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The exhaled breath pattern as a
potential method for biometrics
identification
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Conventional biometric identification methods relying on Personally Identifiable Information (PII)
pose significant challenges concerning privacy and security. Volatile organic compounds (VOCs) in
exhaled breath are unique to individuals and can serve as biomarkers for various diseases, making
them a promising tool for both bioidentification and clinical diagnostics. This research investigates

the feasibility of utilizing VOCs in exhaled breath as biometric identifiers, employing machine

learning algorithms for analysis. Additionally, the research investigates the use of VOCs as non-
invasive indicators of health status, specifically for estimating BMI and gender. The study involved 94
participants with an average age of 67 years and an average BMI of 28 kg/m2. Exhaled breath samples
were collected using a portable electronic nose (e-nose) device, which analyzed the VOCs. Machine
learning algorithms were applied to the data to assess the feasibility of identifying individuals and
estimating BMI and gender based on VOC patterns. The results indicated that VOC patterns could
reliably estimate BMI and gender, and potentially distinguish between individuals, suggesting VOCs as
a viable tool for bioidentification. The application of machine learning to VOC data showed promise in
non-invasive identification and diagnostics. VOCs in exhaled breath offer a novel, non-invasive method
for biometric identification and health monitoring. This approach could overcome the limitations

of traditional Pll, providing a new avenue for personalized medicine. Further research is needed to
enhance the accuracy and applicability of this method in diverse populations.

Keywords Exhaled breath pattern, Breath analysis, Volatile organic compounds, Algorithms, Artificial
intelligence, Biometrics

Biometrics (from Greek bios = “life”, metron = “measure”) refers to identifying and authenticating individuals
using measurable body features, offering a more secure alternative to traditional IDs and passwords. Unlike
traditional methods, biometric data cannot be forgotten, stolen, or lost, though they may be subject to alteration.
Fingerprints that are widely used in ID cards and passports date back to the 14th century, however, the reliability
of fingerprints can be affected by skin disorders and/or moisture making fingerprint recognition imperfect and
boosting the development of other features recognition and intensive studies in the evaluation of biometric
systems. The biometric features should be universal, durable, unique, and measurable quantitatively, as well as
the efficiency of its acquisition, ethically and socially acceptable, and difficult to fake and circumvent'.
Currently, biometrics can be categorized into two main groups:

- Physiological like fingerprint, face recognition®~iris image®location of the veins on the hand, etc.
~ Behavioural, such as voice®respiratory profile’-!3signature, gait'“!>screen touch gestures, screen, or key pres-
sure level as well as typing speed, etc!®!”.

The details of each method are provided in the Supplementary Materials.
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The most popular are unimodal authentication systems using biometrics, see Fig. 1, but for the sensitivity
to noisy data, intraclass variation and similarities, non-universality, and spoofing it needs development and
use of several biometric features for identification, where the obtained result are fused and compared with the
templates present in the database for proper authentication'®-22. Recent reviews also emphasize the importance
of integrating sustainable materials and additive manufacturing techniques in biomedical technologies, including
the future development of low-waste, eco-friendly diagnostic devices®.

Human breath

Exhaled human breath is a component of the major gases such as nitrogen (78-79%), oxygen (13-16%), and
carbon dioxide (4%)%*, as well as the volatile organic compounds (VOCs), that can originate endogenously
and exogenously, becoming biomarkers of many diseases and becoming a metabolic, physiological, or even
pathophysiological source of information.

VOCs can be used as an information source for bioidentification. The research on breath analysis is not
new?’but nowadays, the exhaled breath pattern has become an interface between medicine and engineering,
making it possible to analyse each exhaled molecule.

So far, more than 3500 VOCs have been identified in the human breath samples?®-2%however, the total number
of VOC:s that can be found is not confirmed due to the instrumental limitations. Therefore, depending on the
method used for the detection, various numbers could be found in the literature. For example, Phillips et al. have
reported 204 VOCs?’Smolinska et al. have reported 300-500 VOCs?%and Barash et al. have identified more than
500 VOCs in each breath sample?. However, what is interesting from the bioidentification point of view, apart
from the group of VOCs that are called biomarkers (which means that their concentrations are highly related
to the current condition of the body) and the group of VOCs that are inhaled from the ambient environment, it
seems that there is a group of VOCs that are not affected by health conditions either by inhalations and can be
associated with each person, similarly to fingerprints. This hypothesis needs to be confirmed on a large scale,
although it seems to be a subject of research that is worth investigating. Moreover, the breath can be used for
bioauthentication not only as a VOC analysis but also as a breath acoustic analysis! 123031,

Each breath is a good indicator of the state of our health®2. Within the technological progress, the breath
pattern can be analysed with several tools like gas chromatography (GC) equipped with mass spectrometry
(MS)**infrared spectroscopy’***>**chemiluminescence®”*®laser ablation spectroscopy***’and electrochemical
tools*#2, These techniques make it possible to detect not only the most common exhaled gases like nitric oxide
and carbon dioxide but also a multitude of VOCs, many of which can work as systemic biomarkers or respiratory
disease biomarkers*®. Systemic biomarkers refer to the body’s functioning, while lung biomarkers are related to
processes taking place in the respiratory system*.

Also, carbon nanomaterials such as graphene and carbon nanotubes are increasingly used in advanced sensor
platforms for VOC detection due to their high surface area, electrical conductivity, and tunable surface chemistry.
These materials enable the development of highly sensitive and selective chemical vapor sensors and biosensors,
particularly for non-invasive diagnosis of diseases including cancer, through exhaled breath analysis*®

Recently, a huge effort has been made in the field of fabrication of portable detectors for gas-sensing
applications called electronics noses (e-noses), including exhaled human breath analysis. With special emphasis
on exhaled breath analysis. In general, the breath sensors can be split into two groups: a targeted approach with a
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Fig. 1. Non-invasive body analysis.

(2025) 15:35656 | https://doi.org/10.1038/541598-025-19463z nature portfolio

Scientific Reports |


http://www.nature.com/scientificreports

www.nature.com/scientificreports/

selective chemical sensor, and a unique gas-target pattern recognition with semi-selective/cross-reactive sensors.
For example, in*® an e-nose for exhaled breath analysis in the context of silicosis was proposed. The exhaled breath
was measured using a matrix, which included 16 sensors made with organic nanofiber. The random forest and
extreme gradient boosting-based algorithms as well as k-nearest neighbour (kNN) and support vector machine,
were used as breath classifiers. Proposed breath diagnostics methods have good accuracy, in both screening and
early detection models. Recently, Thakur et al.*” developed a noninvasive diabetes diagnostics tool. This e-nose
used a matrix based on hybrid graphene oxide (GO) field effect transistors (FETs) with a hybrid channel of GO,
tungsten trioxide (WO,). As an odour pattern of various breath classifiers, linear discriminant analysis (LDA)
and artificial neural networks (ANN), in particular, a multilayer perceptron with an adaptive learning rate of
0.1, were applied. The first one decreases the response vector dimension. To predict the concentration of breath
markers, partial least squares (PLS) and multiple linear regression (MLR) were used. The method proposed
provides good accuracy, even 99.1%, in the case of artificial breath, and can successfully be applied to the real
breath of subjects, who are suffering from diabetes. The exhaled breath analysis in terms of medical applications
is well-known, and it has been a subject of research for the last four decades, fractioned exhaled nitric oxide
(FeNO)*® and exhaled breath condensate (EBC) analysis** have been approved by medical societies for clinical
use. Others are still under investigation, e.g., diabetes.

Exhaled breath pattern as a fingerprint

Up until now, several groups of scientists have conducted a study of breath pattern repeatability in humans for
breaths taken at different intervals using breath analysis systems such as mass spectrometry, e-nose systems nose
containing an array of quartz microbalance sensors (QCM)>'.

Martinez-Lozano Sinues et al. examined nine working days of breaths taken from a group of 11 people
(on average 18 samples per person) using mass spectrometry. Research showed high inter- and intra-subject
variability in circadian levels of exhaled acetone. Principal component analysis (PCA) and the representation of
mass spectra in three dimensions showed that for the respondents, there is a combination of samples into separate
groups, denoting individual people. Studies have shown that for eleven days (nine working days + weekend),
breaths taken from humans contain some of the constant compounds that make it possible to distinguish people,
as well as compounds that vary daily and depend on external factors®.

Fasola et al. investigated the repeatability of exhaled breath fingerprints among a group of 15 asthma patients
and 30 healthy people. For this purpose, they used Pneumopipe plus an array of e-nose sensors containing eight
QCM oscillating with a resonance frequency of 20 MHz in the thickness-shear mode. For children with asthma,
the within-day median intra-class correlation coefficient (ICC) was 0.57, and between-day was 0.66, while for
healthy children it was 0.58 and 0.55, respectively. In both study groups, most of the studies were statistically
significant in terms of the repeatability of the e-nose system measurements over three visits to the doctor.

Incalzi et al. examined 25 people aged 65 years and older with chronic obstructive pulmonary disease
(COPD) and healthy control samples using an e-nose containing seven quartz microbalance sensors covered
with metalloporphyrins. The breaths were collected into Tedlar bags 7 and 15 days after the first measurement.
Repeatability of the VOC pattern was observed in subsequent measurements for both sick and healthy people,
but the measurements at weekly intervals were more often repeated in Global Initiative for Chronic Obstructive
Lung Disease (GOLD) 4 patients than in COPD patients from the GOLD 1-3 group®*.

Krilaviciute et al. took breath samples from 1,447 healthy elderly people and then tested them using the GC-
MS combined with a thermal desorption system. They analyzed the relationship between the 15 most frequently
recurring VOCs in breath and socio-demographic factors and food intake. Studies have shown that it is possible
to distinguish the sex of a test subject based on the respiratory profile>.

Wang et al. proposed an e-nose system that can be used to identify people. Breath samples were taken several
times from ten people in a 3-L impermeable gas bag (Shanghai Sunrise Instrument Co., China). Three samples
were collected from each person during each of the four visits at intervals of at least one week. Samples were
analyzed with an electronic nose instrument (eDiagNose) containing 12 individual gas sensors consisting of six
types of doped tin dioxide (SnO,) sensors and one type of WO, sensor. PCA analysis of 10 features selected by
mutual information (MI) analysis showed that there is a separation of sample groups belonging to individual
people. By training SVM, kNN, Mutual information maximum likelihood (MI ML), and ANN models. The
authors have stated that the obtained classification accuracy is 100% on 120 samples with cross-validation (119
training, 1 test) for almost all tested classifiers, regardless of the number of selected features®. However, it seems
that the measurement protocol was invalid, i.e., the measurements were conducted 4 times for 3 samples taken
from one subject, but from the same bag, and that is why 100% accuracy was obtained. There is a lack of data on
how the signal is changing when the same bag is used on various days, for instance.

In turn, Filosa et al. proposed the meta-learning algorithm for the prediction of respiratory flow based on
LSTM neural networks®®. The data come from the system, which includes a wearable system embedding Fiber
Bragg Grating (FBG) sensors and inertial units. It turned out that the algorithm proposed to give a better result,
both in static and dynamic conditions, in comparison to machine learning-based methods.

Breath pattern identification can be used to distinguish people using e-nose and Al algorithms, see Fig. 2.

Stable VOCs as a “known-unknown"” problem

Since it is not well established yet that there are sets of stable VOCs that are not affected by a person’s health
condition and other environmental factors that are unique to each person due to the small number of people
that were used in existing studies, this hypothesis needs to be confirmed on the large scale and can be akin to
“known-unknown” problem®’.
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Fig. 2. Breath pattern identification.

There are known tools based on machine learning algorithms for predicting unknown chemical compounds
because there is a lack of annotations in databases®®~®°. A similar method can be used to discover and classify
VOC:s in breath to identify them as unique for bioidentification.

This paper discusses the features that are required to recognize a feature as suitable for bioidentification and
known biometric features such as recognition of the iris, face, gait, etc. The studies of volatile organic compounds
and the verification of their intra and inter-subject repeatability and durability have been reviewed to find out if
it is further possible to identify breath patterns as a novel bioidentification method.

Main contributions
This study makes the following key contributions to the field of non-invasive biometric identification and health
monitoring through breath analysis:

« To the best of our knowledge, we demonstrate for the first time the concurrent use of exhaled volatile organic
compounds for biometric identification and estimation of physiological traits (specifically, gender and BMI).
This integrated approach expands the conventional scope of VOC-based diagnostics, offering a new applica-
tion domain for breath analysis beyond disease detection.

« By applying machine learning algorithms to data acquired from a portable electronic nose, we achieved good
robust classification performance, which highlights the potential of Al-enhanced e-nose systems for rapid,
accessible, and non-invasive biometric screening.

o The study explores the potential of VOCs for distinguishing individuals, indicating that breath composition
contains identifiable, person-specific patterns.

« Unlike traditional biometric systems that depend on personally identifiable information or external features
(e.g., fingerprints, facial recognition), this work introduces a privacy-enhancing alternative by leveraging in-
ternal biological signatures.

Related research

Recent advancements have highlighted the potential of exhaled breath analysis, particularly VOCs in non-
invasive diagnostics and biometric applications. For instance, a novel pre-clinical method was developed to
capture exhaled breath from intubated mice, significantly reducing background contamination and enhancing
VOC detection accuracy. This approach, integrating sorbent tubes with respiratory measurement equipment,
facilitates high-quality sample collection for downstream GC-MS analysis and supports translational breathomics
research®’. In the realm of biometric authentication, one study explored fluid dynamics in exhaled breath,
achieving over 97.00% confirmation accuracy using an attention U-Net model applied to time-series breath
turbulence data. This study demonstrates the potential of breath flow patterns for personal identification. On the
other hand, researchers applied AI to VOC profiles for early lung cancer detection, using an agnostic strategy
that emphasized compositional breath differences rather than specific biomarkers. This approach shows strong
classification performance and the utility of Al-driven breath analysis as a rapid and cost-effective diagnostic
tool®?. VOC-based diagnostics have also shown promise for colorectal cancer, where 12 Key compounds were
statistically identified to differentiate between healthy and affected individuals, with sensitivity and specificity
values of 0.80 and 0.85, respectively - highlighting breath analysis as a clinically practical early screening tool®.
For chronic respiratory conditions, such as COPD, asthma, and PRISm, comprehensive breathomics approaches
using portable micro gas chromatography and machine learning demonstrated high classification performance
(AUC up to 0.92), validating their feasibility for real-time, non-invasive disease differentiation®>¢*.

In breast cancer diagnostics, a large-scale study involving over 1,900 women used high-pressure photon
ionization TOF-MS combined with machine learning to distinguish disease presence (AUC =0.946) and monitor
progression, marking a significant advance in breath-based oncology screening®. A multimodal sensor array
incorporating metal oxide, electrochemical, and photoionization sensors, paired with a 1D convolutional neural
network, also achieved 97.80% accuracy in lung cancer classification, reinforcing the power of deep learning
and multi-sensor breath analysis in clinical applications®®. Lastly, a standardized VOC identification workflow
using Owlstone Medical's OMNI platform verified 148 on-breath VOCs across a heterogeneous population.
This benchmark dataset supports biomarker discovery and promotes cross-study comparability, addressing a
key need for consistency in breathomics research®’. In contrast to these studies focused primarily on disease
diagnostics, our work uniquely investigates VOCs in exhaled breath as a dual-purpose tool, for both biometric
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Application/Sensor Technology Method Main contribution Reference
Carbon nanomaterial sensors for disease diagnosis (VOC, cancer) VOC detection from biofluids using Advanced nanomaterials for sensitive VOC detection 68
CNTs, graphene
Standardized identification of on-breath VOCs using OMNI" Paired breath + background samples, 148 breath-speaﬁg VQCS identified 69
. improves standardization and cross-study
platform TD-GC-MS, spectral matching o
comparability
o Breathing-based authentication using | Demonstrated robust and lightweight authentication 70
Acoustic signals captured through smartphone-controlled sensors RNN and SVM models suitable for resource-constrained devices
Wearable Fiber Bragg Grating (FBG) sensors combined with LSTM | Respiratory flow prediction using Achieved high-accuracy respiratory monitoring in 56
models meta-learning algorithms unrestrained conditions
- — " —
Person identification using e-nose with VOC pattern classification Electrqnlc nose comprising 12 sensors, Reported 100.00% clasmﬁcat}qn accuracy, though noted | 7,
supervised machine learning classifiers | concerns regarding repeatability protocols
. . - . . - Developed a dual-purpose system for biometric
VOC-based biometric identification with BMI and gender Portable electronic nose, logistic, and identification and health monitoring using breath This study

prediction

linear regression models

VOCs

Table 1. Summary of Breath-Based biometric and respiratory monitoring studies.
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identification and health status estimation (BMI, gender). By leveraging portable e-nose and machine learning
models, we show that breath-based VOC signatures can provide a privacy-preserving, scalable alternative to
traditional PII-dependent biometrics while enabling non-invasive personal health monitoring. The summary of
breath-based biometric and respiratory monitoring studies is presented in Table 1.

Results

In cooperation with the Department of Prosthodontics and Orthodontics, Dental Institute, Faculty of Medicine,
Jagiellonian University Medical College, Krakow, Polska (Jagiellonian University ethical committee approval
KBET: 1072.6120.40.2023), we have collected exhaled air from people.
Each of the 94 study participants completed a survey containing questions about gender, weight, height, and
age. The histogram of the research sample is presented in Figs. 3, 4 and 5. Table 2 provides a summary of key
statistics for the patient’s BMI, age, weight, height, and biochemical markers such as glucose, triglycerides, uric
acid, and cholesterol. For each variable, the table includes the mean, median, standard deviation, minimum, and
maximum values, providing insight into the central tendency and spread of the data. Table 3. summarises the
distribution of categorical variables representing the presence or absence of specific diseases. For each condition
(e.g., diabetes, hypertension, hypothyroidism, and cancer), the table shows the count of people classified as
having the disease (“Yes”) and not having the disease (“No”). We did not ask to follow a special diet or refrain
from physical activity before the study to not distorting the results and to simulate the real conditions of the
biometric studies. The patients did not smoke cigarettes or drink alcohol immediately before breath collection.
To analyse the breath samples collected from participants, we employed several machine learning algorithms
designed for regression and classification tasks. Specifically, we used linear regression, Random Forest, Light
Gradient Boosting Machine (LGBM), Extreme Gradient Boosting (XGB) for predicting Body Mass Index (BMI),
and a set of classification algorithms - logistic regression, Random Forest, Light Gradient Boosting Machine,
Extreme Gradient Boosting, and Support Vector Classifier - for gender classification.
These algorithms were selected based on their established performance in biomedical and sensor-based data
analysis’>7°. The models were trained and evaluated using the dataset of VOC sensor responses obtained from
the e-nose system. A brief explanation of each model and its working principles is provided in the Methods

section.
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Fig. 5. Age distribution.

Column Mean | Median | Standard Deviation | Min Max

BMI [kg/m2] 28.21 | 28.29 4.47 19.10 | 43.60
Age [years] 67.36 | 68.00 9.56 44.00 | 87.00
Weight [kg] 78.00 | 75.00 16.55 52.00 | 132.00
Height [cm] 165.83 | 165.00 9.12 140.00 | 194.00
glucose [mg/dL] 109.16 | 101.50 | 28.96 76.00 | 281.00
Triglycerides [mg/dL] | 128.48 | 70.00 | 93.52 70.00 | 474.00
Uric acid [mg/dL] 5.52 5.45 1.38 3.00 9.10
Cholesterol [mg/dL] 168.41 | 166.00 | 31.15 114.00 | 272.00

Table 2. Patient data summary.

Disease Yes | No
Diabetes 18 |76

Hypertension 35 |59

Hypothyroidism | 15 |79
Cancer 4 |9

Table 3. Patient disease prevalence.

The linear regression algorithm was used to predict BMI. The algorithm achieved a mean absolute error
(MAE) of 4.09 and a root mean squared error (RMSE) of 6.01. The prediction results on the test set are
presented in Fig. 6. Linear regression may be the best model when the simplicity and interpretability of results
are important. Although it has a slightly higher MAPE (14.72%) than Random Forest and LGBM, it offers a
good balance between other metrics such as MAE, MSE, and Pearson correlation, which is the highest (0.2621).
However, it is worth noting that MAE, MSE, and RMSE in linear regression are strongly affected by a single
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Fig. 6. BMI prediction result.

Metric Linear Regression | Random Forest | LGBMRegressor | XGBRegressor
MAE 4.09 4.10 2.81 2.99

MSE 36.13 23.84 10.90 12.61

RMSE 6.01 4.88 3.30 3.55

MAPE [%] 14.72 10.77 11.45 11.45

Pearson Correlation | 0.2621 0.2453 -0.0050 -0.3254

Std. Dev. of Pred. 4.68 0.34 1.09 3.81

Table 4. Comparison of machine learning algorithms for BMI prediction task.

Model Accuracy (%) | Precision (%) | Recall (%) | F1 Score (%)
Logistic Regression 87.50 87.50 93.33 90.32
Random Forest 45.83 58.33 46.67 51.85
LGBMClassifier 41.67 53.85 46.67 50.00
XGBClassifier 45.83 58.33 46.67 51.85
Support Vector Classifier | 75.00 71.43 100.00 83.33

Table 5. Comparison of machine learning algorithms’ performance for gender classification task.

outlier, where the actual value is the lowest and the prediction is the highest. This single point strongly influences
these error measures, which can cause these values to appear higher than in other models. Linear regression also
has a relatively high standard deviation (4.68), which means that the model is more diverse in its predictions,
unlike some other models, such as Random Forest, where the standard deviation is very low (0.34), suggesting
that the model predicts similar values for different data. Models such as LGBM or XGB have a standard deviation
of 1-3, indicating less variability in the forecasts. Linear Regression is more flexible, which makes it better at
dealing with a variety of data while maintaining simplicity and stability. The prediction results on the test set
using the Linear Regression model are presented in Fig. 6. Detailed comparison of different regression models’
performance is presented in Table 4.

We compared several classification models to evaluate their performance (Table 5). Researchers employed a
logistic regression algorithm for gender classification, achieving an accuracy of 87.5%, precision of 87.5%, recall
of 93%, and an F1 score of 90%. SVC also performed very well, achieving 100% sensitivity and an F1 Score of
83.33%. The remaining models, such as Random Forest, LGBMClassifier, and XGBClassifier, achieved similar
but significantly lower scores, indicating their less usefulness in the gender prediction based on exhaled breath
analysis. The confusion matrix of the Logistic regression model is presented in Fig. 7.

Discussion

Studies mentioned in this paper report results from breath measurements of individuals and various groups.
The findings indicate both intra- and inter-subject variability. However, stable volatile organic compounds
have been identified, which, in conjunction with e-nose technology and artificial intelligence, can effectively
differentiate individuals®* and their sex>!. The unique nature of exhaled breath patterns aligns with existing
literature emphasizing their diagnostic and identification potential. For example, Martinez-Lozano Sinues et
al.® demonstrated individual metabolic phenotypes through breath mass spectrometry analysis, supporting the
claim that VOCs offer durable and distinguishable profiles. Additionally, studies on e-nose technology have
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Fig. 7. Gender classification confusion matrix.

highlighted its feasibility for non-invasive diagnostics, such as its application in the early detection of diseases like
diabetes and respiratory conditions?’. By leveraging these insights, the current study builds a strong foundation
for further exploring VOC-based biometric identification.

Our findings align with previous research demonstrating the potential of e-nose technology for breath
analysis in biometric and medical applications. Studies such as those by Fasola et al.. and Incalzi et al. have
shown the repeatability and reliability of e-nose measurements across different populations, reinforcing the
validity of our approach®>3. Additionally, Krilaviciute et al. provided evidence that breath composition varies by
gender, supporting our gender classification results®!. The work by et al. highlights the importance of rigorous
measurement protocols, as overly controlled conditions may lead to inflated accuracy. Finally, Filosa et al.*.
demonstrated the advantages of advanced AI methods, suggesting that deep learning techniques could further
enhance BMI prediction accuracy in our study. These comparisons emphasize the potential of integrating VOC
analysis with AI for robust and practical biometric applications.

Moreover, breath might fulfil another requirement of biometrics, which is durability, because there is proof
that breath samples collected from people have statistically significant repeatability even over time points! and
fifteen days®. More specifically, in the study conducted by Fuchs et al.3! to investigate aldehydes as biomarkers
of lung cancer, their result showed that aldehydes were detected in all healthy volunteers, smokers, and lung
cancer patients. Furthermore, the concentrations of acetaldehyde, propanal, butanal, heptanal, and decanal were
stable for cancer patients, smokers, and healthy volunteers. However, all these studies were performed on a
small sample of people and for a short period; hence, there is still a need to conduct large-scale research to prove
unequivocally that there is a repeatable and unique VOC pattern observed for each person. However, the studies
reviewed in this paper suggest that there is great potential for the use of breath as a bioidentification method.

Additionally, replicating or altering an individual’s breath pattern is highly challenging, providing an inherent
advantage over methods like face detection, which are vulnerable to spoofing via GAN-generated images’. The
development of a comprehensive breath database is essential for advancing this field. Such a database would
facilitate the testing of state-of-the-art algorithms, including Siamese neural networks (i.e., a type of deep learning
model that uses two or more identical networks to compare and analyse similarities or differences between
inputs, such as images or data patterns) and transfer learning models, to improve classification accuracy®.
Furthermore, ethical considerations regarding privacy and data security must be addressed, particularly given
the sensitive nature of biometric data. Establishing clear regulatory frameworks and adopting secure encryption
methods are critical to mitigating risks and ensuring public trust in this emerging technology. Unlike facial
recognition, which can be fooled by a photo, video, or 3D model, VOCs are much harder to fake because they
rely on the body’s unique metabolic processes. Fingerprints and irises offer high accuracy but can be copied or
used without the user’s consent, such as by taking an imprint from a surface. VOCs can increase security where
physical contact is a problem, such as in high-sanitation areas where traditional scanners are less practical.
Although the technology has yet to be developed, VOCs could complement traditional methods by providing an
additional layer of security in specific applications.

Despite its promising findings, this study has notable Limitations. The sample size of 94 participants,
primarily white Caucasians, restricts the generalizability of the results. Moreover, the lack of data on participants’
chronic diseases or environmental exposures introduces potential confounding variables. Future research
should prioritize recruiting a larger, more diverse cohort, including individuals from different ethnicities, age
groups, and health statuses. Additionally, longitudinal studies are necessary to evaluate the stability of VOC
patterns over time and across varying conditions. Second, all participants were white Caucasian, so we could
not explore differences between races. On the basis of these preliminary findings, future studies should explore
several critical avenues. First, the scalability of VOC-based biometrics must be tested with larger, ethnically
diverse populations. Second, the integration of multimodal biometrics, combining VOCs with physiological or
behavioural traits such as voice or gait, could improve the precision of identification. Third, advancements in
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sensor technology, such as hybrid e-nose systems with high sensitivity and specificity, would further refine VOC
detection. Finally, collaborations with clinical settings to validate the method’s diagnostic utility for comorbid
conditions could broaden its applicability in personalized medicine.

Conclusions

Human breath is composed of various volatile organic compounds that can be used as input data to an effective
diagnostic algorithm for early detection of a wide range of diseases, even at the onset of the disorder. Exhaled
volatile organic compounds are the information source on pathophysiological mechanisms and host response
to infections in real-time. The profiling of the volatile organic compounds provides non-invasive monitoring
of pathological changes that take place in the body. VOCs can be successively applied in clinical practice,
particularly as biomarkers for certain pathologies, including lung disease®’.

Our study demonstrates that breath composition varies based on gender and BMI, distinctions that can
be detected using an electronic nose (e-nose). For instance, logistic regression achieved an F1 score of 90%
for gender classification, while linear regression yielded a mean absolute error (MAE) of 4.06 kg/m? in BMI
prediction. These findings highlight the potential of integrating artificial intelligence with VOC analysis for rapid
and reliable biometric applications. However, BMI prediction accuracy could be further improved using more
advanced algorithms, such as deep neural networks or ensemble methods, which are better suited for capturing
complex, non-linear relationships in biometric data.

While the combination of commercially available sensors and machine learning algorithms enables basic
biometric differentiation, precise individual identification requires additional sensors and more advanced
breath analysis using high-precision instruments like mass spectrometers or gas chromatographs. Reliable
bioidentification through VOC analysis necessitates stable e-nose sensors, regular calibration, and careful
consideration of environmental and biological factors influencing VOC composition. Long-term data collection
is crucial to assess the stability of VOC profiles over time. For effective biometric identification, VOC patterns
must be both unique and consistent, which can be validated through high-precision analytical techniques.
Preliminary studies confirm the feasibility of e-nose-based bioidentification, with future research focused on
expanding the study population and conducting long-term verification.

Challenges and advances in exhaled breath bioidentification

Exhaled breath-based biometric identification, while promising, faces several technical and biological challenges
that must be carefully addressed to ensure its reliability, consistency, and scalability in real-world applications.
One of the primary challenges is sensor stability and reproducibility. Low-cost e-nose sensors often suffer
from signal drift over time and require frequent calibration to maintain accuracy, which limits their long-term
reliability in biometric applications. Additionally, environmental and physiological variability, including diet,
circadian rhythms, medications, and ambient air quality, can significantly influence VOC profiles, complicating
the extraction of consistent individual-specific patterns*>®. Moreover, the lack of standardization in breath
sampling protocols, sensor designs, and data preprocessing methods impedes cross-study comparability and
broader adoption of breath-based identification systems.

Another key challenge is the lack of standardization in sampling protocols, sensor configurations, and data
preprocessing, which impedes reproducibility and hinders cross-study validation!. Most commercially available
e-noses cannot yet match the analytical resolution of laboratory-based techniques such as gas chromatography-
mass spectrometry (GC-MS) or ion mobility spectrometry (IMS), which are capable of detecting trace-level
VOCs with high specificity®. Nevertheless, nanotechnology-enabled sensors, incorporating materials such as
graphene, carbon nanotubes, and metal-organic frameworks (MOFs), are rapidly advancing sensor performance
by enhancing VOC selectivity and miniaturization potential®®%’.

Thus, machine learning and artificial intelligence are being increasingly adopted to address the complexity
of VOC datasets. For example, ensemble methods and deep learning architectures are now being explored to
capture non-linear relationships in breath data, improving classification and prediction performance beyond
traditional models.

To mitigate these challenges, hybrid platforms that combine portable e-nose systems with high-resolution
analytical instruments, as well as the application of sustainable and robust materials in sensor fabrication, are
emerging as promising solutions®. Furthermore, multi-sensor fusion, longitudinal data acquisition, and the
development of standardized protocols will be essential for achieving consistent, individual-specific VOC
patterns suitable for reliable bioidentification. As the field progresses, the integration of advanced AI models
with next-generation sensors is expected to play a pivotal role in transforming exhaled breath into a practical,
privacy-preserving biometric modality.

Materials and methods

Review methodology

The review methodology was based on the PRISMA Statement® and its extensions: PRISMA-S$*?las well as
our personal experience. We considered recent publications, reports, and protocols, and reviewed papers from
Scopus databases. The documents used in the presented study were selected based on the procedure presented
in Fig. 8. The keywords: “breath pattern” and algorithm” were used; as a result, we obtained: 293 documents,
including 196 research papers, 85 conference papers, and 12 reviews. The selection process was done according
to the following overall criteria regarding bio identification, biostatistics, and neural networks. Finally, 101
documents were considered. The 85 conference papers, as well as papers without connections to the criteria
above, have been excluded from the study.
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Fig. 8. Literature search flowchart.

Breath collection

We asked participants to draw in air into their lungs and hold it for a few seconds, and then blow a single breath
into a TedlarwBagsgz‘95 and then we measured using an e-nose, namely an electronic nose, i.e., a portable device
equipped with sensors designed to detect and analyse chemical compounds, such as volatile organic compounds
in the air).

E-nose system

Breaths stored in Tedlar’ Bags®>~*> were measured using e-nose. E-nose (Fig. 9) consisted of a system pumping air
from bags and a set of sensors TGS1820, TGS2620, TGS2600, TGS2660 (Figaro Engineering Inc, Mino, Osaka,
Japan), MQ3 (Winsen, ZhengZhou, HeNan, China), 7e4 NO2, 7e4 H2S (SemeaTech, Los Angeles, USA and
Shanghai, China), SGX NO2, SGX H2S (SGX SENSORTECH, Switzerland), K33 (Senseair, Delsbo, Sweden),
AL-03P, AL-03 S (MGK SENSOR Co., Ltd., Saitama, Japan).

The breath from each patient’s bag was pumped using a pump in our e-nose system to the sensors in the
chamber. The breath was pumped for 25 min, and after each breath dose, the chamber was flushed with air
passing through the filter for 15 min. For each bag, the procedure was repeated twice. Data from each sensor was
measured and saved every 20 s. Original data was shown in Fig. 10.

We used data collected from sensors in the form of relative response R, and sensor response S (Eq. 1) to train
machine learning algorithms.

S = Re — Ro (1)

where,

R, - Sensor response to collected breath sample.

R, - Sensor response to filtered ambient air.
The algorithms’ task was to predict a person’s BMI and gender. The data was divided into training and test
sets, and hyperparameter optimization was performed for each algorithm using the Random Search CV method
(Scikit-learn)?%%”.

Machine learning algorithms

In this study, we applied several widely used machine learning algorithms to predict BMI and classify gender
based on VOC sensor data. For BMI regression, we used Linear Regression, which models a linear relationship
between features and BMI, and tree-based ensemble methods including Random Forest, LightGBM, and
XGBoost, known for their robustness and high accuracy. For gender classification, we tested Logistic Regression
- a simple linear classifier using a sigmoid function - alongside Random Forest, LightGBM, XGBoost, and
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Support Vector Classifier, which maximizes class margins and can model nonlinear patterns via kernels.
Random Forest uses bagging to reduce overfitting, LightGBM and XGBoost are fast, scalable gradient boosting
methods with built-in regularization, and SVC performs well on smaller, high-dimensional datasets. All models
were implemented in Python with Scikit-learn and XGBoost libraries, and hyperparameters were tuned using
Randomized Search Cross-Validation to enhance performance while preventing overfitting.

Data availability
The datasets generated during and/or analysed during the current study are not publicly available due to the
content of patients’ private medical data but are available from the corresponding author on reasonable request.
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