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SOME STRANGE FEATURES OF THE GALILEI GROUP”

BARBARA GOLUBOWSKA, VASYL KOVALCHUK, AGNIESZKA
MARTENS, EWA ELIZA ROZKO and JAN J. SEAWIANOWSKI

Institute of Fundamental Technological Research, Polish Academy of Sciences
58 Pawiriskiego Str, 02-106 Warsaw, Poland

Abstract. Discussed are certain strange properties of the Galilei group, con-
nected first of all with the property of mechanical energy-momentum covec-
tor to be an affine object, rather than the linear one. Its affine transforma-
tion rule is interesting in itself and dependent on the particle mass. On the
quantum level this means obviously that we deal with the projective unitary
representation of the group rather than with the usual representation. The
status of mass is completely different than in relativistic theory, where it is
a continuous eigenvalue of the Casimir invariant. In Galilei framework it is
a parameter characterizing the factor of the projective representation, in the
sense of V. Bargmann. This “pathology™ from the relativistic point of view is
nevertheless very interesting and it underlies the Weyl-Wigner-Moyal-Ville
approach to quantum mechanics.

1. Introduction to the Galilei Group

[t was shown that when some natural postulates are accepted, then there are only
two natural flat space-time structures: Galilean and Minkowskian. And, respec-
tively, there are two alternative symmetry groups: Galilei and Poincare groups.
The peculiarity of Minkowski-Poincare structure is the existence of some fixed
universal physical constant-velocity of light c. In a sense the traditional Galilei
structure is obtained in the limit transition ¢ — 0. And in fact there are nu-
merous formulae in which this limit is smoothly achieved. But as usual when it
* limit transition to some singular value, certain discontinuities in the
| the resulting theory changes drastically. The asymptotic form of
liscontinuities

is a “true’
limit appear anc
the theory is not its merely special case and important qualitative ¢

"Reprinted from J. Geom. Symmetry Phys. 26 (2012) 33-59.
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Some Strange Features of the Galilei Group

appear. The same, and even more catastrophically, happens in the i — () asymp-
totics of quantum mechanics. Classical mechanics asymptotically corresponds to
quantum-mechanical results, but nevertheless it is a qualitatively dilferent theory.
In the space-time theory the main peculiarity of the limit transition ¢ — oo is the
catastrophic change of the structure of the four-momentum obtained on the basis of
the four-dimensional Legendre transformation. In this sense the relativistic theory
is simpler, its four-momentum is the usual covector. In Galilean framework, it be-
comes an affine geometric object rather than linear one, if its transformation rule is
to be compatible with its physical interpretation of energy-momentum. From this
point of view the linear covector rule is drastically false.

Let us begin with some formalism. The Galilean space is an affine manifold en-
dowed with some additional structures: (X, V,—.5,¢.4). Here X denotes the
point set of the manifold, V' 1s the linear space of translations in X, — is the
operation of the vector between a pair of points, S C V is a linear subspace of
co-dimension one, and g € S* ® §*, 0 € (V/S5)" @ (V/S)* are twice covari-
ant symmetric tensors in S and V/S. As always in affine geometry the operation
—: X x X — V is assumed to satisfy the following axioms

T+ yE + 2t =0 for any r,y.z€ X (n
and for any x € X the mapping
Xsy—zyeV (2)

is a bijection of X onto V. In affine spaces over the field of reals K this implies
that
="~ e 4 =

Tl = —yz, zr =10 (3)
for any z,y € X. It is important that the metric g is defined merely on S. The
pairs of points translated by elements of S are said to be simultaneous and it is
important that the metric tensor g defines the distances and scalar products only
for simultaneous pairs of points and for vectors in .5. There is no concept of dis-
tance between non-simultaneous events. Physically X is four-dimensional and S
is three-dimensional, nevertheless in many general statements this does not matler.
Obviously, the operation — establishes the action of V' as an Abelian additive
transformation group on X. Those translations, t{v]| : X — X act as follows

tzg) (z) =y )

for any .y € X. Therefore, being a subgroup S C V. the space S acts non-

transitively as the transformation group, and the quotient

A

T = X/t[S] (
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is a one-dimensional affine space with the naturally induced affine structure. The
natural projection of X onto T and the induced one of V' onto V//.S will be denoted
by

HE S i m:V = V/S. (6)

The one-dimensional linear space of translations in 7 is canonically identical with
V/ S, if necessary we shall denote it by

Z=V/S. (7)

Let us stress that the Galilean space-time is a fibre structure over the time axis
T, however, unlike the structure called sometimes the Aristotle space-time it is
not a Cartesian product of time and space. There are “spatial”, i.e., “along t[S]"-
directions, but there is no well-defined concept of position, so there is no space.

And spatial distances are defined only for simultaneous, i.e., t[S]-related events

dﬂﬂuﬁ*Gﬂﬁifﬁf‘fmmw—waf—mU if I(z) =T(y). (8)

And similarly, the absolute time distance of two arbitrary events is

dwtry}—-\fﬁiﬁkra)-r{ﬁiji (9)
This structure is simultaneously too weak and too strong, depending on analyzed
problems. Too weak because no orientation is fixed, in particular no spatial orien-
tation and no arrow of time. If necessary, they should be defined. fixed in T, .S or
just in X. But at the same time it is too strong, namely, when fixing spatial metric.
Let us remind the ideas by Hehl, Ne’emann, Sijacki and our own ones to formulate
the affinely-invariant mechanics and physics. Those ideas are still compatible with
the main fibre-bundle structure of the Galilei space. Namely, just removing the
objects g, 4, i.e., metric tensors, we obtain the amorphous, affine-Galilei structure.
This description was more or less complete. We presented it in details just to
show you that unlike the everyday opinions the non-relativistic Galilean space-time
is geometrically incomparatively more complicated than the relativistic Poincare-
Minkowski space-time. But if motion is relative, and if, as we know from exper
iment, the inertial, i.e., uniform rectilinear motion is physically indistinguishable
from the rest state and depends only on the choice of the reference frame, then
really it must be so. Let us now fix the reference frame and present the analytical

description. When the origin of the reference frame and some rest-state standard

are fixed, and so are physical units, then X becomes identified with the Cartesian
product of time and space, e.g.

b R (1
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In other words, the space-time events are represented by the Aristotle-Newton
pairs: instancy of the time-position vector. There 1s nothing bad in this identifi-
cation if we remember 1t 1s mercly something like the choice of coordinates.
Galilei transformations are defined as the automorphisms of the Galilean space-
ume. In the mentioned identification they are given by

E3 i o X ]
|T‘ RE+7t+@ |’ Bt

1

Here [s.@| is the space-time translation vector, ¥ is the spatial vector of boost,

g
Y|
and R € O(n — 1,R) is the spatial rotation. So, analytically we write (11) as

| -"_._.- - b+ | (12)
l&* | " LR il + it +at | =

Here the summation convention is meant under spatial indices 7 = 1, (n — 1). The
time dimension is in analogy to relativity denoted as zeroth or simply by the index
t. The matrix I is orthogonal, so

0 R R = 0py (13)

or less correctly R1 R = I. As mentioned, in physics n = 4, nevertheless it is
more convenient to write certain formulae for the “general” n.
The Galilei transformation (11), (12) will be denoted by G [R, 7; £, @]. The struc-
ture of the Galilei group is rather complicated and even its homogencous part fails
to be semisimple. Let us denote this group shortly by Gal(X;g.6) or just by
Gal(X) when there is no danger of misunderstanding.
One can show that the composition rule for the Galilei transformations (11), (12)
may be written down as follows
g [Hl.i’l.'-:-'].(‘r']]g [.E}Q.Fglt‘g.ajj =G [R. :H : (14)

Here

B = .H].Hg ?_:1’.—/[ T RI_/'__JI. £ =£g1+¢&y, H—H] = _R|Hg UV E. ”f‘}

The inverse mapping is given by

G[R,7:e.5] ' =G |R ;5 al. (16)

Here

== S ez = . I e &
=R, v=-R v, E = —£, a=—RYa- ve). (17)

iy

We see that in fact the composition rule is rather complicated and contains a few
floors of semi-direct rules even in the homogeneous part.
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Obviously, in n-dimensional Galilean space we have
o e R A s
dim Gal(X) = T, dim O(n,

Therefore in four dimensions the Galilei group is 10-dimensional and the group of
spatial rotations is three-dimensional.

It is clear that Galilean transformations (11) acting on the straight-line of the uni-
form rectilinear motion with velocity T, transform it into one with the new velocity

v =Ri+7. (19)

If R = Id,, this is simply the Galilean boost

T =T+ (20)

As mentioned, Galilean space-time is not the Cartesian product of time and space,
our description above is a merely parametrization. Because of this the three-
dimensional velocity is not a true three-dimensional vector. The space of velocities
is not linear, it is an affine space. But the fact that two uniform rectilinear motions
differ by 7 in velocity is objective. It has to do with that the (n — 1)-dimensional
(physically three-dimensional) group of boosts is a normal subgroup of the full
Galilei group.

Let us make now a digression concerning the amorphous Galilei group. It con-

sists of transformations G|\, A, 7; e, @] of Gal(X) given by

E

(21)

Gl A | B M 1 :
| | AT+ 7t + @ |

Here A € R\{0}, 4 € GL(n — 1,R), and &, 7, @ have the same meaning as
in the usual, i.e., “metrical”, Galilei group. Here A is the temporal dilatational
factor and A is a spatial linear transformation. And again the problem appears
of admitting the reversal of time, A < 0 and the change of spatial orientation.
det A < 0.

The general structure of the amorphous Galilei group is similar to that of the “met-
rical” group. The complicated hierarchy of semi-direct products is just analogous
to what were seeing there.

2. Analytical Description and Infinitesimal Rules

To understand correctly what we have called “the strange features of the Galile
group”. its infinitesimal transformations and the difference between it and Poincare
group, 1t is convenient to use the matrix representation of the group elements an
of the basic generators of the Lie algebra. To take inhomogeneous transformatior
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Some Strange Features of the Galilei Group

1o account, it 1s convenient to use (1 + 1) x {n + 1) matricesi.e., in the physically
nteresting case one has 5 x 5 matrix.

Jbviously, the linear representation of affine Galilean mappings

1 B % B e

7 K al. v L © (22)
a5 A

00 1 00 1

respectively for the metrical and amorphous groups. Here 7, @, O denote the
column matrices; R and L denote respectively the (n — 1) x (n — 1) orthogonal
and general non-singular matrices.

In four dimensions infinitesimal generators of the homogeneous transformations
are given respectively by

0.0 .8 0 00 00 0.8 .0 0]
000 0 6.6 03 B-0.-1 8

M, 000-1]"M=]0000|"M=|01 0 0| @@
001 0 6 =100 00 0 0|

for rotations, and

0000 0000 0000]

: 1 00 0000 i BOB O] ..

% 0000/ N 1000/ L 0000| @
0000 0000 1000 |

for boosts.

Obviously, M, generate rotations about the a-th axis, i.e., in the (b, c)-plane where
a # b # ¢ # a. So, in dimensions of space-time higher than four one should have
used rather the symbol M, = —M,;, for them. The matrices /N, generate boost
along the a-th axis. The commutation rules are given by

[My, My) = ea§Me,  [Ma, Nyl = €afNey  [NaaNo] =0, (29)

Let us stress that unlike the situation one is faced with in relativistic theory, this
Lie algebra is not semisimple. It is isomorphic with the Lie algebra of Euclidean
group in (n — 1) dimensions where the boots are playing the role of translations.
For the one-parameter subgroups generated by M,. N,

exp (pn*M,), exp (vnN,), nem=1 (26)

the first-kind canonical parameters p, v are playing respectively the role of the
angle of rotation and velocity.
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In the four space-time dimensions the 5 x 5 matrices of the Galilean generators are . Let us revie
given by the following ten matrices i group, more
[000 0 0] 00 000 ! .
000 0 0 G0 0190 i GR,7;e,T
Mi= {000 -~1L0 M= |0 0 000 27) | CIR e
0 &4 8.0 0 —-1000 | : .
000 0 0 00 000 G[R.7em
i . ) I ) GIR et
00 0 0 [:11 00000 | GIR. 7
Ggh-100 10000 2 GIR. Ve,
M; = |01 0 00 Ny={00000 (28) i G[R,Tie.@
00 0 00 00000 I
100 0 00| 00000] y v igaptEs :
¥ Let us comm
[00000] 00000] _ translations f
00000 00000 | group of spa
No = |10000 Ns=[00000 (29) ' translations f
00000 10000 Le., ¢[S]-tran
00000 00000 defining a re
. : i b 1s (38). It tel
00000 00000 ’ ties form a ne
g0 056 1 00000 zroup of newt
B = bl e 000 Pe= 1000 U1 (30) phase space «
00000 00000 s essential fc
100000 0000 UJ Let us mentio
o = _ = Hamiltonian r
R.] 000 Q 00 (.J [} i ' based on the 1
L {l [.} [_} 0 Q .- 000 [_:t {J 6 ;4 i he Newton g
Py = | 0 z: [-: 00 Iy = E} ‘[_] 3 U t—-‘ (31 ' does in rela
ﬁ : E.) :; [l} {; [; . :i (; | “omposition.
. 2 . ' - ons and time
e 0 : ’ l s the Abelian
I'heir commutation relations have the form | }
. : _ I : _et us conside
(M, My = gap M, [Mg, Np] = e’ Ne, (Mg, Py] = €’ Pe (32 | ~oordinates ¢
N, Ny| = 0, [Na, Py] = 0, [Po, Py] = 0 33 . pere g, dg
[M,,T] = 0, [N,, T] = Pa, P,, T} =0 (34 | zeneralized ve

action functio
Later on, when looking at similar expressions for the Poincare group, we shall con-

clude how the “small” modification of Lie-algebraic rules changes catastrophicall

the group structure.
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Let us review in addition certain important finite commutation rules for the Galilei |
zroup, more precisely those concerning its normal subgroups: .

| : R.v;e.@|lG I,0: 7.6| G R.7; e, @] S G IU 7. RE+ —x/] (33)
G[R.7:£,8]G [1,0;0,€] 6[R,7;c.@" = ¢ [1,0;0,R¢ (36)
] R,7;e,0)G [I1,0;7,0] G[R,v;e,d] ' = G[1,0;1,77] (37) |
: | G[R. 7,6 [I,70,6] G[R, 7;¢,@]" = G [I, Rfi; 0, RE] (38)
" G|R,v;e,@|G I, 07 {J iR Real ™ =& ," Rii;7, RE + 77 - 5}?;_{] (39)
G[R,7¢,36 [I,7:0,0| G R, 7,8 = G[I,RE0,0] (40) |

Let us comment briefly those rules. The equation (35) tells us that the space-time
translations form a normal subgroup. Moreover, it follows from (36) that also the
group of spatial translations is normal. But unlike this, (37) means that the time
translations fail to be normal group. And this was expected: spatial translations,
, t[S]-translations are objectively defined, whereas the time translations need

e

defining a reference frame to be defined in Galilei space. An important feature
is (38). Tt tells us that the Newton translations, i.e., ones in positions and veloci-
ties form a normal subgroup. This fact is very important physically. The Abelian i
group of newton translations acts freely and transitively in the 2(n— 1 )-dimensional

H s phase space of initial conditions. Let us mention that among other features, this

| is essential for the formulating the phase-space approach to quantum mechanics.
Let us mention also that being 2(n — 1)-dimensional it is too large to admit a true
Hamiltonian representation. On the quantum level this means that the theory is not
based on the unitary representations, but on the projective (ray) representation of
the Newton group. The mass parameter does not occur as a Casimir invariant, as
it does in relativistic theory, but as a parameter which labels the projective rule of
composition. (39) means that the (2n — 1)-dimensional group of Newton transla-

I tions and time translations is a normal subgroup. And from (40) it follows that so

is the Abelian group of boosts.

| Let us consider a mechanical system with f degrees of freedom and generalized

coordinates ¢, ..., q’. Tts dynamics 18 encoded in the Lagrangian L (f.. q', %)

where ¢', dg'/dt is an abbreviation for the dependence on all coordinates and
generalized velocities. Obviously, the variable ¢ denotes the absolute time. The
action functional for problems with fixed boundary condition is given by |

.Y

i ) i ; 1 i
Ilq] = / L (f.q', : ]{fr ) i .
! " dt |
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| and the resulting equations of motion have the form Then one can ¢

o _8L _DaL_,

S e (42) |
y dgt Dtog

dt(

Now let us go to the homogeneous formalism [11, 12]. It is interesting in itself, it
enables one to go smoothly to the relativistic theory, and it simply very convenient

% ; ) 1 i Therefore
if not necessary when discussing time dependent dynamical problems. And it is
just fundamental for our understanding of the problems with Galilei group. So, let
us include the time variable ¢, together with ¢*, on equal footing into space-time Here F is phys
coordinates. To describe motion we introduce a new independent variable 7 — . scheme
an arbitrary parameter, in general quite “non-physical” one. Let us transform our
variational principle to this new description In the (2f + 2
/ . \ trized by coordi
A . : . 2 =5 | I ¥ coordl
i R AR PN
/ b ( L), — Uf)) Hr = / I, (! (7),4' (), = (1) | = A lormation indu
. \ g =5 . \ d7 Ldr. : equations
. gt oAyt N i
£ At(n), ¢ (7),—(7),— (1) | dr. (43) ,
dr dr Here
Let us now introduce the parametric “generalized velocities™: | -
s dt - gt : AL
ot 0 o R S gt = N e f (44
dr dt dr ! , b sl
| :iarmln;)mzmcqu.
Therefore '
| , PN
; " : : e o T g =4 -
| A ('.".._ff‘f.r,"._'u.") =L(t(T).¢" (7)), ——= Ju (7). (45) ]
W\ ]
i This is the new homogeneous Lagrangian. A is really homogeneous of degree one il
n “7-parametric velocities™: I But it is interest
i et ; imemay o ) I 1eous Lagrange
| A (¢, ¢ au'yau') = oA (4,9 u,ut), a > 0. (46 ; : :
_ \ J . / ' Let us write dow

From now on we can forget about its origin and just to reconstruct the whole sys- |
tem of analytical mechanics. First of all we introduce a homogeneous Legendre
transformation: | This is evidently
oA dA , ’ -
du dut
This is simply th

This transformation is homogeneous of degree zero in T-velocities. _
3 1dl

Let us only mention that there is some historical ambiguity, namely how to refer t
u's u” or u/ 71?7 But it is not very essential for us.
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Then one can show that

o SO e ) : ;
p = L{t,g".v") —v'— (t,¢’,v)) = —FE (48)
. ) s & /
{]L £ ' B
SR € 9T a1 (49)
Therefore
prdt + pidg' = —Edt + pidg’. (50)

Here /' is physically interpreted as energy and we have the following conjugation
scheme
(—E,pi) ~ (t.q") . (51)

In the (2 f + 2)-dimensional QTPH-space in the sense of Synge [5.11,12] parame-
. ) : P yng ji:

trized by coordinates (i, 4", pt, p;) as canonical variables the above Legendre trans-
formation induces the constraints of dimension (2f 4 1) given by the following

equations
Q=p+H (f, g;pi) =0. (52)
Here
H (t.qg‘,p;.;_‘] =& (L4 %) (53)
and , _
dL . OH
Pi =m0 i T (54)
v’ dp;
Hamiltonian equations of motion reduce then to the following well-known systems
gt 8 dH dp; a0 oH o
i SImmmae (55)
dr dp;  Ip; dr g dgt
dt 90 dp OH
dir o dr ot

Bult 1t is interesting to investigate the relationship between the usual and homoge-
neous Lagrange formalism.

Let us write down the system of homogeneous Lagrange equations

D 0A OA D aA 0A i
e e e o e (57) .
Dr out Ot Dt dut  d¢* '

This is evidently a dependent system. The first subsystem is simply equivalent to ,

DE JL 2
_—= (58)
Dt ot
This is simply the energy conservation law. The second subsystem of (57) implies
that ; :
DAL OL _ dtd’r oL
E Oy dr dt? dv '




160 B. Gotubowska, V. Kovalchuk, A. Martens, E. E. Rozko and J.J. Stawianowski

It is clear that if ¢ = 7, or at least when 7 is linear in ¢ (¢ is linear in 7), then (59)
reduces to the usual system of Euler-Lagrange equations
B 8L oL i
Dt gvt Ay’

3. Elements of the Relativistic Description, Momentum Four-Vector

Now, for comparison let us consider the relativistic homogeneous formalism. Tra-
ditional Lagrangian looks a bit artificial
b e . [ 3 dxida
L= -mc® \ 1 - — = —mc? \1 e (61)
/ = / et
(3) : i :
Here ¢ is the three-dimensional part of the four-dimensional Minkowskian metric
[900)-
The corresponding homogeneous Lagrangian, the only physically justified in this
kind of problems, 1s given by

dzt dav

A=—me \ I35 ap (62)
Therefore, the action functional is given by
F= / Ado. (63)
Here
A= —mc \W (64)
and  1s an arbitrary parameter.
Let us now perform the formal Legendre transformation
A JdA me dz¥ 2
P Ok : dur SE g TT_I_ 'U"""’W' (65)
\/ YaB a7 "da
Obviously,
pulan) = pu(u) (66)

and this is independent on the parametrization as well. One obtains in the &-

dimensional manifold labelled by (z*, p,) the 7-dimensional constraints, “energy
surface” in the language by Synge, given by the equations

§ .f'f'wf{.-.-f?.»- iy .}.n:(_,z — 0. (671

The corresponding Lorentz transformation rules for the four-velocities and four-

momenta have the following form

‘gt = T Y, I;;_” = ppki Iy .- (68

Here L isa Lo
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Here L 1s a Lorentz-homogeneous transformation.

When the electromagnetic field is present, the relativistic Lagrangian is given by

da* dx - dat

A= —mey/ g _ -4, —- (69)
\U a6 d# G :

Here again £ 1s an arbitrary parameter and g, i1$ the Minkowskian, or generally-
relativistic, metric tensor of the space-time. Let us remind that in specially-relati-
vistic theory the space-time is a pseudo-Euclidean space (X, V. —:g). Just like
in the non-relativistic physics (X, V, —) is a four-dimensional affine space and
f; e V'R l""' is the symmetric pseudo-Euclidean metric tensor of the signature

- . €2 1s the coupling constant, i.e., electric charge in appropriate units.

Thn, hUnlU*TLIlL{}lh velocity 1s given by

it
ut = —— (70)
dé
and the interval and usual velocities are respectively
; dat , dat it
wH = : = — = —. (71)
ds dr ¢

Here the arc element is expressed as follows

2 ! ’; 2 2 -
ds™ = gudafda’ =c*dr’. (72)

Obviously, the Lagrangian (69) 1s homogeneous of degree one and the correspond-
ing Legendre transformation is four dimensions

()‘\ i
Pu=7—r (73)
Auk
is homogeneous of degree zero
Alon) = alA(u), pulouw) = pulu), a > 0. (74)
The resulting phase-space constraints, i.e., energy equation is given by
N AN - \ 7.5 o
Q= g" (py— QA,) (pr — QA,) —m°c® = 0. (75)

The four-velocity in any version of the equations (70) or (71) transforms under
Lorentz transformations of (V) g) just as it should

|‘l i L+ I ¥ . s P, .
it = LhuY, e I 0 (76)

And the conjugate four-momentum p,, in (73) transforms under the contragradient

rule
Lt

! —1v ! S
Py = pul pis Pu = Pt
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4. Non-Relativistic, Galilean Four-Vector of Momentum

What concerns Galilean three-velocities and three-momenta, they transform just
so under spatial isometries. The problem appears in four dimensions on the level
of boosts.
First of all, let us note that according to the formulae (52), (53), (54) energy equals
the minus canonical momentum conjugate to the time variable in homogeneous
formalism

B e =y (78)
It is interesting that up to the c-multiplier the same is true relativistically, 1.e., in
the sense of (69), (75)

E me g

P i ey v =G0’ = —guv'vl. (79)
C V1 —v2/c

Indeed, we have the rules

9
e

(80)

i’_JU\.'_"n = poct = —Et = ——
VI—v/c
purt = —Et+p- T, pudzt = —Edt + p - dT. (81)

As mentioned, the Galilean four-velocity is correctly transformed by the Galilei

A RE 1B T
[-—f} 7 |_; I ] h} {T} i5 I L’."}' (82)

The corresponding dual covector rule reads

« =T 1
[7: 1. P2, p3] =[5 01, P2, 3] |( 3 (j } = [r —v'piipr.p2,p3] . (83)
v I | |

boosts

s

It 1s written for n = 4, but obviously, the analogous rule holds for the general n.

But this rule is evidently false! It would mean that the boost transforms [—F.p_

nto
&4
| P
[-'E,'p]l = [~ (E+p-P),p| = =—+p7|,p|. (84)
e e | o

But physics tell us that for any pair of reference frames

5 2 =5 2
mu- b2 - p ; y -
= — = =, P =mu, e p =my: (83
2 2m = 2 2n -
and the 7-boost transition acts as follows
T =T+, pP=p+mr=p+ax (86)
PR d B i
if m (v +v) mue = e i
= 0 — 40 T+ — (87)
D] 9 )
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Finally we have the following affine transformation rule for the encrgy-momentum
four- -covector

[ 2 ! e T
Tri £ o i ‘ i | .
{ G IR = =B E + | === (88)

Let us remind, that here |—'E, ﬂ is the linear-covector part

i

\
|—'EB,'p] = [- (E +p v) ,p| = [— (I:-‘ +F g ;, J .pJ : (89)
L Y i £ I : o £
The second term in (88), i.e., the additive correction, has a very interesting struc-
ture. Namely, it is built of the boost velocity (or momentum) just according to the
prescription for the velocity (momentum) dependence of the energy-momentum
covector. One can suspect that this rule has something to do with the projective

geometry of the Galilei space-time.

S. Relativistic Theory

Let us now remind certain peculiarities of the Poincare group, just to review differ-
ences in its commutation rules in comparison with the Galilei group and to discuss
physical consequences of those differences. As said above, the Minkowskian s pace

(X,V,—;g) has the incomparatively simpler structure than that of the Galilei
space. Even literally speaking, its homogeneous-Lorentz part 1s a simple Lie
group!

Let again e =10,1,2, 3, be some orthonormal '\Im]\m\skmnmordmatc& shuch
that 2" = ¢t, where f Is a time variable, ¢ is the velocity of light, and 2%, 7 = 1,2. 3,
are the usu’il spaim] coordinates. Therefore

(] = dimg (1,1, =1,-1) (90)
and the arc element is given by
ds* = ['_r!‘r_:"-};_]z =i felad) ¥ — ((’].’{.‘2)2 - {Tfii.'r':'{‘_]j = 2dt? — dz?® — dy? — dz2. (91)

Let us mention that in usual physical problems the two conventions (+ - - =)
and ( — + + + ) are equivalent and each of them has some advantages.

Po;m:arc transformations are ones preserving this structure, so they are lincar
t=L¥ 2" + gt (92)
Here L is the Lorentz transformation

ﬁ..-..'f' = .':).‘l.fr_."-' ['r"’ [‘..)..U- ‘:':

i
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In the Galilei space-time there is no absolute space, but there is the absolute time.
[n Poincare geometry nothing but (90), (91) is absolute and there is a mutual mix-
ing of the space and time variables. Let us illustrate this in the twvo-dimensional
Minkowski space. Lorentz transformations are given by

[=?] [ chy shy i ks Lok By
9 2 e | shy (‘.h\} L?i L{x| [;r] = EXp (.\

[t is clear that i
T.l'l'x = = L ['\']| L ! _\'gj =l ;\1 5 = \("_3] : (95)
C
So y is a canonical coordinate, ¥ € (—oc,00), and the Lorentz boost v has the
range (—e, ¢).

One cannot resist the temptation to quote the explicit historical formula

(96)

Obviously, in natural coordinates, when ¢ = 1, the transformation matrix is sym-
metric. Similarly, it is difficult not to quote here the composition rule for velocities,
i.e., the v-version of (95) 1s

i + g : _
T (97)
1+ (1/c)(afe)

L(1n)L(»s) = L(v), b

In a fixed reference frame every Lorentz transformation splits into the product of
spatial rotation and boost

T
- & ; -
L= b2 o ki (98)
O RE) |
Here
= ial R e
R(k)T = coskT+ (1 —cosk)— 3 .'{-') F sin ff;_— X T (99
0 chy " + shy (X T)
A(X) {f_} 5 T (\ o (100
T shy %{ FT A+ (chy — ])% (% TJ
and i
b=kl x= [l

In spite of certain similarities, a big structural difference is seen just here: rotations
R form a subgroup of SO(1,3), but the boost — do not do! They may be used
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as canonical labels of the quotient SO(1, 3)/SO(3, R). This is nicely seen on the
level of infinitesimal commutation rules in the Lie algebra. Namely, let us take
infinitesimal operators

[0 00 0 ] VR
: D00 0 | _ O :
M o= 5 e ] S Me= g o b ] (1)
g1 o | [0 100 |
Fg 6 0 [0 &0
00 10 1000
M = | = _ e Ml 2
My g1 0 0 ' 0000 (e
o0 0 Hd _(} Gk )
(0010 gnna
0000 : 0000
\ == 2 - : _-\-'-."— 3 % (3\
1000 3 0000 L)
(0000 1000

respectively for rotations and boosts. The difference in comparison with (24) is
obvious. In relativistic rules there appear right-upper units. Because of this, boosts
do not form a subgroup. The commutation rules of (101)-(103) have the form

[J.‘ll JI.'.'! 2 1"“")_‘ = \:—'.'.r'rer If(

[‘1‘ Irr . —:\:b] =Tl rJ_r')r: "r\'rr.'a [‘\v-'x; —\b: Na _-"Tf.r’_af;ﬂ", £ (104)

The total Poincare group may be described infinitesimally by the following system
of 5 x b matrices

00D 0 0 0 0 o0h
00D 0 0 g0 019
My = |DD0O -1 0], Ms= 10 0 000 (105)
G071 0D 0-1000
000 0 0| A
OO0 D 001 (01000
DD =100 1L000D
M= |6 T 0 001, Mi=100000 (106)
g 0060 D0O0DOO
g8 8 BB 00 850 4
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| 66 1-8 8 [00010]
100000 00000
My = Fi 8BGO, Na=1006000 (107)
D0000 itk 3 s T
00000 00000
= . | L )
(0000 0] 00000
o000l 00000
B = [ 0600840 Po=100001 (108)
00000 00000
_(| 0000 | LII) 0000 |
[00000] (0000 1]
00000 00000
Ps = (00000 P, = 100000 =T (109)
00001 D00D00
00000 (00000 ]
Their commutation rules have the form [1,2]
[M,, Np] = eu°N Mg, Py = €apP.  (110)
[Ng, Py] = 63T, L S (111)
[Ng, T] = Pg, [Py, T] = 0 (112)

It is seen that the difference between the equations (32)--(34) and (110)~(112), 1s
apparently small, is crucial for the drastic distinction between Galilei and relativis-
tic Poincare models.

Let us now review the drastic difference between Poincare and Galilei classical and
quantum physics. First, we repeat the basic formulae

P = — —- ] = ———— (] 13)
e

(114)

The Hamilton-Jacobi equation, obtained by substituting 95/0x" instead of p,, in
the energy equation, has the following form

,( OS 98 ? e S, I
_r_,fW/ | = f’.’_-'ilJ-,> —_— eA, ) 'Ha“}{" ==}, (115)
dxH 1 \idz¥ ;
It is invariant under the second-kind gauge transformations
; : af
S -‘D—f—f:.ff._ *'l.r: = .'1“ e }— {llﬁ
drH
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Without electromagnetism, when only first-kind gauge transformations are admit-
ted, we obtain

e Pl 5 9
i e

s f + const, (117)

= {}. i

dzt g
I'his leads to the “heuristic quantization™, from the eikonal to the wave equation

P Dy = th—, E v ih—, p =+ —iAV. (118)
f ! dat ol =
The resulting wave equation is just the Klein-Gordon equation
e 2 e a 2.2
9" Pubv¥ = —h"¢g"9,0,¥ = m*c* V. (119)

lhis is the Casimir eigenequation for the field situations with the fixed mass value.
When the electromagnetic field is present, the standard procedure consists in re-

placing

Oy Dy =0, +ieA,,. (120)
This is compatible with the second-kind gauge invariance
o af
W exp(ief )W, Ay A, + —- (121)
{ 2 ot

Let us now try to express (119) in terms of the “(3 + 1 )-apparently non-relativistic”
way of writing

3 I)zq’f [ B v 3 |
R = (~12AT Pt ) W =0, (122)

It turns out, and to be more precise, it follows from the Noether theorem. that the
following “continuity equation” holds

Ho+V-7=0. (123)
Here
TEy e | i = P g P \
0= - (Wdp¥ — (D) W) , J=— (¥VV¥ — (VU¥)V¥). (124)
2me Al 2im ¥ i

The probabilistic interpretation fails here, because ¢ 18 not positively definite.
Schridinger who invented this equation rejected it, but Pauli and Weisskopf ac-
cepted 1t in field the theory where it was derived from the Lagrangian
P o o O |—| me?.
.= q g e - ol el e
Dt Jzv
It 1s mvariant under the first kind gauge symmetry ¥ — exp(ix)¥. Localizing it.
L.e., taking y to be a function of the space-time point, we include interaction with
the electromagnetic field and replace (125) by

T /g, (125)

h2

5.5
o

L=4"D, 9D, ¥/|g| - . Tql. >
_ ?



168 B. Gotubowska, V. Kovalchuk, A. Martens, E. E. Rozko and J.J. Stawianowski

Here the covariant derivative D, is given by (120). The Noether four-current for
(125) is given by (124), i.e., in the consequent four-dimensional language by

),J = -“:Up.-: ["WI"}::QJ Il {{r 1I!‘:| \IJ:] (127)
or in the gauge-invariant version by
= jeg"” (UD, ¥ — (D,0) ¥)+/]gl. (128)
J g\ ¢ Ve R ) Y
This leads to the charge functional
(0, %) — Q[¥,X]. (129)
Here ¥ is a spatial surface extended to spatial infinity, e.g., t = const and Q[¥, ¥]
is given by the integral over X
QY. X = / FH (¥, 0P)do,,. (130)
On the basis of the continuity equation
dui* =0 (131)

following from the field equations, () does not depend on X (on time). This is the
charge conservation
0Q[¥]
i
The expression QW] is a quadratic form of the field . One can perform its polar-
ization procedure which leads from the quadratic form u — Q[u] to the sesquilin-

ear one (u, v) —» Q[u, v] according to the rule

4Qu,v] = Qlu+v] — Qu — v] — iQ[u + iv] + 1Q[u — iv]. (133

The resulting expression is just the Klein-Gordon scalar product of fields

: ey R B
PUe) =i / dot(z)¥(x) 9, plz)

—
o
iy

= i / dot(z) (U(x)0,p(z) — (8,7) (z)p(z))

%

which does not depend on £ (on time). Using the positive-frequency expression

e
n

Ak exp (—ik,z*) 8 (k% — m?) 8 (ko) x (k) (
[ : _\ ) & (ko) X

(132)

where & is the |
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where 7 1s the Heaviside function, 1.e.,

¥(x) = / dpl |:'_I-:_:| v (k) exp (=i (w I’Z; t—k-T)) (136)
AT | e lijfw
wik) =kp= Vk +m? dpen (k) = 2= (137)
' ! B
we express (135) as
(4| Ws) = / dpm (k) %1 (k) x2 (K) - (138)
The operation U(A. a) given by
(U (A, a) W) (x) =T (A 1 (r —a) ) (139)
is unitary with respect to (135), (138)
(U (N, a) Wy U (A a) Br) = (Wq|¥y) (140)

if U, U5 satisty the same field equation. The representation space is characterized
by the same fixed value m? of the Casimir invariant g** P, P,. Obviously, the
operation (139) may be easily expressed in terms of the field profile x (k) defined
on the mass shell g, k* kY = m? (in the natural units, when we put /i = 1)

(U(Aa)¥) (z) = / dpm (k) (U {A,a} x) (k) exp (—ik,x") (141)
namely
(U {A,a}x) (k) = exp (ia"k,) x (k'i_rﬂ_“’”\) : (142)

6. Non-Relativistic Strange Features, Projective Representation

Let us now go back to the Galilei group framework, more precisely to the free, i.e.,
potential-independent, Schrddinger equation

o¥ k-
ih— + — AWV = 0. 143
= dt 2m Wi
Obviously, its solution may be Fourier-represented, just like (135)
y ; (.{"')’g) e 1 3 o
L / -[‘;).m’::'”’; (p) exp ‘_E (Et—p ::L')) : (144)

But obviously, the Galilei transformation cannot act on them according to the
pointwise rule like in the relativistic Klein-Gordon and other equations
(U [G]¥) (t.7) # ¥ (671 (¢,7)) (145)

just because of the covector failure of boosts.
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-

But the Fourier representation, slightly similar to (141), (142), although different in
important details, may be used. Indeed, taking the true physical transformation of
the energy-momentum, we can transform the wave amplitudes of definite energy-
momentum values as follows

: P %
g ’
Vg = exp ( ; (Et—p- .T_}) — W g 0y = exp (—[—{\L- t—p lr) .
= 1 = ] = i = ;
' (146)
Here

)'.,‘ ol g

E = L . E‘ff_g—- (147
2 2m

Therefore, on the eigenfuncitons (146) the boost mappings act as follows: W — W',

where
F 3 :,l /_J’_j
' (t,T) = exp (——m. t—7-T) | U(L,T -
00 =em (- (51-72))

And for the general space-time wave functions we have

vt). (148)

s . P ; |
S . 1 ve ikl % AL i iR
(U{7}¥)(t,T) = exp ( -}-_—m (-0 t—7v- t)) W(t, T —1t). (149)
i i &
Therefore, the proper action involves both the action on the space-time argument.
but also the multiplication of the wave function by some local, (¢, T)-dependent
term. The same is true for the general wave functions, not only those satisfying
the potential-free Schrodinger equation. The other, non-boost transformations act
in the usnal argument-wise actions.

When dealing on free evolutions, we can use the pointwise action on the wave
profiles. Namely, without the f-variable

Mg l e g T 1S
U(T) = [_Z;E_ﬁ / d'g;a_,* w(p) exp (EE . :) (150

we define the action of the Newton translations as follows

Ula]¥(z) = ¥(Z — ). (151

So, the usual argument action of the spatial translations. However, the boost oper-
ations act pointwisely on the wave profiles

1 Y i s i s i : L
— [ d”p (V{7}y)(p)exp | —p- J) (152
) Fie i

(V [17]11} Ha)y=-

and

(V{P}e)(p) = (p — mp). (153

Therefore,
(V[z)
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I'herefore,

S J T 2 TN -
(VIZI®)(Z) =exp | —mP -T ) ¥(T) = exp ( —7 - ) W(F). (1534)
\ M Y, h
The Weyl operators of the Newton translations act as
Wla, 7] = Ula|V[7]. (155)

However it is more convenient to use the modified Weyl operators

Wla,7] = exp (%m.f; : (_1') Wia. 7. (156)
2h

Their advantage is the nice expression for inverses
Wia, 7] = W[—a, —7] (157)

and the nice symplectic composition form

2 2

T T W L T N SO N S Lo b =
W, 71 |W[as, 7] = exp (V) - @y — Ty - @y | W@+, 71 +74] (158)

e,
W w |Wts]| = exp ( #H?I'qlﬁzm,ﬁg‘_]) Wl + s (159)
: sy S -
Here the matrix of I is the usual symplectic two-form
O —1I, |
[y = { L. @, J A (160)

This is the projective representation of the Newton group, in canonical Bargmann
form based on the skew-symmetric matrices in the factor [3,6-10]. Let us stress
a very important point which witnesses about the essential discontinuity of the
non-relativistic limit. In relativistic theory the square of mass is the value of the
projector operator. But in non-relativistic theory it is something completely else.
Namely, it is a parameter which labels the projective factors of ray representation.
Let us quote some infinitesimal rules. So, we introduce generators of translations
and boosts
d L h o i

= Id — " s B P = (161)

o
W7 ha

f_-"[ﬁ_ %5 Id — &

Tl Ok

V] = Id+v" ; mx” = Id + " = By = I+ v —mQy. (162)
i}

=0 t h

Obviously, the generators are simply operators of momentum and position, and

1 <y AL
Q% ) = 8%, (163)
111
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Let us introduce the corresponding adjoint transformations

.'\"{L.'_'m:' g = {_ o {_J{.r I(_}Jl ! } ad == [.{r);, g’_): ( 16"’}
ke e ' ik

g o o S | 1 ~k ; ¢ £

-"\{l‘;'éi."'ii} — 1 [U] oV lff] : E'l({r-b)-'. Q= v Q" ol. (165)

Let us notice that those adjoint operators mutually commute

Ady; ) Ady, w = _.-'\(.{1-i.;_;];—\(.{;--;-!. _-'clfl(c-..a ; ;1ri;.>l.} =, (166)

The non-commutativity of position and momentum has geometric reasons: it is
impossible with m degrees of freedom to have more than the m-members systems
of functionally independent generators. This is the reason that the Galilei group
for massive particles admits only projective unitary representations. This peculiar-
ity underlies the Weyl-Wigner-Moyal-Ville phase space formulation of quantum
mechanics.

Namely, let us take a kind of the group-algebraic linear shells of (156) [4,5,13,14]

e ! Bt PR, SIREER s
= A@, ) exp | = (7.Q% + a°P,) | Pa—xs- (167)
: : h 2h)3

Here @ = m¥ and A is the Fourier transform of a classical phase space function A

(168

. e . i LN e ey
A(Z,p) = / Ao, ™) exp (f_ (max® + ap, ]) dPaE—
i , \

A

Obviously, the value m = 3 of degrees of freedom is here quite accidental, it may
be any m.

& represent the classical functions A, 5. Similarly

{ A .’;f:-}(__'éyl_{ = E | AL ]DJ (169

The operators A,

are in terms of the phase space functions represented by
A * Weyl B, {-’1, fﬁ"} Weyl—Moyal - (17

Let us quote a few explicit expressions, like the group commutators
e T s T N A R e TEp ey e g .
W [ | W [we] W 1] Lw [tis] b = exp ( EMI o 'u.[.agj) Id (171

1

F} T WiE) Tt = t_"x'lw(Z'm[“[_'.’fl.f-g)) Id. (172
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—
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|
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The Weyl product
r A+ B ] rw =
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Some Strange Features of the Galilel Group

The first expression, based on the (@, 77) representation is in a sense more natural
than that based on (@, ).

The Weyl product may be expressed as follows
(A% B)(z) =2"" / e h TG LE"2) A (2) B (5)dp (Z1)dp(Z2) . (173)

Here i
du(2) = du (g.p) = T dqg'...dg™dp; ..
2 Lzmh)

The relationship between phase-space functions and operators may be expressed

(174)

cdpyn.

in a suggestive way by using the kernels of operators

Ala.d] = (qlAld"), (A¥) (¢) = / Alg.q] ¥ (¢)d™q. (175)
Namely, one can show that
1 g i ) 3 i o SR
A [q‘_ {] = / exp (H;_)- (7 — (T:J) A (E (7+7) 'E/) Fi—?rfi}n (176)
and conversely
. o Tl |
Alg,p) = [nxp ( i H) A ['r’}' + 5.7 J d"a. (177)
‘ o & & |

All those formulas are affinely-invariant. And everything follows from the struc-
ture of Galilei group and the boost failure.

7. Final Remarks

Let us finish with some related remarks concerning Hamilton generators. Let us
denote the Hamiltonian vector fields
[ aF OF J

'.E_:.}._!Ul. . P r:"u[,[“

K= (178)

Let us consider a Lie algebra of such vectorfields, in the sense of Lie brackets

[X4,XB] = CPanXp. (179)
Here _
[, ¥]5= X099, - ¥IR° (180)

There is a natural question: do exist such functions F, that the following holds
Xa=X(Fa), {Fa, Fp} = CPgFP. (181)

The answer is no! And this is the case with generators of the Newton group. For
semisimple group the answer is always affirmative, but for non-semisimple with
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all both embarrassing but also interesting consequences. In general instead (181)

we have only

Vi =) e i x g
{Fa,Fp} = CP spFp +wap, WAB = —WBA. (182)

And in the non-semisimple group it may happen (although need not) that no change

of basis may eliminate the coefficients w 3.
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