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SUMMARY 

An interface constitutive model is presented accounting for slip and sliding effects and also for dilatancy 
phenomena. The microslip effects are described by considering spherical asperity interaction with variation 
of contact area and generation of progressive or reverse slip zones. The incremental constitutive equations 
are derived with proper memory rules accounting for generation and annihilation of particular slip zones 
during the process of variable loading. It is further assumed that sliding of spherical contacts occurs along 
large asperities whose slope varies due to the wear process. The predicted shear and dilatancy curves are shown 
to provide close quantitative simulation of available experimental data. The strain ratchetting effect for 
non-symmetric cyclic loading was exhibited using the asperity wear model. The model presented could be 
applied to simulate rock joints, masonry, or concrete cracked interfaces, under monotonic and cyclic loading. 

KEY WORDS: interface constitutive model; deformation behaviour; spherical asperity interaction; dual asperity 
interaction: shear and dilatancy of joints 

1. INTRODUCTION 

The presence of discontinuties is a common feature of many mechanical systems. We mention 
here such problems as the structural analysis of a jointed rock mass or of a ‘non-virgin’ masonry 
structure where friction sliding and opening along cracked interfaces constitute the main mode of 
deformation. In recent years, there is a growing attention of structural mechanics researchers to 
the analysis and modelling of joints regarding them as interfaces between distinct parts of the 
same structural system. Interface models have been proposed and implemented within the finite 
element codes by numerous researchers, for instance, Goodman et al.,’ Ghaboussi et al.,’ Plesha,’ 
Desai and Ma: Navayogarajah et ~ l . , ~  thus providing analysis of complex structural systems. 

The idealized constitutive models usually account for the effect of debonding, sliding and 
dilatancy along discountinuities. Debonding or joint opening occurs when two contacting 
surfaces separate and form a gap with no interaction forces transmitted. On the other hand, 
sliding represented by the tangential velocity discontinuity, is usually accompanied by dilatancy 
or contraction specified by the normal velocity discontinuity. The dilatancy property plays an 
important role in the analysis of a jointed rock mass and cannot be neglected in view of its 
stabilizing effect, as emphasized by Goodman and Dubok6 The relation of dilatancy effect to 
roughness of joint surfaces stimulated numerous researchers to apply the wedge asperity model 
for which two plates slide relatively to each other along asperities thus inducing dilatancy and 
contraction for reverse sliding. The asperity model first used by Patton’ to model rock joint was 
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next extended by Barton et a18 and Plesha,' who considered also surface wear effect on joint response. 
Snyman and Martin" presented a consistent formulation of asperity model in the incremental form 
using the relative displacement space representation. The study of Michalowski and Mroz" of sliding 
modes along wedge asperities exhibited the non-associated sliding rule for the velocity potential 
depending on friction coefficient and asperity angle. In the recent work of Mroz and Stupkiewicz" 
the explicit forms of the limit friction conditions and the sliding potential were provided. 

The other possibility to simulate the interface response is to apply a phenomenological 
constitutive model for which the sliding mode is associated with the interface yield condition 
expressed in terms of contact tractions and interface state variables whose evolution depends on 
tangential slip and dilatancy. The classical Coulomb or parabolic yield condition combined with 
a non-associated flow rule is frequently used, cf. Reference 13. For a more accurate interface 
description with critical state models are applied. Both hardening and softening is assumed to 
occur depending on the value of normal stress and the critical state corresponds to the tangential 
slide with no dilatancy, cf. Lofti and Shing14. The concept of fully adjusted critical state approach 
accounting for asperity evolution was presented by Navayogarajah et al.' 

Another important factor is the microslip flect occumng before the sliding mode develops at the 
contact The slip occurs when the limit friction condition is reached only on a part of contact area, 
the remaining area constituting a sticking zone. On the other hand, the slide occurs on the whole 
contact area. In fact, for small relative displacement amplitude, only microslip mode will occur and 
for cyclic loading the hysteresis loops will be generated thus inducing energy dissipation. 

The present work is devoted to an interface constitutive model for which both slide and slip 
effects will be incorporated into the description. It is assumed that the external limit friction 
surface will be associated with sliding mode and the internal slip surface translating in the interior 
of the sliding surface will be associated with sliding mode and the internal slip surface translating 
in the interior of the sliding surface will be associated with slip effect. The memory of progressive 
and reverse slip will be introduced into the model by considering the consecutive loading surfaces. 
The memory of progressive and reverse slip will be introduced into the model by considering the 
consecutive loading surfaces. The structure of the constitutive model will be similar to that 
discussed by Jambowski and Mrozl', for the case of microslip and sliding of two spheres under 
normal and tangential forces. The asperity based simulation of dilatancy and configuration 
hardening and softening will be applied in specifying the evolution of sliding surface. It is believed 
that the present model will be applicable to simulation of rock joint or cracked interface in 
concrete or masonry structures under both monotonic loading inducing fairly large relative 
displacements and cyclic loading inducing hysteretic effects in slip or sliding regimes. In the next 
three sections the model description will be presented. In Section 5, the model will be applied to 
simulate some characteristic deformation response features of joints observed experimentally. 

2. GENERAL ASSUMPTIONS 

Consider a planar joint surface between two bodies R1 and and Q2 as shown in Figure l(a). 
Denote by t l ,n l  the local orthogonal reference system with t l  tangential and nl normal to the 
joint, pointing in the exterior of R1. The joint can be replaced by contact layer of thickness h. The 
contact stress components are Q,, = n . en and 2, = e - (n . m)o. For the plane problem, with slip 
occurring along tl, only components Q, and T , , ~  are considered. The index 1 will be omitted in the 
subsequent analysis, so 7,,1 = T, .  Obviously, there is continuity of traction components at the 
interface, so we have 
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Figure 1. (a) Interface between two bodies Rl  and R2; (b) interface layer of thickness h between RI  and R2 

where [ 3 denotes the discontinuity of the enclosed quantity. On the other hand, the displacement 
components ul ,u l  and u2,u2 of bodies Rl and R2 referred to (tl,nl) system at the interface may 
suffer discontinuity, thus 

[u] = u1 - uz, [u]  = 01 - u2 (2) 

The engineering strain components within the contact layer are specified as follows: 

and are assumed as constant within the layer. The following work rate equality holds: 

W = ~ , , i , , h  + T,v,h = u,,[I~] + ~,[1;] (4) 

so u,, r, and [u], [o] can be regarded as conjugate stresses and strains generating the localized 
work rate along the interface. 

Obviously, y, and 6, are used as measures of slide and dilatancy of the contact layer. The 
additive decomposition of total strains or displacement discontinuities is assumed, thus 

(5 )  

where E' is the elastic strain and E' denotes the irreversible strain, similarly [o'] and [d] denote 
the elastic and sliding or slip displacement. The elastic strain components are related to contact 

E = E' + E' or [u] = [u'] + [u'] 
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Figure 2. Limit friction condition in (a) the stress plane and (b) strain plane 

stresses by the constitutive law which has the form 

where 

E' = [T i,'] 
and E:, E,' denote the tangential and normal stiffness moduli. For the non-linear case, E f ,  El: are 
the secant moduli. 

The straining of the interface layer is combined with the sliding mode when the limit friction 
condition is reached. Assuming Coulomb condition, Figure 2(a), in the form 

(8) F,(a) = (t,l - a,,tan+b < 0 
the sliding rule is expressed as follows: 

j :  = lisgn(r,), X > 0, X F ,  = o 
&'. = 0 (9) 
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Here 4b denotes the basic friction angle associated with a perfectly smooth contact surface for 
which the effect of asperities or contact dilatancy is neglected. The friction locus can also be 
presented in the strain plane by using (6) and (7), namely, 

(10) FL(&,&') = ~ : l y ,  - y:~  - E',(&,)tan $b < 0 
or 

FL(&,&') = ~ y , ,  - y:l - < 0 (11) 

where tan @b = (E' , / l$)  tan 4b. The compressive stress a, and the conjugate contractive strain 
c,, are assumed as positive. Thus, when E: and EE are constant, the limit friction locus in the strain 
space is represented by two straight lines inclined at the angle I(/b to the &,-axis with the vertex 
translated along the y,-axis due to sliding displacement, Figure 2(b). Thus, for the unloading path 
within the domain FL < 0, only elastic strains occur. This simple model will next be generalized 
by accounting for microslip effects occurring for stress paths within the domain FL < 0. 

3. CONSTITUTIVE MODEL FOR TABULAR JOINT ACCOUNTING 
FOR SLIDING AND MICROSLIP EFFECTS 

The classical contact friction formulation discussed in the previous section will now be modified 
by accounting for non-linear elastic contact compliance and also for microslip effects occurring 
for states within the domain FL < 0 so far representing rigid for elastic response. Now, 
however we shall assume that slip strains develop before reaching the limit friction condition, so 
we have 

I: = P' + im, ~,(a) < o or F~(u) = 0, PL(u) < o 
E = tC + Em + E', F,(a) = 0, PL(U) = 0 (12) 

where Em denotes the microslip strain rate and E' is the sliding strain rate occurring when the limit 
friction conditions is reached, FL(u) = 0. Referring to Figure 2(b), three modes of contact 
behaviour can be distinguished. In the domain I, FL < 0, elastic slip response occurs, whereas in 
the domain 11, FL = 0, elastic slip, and sliding strains may develop. Finally, in the domain 111, 
contact separation occurs, and E, < 0, u,, = 0. 

Assume that within the contact interface n the two bodies R1 and R2 interact through 
spherical asperities. For simplicity, it is assumed that the radii of all asperities are the same and 
equal R. The contact response can be discussed in considering two typical spheres of equal radii 
acted on by normal and tangential forces with account for frictional slip at the contact area, 
Figure 3(a). The classical solution of Mindlin and Deresiewicz,16 recently reanalysed by Dobry 
et al." and also by Jarzebowski and Mroz,l5 who derived slip and memory rules for this case, can 
now be applied. Figure 3(b) presents a more general model where spherical apserities are of 
different radii with initial gap distribution and only partial contact, varying during compression 
process with increasing normal stress a,. This effect will be accounted for later by introducing an 
exponential parameter in specification of the contact compliance. 

The representative element area within ll can now be assumed as a square 2R x 2R containing 
one spherical asperity cross-section, cf. Figure 3(c). The normal and tangential forces carried 
through this area equal 

N = a,4R2, T = T , ~ R '  (13) 
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Figure 3. (a) Asperity model of the interface with simultaneous contacc (b) Asperity model with initial gap distribution. (c) 
Normal and tangential compliance at the contact of two sphens 

The contact area radius a equals: 

u = (k * N * R)’I3 

where k = 3(1 - v 2 ) / 4 E ,  further E and v denote Young modulus and Poisson ratio. In view of (13) 
and (14), there is 

where the contact factor B provides a measure of the actual contact area with respect to the 
nominal area within the plane n. In fact, the area ratio equals .I2. Due to the normal load N, the 
two spherical asperities are approaching by 

213 

r = 2($) 

Denoting by E, = < / 2 R  the non-dimensional normal displacement, we have 

E. = (4ka,)2/3 (17) 

The normal elastic compliance for two semi-spheres equals: 
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where G denotes the shear modulus. The tangential load T produces a relative displacement 6 
of the centres of spheres with respect to the uniform displacement of the adhered portion 
provided by 

3(2 - v)tan +bN [ - ( 
Denoting by y. = 6 / R  the nondimensional slip and using (13) and (15), we have 

T )"'I 6 =  1 -- 
16Gu tan #bN 

3(2 - v)tan+bu,, [l - ( r,, )7 1 -- 
4BG tan +bun 

Yn = 

The tangential compliance can now be specified from (20): 

The elastic tangential compliance can be defined as the value of D, for T ,  = 0, thus 

The elastic stiffness matrix is now specified as follows: 

E = P  - 01] (23) 

D: 
Let us note that though D: and 0: depend on the contact radius and hence on normal stress, their 
ratio is constant. In fact, in view of (18) and (22), we have 

E: D: ( 2 - V )  
E: D: 2(1 - v )  
-=-=- 

Application of the tangential stress r, induces development of slip within a ring domain (called 
microslip zone) expanding from the outer contact boundary. The interior ring radius c specifying 
the central sticking zone is determined from the formula 

A measure of the sticking area with respect to the contact area is provided by the non- 
dimensional parameter 

113 C 

Thus for T ,  = 0 there is c = 1 and no slip occurs. On the other hand, when r,, = u, tan +b, then 
c = 0 and the slip zone coincides with the contact zone. The sliding mode then initiates at the 
contact. 
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3.1. Description of the microslip response at the interface 

Using the spherical asperity model briefly specified by equations (13)-(26) and following the 
previous treatment by Jarzebowski and Mroz,I5 let us discuss the particular loading events 
induced by varying normal and tangential tractions within the domain F,(a) < 0. The character- 
istic phenomena during such loading are: (i) the varying contact area due to varying normal 
compression, (ii) development of consecutive slip zones for varying tangential traction, 
(iii) simultaneous variation of contact area and evolution of slip zones for combined action of 
normal and tangential tractions. The variation of contact area is a fully reversible phenomenon 
occurring for any traction oriented at an angle less than db with respect to normal direction. 
The contact area variation will be represented by an elastic surface Fo = 0 translating with 
the stress point in the o,,r,-plane. On the other hand, the development of slip zones due to 
varying tangential traction is an irreversible process since when load orientation is reversed, 
a new reverse slip zone starts to propagate from the contact boundary and interacts with a prior 
microslip. The effect of prior slip is erased by the consecutive progressing slip when the 
consecutive zone penetrates through the whole area of prior slip. Finally, for the combined 
loading of normal and tangential tractions with the traction vector inclined at an angle greater 
than c$b with respect to the contact normal, both contact area variation and development of 
microslip zones occur. To represent geometrically these effects in the plane a,, T,,, let us introduce, 
besides the elastic surface, also the active slip and slip memory surfaces. It is clear that the active 
slip surface represents the progressive slip zone and the memory surfaces represent the prior zones 
whose radii do not vary. 

Consider, for instance, the loading program 0-A-B-C-D-E consisting of the initial normal 
compression along OA with subsequent paths AB, BC, CD, DE constituting loading unloading 
and reloading events in combined normal and tangential loading, Figure 4. For the initial 
compression OA the contact radius grows with no slip generated. The loading path OA is 
associated with the angular domain Fo < 0, represented with the dashed lines in Figure 4(a), 
sliding along OA with its vertex at the loading point A. The lines Fo = 0 specify the elastic locus 
associated with variation of contact area. In fact, for any stress increment directed in the interior 
of the domain Fo < 0, no finite slip zone is developed and no dissipation is generated, but only the 
contact area changes. Consider now the loading path AB directed in the exterior of Fo = 0, 
Figure 4(a). Following AB, the finite slip zone develops at the external contact perimeter. The 
elastic locus translates so that its vertex coincides with the stress point. Thus at B, this locus is 
specified by the equation 

(27) 

Besides the elastic locus, let us introduce the active slip locus F1 = 0 constituted by two lines 
parallel to the limit surface lines and interesecting on the a,-axis at (anl,O), thus 

(28) 

Fo(a,,,a,~) = IT, - T B I  - (a, - a,B)tanc$b = 0 

F ~ ( ~ n ~ ~ n ~ a n ~ )  = ITnI - (0, - a,l)tanc$b = O 

where 

Regarding T,, a, as the external load parameters, it is seen that the active slip locus F1 = 0 and the 
elastic locus Fo = 0 specify in the stress plane I three zones of incremental contact response at B. 
When the stress increment is directed into the interior domain I, of Fo = 0, that is 
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Figure 4. (a) Elastic, limit friction and first active slip locus Fo = 0, FL = 0 and F ,  = 0. (b) Active slip and slip memory loci 
for cyclic shear program O-A-B-C-D-E. 

.in - 6,tan $b < 0, in + d,tan 4b < 0, then the contact response is elastic. When the stress in- 
crement is directed in the interior of F1 = 0 and exterior of Fo = 0 (domain fb) ,  that is 
t, - b, tan 4b < 0, i, + 6, tan &b > 0, unloading event, a reverse slip zone will develop from the 
perimeter of the contact zone. Finally, when the stress increment is directed in the exterior of the 
loading surface Fl = 0 (domain fc), so that Itnl - 15, tan 4b > 0, loading event, there is a progress- 
ive evolution of the initial slip zone and the loading surface F1 = 0 will further be translating 
along the on-axis. 

When the stress increment at B is directed into the unloading domain lb, Figure 4(b), the active 
loading locus F1 = 0 becomes thefirst memory locus with the associated slip zone radius c1 fixed. 
This memory locus is identified by the stress reoersal (or stress reference) point t1 corresponding 
to the stress state B. A set of unloading loci F2 = 0 are generated, starting from the initial 
configuration coinciding at B with the elastic locus Fo = 0. In the contact plane the reverse slip 
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zone starts to propagate from the contact perimeter. The associated unloading locus F2 = 0 
is composed of two lines with the vertex 2 sliding along the side 1 - B of the memory locus. 
The value nn2 at the vertex is directly related to the size of the reverse slip zone r = c2, 
thus 

c2 = R[4k0,2]'/~ 

The elastic locus Fo = 0 is translated with the stress point to C, thus specifying three 
zones of incremental loading from C, similarly to the zones at B. Along CD, the reloading 
process starts with a new reloading locus F3 = 0 generated with its vertex 3 sliding along 
the side 2-C of the previous locus which now becomes the second memory locus. This 
second surface is defined by the reference points t l  and r2  = C. The vertex un3 of F3 = 0 is 
related to the size of the reloading slip zone c3 evolving from the contact perimeter, 
so that 

c3 = R [ 4 k 0 , , 3 ] * / ~  (31) 

Referring to Figure 4(b), it is seen that the prior active slip surface becomes the memory 
surface when the respective loading, unloading, and reloading events follow each other. 
Therefore, the set of stress reversal points which have been collected, define together with the 
actual stress state, the loading history and provide a full description of the slip phenomenon. 
The number of reversal points stored in the memory can also decrease during the process. 
For instance, along the stress path DE, when the actual stress state reaches the surface 
F2 = 0, at E', the reverse slip that arises along DE' erases the slip developed in the path CD. 
The path E'E corresponds to unloading event from B and the reversal points r2 and 
r3  are deleted. The only reference point t,, associated to the surface F1 = 0 is stored in the 
memory, in the alternating slip process. Let us note that when the stress point reaches the first 
memory surface, the reverse slip erases the slip generated along AB, thus erasing the reference 
point t l .  

Let us now present the incremental relations for particular slip events. Consider first the 
loading program AB for which the slip zone starts to propagate from the external contact 
perimeter. In view of (18) and (19) we have 

the inverse relations, associated with condition 19.1 - intan +b > 0, are 

1 - v  J 
Consider now the reverse slip developed for the unloading event BC. A new contact area 
of radius a2 and a reverse slip zone of internal radius c2 occur. The incremental relation 
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now are 

L 

and the unloading condition is: fn - E, tan $b < 0, itn + E, tan $b > 0. 
When at C the stress path is reversed and directed along CD in the interior of the actual loading 

surface F2 = 0, the reloading process develops with a new slip zone of internal radius r = c3 
generated from the boundary of the new contact area of radius a3. The stress point remains on the 
active loading surface F3 = 0, with its vertex 3 specifying the size of the active slip zone by (31). 
The incremental relation are analogous to (33) with a3 and c3 replacing al and cl.The value of 
ci/ai for i = 1,2,3 are specified from relations (15) and (25) 

Referring to the stress plane, formula (35) can be replaced by 

ai 

where angle 8 is identified by the vertex of the actual loading surface and by the actual stress state 
as presented in Figure 5 for the loading, unloading and reloading events. 

The incremental relations can now be briefly written for any loading event, namely 

6 = E*& (37) 

where 

E * = [  Ere Ern ] 
0 Enn 

with 

E n = X ( l - s )  tan8 P I 3  

2 - v  

2Gp [ ( 
Ern = f - 1 -  1-- 

1 - v  tan 4b 
GB . E ,  =- 

1 - v ’  

the plus sign being used for loading or reloading events and the minus sign applies for the 
unloading events. 

In presenting (33, (39a)-(39c), we introduce the exponent p in the expressions for stiffness 
moduli. When p = 1, the elastic sphere interaction model is obtained. However, for varying p, we 
may obtain softer or stiffer slip response resulting in varying dissipation for cyclic straining. Here 
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Figure 5. Active surfaces and parameter 9 identification for (a) loading, (b) unloading and (c) reloading 

p can be regarded as an additional structure parameter affecting tangential stiffness of the contact. 
Thus a more complex asperity interaction with initial gap distribution, Figure 3(b), can be 
incorporated by selecting a proper value of p. 

The microslip process can also be represented in the strain space. In fact, the inelastic strain 
rate can be decomposed into two parts, that is slip and sliding rates 

BP = p + is, p. = t e  + 8" + (40) 
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Figure 6. Limit friction conditions in the strain plane 

When FL(o) c 0, the sliding strain rate vanishes, i' = 0. Using (6) and (38), we have 

i' = @ ' ) - I 6  = (E')-'E*& (41) 

and the slip strain rate is related to the total strain rate as follows: 
- 1  8"' = & - i' = (I - E' E*)& 

where I denotes the unit matrix. In particular, the value of inelastic shear strain rate can be 
expressed in terms of the components of the total strain rate, namely, 

where the minus sign applies for loading and reloading events and the plus sign applies for 
unloading events. 

In the strain space, the limit friction condition is translated along the y,-axis by the amount of 
the slip strain, thus 

FL(&,tm) = 17, - - E,tanJlb = O (44) 

where, in view of (24), the angle Jlb is constant for the case of contact of two spheres. 

amount of slip strain, Figure 6. 
Similarly, the elastic locus and the active slip surfaces are translated along the y,-axis by the 

3.2. Sliding response at the interface 

flow rule can now be used 
The sliding strain occurs when the limit friction condition (8) is reacdhed. The non-associated 

0 when FL(a) < 0 or FL(a) = 0, gL(u) < 0 
(45) 

when FL(a) = 0, fiL(a) = 0 
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where 
presented in the strain plane y,,~,, namely 

> 0 and G = Irl is the sliding potential. Alternatively, the limit friction locus can be 

F L ( ~ ~ m , ~ a )  = ~y, ,  - y: - 7 ~ 1  - = o (46) 

and is translated through the distance y: + 7: along the y,-axis, Figure 6. 

4. SLIP AND SLIDING ALONG ASPERITIES 

So far, we have assumed the slip and sliding to occur within the plane of tabular interface. The 
contact area represented the varying configuration affecting both normal and tangential compli- 
ance. However, the other important configuration variable can be introduced by assuming the 
slip phenomena to occur along the inclined plane representing the large local asperity. In other 
words, the contact interface is assumed to be composed as asperities of two different size scales: 
small- or high-order asperities represented by contacting spheres, and large or primary asperities, 
represented by curvilinear, periodically repeated profile, including dilatancy and additional 
hardening or softening at the interface. 

The effect of roughness on the joint response was treated by numerous authors. Experimental 
evidence and analytical or numerical treatments indicate that this effect plays an important role 
in generating shear strength and dilatancy. In particular, when sliding occurs along the plane 
inclined at the angle a to the nominal interface plane, Figure 7, the shear stress equals 

7, = 0, tan (C$b k CI) (47) 

and for varying a(s) (where s is the length of contact line) there is 

0, da * ~os'(C$~ + a) ds _ -  - drn 
ds 

where the plus sign applies to the case of sliding upward the asperity and the minus sign 
corresponds to the case of downward sliding. From (48) it is easy to see that for upward sliding 
there is configuration (or curvature) hardening (7,  > 0, dr, > 0 for da > 0) for the concave asperity 
shape and configuration (or curvature) softening (7, > 0, d7, < 0 for da < 0) for the convex asperity 
shape. On the other hand, for downward sliding, there is configuration softening (T, < 0, dr, > 0 
for da < 0) for concave asperity and hardening (5, < 0, dt, < 0 for da > 0) for convex asperity. 

The most widely used model is the saw-tooth asperity model, Figure 8(a), for which a repres- 
ents the average measure of roughness. Patton7 was the first to apply this model to predict shear 
strength of rock joints. In the study of Barton et a1.,8 the value of a is related to geometrical 
features of contact planes, mechanical properties of materials constituting two bodies in contact, 
and the actual stress state. Plesha' adopted the Patton7 model also to describe the dilatant 
property of the joint. The discontinuity was assumed to be initially full seated with no void space. 
When sliding occurs, only the left-hand or right-hand side of the asperities are in contact. The 
sliding strain and dilatancy are thus coupled through the asperity shape. In the same paper, the 
author considered also a curvilinear asperity model assuming the sinusoidal shape for which the 
slope varies with the tangential displacement. Biaxial sliding rules for wedge shaded asperities 
were studied by Michalowski and Mroz," who demonstrated that such rules are not associated 
by the normality property with the limit friction condition. An interface element based on the 
asperity model in describing the dilatant behaviour was presented by Snyman and Martin," who 
assumed a logarithmic spiral to model the asperity shape. 
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Figure 7. Efitcts of large asperities on joint response 
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Figure 8. (a) Saw-tooth asperity model; (b) proposd asperity model 
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In the present work, we assume that the initial sawtooth shape, Figure 8(a), changes due to 
wear process. Locate the local co-ordinate system x,y at the vertex of the upper body asperity, 
Figure 8(b). The initial asperity shape is described in this system by the function lyol = tanaox or 
ljol = tanaoy, where j = y/h and y = x/h are non-dimensional co-ordinates referred to the 
interface thickness. Introduce the measure of the wear g( W,)  which specifies the shape of asperity, 
namely 

(49) j =f(-i) = (tan’ aoy2 + g’)”’ 

which corresponds to a hyperbola having the principal axis coinciding with the y-axis and the 
asymptotes y = f tan aoy. The slope a of (47) is now specified from (49), thus 

1 tan’ aoy 
(tan’ aoy2 + g’)’l2 

a(-/) = arctan 

The value of the wear function specifies the actual asperity shape. In particular, for g = 0, we have 
the initial wedge shaped asperity j = j o  = tanaoy and for g +co there is a +O, that is the 
asperity, passes into the flat plane. Similarly to Plesha’ assumption, the evolution of the damage 
function is specified in the form 

g(W,) = g‘(1 - e’””‘“0) (51) 

where Wr is the specific friction work of tangential contact stress 

Wf = h J r,,j.”dt = J T,,[S] dt 
0 0 

and the inelastic strain is composed of microslip and sliding strains. The parameter W ,  has the 
dimension of work specifying the rate of wear and g‘ is the asymptotic value of g. 

The incremental relations for sliding strain are now presented as follows. Considering the limit 
friction condition in the form 

FL(r,,, u,,a) = JrnJ - u, tan(4b + a) = 0 (53) 
we have the non-associated sliding rule 

9,: = 3, 9; = Ytana, 9 > O  (54) 

Assume the asperity angle to be specified by the function a = a(?). The consistency condition 
imposed on (53) then provides 

. f,, - tan(4b + a)ir, 
-jl= > O  

a’ (55) 

where a’ = da/ds. Obviously, for the case of configuration hardening in view of (55 )  there is, 
z’ > 0, f, - tan(4b + a)cf., > 0, and 

-tan a tan(4b + a)tan a 

4.1.  Derivation of incremental slip rules 

Consider now the incremental slip along the large asperity inclined at the angle a to the 
nominal plane, Figure 9. Introduce the local co-ordinate system t * ,  n* and denote by r:, a.’ the 
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Figure 9. Coupled model of small and large asperities 

contact stress components in this system, with the conjugate slip strain rates j$, S:. Assuming the 
contact to occur on spherical asperities of the second order, the slip rule (37) can be written in the 
local system 

(57) 6. = E*i*  

where the matrix E* is specified by (38) and (39) for different loading events. Let us refer the stress 
and strain rate states to the nominal reference system t,n. We have 

u = R'u* (584 

6 = RT&* (58W 

where R is the orthogonal rotation matrix. From (54) it follows that 
' T  * U =  R u + R'U* (59) 

and using equation (57), we have 

U = R'Ra + RTE*C* = k'Ru + RTE*R& = ou + E4 (60) 

where 

o = RTR, E = RTE*R 

and o is the relative spin of axes of two systems, E denotes the tangential matrix transformed to 
r, n system. Noting that 

a = a'?.+ = a'(3,cos a - B,sina) (624 



18 Z. MROZ AND G. GIAMBANCO 

we obtain the explicit form of (W), namely, 

where 

A,  = E ,  cos2 a + E,, cos a sin a + E, sin2 a + a, cos aa’ 

A,, = - E ,  sin a cos a + E,, cos’ a + E, sin a cos a - a, sin aa’ 

A,,, = - E ,  sin a cos a - E,, sin2 a + E ,  sin a cos a - T, sin aa’ 

A ,  = E, sin’ a - E,, sin a cos a + En, cos’ a + T, sin aa’ 

(64) 

and En,€,, ,  E, are specified by (39a)-(39c) 

5. NUMERICAL EXAMPLES 

A number of examples are now presented in order to illustrate the predictions of the proposed 
model and compare them with other numerical results and experimental data. The constitutive 
model developed in the previous section is here implemented in order to simulate analytically, 
direct shear tests on specimens with an internal discontinuity. The monotonic and cyclic tests are 
performed using the equations already discussed with the exception that in the case of cyclic tests, 
equation (50), describing the asperity evolution, is replaced by 

where subscript k = 1 if the right-hand side of the asperity is active or k = 2 if the left side is active. 
Thus in the following, different initial angles for the two sides can be considered and also it is 
assumed that each surface of the irregularity degrades independently. 

In the first example a monotonic shear test is analysed to illustrate the performance of the 
model in reproducing the actual behaviour of a rock joint. The effects connected with the 
introduction of primary and second-order asperities are discussed. In the second example, 
a particular attention is paid to the primary asperity model. The results reported in terms of shear 
stress, shear strain and dilatancy for the case of cyclic test are compared with model predictions. 
In the third example, the classical experimental results obtained by Kutter and Weissbach’’ are 
compared with the model prediction and the evolution of the contact surface during the three 
cycles can be analysed. Finally, in the fourth example, it is shown how the microslip henomena 
can affect the global behaviour of a joint which has been analysed experimentally by Jing.20 

5.1. Example I .  Monotonic shear with diffwent normal stress 

In this example, the present model, is applied to simulate a laboratory direct shear test at various 
levels of constant compressive stress. In order to compare the model prediction with the 
experimental data, the shear test conducted on an artificial joint by Barton et al.’* has been 
chosen. The specimen in a form of square block of dimensions 250 x 250 mm tested experi- 
mentally is subjected to a constant normal stress of a, = 0.09 MPa and to a monotonically 
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Figure 10. Results for the simulation of Bandis’ direct shear test 

increasing tangential displacement reaching 7 mm. The obtained results, reported in Figure lO(a), 
show the pre-peak stage characterized by a non-linearity of the shear curve and a softening stage 
starting at the stress peak has been adopted and the following elastic moduli have been used: 
E = 8 MPa, v = = 0-35. The initial shape of the asperities and their evolution is described by 



20 Z. MROZ AND G. GIAMBANCO 

equations (50) and (51), assuming the following values of the parameters: db = 35", a. = 19", 
gf = 30, Wo = 0.5 kNcm. 

The comparison between theoretical and experimental results indicate that the model describes 
well the deformation response of the joint in the tangential direction under monotonic load. The 
microslip effects, when accounted for, provide a non-linear behaviour in the pre-peak stage. Until 
now this non-linearity was associated with the variation of the shear modulus with the shear 
displacement and was modelled by formulating empirical work-hardening laws. The post-peak 
portion predicted by the model provides accurate description of the experimental curve and 
softening response is associated only with the degradation of primary asperities due to friction 
dissipation produced during sliding. Besides the predictions obtained for decreasing normal stress 
(a, = 0.034 and 0.01 MPa), obtained for the same parameter values, provide good correlation 
with experiemental data and illustrate two features also noted in the experiments: the first is the 
dependence of the shear stiffness on the normal stress. The second feature of softening behaviour 
is associated with its dependence on the normal stress as the wear of asperities is more 
pronounced for high values of compressive stress and becomes negligible for low values. Figure 
10(b) presents the study of the effect of the initial roughness represented by the varying asperity 
angle a, with constant normal pressure 0, = 0.09 MPa. The experimental data obtained by 
Barton et a/.'' are also shown in the figure. 

5.2. Example 2. Study of the sliding response during cyclic shear loading 

The main purpose of this example is to analyse the behaviour of a rough discontinuity under 
cyclic loading using the proposed asperity model. In this case the microslip effects are not 
considered and in the pre-peak stage the joint has linear and elastic properties. The model is 
applied to simulate the direct shear test on a rock specimen 100 mm long and 40 mm thick with 
a discontinuity, initially fully seated, which crosses the rock in the longitudinal direction dividing 
it in two blocks. The normal load applied consists of a uniform vertical pressure of 90 KPa and is 
maintained constant during the shear test. Simulation has been performed using an interface 
model of thickness h = 4 mm of the specimen and with the following material properties: 
E = lo00 KPa, v = 0.3. The joint properties are characterized by parameters 4b = 32", 
(al),, = ( s ( ~ ) ~  = 16", (gl)' = (g2)f = 10; for the parameter Wo three different values have been 
selected, namely Wo = 0.8,4,8 kNcm, as our aim is to study the effects of the wear on joint 
response. 

The results obtained for the same example by Snyman and Martin' with the saw-tooth and the 
spiral models are presented in Figure 11. The diagram in Figure l l (a)  demonstrates that the 
saw-tooth model provides an elastic-perfectly plastic response and the spiral model provides 
softening behaviour related with the particular asperity shape. In both cases, for the first cycle the 
elastic behaviour takes place when passing from the right-hand side to the left-hand side of the 
asperity. The inelastic normal deformation, as shown in Figure ll(b), linearly increases with the 
inelastic shear deformation in the case of saw-tooth model and reaches a constant value in the 
case of the spiral model. The results with the hyperbolic model are illustrated in Figure 12. After 
the elastic phase, a softening behaviour related to the initial wear of asperities occurs; when the 
value of Wo decreases i.e. the asperities are weaker, softening becomes more evident until 
a perfectly brittle behaviour takes place. This prediction well matches with the experimental 
observations and the results generated by the limited dilatancy model. When the value of 
Wo = CO is assumed, the perfect plastic behaviour occurs similarly as in the case of the saw-tooth 
model. Along the loading path, the dilatancy increases with increasing shear deformation and 
the behaviour is similar to that predicted by the saw-tooth asperity model. However, 
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Figure 1 1 .  Results lor Example 2 obtained with the saw-tooth and spiral large asperity models 
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it changes substantially during unloading process. For decreasing values of Wo the joint dilatancy 
decreases. 

For this model, a preliminary calibration phase is proposed. In particular, starting from the 
condition Wo = 00, the value of g', related to the residual effect of the asperities can be identified 
by comparing the theoretical results with the experimental data for the so-called 'steady cycle', 
that is the cycle after which there are no more visible variations of the response. The value of 
Wo can be determined by observing the softening portion of the loading path. Decreasing the 
values of Wo from co, we pass from the perfectly plastic response to brittle response through 
a sequence of different ductile states. 

5.3. Example 3. Simulation of Kutter's cyclic shear test 

Kutter and Weissbach'* performed a cyclic directed shear test on a joint in standstone 
artificially produced. The specimen has the area 495cm' and was subjected to a prescribed 
tangential displacement history under a constant compressive stress of 2.5 MPa. Three complete 
cycles were generated and the displacements, in the right direction, varied between 23 and 29 mm 
and, in the left direction, between 42 and 45 mm. 

To describe theoretically the joint behaviour, an interface model 3 cm thick has been used. The 
values of the elastic compliances adopted for the interface model are: E = 15 MPa v = 03. The 
contact surfaces have been characterized by the parameter &, = 33" (a l )o  = 16", = lo" 
(gl)' = (g2)' = 2, Wk = 12 kNcm, W i  = 51 kNcm. 

The experimental and the theoretical results for the first cycle are shown in Figures 13-15. 
The model prediction is fairly accurate for the left-hand side of the discontinuity and 
for the right-hand side some discrepancy can be noted in the pre-peak stage for the 
stressdisplacement diagram. It can be corrected by varying the elastic material parameters 
constituting the interface and adopting a different exponent p specifying the tangential 
matrix for slip effects but these possible modifications would affect also the unloading 
and reloading elastic-slip branches of the diagram where the experimental results exhibit 
high stiffness. However, for the values of parameters and the slip law used, the predicted 
deformation response is close to the experimental one. The previous remarks can also 
be applied here in describing the comparison of predicted and actual dilatancy. For the 
right-hand side the magnitude of the evaluated dilatancy is larger than that obtained 
experimentally. In Figure 16 the model predictions for the three cycles are presented. The 
shear stress-strain and dilatancy curves are in general agreement with the experimental curves. 
The peak shear stress occurs only in the first cycle and the magnitudes of dilatancy and 
contraction in subsequent cycle are smaller than those during the preceding cycle. These features 
are connected with the progressive damage of asperities, simulated in our model using the relation 
(65) and (51). 

5.4. Example 4. Simulation of a shear test on arn3cial joint 

A set of shear tests on artificial joints, replicas of a natural rock specimen, where 
conducted by Jing" at the Lulea University of Technology in order to analyse the shear 
behaviour of a discontinuity in different direction on the plane of the joint. The artificial 
specimen was made by concrete and the surface topography was a very close copy of the natural 
one. 

The results obtained from the cyclic test performed on the so-called sample S2, are here used to 
analyse the response of the mathematical model. 
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Figure 17. Results for the simulation of the first cycle of Jing's shear test 

The specimen was sheared for two consecutive cycles under a constant normal stress 
0, = 2 MPa and the displacements imposed varied within the range ( - 10, + 10) mm. The 
experimental values of shear stress and dilatancy, are shown in Figures 17 and 18 for the first and 
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Figure 19. Response of the model imposing load cycles of the same amplitude 

second cycle, respectively. In the same diagrams are superimposed the values obtained by the 
mathematical model using an interface of thickness h = 5 mm and with the following values of the 
material and contact parameters: E = 30 MPa v = 0.35, &, = 40" (a& = (az),, = 8" (g,)' = 035 
(qJf = 04, Wh = W t  = 1.25 kNcm. 

The behaviour predicted is very close to the actual one. The shear stress-strain curve in both 
cycles follows closely the experimental data, though the differences in dilatancy prediction can be 
noted in the first cycle. In particular, the model predicts different paths for the loading and unloading 
programs while in the actual response these two paths are almost identical. The other two numerical 
tests were performed using the same model in order to analyse the mechanical response of the 
joint for small stress amplitudes. Figure 19 illustrates the results of simulation carried out 
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by imposing subsequent load cycles within the same range 0-2 MPa, i.e. unloading and reloading 
to the same stress 2 MPa. The right-hand side of the asperity is active only and for each complete 
cycle a progressive increment of displacement occurs. This phenomenon is associated with the 
asperity wear due to the frictional dissipation generated in each cycle. In Figure 19(b) the 
variation of the asperity angles along the deformation path is presented for consecutive cycles. 
Such asperity evolution of the contact surfaces due to microslip results in the respective stress 
evolution for strain-induced cycling so that the peak values of shear stress cannot be achieved in 
consecutive cycles. In the last numerical test, five cycles corresponding to the same imposed 
displacement amplitude, ( - 1.5, 1.5) mm, were studied. The diagrams of Figure 20 indicate that 
all mechanical variables, shear stress, dilatancy and asperity angle, tend to the residual values and 
the response at the residual state is steady. The hysteretic slip phenomena, theoretically described 
by the model, are also observed experimentally in contact of metal surfaces, see Courtney et 

6. CONCLUSIONS 

The present paper provides a description of joint or cracked interface response by combining the 
local asperity slip response with overall sliding along large asperities when the limit friction 
condition is satisfied. The predicted shear hysteretic response and dilatancy curves are sufficiently 
close to experimental curves. The model provides good correlation with experiments for a variety 
of data and loading programs. For very small cyclic strain amplitudes the slip phenomena 
become predominant and the sliding mode may not occur. On the other hand, for large strain 
amplitudes, the slip effect may be neglected and only sliding mode could be accounted for. The 
model provides the possibility to include or neglect one or the other mode of deformation. The 
application of this model in the analysis of rock mass and masonry structures will be presented 
separately. 
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