
XI Konferencja Naukowo-Techniczna ARCHBUD 2025: PROBLEMY WSPÓŁCZESNEJ ARCHITEKTURY I BUDOWNICTWA (20-23 września 2025 r., Kołobrzeg, Polska) 

 

Strona 1 z 7 
„Księga abstraktów konferencyjnych ARCHBUD 2025” 

Akademia Techniczno-Artystyczna Nauk Stosowanych w Warszawie 
www.akademiata.pl 

1Autor 1 (dr hab.) Wasyl Kowalczuk (ORCID.org/0000-0001-5391-2706) 

1Akademia Techniczno-Artystyczna Nauk Stosowanych w Warszawie, 

1Instytut Podstawowych Problemów Techniki Polskiej Akademii Nauk, 

1E-mail: vkoval@ippt.pan.pl 

EULER’S ELASTICAS IN NONLOCAL THEORY OF ELASTICITY 

 

Streszczenie (abstrakt): 

A generalization of the Euler’s elastic problem, i.e., finding stationary configurations (planar elasticas) of the Bernoulli’s thin ideal 

elastic rod with boundary conditions defined through fixed endpoints and/or tangents at the endpoints, for nonlocal stress tensors and 

the corresponding nonlocal differential constitutive stress-strain relations (nonlocal theory of elasticity) is considered. In the classical 

(local) Euler-Bernoulli’s beam model the solutions of the governing equations for bending moments and shear forces with static 

boundary conditions in the case of large deformations can be obtained using Jacobi elliptic functions and incomplete elliptic integrals. 

It can be shown that even for a simplified nonlocal beam model proposed by Eringen the governing differential equations have much 

more elaborated form comparing to the local case, which makes the problem of finding the exact analytical solutions of the boundary 

value problems being quite a challenging task. Nevertheless, some approach based on the iterative integration method of finding an 

analytical form of the solution is proposed as well as the strongly nonlinear differential equation on the tangent slope angle for the 

Euler’s elasticas has been derived and analysed. 

 

Słowa kluczowe: Euler’s elasticas; Euler-Bernoulli’s beam model; nonlocal differential constitutive stress-strain relations; nonlocal 

theory of elasticity; incomplete elliptic integrals of the first, second, and third kind; Jacobi elliptic functions 
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1. Introduction 

The classical Euler-Bernoulli’s model was originally developed in the XVIII-th century in order to describe 

the large deformations of plane curved beams based on the local elasticity theory. It can be shown that the 

exact solution of this problem can be written using the Jacobi elliptic functions and incomplete elliptic 

integrals of the first, second, and third kind (see, e.g., the paper of Huo, Y.-L., Pei, X.-S., & Li, M.-Y. [3] in 

application to the analysis of the lightweight shock absorbing structures formed from many arc-curved beams 

placed between two flat platforms, where the curved beams can store more energy and produce less reaction 

forces compared to the ordinary elastic structures). 

The Euler-Bernoulli’s theory can be applied also to very small objects, e.g., nanobeams (including 

nanowires, nanotubes, and nanorods) considered as beams with very small length scale (nanoscale) that can 

be deformed with bending moments, shear and axial forces. Such objects exhibit extraordinary physical and 

mechanical characteristics, e.g., high aspect ratio, high flexibility, high tensile and shear strength, and high 

modulus of elasticity. For instance, for carbon nanotubes we have that [6] 

𝜌 = 2300
kg

m3
, 𝐸 = 1000 GPa, 𝜈 = 0.19, 𝐺 = 420 GPa,                                           (1) 

𝑑 = 1.0 nm, 𝐴 = 0.785 nm2, 𝐼 =
𝜋𝑑4

64
= 0.0491 nm4, 𝑙𝑖 = 1.5 nm,                     (2) 

where 𝜌 is the density, 𝐸 is the Young’s (elastic) modulus, 𝜈 is the Poisson’s ratio, 𝐺 is the Kirchhoff’s (shear) 

modulus, 𝑑 is the diameter of nanotubes, 𝐴 is their section area, 𝐼 is the moment of inertia of their section, 

and 𝑙𝑖 is the internal characteristic length. 

In order to describe nanobeams not only the classical beam theories are used, but also the nonlocal 

elasticity (in relation to the small-scale effects) is applied that allows us to investigate, for instance, the 

problems of static bending, free vibration analysis, and also elastic buckling of carbon nanotubes (see, e.g., 

the papers of Reddy, J.N. [5], Reddy, J.N., Pang, S.D. [6], as well as Thongyothee, C., Chucheepsakul, S. [7] 

where was investigated the postbuckling of unknown-length nanobeams that is based on the concept of 

variable-arc-length (VAL) beams). 

2. Euler’s elasticas in classical local theory of elasticity – explicit analytical solutions 

The formal mathematical description of the elastic line or Euler’s elastica can be found, e.g., in the papers 

of Djondjorov, P.A., Hadzhilazova, M.Ts., Mladenov, I.M., & Vassilev, V.M. [1-2] or Pulov, V.I., Hadzhilazova, 

M.Ts., & Mladenov, I.M. [4], where the general solutions in terms of elliptic functions and explicit 

parametrizations for free elastica as well as the elastica with tension are presented. 

The equilibrium equations of the small segment of the beam in the theory of elasticity are given as 

𝑑𝑀

𝑑𝑠
= 𝑄,

𝑑𝑄

𝑑𝑠
= −𝜅𝑁,

𝑑𝑁

𝑑𝑠
= 𝜅𝑄,                                                     (3)  

where 𝑀 is the bending moment, 𝑁 and 𝑄 are the axial and shear forces, and 𝜅 is the curvature of the elastica 

that is parameterized by the so-called arclength parameter 𝑠 changing from 0 to 𝐿, where 𝐿 is the total length 

of the elastica (sometimes, without loss of generality, the unit elastica is considered for which 𝐿 = 1). 

If we define 𝜃(𝑠) as the tangent slope angle at any point 𝑃(𝑥(𝑠), 𝑦(𝑠)) of the elastica that is situated 

along the 𝑥-axis and subjected to the compressive load 𝐹 also directed along the 𝑥-axis, then the buckling 
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(e.g., the transversal deflection) of the Euler’s elastica will happen along the 𝑦-axis. In such a situation the 

axial and shear forces, the curvature, and the geometrical conditions will be given as 

𝑁 = −𝐹 cos 𝜃 , 𝑄 = 𝐹 sin 𝜃 ,
𝑑𝜃

𝑑𝑠
= 𝜅,           

𝑑𝑥

𝑑𝑠
= cos 𝜃 ,

𝑑𝑦

𝑑𝑠
= sin 𝜃.                   (4) 

In the classical (local) beam model the bending moment at any point of the elastica is proportional to its 

curvature, i.e., the bending moment-curvature relation is governed by the Euler-Bernoulli’s law as 

𝑀 = −𝐸𝐼𝜅 = −𝐸𝐼
𝑑𝜃

𝑑𝑠
                                                                            (5) 

with the flexural rigidity 𝐸𝐼 being expressed through the Young’s modulus 𝐸 and the moment of inertia 𝐼. 

Additionally, it can be shown [2] that the bending moment 𝑀 and the axial force 𝑁 acting along the 

elastic curve are related through the equation 

𝑀2

2𝐸𝐼
= |𝑁|                                                                                    (6) 

that can be understood as the manifestation of the demand that in the state of mechanical equilibrium we 

have that the sum of forces at all point of the elastica should be zero. 

Using (3)-(5) we can obtain straightforwardly the governing equation as 

𝑑2𝜃

𝑑𝑠2
= −

1

𝐸𝐼

𝑑𝑀

𝑑𝑠
= −

𝑄

𝐸𝐼
= −

𝐹

𝐸𝐼
sin 𝜃 = −𝛼2 sin 𝜃 , 𝛼2 =

𝐹

𝐸𝐼
.                             (7) 

The above second-order ordinary differential equation on the function 𝜃(𝑠) can be once integrated 

when we multiply the left- and right-hand sides of (7) by the term 2
𝑑𝜃

𝑑𝑠
. Then we will obtain that 

𝑑

𝑑𝑠
[(

𝑑𝜃

𝑑𝑠
)

2

] = 2𝛼2
𝑑

𝑑𝑠
[cos 𝜃]                                                                  (8) 

can be integrated as 

𝑑𝜃

𝑑𝑠
= √2𝛼2 cos 𝜃 + 𝐶 =

2𝛼

𝑘
√1 − 𝑘2sin2

𝜃

2
, 𝑘2 =

4𝛼2

𝐶 + 2𝛼2
,                                  (9) 

where 𝐶 is the first integration constant and 𝑘 can be interpreted as the elliptic modulus. 

In the case when 𝑘2 ≤ 1, the general solution of (9) can be written as [3] 

𝜃(𝑠) = 2 arcsin [sn (
𝛼𝑠

𝑘
+ 𝐷, 𝑘)] ,            

𝑑𝜃

𝑑𝑠
=

2𝛼

𝑘
dn (

𝛼𝑠

𝑘
+ 𝐷, 𝑘),                                (10) 

where sn() and dn() are the Jacobi elliptic sine and delta functions and 𝐷 is the second integration constant. 

Both integration constants 𝐶 and 𝐷 can be defined through the application of the corresponding boundary 

conditions (clamped, simply supported, etc.) for the boundary value problems (BVPs) of the curved beam. 

Using (10) we can obtain that 

sin 𝜃 = 2sn (
𝛼𝑠

𝑘
+ 𝐷, 𝑘) cn (

𝛼𝑠

𝑘
+ 𝐷, 𝑘) , cos 𝜃 = 1 − 2sn2 (

𝛼𝑠

𝑘
+ 𝐷, 𝑘),                        (11) 

where cn() is the Jacobi elliptic cosine function. 

Next, integrating the last two equations from (4) we obtain the coordinates of an arbitrary points on the 

elastic line representing the deformed beam as 
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𝑥(𝑠) = ∫ cos 𝜃
𝑠

0

𝑑𝑠 = (1 −
2

𝑘2
) 𝑠 +

2

𝛼𝑘
E [am (

𝛼𝑠

𝑘
+ 𝐷, 𝑘) , 𝑘] −

2

𝛼𝑘
E[am(𝐷, 𝑘), 𝑘],         (12) 

𝑦(𝑠) = ∫ sin 𝜃
𝑠

0

𝑑𝑠 =
2

𝛼𝑘
dn(𝐷, 𝑘) −

2

𝛼𝑘
dn (

𝛼𝑠

𝑘
+ 𝐷, 𝑘),                                                          (13) 

where E() is the incomplete elliptic integral of the second kind and am() is the Jacobi elliptic amplitude. 

Similarly, in the case when 𝑘2 > 1, the general solution of (9) is given as [3] 

𝜃(𝑠) = 2 arcsin [
1

𝑘
sn (𝛼𝑠 + 𝐷,

1

𝑘
)] ,            

𝑑𝜃

𝑑𝑠
=

2𝛼

𝑘
cn (𝛼𝑠 + 𝐷,

1

𝑘
).                               (14) 

Using (10) we can again obtain that 

sin 𝜃 =
2

𝑘
sn (𝛼𝑠 + 𝐷,

1

𝑘
) dn (𝛼𝑠 + 𝐷,

1

𝑘
) , cos 𝜃 = 1 −

2

𝑘2
sn2 (𝛼𝑠 + 𝐷,

1

𝑘
).                     (15) 

Finally, integrating the last two equations from (4) we obtain the coordinates of an arbitrary points on 

the deformed elastica as 

𝑥(𝑠) = ∫ cos 𝜃
𝑠

0

𝑑𝑠 = −𝑠 +
2

𝛼
E [am (𝛼𝑠 + 𝐷,

1

𝑘
) ,

1

𝑘
] −

2

𝛼
E [am (𝐷,

1

𝑘
) ,

1

𝑘
],                    (16) 

𝑦(𝑠) = ∫ sin 𝜃
𝑠

0

𝑑𝑠 =
2

𝛼𝑘
cn (𝐷,

1

𝑘
) −

2

𝛼𝑘
cn (𝛼𝑠 + 𝐷,

1

𝑘
).                                                     (17) 

3. Euler’s elasticas in nonlocal theory of elasticity – a toy differential model 

The small-scale effects (in our case nonlocality) can be combined with the classical theory of elasticity 

using the corresponding modifications (in the integral or differential forms) of the constitutive relations 

between the normal stress and strain of the beams or nanobeams. For instance, in one-dimensional analysis 

of nonlocal elastic materials we can assume that the nonlocal constitutive relations have the form 

𝜎𝑥𝑥 − 𝜇
𝑑2𝜎𝑥𝑥

𝑑𝑠2
= 𝐸𝜀𝑥𝑥 ,                                                                            (18) 

i.e., we can assume that the normal (i.e., along the 𝑥-axis) stress 𝜎𝑥𝑥 at some point 𝑃(𝑠) with the arclength 

parameter 𝑠 depends not only on the normal strain 𝜀𝑥𝑥 at point 𝑃(𝑠), but also on the normal strain’s values 

at all other points of the elastica. This fact can be equivalently written in the integral (with some kernel 

function) and differential forms (see, e.g., [6-7]), so in the further discussion we will use the latter one. 

The scaling factor 𝜇 = 𝜖0
2𝑙𝑖

2 in (18) can be understood as the parameter describing the degree of 

nonlocality (presented in the dimension of the squared length) which is defined as the function of the 

material parameter 𝜖0 and the internal characteristic length 𝑙𝑖 (e.g., the lattice parameter, the granular size, 

the distance between C-C bonds, etc.) [6-7]. 

The above nonlocal constitutive relation (18) applied to the Euler-Bernoulli’s beam theory leads us to 

modification of the bending moment-curvature relation (5) that for our toy model can be now expressed as 

𝑀 − 𝜇
𝑑2𝑀

𝑑𝑠2
= −𝐸𝐼𝜅 = −𝐸𝐼

𝑑𝜃

𝑑𝑠
.                                                                  (19) 

Then from (3)-(4) we can derived that 

𝑑2𝑀

𝑑𝑠2
=

𝑑𝑄

𝑑𝑠
= −𝜅𝑁 = 𝐹 cos 𝜃

𝑑𝜃

𝑑𝑠
.                                                               (20) 

Substituting (20) into (19) we will obtain that 
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𝑀 = −𝐸𝐼(1 − 𝜇𝛼2 cos 𝜃)
𝑑𝜃

𝑑𝑠
, 𝛼2 =

𝐹

𝐸𝐼
                                                      (21) 

which reduces to (5) when the nonlocality parameter 𝜇 approaches 0. 

Differentiating (21) with respect to the arclength parameter 𝑠 and using (3)-(4) again, we will obtain that 

the modification of the governing equation (7) is now given as 

(1 − 𝜇𝛼2 cos 𝜃)
𝑑2𝜃

𝑑𝑠2
+ 𝜇𝛼2 sin 𝜃 (

𝑑𝜃

𝑑𝑠
)

2

= −𝛼2 sin 𝜃 .                                                (22) 

If we will define 𝑃(𝜃) = 1 − 𝜇𝛼2 cos 𝜃, then (22) can be rewritten as 

𝑃(𝜃)
𝑑2𝜃

𝑑𝑠2
+ 𝑃′(𝜃) (

𝑑𝜃

𝑑𝑠
)

2

= −
1

𝜇
𝑃′(𝜃).                                                                (23) 

The above second-order ordinary differential equation can be once integrated when we multiply the left- 

and right-hand sides of (23) by the term 2𝑃(𝜃)
𝑑𝜃

𝑑𝑠
. Then we will obtain that 

𝑑

𝑑𝑠
[𝑃2(𝜃) (

𝑑𝜃

𝑑𝑠
)

2

] = −
1

𝜇

𝑑

𝑑𝑠
[𝑃2(𝜃)]                                                                  (24) 

can be integrated as 

𝑑𝜃

𝑑𝑠
= √

1

𝜇
(

𝐶

𝑃2(𝜃)
− 1) = √

1

𝜇
(

𝐶

(1 − 𝜇𝛼2 cos 𝜃)2
− 1) =

1

√𝜇

√𝐶 − (1 − 𝜇𝛼2 cos 𝜃)2

1 − 𝜇𝛼2 cos 𝜃
,                   (25) 

where 𝐶 is the first integration constant. 

Let us notice the interesting fact that whereas (22) can be quite easily reduced to (7) when the 

nonlocality parameter 𝜇 approaches 0, the connection between (25) and (9) is not so obvious (division by 0). 

Substituting (25) into (23) we will also obtain the concise expression for the second derivative of 𝜃, i.e., 

𝑑2𝜃

𝑑𝑠2
= −

𝐶

𝜇

𝑃′(𝜃)

𝑃3(𝜃)
= −

𝐶𝛼2 sin 𝜃

(1 − 𝜇𝛼2 cos 𝜃)3
.                                                           (26) 

Next, we will separate the variables in (25) and integrate the obtained expressions, then 

𝑠(𝜃) = √𝜇 ∫
(1 − 𝜇𝛼2 cos 𝜃)𝑑𝜃

√𝐶 − (1 − 𝜇𝛼2 cos 𝜃)2
                                                                (27) 

Which leads us also to the corresponding expressions for the coordinates of the deformed elastica, i.e., 

𝑥(𝜃) = ∫ cos 𝜃 𝑑𝑠 = √𝜇 ∫
(1 − 𝜇𝛼2 cos 𝜃) cos 𝜃 𝑑𝜃

√𝐶 − (1 − 𝜇𝛼2 cos 𝜃)2
,                                                  (28) 

𝑦(𝜃) = ∫ sin 𝜃 𝑑𝑠 = √𝜇 ∫
(1 − 𝜇𝛼2 cos 𝜃) sin 𝜃 𝑑𝜃

√𝐶 − (1 − 𝜇𝛼2 cos 𝜃)2
.                                                   (29) 

Let us notice that the last integral can be quite easily integrated using the obvious substitution, i.e., 

introducing the new variable 𝜉 = 𝐶 − (1 − 𝜇𝛼2 cos 𝜃)2, then 𝑑𝜉 = 2𝜇𝛼2(1 − 𝜇𝛼2 cos 𝜃) sin 𝜃 𝑑𝜃 and 

𝑦(𝜃) =
1

2√𝜇𝛼2
∫

𝑑𝜉

√𝜉
= 𝑦0 +

√𝜉

√𝜇𝛼2
= 𝑦0 +

1

√𝜇𝛼2
√𝐶 − (1 − 𝜇𝛼2 cos 𝜃)2,                          (30) 

where 𝑦0 is the integration constant. 
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4. Final remarks 

Unfortunately, contrary to the expression (30) for 𝑦(𝜃), expressions for 𝑠(𝜃) and 𝑥(𝜃) are not so simple, 

but they can be also written through corresponding combinations of the incomplete elliptic integrals of the 

first, second, and third kind. In order to do this we can use the substitution 𝑡 = ±csc 𝜃 − cot 𝜃, then 

sin 𝜃 =
2𝑡

1 + 𝑡2
, cos 𝜃 =

1 − 𝑡2

1 + 𝑡2
, 𝑑𝜃 =

2𝑑𝑡

1 + 𝑡2
                                        (31) 

and (27) and (28) can be rewritten as 

𝑠(𝑡) =
2√𝜇(1 + 𝜇𝛼2)

√𝐶 − (1 + 𝜇𝛼2)2
∫

𝑄2(𝑡)𝑑𝑡

(1 + 𝑡2)√𝑃4(𝑡)
, 𝑥(𝑡) =

2√𝜇(1 + 𝜇𝛼2)

√𝐶 − (1 + 𝜇𝛼2)2
∫

𝑄4(𝑡)𝑑𝑡

(1 + 𝑡2)2√𝑃4(𝑡)
,    (32) 

where the polynomials 𝑄2(𝑡), 𝑄4(𝑡), and 𝑃4(𝑡) are defined as 

𝑄2(𝑡) = 𝑙 + 𝑡2, 𝑄4(𝑡) = 𝑙 + 𝑛𝑡2 − 𝑡4, 𝑙 =
1 − 𝜇𝛼2

1 + 𝜇𝛼2
, 𝑛 =

2𝜇𝛼2

1 + 𝜇𝛼2
,                     (33) 

𝑃4(𝑡) = (𝑡 + 𝛽+)(𝑡 + 𝛽−), 𝛽± =
𝑏 ± √𝑏2 − 𝑎𝑐

𝑎
= {

√𝐶 + 𝜇𝛼2 − 1

√𝐶 − 𝜇𝛼2 − 1
,
√𝐶 − 𝜇𝛼2 + 1

√𝐶 + 𝜇𝛼2 + 1
} , (34) 

𝑎 = 𝐶 − (1 + 𝜇𝛼2)2,     𝑏 =
𝑎

2
(𝛽+ + 𝛽−) = 𝐶 − 1 + 𝜇2𝛼4,     𝑐 = 𝑎𝛽+𝛽− = 𝐶 − (1 − 𝜇𝛼2)2.     (35) 

Then both integrals in (32) can be rewritten as corresponding combinations (in the form of quite long 

and elaborate expressions) of the incomplete elliptic integrals of the first, second, and third kind, i.e., 

F(𝜑, 𝑘) = ∫
𝑑𝜑

√1 − 𝑘2sin2𝜑

𝜑

0

, 𝐸(𝜑, 𝑘) = ∫ √1 − 𝑘2sin2𝜑 𝑑𝜑
𝜑

0

,                         (36) 

Π(𝑛, 𝜑, 𝑘) = ∫
𝑑𝜑

(1 − 𝑛sin2𝜑)√1 − 𝑘2sin2𝜑

𝜑

0

,                                         (37) 

where the Jacobi elliptic amplitude 𝜑, the elliptic modulus 𝑘, and the characteristic 𝑛 are given as 

        𝜑(𝜃) = arcsin [
±csc 𝜃 − cot 𝜃

√𝛽+
] , 𝑘 = √

𝛽+

𝛽−
, 𝑛 = 𝛽+.                                (38) 

As further research, we plan to simplify the obtained expressions for 𝑠(𝜃) and 𝑥(𝜃) and present them 

in more concise forms, as well as to apply the obtained general solution of the modified governing equation 

(22) to the chosen boundary value problems (BVPs) of the deformed beam. 
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