in 

Martini 2 simulations was replaced by G�o potentials map

ped as LJ interactions between BB beads and parametrized 

as in Table 1 and Fig. 3. These LJ interactions were calcu

lated based on the native contact map, which was derived 

using optimized CM determination strategies (115, 116). 

Despite several applications in protein folding (e.g., α-heli

ces and β-hairpins), sampling of protein flexibility in the 

Man5B enzyme, and analysis of mechanical failure in 

self-assembling peptide fibrils (117), early models faced 

technical limitations in efficiency and scalability. These 

challenges motivated further developments, ultimately lead

ing to the introduction of G�oMartini 3.

The recent G�oMartini 3 model (118), implemented on 

the Martini 3 framework (119), represents a significant 

advancement and addresses several limitations of its prede

cessor (54). In the previous implementation, G�o potentials 

between residue pairs were mapped as intramolecular inter

actions, the G�oMartini 3 introduces virtual interaction sites 

placed on the BB beads (near the Cα atoms). These virtual 

sites define the interactions between residue pairs using LJ 

potentials, enabling better computational efficiency through 

parallelization and the implementation of nonbonded cut

offs. Although the contact map remains unchanged, contacts 

are now defined within a BB–BB distance, ranging from 

0.3 nm to 1.1 nm. This range ensures meaningful interac

tions: the 0.3 nm lower limit prevents artifacts from overlap

ping beads in dense regions, whereas the 1.1 nm upper limit 

TABLE 1 Overview of CG potentials: amino acid resolution, parameters for capturing protein flexibility, and versatility in modeling 

biomolecular complexes

Potential Resolution Protein flexibility Available biomolecules for complex formation

SIRAH (3–8 beads) Fair parametrization of secondary/tertiary structure. Water, electrolytes, lipids, DNA, metal ions, and proteins 

with posttranslational modifications.

SPICA (1–4 beads) EN model is established between two CG beads when they 

are separated by more than two bonds or by a spatial 

distance of less than 0.9 nm; Force constant: 1.195 kcal/ 

(Å2⋅mol).

Explicit solvent (water), lipids, ions, surfactants.

G�oMartini 3 (1–6 beads) G�o bonds mapped as LJ potentials with ϵ in the range 9.4– 

15.0 kJ/mol and σ = d=21=6, where d is the Cα–Cα 
distance from a native contact.

Explicit solvent (e.g., water, hexadecane), lipids, ions, 

nucleic acids, carbohydrates, small biomolecules, and 

more.

CABS (2–3 beads) Soft flat-bottom distance restraints (5 1 Å) between Cα 
atoms.

Implicit solvent, proteins.

UNRES (2 beads) Not user-adjustable; based on physics-derived potentials and 

statistical knowledge.

Implicit solvent, proteins, DNA.

AWSEM (2–3 beads) Residue-specific burial potential, preserving packing and 

solvent accessibility; modeled with a sigmoidal-like 

function, tunable via λburial≈0:3–1.0.

Implicit solvent, proteins, DNA.
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aligns with Martini 3 nonbonded cutoff, excluding distant 

pairs unlikely to contribute to structural stability. Addition

ally, nonbonded interactions between BB beads are 

excluded for residue pairs defined via virtual sites. This 

exclusion improves the packing of protein structures and en

hances their stability during simulations.

G�oMartini 3 has been successfully applied to protein- 

ligand and protein-protein interactions, demonstrating both 

versatility and effectiveness. For example, it has been used 

to study the binding of benzene to L99A T4 lysozyme, 

revealing enhanced flexibility in the binding pockets 

compared with the EN model (118). The method also accu

rately reproduced the conformational flexibility and hydra

tion levels around the zinc-binding site of copper-zinc 

superoxide dismutase, aligning well with results from 

QM/MM MD simulations. Additionally, it identified the de

stabilizing allosteric effect of the G93A mutation on the 

zinc-binding site (120) and probed the mechanical stability 

of several biomolecular systems (98, 121, 122), including 

SARS-CoV-2 variants in complex with a potent nanobody. 

Specific mutations were found to significantly influence 

the formation and rupture of native and nonnative contacts 

under high mechanical loads, impacting the mechanical sta

bility of these complexes. Furthermore, the hyper-mecha

nostability of bone sialoprotein binding protein in 

complex with fibrinogen-α was explored, revealing rupture 

forces exceeding 2 nN and highlighting key residue interac

tions that resist mechanical stress (122). The CG potential is 

available via the server at https://github.com/Martini-Force- 

Field-Initiative/GoMartini.

CABS

In addition to physics-based models, statistics-based protein 

CG models, such as the CABS potential, represent also an 

alternative in modeling large conformational changes in 

proteins. The CABS-fold were used in protein prediction 

competitions (e.g., CASP(57)) and their extension to cap

ture flexibility (i.e., CABS-flex) in peptide-protein recogni

tion and protein complex (123) enabling extensive 

rearrangements of the protein chain. These CG models 

rely on extensive experimental data, including folded pro

tein structures deposited in the PDB, to derive potential en

ergy functions. The functions are based on the observed 

frequency of structural features such as bond distances, an

gles, dihedral torsions, and residue-residue contacts. The 

CABS model excels in structure prediction of proteins and 

can even perform unassisted folding simulations with 

greater success compared with previous CG approaches. 

However, their performance is limited by a lack of transfer

ability to systems outside their original parametrization, 

especially in interactions involving proteins and other bio

molecules (see Table 1 and Fig. 3).

CABS was able to explore large conformational changes 

of peptide-protein recognition via CABS-dock (124). The 

p53-MDM2 complex, a key target in anticancer drug design, 

where experimental data suggest significant rearrangements 

in the flexible N-terminal region of MDM2. Due to its large 

size and flexibility, atomistic models struggle with exhaus

tive binding dynamics studies for this complex. Using 

CABS-dock, simulations successfully generated near-native 

models without prior knowledge of the p53 peptide structure 

or binding site, aligning well with experimental data and the 

role of the N-terminal domain in binding (37). More 

recently, CABS-dock was employed within an integrative 

modeling to predict the self-assembled structures of protein 

fibrils such as β-amyloid by incorporating structural re

straints that mimic experimental conditions. Although 

such a protocol does not determine the overall structure of 

the assembled fibrils, and yet limits the whole exploration 

of the conformational space in proteins, it still yields an effi

cient method for protein structure determination(125). The 

CG potential can be accessed from the server http:// 

biocomp.chem.uw.edu.pl/CABSflex2.

UNRES

The UNRES potential was implemented for massively par

allel CPU architectures (126). Although this allowed simu

lations of large protein systems, such as those with 150,000 

residues, the computational cost remained high, often 

requiring several days of wall-clock time per trajectory, 

even with 24-core CPUs (127). Recently, the code was 

enhanced with hybrid parallelization using both MPI and 

OpenMP on GPUs, further improving performance (99). 

In a significant advancement, the UNRES CG simulation 

framework now supports GPU acceleration, representing a 

major step forward in computational efficiency. This update 

reduces dependence on large CPU clusters and dramatically 

speeds up simulations, aligning UNRES with other state-of- 

the-art CG frameworks that leverage GPU-based architec

tures (128). Additionally, UNRES potentials can incorpo

rate experimental restraints from NMR, enabling the 

modeling of multistate systems and IDPs, including those 

with disordered regions (129). This capability is partly 

enabled by the model’s well-developed parametrization of 

protein flexibility (see Table 1 and Fig. 3). CG potentials 

for large DNA/RNA molecules are also parametrized under 

UNRES framework (130) A web-based implementation of 

the UNRES package is available at https://unres.pl.

AWSEM

AWSEM CG potential (100) describes each amino acid us

ing Cα, Cβ and O atoms (except glycine) and is primarily 

physics-based approach, with a small knowledge-based 

term that biases local sequence of nine residues (or shorter) 

toward conformations seen in known protein structures. 

The potential uses a detailed backbone and one inter

action site per side chain, incorporating an implicit solvent 
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model that includes hydrophobic burial and explicit, water- 

mediated, nonadditive interactions (see Table 1 and Fig. 3). 

Originally implemented as AWSEM-MD in the LAMMPS 

molecular dynamics package using CPU, the model has 

been successfully applied to predict the structures of glob

ular natural and designed α/β proteins, as well as polytopic 

membrane proteins (131). AWSEM-MD has also been used 

to study protein folding, association, and aggregation, and 

has demonstrated strong performance in CASP competi

tions, particularly when incorporating co-evolutionary and 

template-based information. A cross-compatible implemen

tation of AWSEM for proteins, integrated with the 3SPN2 

CG DNA model in the OpenMM framework, enabled the 

simulation of large-scale translocation in the bacteriophage 

T7 gp4 helicase–DNA complex (132). This study captured 

multiple intermediate conformational states and revealed 

transient DNA-protein and protein-protein interactions that 

facilitate long-range subunit translocation. Also, it has 

been used to extend the timescale of AA-MD for the 

study of the assembly of silk nanofibrils at the growth state 

(133). Notably, the GPU-accelerated OpenMM imple

mentation (134) achieved a 30-fold speed-up compared 

with the original CPU-based LAMMPS version. The 

CG potential is openly available at https://github.com/ 

npschafer/openawsem.

ML FOR BIOMOLECULAR BACKMAPPING

Although coarse-graining has become an increasingly 

powerful tool for expanding time and length scales of mo

lecular simulation, there are numerous scenarios in which it 

is desirable to restore AA resolution to CG trajectories in 

order to develop mechanistic understanding, compute ob

servables contingent on atomistic degrees of freedom, or 

make comparisons against experimental measurements 

(135–144). Backmapping is a general term for the process 

of restoring degrees of freedom lost during the coarse- 

graining process (see Fig. 4). Early backmapping ap

proaches typically follow sets of heuristics to produce a 

rule-based mapping from CG to AA. Initial structures are 

obtained either by searching fragment libraries (136, 145, 

146) or by a geometrically guided scheme (55, 147–151). 

Structures are then refined to reduce steric clashes and un

physical bond angles and lengths, followed by optional en

ergy minimization (147, 151). Although these approaches 

can be fast and produce reasonably stable AA structures, 

the optimization procedure can also produce unphysical 

dihedral angles or may fail to resolve spurious configura

tions such as ‘‘punched’’ aromatic rings (151). Further

more, most rule-based methods are deterministic and are 

therefore unable to recover the ensemble of AA structures 

FIGURE 4 Methods for backmapping coarse-grained simulations to all-atom resolution. Traditional deterministic approaches (bottom row) follow a rule- 

based approach. Numerous data-driven methods have been developed to predict single structures from protein backbones or coarser representations. Recent 

generative approaches (top row) can predict an ensemble of all-atom configurations given a coarse-grained structure and random noise. Single-step 

predictions can be made by VAE or GAN-based models and generally are faster but less accurate. Structures with improved bond quality and fewer inter

residue clashes can be generated in an iterative manner based on a flow-matching or diffusion objective, which may also be combined with autoregressive 

decoding.

Poma et al. 

Please cite this article in press as: Poma et al., Recent advances in machine learning and coarse-grained potentials for biomolecular simulations, Biophysical 

Journal (2025), https://doi.org/10.1016/j.bpj.2025.06.019

10 Biophysical Journal 124, 1–17, December 2, 2025

https://github.com/npschafer/openawsem
https://github.com/npschafer/openawsem


that correspond to the one-to-many backmapping of a sin

gle CG trace.

In the last decade, the development of generative deep- 

learning-based architectures such as generative adversarial 

network (GANs) (152) and variational auto-encoders 

(VAEs) (153) have enabled the generation of physically 

meaningful AA ensembles from CG conditioning and 

Gaussian noise. (154–156). Given backmapping is an 

inherently one-to-many prediction process, these generative 

techniques are more extensible than deterministic rule- 

based approaches. Li et al. (154) and Stieffenhofer et al. 

(157) leveraged GANs to backmap MD simulations of 

condensed-phase polymer systems and showed strong struc

tural performance as well as transferability between phases. 

Wang et al. (158) developed a VAE approach to backmap 

small gas-phase molecules, and later (159), they enhanced 

their model using a graph neural network to backmap fast- 

folding proteins. Shmilovich et al. (156) developed a condi

tional VAE based on 3D voxels of consecutive MD frames 

to backmap temporally coherent AA trajectories. Although 

some chemical transferability in polymer melt systems 

was demonstrated by Stieffenhofer et al. (155), these earlier 

approaches tended to be system specific, which both neces

sitates substantial AA training data for the molecule of inter

est and requires the training of independent models for each 

molecular system of interest.

More generic chemical transferability, especially for ma

chine learning-based approaches, has been achieved in the 

related field of protein side-chain packing (PSCP) (160– 

164). This task can be considered a specific type of back

mapping, in which side-chain atoms are predicted given 

protein backbone atoms (Cα, C, O, N) and primary 

sequence. Rule-based methods for PSCP such as SCWRL 

(165) and RosettaPacker (166) efficiently search rotamer 

libraries using energy-based optimization. Transferable 

deep-learning-based methods such as SIDEPro (160) were 

developed to learn improved energy functions given pair

wise atom distances, and methods such as DLPacker and 

OPUS-ROTA4 (161, 163) predict side-chain positions given 

3D voxel densities. McPartlon et al. demonstrated signifi

cant improvements with their AttnPacker (167) model, 

which combines a SE-3 transformer (168) and Tensor Field 

Network (169) to predict per-residue confidence scores and 

sequence (inverse-folding) in addition to side-chain config

urations. Randolph et al. (170) incorporated invariant point 

message passing to achieve similar results at significantly 

improved computational efficiency. Although PSCP is 

posed very similarly to backmapping and packing models 

have inspired ML-based backmapping approaches, these 

methods are designed for static low-energy or de novo pro

tein structures and require knowledge of all backbone 

atoms. Prediction of side-chain conformational ensembles 

has also been less of a focus for PSCP, and most ML-based 

methods are deterministic, but recent work by Zhang et al. 

(171) and the AlphaFold3 (172) structure module both 

incorporate diffusion-based approaches that are capable of 

producing conformational diversity.

Yang et al. (173) introduced the first chemically transfer

able Cα-only backmapping model using a VAE architecture 

and demonstrated strong results when trained on IDPs from 

the Protein Ensemble Database (PED) (174). Han et al. 

(175) elaborated upon this work by employing a vector- 

quantized VAE and performing diffusion in the learned 

latent space. Jones et al. (50) developed an autoregressive 

diffusion model, called DiAMoNDBAck, that showed 

strong structural performance and conformational diversity 

when trained on the PED (174) and PDB (176) and demon

strated further improvements upon fine-tuning on molecular 

dynamics trajectories. Furthermore, DiAMoNDBAck out

performed previous generative models in reproducing 

conformational diversity present in experimental structures. 

Liu et al. (177) introduced a diffusion-based scheme with 

manifold constraints (i.e., guiding generation based on 

structural criteria) to enable transferability of a single back

mapping model to various CG maps. Heo et al. (178) and 

Angioletti et al. (179) leveraged equivariant architectures 

to improve flexibility toward varied CG representations; 

however, these methods are deterministic and therefore 

cannot produce conformational diversity or sample multiple 

atomistic structures consistent with one CG configuration. 

Chennakesavalu et al. (180) used a transformer to map 

AA configurations from molecular simulations of amino 

acid tetramers onto Cα backbones to better recapitulate sta

tistically meaningful diversity. Recently, Jones et al. (181) 

introduced the FlowBack model, which uses a physically 

informed prior and flow-matching objective (182, 183) to 

efficiently generate accurate AA samples for CG conforma

tions. A version of this model was trained to predict to 

backmap DNA-protein complexes as well, and the flow- 

matching concept is generalizable to any biomolecular sys

tem and CG mapping.

CHALLENGES AND FUTURE PERSPECTIVES

As foundational physically inspired MLPs expand their 

applicability to multiple (bio)molecular spaces, their design 

must be carefully optimized to ensure effective extrapola

tion to unknown conformations, which often arise in simu

lations of biological processes. The integration of active, 

transfer, and meta-learning algorithms into the training of 

these MLPs is an active area of research (184–189), offering 

a powerful means to efficiently explore vast conformational 

spaces and thereby facilitate compliance with the EAST re

quirements. The reduction of model parameters, resulting 

from improved training sample generation, along with effi

cient large-scale ML algorithms, such as those implemented 

in the JAX library (190), will improve inference time and 

enable QM-based biomolecular simulations on nano- to 

microsecond timescales. Another crucial factor in devel

oping robust MLPs is incorporating physical models to 
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accurately capture long-range interactions during their con

struction. Recent efforts have shown that explicitly incorpo

rating physically inspired functional forms to treat these 

interactions in ML potential development can overcome 

the limitations of the locality assumption, a key feature 

for scalability and transferability, without increasing the 

complexity of molecular representations. Despite these ad

vancements, a more in-depth understanding of how the 

choice of physical models affects the performance of 

MLPs remains lacking, particularly in complex simulations 

such as ligand binding in proteins or allosteric response. 

Alternative approaches, such as ML-augmented semiempir

ical models and hybrid MM/ML methods, also face chal

lenges that require further investigation. Among these 

challenges are ensuring robust extrapolation to unrepre

sented electronic environments (e.g., charged systems, 

excited states) and optimizing their integration with exist

ing computational frameworks (e.g., DFTB, FHI-aims, 

GROMACS, CP2K).

CG potentials have demonstrated their versatility in 

modeling large-scale biomolecular systems and capturing 

long-time dynamics approaching biological timescales. 

Many CG approaches, including those discussed in this 

work, impose restraints to maintain secondary and tertiary 

structures, which can limit their capacity to represent disor

dered or highly flexible conformational states. Capturing 

protein flexibility more accurately requires refined back

bone representations. For example, SIRAH uses a three- 

bead backbone, which improves its capacity to model 

certain flexible structures, but not their interconversion. 

Such transitions between transient metastable states may 

be explored by combining the recently developed Martini 

3-IDP model (191), optimized using atomistic simulations 

of various IDPs, with the G�oMartini 3 approach. In contrast, 

SPICA uses a more simplified representation, which can 

limit its applicability to processes involving transitions be

tween metastable states or dynamic folding pathways. The 

CABS model, in contrast, does not rely on parameters 

derived from native structures, which makes it particularly 

well suited for studying single IDP behavior. However, 

since it is based on statistical potentials extracted from the 

PDB, its applicability beyond proteins is limited. Similarly, 

knowledge-based CG potentials such as UNRES and 

AWSEM are also suitable for modeling IDPs, as they do 

not depend on a predefined native structure. Nonetheless, 

their use remains largely restricted to proteins due to the 

complexity involved in their potential parametrization. Ef

forts to improve CG models using ML approaches are 

actively being explored through approaches such as CGnets 

(46, 47) and Boltzmann Generators (49). Alternatively, CG 

models can be refined by integrating cryo-EM ensemble 

reweighting methods (192), which estimate probability 

distributions directly from cryo-EM density maps. Such dis

tributions can then be used to optimize CG potentials by 

improving the agreement between simulated ensembles 

and experimental data. Moreover, the enhanced accuracy, 

flexibility, and efficiency of the discussed ONIOM approach 

(32) can support modern structural determination methods 

for biomacromolecules (e.g., Cryo-EM, MicroED), which 

can subsequently be used to fine-tune CG models.

Although tremendous progress has been made in genera

tive and transferable backmapping in recent years, future 

work will enable extensibility or fine-tuning to arbitrary 

CG maps, chemical systems, and thermodynamic state 

points; incorporate physical priors to provide informative 

inductive biases; enforce the Boltzmann distribution in the 

generated conformational ensemble; and improve inference 

efficiencies to enable applications to ultralarge molecular 

systems and on-the-fly backmapping of biomolecular simu

lations. In the upcoming years, we expect the emergence of 

several ML methodologies that will integrate quantum- 

resolved structural and energetic property data with low-res

olution CG methods through ML-assisted backmapping, 

bridging time and length scales in biomolecular simulations.

ACKNOWLEDGMENTS

A.B.P. acknowledges financial support from the National Science Center, 

Poland, under grant 2022/45/B/NZ1/02519 and gratefully acknowledges 

Polish high-performance computing infrastructure PLGrid (HPC Centers: 

ACK Cyfronet AGH) for providing computer facilities and support within 

computational grant no. PLG/2023/016519 and no. PLG/2024/017332. 

This material is based on work supported by the National Science Founda

tion under grant no. CHE-2152521 (A.L.F.). A.B.P. and L.M.S. thank 

CECAM for financially supporting the organization of the workshop 

‘‘Leveraging Machine Learning for Sampling Rare Events in Biomolecular 

Systems,’’ where the discussions leading to this work began. A.H.C. and 

L.M.S. are also grateful to the Research Experience for Peruvian Under

graduates (REPU) program for its organizational support.

AUTHOR CONTRIBUTIONS

All authors contributed equally to the conceptualization, writing, and re

view of the manuscript.

DECLARATION OF INTERESTS

A.L.F. is a cofounder and consultant of Evozyne, Inc., and a coauthor of US 

Patent Applications 16/887,710 and 17/642,582, US Provisional Patent Ap

plications 62/853,919, 62/900,420, 63/314,898, 63/479,378, 63/521,617, 

and 63/669,836, and International Patent Applications PCT/US2020/ 

035206, PCT/US2020/050466, and PCT/US24/10805.

REFERENCES

1. Schlick, T., and S. Portillo-Ledesma. 2021. Biomolecular modeling 

thrives in the age of technology. Nat. Comput. Sci. 1:321–331.

2. Bonomi, M., and C. Camilloni. 2019. Biomolecular Simulations: 
Methods and Protocols. Humana, New York, NY.

3. Perilla, J. R., and K. Schulten. 2017. Physical properties of the HIV-1 
capsid from all-atom molecular dynamics simulations. Nat. Commun. 
8:15959.

4. Sztain, T., S.-H. Ahn, …, R. E. Amaro. 2021. A glycan gate controls 
opening of the SARS-CoV-2 spike protein. Nat. Chem. 13:963–968.

Poma et al. 

Please cite this article in press as: Poma et al., Recent advances in machine learning and coarse-grained potentials for biomolecular simulations, Biophysical 

Journal (2025), https://doi.org/10.1016/j.bpj.2025.06.019

12 Biophysical Journal 124, 1–17, December 2, 2025

http://refhub.elsevier.com/S0006-3495(25)00379-0/sref1
http://refhub.elsevier.com/S0006-3495(25)00379-0/sref1
http://refhub.elsevier.com/S0006-3495(25)00379-0/sref2
http://refhub.elsevier.com/S0006-3495(25)00379-0/sref2
http://refhub.elsevier.com/S0006-3495(25)00379-0/sref3
http://refhub.elsevier.com/S0006-3495(25)00379-0/sref3
http://refhub.elsevier.com/S0006-3495(25)00379-0/sref3
http://refhub.elsevier.com/S0006-3495(25)00379-0/sref4
http://refhub.elsevier.com/S0006-3495(25)00379-0/sref4


5. Yu, A., A. J. Pak, …, G. A. Voth. 2021. A multiscale coarse-grained 
model of the SARS-CoV-2 virion. Biophys. J. 120:1097–1104.

6. Kuzmanic, A., G. R. Bowman, …, F. L. Gervasio. 2020. Investigating 
cryptic binding sites by molecular dynamics simulations. Acc. Chem. 

Res. 53:654–661.

7. Milles, L. F., K. Schulten, …, R. C. Bernardi. 2018. Molecular mech
anism of extreme mechanostability in a pathogen adhesin. Science. 
359:1527–1533.

8. Cole, D. J., and N. D. M. Hine. 2016. Applications of large-scale den
sity functional theory in biology. J. Phys. Condens. Matter. 

28:393001.

9. Gavini, V., S. Baroni, …, D. Perez. 2023. Roadmap on electronic 
structure codes in the exascale era. Model. Simul. Mat. Sci. Eng. 
31:063301.

10. Unke, O. T., S. Chmiela, …, K.-R. Müller. 2021. Machine Learning 
Force Fields. Chem. Rev. 121:10142–10186.

11. Huang, B., G. F. von Rudorff, and O. A. von Lilienfeld. 2023. The 
central role of density functional theory in the AI age. Science. 
381:170–175.

12. Unke, O. T., S. Chmiela, …, K.-R. Müller. 2021. SpookyNet: 
Learning force fields with electronic degrees of freedom and nonlocal 
effects. Nat. Commun. 12:7273.

13. Unke, O. T., M. Stöhr, …, K.-R. Müller. 2024. Biomolecular dy

namics with machine-learned quantum-mechanical force fields 
trained on diverse chemical fragments. Sci. Adv. 10:eadn4397.

14. Musaelian, A., S. Batzner, …, B. Kozinsky. 2023. Learning local 
equivariant representations for large-scale atomistic dynamics. Nat. 
Commun. 14:579.

15. Musaelian, A., S. Batzner, …, B. Kozinsky. 2023. Scaling the Leading 

Accuracy of Deep Equivariant Models to Biomolecular Simulations 
of Realistic Size. In SC23: International Conference for High Perfor
mance Computing, Networking, Storage and Analysis, pp. 1–12.
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115. Wołek, K., À. Gómez-Sicilia, and M. Cieplak. 2015. Determination of 
contact maps in proteins: A combination of structural and chemical 
approaches. J. Chem. Phys. 143:243105.

116. Chwastyk, M., A. P. Bernaola, and M. Cieplak. 2015. Statistical radii 

associated with amino acids to determine the contact map: fixing the 
structure of a type I cohesin domain in the Clostridium thermocellum 
cellulosome. Phys. Biol. 12:046002.

117. Fontana, F., and F. Gelain. 2020. Probing mechanical properties and 
failure mechanisms of fibrils of self-assembling peptides. Nanoscale 
Adv. 2:190–198.

118. Souza, P. C., L. P. Borges Araujo, …, S. Thallmair. 2025. G�oMartini 
3: From large conformational changes in proteins to environmental 
bias corrections. Nat. Commun. 16:4051.

119. Souza, P. C. T., R. Alessandri, …, S. J. Marrink. 2021. Martini 3: a 
general purpose force field for coarse-grained molecular dynamics. 
Nat. Methods. 18:382–388.

120. Souza, P. C. T., S. Thallmair, …, R. Mera-Adasme. 2019. An allo

steric pathway in copper, zinc superoxide dismutase unravels the mo
lecular mechanism of the G93A amyotrophic lateral sclerosis-linked 
mutation. J. Phys. Chem. Lett. 10:7740–7744.

121. Liu, Z., R. A. Moreira, …, M. A. Nash. 2021. Mapping mechanostable 
pulling geometries of a therapeutic anticalin/CTLA-4 protein com
plex. Nano Lett. 22:179–187.

122. Gomes, P. S. F. C., M. Forrester, …, R. C. Bernardi. 2023. May the 
force be with you: The role of hyper-mechanostability of the bone sia
loprotein binding protein during early stages of Staphylococci infec
tions. Front. Chem. 11:1107427.

123. Kuriata, A., A. M. Gierut, …, S. Kmiecik. 2018. CABS-flex 2.0: a 
web server for fast simulations of flexibility of protein structures. Nu
cleic Acids Res. 46:W338–W343.

124. Kurcinski, M., M. Jamroz, …, S. Kmiecik. 2015. CABS-dock web 
server for the flexible docking of peptides to proteins without prior 
knowledge of the binding site. Nucleic Acids Res. 43:W419–W424.

125. Puławski, W., A. Koli�nski, and M. Koli�nski. 2023. Integrative 
modeling of diverse protein-peptide systems using CABS-dock. 
PLoS Comput. Biol. 19:e1011275.

126. Liwo, A., S. Ołdziej, …, H. A. Scheraga. 2010. Implementation of 
molecular dynamics and its extensions with the coarse-grained 
UNRES force field on massively parallel systems: Toward milli
second-scale simulations of protein structure, dynamics, and thermo
dynamics. J. Chem. Theory Comput. 6:890–909.

127. Lubecka, E. A., A. K. Sieradzan, …, A. Liwo. 2018. High perfor

mance computing with coarse grained model of biological macromol
ecules. Supercomput. Front. Innov. 5:63–75.

128. Ocetkiewicz, K. M., C. Czaplewski, …, P. Czarnul. 2023. UNRES- 
GPU for physics-based coarse-grained simulations of protein systems 
at biological time-and size-scales. Bioinformatics. 39:btad391.

129. Co, N. T., C. Czaplewski, …, A. Liwo. 2025. Implementation of time- 

averaged restraints with UNRES coarse-grained model of polypeptide 
chains. J. Chem. Theory Comput. 21:1476–1493.

130. �Slusarz, R., A. K. Sieradzan, …, C. Czaplewski. 2025. UNRES web 
server: Extensions to nucleic acids, prediction of peptide aggregation, 
and new types of restrained calculations. J. Mol. Biol. 437:168968.

Advances in ML and CG potentials 

Please cite this article in press as: Poma et al., Recent advances in machine learning and coarse-grained potentials for biomolecular simulations, Biophysical 

Journal (2025), https://doi.org/10.1016/j.bpj.2025.06.019

Biophysical Journal 124, 1–17, December 2, 2025 15

http://refhub.elsevier.com/S0006-3495(25)00379-0/sref90
http://refhub.elsevier.com/S0006-3495(25)00379-0/sref90
http://refhub.elsevier.com/S0006-3495(25)00379-0/sref91
http://refhub.elsevier.com/S0006-3495(25)00379-0/sref91
http://refhub.elsevier.com/S0006-3495(25)00379-0/sref92
http://refhub.elsevier.com/S0006-3495(25)00379-0/sref92
http://refhub.elsevier.com/S0006-3495(25)00379-0/sref92
http://refhub.elsevier.com/S0006-3495(25)00379-0/sref92
http://refhub.elsevier.com/S0006-3495(25)00379-0/sref93
http://refhub.elsevier.com/S0006-3495(25)00379-0/sref93
http://refhub.elsevier.com/S0006-3495(25)00379-0/sref93
http://refhub.elsevier.com/S0006-3495(25)00379-0/sref94
http://refhub.elsevier.com/S0006-3495(25)00379-0/sref94
http://refhub.elsevier.com/S0006-3495(25)00379-0/sref94
http://refhub.elsevier.com/S0006-3495(25)00379-0/sref95
http://refhub.elsevier.com/S0006-3495(25)00379-0/sref95
http://refhub.elsevier.com/S0006-3495(25)00379-0/sref95
http://refhub.elsevier.com/S0006-3495(25)00379-0/sref105
http://refhub.elsevier.com/S0006-3495(25)00379-0/sref105
http://refhub.elsevier.com/S0006-3495(25)00379-0/sref105
http://refhub.elsevier.com/S0006-3495(25)00379-0/sref106
http://refhub.elsevier.com/S0006-3495(25)00379-0/sref106
http://refhub.elsevier.com/S0006-3495(25)00379-0/sref107
http://refhub.elsevier.com/S0006-3495(25)00379-0/sref107
http://refhub.elsevier.com/S0006-3495(25)00379-0/sref107
http://refhub.elsevier.com/S0006-3495(25)00379-0/sref107
http://refhub.elsevier.com/S0006-3495(25)00379-0/sref108
http://refhub.elsevier.com/S0006-3495(25)00379-0/sref108
http://refhub.elsevier.com/S0006-3495(25)00379-0/sref108
http://refhub.elsevier.com/S0006-3495(25)00379-0/sref109
http://refhub.elsevier.com/S0006-3495(25)00379-0/sref109
http://refhub.elsevier.com/S0006-3495(25)00379-0/sref109
http://refhub.elsevier.com/S0006-3495(25)00379-0/sref109
http://refhub.elsevier.com/S0006-3495(25)00379-0/sref96
http://refhub.elsevier.com/S0006-3495(25)00379-0/sref96
http://refhub.elsevier.com/S0006-3495(25)00379-0/sref96
http://refhub.elsevier.com/S0006-3495(25)00379-0/sref97
http://refhub.elsevier.com/S0006-3495(25)00379-0/sref97
http://refhub.elsevier.com/S0006-3495(25)00379-0/sref97
http://refhub.elsevier.com/S0006-3495(25)00379-0/sref97
http://refhub.elsevier.com/S0006-3495(25)00379-0/sref98
http://refhub.elsevier.com/S0006-3495(25)00379-0/sref98
http://refhub.elsevier.com/S0006-3495(25)00379-0/sref98
http://refhub.elsevier.com/S0006-3495(25)00379-0/sref99
http://refhub.elsevier.com/S0006-3495(25)00379-0/sref99
http://refhub.elsevier.com/S0006-3495(25)00379-0/sref99
http://refhub.elsevier.com/S0006-3495(25)00379-0/sref100
http://refhub.elsevier.com/S0006-3495(25)00379-0/sref100
http://refhub.elsevier.com/S0006-3495(25)00379-0/sref100
http://refhub.elsevier.com/S0006-3495(25)00379-0/sref101
http://refhub.elsevier.com/S0006-3495(25)00379-0/sref101
http://refhub.elsevier.com/S0006-3495(25)00379-0/sref101
http://refhub.elsevier.com/S0006-3495(25)00379-0/sref102
http://refhub.elsevier.com/S0006-3495(25)00379-0/sref102
http://refhub.elsevier.com/S0006-3495(25)00379-0/sref102
http://refhub.elsevier.com/S0006-3495(25)00379-0/sref103
http://refhub.elsevier.com/S0006-3495(25)00379-0/sref103
http://refhub.elsevier.com/S0006-3495(25)00379-0/sref103
http://refhub.elsevier.com/S0006-3495(25)00379-0/sref103
http://refhub.elsevier.com/S0006-3495(25)00379-0/sref104
http://refhub.elsevier.com/S0006-3495(25)00379-0/sref104
http://refhub.elsevier.com/S0006-3495(25)00379-0/sref104
http://refhub.elsevier.com/S0006-3495(25)00379-0/sref104
http://refhub.elsevier.com/S0006-3495(25)00379-0/sref110
http://refhub.elsevier.com/S0006-3495(25)00379-0/sref110
http://refhub.elsevier.com/S0006-3495(25)00379-0/sref110
http://refhub.elsevier.com/S0006-3495(25)00379-0/sref111
http://refhub.elsevier.com/S0006-3495(25)00379-0/sref111
http://refhub.elsevier.com/S0006-3495(25)00379-0/sref111
http://refhub.elsevier.com/S0006-3495(25)00379-0/sref112
http://refhub.elsevier.com/S0006-3495(25)00379-0/sref112
http://refhub.elsevier.com/S0006-3495(25)00379-0/sref112
http://refhub.elsevier.com/S0006-3495(25)00379-0/sref113
http://refhub.elsevier.com/S0006-3495(25)00379-0/sref113
http://refhub.elsevier.com/S0006-3495(25)00379-0/sref114
http://refhub.elsevier.com/S0006-3495(25)00379-0/sref114
http://refhub.elsevier.com/S0006-3495(25)00379-0/sref114
http://refhub.elsevier.com/S0006-3495(25)00379-0/sref114
http://refhub.elsevier.com/S0006-3495(25)00379-0/sref115
http://refhub.elsevier.com/S0006-3495(25)00379-0/sref115
http://refhub.elsevier.com/S0006-3495(25)00379-0/sref115
http://refhub.elsevier.com/S0006-3495(25)00379-0/sref116
http://refhub.elsevier.com/S0006-3495(25)00379-0/sref116
http://refhub.elsevier.com/S0006-3495(25)00379-0/sref116
http://refhub.elsevier.com/S0006-3495(25)00379-0/sref116
http://refhub.elsevier.com/S0006-3495(25)00379-0/sref117
http://refhub.elsevier.com/S0006-3495(25)00379-0/sref117
http://refhub.elsevier.com/S0006-3495(25)00379-0/sref117
http://refhub.elsevier.com/S0006-3495(25)00379-0/sref118
http://refhub.elsevier.com/S0006-3495(25)00379-0/sref118
http://refhub.elsevier.com/S0006-3495(25)00379-0/sref118
http://refhub.elsevier.com/S0006-3495(25)00379-0/sref119
http://refhub.elsevier.com/S0006-3495(25)00379-0/sref119
http://refhub.elsevier.com/S0006-3495(25)00379-0/sref119
http://refhub.elsevier.com/S0006-3495(25)00379-0/sref120
http://refhub.elsevier.com/S0006-3495(25)00379-0/sref120
http://refhub.elsevier.com/S0006-3495(25)00379-0/sref120
http://refhub.elsevier.com/S0006-3495(25)00379-0/sref120
http://refhub.elsevier.com/S0006-3495(25)00379-0/sref121
http://refhub.elsevier.com/S0006-3495(25)00379-0/sref121
http://refhub.elsevier.com/S0006-3495(25)00379-0/sref121
http://refhub.elsevier.com/S0006-3495(25)00379-0/sref122
http://refhub.elsevier.com/S0006-3495(25)00379-0/sref122
http://refhub.elsevier.com/S0006-3495(25)00379-0/sref122
http://refhub.elsevier.com/S0006-3495(25)00379-0/sref122
http://refhub.elsevier.com/S0006-3495(25)00379-0/sref123
http://refhub.elsevier.com/S0006-3495(25)00379-0/sref123
http://refhub.elsevier.com/S0006-3495(25)00379-0/sref123
http://refhub.elsevier.com/S0006-3495(25)00379-0/sref124
http://refhub.elsevier.com/S0006-3495(25)00379-0/sref124
http://refhub.elsevier.com/S0006-3495(25)00379-0/sref124
http://refhub.elsevier.com/S0006-3495(25)00379-0/sref125
http://refhub.elsevier.com/S0006-3495(25)00379-0/sref125
http://refhub.elsevier.com/S0006-3495(25)00379-0/sref125
http://refhub.elsevier.com/S0006-3495(25)00379-0/sref126
http://refhub.elsevier.com/S0006-3495(25)00379-0/sref126
http://refhub.elsevier.com/S0006-3495(25)00379-0/sref126
http://refhub.elsevier.com/S0006-3495(25)00379-0/sref126
http://refhub.elsevier.com/S0006-3495(25)00379-0/sref126
http://refhub.elsevier.com/S0006-3495(25)00379-0/sref127
http://refhub.elsevier.com/S0006-3495(25)00379-0/sref127
http://refhub.elsevier.com/S0006-3495(25)00379-0/sref127
http://refhub.elsevier.com/S0006-3495(25)00379-0/sref128
http://refhub.elsevier.com/S0006-3495(25)00379-0/sref128
http://refhub.elsevier.com/S0006-3495(25)00379-0/sref128
http://refhub.elsevier.com/S0006-3495(25)00379-0/sref129
http://refhub.elsevier.com/S0006-3495(25)00379-0/sref129
http://refhub.elsevier.com/S0006-3495(25)00379-0/sref129
http://refhub.elsevier.com/S0006-3495(25)00379-0/sref130
http://refhub.elsevier.com/S0006-3495(25)00379-0/sref130
http://refhub.elsevier.com/S0006-3495(25)00379-0/sref130


131. Kim, B. L., N. P. Schafer, and P. G. Wolynes. 2014. Predictive energy 
landscapes for folding α-helical transmembrane proteins. Proc. Natl. 
Acad. Sci. USA. 111:11031–11036.

132. Jin, S., C. Bueno, …, Y. Gao. 2022. Computationally exploring the 
mechanism of bacteriophage T7 gp4 helicase translocating along 
ssDNA. Proc. Natl. Acad. Sci. USA. 119:e2202239119.

133. Wu, C., Y. Duan, …, Q. Dai. 2024. In-situ observation of silk nanofi
bril assembly via graphene plasmonic infrared sensor. Nat. Commun. 
15:4643.

134. Lu, W., C. Bueno, …, P. G. Wolynes. 2021. OpenAWSEM with 

Open3SPN2: A fast, flexible, and accessible framework for large- 
scale coarse-grained biomolecular simulations. PLoS Comput. Biol. 
17:e1008308.

135. Noid, W. G., J.-W. Chu, …, H. C. Andersen. 2008. The multiscale 

coarse-graining method. I. A rigorous bridge between atomistic and 
coarse-grained models. J. Chem. Phys. 128:244114.

136. Peter, C., and K. Kremer. 2009. Multiscale simulation of soft matter 
systems–from the atomistic to the coarse-grained level and back. 
Soft Matter. 5:4357–4366.

137. Sun, T., A. Mirzoev, …, L. Nordenskiöld. 2019. A multiscale analysis 
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