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Abstract 
Motivated by the spatiotemporal waves of MAPK/ERK activity, crucial for long-range com-

munication in regenerating tissues, we investigated stochastic homoclinic fronts propagat-

ing through channels formed by directly interacting cells. We evaluated the efficiency of 

long-range communication in these channels by examining the rate of information trans-

mission. Our study identified the stochastic phenomena that reduce this rate: front propaga-

tion failure, new front spawning, and variability in the front velocity. We found that a trade-off 

between the frequencies of propagation failures and new front spawning determines the 

optimal channel width (which geometrically determines the front length). The optimal fre-

quency of initiating new waves is determined by a trade-off between the input information 

rate (higher with more frequent initiation) and the fidelity of information transmission (lower 

with more frequent initiation). Our analysis provides insight into the relative timescales of 

intra- and intercellular processes necessary for successful wave propagation.

Author summary
In biological tissues, traveling waves of cellular activity are observed in the process of 
wound healing when they coordinate cell replication and collective migration. These 
waves can carry information over long distances. However, random effects on the single- 
cell level can affect wave propagation and disrupt information flow. In this paper, using a 
numerical model we classified these stochastic events and quantified the maximum range 
and frequency of such waves and their capacity to carry information. We discovered that 
most effective transmission occurs in relatively narrow channels (formed by directly 
interacting cells), and that the refractory time, in which a cell is resistant to activation by 
neighboring cells, must be long with respect to the time needed for cell activation. The 
optimal time intervals between the initiated waves are of order of few refractory times 
(depending on channel length).

Introduction
Cells in living organisms communicate through a variety of mechanisms, including chemical 
and mechanical signals. Long-range communication within a tissue may result from local 
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communication between neighboring cells. This is the case for spatiotemporal MAPK/ERK 
activity waves, originating from the wound edge [1,2] or from leader cells [3] and involving a 
mechanochemical feedback loop that coordinates collective migration of epithelial cells [3,4]. 
Excitable ERK activity waves have been shown to control the rate of scale regeneration in 
zebrafish [5]. These studies highlight the capability of waves to propagate recurrently across 
successive cell layers despite the inherent discreteness and heterogeneity of the communica-
tion medium.

From a dynamical systems perspective, a traveling front may be either an interface between 
regions in space that are in different equilibria (heteroclinic traveling waves in bistable sys-
tems) or an excitation that locally departs and then returns to a unique equilibrium (homo-
clinic traveling waves in monostable excitable systems) [6]. The heteroclinic traveling waves 
are formed robustly at the interface between two different regions and as such are resilient to 
random perturbations [7]. However, the passage of a heteroclinic wave irreversibly changes 
the state of the reactor that consequently cannot be re-used to support propagation of a 
subsequent front. In contrast, a homoclinic traveling wave is an out-of-equilibrium “stripe” 
flanked on both sides with the reactor in the equilibrium state. Although homoclinic traveling 
waves may be sent recurrently and in this way convey complex messages to spatially distant 
locations, they are fragile in the presence of stochastic fluctuations. Experimentally, the spatio-
temporal ERK signal propagation has been observed to be distorted by random bursts of ERK 
activity [2,8], which occasionally give rise to spontaneous waves [9].

Here, we sought to quantitatively assess the capacity of a discrete, excitable medium to 
transmit information encoded within a train of activity waves. Specifically, we investigated 
stochastic homoclinic fronts propagating in narrow channels formed by directly interacting 
cells, and determined the efficiency of long-range communication through these channels in 
terms of the rate of information transmission, also referred to as bitrate. This metric quan-
tifies the amount of information that can be transmitted through a communication channel 
in a unit of time. We identified several types of stochastic phenomena that reduce the fidelity 
and thus the rate of information transmission, among which the front propagation failure, 
new front spawning, and variability in the front velocity were the most impactful. We demon-
strated that a tradeoff between the frequencies of front propagation failure and new front 
spawning determines the optimal channel width, enabling the fronts to reach the greatest 
distance and maximizing the rate of information transmission. We investigated the system’s 
ability to relay periodic sequences of fronts as well as transmit binary-encoded information. 
Binary-encoded information is encoded by specifying a predetermined list of equally spaced 
time slots and deciding whether a front is initiated or not in each of these time slots. We deter-
mined the time interval between the time slots that maximizes the information transmission 
rate. This optimal time interval or, equivalently, the optimal frequency of time slots results 
from a tradeoff between the input information rate (higher for on average more frequently 
initiated fronts) and fidelity of information transmission (lower for on average more fre-
quently initiated fronts). Finally, our exploration of the model parameter space revealed that 
efficient long-distance information transmission is achievable only if the refractory time is 
several times longer than the neighbor-to-neighbor activation time.

Results

Model definition
In our continuous-time discrete-space model, each cell in the monolayer assumes one of four 
distinct states: quiescent (Q), excited (E), inducing (I), or refractory (R), and inter-state transi-
tions follow a predetermined cyclic sequence: Q → E → I → R → Q (Fig 1A). When activated by an 
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I neighbor, a Q cell assumes the E state. Subsequent progression from the E to the I state enables 
the cell to induce activity in its Q neighbors. After the I cell assumes the R state, it loses the 
ability to activate its Q neighbors and becomes insensitive to activation by neighboring I cells. 
Finally, reverting to the Q state restores the cell’s responsiveness to activation by an I neighbor.

Sequential transition through Q, E, I, and R states and appropriate time scales of the 
residence in the E, I, and R states are crucial to enable wave propagation. In the context of the 
MAPK/ERK pathway, the first time scale is associated with signal reception and the signal 
transduction cascade (through the EGFR/SOS/RAS complex, RAF, and MEK), culminating in 
ERK phosphorylation; the second time scale is determined by the time required by phospho- 
ERK to trigger cell contraction that may result in activation of EGFR in neighboring cells [3]; 
and the third, longest, time scale is related to the refractory period of the signaling cascade, 
which, due to inhibitory multisite phosphorylation of SOS (by phospho-ERK), is at least par-
tially insensitive to incoming signals.

In the model, the multi-step signal transduction within the MAPK/ERK pathway is 
reflected by the assumption that the E, I, and R states comprise multiple sub-states (nE, nI, nR, 
respectively). We assume that each transition between the sub-states (e.g., E1 → E2) is Markov-
ian, and thus the transition times are exponentially distributed (with the rate parameters nE/𝜏E, 
nI/𝜏I, or nR/𝜏R; nominal values of the kinetic parameters are provided in Fig 1B). Consequently, 

Fig 1.  Model. A Scheme of the QEIRQ model with multiple sub-states. A cell in one of the Inducing states (I1 or I2) can activate an adjacent cell in the Quiescent state 
(Q) turning its state to the first Excited state (E1). Transitions between sub-states are spontaneous first order reactions. B Parameters of the model and their nominal val-
ues. Total time spent in each of the functional state (E, I, R) has Erlang distribution with scale nE, nI, nR and rate nE/𝜏E, nI/𝜏I, nR/𝜏R, respectively, plotted in the graphs. The 
distributions have means 𝜏E, 𝜏I, 𝜏R and standard deviations 𝜏E/√nE, 𝜏I/√nI, 𝜏R/√nR, respectively, as indicated in the figures. C Geometry of the reactor used for simulations. 
Periodic boundary conditions are applied along the longer edge (unless explicitly stated otherwise). A new front is initiated by setting the leftmost layer of cells to the 
first Inducing state (I1).

https://doi.org/10.1371/journal.pcbi.1012846.g001

https://doi.org/10.1371/journal.pcbi.1012846.g001
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the total residence times in the E, I, and R states follow Erlang distributions: Erlang(nE, nE/
𝜏E), Erlang(nI, nI/𝜏I), and Erlang(nR, nR/𝜏R) with means 𝜏E, 𝜏I, and 𝜏R, respectively. Note that 
by increasing nE, nI, or nR we reduce the stochasticity of the system, because the variance of an 
Erlang(n, n/𝜏) distribution is inversely proportional to n.

In the simulated fully-confluent monolayer, cells are immobile agents arranged on a 2-D 
triangular lattice of length L and width W (Fig 1C). For the nominal parameter values (Fig 
1B), the rates of transitions Q → E1 (1/𝜏act), I1 → I2, and I2 → R (both nI/𝜏I) are all equal. Thus, 
the probability that an I cell will activate a given neighboring Q cell before transitioning to R is 
0.5 + 0.5 × 0.5 = 0.75. This value is greater than both the site and the bond percolation thresh-
olds on the triangular lattice, equal 0.5 and ~0.347, respectively [10], permitting front propa-
gation [11].

In the model, we formally assume that all cells are identical and all variability follows 
from stochastic transitions between cell states. In recent years, it has been demonstrated that 
population heterogeneity is mainly responsible for observed variability in signal transduction 
[12–14]. However, in our case (as in many other cases) the two types of noise (intrinsic and 
extrinsic) have similar consequences. Stochasticity in front propagation is a consequence 
of variability in state-to-state transition times; this variability may have both intrinsic and 
extrinsic origins. The key difference is that under intrinsic noise, the front is expected to be 
perturbed in random locations, while under extrinsic noise, some specific locations in the 
monolayer will more likely be the source of front perturbation.

Propagation of a single front

Front speed
A propagating front consists of active cells (i.e., cells in either state E or state I) located in its 
head, followed by a thick block of R cells that prevent backward front propagation. We initi-
ated fronts by setting the states of the cells in the first layer to I1 and observed the propagation 
of activity toward the other end of the reactor (Fig 1C).

In the model, the front is deemed to move one step forward once the next cell layer is 
activated and progresses through all E sub-states to become I. On average, a forward step, in 
which the front advances by just one cell layer, takes the time 𝜏act/⟨nneigh_I⟩ + 𝜏E, where ⟨nneigh_I⟩ 
is the average number of I cells in contact with a single Q cell. In a deterministic model, where 
the time spent by cells in each state is fixed, the front forms a straight line, and each Q cell at 
the front head has exactly 2 inducing neighbors. Thus, the inverse propagation speed is v−1

deter-

ministic = 𝜏act/2 + 𝜏E, which yields 4.5 min/cell layer for the nominal parameter values.
In the stochastic model, however, the front edge becomes rough and the cells to be acti-

vated have, on average, more than two I neighbors, which increases the propagation speed. 
We observed that for the nominal parameter values, the average inverse front velocity ⟨v−1⟩ 
changes with the channel width W from v−1

deterministic for W = 1 to the asymptotic value v−1
asymp-

totic = 3.5 min/layer for W ≳ 10 (Fig A panel a in S1 Appendix).

Transit time and its variance
The expected time in which the front travels the whole channel length L is ⟨𝜏transit⟩ = L⟨v−1⟩. 
For sufficiently long channels, the distribution of 𝜏transit is nearly Gaussian with variance 
𝜎2

transit = L × 𝜎2
0(W). The value of 𝜎2

0 decreases with the channel width, and for W  >  2 can be 
well approximated with the formula 𝜎2

0 = a / W + b with a ≈ 6.8 min2, b ≈ 0.4 min2/layer (Fig 
A panel b in S1 Appendix). The variance 𝜎2

transit critically affects the fidelity of information 
transmission by determining the precision with which the moment of a front initiation can be 
inferred from the time at which it reached the end of the channel.
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Propagation failure and front spawning
In a stochastic model, a traveling front is subjected to random events disrupting its propaga-
tion. In narrow and moderately wide channels, we observed two types of disruptive events: 
propagation failure and new front spawning (Fig 2A).

Propagation fails if all E and I cells progress to the R state before exciting any neighboring Q 
cells (S1 Video). New fronts are spawned when a cell remains in the I state long enough for one of 
its neighboring cells to recover from R to Q. Such a neighboring cell may get activated and become 
a source of a new front or fronts (S2 Video). The new front(s) can propagate backward or forward. 
When a backward-propagating front encounters a forward-propagating front, they collide and 
usually annihilate (Fig 2B and S3 Video) or, rarely, give rise to another front. For broad reactors 
(>20 cells wide), fronts may propagate in directions not necessarily parallel to the channel longer 
axis (Fig B in S1 Appendix and S4 Video), which leads to a chaotic front pattern characteristic for 
the Greenberg–Hastings model (first defined in Ref. [15] and later recast as a stochastic model and 
studied, e.g., in Ref. [16]). This 2-dimensional effect is not observed in narrow channels, in which the 
front tail (the block of cells in the R state at the front’s rear side) is longer than the channel width.

We found that the propensity (probability per one cell layer) of a propagation failure event 
decreases with the channel width W as

	 λfail fail fail= × −( )( )exp ,a W W 	 (1)

where afail < 0 and Wfail are coefficients that depend on model parameters (Fig 2C). The expo-
nential dependence on W results from the fact that the number of cells in either the E or the 
I state is proportional to the channel width, and for a front to disappear all of them have to 
simultaneously progress to R without exciting new cells. In contrast, the propensity of new 
front spawning event increases linearly with channel width as

	 λspawn spawn spawn= × −( )a W W , 	 (2)

with aspawn and Wspawn dependent on the model parameters. This is because spawning may be 
triggered by any cell across the channel width (Fig 2C).

We noticed that in narrow channels (W  ≤  6), a single backward front is usually spawned 
(Fig 2D). In contrast, in broader channels (6 < W ≤ 10), multiple fronts are often created in a 
single spawning event. The fronts are typically spawned alternately backward and forward, 
implying a correlation between the number of fronts generated in either direction. For even 
broader channels (W  > 10), long-lasting spawning sites can generate new fronts for prolonged 
periods, blocking any information transmission. This becomes a dominant disruptive event in 
very broad channels of W > 20 (Fig 2E).

Optimal channel width
In the case of a narrow channel transmitting a series of fronts, the impact of the two types of 
disruptive events is similar. Propagation failure eliminates the front, whereas a backward- 
spawned front collides with and annihilates the subsequent (forward-propagating) front. In 
both scenarios, the total number of fronts received at the other side of the channel is reduced 
by 1. In narrow channels, a spawning event usually generates a single backward front. Thus, 
front elimination in a given time span can result either from its propagation failure or from a 
backward front spawned by the preceding front. We assume that λfail is small enough so that 
the probability that the backward front disappears before collision is negligible. Therefore, in 
narrow channel the total front elimination propensity is roughly
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Fig 2.  Disruptive events associated with front propagation. A Snapshots from simulations with the two kinds of 
disruptive events. Left: front dies out as all Excited or Inducing cells turn Refractory before exciting adjacent cells. 
Right: a single Inducing cell persists long enough for one of its neighboring cells to revert to the Quiescent state. This 
neighboring cell can then be reactivated, becoming a source of new fronts (in this case, one forward and one back-
ward). See also S1 and S2 Video for full time-courses. B Two fronts propagating in opposite directions collide and 
annihilate. See also S3 Video. C Propensity (probability per cell layer) of disruptive events as a function of channel 
width, in linear (left) and log (right) scale. Linear functions fitted to ln(λfail) and λspawn have coefficients afail = −1.82, 
Wfail = −0.19, aspawn = 1.85 ×   ×  10−5, Wspawn = 0.53. D Distribution of the number of forward and backward fronts 
spawned from a single localized spawning site for four different channel widths. Each disk area is proportional to the 
probability that a corresponding number of backward and forward fronts was spawned in a single event; the total area 
of all disks is proportional to the front spawning propensity, which is different for each channel width. E Propensity 
of spawning one or more fronts in a single localized disruptive event as a function of channel width. Data for pan-
els C–E was gathered from 30,000 simulations for each channel width, channel length was fixed at L = 300.

https://doi.org/10.1371/journal.pcbi.1012846.g002

https://doi.org/10.1371/journal.pcbi.1012846.g002
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	 λ λ λtot fail spawn= + . 	 (3)

As λfail decreases exponentially and λspawn increases linearly with the channel width, there is an 
optimal width at which λtot is minimized. This optimal width maximizes the probability that a 
given front in a front series passes uninterruptedly through the channel. For the nominal parame-
ter values and periodic boundary conditions along the longer channel edges, the optimal channel 
width is Wopt = 6 (Fig 2C), and for this width the average range of uninterrupted front propagation 
is about 8000 cell layers. As we will see later, the optimum is robust to moderate changes in the 
values of model parameters. We thus chose the value Wopt = 6 as the default channel width for 
most of the paper. Since uninterrupted front propagation is critical for information transmission, 
we expected that the information transmission rate would be highest when W is close to Wopt.

For non-periodic (inert) boundary conditions, for which interacting cells are bordered by 
biochemically inert cells, both λfail and λspawn are substantially larger because of disruptions 
initiated at the edges of the reactor. This modifies λspawn by a constant additive term. Conse-
quently, the minimum value of λtot is about four-fold higher and attained at W = 7 (Fig C in 
S1 Appendix). As it will be showed later, higher propensities of disruptive events imply lower 
information transmission rate.

Interaction between fronts

Refractory time
The tail of a front consists of a block of refractory cells, which hinder propagation of the next 
front. A cell requires, on average, Tcycle = 𝜏act/⟨nneigh_I⟩ + 𝜏E + 𝜏I + 𝜏R = 66.5 min to make a full cycle 
from Q through E, I, and R back to Q (assuming default parameter values and ⟨nneigh_I⟩ = 2). In 
the deterministic model, during this period, the channel is fully blocked; only fronts initiated 
at a rate smaller than 1/Tcycle are transmitted. In the stochastic model, Tcycle defines the time 
scale of the inter-front interval, below which the propensity of disruptive events is signifi-
cantly elevated, as one can see in the kymographs in Fig 3A.

To investigate how often fronts can be initiated and reliably transmitted, we performed 
simulations in which pairs of fronts were initiated at various inter-front intervals (Fig 3B). 
As expected, for intervals shorter than Tcycle, propagation of the second front typically fails 
immediately as the cells at the beginning of the channel have not recovered to Q yet (immedi-
ate failure probability is 50% for the interval of 61.5 min). The proximity of the previous front 
also markedly increases the probability of front spawning. This is likely due to some R cells 
remaining after the passage of the first front, which recover and become Q only after the pas-
sage of the second front. These cells may get activated within the block of R cells in the second 
front’s tail, seeding a new front at the second front’s rear side.

The described effects were found to be most significant for inter-front intervals in the 
range of 50–130 min, i.e., around the value of Tcycle + 𝜎cycle ≈ 96.6 min, where 𝜎2

cycle = (𝜏act/
⟨nneigh_I⟩)2 + 𝜏E

2/nE + 𝜏I
2/nI + 𝜏R

2/nR ≈  (30.1 min)2 is the variance of the time of the full cycle 
Q → E → I → R → Q. The time Tcycle + 𝜎cycle =: TR can be considered the effective refractory time. 
For inter-front intervals longer than 130 min, the propensities of disruptive events approach 
the single-front values (shown in Fig 2C). For intervals shorter than 50 min, the propensities 
of disruptive events remain high, but the overall probability of their occurrence becomes low, 
due to the high chance of immediate failure, which we count separately.

Propagation of periodically initiated fronts
The refractory time forces subsequent fronts to not travel too closely, and consequently the 
average interval between fronts reaching the end of the channel has a minimum (with respect 
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Fig 3.  Occurrence of disruptive events as a function of the interval between fronts. A Kymographs of the number 
of active cells (E or I) as a function of time and distance along the channel or fronts initiated periodically at differ-
ent intervals. Channel dimensions: W = 6, L = 300. B Probability of disruptive events for the latter of two fronts, as a 
function of the (initial) inter-front interval. Channel dimensions: W = 6, L = 300. C Average interval between fronts 
reaching the end of the channel as a function of the initial inter-front interval for different channel lengths. For each 
channel length, Ttrans-min is marked with dotted lines. Channel width W = 6, length as indicated. D Percentage of fronts 
that reached a certain distance along the channel for different initiation frequencies. Channel dimensions: W = 6, 
L = 1000. E Distribution of the interval between fronts that reached the end of the channel for different initial inter-
vals. Dashed vertical lines denote time points at which fronts were initiated. Pink vertical line shows Ttrans-min. Channel 
dimensions: W = 6, L = 300. In all panels, channel width W = 6. Data for panel B from 3000 simulations for each data 
point; data for panels C–E from 30 simulations of 500 fronts for each interval.

https://doi.org/10.1371/journal.pcbi.1012846.g003

https://doi.org/10.1371/journal.pcbi.1012846.g003
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to the frequency of front initiation), which we denote Ttrans-min(L). In a short channel of length 
L = 30, the effective refractory time TR is a good approximation of Ttrans-min (Fig 3C and Fig D 
in S1 Appendix). In a long channel, L = 1000, we observe that Ttrans-min is about 200 min and is 
achieved when fronts are initiated every 160 min, while a more frequent front initiation results 
in a slightly longer average front arrival interval. In long channels, a considerable percent-
age of fronts sent at periods shorter than TR is eliminated shortly after initiation (Fig 3D). 
For fronts sent every 150 or 180 min, the propensity of front elimination is initially low, but 
increases slightly with the distance from the initiation site (Fig 3D). This is because for such 
intervals disruptive events are relatively rare, but due to fluctuating velocities some fronts 
draw closer together, and thus the likelihood of disruptive events increases. Consequently, 
in a channel of length L = 300, fronts initiated every 150 or 180 min arrive with time spans 
distributed around the initial period (Fig 3E, top row), whereas fronts sent with periods <TR 
arrive with time spans distributed more broadly around Ttrans-min regardless of the initial pulse 
frequency (Fig 3E, bottom row). Overall, we found that in the limit of short channel lengths, 
the empirically estimated refractory time TR sets an upper limit on the transmittable front 
frequency, while in longer channels, the maximum transmission frequency is lower, and lower 
initiation frequencies enable propagation of more coherent front trains.

Information transmission rate

Numerical results
To estimate the bitrate, we used a simple binary protocol in which a sequence of equiprobable 
(probability of a ‘1’ q = ½) binary symbols Si ∈ {0, 1} is directly translated into a sequence of 
fronts (1 → front initiated, 0 → no front initiated) and sent through the channel at regular time 
slots, with inter-slot interval Tslot. We performed simulations and registered the time points 
at which the fronts reached the end of the reactor. For each time slot tslot, we computed the 
expected arrival time texpected = tslot + ⟨𝜏transit⟩ = tslot + L⟨v−1⟩ and selected the front that arrived 
closest to texpected. This could be a successfully transmitted front initiated in the considered slot, 
a front sent in another slot, or a front spawned in a disruptive event. We recorded the differ-
ence Δt = tarrival–texpected between the closest front’s arrival time tarrival and texpected. Using all slots 
in the sequence, we estimated the mutual information per slot (MIslot) as mutual information 
between Δt and the corresponding binary symbol S (see Methods for details). In Fig E in S1 
Appendix we show histograms of Δt for S = 1 and S = 0. For Tslot = 150 min these histograms are 
well separated, while for Tslot = 90 min there is a significant overlap. This implies a higher MIslot 
for Tslot = 150 min. Finally, we calculated the information transmission rate r = MIslot/Tslot. The 
results for various channel lengths and inter-slot intervals are presented in Fig 4A.

As one can observe, information transmission is highest for moderate values of Tslot. For long 
Tslot, the fraction of successfully transmitted information (equal to MIslot measured in bits, as each 
binary symbol carries one bit of information) is determined by the distant-front dynamics and is 
thus roughly independent of Tslot (Fig 4B). For large values of Tslot we may define two regimes:

(1)	 The free-front regime, in which the interval between slots is at least twice longer than the 
transit time. In this regime, fronts spawned backward cannot collide with subsequent 
fronts, because they reach the beginning of the channel and disappear before the subse-
quent front is initiated. Consequently, information transmission is determined by the 
single-front propagation failure propensity. This regime is characteristic of short channels 
or very long inter-slot intervals.

(2)	 The distant-front regime, in which fronts are frequent enough to be annihilated by back-
ward fronts spawned by their predecessors, yet still maintain sufficient distance to avoid 
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direct interaction (for the default parameters and L = 1000 this means Tslot  >  200 min, see 
Fig 3C). In this regime, the propensity of disruptive events is still equal to that observed 
for single fronts, but information transmission is limited by the total disruptive event 
propensity, as both propagation failure and backward front spawning lead to extinction of 
one forward front.

For the considered set of parameters, information transmission efficiency (MIslot) is substan-
tially higher in the free-front than in the distant-front regime, because the annihilation of 
forward-propagating fronts by spawned backward-propagating fronts (Fig 2D) is the main 
limiting factor in the distant-front regime. In both regimes, MIslot is nearly independent of Tslot, 
and thus the bitrate (equal to MIslot/Tslot) decreases as 1/Tslot. On the other hand, for short inter-
slot intervals the bitrate is limited by strong interactions between fronts (increasing propensity 
of disruptive events) and transit time dispersion comparable to Tslot. Thus, for each channel 
length, there is an optimum inter-slot interval Topt for which the bitrate is the highest.

For the nominal parameter values and channel length L = 30, the optimum is located 
at Topt ≈ TR ≈ 96.6 min, and the maximum bitrate is ~0.5 bit/h. Unsurprisingly, the bitrate 
decreases with an increasing channel length L regardless of Tslot due to the accumulation of 
disruptive effects (Fig 4A and 4C). The optimal interval Topt increases with L, and in the inves-
tigated range of channel lengths, the increment is roughly proportional to √L (Fig 4D), which 
can be attributed to accumulation of transit time variance.

The maximum information rate depends on the channel width (Fig 4E). As expected, the 
highest bitrate is observed for W = 6, for which the total disruptive event propensity is lowest 
(as shown Fig 2C). In short channels (L = 30), bitrate is a slowly decreasing function of W. On 
the contrary, in longer channels (L ≥ 100), bitrate decreases faster and drops nearly to zero 
when long-lasting spawning blocks any regular front propagation. This implies that in the tis-
sue, information can reach relatively short distances from a wound, unless the fronts are con-
fined to narrow structures, such as capillary vessels. The optimal inter-slot interval grows with 
W (Fig 4F), indicating that in broader channels, in which spawning events are more likely, 
the reliability of information transmission gained by increasing the distance between fronts 
(which reduces spawning propensity, Fig 3B) is worth the cost of the reduced front frequency.

Semi-analytical predictions based on phenomenological analysis
There are two major phenomena that set bounds on the information transmission rate: 
disruptive events and transit time stochasticity. If the intervals between slots are long, the 
major limiting factor is the possibility of front extinction, due to either propagation failure or 
a collision with a spawned backward-propagating front. In this case, the amount of trans-
mitted information per slot can be obtained from the confusion matrix with the formula 
MIslot = 1–1/2 × [(p + 1) log2 (p + 1)–p log2 p], where p is the probability of front extinction (see 
Methods for details). To determine the value of p, we used the propensities λfail and λspawn of 
disruptive events for single fronts (Fig 2C) and estimated the expected number of backward 
fronts spawned in a single event based on results shown in Fig 2D. We were then able to 
obtain a satisfactory prediction of MIslot in the distant-front limit (Tslot → ∞) as shown in Fig 
4B. By replacing the distant-front event probabilities with estimates for finite interval between 
fronts from Fig 3B we obtained satisfactory predictions of the bitrate for Tslot > 120 min for 
L = 100 and L = 300 and for Tslot > 200 min for L = 1000 (Fig 4G–4I, dotted line).

The prediction taking into account only the disruptive events is satisfactory for long inter-
vals and/or short channels. When Tslot is comparable to or shorter than the standard deviation 
of the transit time, 𝜎transit, fronts reaching the end of the channel may be assigned to a wrong 
slot. The value of 𝜎transit scales proportionally to √L, which makes the misassignment more 
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Fig 4.  Rate of information transmission. A Bitrate as a function of the interval between slots for various channel lengths. The sent information rate is plotted in gray. 
Channel width W = 6. B Bitrate from panel A as a fraction of the sent information rate. Solid lines show the information transmission efficiency computed based on  
distant-front simulations, with a correction for backward fronts hitting the channel beginning (see Methods for details). C, D Maximum bitrate (C) and optimal inter-
slot interval (D) as a function of (the square root of) the channel length. Channel width W = 6. E, F Maximal bitrate (E) and optimal inter-slot interval (F) as a function 
of the channel width for various channel lengths. G–I Prediction of bitrate taking into account the probability of front extinction due to propagation failure or collision 
with a backward front (dotted line), and the chance that a front was attributed to a wrong slot due to transit time stochasticity (dashed lines) – see Methods for details. 
Colored lines as in panel A. Data for panels A–B and G–I from N = 100 simulations with 500 front slots for each data point. Data for panels C–F was computed by 
searching for the maximum in a series of values computed as in panel A.

https://doi.org/10.1371/journal.pcbi.1012846.g004

https://doi.org/10.1371/journal.pcbi.1012846.g004
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likely for longer channels. Once this effect is taken into account (see Methods for details), 
the prediction (Fig 4G–4I, dashed line) becomes satisfactory both for short and long Tslot, 
with some discrepancy for intermediate Tslot values due to fronts spawned forward and other 
neglected factors.

In all the analyses, for sake of simplicity we employed the binary encoding protocol with 
equiprobable input symbols (q = ½) and varying Tslot. As discussed in Text A in S1 Appendix, in 
cases where the effective refractory time TR is large compared to 𝜎transit (e.g., for short channels 
or long 𝜏R), the optimal q can be substantially smaller than ½, and consequently the maximum 
bitrate can be higher. However, only for L = 30 the bitrate increase was found significant (+20%).

Thus far, the bitrate was estimated based on the arrival times of individual fronts. We show 
and discuss the inference based on two consecutive fronts, which yields higher bitrate esti-
mates for short channels (L = 30), in Text B in S1 Appendix.

Sensitivity analysis

Disruptive events in single fronts
The maximum front frequency and information transmission rate depend on model param-
eters. In Fig 5A we analyze how the kinetic model parameters influence the propensities of 
disruptive events, λfail and λspawn, given in Eqs (1–2). For the nominal parameter values, Wfail ≈ 0 
and Wspawn ≈ 1, and numerical analysis indicates that these coefficients remain in the range 
(−1, 2) for the considered range of model parameters (Fig F in S1 Appendix). Thus, changes in 
these coefficients have modest effect on λfail and λspawn. Therefore, crucial for understanding the 
system’s behavior are the changes of coefficients afail and aspawn. It is important to notice that 
afail changes approximately linearly with the kinetic parameters, while aspawn scales exponen-
tially; as a consequence, both λfail and λspawn exhibit exponential dependence on 𝜏E, 𝜏I, 𝜏R, and 
𝜏act.

We may notice that afail (and thus λfail) does not depend on 𝜏E and 𝜏R, as those parameters 
have no influence on whether a cell will be activated. The failure propensity increases with 𝜏act 
and decreases with 𝜏I, because increase of the ratio 𝜏act/𝜏I implies a lower probability that an I 
cell activates a Q neighbor before proceeding to R.

The coefficient aspawn (and thus λspawn) depends on all four kinetic parameters. It increases with 
𝜏act, which can be explained as follows: high 𝜏act implies low cell activation propensity, which ren-
ders some cells activated at the rear side of the front and mediating front spawning. Importantly, 
the value of coefficient aspawn increases with 𝜏E (the increase of which implies a higher chance that 
the cell becomes inducible in the front tail) and decreases with 𝜏R (the increase of which implies a 
broader zone of R cells behind the front). Coefficient aspawn decreases with nE, nI, and nR, because 
the increase of the number of intermediate states renders the distribution of times of transitions 
E → I, I → R, and R → Q narrower, resulting in less stochastic front propagation. Consequently, 
the minimum value of λtot is an increasing function of 𝜏E, decreasing function of 𝜏R, and decreas-
ing function of nE, nI, and nR (Fig 5B). Another consequence of the discussed dependence of 
aspawn on 𝜏E and 𝜏R, and independence of afail of these two kinetic coefficients, is that an increase of 
𝜏R and/or decrease of 𝜏E shift Wopt to higher values (Fig 5C).

In summary, we showed that an increase of the 𝜏R/𝜏E ratio (i.e., the ratio of the residence time 
in the refractory state to the residence time in the excited state) nearly exponentially reduces the 
disruptive event propensity λtot, and linearly increases the optimal width Wopt of the channel.

Periodic fronts and bitrate
Understanding how the model kinetic parameters influence the propensities of disruptive events 
allows us to analyze and interpret their impact on Ttrans-min and maximum bitrate (Fig 6). The 
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Fig 5.  Sensitivity analysis – disruptive events in single fronts. A Dependence of slope coefficients aspawn and afail 
on model parameters. B Dependence of the minimum total disruptive event propensity λtot on model parameters. 
C Dependence of the optimal channel width Wopt on model parameters. Each data point was obtained by fitting 
λspawn(W) and λfail(W) curves to numerical data as in Fig 2C. The encircled dots in each panel correspond to the nom-
inal parameter set given in Fig 1B. All parameters apart from those indicated on the horizontal axis are fixed to their 
nominal values.

https://doi.org/10.1371/journal.pcbi.1012846.g005

https://doi.org/10.1371/journal.pcbi.1012846.g005
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dependence of Ttrans-min on the on the 𝜏act and 𝜏I is dictated by the dependence of λfail and λspawn on 
these parameters; as expected, the increase of λfail or λspawn leads to the increase of Ttrans-min. The 
dependence of Ttrans-min on 𝜏E and 𝜏R is more intriguing: Ttrans-min has maxima with respect to 𝜏E 
and decreases for large 𝜏E; Ttrans-min decreases also for small 𝜏R. This is puzzling, as we know from 
Fig 5A that large large 𝜏E and small 𝜏R imply large λspawn, which could block front propagation. 
However, as we can see in kymographs in Fig 6B and 6C, for small 𝜏R and large 𝜏E we observe 
a distinct pattern of front spawning. In this mode, numerous backward and forward fronts are 
created, so the front density (especially for small 𝜏R) at the end of the channel is higher than at its 
beginning. In this regime it is impossible to coordinate collective cell motion in the direction of 
the front source.

Kymographs in Fig 6B also suggest that there should exist some optimal 𝜏R, at which the 
bitrate is highest. In fact, this maximum is attained close to the nominal value of 𝜏R, which is 
60 min (Fig 6D). Larger values of 𝜏R do not allow for frequent fronts, while smaller ones are 
associated with a spawning front propagation pattern (blocking any information transmis-
sion). For the same reason, information transmission is blocked for large values of 𝜏E. The 
information transmission rate increases monotonically with decreasing 𝜏E. This is because the 
decrease of 𝜏E reduces λspawn and to some extent the refractory time, and does not influence λfail.

Unsurprisingly, in the MAPK/ERK pathway, 𝜏E is short (several minutes) despite ERK 
activation being a multistep process. As shown in Fig G in S1 Appendix, the maximum bitrate 
grows monotonically with the number of sub-states (providing that the total time of all sub-
states remains constant). In agreement with the influence of 𝜏act on λfail and λspawn, the bitrate 
decreases monotonically with 𝜏act, and, similarly as with 𝜏E, 𝜏act appears to be short for the 
MAPK/ERK pathway. Finally, the bitrate attains its maximum close to the nominal value of 𝜏I.

Front propagation in broad channels
In broad channels of W ≳ 15, front spawning events frequently seed multiple fronts (Fig 2D 
and 2E) giving rise to chaotic front propagation patterns (as shown in Fig B in S1 Appendix 
and S4 Video), which can block information transmission for very long times. Thus, for such 
channels information transmission rate is close to zero, and one should rather ask about 
the number of fronts that can be transmitted before chaotic patterns develop due to spawn-
ing event(s). For this reason, we determined the expected number of fronts Nfronts that can 
propagate through the channel of L = 300 and W = 6, 15, 30, and 60 before the first spawning 
event. In Fig 7, lines correspond to noninteracting fronts (λspawn

−1 computed based on the 
aspawn and Wspawn estimation shown in Fig 5A and Fig F in S1 Appendix), while circles were 
obtained from simulations with two fronts separated by the interval of 4 𝜏R. One can see that 
(for L = 300) such interval is sufficient to neglect the influence of inter-front interaction on 
spawning.

N = 3000 simulations were performed for each data point. Encircled points correspond to 
the nominal parameters given in Fig 1B.

We may notice that Nfronts is a nearly exponentially increasing function of 𝜏R (Fig 7A) and a 
nearly exponentially decreasing function of 𝜏R (Fig 7B). Therefore, although Nfronts decreases 
with the channel width as 1/W (for the nominal parameters, Nfronts is about 10 times higher 
for W = 6 than for W = 60), the effect can be compensated with a relatively small change in 
the kinetic parameters. For example, for W = 60, increasing the refractory time to 𝜏R = 90 min 
results in the increase of Nfronts about 50 times, to over 100. Because for W  > 10 the propensity 
of front propagation failure is negligible (Fig 2C), all initiated fronts will reach the end of 
the channel. Additionally, the transit time variance 𝜎2

transit is a decreasing function of W (Fig 
A panel b in S1 Appendix), so for W  > 10, L = 300 the distribution of the transit time is also 
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sufficiently narrow for the received fronts to be uniquely assigned to their slots (for Tslot ≥ 4𝜏R). 
Therefore, for the aforementioned example parameters (L = 300, W = 60, 𝜏R  = 90 min, 
and other parameters having nominal values), before the channel is blocked, on average 

Fig 6.  Sensitivity analysis – periodic fronts and the bitrate. A Interval Ttrans-min (minimized with respect to the initial 
interval) at the channel end of the channel as a function of the model parameters. The remaining parameters are equal 
to the nominal values given in Fig 1B. B, C Kymographs of the number of active cells (E or I) as a function of time and 
distance along the channel for fronts initiated periodically at the interval of 150 min for three different values of 𝜏R (B) 
and 𝜏E (C). The remaining parameters are equal to the nominal values given in Fig 1B. D Maximal bitrate (maximized 
with respect to the input bitrate) as a function of the model parameters. In all panels, channel dimensions are W = 6 
and L = 300. Encircled dots correspond to the nominal parameters given in Fig 1B.

https://doi.org/10.1371/journal.pcbi.1012846.g006

https://doi.org/10.1371/journal.pcbi.1012846.g006
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Nfronts ≈ 100 can be sent, received, and properly assigned to their slots, which allows for trans-
mitting 200 bits of information in the binary protocol with equiprobable symbols.

Discussion
ERK activation triggers cell contraction, which leads to activation of EGFR in neighboring 
cells [3]. In cell collectives, this mechanochemical coupling coordinates the propagation of 
waves of ERK activity and cell movement against the waves’ direction [9]. As the MAPK/ERK 
cascade is inhibited behind the front, cell contraction induces subsequent ERK activation in 
cells directly ahead of the front, rather than behind it. The mechanochemical coupling was 
theoretically studied in 1-D and 2-D models by Boocock et al. [4,17]. Their model, con-
strained with data obtained from experiments on MDCK cells but omitting details of signal 
transduction through the MAPK/ERK cascade, allowed them to determine the optimal wave-
length and period for maximizing migration speed towards the tissue boundary. In our study, 
we investigated the processes that interfere with the stochastic propagation of activity waves.

Canonically, trigger (homoclinic) traveling waves employ a positive feedback to propagate 
over long distances [18–20]. In our model, the positive feedback (at the tissue level) arises 
when the inducing cell excites a quiescent cell, and then the quiescent cell becomes induc-
ing itself. Because after the passage of a homoclinic wave, the system returns to its single 
steady state, such waves can be initiated recurrently at desired time points; the same property 
entails that in the presence of stochastic fluctuations, waves can vanish but also may arise 
spontaneously.

In our study, we characterized two types of disruptive events: front propagation failure and 
new front spawning. Propagation failure eliminates the front, whereas a single backward- 
spawned front collides and annihilates with the subsequent front in the series. Thus, when 
fronts are initiated repeatedly, in both cases, the total number of fronts is reduced by 1. Conse-
quently, the probability that a front in a series of fronts passes through the channel decreases 
with the total disruptive event propensity λtot = λfail + λspawn. Importantly, because λfail decreases 
(exponentially), while λspawn increases (linearly) with the channel width W, there is some 

Fig 7.  Sensitivity analysis – front propagation in broad channels. A, B Expected number of fronts that will pass uninterruptedly through the channel of length L = 300 
before the first spawning event as a function of the model parameters 𝜏R (A) and 𝜏E (B). Computed based on the spawning probability for the latter of two fronts initiated 
4  ×  𝜏R apart (squares) or based on the coefficients aspawn, Wspawn from Fig 5A and Fig F in  S1 Appendix (lines).

https://doi.org/10.1371/journal.pcbi.1012846.g007

https://doi.org/10.1371/journal.pcbi.1012846.g007
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optimal channel width Wopt, for which the probability of uninterrupted front propagation 
through the channel is the highest. This result is surprising because intuitively, the reliability 
of stochastic signal transduction should monotonically grow with the channel width. The 
fidelity of front propagation in relatively narrow channels may allow for transmission of ERK 
waves in narrow structures like capillary and lymphatic vessels, in which sequential ERK acti-
vation [21] and calcium waves [22] have been observed.

The tail of each front consists of a layer of refractory cells, which block the propagation of 
other fronts close behind. The effective refractory time TR = Tcycle + 𝜎cycle, where Tcycle is the cell 
cycle time (from Q through E, I, and R back to Q) and 𝜎cycle is the cell cycle standard deviation. 
When studying periodically initiated fronts, we observed that the time TR approximates the 
lower limit on the time interval between fronts that can be transmitted through a short chan-
nel. In longer channels, the minimum average interval between fronts Ttrans-min is larger than 
TR, and increases with the channel length.

To numerically estimate the rate at which information can be transmitted, we employed a 
binary encoding protocol. We found that for the optimal channel width, the bitrate is 0.5 bit/
hour for L = 30 and 0.2 bit/hour for L = 1000 for the nominal model parameter values, consis-
tent with the timescales of processes implicated in the MAPK/ERK signaling cascade. There 
are two major phenomena that limit the information transmission rate: disruptive events and 
transit time stochasticity. For long intervals between fronts, the possibility of front extinction 
due to disruptive events is the limiting factor. In this case, we showed that the amount of 
information transmitted per slot equals MIslot = 1–1/2 × [(p + 1) log2 (p + 1)–p log2 p], where p 
is the probability of front extinction, which is an increasing function of front slot frequency. 
Since the bitrate is the product of the slot frequency and MIslot, it attains its maximum for 
some optimal inter-slot interval. When the interval between front slots is comparable to or 
shorter than the standard deviation of the transit time (that increases with channel length), 
fronts reaching the end of the channel may be attributed to a wrong slot. Once this effect is 
taken into account, our phenomenological predictions become satisfactory for both short and 
long inter-slot intervals. As expected, the bitrate reaches its maximum for the channel width 
which minimizes the propensity of disruptive events.

We performed a sensitivity analysis to show that the ratio of the refractory to the excited 
state residence times (𝜏R/𝜏E) nearly exponentially reduces the total disruptive event propensity. 
Surprisingly, we found that Ttrans-min decreases for large 𝜏E and small 𝜏R, attaining high values 
when the disruptive event propensity is high. Kymographs indicate that for small 𝜏R or large 
𝜏E there is a distinct chaotic front spawning regime. In this regime, multiple backward and 
forward fronts are created, so that the front density (especially for small 𝜏R) at the end of the 
channel is higher than at its beginning. The existence of multiple backward fronts excludes 
coordination of collective cell motion in the direction of the signaling source. We found 
that (for other parameters fixed) there exists an optimal 𝜏R (close to the nominal 𝜏R value of 
60 min) associated with the highest bitrate. Larger 𝜏R precludes frequent fronts, while smaller 
𝜏R leads to the chaotic front spawning regime blocking any information transmission. Infor-
mation transmission is also blocked for large values of 𝜏E, and bitrate increases monotonically 
with decreasing 𝜏E. This is because a decrease of 𝜏E reduces λspawn and does not influence λfail. 
Unsurprisingly, in the MAPK/ERK pathway, 𝜏E is short despite ERK activation being a multi-
step process.

Finally, we observed that in broader channels, front spawning causes that front propa-
gation becomes chaotic, as observed in the experimental work of Hino et al. [3]. However, 
sensitivity analysis indicates that front spawning propensity grows only linearly with the 
channel width while it decreases exponentially with the refractory time. Therefore, a relatively 
modest increase of the refractory time allows for unperturbed transmission of multiple fronts 
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also in broader channels before chaotic front patterns develop. This may explain why the ERK 
activity waves observed in zebrafish scales [5] are much more stable.

Shannon mutual information and information rate give an upper bound on the complexity 
of decisions that the receiving agent can make in response to the sent signal. It was recently 
demonstrated that the navigation of Escherichia coli in changing chemoattractant gradients 
is information-limited [23]. For a cell to informedly choose among two possible responses, 
it has to receive at least log2 2 = 1 bit of information. If a cell is to make such binary decisions 
every ten minutes, the required information rate is 6 bit/h. Previous studies have established 
that the NF-κB and MAPK/ERK pathways are able to transmit merely 1 bit of information 
about the strength of a stimulus enabling binary decision-making [24,25]. In a recent work, we 
have established that the MAPK/ERK cascade is capable of transmitting information between 
membrane (opto)receptor (opto-FGFR) and ERK at bitrate exceeding 6 bit/hour [26]. This 
high bitrate allows for coordination of fast processes, such as mitotic divisions in Drosophila 
melanogaster, that occur synchronously about every 10 min [27].

To coordinate behavior of a cell population, as in the case of wound healing, information 
must be propagated between cells, and the bitrate limits temporal resolution, complexity 
of a desired behavior, and the extent of cell coordination. Travelling fronts (in contrast to 
diffusion) can propagate signals at a constant speed over long distances. Our analysis of ERK 
activity waves in cell monolayers indicates that there is an optimal channel width and optimal 
slot frequency, at which the front propagation is least perturbed and consequently the highest 
bitrate is achieved. Additionally, sensitivity analysis suggests that the time scales associated 
with signal transmission within the MAPK/ERK pathway are in the range that allows for effi-
cient information transmission by traveling ERK activity waves.

Methods

Numerical simulations
Kinetic Monte Carlo simulations on a triangular lattice were carried out according to the 
Gillespie algorithm using the code adapted from Ref. [28]. In all simulations except those for 
Fig C in S1 Appendix, periodic boundary conditions were applied along the lower and the 
upper edges. Cells traverse the QEIRQ sequence of (sub)states when activated by a neighbor-
ing cell in an I substate. Cells cannot change their locations nor die. State-to-state transitions 
are shown in Fig 1A and default parameter values are given in Fig 1B.

Front tracking
Front arrival time.  Activity (i.e., total number of cells in states E or I, NEI) in the last cell 

layer was counted as a function of time; local maxima along the temporal axis were found and 
filtered based on peak height to remove peaks closer than 20 or 30 min apart.

Disruptive event detection.  Activity (i.e., the total number of cells in states E or I, NEI) was 
counted as a function of the distance x from the beginning of the channel and time to form a 
kymograph (x–t plot; Figs 3A, 6B, and 6C). To determine front positions, the kymograph was 
smoothed (with a Gaussian kernel along the x-axis and an exponential kernel along the t-axis); 
then local maxima of NEI along the x-axis were found (thresholds on minimal peak height and 
minimal distance between peaks were used to discard short-lasting fluctuations). Fronts were 
tracked using LapTrack [29]. Fates of fronts that did not reach the end of the channel were 
classified as ‘annihilation’, ‘immediate failure’, or ‘propagation failure’ depending on whether, 
respectively, the front disappeared in the vicinity of another front propagating in the opposite 
direction, within a certain minimal distance from the channel beginning (1–5 cell layers 
depending on the channel width), or while propagating freely through the channel. To detect 
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front spawning, track splits were recorded. Tracks shorter than 50 min that did not reach the 
channel end nor split into other tracks were discarded together with the split in which they 
were created. The remaining track splits were treated as front spawning and grouped into 
events: two splits were assigned to a single spawning event if they occurred not further than 20 
cell layers apart in space and 150 min away in time (Fig 2D and 2E).

Numerical data analysis
Front speed and transit time variance.  To determine the average inverse front speed and 

transit time variance (Fig A in S1 Appendix), for each channel width, N = 30,000 simulations 
with a single front were performed in a reactor of length L = 300 (or L = 30 in the cases when, 
due to a very short average front range, too few fronts reached the distance of 300 to collect 
sufficient statistics). Average inverse front speed and transit time variance were computed as 
⟨v−1⟩ = ⟨𝜏transit⟩ / L and 𝜎2

0 = (Var 𝜏transit) / L, where 𝜏transit is the time of the first detected front 
arrival in each simulation. Fronts that did not reach the end of the channel were discarded; 
therefore, formally, we compute both quantities conditioned on the fact that the front reached 
the channel end.

Disruptive events – single fronts.  For each channel width, N = 30,000 simulations with 
a single front were performed in a reactor of length L = 300; fronts were tracked, and front 
fates were determined. For each simulation, the first disruptive event (propagation failure or 
front spawning) was determined and its position was recorded. The number of simulations 
with at least one disruptive event, nevent, and the average position of the first event, xevent, were 
obtained. The total event propensity was calculated with the formula

	 λtot
event

event event event      
=

× + −( ) ×
n

n x N n L
. 	 (4)

Propensities of events of a particular type were computed as

	 λ λfail
fail

event
tot=

n
n

, 	 (5)

	 λ λspawn
spawn

event
tot=

n
n

, 	 (6)

where nfail and nspawn denote the number of simulations in which, respectively, propagation 
failure and front spawning was the first disruptive event. We used the least squares method for 
fitting coefficients aspawn, afail, Wspawn, Wfail in Eqs (1–2) (Figs 2C, 5A, and Fig F in S1 Appen-
dix). The optimal width Wopt in Fig 5C was taken as the integer with minimal λtot, computed 
according to Eqs (1–3) based on the best-fit coefficients. Minimal disruptive event propensity 
(Figs 5B and 6A) was computed using Eqs (1–3) for W = Wopt. The estimation of the number 
of fronts spawned in either direction (Fig 2D and 2E) was based on the first spawning event in 
each simulation.

Disruptive events – interacting fronts.  For each considered inter-front interval, N = 3000 
simulations were performed with two fronts separated by the given (initial) interval; fronts 
were tracked and their fates were determined. Based on this, the probability of disruptive 
events concerning the latter front (failure, spawning, or annihilation by a front spawned by 
the first front) was calculated (Fig 3B).

Front arrival frequency.  The average frequency of fronts at the end of the channel (Fig 3C 
and 3E) was measured by counting front arrivals at the end of the channel of indicated length. 
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The frequency of fronts reaching a certain distance (Fig 3D) was measured by counting peaks 
of activity along the temporal axis at the given distance from the beginning of the channel, in 
a channel of length L = 1000. N = 30 simulations with 500 fronts each were performed for each 
initial inter-front interval and (for Fig 3C and 3E) channel length.

Information transmission rate – numerical estimation.  To estimate the information 
transmission rate (Figs 4, and 6D; Fig G, H , panel b, and I in S1 Appendix), N = 100 random 
sequences of 500 binary symbols S were generated, determining, for each slot, whether a front 
should be initiated. Unless stated otherwise, the probability of initiating a front was ½. For 
each channel width, the average inverse front velocity was estimated numerically as described 
above (based on N = 3000 simulations) and used to predict the expected front transit time. 
For each front sequence, simulations were performed and, for each slot (with associated time 
tslot), we computed the expected arrival time texpected = tslot + ⟨𝜏transit⟩ = tslot + L⟨v−1⟩ and recorded 
the difference Δt = tarrival–texpected between the closest arrival time (tarrival) and texpected. Note that we 
computed texpected and Δt for each slot, regardless of whether a front was initiated in it or not. In 
Fig E in S1 Appendix we show histograms of Δt for S = 1 and S = 0.

Next, we calculated the mutual information per slot MIslot as information between the binary symbol 
S and variable Δt as follows. The differences Δt, binned with 1-minute resolution, were counted across 
all slots and stimulation sequences. Conditional entropy H(S | Δt) was computed using a kNN-based 
algorithm with Miller–Madow bias correction [30,31]. In short: if a particular difference Δt’ occurred n  
≥  k = 25 times, numbers of occurrences originating from slots with S = 0 and S = 1 were counted (n0 and 
n1, respectively) and the following formula was used for conditional entropy estimation:

	 H  MM,S t t
n
n

n
n

n
n

n
n

| ’ log log∆ ∆=( )= + +0
2

0 1
2

1 	 (7)

where MM = 1/(2n ln 2) if n0 ≠ 0 and n1 ≠ 0, and MM = 0 otherwise. If n  <  k, in order to ensure 
proper sample size, the calculation of n0, n1 and n was repeated including not only points with 
Δt = Δt’, but also with Δt closest to Δt’ so that k data points were used in total.

The conditional entropy H(S | Δt = Δt’) was averaged across all data points to obtain H(S | 
Δt), and subtracted from H(S) = 1 bit to obtain MIslot according to the formula

	 MI I H H  | slot = ( )= ( )− ( )S t S S t; .∆ ∆ 	 (8)

In cases where the MIslot estimation was based on more than one front (Text A and Fig I in S1 
Appendix), a vector of arrival time differences with respect to the expected arrival time was 
used in place of Δt; Euclidean norm was used to find the nearest neighbors in the case of n  <  k.

Bitrate optimization was conducted by scanning the parameter space around a value pre-
dicted by earlier results (Figs 4E, 4F, 6D, and Fig G in S1 Appendix) or by a custom algorithm 
(Fig 4C and 4D).

Information transmission rate – semi-analytical predictions.  To predict the information 
transmission rate for distant fronts (Fig 4B), we used the coefficients aspawn, afail, Wspawn, and 
Wfail obtained based on single-front simulations (Fig 2C; Eqs (1–2)) to calculate λspawn and λfail. 
Then, we computed the probability that a front in a front train is eliminated

	 p L n= − × + × ×( )( )exp ,λ γ λfail spawn backward 	 (9)

where nbackward = 1.285 is the expected number of backward fronts spawned in a single event 
(obtained from data shown in Fig 2D) and 𝛾 is the probability that a backward front col-
lides with a next front before reaching the channel beginning. We used 𝛾 = 1 to obtain the 
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distant-front value shown in Fig 4B. Based on the probability of front extinction p we con-
structed the confusion matrix

	
sent received

 

\
,

0 1
0 1 0
1 1

−
−( )

q
q p q p

	 (10)

where q is the probability of sending ‘1’ in the binary protocol. Then we computed MIslot using 
the standard formula

	 MIslot =∑ − ∑ − ∑( )i j ij ij i i j j ijc c c c, ’ ’ ’ ’log log log2 2 2 	 (11)

where cij are the entries of the confusion matrix, obtaining

	 MI      slot =− + − +( ) − +( ) + ( )q q q pq q pq pq pqlog log log ,2 2 21 1 	 (12)

which in the case of q = ½ simplifies to

	 MIslot = − +( ) +( )−( )1 1
2

1 12 2p p p plog log . 	 (13)

Eventually, we computed the information transmission rate as

	 r
T

=
MIslot

slot

. 	 (14)

To include the effect of interaction between fronts (Fig 4G–4I, dotted line), we took into 
account the probabilities of disruptive events pfail = ppropagation failure + pimmediate failure and pspawn 
obtained from the numerical simulations with two fronts at different intervals (Fig 3B), as a 
function of the initial interval. To account for the fact that in the binary protocol the initial 
interval between fronts can be any multiplicity of the inter-slot interval Tslot (interval of length 
k × Tslot has probability q(1–q)k−1), we averaged the probabilities pfail and pspawn using the formula

	 p q q p k Tk
k

event event slot=∑ −( ) × ×( )=
∞ −

1
11 , 	 (15)

where pevent is either pfail or pspawn and q = ½ is assumed. Then, we approximated the probability 
that a front is eliminated with the formula

	 p
p

p n
= −

−
+ × ×

1
1

1
fail

spawn backward      γ
, 	 (16)

where nbackward = 1.285 was taken from the single-front simulations and 𝛾 was calculated as

	 γ=∑ −( ) × − ×








=

∞ −

k
kq q k

v T
L1

11 0 1
2

max ; . 
 slot 	 (17)

Based on p, we calculated MIslot and bitrate using Eq (12) and Eq (14). Note that, unlike 
before, in this approach we used probabilities of disruptive events rather than propensities, 
which required running the two-front simulations for each channel length separately (anal-
ogous to Fig 3B, in which only results for L = 300 are presented). This was necessary, as the 
probabilities do not scale linearly with the channel length, due to the fact that the disruptive 
events are more likely to take place near the beginning of the channel.
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To additionally include the effect of the transit time variance (Fig 4G–4I, dashed line), we 
assumed that the transit time has a normal distribution with 𝜎2 = 𝜎2

transit = 𝜎2
0 L and that a ‘1’ 

was received whenever a front arrived within Tslot/2 from texpected (note that is not what we do in 
the numerical approach). The probability of a front being attributed to the correct slot, con-
ditioned on that it reaches the channel end, is then paccurate = erf(Tslot/ (2√2 𝜎0√L)). We modified 
the elimination probability p’ = p + (1–p) (1–paccurate) and computed the probability that a front 
was mistakenly detected in a slot in which no front was initiated pfake = q(1–p) (1–paccurate)–1/4 
q2 (1–p)2 (1–paccurate)

2 (the latter term prevents double counting of cases in which fronts from 
both the previous and the next slot are attributed to the considered slot). We created the con-
fusion matrix:

	

sent received

fake fake

fake

\ 0 1

0 1 1 1

1 1 1

−( ) −( ) −( )
−( ) −′ ′

q p q p

qp p q p(( )+



′p pfake

	 (18)

and computed MIslot using the formula (11).
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