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 A B S T R A C T

This paper presents a novel predictive control strategy for the Adaptive Tuned Particle Impact 
Damper (ATPID), aimed at improving vibration suppression in systems with limited available 
information. The proposed control algorithm, called the Predictive Control Algorithm (PCA), 
is based on the prediction and optimization of system dynamics and operates effectively even 
when system parameters and external excitations are unknown. The only available input for the 
control process is the measured vibration response of the system. Under this constraint, the PCA 
accurately estimates the optimal height of the damper in real time, achieving vibration reduction 
of up to 75%. The algorithm also exhibits a second operational mode: when a theoretical model 
of the mechanical system is available, the PCA can incorporate this additional knowledge to 
further enhance control accuracy and performance. The algorithm’s two operating approaches 
enable its application in a wide range of engineering environments. The robustness of the 
approach is further validated through sensitivity analyses investigating the impact of variations 
in particle mass, excitation amplitude, and gravitational conditions. The results obtained from 
the PCA algorithm show that the height prediction error remains below 10%, with accuracy 
increasing in conditions of higher excitation and particle mass. The main novelty of this work 
is the development of a versatile and fully adaptive predictive control algorithm for ATPID 
systems, capable of optimizing damper parameters based solely on vibration feedback but 
also leveraging mathematical system models when available. The proposed control algorithm 
represents important progress in the development of adaptive mechanical structures employing 
particle impact damping technology.

. Introduction

Mechanical vibrations are a common phenomenon in various mechanical systems, ranging from simple spring arrangements to 
omplex engineering structures. In most cases, they result from transformation of kinetic and potential energy between individual 
lements of the system. Even the slightest vibrations can lead to material wear, performance degradation, and in extreme situations, 
 system failure. Therefore, understanding the nature, and effects of mechanical vibrations is crucial for engineers striving to design 
ystems that are optimal in terms of performance, durability and safety. Mechanical systems are becoming increasingly complex and 
he requirements imposed on them are growing. The development of methods for damping mechanical vibrations is an ongoing field 
f the scientific and engineering research. Traditional damping methods, such as viscous dampers or vibration isolators, are still 
idely employed and effective in many applications. However, with technological advancements, a need for more advanced and 
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adaptive damping techniques that can adjust to changing operating conditions and environments has arisen. These new approaches, 
based on the principles of adaptive control, that enable more effective and flexible damping of mechanical vibrations, are an 
attractive area for research and engineering applications.

Particle dampers (PD) are a practical solution for reducing vibrations in technical applications across different fields. They are 
constructed by filling containers attached to the vibrating structure by particles or placing them within the structure’s voids. During 
structural vibrations, the momentum of vibrating structure is transferred to the particles, initiating interaction within the granular 
material [1–3]. Friction and inelastic collisions between the particles result in energy dissipation within the damper and an effective 
decrease of structural vibrations [4–8]. In [9], the influence of container design on particle damper effectiveness was examined 
across various levels of random excitation. Experimental investigation utilized a single-story structure featuring a low fundamental 
frequency. Different container configurations, including single and dual compartments, were analyzed to assess their impact on the 
damper performance. Previous research has indicated that the damping efficiency of a particle damper relies on various factors, 
including particle size, shape, type of granular material and filling ratio [10–12]. Among these parameters, the choice of granular 
material significantly affects the reduction of vibration amplitudes in mechanical structures [13]. This study seeks to examine the 
impact of 20 various granular materials on vibration attenuation. The materials were categorized into two main groups: soft particles 
such as rubber granulate and hard particles like steel balls. Moreover, the paper proposes a hybrid particle damper, incorporating 
mixtures of two different granular materials, such as combining soft and hard particles. Additionally, mathematical and numerical 
modeling plays a crucial role in understanding the dynamic behavior of particle systems, aiding the design and optimization of 
damping mechanisms in order to the enhance equipment performance and prolong its lifespan [14–18]. By utilizing the physical 
principles of the Kelvin–Voigt model, paper [19] introduces a continuous contact formulation that incorporates varying viscous 
damping coefficients. A lot of theoretical models for the particle damper relies on observations of vibration phenomena, but does 
not directly unveil the damping mechanism.

Paper [20] presents the multiple unidirectional single-particle damper (MUSPD), establishing its mechanical model and proposing 
a corresponding numerical simulation method whose validation is achieved through a shaking table test. Furthermore, an equivalent 
mechanical model for the MUSPD, based on an analysis of its damping mechanism, provides analytical solutions. A method for 
optimizing the MUSPD’s performance under dynamic loads is then proposed. Numerical simulations confirm the accuracy of the 
model and the effectiveness of the optimization method, highlighting the MUSPD’s fine damping effect and the feasibility of proposed 
approaches. The subject of Impact Damper optimization can also be found in papers [21,22]

Particle dampers are comprehensive tools in mechanical engineering, exhibiting a broad range of applications in mitigating 
undesired vibrations across various systems. The paper [23] presents a coupled multi-body dynamics — discrete element method 
designed to simulate the damping characteristics of a damper–cable system subjected to harmonic excitation. Study presented in 
paper [24] explores the application of a particle damper featuring energy harvesting capabilities for vibration control of structures, 
and further examines the correlation between control and energy capture. Key parameters influencing vibration control and energy 
harvesting, including harmonic excitation frequency, motion distance, particle filling ratio and particle size, are investigated through 
a single-degree-of-freedom model experiment. The results indicate that the maximum vibration attenuation rate is achieved when the 
filling ratio of particles is 60%. Furthermore, as motion distance increases, the effectiveness of vibration control tends to decrease, 
while the energy harvesting capability tends to increase.

In contemporary additive manufacturing processes such as laser powder bed fusion (LPBF), residual unmelted powder inten-
tionally remains within structures, effectively producing integrated (with the based system) particle dampers. While the efficacy of 
particle damping has been convincingly demonstrated in the current research, the applicability of the findings in such structures 
remains somewhat limited. The paper [25] experimentally investigates the effects of particle damping on beam structures fabricated 
using LPBF with AlSi10Mg alloy. Performance curves for various beam parameter sets are evaluated to assist designers in estimating 
damping effects using the provided data. Damping characteristics are determined through experimental modal analysis using impulse 
excitation, with response assessment conducted in the frequency domain, focusing primarily on the first bending mode of vibration. 
Moreover, significantly enhanced damping, up to 20 times greater, is observed in particle-filled cavities compared to identical 
components without such damping measures. Additional studies of the particle damping implemented in structures produced using 
additive manufacturing techniques can be found in [26–28].

The risk for blast impact loads affecting bridge structures is progressively rising. However, the precise laws governing the local 
and overall explosion response of concrete box girder bridges remain elusive, and there is a shortage of anti-explosion devices 
aimed at reducing the overall explosion response of bridges. Investigation presented in paper [29] describes a rotational inertial 
particle damper (R-IPD) which was designed and integrated into a 1:4 scale model of a typical three-span continuous girder 
bridge. Papers [30,31] present a particle tuned mass damper (PTMD) attached to a Multi Degree of Freedom structure of high-rise 
building, subjected to wind excitation. The model was developed using an equivalent simplified method, and simulation results 
were validated through wind tunnel experiments. The analysis encompasses the changes of energy within the entire structural 
system, and energy dissipation resulting from structural damping and external input energy. In general, the operating principle 
of such a device is analogous to the behavior of Adaptive-Passive Tuned Mass Damper [32]. Such device can be used to reduce 
vibrations in buildings [33–36]. Studies of analogical systems subjected to seismic excitation and wind-induced vibration were 
presented in [37,38]. The newest and actual researches focus on modeling PID dampers and their damping characteristics using 
artificial intelligence algorithms. In [39], the potential of replacing the model based on the Leidenfrost phenomenon describing 
the operation principle of a damper working under specific conditions was presented. It turns out that it is possible to use an 
algorithm based on artificial neural networks to effectively represent the behavior of the PID damper. Another study that enables 
the modeling of granular behavior in a specific working environment using the Leidenfrost model is presented in the paper [40]. 
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In [41], the proposed particle damper exhibits hysteresis under dynamic excitation, with the hysteresis loops varying according to 
the excitation frequency due to its nonlinear behavior. A neural network was introduced to model this phenomenon, effectively 
capturing the nonlinear relationships involved. Similarly, studies such as [42–44] investigated vibrations in printed circuit boards, 
proposing neural networks to describe and predict the efficiency of vibration reduction using particle dampers, relying exclusively on 
experimental studies. Existing research indicates that artificial neural networks are predominantly utilized to determine parameters 
for vibration reduction in particle dampers. However, these approaches are generally based either on experimental data alone or 
on theoretical models limited to specific motion scenarios, often characterized by the Leidenfrost effect.

Research on PID dampers has been conducted for decades. A novel experimental data techniques are being utilized and the latest 
modeling methods are employed. However, it turns out that in many cases proposed designs do not appear to be more efficient than 
common technical solutions enabling vibration damping. This is because in the proposed designs, all parameters influencing the 
damping efficiency remain constant during the absorber’s operation. On the other hand, in most cases, the excitations to which 
mechanical systems are subjected vary over time. This aspect causes that devices aimed at effectively reducing generated vibrations 
should adapt to the current operating conditions. At this context, it is worth mentioning a series of studies by the research team 
under the supervisor of Prof. Masri [45–51]. In these studies, the research on the principle of operation of the PID damper was 
presented, and situations in which the most effective vibration damping occurs were identified. However, it should be noted that 
the proposed research setup generally allowed for the analysis of horizontal motion, resulting in the elimination of the influence 
of gravity during the modeling stage. This simplification leads to a lack of description of the behavior of the granulate when it 
moves vertically, where gravity plays a crucial role. Additionally, in the proposed damper construction, limiting the movement of 
the moving mass in one direction was achieved by immediately extending the stoppers. Such a solution allowed for blocking but 
not accelerating the moving mass.

The response to all these problems was a technical solution presented by the authors in the paper [52] where a device called the 
Adaptive Tuned Particle Impact Damper (ATPID) was proposed. This damper consists of a container, a single grain, and a movable 
upper wall (ceiling) which movement is controlled by an electric engine connected to a control system. The rotational motion of the 
engine shaft was converted into reciprocating motion of the upper wall. As a result, the volume of the damper in where the grain 
moved could be changed in real time, which is crucial for changing the damper’s characteristics. Experimental studies, modeling of 
the damper using the theory of soft contact, sensitivity analysis of the system and parametric optimization were presented. All these 
studies allowed for the presentation of a simple control algorithm based on iterative search of the solution space, which enables 
finding the optimal damper height from a damping point of view. Unfortunately, it has many drawbacks, including a relatively long 
search time. At this stage, the authors decided that it is necessary to propose a new, more efficient control method for the ATPID 
damper so it can become a fully adaptive device.

A potential solution to the challenges outlined above is application of Model Predictive Control (MPC) [53,54]. In this approach, a 
mathematical model of the system under consideration is used to repeatedly solve an optimization problem formulated at consecutive 
time intervals of predefined durations. The high effectiveness of the MPC method results from sequential update of control, which 
enables compensation of inaccuracies in mathematical model as well as accounting for changes in external excitations and process 
disturbances. The MPC approach is successfully applied across various systems in numerous branches of engineering. The exemplary 
applications include the control of semi-active car suspension where unknown road roughness is estimated by the controller [55], the 
control of suspension with electro-rheological dampers providing trade-off between comfort and handling performance [56] and the 
development of optimal switching sequence for multi-mode dampers in air suspension equipped with solenoid valves [57]. Moreover, 
MPC is extensively utilized in the control of motion of diverse actuators and manipulators. The examples include the robust 
optimal control of robot arm under actuator fault conditions [58] or the control of system of hybrid actuators applied in artificial 
muscles [59]. In the case of impact mitigation problems, MPC combined with genetic algorithm serving as optimization solver was 
applied to control semi-active landing gear [60]. Additionally, the class of state-dependent path-tracking methods integrates MPC 
with various identification procedures and other control techniques. These methods include application of predictive models with 
equivalent time-varying quantities to replace simultaneously occurring unknown parameters and excitations [61] as well as methods 
for sequential disturbance identification, prediction and compensation [62]. On the other hand, application of MPC for vibrating 
systems equipped with impact dampers has neither been investigated nor implemented so far.

Based on the conducted literature review, a substantial research gap can be identified in the field of Particle Impact Dampers 
(PIDs) for vibration suppression. While numerous experimental and numerical studies have investigated the influence of various 
damper parameters on vibration mitigation effectiveness, the majority of the proposed solutions remain limited in terms of 
adaptability and real-time responsiveness. Prior research has demonstrated the broad applicability of PIDs in structures subjected 
to impacts, seismic events, and harmonic excitations near resonance [63]. These studies have highlighted that key factors affecting 
damping efficiency include the mass of the free-moving particles, the container volume, and the various types of excitations. In 
addition, researchers have explored structural enhancements, such as the integration of energy harvesting mechanisms, and have 
formulated optimization strategies aimed at improving vibration suppression [64]. However, most of these designs are inherently 
passive and lack the ability to adjust damper parameters dynamically during their operation. The most pronounced research gap is 
the absence of PID systems capable of semi-active or adaptive control, particularly in scenarios involving unexpected or unpredictable 
changes in excitation. To date, no efficient algorithms have been proposed that can rapidly determine the optimal container volume 
in response to time-varying external excitations such as sudden wind gusts, seismic shocks, mechanical impacts, or other unforeseen 
excitations commonly encountered in real-world environments.

This article extends the research presented in paper [52] by proposing the Predictive Control Algorithm (PCA), which can be 
effectively applied to control the operation of the ATPID damper. The main contribution of the paper is the development of the 
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control algorithm which allows to predict response of the system and quickly determine the optimal device height without the 
knowledge of any system or excitation parameters. As a result, it can be applied when excitation or system properties are rapidly 
changing in time, providing full adaptivity of the ATPID damper. Initially, the general idea of the PCA algorithm is described, and 
the applied procedure for calculating the optimal damper height is explained in details. Then, the application of the algorithm in 
a damper connected to unknown mechanical system in terms of number of degrees of freedom, stiffness, mass, damping, etc. is 
presented. Further, the operation of the algorithm is described in detail in the situation where properties of the mechanical system 
are known and there is a possibility of its exact mathematical modeling. Finally, a sensitivity analysis of the algorithm is performed, 
and its effectiveness is determined.

2. Predictive control algorithm for the ATPID damper

The Adaptive Tuned Particle Impact Damper builds upon the classical Particle Impact Damper concept, which consists of a 
container filled with grains [65] (see Fig.  1). The ATPID damper features a cylindrical chamber containing a single Polylactide 
grain. A movable plate, connected via screw joints and a clutch, is driven by a compact electric motor. The motor is powered by 
a voltage range of 3 V to 6 V. Under no load, it consumes 30 mA at 3 V and measures 15 × 30 mm. The rotational motion of the 
shaft is converted into a vertical linear displacement of the plate (ceiling). This enables real-time adjustment of the internal volume 
of the damper by shifting the upper wall relative to the fixed lower wall (floor). A simple electromechanical system controls the 
motor’s operation, including direction and speed of motion. This allows dynamic tuning of the particle’s working space, directly 
affecting damping performance. A detailed description of the ATPID prototype is presented in the previously published paper [52].

Fig. 1. Prototype of the adaptive tuned particle impact damper.

The ATPID includes a cylindrical container with a single particle made of Polylactide (PLA) enclosed inside the damper. 
The adjustable ceiling is connected to an electric motor via screw mechanisms and a clutch system. The motor’s rotational 
movement is converted into vertical motion, enabling precise control of the ceiling’s position, movement direction, and velocity. 
This electromechanical system provides a simple and effective solution for dynamically tuning the damper’s geometry, allowing for 
real-time adaptation to changing conditions and enhancing vibration damping efficiency. When subjected to external excitation, the 
grain inside moves and collides with the container walls. These collisions dissipate energy, reducing the vibration amplitudes of the 
mechanical system to which the damper is attached. A key parameter influencing the damping performance of the particle damper is 
the container height. To enhance functionality, the ATPID introduces a design that allows real-time control of the container ceiling’s 
position. This enables dynamic adjustment of the distance between the lower and upper walls of the damper, effectively tuning the 
timing and velocities of collisions, influencing the energy dissipation process, and optimizing the system’s performance. The main 
challenge related to the ATPID damper is to propose an effective algorithm that allows computing the optimal damper height. This 
problem is thoroughly resolved in the following sections of this paper.

Analysis of the dynamics of various mechanical systems is a crucial aspect of research which allow to determine the principles 
of their operation. Each mechanical system is characterized by material, geometric and other physical properties that influence 
4 
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its dynamic characteristics. When all the system parameters are known, it becomes possible to analyze the dynamic response of 
vibrations applying two different methods. The first is the experimental investigations which enable determining the oscillations 
of the structure using a professional measurement setup. In the second approach, the dynamic response of the construction can 
be studied through an appropriate numerical modeling of such a system and by performing computer simulations. A schematic 
description of this classical method for analyzing the dynamic response of any mechanical system is presented in Fig.  2.

Fig. 2. Scheme of the classical approach of the analysis of the mechanical system dynamic response.

Let us consider a cantilever beam with an ATPID damper connected to its free end (Fig.  8) as the mechanical system under 
discussion. The entire structure is subjected to the kinematic excitation and resonant-harmonic vibrations. This implies that the 
input parameters describing the considered system are as follows: the amplitude and the frequency of excitation, the length, width 
and height of the beam, the density and other material properties, the diameter and material properties of the applied ATPID grain 
and the height of the ATPID damper.

By using experimental or numerical investigations, the displacement of the beam free end vibrations can be determined. One 
of the important problems is determining the optimal height of the ATPID damper providing the most effective damping under the 
currently occurring excitation. Obtaining such information requires performing a large number of measurements or simulations for 
different values of the damper height within a wide range of data. As a result, it becomes possible to identify the damper height 
value that causes the most effective reduction of the amplitude of the system’s vibrations. However, such an approach, especially 
in experimental studies, is often time-consuming and inefficient for rapid vibration mitigation.

In light of this, a novel Predictive Control Algorithm (PCA) has been proposed, to enable fast and efficient determination of the 
optimal damper height that allows for the most effective mitigation of system vibrations. The general idea of the PCA algorithm is 
illustrated in Fig.  3 and described comprehensively in the subsequent sections of the manuscript.

Fig. 3. Scheme of the general idea of the PCA algorithm.

The concept behind the Predictive Control Algorithm aims to address the inverse problem to the classical analysis of the dynamics 
of a mechanical system as presented in Fig.  2. By utilizing an input data in the form of the desired system response of the cantilever 
beam and employing the innovative PCA block, the appropriate height of the ATPID damper for which the system’s response will 
resemble the one provided to the algorithm can be determined. The Predictive Control Algorithm encompasses several assumptions 
corresponding to the criteria that describe the characteristic movement of the granular material, at which optimal system damping 
occurs. In the ideal approach, it is necessary to input the system’s vibration response that would occur at the optimal damper 
height into the PCA block. Consequently, the control algorithm will allow to determine the aforementioned optimal damper height. 
However, in practice, predicting oscillations in this characteristic state proves challenging, and often unattainable, leading to 
difficulties in obtaining precise predictions. Consequently, the analysis will be based on the system vibration responses that differ 
from the optimal ones. The magnitude of the observed deviation in the input data will directly influence the error in the obtained 
damper’s height. Repetitive application of the PCA algorithm will result in an increased efficiency of the proposed method.

2.1. Assumptions and initiation of the predictive control algorithm

The Predictive Control Algorithm consists of input data (dynamic response of the mechanical system) and assumptions based 
on criteria describing the optimal movement of ATPID grain for which the system’s oscillations experience the greatest damping. 
These assumptions have been preliminary formulated in the manuscript [52], derived from a comprehensive sensitivity analysis of 
the system. An exemplary plot illustrating the optimal grain movement is presented in Fig.  4. Necessary conditions for the optimal 
grain movement are as follows:

- impacts occur when the direction of the primary system movement is opposite to the direction of the grain movement,
- impacts occur when the velocity of the primary system is maximal or when its velocity decreases,
5 
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- impacts occur in every period of vibrations since otherwise, the system response will be unstable,
- the sticking effect between grain and walls should be avoided.

Fig. 4. A representative example of optimal grain movement inside the damper during one period of vibration.

The conditions for optimal grain movement delineate a wide set of the results in which the best solution has to be identified. 
Depending on the specific scenario being examined, the optimal value of damper’s height may align more closely with one of the 
above stated necessary condition or the other. To preliminarily refine the solution set within the PCA framework, a simplification of 
the optimal movement conditions for the granulate was implemented. This analysis focuses on scenarios where collisions are required 
to occur when the primary system’s velocity reaches its maximum. Following this, further adjustments are made to determine 
the final optimal height of the damper. The latter process facilitates the extension of the analysis to include situations where the 
primary structure’s velocity is either at its maximum or is decreasing. Taking the above into account, a Predictive Control Algorithm 
procedure can be constructed as follows:

Minimize: 𝑚𝑎𝑥(𝑥𝑑𝑠 )
with respect to: ℎ𝑚𝑎𝑥
subject to: system governing equations

𝜉𝑐1 (𝑡𝑐1 ) > 0 <=> 𝑥̇𝑠 > 0 𝑎𝑛𝑑 𝑥̇𝑔 < 0 (1)

𝜉𝑐2 (𝑡𝑐2 ) > 0 <=> 𝑥̇𝑠 < 0 𝑎𝑛𝑑 𝑥̇𝑔 > 0 (2)

𝜉𝑐1 (𝑡𝑐1 ) > 0 𝑜𝑟 𝜉𝑐2 (𝑡𝑐2 ) > 0 <=> |𝑥̇𝑠| 𝑖𝑠 𝑚𝑎𝑥𝑖𝑚𝑎𝑙 (3)

𝜉𝑐1 (𝑡𝑐1 ) > 0 𝑜𝑟 𝜉𝑐2 (𝑡𝑐2 ) > 0 𝑖𝑛 𝑒𝑣𝑒𝑟𝑦 𝑝𝑒𝑟𝑖𝑜𝑑 𝑜𝑓 𝑣𝑖𝑏𝑟𝑎𝑡𝑖𝑜𝑛𝑠 (4)

𝑡𝑐 <
𝛾
2
𝑇 (5)

where 𝑚𝑎𝑥(𝑥𝑑𝑠 ) - maximal champlitude of system vibration in the damped state, ℎ𝑚𝑎𝑥 - ATPID damper height, 𝜉𝑐1  and 𝜉𝑐2  - overlaps 
(contact indicators) between grain and walls, 𝑥̇𝑠 and 𝑥̇𝑔 - system and grain velocities, 𝛾 - the coefficient defining time of contact 𝑡𝑐 , 
𝛾 ≪ 1 and for this case it is assumed as 𝛾 ≈ 0.1, 𝑇  - one period of beam oscillation, 𝑡𝑐1  and 𝑡𝑐2  - times of impact of the particle with the 
lower and upper walls. System governing equations can be used only in the situation when all the parameters of the experimental 
test stand are known and it can be described by theoretical model.

The Predictive Control Algorithm analyzes the movement of the grain in the ATPID container and determines the optimal height 
of the damper. To achieve the final forms of solutions, the model for PCA calculations (Fig.  5) and its detailed mathematical 
description are presented, considering the earlier introduced assumptions (Eqs. (6)–(15)).

The general assumption is that the floor of the ATPID damper is attached to a structure subjected to harmonic vibrations. As a 
result of these vibrations, the lower part of the enclosure oscillates in a manner analogous to the entire structure at the attachment 
point. Hence, the displacement of this damper component can be described in a general form by the following equation: 

𝑥𝑠 = 𝐴 𝑠𝑖𝑛(2𝜋𝑓𝑡) (6)
𝑝𝑟𝑒𝑑 𝑝𝑟𝑒𝑑

6 
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Fig. 5. Scheme of the model for Predictive Control Algorithm calculations.

where 𝐴𝑝𝑟𝑒𝑑 - predicted (or measured) amplitude of the system vibration response, 𝑓 - excitation frequency. According to Eq. (6), 
the displacement of the ceiling of the ATPID damper container can be calculated as: 

𝑥ℎ𝑝𝑟𝑒𝑑 = 𝑥𝑠𝑝𝑟𝑒𝑑 + ℎ𝑝𝑟𝑒𝑑 (7)

where ℎ𝑝𝑟𝑒𝑑 is the predicted ATPID damper height. At this stage, ℎ𝑝𝑟𝑒𝑑 is treated as the unknown parameter, and the primary objective 
of the algorithm is to find this value. In the subsequent step of the procedure, it becomes necessary to set the initial conditions for 
the calculation and identify the location of the beam where contact with the grain takes place. This involves determining the times 
of impact of the particle with the lower and upper walls of the container, denoted as 𝑡𝑐1  and 𝑡𝑐2 , respectively. The displacement of 
the beam during the times 𝑡𝑐1  and 𝑡𝑐2  can be described using the following equations: 

𝑥𝑠𝑝𝑟𝑒𝑑 (𝑡𝑐1 ) = 𝐴𝑝𝑟𝑒𝑑𝑠𝑖𝑛(2𝜋𝑓𝑡𝑐1 ) (8)

𝑥ℎ𝑝𝑟𝑒𝑑 (𝑡𝑐2 ) = 𝐴𝑝𝑟𝑒𝑑𝑠𝑖𝑛(2𝜋𝑓𝑡𝑐2 ) + ℎ𝑝𝑟𝑒𝑑 (9)

The initial position of the particle is defined by the position of the lower container wall at the moment of impact: 
𝑥𝑔𝑖 = 𝑥𝑠𝑝𝑟𝑒𝑑 (𝑡𝑐1 ) + 𝑟 = 𝐴𝑝𝑟𝑒𝑑𝑠𝑖𝑛(2𝜋𝑓𝑡𝑐1 ) + 𝑟 (10)

Following the impact, the grain is anticipated to move without any subsequent collisions, and its motion can be represented as 
uniformly decelerated. Consequently, the equation describing the grain displacement at time 𝑡𝑐2  will have the following form: 

𝑋𝑔 = 𝑥𝑔𝑖 + 𝑉𝑘0 (𝑡𝑐2 − 𝑡𝑐1) −
𝑔(𝑡𝑐2 − 𝑡𝑐1 )

2

2
(11)

where 𝑉𝑘0  is the initial velocity of the grain and 𝑔 is the gravity. The collision of the grain with the upper wall of the damper will 
occur when: 

𝑋𝑔 + 𝑟 = 𝑥ℎ𝑝𝑟𝑒𝑑 (𝑡𝑐2 ) (12)

Substituting Eqs.  (9) and (11) into Eq. (12), the general form is as follows: 

𝑟 + 𝐴𝑝𝑟𝑒𝑑𝑠𝑖𝑛(2𝜋𝑓𝑡𝑐1) + 𝑉𝑘0 (𝑡𝑐2 − 𝑡𝑐1) −
𝑔(𝑡𝑐2 − 𝑡𝑐1)2

2
+ 𝑟 = 𝐴𝑝𝑟𝑒𝑑𝑠𝑖𝑛(2𝜋𝑡𝑐2) + ℎ𝑝𝑟𝑒𝑑 (13)

By transforming the Eq. (13), the predicted height of the ATPID damper takes the form: 

ℎ𝑝𝑟𝑒𝑑 = 2𝑟 + 𝐴𝑝𝑟𝑒𝑑𝑠𝑖𝑛(2𝜋𝑓𝑡𝑐1) + 𝑉𝑘0 (𝑡𝑐2 − 𝑡𝑐1) −
𝑔(𝑡𝑐2 − 𝑡𝑐1)2

2
− 𝐴𝑝𝑟𝑒𝑑𝑠𝑖𝑛(2𝜋𝑓𝑡𝑐2) (14)

Based on the previously introduced algorithm assumptions, the collision with the bottom part of the container, without sticking 
effect, happens when the beam’s velocity is at its maximum: 2𝜋𝑓𝑡𝑐1 = 0. As a result, the first impact time occurs when 𝑡𝑐1 = 0
and then 𝑥𝑠𝑝𝑟𝑒𝑑 (𝑡𝑐1 ) = 0. Assumption of the time 𝑡𝑐2  at which the grain will collide with the upper part of the container results from 
introduction of optimality criteria which indicates that, in the case of optimal particle movement, two collisions with ceiling and 
the floor take place during one vibration period. Thus, the second collision must occur when: 2𝜋𝑓𝑡𝑐2 = 𝜋 and consequently 𝑡𝑐2 = 1

2𝑓 . 
Taking into account such an assumptions, the Eq. (14) has a simplified form: 

ℎ𝑝𝑟𝑒𝑑 = 2𝑟 + 𝑉𝑘

(

1
)

−
𝑔
(

1
2𝑓

)2

(15)

0 2𝑓 2
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In this manuscript, two different cases of implementing the Predictive Control Algorithm for the ATPID damper are considered. 
In the first scenario, it is assumed that there is a lack of detailed information about the mechanical system to which the damper 
is connected. This means that the only information that can be obtained is the kinematic excitation displacement and the beam’s 
vibration response at the damper attachment point, using the laser sensor. Additionally, in this approach, it is not possible to propose 
any numerical model of the test stand. The second case discussed in the manuscript is a situation where all parameters describing the 
basic vibrating structure are known. This allows to propose a model that can predict the beam’s vibration response in a characteristic 
state. Detailed descriptions of both methods are presented in subsequent parts of the manuscript. However, it is essential to note 
that both considered in the manuscript cases involve calculations based solely on the measured excitation amplitude and dynamic 
behavior of the vibrating beam at the damper attachment point (kinematics of the grain is not measured). On the other hand, based 
on Eqs.  (14) and (15), it can be noticed that the calculations require the velocity 𝑉𝑘0  acquired by the grain after collision with the 
lower part of the damper. This means that a special method to estimate the grain’s velocity based on the beam’s displacements or 
velocities must be proposed. For this purpose, a numerical model used in the paper [52] which assumes soft contact between the 
container and the grain was effectively applied. Inthe proposed method, the vibrating beam is connected with the ATPID damper 
with preliminarily determined optimal container height. Computer simulations allow to analyze how the velocity of both the beam 
and the grain changes, especially when both elements collide. A series of calculations for different variants of the described problem 
was performed. The result of a selected case is presented in Fig.  6.

Fig. 6. Change of the grain and beam velocity during the vibration.

Upon detailed examination of Figs.  6(a) and 6(b), it becomes evident that when the grain impacts the container floor or ceiling, 
it attains a velocity similar to that of the beam before the collision. Building on these observations, it is hypothesized that the 
particle’s initial velocity will be considered equal to the beam’s velocity at the moment of collision, denoted as 𝑡𝑐1 . This assumption 
can be expressed by the following formula: 

𝑉𝑘0 = 𝑥̇𝑠𝑝𝑟𝑒𝑑 (𝑡𝑐1 ) = 2𝜋𝑓𝐴𝑝𝑟𝑒𝑑 (16)

Determined initial velocity of the particle allows to compute predicted height of the damper according to Eq. (15).

2.2. PCA implementation for the unknown mechanical system

In this case the only available information about the considered system is how it vibrates at the damper’s attachment point. The 
schematic representation of this case is presented in Fig.  7.

In this approach, the analysis is based solely on experimental investigations. The mechanical system, represented by a cantilever 
beam, is subjected to resonant harmonic vibrations. Using a measurement setup consisting mainly of a laser sensor and a data 
Fig. 7. Scheme of the PCA algorithm implementation for the unknown mechanical system.
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Fig. 8. Experimental test stand.

Fig. 9. Result of the experimental implementation of the PCA algorithm in the unknown mechanical system.

acquisition card, the dynamic response of the system (displacement of the free beam end) is measured. The acquired data is saved 
on a computer’s disk and transmitted to the Predictive Control Algorithm. The test stand is presented in Fig.  8.

Within the Predictive Control Algorithm, the velocity of the grain is estimated using Eq. (16), and the height of the damper is 
calculated using Eq. (15). Amplitude of the free beam end 𝐴𝑝𝑟𝑒𝑑 is achieved by measuring system. The calculated predicted damper 
height ℎ𝑝𝑟𝑒𝑑 is then sent to the control system, which, in the subsequent stage, generates an appropriate voltage signal for the 
ATPID damper’s electric engine. This process adjusts the container height at the computed value. The delay of the control system is 
considered by accounting for the following three components: (i) measurement time, (ii) optimal height computation time, and (iii) 
optimal height setting time. The system’s dynamic response measurements are conducted over three subsequent periods of vibration 
in order to identify maximum amplitude of vibrations and compute velocity of the grain. Thus, the measurement time is given by 
𝑡𝑚 = 𝑛∕𝑓 , where 𝑛 = 3 and 𝑓 is the vibration frequency, which depends on the mass of the applied grain. The optimal container 
height is computed using the Predictive Control Algorithm based on the previously determined quantities. Due to the algorithm’s 
computational efficiency, this step typically requires only milliseconds and is negligible compared to the total control delay. Finally, 
the transition of the container’s height from the actual value to the determined optimal one is assumed to take 0.3 [s], as determined 
by the operational speed of the applied electric engine. Notably, after setting the optimal height, the system remains in a transient 
state which lasts for substantial period (significantly longer than the control system delay), until the steady state is achieved. The 
entire process is repeated multiple times until an optimally damped vibration state is achieved. Several test cases were conducted, 
varying the excitation amplitude and the grain mass. For the sake of clarity, the results of one selected case (where the amplitude 
of excitation was 𝐴 = 0.01 [m] and grain mass was equal 20% mass of the whole system 𝑚𝑔 = 0.2𝑀) are presented in Figs.  9 and
10.

According to the earlier description and assumptions, measurements from every consecutive three vibration periods were 
subjected to analysis, the damper height was calculated, and then applied in the actual ATPID damper. As a result, a time history 
of the damper control for the entire procedure was obtained and presented in Fig.  9(a). As can be seen, for the presented case, it 
was necessary to determine several intermediate heights in order to establish the final optimal one. Additionally, it can be observed 
that the first determined height (excluding the case when the damper is closed) is too large. At a later stage, there were minor 
oscillations in the predicted height values around the optimal height. The described geometric changes in the container naturally 
affected the grain motion and the response of the cantilever beam vibrations. The time plot of the vibration amplitude of the free 
end beam is presented in Fig.  9(b). It can be observed that at the beginning of the measurements, until approximately 0.5 [s], the 
9 
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Fig. 10. Comparison of the displacement of the free end of cantilever beam for the case with deactivated and controlled ATPID Damper (case 1).

damper was closed, and gradual increase of the resonant vibrations was observed. Each subsequent opening of the damper resulted 
in a reduction in the beam vibration amplitude. Ultimately, applying the PCA algorithm allowed to achieve stabilized vibrations 
with an amplitude below 0.1 [m].

To determine the effectiveness of vibration damping, these results were compared with an analogous case in which the damper 
height remains minimal throughout the resonant vibration process, which means that no additional damping from the ATPID damper 
is introduced. The comparison of both results is presented in Fig.  10.

In the situation where the damper is closed, and the grain does not move in the container, full excitation of the beam into 
resonant vibrations can be observed. Such an example is presented in Fig.  10 by black line. The resonant vibrations are stabilized 
and reach an amplitude of approximately 0.4 [m]. The response of the beam vibrations with the application of the PCA algorithm 
is shown by red line. Stabilized and optimally damped vibrations are achieved after around 2 [s] of the experiment. Additionally, it 
should be noted that the application of the PCA algorithm allows for determining the damper height at which the beam vibration 
response amplitude is reduced by nearly 75%. These results indicate that PCA is a fast and efficient control algorithm, suitable for 
systems whose mechanical characteristics are a priori unknown.

To demonstrate the effectiveness of the PCA algorithm, two additional experimental studies were conducted. In the first study 
(case 2), the amplitude of excitation was set to 𝐴 = 0.01 [m] and grain mass was 𝑚𝑔 = 0.1𝑀 . In the second study (case 3), the 
excitation amplitude was increased to 𝐴 = 0.02 [m] and the grain mass was 𝑚𝑔 = 0.2𝑀 . The plots illustrate the height of the ATPID 
damper as well as the oscillation response of the system for both cases: with the damper deactivated and with control applied via 
the PCA algorithm. The results for each scenario are presented in Figs.  11 and 12.

Fig. 11. Result of the experimental implementation of the PCA algorithm in the unknown mechanical system (Case 2).

The results indicate that the PCA algorithm is applicable to various cases involving changes in excitation amplitude and granular 
mass. In both scenarios, the algorithm converged within a few iterations to an optimal height at which substantial resonant 
vibration damping was achieved. In both cases considered, the optimal damper height was approximately 0.2 [m]. Under steady-
state conditions, the amplitude of the vibration response was reduced by up to 80% compared to the system with an inactive 
damper. This PCA-based approach shows potential for vibration suppression in systems with limited prior information. However, 
a notable disadvantage of this method is a relatively long time required to iteratively determine and adjust the damper height. 
Longer periods of resonant vibrations can destroy the structure. Consequently, further investigation was undertaken to enable the 
immediate determination of an optimal damper height, aiming to enhance the efficiency of mechanical vibration reduction at the 
initial stages of the process.

Parameters such as beam mass, granulate mass, and excitation amplitude also affect the effectiveness of vibration damping. The 
experimentally obtained effectiveness can be improved, but significant reconstruction of the experimental setup is required, which 
poses a serious limitation in further experimental research. Therefore, in the subsequent part of the study, the focus was on applying 
10 
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Fig. 12. Result of the experimental implementation of the PCA algorithm in the unknown mechanical system (Case 3).

the PCA algorithm to systems that can be theoretically modeled and system dynamics potentially predicted without the need for 
experimental investigation.

3. The approach of the PCA implementation for the well-known mechanical system

The second scenario considered in the manuscript assumes that the studied object is well-known and dynamic response of the 
system at the test stand can be reflected using numerical models. Consequently, it is possible to predict the system’s behavior at 
the initial stage of the algorithm’s operation and thus to improve the process of searching for the optimal height of the damper. 
Additionally, all subsequent steps of the control algorithm are carried out numerically, so the height determination time depends 
almost exclusively on the computational power of the computer.

Before starting to implement Predictive Control Algorithm the following assumptions have to be provided:

• the excitation parameters (amplitude and frequency) are known,
• the physical and geometric parameters of the beam and ATPID damper are known,
• the ATPID damper is deactivated at the start of the process (the grain is blocked),
• the beam is in resonance during vibrations with the closed ATPID damper.

The implementation scheme of the PCA algorithm is presented in Fig.  13.

Fig. 13. Scheme of the PCA algorithm implementation for the well-known mechanical system.
The experimental mechanical system consists of a cantilever beam subjected to harmonic kinematic excitation. The ATPID damper 

is attached to the free end of the beam and is controlled via the PCA algorithm. The amplitude of the excitation may vary over time, 
while the selected excitation frequency consistently induces resonant vibrations when the damper is deactivated. In the initial phase 
of the PCA algorithm’s operation, the damper is deactivated, meaning its height, denoted as ℎinitial, is equal to the diameter of the 
sphere placed inside the damper container. For the purposes of the presented study, ℎinitial = 0.017 [m]. During the experimental 
investigations, the measurement system records the dynamic response of the beam’s free end along with the excitation amplitude. 
At this stage, detection of changes in excitation amplitude is performed. At the beginning of the experiment and at each subsequent 
stage, whenever a new excitation amplitude is identified, the measured value of the amplitude is transmitted to the PCA algorithm. 
Based on this input, a simplified model predicts the approximate amplitude of the system’s response under the current conditions. 
This predicted response is forwarded to the Predictive Control Algorithm block, which initiates further processing. The PCA block 
determines a predicted damper height, which is then passed to a second component — the Complex Model. This model continues 
the simulation of the system’s behavior and verifies whether the proposed damper height meets the criteria for optimal granular 
11 
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Fig. 14. Optimality condition for the Predictive Control Algorithm.

movement. If the conditions are not satisfied, the Complex Model updates the dynamic response, and a new predicted damper height 
is computed by the PCA block. In cases where the conditions are satisfied, the computed height is deemed optimal and transmitted 
to the controller. Each time a new excitation amplitude occurs, it is immediately detected, and the entire PCA algorithm procedure 
is re-executed to determine the optimal damper height for the current excitation. Until a new optimal value is determined, the 
previously computed damper height remains applied in the real system. Conversely, when the measurement system does not detect 
a change in the excitation amplitude, appropriate information is sent to the controller indicating that no adjustment to the damper 
height is necessary.

The application of the Simplified Model and Complex Model reduces the time required to identify the amplitudes of the system’s 
resonant vibrations in a steady state, significantly accelerating the determination of the optimal damper height. A detailed schematic 
of the control process using the Simplified Model, Predictive Control Algorithm and Complex Model is presented in Fig.  14 and 
described in details in the next subsections of the paper.

3.1. Operating principle of the PCA algorithm for the well-known mechanical system

Starting from a Simplified Model (SM), it is possible to predict the system response in the specific case corresponding to damper 
height greater than the optimal one. Based on the obtained results and the previously defined PCA criteria, the initial value of 
the damper’s height (the first prediction) can be determined using the Predictive Control Algorithm. In the first iteration of the 
calculations, this value differs from the optimal one because of the application of the Simplified Model containing significant 
simplifications and aimed primarily at predicting the system response in the range of vibrations when the ATPID damper height 
is too large. Although the obtained damper height is not optimal, it constitutes the starting point for further calculations, which 
introduce additional physical phenomena. The following stage utilizes both the Complex Model (𝐶𝑀𝑖) and the Predictive Control 
Algorithm (𝑃𝐶𝐴𝑖) where 𝑖 enumerates iterations of the PCA algorithm. The Complex Model is the 2-DOF soft contact model that was 
used in the published paper [52]. These models determine the dynamics of the system and the height of the damper respectively, 
and exchange data with each other. Iterative running of the Complex Model and Predictive Control Algorithm allows to determine 
a damper height that is close to the optimal one. Finally, in order to find the height which is the most efficient, a searching process 
in the range close to the final height is performed. The Simplified Model and the Complex Model are described in detail below. 
Schemes of the discussed models are shown in Fig.  15.

3.2. Simplified model

The Simplified Model allows studying a specific type of vibration, which occurs when the system’s mass consists solely of the 
beam mass. In this case, the mass of the grain can be omitted, assuming that the contact between the grain and the container walls 
is infrequent and short. This condition is met when the damper’s height is significantly greater than the optimal height, preventing 
the grain from reaching the upper wall position.

Finding a solution for such a scenario is crucial for determining the expected height of the damper. Therefore, an attempt was 
made to derive an analytical solution, which will later serve as a component of the Predictive Control Algorithm. For the sake of 
further analysis, the analytical solution of the Simplified Model is denoted as the predictive solution of the vibrating system 𝑥𝑠𝑝𝑟𝑒𝑑 . 
It describes oscillations around the equilibrium state, considering the initial deflection 𝑥𝑠 (𝑡 = 0) = −(𝑚 𝑔)∕𝑘  that accounts for the 
𝑝𝑟𝑒𝑑 𝑠 𝑠
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Fig. 15. Schemes of the models used in the PCA algorithm.

effect of gravity. Hence, the equation of motion can be represented as a system that does not include the component related to the 
force of gravity. The initial velocity is 𝑥̇𝑠𝑝𝑟𝑒𝑑 (𝑡 = 0) = 0. The equation of motion is defined as: 

𝑚𝑠𝑥̈
𝑠
𝑝𝑟𝑒𝑑 + 𝑐𝑠[𝑥̇

𝑠
𝑝𝑟𝑒𝑑 − 𝑢̇𝑠] + 𝑘𝑠[𝑥

𝑠
𝑝𝑟𝑒𝑑 − 𝑢𝑠] = 0 (17)

The kinematic excitation takes the harmonic form 𝑢𝑠 = 𝐴𝑠𝑖𝑛(2𝜋𝑓𝑡) and then the Eq. (17) reads: 
𝑚𝑠𝑥̈

𝑠
𝑝𝑟𝑒𝑑 + 𝑐𝑠𝑥̇

𝑠
𝑝𝑟𝑒𝑑 + 𝑘𝑠𝑥

𝑠
𝑝𝑟𝑒𝑑 = 𝐷𝑟𝑒𝑑𝑠𝑖𝑛(2𝜋𝑓𝑡) (18)

where the excitation frequency and natural frequency of the system are presented by Eqs.  (19) and (20), respectively: 

𝑓 =

√

𝑘𝑠
2𝜋

√

𝑚𝑠 + 𝑚𝑔
(19)

𝑓0 =

√

𝑘𝑠
2𝜋

√

𝑚𝑠
(20)

Using basic theory from the field of mechanical vibrations, a detailed formula to calculate the reduced amplitude of a harmonic 
force excitation can be derived: 

𝐷𝑟𝑒𝑑 =
√

𝐴2
0 + 𝐵

2
0 (21)

where: 𝐴0 = 𝑘𝑠𝐴, 𝐵0 = 𝑐𝑠𝜔𝐴 and 𝜔 = 2𝜋𝑓 .
The steady state system response takes the form of a trigonometric function: 

𝑥𝑠𝑝𝑟𝑒𝑑 = 𝐴𝑝𝑟𝑒𝑑𝑠𝑖𝑛(2𝜋𝑓𝑡) (22)

where the amplitude of vibrations can be calculated by Eq. (23): 

𝐴𝑝𝑟𝑒𝑑 =
𝐷𝑟𝑒𝑑

𝑚𝑠
√

4𝛽2𝜔2 + (𝜔2 − 𝜔2
0)

2
(23)

and 𝜔0 = 2𝜋𝑓0.
In summary, 𝑥𝑠𝑝𝑟𝑒𝑑 is the displacement of the system, which has a mass equal to the mass of the beam. The frequency of excitation 

is calculated based on both the mass and the beam. The analytical solution is computed for the case where the parameters are as 
follows: 𝑚𝑠 = 0.3258 [kg], 𝑚𝑔 = 0.1𝑀𝑠 = 0.0362 [kg] where is the whole mass of the 2-DOF system, 𝑘𝑠 = 427.6 [ Nm ], 𝑐𝑠 = 0.56 [N s

m ], 
𝐴 = 0.02 [m], 𝑓 = 5.469 [Hz], 𝑓0 = 5.765 [Hz]. In order to verify the above result the 2-DOF soft contact model was applied and the 
damper height was set significantly larger than the optimal one such that the grain could not collide with the container ceiling. The 
steady-state solution obtained from the Simplified Model and the numerical simulation of the mentioned 2-DOF model are compared 
and presented in Fig.  16.

The results indicate that the vibration amplitude determined from the analytical model closely matches the mean maximum 
amplitude of the successive vibration periods obtained from the 2-DOF model. It is evident that slight phenomena of rumble can 
also be observed. This is due to the fact that a significantly larger height than optimal was applied in the model. The occurrence 
of rumble phenomena in such situations is often. This means that the Simplified Model can be used for preliminary prediction of 
the dynamics of the beam equipped with the ATPID damper with a height larger than optimal. This stage is crucial for further PCA 
algorithm procedures as it provides the preliminary vibration prediction of the system in the above specific state.
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Fig. 16. Comparison of the response of the beam vibration obtained from the Simplified Model — red line (when 𝑀𝑠 = 𝑚𝑠) and the 2-DOF soft contact model 
— black line (when the damper height exceeds the optimal height).

3.3. Complex model

The scheme of the Complex Model is presented in Fig.  15(b) and its governing equations are given by Eqs.  (24) and (25): 
𝑚𝑠𝑥̈𝑠 + 𝑘𝑠[𝑥𝑠 − 𝑢𝑠] + 𝑐𝑠[𝑥̇𝑠 − 𝑢̇𝑠] + 𝑚𝑠𝑔 + 𝐹𝑐1 − 𝐹𝑐2 = 0 (24)

𝑚𝑔 𝑥̈𝑔 + 𝑚𝑔𝑔 − 𝐹𝑐1 + 𝐹𝑐2 = 0 (25)

The kinematic excitation applied to the system is characterized by a function that describes the motion of the structure support, 
as expressed by the equation below: 

𝑢𝑠 = 𝐴𝑠𝑖𝑛(2𝜋𝑓𝑡) (26)

where the excitation frequency has the following form: 

𝑓 =

√

𝑘𝑠
2𝜋

√

𝑚𝑠 + 𝑚𝑔
(27)

To model the collision phenomena, the soft contact theory was employed. This approach enables a detailed numerical analysis 
by assuming that the time of contact between two objects is very short and finite, in contrast to the hard contact theory, which 
presumes an infinitely short collision. An additional advantage of this model is its ability to account for elastic and viscoelastic 
properties of the colliding objects [66]. A detailed description and analysis of the chosen contact force model are presented in the 
previously published paper [52]. The nonlinear viscoelastic lower 𝐹𝑐1  and upper 𝐹𝑐2  contact forces can be computed by Eqs.  (28) 
and (29): 

𝐹𝑐1 = 𝑘𝑐𝜉
3∕2
𝑐1 + 𝑐𝑐 𝜉̇𝑐1𝜉

1∕4
𝑐1 (28)

𝐹𝑐2 = 𝑘𝑐𝜉
3∕2
𝑐2 + 𝑐𝑐 𝜉̇𝑐2𝜉

1∕4
𝑐2 (29)

where 𝑘𝑐 = (4∕3)𝐸𝑒𝑓𝑓
√

𝑟 and 𝑐𝑐 = 2
√

𝑘𝑐𝑚𝑔 describe the reduced contact stiffness and damping, respectively. Both coefficients depend 
on the grain radius 𝑟 and the effective Young modulus 1∕𝐸𝑒𝑓𝑓 = (1 − 𝜈2𝑤)∕𝐸𝑤 + (1 − 𝜈2𝑔 )∕𝐸𝑔 , where Poisson’s ratios of the wall and 
grain are denoted by 𝜈𝑤 and 𝜈𝑔 , while Young’s moduli of the wall and grain are represented by 𝐸𝑤 and 𝐸𝑔 , respectively.

Contact forces depend on the overlaps (𝜉𝑐1 , 𝜉𝑐2 ) and overlaps rates (𝜉̇𝑐1 , 𝜉̇𝑐2 ). To calculate these parameters it is necessary to 
introduce the equations defining the distance between the grain and the floor (𝜏𝑐1 ) and the ceiling (𝜏𝑐2 ) of the container: 

𝜏𝑐1 = −𝑥𝑔𝑖 + 𝑟 + 𝑥𝑠 − 𝑥𝑔 (30)

𝜏𝑐2 = 𝑥𝑔𝑖 + 𝑟 + 𝑥𝑔 − 𝑥𝑠 − ℎ (31)

where 𝑥𝑔𝑖 = 𝑟. The overlaps and overlaps rates have the following forms: 

𝜉𝑐1 =
{

𝜏𝑐1 if 𝜏𝑐1 > 0
0 if 𝜏𝑐1 ≤ 0

(32)

𝜉𝑐2 =
{

𝜏𝑐2 if 𝜏𝑐2 > 0
0 if 𝜏𝑐2 ≤ 0

(33)

𝜉̇𝑐1 =
{

𝑥̇𝑠 − 𝑥̇𝑔 if 𝜉𝑐1 > 0 (34)

0 if 𝜉𝑐1 = 0
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𝜉̇𝑐2 =
{

𝑥̇𝑔 − 𝑥̇𝑠 − ℎ̇ if 𝜉𝑐2 > 0
0 if 𝜉𝑐2 = 0

(35)

Due to the nature of the central collision between the grain and the wall (where the directions of motion of the grain and the wall 
is the same), friction during contact was neglected. A similar approach was adopted in the paper [67].

In the ATPID damper the height of the container is tunable. It means it can be changed in real time. The ATPID height can be 
expressed by Eq.  (36): 

ℎ = ℎ𝑜𝑙𝑑 + 𝛥ℎ𝜓 (36)

𝛥ℎ = ℎ𝑚𝑎𝑥 − ℎ𝑜𝑙𝑑 (37)

where ℎ𝑚𝑎𝑥 in the new predicted damper height, ℎ𝑜𝑙𝑑 is the container height computed in the last iteration of calculations. The 
damper height can be tuned from the value ℎ𝑜𝑙𝑑 to the ℎ𝑚𝑎𝑥. The function of these changes can be described by the control function 
𝜓 which corresponds to the linear changes generated by the electric engine of the ATPID damper and has the following form: 

𝜓 =

⎧

⎪

⎨

⎪

⎩

0 if 𝑡 < 𝑡1
𝑡−𝑡1
𝛥𝑡12

if 𝑡1 < 𝑡 < 𝑡2
1 if 𝑡 > 𝑡2

(38)

where: 𝑡 — control time, 𝑡1 — activation start time, 𝑡2 — saturation start time, 𝑡12 — activation period.
The initial conditions 𝑥𝑠(𝑡 = 0), 𝑥𝑔(𝑡 = 0), 𝑥̇𝑠(𝑡 = 0) and 𝑥̇𝑔(𝑡 = 0) of each simulation depend on the final conditions of the 

previously completed numerical simulation. Therefore, they will be different each time and enable the continuation of previous 
analyses with the consideration of newly determined damper heights.

3.4. Application of the simplified model and predictive control algorithm

The first step of calculations was the application of Simplified Model and Predictive Control Algorithm to determine ℎ𝑝𝑟𝑒𝑑 for 
the excitation amplitude 𝐴 = 0.02 [m]. The preliminary predicted height is determined and equals ℎ𝑝𝑟𝑒𝑑 = 0.549 [m]. At this stage, 
it is worth examining how the dynamic response of the tested system changes for the specified damper height. For this purpose, the 
Complex Model can be treated as a universal 2-DOF soft contact model for the experimental system under study. Accordingly, the 
determined height was included in the such 2-DOF model and a numerical simulation was performed. The response of the system 
was presented in Fig.  17.

Fig. 17. Response of the beam vibrations for 2-DOF soft contact model with initially predicted ATPID height for excitation amplitude 𝐴 = 0.02 [m].

Upon analyzing the results, it becomes evident that the initially determined height is larger than the optimal one, and there 
is a rumble effect observed in the vibrations of the beam. Once the specified height ℎ𝑝𝑟𝑒𝑑 is set, the system starts to vibrate in a 
chaotic manner due to the irregular movement of the grain within the container. This confirms that the SM allows for predicting 
the response amplitude of the system for damper heights larger than the optimal height, while the PCA enables determining the 
height at which this situation occurs. Additional analysis will be conducted to further tune this height of the damper, ensuring that 
the particle movement meets the predetermined criteria.

The displacement of the bottom wall of the container is determined using the analytical solution 𝑥𝑠𝑝𝑟𝑒𝑑 obtained from the 
Simplified Model (Eq. (22)), while the displacement of the upper wall of the container can be calculated as the sum of the 
displacement of the floor and the predetermined height of the damper (Eq. (7)). Based on the initial velocity of the grain 
𝑉𝑔𝑟𝑎𝑖𝑛 = 𝑉𝑏𝑒𝑎𝑚 = 6.24 [m/s], its movement towards the damper ceiling can be determined. The subsequent collision with the upper 
wall of the damper occurs when the position of the beam reaches zero (at its maximum velocity). It was assumed that each simulation 
iteration should begin from a similar situation — the moment when the grain collides with the bottom wall of the casing. Therefore, 
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Fig. 18. Upward and downward motion of the grain in the container computed using Simplified Model with initially predicted heigh ℎ𝑝𝑟𝑒𝑑 obtained from the 
Predictive Control Algorithm.

to proceed to the next analysis, the grain’s subsequent trajectory was calculated. After contacting the upper wall, the velocity of the 
particle was assumed to be equal to the velocity of the beam before the collision, similarly as at the beginning of the simulation. 
Consequently, the displacement of the grain while moving downward was determined. The obtained results are presented in Fig. 
18.

Subsequently, the time at which the grain collided again with the bottom wall of the damper was determined. At the moment of 
collision, the position and velocity of the beam and the particle were 𝑋𝑏𝑒𝑎𝑚 = −0.0382 [m], 𝑋𝑔𝑟𝑎𝑖𝑛 = −0.0297 [m], 𝑉𝑏𝑒𝑎𝑚 = 6.136 [m/s] 
and 𝑉𝑔𝑟𝑎𝑖𝑛 = −6.972 [m/s], respectively. These values serve as the initial conditions for the simulation, which will be continued in 
the Complex Model.

3.5. Application of the Complex Model and Predictive Control Algorithm

The Complex Model is a 2-DOF soft contact model that incorporates more physical phenomena, including grain-walls collisions, 
compared to the Simplified Model. The CM allows observation of the system’s dynamic response to the grain’s motion and the 
resulting collisions over subsequent vibration cycles. It is assumed that each simulation based on the Complex Model lasts 5 s. 
Starting from the previously computed initial conditions and the primary height of the damper obtained from the Predictive Control 
Algorithm (𝑃𝐶𝐴1), the simulation was further conducted using the Complex Model (𝐶𝑀1). The results of this simulation are 
presented in Fig.  19.

Fig. 19. Movement of the grain and container walls obtained from the Complex Model.

The grain motion during the current simulation is analyzed to verify whether the damper height determined in 𝑃𝐶𝐴1 results in 
optimal grain behavior. For the case shown in Fig.  19(a), it can be seen that the grain motion is not predictable. Random collisions 
occur, and the criteria for optimal grain motion are not satisfied. In such cases, it is assumed that only the grain motion during the 
first vibration cycle will be considered for further analysis, as illustrated in Fig.  19(b).

Concluding, the entire movement of the particle and the damper walls can be traced from the beginning of the Predictive Control 
Algorithm process, where the initial system response and damper height were determined. Specifically, the first cycle of upward 
and downward movement of the grain and the damper can be computed using the Simplified Model and the Predictive Control 
Algorithm (𝑆𝑀 + 𝑃𝐶𝐴1). The second cycle of upward and downward movement of the grain can be computed for the previously 
determined damper height using the Predictive Control Algorithm and the Complex Model (𝑃𝐶𝐴1 + 𝐶𝑀1), considering collisions 
described by the soft contact theory. At the end of the last impact with lower wall (Fig.  19(b)), the position and velocity of the 
beam and the grain are as follows: 𝑋𝑏𝑒𝑎𝑚 = −0.0029 [m], 𝑋𝑔𝑟𝑎𝑖𝑛 = 0.0056 [m], 𝑉𝑏𝑒𝑎𝑚 = 2.689 [m/s], 𝑉𝑔𝑟𝑎𝑖𝑛 = 4.114 [m/s]. These values 
will be considered as input data for further calculations in the Predictive Control Algorithm.
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Then, the second iteration of the PCA algorithm begins to determine the new height of the damper. The general form of Eq. (14) 
is used. For a clearer representation of the subsequent mathematical operations, the formula is restated below: 

ℎ𝑝𝑟𝑒𝑑 = 2𝑟 +𝑋𝑏𝑒𝑎𝑚 + 𝑉𝑔𝑟𝑎𝑖𝑛(𝑡𝑐2 − 𝑡𝑐1) −
𝑔(𝑡𝑐2 − 𝑡𝑐1)2

2
− 𝐴𝑝𝑟𝑒𝑑𝑠𝑖𝑛(2𝜋𝑓𝑡𝑐2) (39)

The times 𝑡𝑐1 and 𝑡𝑐2 represent the time of contact between the grain and the lower and upper walls of the damper, respectively, 
based on the predicted system response 𝐴𝑝𝑟𝑒𝑑 . The time 𝑡𝑐1 needs to be determined by solving Eq. (40): 

𝐴𝑝𝑟𝑒𝑑𝑠𝑖𝑛(2𝜋𝑓𝑡𝑐1) = 𝑋𝑏𝑒𝑎𝑚 (40)

The equation above has multiple solutions, and the time 𝑡𝑐1 can take various values. However, for subsequent calculations, we 
consider the value that falls within the first period of vibrations. To fulfill the assumption that the grain must collide with the ceiling 
of the damper when it reaches its maximum velocity, the time 𝑡𝑐2 needs to be equal to 1∕(2𝑓 ). For the updated parameters, it is 
possible to re-determine the predicted height using the Predictive Control Algorithm (𝑃𝐶𝐴2), apply it to the Complex Model (𝐶𝑀2) 
and continue the simulation determining the vibration of the beam and the movement of the grain. The results obtained for the 
next iteration of the calculations are presented in Fig.  20.

Fig. 20. Motion of the grain and container for the new predicted damper height.

Upon analyzing the results, it becomes evident that collisions between the particle and the container occur periodically when 
the direction of the grain is opposite to the direction of the damper movement, the beam velocity is close to its maximum, and 
there is no sticking effect between the grain and the cylinder walls. These conditions indicate that all the criteria for optimal grain 
movement are met. The entire movement of the particle within the container, controlled by the entire PCA algorithm, is depicted 
in Fig.  21.

The height obtained using the PCA algorithm, referred to as the predicted optimal height, is the final value after considering all 
the assumed conditions and in this case is equal 0.3922 [m].

Fig. 21. Motion of the grain and damper walls from the beginning of the calculations.
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Fig. 22. Motion of the grain and damper walls from the beginning of the calculations (case 2).

Fig. 23. Motion of the grain and damper walls from the beginning of the calculations (case 3).

For the above approach, two additional cases were considered: in Case 2, the excitation amplitude was 𝐴 = 0.01m with 𝑚𝑔 = 0.2 M
and in Case 3, 𝐴 = 0.02 [m] with 𝑚𝑔 = 0.1 M. The results for these cases are presented sequentially in Figs.  22 and 23.

The obtained results indicate that for different conditions, it is also possible to determine an final predicted damper height that 
can be immediately implemented in the mechanical system. In the analyzed cases, the optimal damper height was 0.205 [m] for case 
2 and 0.198 [m] for case 3, aligning with the findings from the section on applying PCA in an unknown system. Additionally, it was 
observed that in the scenario with a lower excitation amplitude (Fig.  22), achieving the height at which optimal granular motion 
criteria are met required three iterations of calculations using the Complex Model. For Case 3, only two iterations were necessary. 
It is crucial to ensure that these initially determined damper heights are indeed the optimal one, which means that it minimizes the 
amplitude of the beam’s vibration. To achieve this, it is necessary to explore a range of values around the last predicted height and 
determine the container height that results in the optimal system response.

3.6. Precise tuning of pre-determined ATPID height

The searching process constitutes the final stage in determining the optimal ATPID height. It is an iterative method in which 
various damper heights are evaluated and the corresponding system responses are compared, including the maximum amplitude 
observed in the last two vibration periods (of the simulation). The results of each iteration are assessed relative to the previous ones, 
allowing for the identification of the most effective damper height at each step. If the response amplitude at the currently tested 
height is lower than that of the previous iteration, this new height is adopted as the most effective. Otherwise, the damper height 
from the previous iteration is retained. Fig.  24(a) shows the final heights in each iteration of the precise tuning process (black line), 
along with all the intermediate height values tested during the process (red points), while Fig.  24(b) presents the amplitude of the 
system response for the corresponding cases.

The searching process involves gradually decreasing the previously calculated damper height ℎ𝑝𝑟𝑒𝑑 by 10% of its value and 
observing the changes in the system’s response. The system vibration response is analyzed using a 2-DOF soft contact model. This 
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Fig. 24. ATPID damper heigh and beam response obtained in the searching process (black line) and all tested cases (red points).

height reduction process is repeated until the system’s response amplitude starts to increase. The last calculated height (ℎ𝑝𝑟𝑒𝑑) is then 
increased by ℎ𝑝𝑟𝑒𝑑 ⋅10%1.5 , and the response of the beam is analyzed again. This stage continues until the system’s response begins to 
deteriorate which is indicated by an increase in vibration amplitude. The entire procedure is then repeated, and the damper height 
is modified by ℎ𝑝𝑟𝑒𝑑 ⋅10%1.5𝑛𝑠

, where 𝑛𝑠 increases by 1 each time the transition from decreasing to increasing the height, or vice versa, is 
performed. The results obtained from the PCA control algorithm itself are compared with the results from the searching stage. Fig. 
24(a) illustrates the process in which the damper height is alternately decreased and increased, allowing for the determination of 
the optimal height for the specified system parameters. Fig.  24(b) displays the steady-state vibration amplitudes of the system for 
individual heights evaluated in the search process. There are segments where the height remains constant over selected iterations, 
for example, iterations 1–2, 3–6, 7–8, 9–10, 11–12, and 13–20. This occurs because, in each iteration, the precise tuning algorithm 
evaluates the effect of determined damper height on the system’s response. Moreover, the vibrations of the beam are consistently 
reduced throughout the process, indicating the correctness of the algorithm in searching for the optimal height corresponding to 
the minimum vibration amplitude. In this specific case, it was sufficient to perform 20 iterations of calculations to determine the 
optimal height of the ATPID damper. In the general scenario, the searching process will continue until successively determined 
heights will result in changes of vibration amplitude smaller than 1%.

3.7. Final implementation of the PCA algorithm in the real mechanical system

In order to demonstrate the performance of the proposed PCA control algorithm for the ATPID damper connected to a real 
well-known system, appropriate experimental investigations were conducted. An experimental scenario was proposed in which a 
cantilever beam, attached to a kinematic exciter, was subjected to three different excitation amplitudes. These amplitudes changed 
every 5 s and took values of 0.02 [m], 0.01 [m], and 0.015 [m], respectively. The mass of the grain was equal to 10% of the total 
system mass. With the damper deactivated (i.e., set to its minimal height), the system was subjected to resonant vibrations. The 
time history of the excitation amplitude is presented in Fig.  25(a). The resulting damper height over time, as determined by the 
PCA control process, is shown in Fig.  25(b). The vibration response of the free end of the cantilever beam, for both the deactivated 
and controlled ATPID damper cases, is presented in Fig.  26.

Fig. 25. Result of the experimental implementation of the PCA algorithm in the well-unknown mechanical system.

Fig.  26 presents a comparison of the results, from which it can be concluded that the application of the PCA algorithm enables 
adaptive vibration damping of a beam subjected to excitation of varying amplitude. This approach allows for effective vibration 
reduction each time the operating conditions change. Based on the conducted analysis, it is observed that the vibration amplitude 
of the controlled system is reduced by up to approximately 75% compared to the system with the deactivated damper. An analysis 
of Fig.  25(b) reveals how the damper height changes over time, representing an adaptive response to the varying excitation. It 
can be observed that there is a certain delay time between the actual change in excitation amplitude and the adjustment to the 
optimal damper height. This delay is approximately 1.2 [s] and includes the time required to measure a full vibration period and 
identify the amplitude change (about 0.18 [s]), the computation time of the PCA algorithm with precise tuning process (around 
0.7 [s]), and the time needed to adjust the damper height (close to 0.3 [s]). It should also be noted that the time required for 
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Fig. 26. Comparison of the displacement of the free end of cantilever beam for the case with deactivated and controlled ATPID damper.

the system response to stabilize depends on the parameters of the tested system, which influence the transient response duration 
after the damper height is adjusted. The obtained reaction time of the PCA algorithm to excitation changes is considered acceptably 
short. The conducted analysis demonstrates the feasibility of applying the proposed PCA algorithm for vibration control in a real 
mechanical system subjected to variable operating conditions.

4. Sensitivity analysis of the PCA algorithm

The presented control algorithm allows for determining the predicted height of the damper, which shows that the calculated 
values are close to the optimal one. To find the final optimal position of the container ceiling, a searching process was applied 
around the predicted height. As a result, an algorithm was developed that can predict the appropriate height of the ATPID damper 
for various system parameters, ensuring the most effective reduction of vibrations. Consequently, as a next step, a sensitivity analysis 
of the proposed Predictive Control Algorithm was conducted.

In the first scenario, optimal damper heights were determined (after using the PCA algorithm and the searching process) for 
various excitation amplitudes, and the results are illustrated in Fig.  27(a). The remaining system parameters are kept constant and 
assume the following values: 𝑚𝑠 = 0.905𝑚𝑏 = 0.3258 [kg], 𝑚𝑔 = 0.1𝑀𝑠 = 0.0362 [kg], 𝑘𝑠 = 427.6 [ Nm ], 𝑐𝑠 = 0.56 [N s

m ] and 𝑓 = 5.469
[Hz].

Fig. 27. Change of the optimal ATPID height and effectiveness of the PCA algorithm in terms of various excitation amplitudes.

Based on Fig.  27(a), it can be concluded that the variation of optimal heights over a broad range of excitation amplitudes 
follows a linear trend. These results are intriguing as the numerical model of the system (Complex Model) is highly nonlinear. 
Subsequent analyses involved calculating the percentage difference between the preliminary damper height value determined by 
the PCA algorithm and the final optimal height obtained through the searching process. These results serve as a parameter to evaluate 
the effectiveness of the proposed PCA algorithm (Fig.  27(b)).

Fig.  27(b) illustrates that the percentage error decreases up to 4% as the excitation amplitude increases. A notable observation 
is the occurrence of significant percentage discrepancies (ranging from about 10% to 50%) for small amplitudes of excitation (up 
to approximately 0.1 [m]). These discrepancies appear predominantly due to the influence of gravity on the dynamic response of 
the system. With small excitation amplitudes, the velocities and accelerations of the vibrating system and grain are relatively small. 
Consequently, the grain in the open damper remains in constant contact with the floor or achieves only a negligible separation 
distance when it detaches. In such cases, the correct determination of the damper height using the PCA algorithm while considering 
all criteria for optimal grain motion becomes challenging. As a result, the discrepancy between the initially determined height and 
the final optimal height becomes significant.
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Next, the optimal heights of the ATPID damper were determined for three grain masses (𝑚𝑔 = 0.1𝑀𝑠, 𝑚𝑔 = 0.2𝑀𝑠 and 𝑚𝑔 = 0.3𝑀𝑠) 
while considering a wide range of excitation amplitudes. The results are presented in Fig.  28(a).

Fig. 28. Change of the optimal ATPID height and effectiveness of the PCA algorithm in terms of the mass of the grain (𝑚𝑔 = 0.1𝑀𝑠 - black line, 𝑚𝑔 = 0.2𝑀𝑠 - 
red line, 𝑚𝑔 = 0.3𝑀𝑠 - blue line) for various excitation amplitudes.

The linear relationship between the optimal height of the absorber and the excitation amplitude is observed in all three cases 
presented in Fig.  28(a). Additionally, the calculations were performed for several grain masses ranging from 10% to 30% of the 
total system mass. The optimal heights exhibit similar dependencies on the amplitude change and can be precisely approximated 
by linear regression models, each having different slope parameters for the respective cases. However, to maintain consistency and 
clarity, these results were not included in the figure.

For the three different cases with various grain masses, the effectiveness of the PCA algorithm was evaluated and the results are 
displayed in Fig.  28(b). It is evident that the algorithm’s efficiency depends on the excitation amplitude also when the grain has 
different mass. For small excitation amplitudes, the algorithm’s performance is relatively low, with differences ranging from 40% to 
10%. However, as the amplitude values increase, the error diminishes, and the difference between the initially determined height 
(from the PCA algorithm) and the height after the search stage reduces to approximately 4%. These values can be considered as an 
acceptable from a functional point of view. As previously mentioned, the limited effectiveness of the algorithm for small excitation 
amplitudes can be attributed to the significant influence of gravity on the system’s dynamics.

In order to validate this conclusion, optimal damper heights were determined for cases with and without gravity, as well as for 
various grain masses. The results presented in Fig.  29(a) correspond to a particle with a mass equal to 10% of the total system mass. 
Additionally, the percentage error, representing the effectiveness of the PCA algorithm, was calculated and shown in Fig.  29(b).

Fig. 29. Change of the optimal ATPID height and effectiveness of the PCA algorithm in terms of the various excitation amplitudes for the cases with and without 
gravity.

Fig.  29(a) illustrates the linear correlation between the optimal height of the ATPID damper for various excitation amplitudes 
in two distinct scenarios: with and without the gravity. The plots show that the optimal absorber height remains nearly linear for 
a given amplitude, regardless of whether gravity is considered or not, indicating no significant difference. A more detailed analysis 
of the impact of gravity is provided by comparing the calculated errors for both cases, as depicted in Fig.  29(b). It turns out that 
disregarding the phenomenon of gravity makes the PCA algorithm highly effective for the entire considered range of excitation 
amplitudes. The error between the results is small, and equals approximately 2%. Since both systems (with gravity and without 
gravity) obtain almost identical optimal heights (Fig.  29(a)), it can be concluded that, to enhance the efficiency of the control 
algorithm, a model without gravity can be used.

Another interesting problem is to identify the type of function (linear or nonlinear) describing the correlation between the grain 
masses and the optimal heights. Hence, an analysis was conducted to determine the optimal height of the ATPID damper for four 
different excitation amplitudes (𝐴1 = 0.9 [m], 𝐴2 = 0.2 [m], 𝐴3 = 0.1 [m], 𝐴4 = 0.03 [m]), considering particle masses ranging from 
10% to 30% of the total system mass. The results obtained from this analysis are presented in Fig.  30.

The graphs presented in Fig.  30 reveal a non-linear correlation between the optimal height of the damper and the variation 
of grain mass, irrespectively of the excitation amplitude. This non-linearity poses a challenge in predicting the system’s behavior 
accurately. As a result, there is a necessity to develop algorithms capable of rapid determination of the optimal damper height 
for various combinations of excitation amplitudes and particle masses, such as the proposed in the manuscript Predictive Control 
Algorithm.
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Fig. 30. Change of the optimal ATPID height in terms of the mass of the grain (from 10% to 30% of the mass of the whole system) for various excitation 
amplitudes.

In the last phase of the investigation, the parameter 𝑑 = (𝑋𝑢𝑑 − 𝑋𝑜𝑑 )∕𝑋𝑢𝑑 ⋅ 100% which represents the percentage ratio of the 
difference between the amplitude of undamped steady-state vibrations 𝑋𝑢𝑑 and the optimally damped steady-state vibrations 𝑋𝑜𝑑
to the undamped vibrations. The optimal height required for increasing damper effectiveness was obtained through the proposed 
PCA algorithm and the searching process. The obtained result is depicted in Fig.  31.

Fig. 31. ATPID damper efficiencies corresponding to optimal container heights for various grain mass and excitation amplitudes (𝐴1 = 0.09 [m], 𝐴2 = 0.03 [m], 
𝐴3 = 0.01 [m], 𝐴4 = 0.0025 [m].

Fig.  31 demonstrates that increasing the grain’s mass enhances the ATPID damper’s effectiveness. It is essential to note that the 
ATPID damper was originally designed as an additional component to damp vibrations in the basic vibrating structure. Therefore, 
considering a larger grain mass is unjustified, as it would lead the damper to be treated as a fundamental dynamic structure, taking on 
a dominant role in the entire system dynamics. For smaller grain masses, the efficiency of the ATPID damper decreases non-linearly. 
Different damping efficiencies can be achieved for various vibration amplitudes. In the case of 𝐴1 (represented by the black line), 
the maximum damping efficiency can be attained and reaches approximately 92% when the grain’s mass equals 30% of the whole 
system’s mass.

5. Conclusions

The Adaptive Tuned Particle Impact Damper is a damping device comprising granular material enclosed in a container of 
changeable high. Its crucial feature is the ability to dynamically adjust damping properties and effectively respond to real-
time changes of operational condition. Methodology of designing an efficient ATPID damper involves several steps: experimental 
investigations, developing a mathematical model and employing optimization techniques. This paper extended previously analyzed 
issues to include the potential application of the Predictive Control Algorithm. Initially, this algorithm was conceived to narrow 
down the dataset range for faster optimal damper height search. Ultimately, it proved to be so efficient that it can determine 
optimal heights with a high effectiveness.

In this paper, we have commenced by delineating the overarching concept underlying the Predictive Control Algorithm (PCA). 
We have observed that the traditional method of theoretically determination of system dynamics necessitates proposing a numerical 
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model and possessing comprehensive knowledge about its parameters and applied excitations. The key principle of the PCA lies 
in overturning this classical paradigm. The initial phase of the algorithm entails prediction the vibrations of a given system in a 
specific state in the absence of complete system knowledge. Subsequently, utilizing the Predictive Control Algorithm facilitates the 
determination of the damper height when the initially identified type of vibrations is observed. Formulas enabling the estimation 
of the anticipated optimal height while adhering to the adopted assumptions describing the characteristics of optimal granulate 
motion were described in details. Following this, the article meticulously describes the implementation of the PCA algorithm in a 
real system, where knowledge of the system is confined to measured displacement of a cantilever beam’s free end. The selected 
example showed that after 4 s of investigation, a damper’s height close to the optimal one could be determined, and the beam 
vibration amplitude was reduced by 75% compared to the resonance vibration amplitude occurring for the case of deactivated 
damper.

Subsequent to this implementation, the algorithm’s application in a system with available comprehensive information enabling 
its mathematical modeling and numerical simulation was presented. The sequential stages of the algorithm were elaborated upon, 
evidencing the possibility of rapid prediction of the damper height at which vibrations are effectively damped. Finally, an analysis 
of the PCA algorithm’s sensitivity to variations in system parameters was presented. An experimental implementation of the PCA 
algorithm in a real mechanical system was proposed, where the excitation amplitude changed every 5 [s], taking on three different 
values. As a result of the PCA algorithm operation, it was possible to determine and set the optimal damper height for the current 
excitation within approximately 1.2 [s]. The algorithm enabled adaptive and effective tuning of the damper, thus ensuring efficient 
vibration reduction under varying operating conditions. Specifically, the influence of granulate mass, excitation amplitude, and 
gravity on the effectiveness of the PCA algorithm was studied. Greater grain mass and excitation amplitude lead to enhanced 
efficiency in accurately predicting the optimal damper’s height. Moreover, it was observed that in various cases, the gravity 
phenomenon can be disregarded, thereby contributing to increased algorithmic efficiency.

The study presents a Predictive Control Algorithm designed to enhance the functionality of the Adaptive Tuned Particle 
Impact Damper by enabling rapid and efficient identification of the optimal damper height, even in systems with unknown 
dynamic characteristics. This approach overcomes the inefficiencies of traditional optimization methods, which typically require 
exhaustive and time-consuming numerical procedures. Real-time experimental implementation demonstrated that the algorithm is 
highly effective in reducing structural vibrations, while numerical simulations confirmed its performance in systems with known 
parameters. Sensitivity analysis revealed that grain mass and excitation amplitude are key factors affecting PCA accuracy. The 
proposed algorithm not only improves vibration mitigation efficiency but also significantly reduces the computational cost of finding 
the optimal height compared to traditional iterative simulations based solely on the governing equations. Future developments aim 
to incorporate artificial neural networks to further advance its predictive capabilities, positioning the PCA-enhanced ATPID as a 
cost-effective and versatile alternative to conventional dampers.
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Table 1
The list of symbols.
 Symbol Description  
 𝑥𝑑𝑠 System vibration in the damped state  
 𝑥𝑠𝑝𝑟𝑒𝑑 Predicted displacement of the ATPID lower wall (beam)  
 𝑥̇𝑠𝑝𝑟𝑒𝑑 Predicted velocity of the ATPID lower wall (beam)  
 𝑥ℎ𝑝𝑟𝑒𝑑 Predicted displacement of the ATPID upper wall  
 𝑥̇ℎ𝑝𝑟𝑒𝑑 Predicted velocity of the ATPID upper wall  
 𝑥̈𝑠𝑝𝑟𝑒𝑑 Acceleration of the ATPID lower wall (beam)  
 ℎ𝑚𝑎𝑥 ATPID maximal damper height  
 𝐴𝑝𝑟𝑒𝑑 Predicted amplitude of the system vibration response  
 ℎ𝑝𝑟𝑒𝑑 Predicted ATPID damper height  
 𝑡𝑐1 Times of impact of the particle with the lower wall  
 𝑡𝑐2 Times of impact of the particle with the upper wall  
 𝑡𝑐 Time of the contact  
 𝛾 The coefficient defining time of contact  
 𝑇 One period of beam oscillation  
 𝑋𝑔 The distance the grain moves between colliding the lower and upper walls in one vibration cycle 
 𝑉𝑘0 Initial velocity of the grain and  
 𝑡𝑚 Measurement time  
 𝑛 Number of the measured periods of the vibrations  
 𝑥𝑠 System displacement  
 𝑥̇𝑠 System velocity  
 𝑥̈𝑠 System acceleration  
 𝑥𝑔 Grain displacement  
 𝑥̇𝑔 Grain velocity  
 𝑥̇𝑔 Grain acceleration  
 𝑢𝑠 Displacement of the harmonic excitation  
 𝑢̇𝑠 Velocity of the harmonic excitation  
 𝐴 Excitation amplitude  
 𝑓 Excitation frequency  
 𝑀 Mass of the whole system  
 𝑚𝑠 Reduced mass of the beam  
 𝑘𝑠 Reduced stiffness of the beam  
 𝑐𝑠 Reduced damping of the beam  
 𝑚𝑔 Grain mass  
 𝑔 Gravitational acceleration  
 𝑟 Grain radius  
 𝑥𝑔𝑖 Initial position of the grain  
 𝐷𝑟𝑒𝑑 Reduced amplitude of a harmonic force excitation  
 𝑓0 Natural frequency of the system  
 𝐴0 First component of the Reduced amplitude of a harmonic force excitation  
 𝐵0 Second component of the Reduced amplitude of a harmonic force excitation  
 𝜔 Angular frequency of the excitation  
 𝜔0 Natural angular frequency of the system  
 𝐹𝑐1 Contact force between grain and lower wall  
 𝐹𝑐2 Contact force between grain and upper wall  
 𝜉𝑐1 Overlap between grain and lower wall  
 𝜉𝑐2 Overlap between grain and upper wall  
 𝜉̇𝑐1 Overlap rate of the grain collision with the lower wall  
 𝜉̇𝑐2 Overlap rate of the grain collision with the upper wall  
 𝜏𝑐1 Distance between the grain and the lower wall  
 𝜏𝑐2 Distance between the grain and the upper wall  
 𝑘𝑐 Reduced contact stiffness  
 𝑐𝑐 Reduced contact damping  
 𝐸𝑒𝑓𝑓 Effective Young modulus  
 𝜈𝑤 Poisson’s ratios of the wall  
 𝜈𝑔 Poisson’s ratios of the grain  
 𝐸𝑤 Young modulus of the wall  
 𝐸𝑔 Young modulus of the grain  
 ℎ̇ Rate of the ATPID height changes  
 𝛥ℎ Control step  
 ℎ𝑜𝑙𝑑 Container height computed in the last iteration  
 𝜓 Control function  
 𝑡1 Activation start time  
 𝑡2 Saturation start time  
 𝑡12 Activation period  
 𝑉𝑔𝑟𝑎𝑖𝑛 Velocity of the grain (after the collision with the beam) in the PCA algorithm  
 (continued on next page)
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Table 1 (continued).
 𝑉𝑏𝑒𝑎𝑚 Velocity of the beam (after the collision with the grain) in the PCA algorithm 
 𝑋𝑔𝑟𝑎𝑖𝑛 Position of the grain (after the collision with the beam) in the PCA algorithm 
 𝑋𝑏𝑒𝑎𝑚 Position of the beam (after the collision with the grain) in the PCA algorithm 
 ℎ𝑜𝑝𝑡 Optimal damper height  
 𝛥ℎ𝑜𝑝𝑡 Effectiveness of the ATPID optimal height prediction by the PCA algorithm  
 𝑑 Effectiveness of the ATPID damping  
 𝑋𝑢𝑑 Amplitude of undamped steady-state vibrations  
 𝑋𝑜𝑑 Optimally damped steady-state vibrations  
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