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In the paper, an analysis of transient and steady-state electro-mechanical
vibrations of a precise drive system driven by a stepping motor is perfor-
med. These theoretical investigations are based on a hybrid structural
model of the mechanical system as well as on the classical circuit model
of the stepping motor. The main purpose of these studies is to indicate
essential differences between the torsional dynamic responses obtained
for the considered object regarded respectively as electro-mechanically
coupled and uncoupled. From the computational results, it follows that
these differences are qualitatively and quantitatively essential from the
viewpoint of possibly precise and reliable operation of the drive systems.
Here, torsional vibrations of the drive system significantly influence the
electro-mechanical coupling effects, which emphasizes their importance
in dynamic analyses.
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1. Introduction

The drive systems of machines, vehicles as well as of precise mechanisms are
commonly driven by electric motors of various types, e.g. asynchronous motors,
synchronous motors, several direct-current (DC) motors or stepping motors.
During nominal and steady-state operating conditions these motors generate
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more or less significant variable components of the electromagnetic torques
which are sources of severe torsional vibrations of the entire mechanical drive
system. Such torsional vibrations are very dangerous not only from the ma-
terial fatigue viewpoint, but in some cases they can lead to rapid damages of
shafts and couplings in the drive systems. This important problem was stu-
died many years ago by numerous authors, e.g. by Berger and Kulig (1981),
Evans et al. (1985), Iwatsubo et al. (1986), Schwibinger and Nordmann (1989)
and many others as well as quite recently, e.g. by Pochanke and Bodnicki
(2002), Repo et al. (2008), Holopiainen et al. (2010), Szolc et al. (2010) and
others. Torsional vibrations of drive systems usually result in a significant fluc-
tuation of the rotational speed of the rotor of the driving electric motor. Such
oscillations of the angular velocity superimposed on the average rotor rotatio-
nal speed cause more or less severe perturbation of the electro-magnetic flux
and thus additional oscillations of the electric currents in the motor windings.
Then, the generated electromagnetic torque is also characterised by additio-
nal variable in time components which induce torsional vibrations of the drive
system. According to the above, mechanical vibrations of the drive system be-
come coupled with the electrical vibrations of currents in the motor windings.
Such a coupling is often complicated in character and thus computationally
troublesome. Because of this reason, till present majority of authors used to
simplify the matter regarding mechanical vibrations of drive systems and elec-
tric current vibrations in the motor windings as mutually uncoupled. Then,
the mechanical engineers apply the electromagnetic torques generated by the
electric motors as a priori assumed excitation functions of time or of the rotor-
to-stator slip, e.g. in Evans et al. (1985), Laschet (1988) and Schwibinger and
Nordmann (1989), usually basing on numerous experimental measurements
for the given electric motor dynamic behaviour. For this purpose, by means
of measurement results, proper approximate formulas are developed which de-
scribe respective electromagnetic external excitations produced by the electric
motor, Laschet (1988). However, the electricians thoroughly model electric
current flows in the electric motor windings, but they usually reduce the me-
chanical drive system to one or seldom to a few rotating rigid bodies, Sochocki
(1996). In many cases, such simplifications yield sufficiently useful results for
engineering applications, but very often they can lead to drastic inaccuracies.
Therefore, in the literature, one can find some attempts to regard the electric
motor-drive system interactions as a coupled dynamic electromechanical pro-
blem. For example, in Berger and Kulig (1981), transient torsional vibrations
in the turbogenerator sets caused by network disturbances were considered as
the rotor-shaft torsional vibrations coupled with the electric current vibrations
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in the generator windings. Coupling effects between the geared drive system
torsional vibrations and the electric current oscillations in the synchronous
motor windings were investigated in Iwatsubo et al. (1986), where the current
flows in the electric machine windings were modelled using Park’s equations.
Coupled electromechanical interactions were studied in Pochanke and Bodnic-
ki (2002) for the stepping motor driving a torsional train modelled by means of
two rigid bodies mutually connected by a mass-less torsional spring. In Repo
et al. (2008) and Holopainen et al. (2010), the dynamic interaction between
the asynchronous and synchronous motors and the drive system was studied,
where the motor electro-magnetic flux was modelled using three dimensional
finite elements and the drive train was substituted also by means of the simple
spring-mass model. However, in Szolc et al. (2010), the circuit model of the
asynchronous motor was applied as a torsional excitation source for complex
structural models of a heavy working machine drive system.

In the presented paper, the dynamic interaction between mechanical torsio-
nal vibrations and electric current vibrations in a precise drive system driven
by a stepping motor is modelled. Since in such a case, a possibly exact ro-
tational motion of the mechanism must be assured, the first target of this
study is to introduce a sufficiently accurate model of the drive system and of
the electric motor, using which the dynamic electromechanical coupling effects
are going to be simulated and analysed. The second purpose is to emphasise
the importance of the electromechanical coupling on the dynamic interaction
between the stepping motor and the drive system, contrary to the traditional
approaches mentioned above.

2. Assumptions for the electromechanical model

In the paper, a precise drive system driven by means of a stepping motor,
as shown in Fig. 1, is considered. This system consists of the driving motor,
direct-current (DC) generator, rotational angle encoder, three elastic couplings
of the Oldham-type, inertial ring representing the rotor of the power receiver
(impeller), one-stage rubber toothed-belt gear and connecting shaft segments
properly supported by roll-bearings. Since the fundamental excitations gene-
rated by the driving motor as well as the retarding torques yielded by the
power receivers are torsional in character, the torsional vibrations of the drive
system are going to be regarded as predominant. Nevertheless, the influence
of bending vibrations, which could contribute to the studied dynamic proces-
ses, have been also properly examined. In order to investigate the dynamic
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coupling effects between the vibrating mechanical drive system and electric
vibrations in the motor windings, it is necessary to assume a reasonably re-
alistic and computationally efficient mechanical and electrical model. Thus, in
this paper, the structural electromechanical hybrid model of the drive system
is going to be applied.

2.1. Hybrid modelling of the mechanical system

In order to perform a theoretical investigation of the electromechanical
coupling effects in this system, a reliable and computationally efficient simu-
lation model is required. In this paper, dynamic investigations of the entire
drive system are performed by means of the applied, e.g. in Szolc (2000, 2003)
and Szolc et al. (2010), one-dimensional hybrid (discrete-continuous) model
consisting of continuous visco-elastic macro-elements, discrete oscillators and
of rigid bodies mutually connected according to the structure of the real ob-
ject, as shown in Fig. 1. In this model, successive cylindrical segments of the

Fig. 1. The hybrid mechanical model of the drive system

stepped shafts are substituted by torsionally deformable cylindrical macro-
elements of continuously distributed inertial-visco-elastic properties. Since in
the real drive system, the electric motor coils, roll bearing inner rings and
gears are attached along some shaft segments by means of the shrink-fit con-
nections, the entire inertia of such components is increased, whereas usually
the shaft cross-sections only are affected by elastic deformations due to trans-
mitted loadings. Thus, the corresponding visco-elastic macro-elements in the
hybrid model must be characterised by the geometric cross-sectional polar
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moments of inertia JEi responsible for their elastic and inertial properties as
well as by the separate layers of the polar moments of inertia JIi responsible
for their inertial properties only, i = 1, 2, . . . , n, where n is the total num-
ber of macro-elements in the considered hybrid model, Fig. 1. Moreover, on
the actual operation temperature Ti can depend values of Kirchhoff’s modu-
lus Gi of the rotor-shaft material of density ρ for each i-th macro-element
representing the given shaft segment. In the proposed hybrid model of the
drive system, the inertias of the impeller, gears, DC-generator rotor, coupling
disks and of the rotational angle encoder rotor are represented by the rigid
bodies attached to the appropriate macro-element extreme cross-sections. The
macro-elements and rigid bodies can be also connected by means of mass-less
torsional springs substituting visco-elastic properties of the gear meshing and
of the elastic couplings. Such an approach in the modelling should assure a
reasonable accuracy for practical purposes. This hybrid mechanical model is
employed here for eigenvalue analyses as well as for numerical simulations of
torsional vibrations of the drive train.

Torsional motion of cross-sections of each visco-elastic macro-element is
governed by the hyperbolic partial differential equations of the wave type

Gi(Ti)JEi
(

1 + τ
∂

∂t

)∂2θi(x, t)

∂x2
− ci
∂θi(x, t)

∂t
− ρ(JEi + JIi)

∂2θi(x, t)

∂t2
= qi(x, t)

(2.1)
where θi(x, t) is the angular displacement with respect to the shaft rotation
with the average angular velocity Ω, τ denotes the retardation time in the
Voigt model of material damping and ci is the coefficient of external (ab-
solute) damping. The time- and response-dependent external torques can be
imposed in the concentrated form on the given shaft cross-sections or continu-
ously distributed along the respective macro-elements of the lengths li. These
continuously distributed torques are described by the two-argument functions
qi(x, t), where x is the spatial co-ordinate, t denotes time and i = 1, 2, . . . , n.

Mutual connections of the successive macro-elements creating the step-
ped shaft as well as their interactions with the rigid bodies are described by
equations of boundary conditions. These equations contain geometrical condi-
tions of conformity for rotational displacements of the extreme cross sections
of the adjacent (i − 1)-th and the i-th visco-elastic macro-elements. The se-
cond group of boundary conditions are dynamic ones, which contain equations
of equilibrium for external torques as well as for inertial, elastic and external
damping moments. In this hybrid mechanical model, the gear stage and the
elastic couplings are also described by the dynamic boundary conditions. Here,
the gears and coupling disks are represented by rigid bodies. The connection



658 T. Szolc, A. Pochanke

of the (i−1)-th macro-element with the i-th macro-element is realised by me-
ans of the mass-less visco-elastic springs substituting the rubber toothed-belt
stiffness of the gear as well as the elastic coupling stiffness.

The proposed hybrid structural model of the drive system is assumed as a
linear one, since typically non-linear stiffness characteristics of the elastic co-
uplings or of the rubber belt in the gear stage can be linearised in the expected
domains of relatively small dynamic torsional displacements and tangential
strains. Moreover, because of commonly applied initial static pre-stress of the
rubber toothed-belt in the gear, all backlash effects in the drive system can be
assumed as eliminated and neglected in the further dynamic investigations.

In the hybrid model of the considered drive system, the external electroma-
gnetic torque produced by the stepping motor is assumed as continuously and
uniformly distributed along macro-element (2) representing its rotor, Fig. 1.
The retarding torques generated by the power receiver and the DC-generator
are imposed in the concentrated form to rigid bodies (28) and (18) correspon-
ding, respectively, to the rotors of the mentioned drive components.

2.2. Modelling of the electric motor

In the considered drive system, there is applied a quite typical four-
cycle, double-phase stepping motor with the fundamental step angle
1.8 deg=0.0314 rad, which means that its rotor is characterised by Zr = 50
poles. According e.g. to Sochocki (1996) and Pochanke and Bodnicki (2002),
the mathematical model of such a stepping motor is described by two voltage
equations

L0
di1(t)

dt
+Ri1(t)−KU

dΘ(t)

dt
sin(ΘE(t)) = −U(t) sgn{sin(Φ(t))}

L0
di2(t)

dt
+Ri2(t) +KU

dΘ(t)

dt
cos(ΘE(t)) = U(t) sgn{cos(Φ(t))}

Φ(t) =
π

2

t
∫

0

f(τ) dτ

(2.2)

where i1(t), i2(t) denote the electric currents in both motor phases, L0 is the
phase inductance, R denotes the resistance of one phase, KU is the motor
voltage constant, Θ(t) denotes the instantaneous rotation angle of the rotor
including the rigid body motion and the vibratory component, U(t) is the
slowly varying control voltage, ΘE(t) denotes the rotor electric angle, which
can be determined as ΘE(t) = ZrΘ(t) and f(t) is the voltage supply com-
mutation frequency. Here, sufficiently good commutation realised by means of
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a proper stepping motor control should result in the control voltage supply
phase angle Φ(t) ∼= ΘE(t).

The electromagnetic torque generated by the double-phase stepping motor
is expressed by the following formula

TE(t) = KT [−i1(t) sin(ΘE(t)) + i2(t) cos(ΘE(t))] (2.3)

where KT denotes the stepping motor torque constant.

3. Mathematical solution of the problem

Torsionally vibrating drive systems are usually characterised by a relatively
low level internal and external (absolute) damping. This so commonly obse-
rved feature is caused by natural very small material damping in metallic and
non-metallic components operating in the range of small tangential strains
and torsional displacements. The well lubricated roll-bearings also do not in-
troduce much friction due to shaft rotational motion, and thus the induced
external damping can be regarded as negligible. Therefore, torsional natural
frequencies and eigenmode functions obtained for the undamped systems are
respectively very close to these determined by means of damped eigenvalue
problem solution. According to the above, in order to perform an analysis of
natural elastic vibrations of the mechanical model, all the forcing and viscous
terms in equations of motion (2.1) and in the boundary conditions have been
omitted. An application of the solution of variable separation for Eqs. (2.1)
leads to the following characteristic equation for the considered eigenvalue
problem

C(ω)D = 0 (3.1)

where C(ω) is the real characteristic matrix and D denotes the vector of unk-
nown constant coefficients in the analytical local eigenfuctions of each i-th
macro-element, Szolc (2000, 2003). Thus, the determination of natural fre-
quencies reduces to the search with a required computational accuracy for
values of ω, for which the characteristic determinant of matrix C is equal
to zero. Then, the torsional eigenmode functions are obtained by solving equ-
ation (3.1). It should be emphasised that for the torsionally vibrating ’free-free’
system, apart from the theoretically infinite number of elastic modes, the so
called rigid-body mode of zero natural frequency must be taken into consi-
deration.
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The solution for forced vibration analysis has been obtained using the
analytical-computational approach applied e.g. in Szolc (2000, 2003) and Szolc
et al. (2010). Solving eigenvalue problem (3.1) and applying the Fourier so-
lution in form of series in the orthogonal eigenfunctions leads to the set of
uncoupled modal equations for time coordinates ξm(t)

ξ̈m(t) + (β + τω
2
m)ξ̇m(t) + ω

2
mξm(t) =

1

γ2m
Qm(t) m = 0, 1, 2, . . . (3.2)

where ωm are successive natural frequencies of the drive system, β denotes the
coefficient of external damping assumed here as proportional damping to the
modal masses γ2m and Qm(t) are the modal external excitations. By making
use of the principle of virtual work, the modal external excitations for the
hybrid (discrete-continuous) model of the considered drive system have been
determined in the following form (m = 0, 1, 2, . . .)

Qm(t) =
TE(t)

l2

l2
∫

0

X2m(x) dx−M18(t)X18,m(0)−M28(t)X28,m(l28) (3.3)

where X2m(x) denotes the local m-th eigenfunction of macro-element (2) of
length l2 corresponding to the electric motor rotor, X18,m(0), X28,m(l28) are
the m-th eigenfunction values for the model cross-sections in which there
are imposed retarding torques M18(t) and M28(t) generated respectively by
the DC-generator and the power receiver. Here, it is assumed that the DC-
generator produces a constant or slowly varying with time retarding torque
M18(t) = T0(t) representing dry friction effects in the drive system. The power
receiver is assumed to be loaded by aerodynamic forces, and thus the retarding
torque imposed on the corresponding inertial disk, see Fig. 1, can be expressed
as the square function of the current rotational speed M28(t) = Hω

2(t), where
ω(t) is the inertial disk instantaneous rotational speed containing the average
component together with the fluctuating component due to torsional vibra-
tions of the drive system and H denotes the proper aerodynamic constant
coefficient.

By substituting expression (2.3) into (3.3) and (3.2), and upon proper com-
binations of modal equations (3.2) with voltage equations (2.2), one obtains
the coupled set parametric ordinary differential equations

Mr̈(t) + C(ΘE(t))ṙ(t) +K(ΘE(t))r(t) = F (t, ṙ(t)) (3.4)

where
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C(ΘE(t)) = C0 + CE(ΘE(t)) K(ΘE(t)) = K0 +KE(ΘE(t))

r(t) = col [i1(t), i2(t), ξ0(t), ξ1(t), ξ2(t), . . .]

F (t, ṙ(t)) =



















−U(t) sgn{sin(Φ(t))}
U(t) sgn{cos(Φ(t))}
−κ (M18(t) +M28(ṙ(t)))

−X18,1(0)M18(t)−X28,1(l28)M28(ṙ(t))
−X18,2(0)M18(t)−X28,2(l28)M28(ṙ(t))

. . .



















The symbols M, C0 and K0 denote, respectively, the constant diagonal modal
mass, damping and stiffness matrices, CE(ΘE(t)) is the band matrix of the
inductive-electro-magnetic effects and KE(ΘE(t)) denotes the band matrix
of the resistant-electro-magnetic effects, both of harmonically variable coeffi-
cients with the frequency following from the current electric rotation angle.
The symbol F (t, ṙ(t)) denotes the external excitation vector due to the con-
trol input voltage and retarding torques. The unknown co-ordinate vector r(t)
consists of electric currents in both motor phases and of the unknown time
functions ξm(t) in the Fourier solutions, m = 0, 1, 2, . . .. In order to obtain
the system dynamic response, equations (3.4) are solved by means of direct
integration using Newmark’s method. The number of equations (3.4) corre-
sponds to the number of eigenmodes taken into consideration in the range of
frequency of interest. These equations are mutually coupled by the parametric
terms expressing to the electromagnetic interaction with the stepping motor.
A fast convergence of the applied Fourier solutions enables us to reduce the
appropriate number of the modal equations to solve, in order to obtain a suf-
ficient accuracy of results in the given range of frequency. In such a frequency
range, mutual overlying of the frequency response functions determined for
the given, gradually increased number of considered eigenmodes can be used
as an additional accuracy test for the proper mode truncation.

In this way, the electro-mechanical hybrid model of the drive system has
been obtained. It is to remark that a natural alternative for dynamic model-
ling of the considered drive system is application of the classical finite ele-
ment method. Then, in a comparison with the proposed here hybrid (discrete-
continuous) model, in such a case the general structure of the finite element
mechanical model would be exactly the same, where only the visco-elastic
macro-elements used in the hybrid model must have been discretized by me-
ans of one-dimensional torsionally deformable two-node finite elements of the
rod-type, but all rigid bodies and discrete-oscillators would remain unchanged.
Such an analogous finite element and hybrid models of the drive system were
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developed in Szolc et al. (2010). From comparison of results of eigenproblem
analyses performed by means of both models, it follows that using the finite
element method it is possible to obtain very close natural frequency values and
almost identical eigenforms as in the case of the hybrid model upon thorough
selection of proper discretization mesh densities resulting usually in relatively
large numbers of degrees of freedom of the entire finite element model, Szolc
et al. (2010). Then, simulations of forced vibrations carried out by the use
of these models can yield very similar results. But in the case of the hybrid
model, it is necessary to solve only few coupled modal equations (3.4), even
in cases of great and complex mechanical systems, contrary to the classical
one-dimensional finite element formulation leading usually to large numbers
of equations of motion corresponding each to more than one hundred or many
hundreds degrees of freedom, (if artificial and often error prone model reduc-
tion algorithms are not applied). However, the proposed here hybrid modelling
assures at least the same or even better representation of the real object as
well as its mathematical description is formally strict, demonstrates clearly
qualitative system properties and is much more convenient for a stable and
efficient numerical simulation.

4. Computational examples

In the computational examples, simulations of the run-up, steady state opera-
tion and run-down of the existing in practice laboratory precise geared drive
system are performed. The mechanical model is shown in Fig. 1 and its de-
tailed parameters are taken form technical documentation. It is to emphasise
that the proposed hybrid model is characterised by respectively identical geo-
metrical and physical parameters as the mentioned in Section 3 analogous
finite element model of the same structure. In this way, both models yield
the same level of parameter identification errors. The considered drive system
is driven by means of the stepping motor of the nominal voltage 4.8 V, cur-
rent 1.5 A and the maximal braking torque 0.8Nm, where the reduction gear
ratio is equal to 1:3. In each case of the assumed operation parameters this
mechanical system of the entire mass moment of inertia reduced to the mo-
tor axis 9.34 · 10−5 kgm2 was uniformly accelerated from its standstill to the
constant average rotational speed within t1 = 3 s in order to operate for next
t2 − t1 = 1 s under the constant retarding torque generated by the generator.
Then, within successive t3− t2 = 3 s, the drive system was uniformly stopped
back to the standstill.
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The four following cases of the drive system operation parameters are going
to be investigated:

1. The nominal rotational speed n = 1500 rpm (25 s−1) and the suddenly
applied nominal retarding torque T0 = 0.03Nm;

2. The nominal rotational speed n = 600 rpm (10 s−1) and the suddenly
applied nominal retarding torque T0 = 0.10Nm;

3. The nominal rotational speed n = 300 rpm (5 s−1) and the gradu-
ally applied during start-up and run-down nominal retarding torque
T0 = 0.35Nm;

4. The nominal rotational speed n = 210 rpm (3.5 s−1) and the gradu-
ally applied during start-up and run-down nominal retarding torque
T0 = 0.35Nm.

In all four cases, the identical absolute damping coefficient β =
= 6 · 10−5 Nms, the aerodynamic constant coefficient H = 4 · 10−7 Nms2

and the retardation time for steel in the Voigt model of material damping
τ = 2.34 · 10−5 s have been assumed.
In order to study the influence of electro-mechanical coupling effects on

dynamic responses of the considered system, numerical simulations of the as-
sumed above motions have been carried out for two modes: (a) – for the “co-
upled simulation mode”, where the full electro-mechanical system described
by equations (3.4) was used, and (b) – for the so called “uncoupled simulation
mode”, where according to the commonly applied approach in the literature,
e.g. in Sochocki (1996), only two following electrical equations coupled with
the equation describing the rigid body motion of the drive train were used

L0
di∗1(t)

dt
+Ri∗1(t)−KU

dξ∗0(t)

dt
sin(Zrξ

∗

0(t)) = −U(t) sgn{sin(Φ(t))}

L0
di∗2(t)

dt
+Ri∗2(t) +KU

dξ∗0(t)

dt
cos(Zrξ

∗

0(t)) = U(t) sgn{cos(Φ(t))}

γ20
d2ξ∗0(t)

dt2
+ β
dξ∗0(t)

dt

= KT [i
∗

2(t) cos(Zrξ
∗

0(t))− i
∗

1(t) sin(Zrξ
∗

0(t))]− T0(t)− FΩ
2(t)

(4.1)

where i∗1(t), i
∗

2(t) denote the electric currents in both motor phases and ξ
∗

0(t)
is the rotational coordinate corresponding to the system rigid body motion.
Then, in the case of uncoupled mode, electromagnetic torque (2.3) is a prio-
ri determined for i∗1(t), i

∗

2(t) and ξ
∗

0(t) and substituted into separate modal
motion equations (3.2) as a response-independent external excitation of the
mechanical system under torsional vibrations.
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Example I: The nominal rotational speed n = 1500 rpm (25 s−1) and the
suddenly applied nominal retarding torque T0 = 0.03Nm

In the first computational example, the drive system was quickly acce-
lerated to a relatively high average rotational speed under suddenly applied
constant loading determined by the maximal motor power limit. In Figs. 2, 3
and 4, plots of the computational results obtained for this case of operation
are demonstrated. In Figs. 2, 3 and 4, by black and grey lines, the responses

Fig. 2. The retarding (dashed line) and electro-magnetic torque for the coupled
(black line) and uncoupled (grey line) simulation mode

Fig. 3. The rotational velocity of the input (a) and the output (b) shaft for the
coupled (black line) and uncoupled (grey line) simulation mode

corresponding respectively to the coupled and uncoupled mode are depicted.
In Fig. 2, time-history plots of the electro-magnetic torque generated by the
stepping motor as well as of the resultant retarding torque reduced on the mo-
tor shaft (denoted by the dashed line) are presented. From this figure it follows
that the motor torque time-histories obtained for the coupled and uncoupled
mode almost overlay each other. Moreover, for the assumed relatively high
average nominal rotational speed, the influence of the retarding aerodynamic
torque imposed on the inertial disk of the power receiver as well as the viscous
resistance in the system are quite significant. It is to remark that also almost
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Fig. 4. The dynamic torque transmitted by the input (a) and by the output (b)
shaft for the coupled (black line) and uncoupled (grey line) simulation mode

identical responses for the coupled and uncoupled mode have been obtained
for rotational speeds of the system input and output shaft segments, where
the vibratory components of the angular velocity are negligible, Fig. 3. Ho-
wever, some slight differences are observed in Figs. 4a and 4b demonstrating
time-history plots of the dynamic torques transmitted by the system input and
output shafts in resonance zones of the first system natural frequency equal
103.4 Hz passed during the start-up and run-down. These differences are cha-
racterised only by a little bit slower decaying intensity of transient resonance
amplitudes in the case of uncoupled mode.

Example II: The nominal rotational speed n = 600 rpm (10 s−1) and the
suddenly applied nominal retarding torque T0 = 0.10Nm

In the second computational example, the drive system was accelerated to
a smaller average rotational speed under suddenly applied constant loading,
which – from the viewpoint of the abovementioned power limit – could be
assumed greater than in the previous case. From the computational results
obtained in this case, but not presented in the graphical form, it follows that
the motor torque time-histories obtained for the coupled and uncoupled mode
begin to not overlay each other during start-up and run-down. Analogous dif-
ferences are observed for rotational speeds and dynamic torques registered for
the considered input and output shaft segments. However, during steady-state
operation, the electromagnetic motor torque as well as the system dynamic
response in the form of investigated rotational speeds and dynamic torques mu-
tually almost overlay respectively for the coupled and uncoupled mode. This
fact can be preliminarily explained by a more vibratory character of system
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operation in the considered example because of a smaller gradient of excitation
frequency caused by passages through the resonance zone to a much smaller
nominal rotational speed during start-up and back to the standstill during
run-down as well as due to rapid loading and release by the constant retar-
ding torque T0 of more than three times greater value than in the previous
case. The observed differences between the excitation torques and the system
dynamic responses registered for the coupled and uncoupled mode will beco-
me much more severe in the next studied cases of the drive system operation
described in the two next points.

Example III: The nominal rotational speed n = 300 rpm (5 s−1) and the
gradually applied and released nominal retarding torque T0 = 0.35Nm

In this case, the drive system was accelerated to a relatively small no-
minal rotational speed n = 300 rpm (5 s−1) within 3 s, which resulted in an
appropriately lower than before average acceleration and deceleration and in
associated with it smaller inertial resistances. Also the applied aerodynamic
and viscous retarding torques became almost negligible. However, in compari-
son with the maximal starting moment of the considered stepping motor equal
to 0.5Nm, the relatively high nominal retarding torque T0 = 0.35Nm must
have been gradually imposed and released in order to assure fluent operation
of the drive system.
The corresponding time-history plots of the electromagnetic torque genera-

ted by the stepping motor as well as of the resultant retarding torque reduced
on the motor shaft (denoted by the dashed line) are presented in Fig. 5. Si-
milarly as in the previous computational example described in Example II,
it follows from this figure that the motor torque time-histories obtained for
the coupled and uncoupled modes do not overlay each other during start-up
and run-down. Moreover, they are also characterised by the remarkable dif-
ferences in the nominal operation conditions. Significantly greater amplitudes
of the excitation electromagnetic torque occur for the coupled mode during
the start-up and run-down, however within the steady-state operation, a more
regular time-history with slightly greater amplitudes is observed for the motor
torque generated in the case of the uncoupled mode.
In Figs. 6 and 7, in exactly the same way as in Example I, time-history plots

of the registered system dynamic response are shown. During the start-up and
run-down, the rotational velocities as well as the dynamic torques observed in
the system input and output shaft are characterised by severe transient reso-
nances with the fundamental eigenmode of the first natural frequency equal
103.4 Hz, as shown in Figs. 6 and 7. The amplitudes of this resonances are
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Fig. 5. The retarding (dashed line) and electro-magnetic torque for the coupled
(black line) and uncoupled (grey line) simulation mode

Fig. 6. The rotational velocity of the input (a) and the output (b) shaft for the
coupled (black line) and uncoupled (grey line) simulation mode

Fig. 7. The dynamic torque transmitted by the input (a) and the output (b) shaft
for the coupled (black line) and uncoupled (grey line) simulation mode

respectively similar to each other in the case of the coupled and uncoupled
mode, although in these operation conditions, the coupled mode yield much
more severe external excitation produced by the driving motor, which follows
from Fig. 5. However, during the steady-state operation in the case of the unco-
upled mode, the abovementioned regular and slightly stronger electromagnetic
excitation results in resonant responses both for the rotational speeds and the
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dynamic torques, which have been illustrated in Figs. 6a and 7a,b. In order
to explain this fact the FFT analysis of the time-histories of the excitation
torque generated by the stepping motor has been performed for the coupled
and uncoupled mode.
The obtained in this way amplitude spectra are presented in Fig. 8. From

this figure it follows that both amplitude spectra, i.e. the obtained for the
coupled mode and depicted by the black line and for the uncoupled mode
depicted by the grey line, are characterised by almost identical greatest peaks
of frequency 1000Hz corresponding to the fundamental excitation component
produced by the driving motor in steady-state operation conditions. This value
results from the assumed nominal rotational speed n = 300 rpm (5 s−1) and
the fundamental step angle 0.0314 rad of the considered motor.

Fig. 8. Amplitude spectra of the excitation torque generated by the stepping motor

Here, for the coupled and uncoupled mode, the excitation motor torque has
been determined using two different systems of parametric ordinary differen-
tial equations. In the case of the coupled mode, electromagnetic torque (2.3)
follows from the system of parametric equations (3.4) taking into consideration
the rigid body motion together with the inertial-visco-elastic behaviour of the
drive system. However, in the case of the uncoupled mode, electromagnetic to-
rque (2.3) has been determined using the system of parametric equations (4.1)
taking into consideration the system rigid body motion only. Thus, by means
of these two different parametric systems of equations, apart from the mentio-
ned above identical fundamental components of frequency 1000Hz, different
sub-harmonic components of the excitation torque are generated. In the case
of the uncoupled mode, in Fig. 8 the significant excitation component of frequ-
ency ca. 100Hz is observed, which is very close to the first drive system natural
frequency equal to 103.4 Hz. This component is responsible for the observed
resonance effects depicted in Figs. 6 and 7 for the uncoupled mode, in contra-
distinction to the coupled mode, where the analogous sub-harmonic excitation
component is characterised by frequency ∼ 200Hz, which is far away from the
first and the second system natural frequency equal to 344.4 Hz. According
to the above, one can conclude that the taken into consideration vibratory,
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inertial-visco-elastic properties of the mechanical system essentially influence,
both qualitatively and quantitatively, the electromechanical coupling effects
resulting respectively in different dynamic responses. This remark will be con-
firmed in the next computational example in a more profound way.

Example IV: The nominal rotational speed n = 210 rpm (3.5 s−1) and the
gradually applied and released nominal retarding torque T0 = 0.35Nm

This example differs from the previous one by the value of the nominal
rotational speed equal to n = 210 rpm (3.5 s−1) with all the remaining drive
system operation parameters unchanged. It results in a lower average accelera-
tion during start-up and in a lower average deceleration during run-down, and
in this way, in smaller gradients of the excitation frequency during passages
through the zone of resonance with the first eigenvibration mode. From the
computational results obtained in this case, but also not presented in a graphi-
cal form, it follows that the transient resonance amplitudes are greater than in
the previous example because of the mentioned above smaller gradients of the
excitation frequency during passages through the resonance zone within the
start-up and run-down time, both for the coupled and uncoupled simulation
mode. However, in this example, in the case of the uncoupled mode at the
end of the nominal steady-state operation and at the beginning of the system
run-down, a very severe resonance is observed for responses investigated in the
system input and output shafts. The reason of such behaviour is the same as
that described in Ezample III since the amplitude spectra of the driving motor
torques obtained in this case and presented in Fig. 9 are analogous to these
presented in Fig. 8. In the considered example, in the case of the uncoupled
mode by means of parametric system of equations (4.1), there is still genera-
ted the sub-harmonic external excitation component of frequency ca. 100Hz,
which induces this extremely severe resonance with the drive system funda-
mental eigenmode of the first natural frequency 103.4 Hz. In the case of the
coupled mode, the analogous sub-harmonic excitation component is also cha-
racterised by frequency close to ∼ 200Hz, which as above mentioned is far
away from the first and second system natural frequency equal to 344.4 Hz,
see Fig. 9. Thus, in the case of the coupled simulation mode, such a resonance
effect at the end of the nominal steady-state operation and at the beginning
of the system run-down did not occur.
In order to make knowledge about the reasons of such dynamic behavio-

ur of the considered drive system deeper, several numerical simulations have
been performed for other various retarding torques T0 and for other nomi-
nal rotational speeds within the range 100-1500 rpm (1.67-25 s−1). From the
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Fig. 9. Amplitude spectra of the excitation torque generated by the stepping motor

FFT analyses of time-histories of the electro-magnetic stepping motor torques
obtained in all these simulation cases it follows that this excitation is cha-
racterised by “rich” amplitude spectra of frequency components, both in the
case of coupled and uncoupled simulation modes. The excitation motor torque
component of frequency ∼ 100Hz, which induced resonances in the case of
the uncoupled mode in Examples III and IV, always occurred in the range
of nominal rotational speeds between 100-400 rpm (1.67-6.67 s−1). It was not
observed for greater nominal rotational speeds, neither in the case of the un-
coupled mode nor for the coupled simulation mode. In the case of the coupled
mode, this excitation component did not appear also in the nominal rotatio-
nal speed range 100-400 rpm, similarly as for 300 and 210 rpm (5 and 3.5 s−1)
assumed respectively in Examples III and IV. This fact can be explained by
natural self-detuning of the coupled electro-mechanical system from the reso-
nance, where a relatively severe rotational speed fluctuation of the stepping
motor rotor mistunes “rhythmic” energy supply from the electric motor to the
mechanical system, which results in “escaping” of the mechanical system from
the parametric resonance. However, in the case of the uncoupled simulation
mode, the frequencies of the electro-magnetic excitation torque fluctuation are
independent of mechanical visco-elastic vibrations of the drive system and, in
this way, also independent of vibratory rotational speed oscillations of the
motor rotor. Thus, the given excitation frequency is able to correspond per-
manently to the given natural frequency of the mechanical system, e.g. to the
first one as in the considered here object, and then some artificial resonance
effects can be induced.

5. Conclusions

In the paper, electro-mechanical vibrations of the drive system driven by the
stepping motor have been investigated. These investigations have been perfor-
med by means of the entirely coupled electro-mechanical model of the consi-
dered object as well as using the traditional approach based on the mutually
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uncoupled mechanical and electrical system. In the coupled model, torsional
vibrations of the drive system and electric current oscillations in the motor
windings have been taken into consideration in form of a common set of para-
metric ordinary differential equations containing the modal equations of mo-
tion for the mechanical part and the circuit equations describing operation
of the electric motor. In contradistinction to the approaches usually applied
till present, where the electric and mechanical parts of the drive systems co-
operating with the electric machines are studied separately from each other
or one of them, e.g. the mechanical one, is drastically simplified, the proposed
electro-mechanical model enables us to consider all required mechanical and
electrical properties of the investigated object in order to obtain an expected
level of accuracy.

In the case of the coupled simulation mode, the rigid body motion together
with the vibratory behaviour of the mechanical system influence the electric
currents in the motor windings, which are responsible for generation of the
electromagnetic excitation torque. However, in the case of the uncoupled mode,
the electromagnetic excitation torque is generated by solving the motor voltage
equations coupled only with the equation describing the rigid body motion of
the mechanical system. Then, the electromagnetic motor torque has been a
priori’ substituted into the modal equations of vibratory motion. According to
the above, the electromagnetic torques generated by the stepping motor were
characterised by different frequency components in the case of coupled and
uncoupled modes.

The performed investigations enabled us to indicate essential qualitative
and quantitative differences between the computational results obtained using
the coupled and uncoupled mode of the vibrating electro-mechanical drive
system. In the case of the traditional uncoupled mode, the electromagnetic
torque generated by the considered stepping motor contained an excitation
component of a frequency very close to the first natural frequency of the drive
system, which was not observed using the coupled mode. Thus, in the dyna-
mic responses obtained by means of the uncoupled mode, severe “artificial”
resonance effects have been induced.

From the comparison of the computational results obtained for the four
considered cases of operational parameters, it follows that the most severe co-
upled electro-mechanical dynamic responses were observed in Example II, III
and IV, in which the drive system was accelerated to relatively smaller nominal
rotational speeds and loaded by appropriately much greater retarding torqu-
es produced by the DC-generator. Then, due to larger transmitted loadings
and smaller gradients of instantaneous excitation frequency caused by passa-
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ges through the system resonance zone during start-ups and run-downs, when
much stronger transient resonance effects were induced, the responses were
characterised by much more severe torsional and electrical vibrations. Howe-
ver in Example I, in which the obtained dynamic response was almost free of
vibratory effects, the traditional approach based on the mutually uncoupled
mechanical and electrical system yielded similar results to these obtained using
the coupled mode. Thus, such results can be regarded as satisfactorily exact.
According to the above, for simulations of drive system operations under se-
vere vibrations, the entirely coupled electro-mechanical model is necessary, in
particular when sufficiently accurate simulation results are required.
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Badanie efektów dynamicznych sprzężeń elektromechanicznych

w mechaniźmie napędzanym silnikiem skokowym

Streszczenie

W pracy przeprowadzono analizę przejściowych i ustalonych drgań elektrome-
chanicznych precyzyjnego układu mechanicznego napędzanego silnikiem skokowym.
Badania teoretyczne wykonano za pomocą hybrydowego modelu strukturalnego ukła-
du napędowego oraz klasycznego obwodowego modelu silnika skokowego. Głównym
celem dokonanego studium było wykazanie istotnych różnic pomiędzy odpowiedziami
dynamicznymi drgającego skrętnie obiektu traktowanymi jako elektromechanicznie
sprzężone i rozprzężone. Na podstawie uzyskanych wyników można stwierdzić, że te
różnice są jakościowo i ilościowo znaczące z punktu widzenia precyzyjnego i niezawod-
nego działania układu napędowego. Wykazano, iż drgania skrętne układu napędowego
istotnie wpływają na efekt sprzężenia elektromechanicznego, co uzasadnia ważność je-
go uwzględniania przy przeprowadzaniu tego typu analiz.
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