September 24th - 26th, 2025, Krakow, Poland ## **Investigation of electrochemical properties of ceria-based supercapacitors** # <u>Janhavi Sharma</u>¹, Hari Prasad Dasari², Sunaina S. Patil², Amrita Jain^{1*}, Marcin Krawjeski^{1*} ¹Institute of Fundamental Technological Research, Polish Academy of Sciences, Pawińskiego 5B, 02-106 Warsaw, Poland ²Department of Chemical Engineering, National Institute of Technology Karnataka, Surathkal, Mangalore 575025, Karnataka, India Corresponding author email: <u>ajain@ippt.pan.pl</u> and <u>mkraj@ippt.pan.pl</u> #### INTRODUCTION Supercapacitors are extremely essential for the near-sustainable future, with their very high power density, fast charging and discharging rates. Cerium (Ce)-based materials are good candidates for electrode materials. They offer unique redox properties and very high theoretical capacitance. The multiple oxidation states of cerium (Ce³⁺and Ce⁴⁺) allow for the Faradaic reactions and hence improve energy density [1]. Further improvements in electrical conductivity and stability, warrant diverse applications in electrochemical energy storage [2]. #### **EXPERIMENTAL** A two-electrode configuration was employed, where GPEs were sandwiched between two symmetrical ceria-based electrodes, were used to prepare the investigated cells. Below, there are the details of cell configurations: Cell A: Pure CO(Pure Cobalt)|PVdF-HFP-LiClO₄|CO(Pure Cobalt) and Cell B: 20% Co-Cp(Cobalt doped Ceria)| PVdF-HFP-LiClO₄| 20% Co-Cp (Cobalt doped Ceria). ### RESULTS AND DISCUSSIONS Cell B reveals enhanced electrochemically properties compared with Cell A. Both cells exhibit a capacitive behavior typical of charge storage in a non-Faradaic sense [3]. While the specific capacitance of Cell A is about 25.3 F g^{-1} , Cell B achieved 38.3 F g^{-1} . This means that Cell B demonstrates better charge storage, thus qualifying it to be a better supercapacitor. Moreover, both cells show good rate capability. (a) CV curves of Cell A&B at scan rate of 1 mV s⁻¹ (b, c,d,e) CV curves of Cell A&B at fixed scan rate (5 mV s⁻¹) and variable voltage from 0 V to 1.6 V and (f) variation of specific capacitance of Cell A&B with respect to scan rates. #### REFERENCES - 1. S. S. Patil et al., Brazilian Journal of Chemical Engineering 269–285 (2024) 41 - 2. H. P. Dasari et al., Journal of Environmental Management (2025) 377 - 3. A.Jain, et al., Journal of Energy Storage, (2022) 105367