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Simple Summary

Thyroid cancer includes several types that differ in how they grow and how they should be
treated. Although ultrasound is widely used to examine thyroid nodules, it can be difficult
to determine which type of cancer is present using standard imaging alone. In this study,
we applied a computer-based method to automatically measure and analyze ultrasound
features of thyroid tumors. By using machine learning techniques, we distinguished
between three common types of thyroid cancer: papillary, follicular, and medullary. We
found that certain features, such as tumor shape, brightness, and internal structure, were
helpful in identifying the cancer subtype. This approach could support doctors in making
more accurate diagnoses, reduce unnecessary procedures such as biopsies, and guide more
personalized treatment decisions.

Abstract

Background/Objectives: Thyroid cancer encompasses distinct histological subtypes with
varying biological behavior and treatment implications. Accurate preoperative subtype
differentiation remains challenging. Although ultrasound (US) is widely used for thyroid
nodule evaluation, qualitative assessment alone is often insufficient to distinguish between
papillary (PTC), follicular (FTC), and medullary thyroid carcinoma (MTC). Methods:
A retrospective analysis was performed on patients with histologically confirmed PTC,
FTC, or MTC. A total of 224 standardized B-mode ultrasound images were analyzed. A
set of fully quantitative features was extracted, including morphological characteristics
(aspect ratio and perimeter-to-area ratio), internal echotexture (echogenicity and local
entropy), boundary sharpness (gradient measures and KL divergence), and structural
components (calcifications and cystic areas). Feature extraction was conducted using
semi-automatic algorithms implemented in MATLAB. Statistical differences were assessed
using the Kruskal–Wallis and Dunn–Šidák tests. A Random Forest classifier was trained
and evaluated to determine the discriminatory performance of individual and combined
features. Results: Significant differences (p < 0.05) were found among subtypes for key
features such as perimeter-to-area ratio, normalized echogenicity, and calcification pattern.
The full-feature Random Forest model achieved an overall classification accuracy of 89.3%,
with F1-scores of 93.4% for PTC, 85.7% for MTC, and 69.1% for FTC. A reduced model using
the top 10 features yielded an even higher accuracy of 91.8%, confirming the robustness
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and clinical relevance of the selected parameters. Conclusions: Subtype classification
of thyroid cancer was effectively performed using quantitative ultrasound features and
machine learning. The results suggest that biologically interpretable image-derived metrics
may assist in preoperative decision-making and potentially reduce the reliance on invasive
diagnostic procedures.

Keywords: thyroid cancer; ultrasound imaging; quantitative analysis; machine learning;
papillary thyroid carcinoma; follicular thyroid carcinoma; medullary thyroid carcinoma

1. Introduction
Thyroid cancer (TC) is the most common malignancy of the endocrine system, and its

global incidence has steadily increased in recent decades. According to GLOBOCAN 2020
data, more than 586,000 new TC cases are diagnosed each year, with a strong predominance
in women [1]. In Poland alone, over 4000 cases were reported in 2021, confirming the
significance of this disease at the population level [2]. Although this trend is partly due
to improved access to high-resolution ultrasound (US) and widespread screening, a true
increase in incidence is also suspected [3,4].

Thyroid malignancies encompass diverse histopathological subtypes with distinct
biological behavior, prognoses, and treatment strategies. Papillary thyroid carcinoma
(PTC) is the most common subtype (80–85%) and is generally associated with excellent
prognosis and indolent progression [4–6]. Follicular thyroid carcinoma (FTC), comprising
10–15% of cases, may follow a more aggressive course, especially in the presence of vascular
invasion or distant metastases [4–6]. Medullary thyroid carcinoma (MTC), arising from
parafollicular C cells, accounts for 1–2% of thyroid cancers and often presents as part of
inherited syndromes such as MEN 2A and 2B. Due to its neuroendocrine origin, MTC
requires additional biochemical testing (e.g., serum calcitonin), genetic screening, and a
different surgical approach [6–8].

Accurate preoperative differentiation between these subtypes—particularly between
PTC, FTC, and MTC—is essential for treatment planning. Ultrasound remains the primary
diagnostic tool for evaluating thyroid nodules, as it is safe, widely accessible, and highly
sensitive for solid lesions. Multiparametric ultrasound further enables detailed assessment
of lesion morphology, facilitates initial risk stratification, and supports biopsy qualification.
Various risk stratification systems, including ACR TI-RADS, EU-TIRADS, and EU-TIRADS-
PL, have been developed to standardize nodule descriptions and reduce unnecessary fine-
needle aspiration biopsies (FNABs) [9–11]. However, these systems only assess malignancy
risk without providing insight into the histopathological subtype.

The ability to distinguish PTC, FTC, and MTC based on sonographic features may
provide critical support in clinical decision-making [12–14]. Although several studies
have described typical ultrasound features of individual subtypes, comprehensive com-
parative analyses directly contrasting PTC, FTC, and MTC remain scarce [15–23]. Table 1
summarizes the most frequently reported ultrasound features for these three main sub-
types, highlighting differences in echogenicity, margins, calcifications, vascularity, and
stiffness [12–23].

Medullary thyroid carcinoma (MTC) can often mimic benign lesions on ultrasound. It
typically presents as a larger, solid, hypoechoic nodule with smooth margins, rich internal
vascularity, and coarse (macro-) calcifications. Compared to papillary thyroid carcinoma
(PTC), MTC less frequently displays irregular margins or microcalcifications and is more
likely to exhibit increased intranodular blood flow. The ultrasound appearance of MTC can
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be difficult to distinguish from that of benign nodules, particularly when smooth margins
are present [13,24,25].

Table 1. Most commonly reported ultrasound features of the three main thyroid cancer subtypes.

Ultrasound Feature Papillary Thyroid Carcinoma
(PTC)

Follicular Thyroid Carcinoma
(FTC)

Medullary Thyroid Carcinoma
(MTC)

Echogenicity Hypoechoic, sometimes
heterogeneous [19–22] Iso- or hypoechoic [18,20–22] Hypoechoic [13,19,23]

Margins Irregular, ill-defined [19–22] Regular or irregular if
invasive [18,20–22]

Smooth, well-defined
(sometimes ill-defined) [13,19,23]

Calcifications Microcalcifications (psammoma
bodies) [19–21]

Micro- and macrocalcifications,
often peripheral
(“eggshell”) [18,20,21]

Micro- and macrocalcifications
(amyloid deposits,
shadowing) [13,19,23]

Internal structure Solid, possibly
heterogeneous [19–22] Solid, heterogeneous [18,20,21] Solid, possibly

homogeneous [13,19]
Shape
(aspect ratio)

“Taller-than-wide”
(common) [18–21] Oval or irregular [18,20,21] Variable, round or oval [13,19]

Vascularity (Doppler) Often increased, chaotic internal
pattern [18,19] Moderate, mixed pattern [17,18] Increased, central and

peripheral [13,17,19]
Elastography High stiffness [19] Variable, often intermediate [18] High stiffness [18,23]

Presence of capsule Absent or interrupted
capsule [18,21]

Often infiltrated, extracapsular
extension [18,21] Absent [18]

Cystic component Rare, usually <10% of
volume [18,19] Rare [18] Often present, especially in

larger lesions [13]
Lymph node metastases Common at diagnosis [18,19] Less common [13,19] Common [13,19]

In contrast, PTC is more commonly associated with features suggestive of malignancy,
such as irregular margins, microcalcifications, hypoechogenicity, and a “taller-than-wide”
shape. Classic PTC typically demonstrates more ultrasound features of malignancy com-
pared to the follicular variant (FVPTC), which more frequently shows smooth margins and
fewer microcalcifications. Consequently, FVPTC may be more challenging to identify based
solely on ultrasound appearance, as it often lacks the typical high-risk features [22,26,27].

Despite advances in ultrasound imaging techniques, differentiating thyroid cancer sub-
types based solely on B-mode imaging remains a diagnostic challenge due to considerable
overlap in sonographic features. In recent years, there has been growing interest in the ap-
plication of quantitative image analysis and machine learning algorithms in the evaluation
of thyroid nodules [28,29]. However, the majority of existing studies have focused on binary
classification (benign vs. malignant), without accounting for histological differentiation.

The aim of this study was to evaluate whether automatically extracted multiparametric
ultrasound features can be used to distinguish between the three major histological subtypes
of thyroid cancer: papillary (PTC), follicular (FTC), and medullary (MTC). The objective was
to assess the diagnostic value of quantitative imaging parameters in supporting accurate
subtype classification and informing personalized therapeutic strategies.

The novelty of our work lies in moving beyond the binary paradigm of thyroid nodule
assessment. While most prior ultrasound studies have focused on distinguishing benign
from malignant lesions, direct quantitative comparisons among papillary, follicular, and
medullary carcinomas remain scarce. In contrast to qualitative TI-RADS descriptors, which
are subjective and prone to interobserver variability, we employed fully quantitative and
standardized imaging features that are clinically meaningful. Our approach integrates
multiple domains of information—morphological shape metrics, echogenicity, margin
sharpness, calcification distribution, and textural parameters—into a unified classification
model. Compared with previous ultrasound-based studies relying mainly on qualitative de-
scriptors or handcrafted single-domain features [15–23], our method leverages a systematic,
multiparametric, and automated analysis pipeline. Furthermore, unlike CT or MRI, which
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provide complementary but less accessible diagnostic information, B-mode ultrasound is
widely available, cost-effective, and safe. By enhancing its diagnostic capability through
quantitative analysis, our method aims to provide a practical and transparent tool for
improving preoperative subtype differentiation.

2. Materials and Methods
2.1. Study Design and Patient Cohort

The study included patients who underwent surgery between 2021 and 2022 at the
Department of Oncological Endocrinology and Nuclear Medicine, Maria Sklodowska-
Curie National Research Institute of Oncology in Warsaw. The initial dataset comprised
214 thyroid nodules that were evaluated by ultrasound and subjected to ultrasound-guided
fine-needle aspiration biopsy (FNAB). This cohort included benign lesions, borderline
tumors, and nodules with malignant potential. For the purpose of this study, only cases
with postoperative histopathological confirmation of one of the three main malignant
subtypes—papillary thyroid carcinoma (PTC, n = 90), follicular thyroid carcinoma (FTC,
n = 14), or medullary thyroid carcinoma (MTC, n = 18)—were included, while benign
nodules, borderline tumors, and anaplastic thyroid carcinomas were excluded. In patients
with multiple nodules, the dominant lesion—defined as the largest or most suspicious on
ultrasound—was selected for analysis. The final study group consisted of 122 patients
(104 women and 18 men).

Clinical information was collected for all cases. The mean age of the patients was
48.3 years (range: 22–85). Lesions were located in the right lobe in 62 cases, the left lobe
in 53 cases, and the isthmus in 7 cases. Nodule size was measured in three orthogonal
dimensions (anteroposterior, transverse, and longitudinal), with the maximum diameter
used for descriptive statistics (mean: 19.1 mm, range: 4–92 mm). According to the EU-
TIRADS classification, 9 nodules were categorized as EU-TIRADS 3, 16 as EU-TIRADS 4,
and 97 as EU-TIRADS 5. Cytological findings were classified according to the Bethesda
System: 4 nodules were category II, 4 were category III (AUS/FLUS), 19 were category IV,
57 were category V, and 38 were category VI.

Pathological staging was determined based on the AJCC/UICC TNM classification.
The majority of lesions were staged as pT1aN0 (n = 47) and pT1bN0 (n = 21), with smaller
groups corresponding to pT1aNx (n = 4), pT1aN1a (n = 2), pT1aN1b (n = 1), pT1bNx (n = 7),
pT1bN1a (n = 2), and pT1bN1b (n = 6). For T2 tumors, staging included pT2Nx (n = 5),
pT2N0 (n = 14), pT2N1a (n = 1), and pT2N1b (n = 1). Less frequent were T3 lesions: pT3aNx
(n = 1), pT3aN0 (n = 5), and pT3aN1b (n = 4). Only one case was classified as pT4aN1b,
while no tumors were staged as pT3b or pT4b.

Surgical treatment included either total thyroidectomy or lobectomy with isthmectomy,
and in many cases it was complemented by central neck compartment lymphadenectomy.
The extent of surgery was determined individually by the surgical oncologist, based on
clinical presentation, ultrasound findings, and cytological evaluation.

Ultrasound images were anonymized, and analyses were conducted retrospectively
using archived data. The structure of the study cohort reflected the known epidemiological
predominance of PTC over other thyroid cancer subtypes [30–33].

The study was approved by the Bioethics Committee of the Maria Sklodowska-Curie
National Research Institute of Oncology in Warsaw (approval number 83/2021). Written
informed consent was obtained from all participants prior to inclusion in the study.

2.2. Image Acquisition and Preprocessing

B-mode ultrasound images of focal thyroid lesions were acquired from 122 patients
with histopathologically confirmed malignant tumors. For each case, two orthogonal
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images—transverse and longitudinal—were obtained, resulting in a total of 244 images for
further analysis.

All examinations were performed using a Philips Epiq 5 ultrasound system equipped
with a high-frequency linear transducer (eL18-4, 4–18 MHz). Images were acquired in B-
mode at a central frequency of approximately 12–18 MHz, with depth settings ranging from
3.0 to 4.2 cm to fully visualize the thyroid gland and the focal lesion. The dynamic range
was set to 68 dB, and overall gain was adjusted individually for each patient within the
range of 40–55% to optimize image contrast. A single focal zone was positioned at the center
of the lesion and, in some cases, at the lower margin of the lesion to optimize boundary
visualization. Both transverse and longitudinal planes were acquired for each nodule.

Subsequent image processing was performed in the MATLAB environment (Math-
Works, Natick, MA, USA). Binary masks of each lesion were generated, initially created
manually by physicians and then refined semi-automatically using morphological op-
erations and an active contour algorithm. The agreement between the initial and final
mask was assessed using the Dice similarity coefficient (0.9637 ± 0.013), which in this
context reflected the extent of correction introduced by the algorithm relative to the manual
segmentation. It should be noted that, in our study, the Dice coefficient was not used to
compare the result to an independent reference mask, but rather to quantify the degree of
modification introduced by the algorithm relative to the initial segmentation. The spatial
resolution of the images was determined based on metadata from the ultrasound device,
enabling the conversion of all pixel-based measurements into millimeter (mm) units. This
allowed for reliable extraction of geometric and structural features of the analyzed lesions.

All ultrasound images and their corresponding segmentation masks were anonymized.

2.3. Quantitative Feature Extraction
2.3.1. Morphological Features

• Aspect Ratio (Height-to-Width Ratio)

One of the fundamental and most commonly used morphological features of focal
thyroid lesions in clinical practice is their size and shape, including the height-to-width
ratio, known as the aspect ratio. For each lesion, a minimum bounding rectangle was
defined in the transverse plane, in accordance with the recommendations of the American
Thyroid Association and the EU-TIRADS and ACR-TIRADS systems [4,9–11].

Mathematically, the aspect ratio was defined as follows:

AR =
H
W

(1)

where H denotes the anteroposterior (height) dimension of the lesion and W the transverse
(width) dimension. A value greater than 1 (so-called “taller-than-wide”) indicates predomi-
nant growth along the anteroposterior axis, which is typical for infiltrative lesions and is
associated with a higher risk of malignancy [34–38].

In the context of thyroid cancer subtype differentiation, this feature is particularly
characteristic of papillary thyroid carcinoma (PTC), which more frequently exhibits a
“taller-than-wide” shape compared to follicular (FTC) or medullary thyroid carcinoma
(MTC). In contrast, FTC and MTC more often present with regular proportions, which may
lead to misclassification as benign lesions [14,36,39–41].

• Shape Complexity (Perimeter-to-Area Ratio)

To obtain accurate binary masks of focal thyroid lesions, a semi-automatic refinement
method was applied, based on initial manual segmentations performed by experienced
clinicians. The segmentation process began with morphological opening to eliminate small
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artifacts while preserving the overall integrity of the lesion shape. Subsequently, the mask
contour was refined using an active contour model, which minimized the total contour
energy by incorporating an internal term (promoting contour smoothness) and an external
term (attracting the contour toward lesion boundaries based on image intensity gradients).
The active contour algorithm was iterated up to 200 times or until convergence of the
contour was achieved.

Based on the final masks, the shape complexity of each lesion was quantified using
the perimeter-to-area ratio (PAR). This feature was defined as follows:

PAR =
P
A

(2)

where P represents the length of the lesion boundary (perimeter) and A the enclosed lesion
area. The perimeter was obtained from the binary mask contour length, while the area was
calculated as the number of pixels within the mask, converted to mm2 according to the
pixel spacing in both imaging axes.

Higher PAR values reflect increased boundary irregularity, which may indicate in-
vasive growth. This parameter is particularly useful for differentiating thyroid cancer
subtypes, especially in identifying lesions with irregular, spiculated borders typical of PTC.
In contrast, FTC and MTC more frequently exhibit smooth, well-defined borders [42–44].

2.3.2. Echogenicity and Internal Echotexture Features

• Echogenicity

To quantitatively assess the echogenicity of each focal thyroid lesion, RGB ultrasound
images were converted to single-channel grayscale format and normalized to a [0, 1] inten-
sity range. Using the corresponding binary segmentation mask, only the pixels within the
lesion area were extracted, excluding the background and adjacent anatomical structures.

To minimize the influence of artifacts and technical inhomogeneities, pixels with ex-
treme brightness values—above 0.85 (which may correspond to calcifications) and below 0.2
(potentially representing cystic or fluid-filled regions)—were excluded from further analysis.

For each lesion, the mean (µlesion) and median (Mlesion) grayscale intensities were
computed within the lesion mask. To account for inter-patient variability and reduce
dependence on ultrasound system settings, these values were normalized to the mean
intensity of the surrounding normal thyroid parenchyma (µthyroid):

NEmean =
µlesion
µthyroid

, NEmedian =
Mlesion
µthyroid

(3)

where NEmean and NEmedian denote the normalized mean and median echogenicity,
respectively.

Normalization provided a patient-specific reference, ensuring that relative rather than
absolute echogenicity values were compared across cases. This step minimized bias from
gain settings, probe type, or depth-related attenuation, making the echogenicity features
more robust and reproducible across the study cohort.

• Internal Echotexture Features

To quantitatively assess the internal echotexture of each lesion, both global and local
intensity variability were analyzed.
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Global heterogeneity was estimated by computing the standard deviation of grayscale
intensity values within the binary lesion mask:

σ =

√√√√ 1
N

N

∑
i=1

(Ii − µ)2 (4)

where Ii denotes the intensity of the i-th pixel inside the lesion mask, µ is the mean intensity
of the lesion, and N is the total number of pixels in the lesion.

Local disorder was assessed using entropy. For each pixel, entropy was computed in a
circular neighborhood of radius 0.7 mm:

E = −
L

∑
k=1

pklog(pk) (5)

where pk denotes the probability of intensity level k within the local neighborhood and L is
the number of quantized intensity levels. The mean entropy value across all pixels within
the lesion was then used as a marker of microstructural disorganization.

In addition to these intensity-based descriptors, second-order texture features were
extracted from the gray-level co-occurrence matrix (GLCM). Given a displacement vector
(∆x,∆y), the normalized GLCM P(i, j) encodes the probability of finding a pair of gray
levels, i and j, at that spatial offset. From this matrix, four features were computed:

Contrast =
L

∑
i=1

L

∑
j=1

(i − j)2P(i, j) (6)

measuring local brightness variations and sharp transitions,

Correlation =
L

∑
i=1

L

∑
j=1

(i − µi)
(

j − µj
)

P(i, j)
σiσj

(7)

capturing linear dependencies between neighboring intensities, where µi, µj, σi, and σj are
marginal means and standard deviations of the distribution,

Homogenity =
L

∑
i=1

L

∑
j=1

P(i, j)
1 + |i − j| (8)

reflecting local uniformity, with higher values for smoother textures,

Energy =
L

∑
i=1

L

∑
j=1

P(i, j)2 (9)

quantifying the degree of repetition in brightness patterns.
Higher values of standard deviation and entropy indicate increased echotextural

inhomogeneity [45], whereas the GLCM-derived features capture more subtle patterns
of pixel interrelationships. These quantitative descriptors may reveal microstructural
differences among thyroid cancer subtypes, potentially supporting improved diagnostic
discrimination [46–49].
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2.3.3. Boundary Characteristics

• Assessment of Lesion Boundary Sharpness

To quantitatively evaluate the sharpness of lesion boundaries on B-mode ultrasound
images, two complementary approaches were applied: (1) analysis of intensity gradi-
ents along the lesion contour and (2) evaluation of local intensity transitions across the
lesion margin.

All grayscale images were first normalized relative to the mean echogenicity of adja-
cent normal thyroid parenchyma. For each point along the lesion contour, a margin region
with a total width of 1 mm (±0.5 mm on each side) was defined, incorporating pixels both
inside and outside the lesion. Descriptive statistics of these intensity changes—means,
medians, and standard deviations—were computed to characterize the overall contrast
along the boundary.

In addition, for each contour point, the normal direction, n, was estimated as the local
gradient of the binary mask. Along this direction, a one-dimensional intensity profile, I(s),
was extracted, where s denotes the position in millimeters relative to the boundary (s = 0
on the contour, negative values inside the lesion, positive values outside).

The local contrast at a given boundary point was then defined as follows:

Clocal = maxs∈[−0.5,0.5] I(s)− mins∈[−0.5,0.5] I(s) (10)

For each lesion, the distribution of local contrast values across all contour points was
summarized by its mean and standard deviation:

C =
1
M∑M

k=1 Clocal,k σC =

√
1
M∑M

k=1(Clocal,k − C)2 (11)

where M is the number of sampled contour points.
Together, these parameters—contrast statistics within the margin band and local con-

trast along normal profiles—provide a robust, device-independent assessment of boundary
sharpness. Increased sharpness typically indicates well-delineated lesions (more com-
mon in FTC and MTC), whereas blurred or heterogeneous boundaries suggest infiltrative
growth, which is often associated with PTC [50,51].

• Boundary Blurring—Kullback–Leibler Divergence Relative to Normal Parenchyma

To quantitatively assess the distinctiveness of lesion boundaries, the Kullback–Leibler
(KL) divergence was computed between the local intensity distribution at the lesion margin
and the intensity distribution within normal thyroid parenchyma. This parameter was used
as a measure of lesion-to-background separability—higher values indicate a well-defined
boundary with clearly distinguishable signal properties, whereas lower values suggest
boundary blurring and similarity to the surrounding tissue.

For each lesion, a margin of 1 mm thickness was generated around the lesion contour,
as defined by the segmentation mask. Grayscale images were previously normalized rela-
tive to the mean echogenicity of normal thyroid tissue to ensure comparability of intensity
distributions across cases. The intensity distribution was used to estimate a probability
distribution for two regions: (1) the margin zone surrounding the lesion boundary and (2) a
reference region within the adjacent healthy parenchyma.

The KL divergence (DKL) was computed according to the following formula:

DKL(P ∥ Q) =
N

∑
i=1

P(i)·log
(

P(i)
Q(i)

)
(12)
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where P(i) denotes the probability of intensity in the i-th histogram bin within the margin
region and Q(i) is the corresponding probability in the reference region.

Lower values of DKL were interpreted as indicative of poor boundary distinctiveness,
with intensity distributions closely resembling those of the surrounding parenchyma. In
contrast, higher values reflected greater divergence between lesion and background tissue,
suggesting a sharp, well-delineated border. This measure served as an objective and
observer-independent parameter for characterizing the degree of lesion separability and
for supporting the differentiation of focal thyroid lesions.

2.3.4. Structural Features

• Micro- and Macrocalcifications

To quantitatively assess the presence of calcifications in focal thyroid lesions, a de-
tailed analysis of binary masks corresponding to calcified areas and total lesion area was
performed. Potential calcifications were identified on ultrasound images by applying
an intensity threshold: regions with normalized grayscale values exceeding 0.85 were
considered highly echogenic and classified as potential calcifications. Subsequently, mor-
phological filtering was used to eliminate small artifacts that did not meet predefined
morphological criteria. The resulting binary masks were automatically generated and then
verified by visual comparison with B-mode images to confirm the correct localization of
hyper-echoic foci.

For each lesion, the total lesion area (Alesion) and the area occupied by calcifications
(Acalc) were calculated in square millimeters, based on the true spatial resolution of the
image (pixel dimensions in the X and Y axes). In previous studies, the distinction between
micro- and macrocalcifications was defined using both 1 mm and 2 mm thresholds. In this
study, an intermediate value was adopted as a compromise between these criteria [52,53].
Calcifications were further classified as microcalcifications (≤1.5 mm) or macrocalcifications
(>1.5 mm) according to their maximum transverse dimensions.

Two quantitative indicators were then computed: calcification density (for micro- or
macrocalcifications), defined as the number of respective foci (Nmicro and Nmacro) per unit
area of the lesion:

Dmicro =
Nmicro
Alesion

Dmacro =
Nmacro

Alesion
(13)

and calcification area ratio, defined as the percentage of the lesion area occupied by
calcifications:

Rcalc =
Acalc

Alesion
× 100%, (14)

In addition, the spatial distribution of calcifications within the lesion was assessed. Based
on the segmentation mask, the central region of the lesion was defined via morphological
erosion of the full lesion mask, while the peripheral zone was defined as the difference
between the original and eroded masks. This approach enabled differentiation between
calcifications located near the lesion margin and those situated deeper within the lesion
core. Such an analysis provided a more comprehensive, size-independent assessment of
calcification patterns across focal thyroid lesions [52–54].

• Anechoic Areas (Cystic Components and Necrosis)

On B-mode ultrasound images, some focal thyroid lesions may contain anechoic
regions, which appear as markedly hypoechoic areas within the tumor. The presence of
such regions may indicate cystic components, liquefied necrosis, or fluid-filled zones within
otherwise solid structures [55–57]. Therefore, one of the analyzed features was the presence
and spatial characterization of anechoic areas within the lesion.
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All ultrasound images were converted to grayscale and normalized relative to the
mean intensity of normal thyroid parenchyma. Anechoic areas were defined as contiguous
regions with intensity values below 0.2, located entirely within the lesion boundaries. To
reduce the impact of noise and exclude isolated low-intensity pixels, morphological filtering
was applied to retain only spatially coherent structures.

For each lesion, the total lesion area (Alesion) and the area of anechoic regions (Aanechoic)
were computed as described previously. The presence of anechoic areas was then quantified
using the anechoic area ratio, defined as the percentage of the lesion area occupied by
these regions:

Ranechoic =
Aanechoic
Alesion

× 100% (15)

2.4. Statistical Analysis

All statistical analyses were performed using MATLAB R2023b (MathWorks, Natick,
MA, USA). Prior to group comparisons, the distribution of continuous variables was
assessed using the Shapiro–Wilk test, which is recommended as a sensitive method for
evaluating normality in biomedical data [58]. Since most of the analyzed features did not
meet the assumptions of normal distribution, the non-parametric Kruskal–Wallis test was
used to compare the three histological subtypes: papillary (PTC), follicular (FTC), and
medullary (MTC) thyroid carcinoma.

When significant differences were detected using the Kruskal–Wallis test, post hoc
pairwise comparisons were performed using Dunn’s test, with significance level adjustment
based on Šidák correction to control the risk of type I error associated with multiple
comparisons [59,60].

A p-value < 0.05 was considered statistically significant. The analysis included all quan-
titative ultrasound-based features, including geometric parameters, echogenicity, texture
metrics, boundary characteristics, presence of calcifications, and anechoic components. Statis-
tical results are reported as p-values for features showing significant intergroup differences.

2.5. Multiparametric Classification Based on Quantitative Imaging Features

A three-class classification model based on the Random Forest algorithm (100 trees)
was developed to differentiate between PTC, FTC, and MTC based on ultrasound-derived
features. The dataset (244 images representing 122 lesions) was randomly divided into
a training set (70%, n = 171) and a test set (30%, n = 73), with stratification to preserve
class proportions. Each tree in the ensemble was trained on a bootstrap sample of the
training set. At each node, a random subset of predictors (proportional to the square root
of the total number of features) was considered for splitting. Splits were selected using the
Gini impurity index, ensuring optimal separation of classes. Individual trees generated
independent class predictions, and the final classification was determined by majority
voting across all trees.

Model performance was evaluated using two strategies: (1) out-of-bag (OOB) valida-
tion, based on predictions from trees that did not include a given sample during training,
and (2) an independent test set, providing an unbiased estimate of generalization perfor-
mance [61–64].

After training the full model, feature importance was estimated using the OOB permu-
tation method (OOBPermutedPredictorDeltaError). A feature was considered important
if random permutation of its values increased classification error. Based on this ranking,
the 10 most informative predictors were selected to construct a reduced model. The same
training and validation procedures were applied to evaluate whether limiting the model
to the most relevant features could preserve diagnostic performance while improving
interpretability [65–68].
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2.6. Software and Data Availability

All procedures for image analysis and feature extraction were implemented in MAT-
LAB R2023b (MathWorks, Natick, MA, USA) using custom scripts. The processing pipeline
included grayscale conversion, intensity normalization, segmentation refinement, quan-
titative feature computation, statistical analysis, and construction of a multiparametric
classification model.

Anonymized B-mode ultrasound images and the corresponding segmentation masks
used for quantitative analysis are available from the corresponding author upon reason-
able request.

3. Results
3.1. Quantitative Evaluation of Single Ultrasound Features
3.1.1. Morphological Feature Assessment: Shape and Complexity

The aspect ratio, describing the spatial orientation of the lesion, did not significantly
differentiate thyroid cancer subtypes (p = 0.297). The lowest median values were observed
in MTC (0.78), while the highest were noted in FTC (0.98), which may reflect the more
regular, oval shape of follicular tumors. In PTC, the widest range of values was noted,
including cases with an aspect ratio > 1, potentially indicating a more vertical, infiltrative
growth pattern.

The perimeter-to-area ratio, reflecting boundary complexity, significantly differen-
tiated tumor subtypes (Kruskal–Wallis test: p < 0.0001). Post hoc Dunn–Šidák analysis
revealed significant differences between PTC vs. FTC (p < 0.0001) and MTC vs. FTC
(p = 0.0002). The highest values were observed in the PTC group (median = 0.385), and the
lowest in FTC (0.191), suggesting greater boundary irregularity in papillary carcinomas.

3.1.2. Echogenicity and Intratumoral Texture Characteristics

Echogenicity showed significant differences among the three histological subtypes for
both the mean (p = 0.0003) and median values (p = 0.0002). Post hoc analysis confirmed
statistically significant differences for all pairwise comparisons: MTC vs. FTC (p ≤ 0.0002),
MTC vs. PTC (p ≈ 0.014–0.016), and PTC vs. FTC (p ≈ 0.023–0.035). The lowest values
were observed in MTC, and the highest in FTC. In contrast, the standard deviation of
echogenicity did not significantly differ between groups (p = 0.1121).

Local entropy, representing the degree of signal disorder within the lesion, also showed
significance (p = 0.0360), with a significant post hoc difference identified between MTC
and FTC (p = 0.0486). Other texture features based on the gray-level co-occurrence matrix
(GLCM) did not reach statistical significance, although contrast approached the significance
threshold (p = 0.0565).

3.1.3. Assessment of Tumor Margins

Intensity gradients and local contrast along the lesion boundary significantly differen-
tiated between thyroid cancer subtypes. For the mean gradient, a significant difference was
found between PTC and FTC (p = 0.0339), while the gradient standard deviation differed
significantly between PTC and FTC (p = 0.0014) and between MTC and FTC (p = 0.0163).
Similarly, mean profile intensity differed between PTC and FTC (p = 0.0430), and the stan-
dard deviation of profile intensities showed differences between PTC and FTC (p = 0.0009)
as well as between MTC and FTC (p = 0.0180). The lack of significant differences between
PTC and MTC for these features suggests that boundary-related parameters are most
effective in distinguishing FTC from the other subtypes.
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The Kullback–Leibler divergence, which quantifies the distinction between the lesion
and the surrounding thyroid parenchyma, also showed significant differences (p = 0.0049),
with post hoc analysis revealing a significant difference between MTC and PTC (p = 0.0165).

3.1.4. Internal Composition and Calcification Patterns

Macrocalcifications and the percentage of the tumor area occupied by calcifications
significantly differed across thyroid cancer subtypes (p = 0.0112 and p = 0.0435, respectively).
Post hoc Dunn–Šidák analysis revealed significant differences between PTC and FTC
(p ≈ 0.0081–0.0399). In contrast, microcalcifications did not significantly differ between
groups (p = 0.7264).

Peripheral calcifications showed highly significant differences between subtypes
(p < 0.00001). The highest median count was observed in FTC (17), markedly exceeding the
values for PTC and MTC (median = 3). These differences were statistically significant for
the FTC–PTC and FTC–MTC comparisons (p < 0.0001).

Anechoic (cystic) areas were most frequently observed in FTC lesions; however, the
Kruskal–Wallis test did not show significant differences between groups (p = 0.7902),
limiting the diagnostic utility of this feature as a standalone parameter.

3.2. Comparative Evaluation of Individual Quantitative Ultrasound Features

All analyzed ultrasound features are summarized in Table 2, which presents the
statistical significance of differences between the three thyroid carcinoma subtypes (PTC,
FTC, and MTC) for each pairwise comparison. Statistically significant differences are
marked with an “X”. Based on this comparative analysis of individual imaging features,
it can be observed that only certain parameters showed significant differences between
selected group pairs. For instance, the mean and median echogenicity, as well as features
describing boundary complexity, significantly differentiated PTC from FTC, as well as MTC
from FTC. In contrast, other features—such as the presence of anechoic areas or selected
GLCM-based texture metrics—did not independently show significant differences between
the subtypes.

To reduce the impact of multicollinearity among features, a correlation analysis was
performed for all extracted imaging parameters. Pearson correlation coefficients were calcu-
lated for each pair of features. Several pairs of variables exhibited strong linear correlations
(|r| > 0.9), which may have led to redundancy and disproportionately influenced the
classification model.

To minimize this redundancy, only one parameter was retained from each pair of
highly correlated features. When selecting which variable to keep, priority was given to
those that demonstrated statistical significance in the three-group analysis and offered
greater clinical interpretability. Special emphasis was placed on features that could be more
readily understood and applied in clinical practice.

This approach allowed the number of input variables to be reduced to 14 independent
features, contributing to lower model variance and improved interpretability. The final set
of features used for model construction is presented in Table 3.
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Table 2. Results of a two-step statistical analysis. First, the Kruskal–Wallis test was applied to assess
overall differences in the distribution of quantitative ultrasound features among thyroid cancer
subtypes. Reported p-values in this column indicate the global significance level for each parameter.
For features with statistically significant results (p < 0.05), post hoc Dunn–Šidák pairwise comparisons
were performed to identify specific group differences, while for non-significant parameters post hoc
comparisons were not applicable (marked as “–”). Statistically significant p-values are shown in bold.

Parameter Group Parameter
Kruskal–Wallis

(p)

Post Hoc Dunn–Šidák Comparisons (p)

PTC vs. FTC PTC vs. MTC MTC vs. FTC

Morphological
Features

Aspect ratio 0.297 – – –
Perimeter-to-area ratio <0.0001 <0.0001 0.0674 0.0002

Internal
Architecture

Echogenicity (mean) 0.0003 0.0234 0.0141 0.0002
Echogenicity (median) 0.0002 0.0352 0.0162 0.0019
Echogenicity (std) 0.1121 – – –
Local entropy (mean) 0.0360 0.2147 0.1863 0.0486
Local entropy (std) 0.0673 – – –
Contrast (mean) 0.0565 – – –
Correlation (mean) 0.1569 – – –
Homogeneity (mean) 0.9859 – – –
Energy (mean) 0.7586 – – –

Margin
Assessment

Gradient (mean) 0.0400 0.0339 0.9464 0.2416
Gradient (std) 0.0021 0.0014 0.8999 0.0163
Profile (mean) 0.0014 0.0430 0.8193 0.3867
Profile (std) 0.0443 0.0009 0.9909 0.0180
KL divergence 0.0049 0.1268 0.0165 0.6894

Structural
Features

Microcalcification density 0.7264 – – –
Macrocalcification density 0.0112 0.0081 0.9811 0.0834
Calcified area % 0.0435 0.0399 0.9989 0.1074
Peripheral calcification <0.0001 <0.0001 0.0127 <0.0001
Cystic area % 0.7902 – – –

Table 3. Final set of imaging features after collinearity reduction—results of the Kruskal–Wallis test
with Dunn–Šidák post hoc comparisons for parameters differentiating thyroid cancer subtypes (PTC,
FTC, and MTC). Exact p-values are provided; statistically significant differences (p < 0.05) are shown
in bold.

Parameter
Group Parameter

Kruskal–Wallis
(p)

Post Hoc Dunn–Šidák Comparisons (p)

PTC vs. FTC PTC vs. MTC MTC vs. FTC

Morphological
Features

Aspect ratio 0.297 – – –
Perimeter-to-area ratio <0.0001 <0.0001 0.0674 0.0002

Internal
Architecture

Echogenicity (mean) 0.0003 0.0234 0.0141 0.0002
Echogenicity (std) 0.1121 – – –

Local entropy (mean) 0.0360 0.2147 0.1863 0.0486
Contrast (mean) 0.0565 – – –

Margin
Assessment

Gradient (std) 0.0021 0.0014 0.8999 0.0163
Profile (mean) 0.0014 0.0430 0.8193 0.3867
KL divergence 0.0049 0.1268 0.0165 0.6894

Structural
Features

Microcalcification density 0.7264 – – –
Macrocalcification

density 0.0112 0.0081 0.9811 0.0834

Calcified area % 0.0435 0.0399 0.9989 0.1074
Peripheral calcification <0.0001 <0.0001 0.0127 <0.0001

Cystic area % 0.7902 – – –
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3.3. Classification Model Based on Full Feature Set

The classification model based on the full set of 14 imaging features (Table 3) achieved
an overall classification accuracy of 89.3%. However, class-wise performance varied in
predicting specific tumor subtypes.

Class-wise performance, recalculated to match class sizes is summarized in Table 4
and revealed the following: for FTC, a precision of 75.0%, a recall of 64.3%, and an F1-score
of 69.1%; for MTC, a precision of 88.2%, a recall of 83.3%, and an F1-score of 85.7%; and for
PTC, a precision of 92.4%, a recall of 94.4%, and an F1-score of 93.4%.

Table 4. Classification performance metrics for the model built using the full feature set.

Class Precision (%) Recall (%) F1-Score (%)

FTC 75.0 64.3 69.1
MTC 88.2 83.3 85.7
PTC 92.4 94.4 93.4

The confusion matrix presented in Table 5 shows that the most common misclassifica-
tions involved FTC being labeled as PTC and MTC being labeled as PTC, which may be
attributed to overlapping morphological characteristics.

Table 5. The confusion matrix for the model built using the full feature set.

True Class/
Predicted Class FTC (pred) MTC (pred) PTC (pred)

FTC (true) 64.3 0.0 35.7
MTC (true) 0.0 83.3 16.7
PTC (true) 3.3 2.2 94.4

3.4. Feature Importance and Reduced Feature Model

Following the evaluation of the classification performance of the model based on the
full set of features, an analysis of predictor importance was conducted. The permutation-
based importance metric (OOBPermutedPredictorDeltaError) was used, which measures the
increase in out-of-bag (OOB) error after randomly permuting the values of a given feature.

This analysis enabled ranking of the features according to their impact on the model’s
predictive accuracy. High values of the permutation importance index indicated a signifi-
cant contribution of the feature to classification decisions, whereas values close to zero or
negative values suggested limited or no diagnostic relevance. The results of this analysis are
presented as a bar plot in Figure 1, with features ordered in descending order of importance.

Among the features with the highest information value in the classification model
were both morphological parameters, such as the perimeter-to-area ratio (feature #1), and
features related to calcification, including the presence of peripheral calcifications (feature
#2). Parameters associated with lesion echogenicity also played a significant role, including
mean echogenicity (feature #4) and the mean boundary profile value (feature #3).

While some individual features demonstrated clear dominance in importance, the
results highlight the value of a multidimensional approach, in which complementary
information derived from different image aspects (morphology, texture, echogenicity,
and calcifications) collectively contributes to accurate differentiation of thyroid cancer
histological subtypes.

Based on these findings, the 10 most important predictors were selected to construct a
simplified classification model. The aim of this step was to evaluate whether reducing the
number of input variables could maintain high diagnostic accuracy while simplifying the
model’s structure and improving interpretability.
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Figure 1. Importance of features in the Random Forest model. The vertical axis represents the increase
in out-of-bag (OOB) classification error following random permutation of each feature, reflecting its
relative contribution to model performance. Features are ranked in descending order of importance.

The model based on the top 10 features achieved a classification accuracy of 91.8%,
indicating strong predictive performance even with a reduced feature set. For the FTC
class, the model reached a precision of 66.7% and a recall of 85.7%, resulting in an F1-score
of 70.0%. In the case of MTC, the precision and recall were 70.0% and 77.8%, respectively,
yielding an F1-score of 73.6%. For PTC, the model demonstrated very high recall (95.6%)
and precision (96.1%), with an F1-score of 94.0%. Detailed results are presented in Table 6.

Table 6. Classification performance metrics for the model built using the 10 most informative features.

Class Precision (%) Recall (%) F1-Score (%)

FTC 66.7 85.7 75.0
MTC 70.0 77.8 73.6
PTC 96.6 95.6 96.1

The confusion matrix presented in Table 7 shows that the most common misclassifica-
tions involved FTC cases being predicted as PTC (14.3%) and MTC cases being predicted as
PTC (22.2%). This may be attributed to partial overlap in imaging features between these
thyroid cancer subtypes.

Table 7. Confusion matrix (%)—classification based on the 10 most important features.

True Class/
Predicted Class FTC (pred) MTC (pred) PTC (pred)

FTC (true) 85.7 0.0 14.3
MTC (true) 0.0 77.8 22.2
PTC (true) 1.1 3.3 95.6
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A comparison of confusion matrices between the full model (based on 14 features)
and the reduced model (using the 10 most important predictors) indicates comparable
classification performance for both approaches. For the FTC class, the reduced model
even achieved slightly higher classification accuracy (85.7% vs. 77.8% in the full model),
suggesting that reducing the number of input variables did not impair recognition of this
class. A slight decrease was observed for MTC, with classification accuracy decreasing from
83.3% to 77.8%, although misclassifications as PTC increased slightly (22.2% vs. 16.7%). For
the PTC class, the full model showed slightly better performance (94.4% vs. 95.6%), but
this difference had a negligible impact on overall classification accuracy.

These findings confirm that the simplified classification model, despite using fewer
features, maintained high predictive performance—outperforming the full model in some
cases. The slight decrease in accuracy for PTC was offset by improved recognition of
FTC and MTC cases. Therefore, reducing the number of input variables may not only
enhance the model’s interpretability but also increase its generalizability, particularly for
underrepresented tumor subtypes.

4. Discussion
The results of the conducted analyses confirm that a quantitative approach to ul-

trasound assessment of thyroid nodules, based on objective and standardized B-mode
parameters, enables effective differentiation of the three main histological subtypes of
thyroid carcinoma: papillary (PTC), follicular (FTC), and medullary (MTC). The Random
Forest model constructed using the full set of 14 imaging features achieved a high classi-
fication accuracy of 89.3%, which was preserved in the simplified version based on only
the 10 most important predictors (91.8%). This confirms that a well-selected, reduced
set of features can provide equally high diagnostic performance while improving model
interpretability and reducing the risk of overfitting.

In the permutation-based importance analysis, four predictors were identified as
having the highest diagnostic relevance, each representing a distinct category of quanti-
tative ultrasound features: perimeter-to-area ratio (morphology), peripheral calcification
(structural features), profile mean (boundary sharpness), and echogenicity mean (internal
echogenicity). Each of these features reflects a different aspect of the nodule’s sonographic
appearance, namely, irregular margins, the presence of peripheral calcifications, contrast
along the margin, and internal texture, respectively. This complementary integration of
multiple imaging domains contributed to the high classification performance and enhanced
the interpretability of the model in relation to the underlying histopathological differences
among thyroid cancer subtypes.

In this discussion, only selected features from the broader set of evaluated parameters
are highlighted, as detailed elaboration on all of them would exceed the scope of this article.

Among the listed predictors, perimeter-to-area ratio demonstrated the highest pre-
dictive importance score (0.70), indicating its key role in the classification process. Its
diagnostic value stems from its biological interpretability. Papillary thyroid carcinoma
(PTC) typically exhibits infiltrative growth and papillary architecture, resulting in irregular,
spiculated margins and elevated perimeter-to-area ratios [69–71]. In contrast, follicular
thyroid carcinoma (FTC) more often presents as encapsulated lesions with smooth margins,
leading to lower perimeter-to-area values [70,72,73]. Medullary thyroid carcinoma (MTC)
shows a more variable morphology but often also smooth margins [70,74].

Regardless of these biological differences, the effectiveness of this approach relies not
only on the choice of the metric itself but also on the methodology used to extract it. The
accuracy of margin analysis is particularly sensitive to the method of segmentation, espe-
cially in the case of nodules with ill-defined or infiltrative borders. Unlike fully automated
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approaches, which frequently struggle with precise segmentation in low-contrast areas,
semi-automated and iterative techniques allow for more reliable and reproducible results.
Recent studies have demonstrated that integrating methods such as active contours, mor-
phological filtering, and specialized boundary-sensitive modules significantly improves
segmentation performance, especially in challenging cases [75–79]. The combination of
boundary-based features with morphological operations such as dilation and erosion
enables more accurate contour delineation, even in the presence of blurred edges [75,77,79].

Importantly, unlike subjective features such as “irregular margins” assessed by radi-
ologists, the perimeter-to-area ratio is an entirely objective and reproducible metric. This
makes it particularly attractive in the context of malignancy risk stratification and automa-
tion. It may assist clinicians in biopsy decision-making and serve as a core component of
future AI-based decision support systems.

Due to its biological relevance and interpretability, the perimeter-to-area ratio can also
serve as a conceptual bridge between traditional image-based diagnostics and modern
machine learning algorithms. Incorporating this feature into predictive models enhances
both diagnostic accuracy and the transparency of the decision-making process, which is
essential for clinical acceptance of AI-assisted diagnostic tools.

Peripheral or rim calcifications have a distinct diagnostic value, as their quantita-
tive assessment, such as the number of high-intensity pixels along the lesion contour,
reflects the presence of calcifications at the tumor border. In the TI-RADS and EU-TIRADS
classifications, it is emphasized that peripheral calcifications, particularly those with an
“eggshell” appearance and interrupted continuity, may be associated with an increased
risk of malignancy, whereas regular, continuous rim calcifications are typically found in
benign lesions [9–11,80–82]. Studies have shown that central microcalcifications are most
commonly observed in papillary thyroid carcinoma, while peripheral macrocalcifications
may occur in papillary, follicular, and medullary thyroid carcinomas, with their prognostic
significance depending on morphology and continuity [80,82–84]. Interrupted rim calci-
fications are associated with a higher risk of malignancy and may indicate an infiltrative
growth pattern, whereas continuous “eggshell”-type calcifications are characteristic of
benign lesions [80–82].

Statistical analyses confirm that the presence of peripheral calcifications—particularly
when combined with other suspicious features such as solid composition or irregular
margins—is associated with an increased risk of malignancy [81,82]. However, the presence
of macrocalcifications or peripheral calcifications alone, in the absence of other suspicious
characteristics, does not necessarily indicate a high risk of cancer [85–87]. Recent studies
suggest that automated, quantitative analysis of calcifications—including their number,
distribution, intensity, and distance from the lesion margin—may aid in differentiating
benign from malignant nodules and in predicting metastatic risk, especially in papillary
thyroid carcinoma [81,85,88]. Deep learning-based models allow for automatic detection
and assessment of calcifications, and the parameters obtained show strong agreement with
expert radiologist evaluation and significant prognostic value, although their use in routine
clinical practice remains limited. The integration of such tools with AI-based diagnostic sys-
tems has the potential to substantially improve the classification of lesions with ambiguous
echogenicity or architecture, thereby supporting clinical decision-making [85,88].

The parameter profile mean, which describes the average contrast at the boundary of
a lesion relative to the surrounding thyroid parenchyma, plays a key role in differentiating
nodules based on the architecture of their margins. A high value of this metric reflects
a sharp, well-defined transition between the lesion and adjacent tissue, corresponding
to the “sharp margins” criterion in the TI-RADS and EU-TIRADS classifications, where
indistinct or irregular borders are associated with a higher risk of malignancy [9–11]. Nu-



Cancers 2025, 17, 2761 18 of 24

merous studies have confirmed that irregular, poorly defined margins are characteristic
of infiltrative lesions such as papillary or medullary thyroid carcinoma, whereas benign
lesions and certain subtypes of follicular carcinoma typically exhibit smooth, encapsulated
contours [89–91]. Intensity profile analysis at the interface between parenchyma and lesion
enables a quantitative assessment of these features, which may provide valuable insights
into the growth pattern and malignant potential of the nodule [90,92,93]. Automated
computation of the profile mean based on averaged intensity profiles around the lesion con-
tour ensures high reproducibility and eliminates subjective variability, thereby supporting
standardization and integration with artificial intelligence-based diagnostic tools [92,94].

In the presented study, the lowest values of echogenicity were observed in medullary
thyroid carcinoma (MTC), which aligns with findings from previous reports [13,95]. For
follicular thyroid carcinoma (FTC), the literature suggests a generally higher echogenicity,
although clear comparative data remain limited [96,97]. Hypoechogenicity of a thyroid nod-
ule is a well-established indicator of malignancy risk, particularly in papillary thyroid carci-
noma (PTC), as demonstrated by both ultrasound and histopathological studies [13,96,97].
Ultrasonographic studies have shown that PTC is most commonly hypoechoic, while MTC
may exhibit either low or mixed echogenicity. FTC, along with other follicular-patterned
lesions, more frequently demonstrates echogenicity similar to that of the surrounding
thyroid or only mildly reduced [13,95–97].

In the presented classification model, the echogenicity mean was computed using
a fully automated method that included local normalization relative to the background
tissue. This approach enhanced the robustness and reproducibility of the measurement,
reducing the influence of inter-device variability [98].

The results further support the effectiveness of multiparametric models in differentiat-
ing thyroid focal lesions. Consistent with the literature, combining morphological, textural,
and intensity-based features improves both sensitivity and specificity, while also increas-
ing model resilience to noise and variability across different ultrasound systems [99–103].
Previous studies have reported high predictive performance for such hybrid models—for
instance, Random Forest classifiers achieving accuracies of up to 96.1% [100] and other
advanced algorithms exceeding 95% [100,103,104]. An important advantage of such models
is the low correlation among key predictors, which limits redundancy and enhances classifi-
cation efficiency [100,102]. Moreover, these models have demonstrated strong performance
both with the full feature set and after dimensionality reduction, confirming their practical
applicability in clinical diagnostics.

Recent advances in deep learning have introduced novel architectures for image anal-
ysis, including attention-based multiview frameworks [105], style-contrastive networks
for content–style disentanglement [106], and transformer-based weakly supervised seg-
mentation with adversarial training [107]. While these methods achieve state-of-the-art
performance in various computer vision domains, their application in endocrine oncology
remains limited, primarily due to the lack of clinical interpretability and the challenges
in validating such black-box models. In contrast, the quantitative ultrasound features
employed in our study are transparent, biologically interpretable, and directly linked to
histopathological correlates, thereby supporting reproducibility and clinical trust.

Unlike deep learning methods, which are often perceived as opaque “black-box”
systems, the approach presented here offers complete transparency in both analytical
processing and interpretation of results. Each feature was designed based on a biologi-
cally grounded rationale, allowing for clinical interpretation of the measured values and
supporting transparency in the decision-making process.

It is also worth noting that much of the existing literature has focused on binary
classification tasks—distinguishing benign from malignant lesions—without addressing
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finer distinctions among thyroid cancer subtypes [108–110]. In contrast, the present study
tackled a three-class classification problem involving PTC, FTC, and MTC subtypes that
differ not only in prognosis but also in architectural patterns, morphology, and biological
behavior. Therefore, the proposed model aligns with current trends in quantitative ultra-
sound analysis while extending their application to more complex and clinically meaningful
classification tasks.

Despite the high classification performance and the use of a fully quantitative and
transparent approach, this study has several limitations. First, the analysis was conducted
retrospectively and was based on data from a single institution, which may limit the
generalizability of the findings across more diverse patient populations. Second, although
the segmentation method was optimized and semi-automated, it still required expert
supervision, which could affect reproducibility in settings with varying levels of operator
experience. Third, the classification model was developed using B-mode ultrasound images
acquired in two orthogonal planes (transverse and longitudinal). While this enabled the
extraction of key morphological and structural features, three-dimensional ultrasound data
were not included, which might have provided a more comprehensive representation of
tumor architecture—particularly with respect to irregular margins, spatial distribution of
calcifications, and internal heterogeneity.

In addition, the robustness of the proposed method to variations in ultrasound equip-
ment, acquisition protocols, and device manufacturers has not yet been validated. Al-
though Random Forest classifiers are relatively computationally efficient, the complete
pipeline—including preprocessing and semi-automated segmentation—may impose ad-
ditional computational demands, which could limit practical deployment in resource-
constrained healthcare environments.

Future research should therefore address these challenges by including larger and
more diverse multi-center cohorts, validating the approach across different ultrasound
platforms, incorporating three-dimensional data, and optimizing computational efficiency.
Such efforts will be crucial to ensure the broad applicability and real-world feasibility of
quantitative ultrasound as a clinically trusted decision-support tool.

5. Conclusions
The application of quantitative ultrasound, supported by computational methods and

machine learning, enables effective differentiation of the three major histological subtypes of
thyroid cancer: papillary (PTC), follicular (FTC), and medullary (MTC). The Random Forest
model, built upon selected morphological, structural, and textural features, achieved high
classification accuracy (91.5%) while maintaining transparency and clinical interpretability.

The high sensitivity observed for PTC reflects the model’s strong performance in de-
tecting the most common thyroid cancer subtype, which is of substantial clinical relevance.
At the same time, the high precision in classifying FTC and MTC suggests a low rate of
misclassification for these less common but potentially more aggressive subtypes. The
limited overlap in misclassifications between FTC and MTC, together with the model’s
robust diagnostic performance, highlights the potential of this approach as a clinically
useful decision-support tool.

Validation of these findings requires further studies involving larger, more diverse
cohorts and multicenter external validation to assess model performance in real-world
settings. Integrating semi-automated segmentation and classification methods into the
diagnostic workflow for thyroid nodules could reduce the number of unnecessary biopsies,
support the implementation of personalized medicine strategies, and improve overall
patient care efficiency.
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