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Pawińskiego 5B, 02-106 Warszawa

2 College of Inter-Faculty Individual Studies in Mathematics and Natural Sciences
University of Warsaw

1jjarusz@ippt.gov.pl, tlipnia@ippt.gov.pl, 2pzuk@ippt.gov.pl

ABSTRACT
The aim of this study is to demonstrate that in dynamical systems with underlying bistability the type of noise
qualitatively influences the stationary probability distribution (SPD). Specifically, we consider a simplified
model of gene expression with the nonlinear positive feedback, which in the deterministic approximation
has two stable steady state solutions. Two types of noise are considered; transcriptional - due to the limited
number of protein molecules, and gene switching noise - due to gene activation and inactivation. In the
limit of zero noise, the SPD generically concentrates in the decreasing vicinity of one of the two stable
steady states. We demonstrated that for a range of parameters the SPD corresponding to the system with
transcriptional noise only concentrates around a different steady state than SPD corresponding to the system
with gene switching noise only.

INTRODUCTION
Intracellular regulatory processes can be described in terms of stochastic dynamical systems. The
stochasticity arises due to the limited number of reacting molecules such as DNA, mRNA or pro-
teins. In many cases for the sake of simplicity the stochasticity is neglected and the deterministic
approximations of the stochastic systems are considered. It is thus important to know what is the
correspondence between the stochastic system and its deterministic approximation at least in the
zero noise limit. In this study we focus on the correspondence between the stable steady state
solutions of the deterministic approximation and stationary probability distributions (SPD) of sto-
chastic system with underlying bistability.

In particular, we consider a simple model of gene expression with two types of noise: transcrip-
tional - due to the limited number of protein molecules, and gene switching noise - due to gene
activation and inactivation. We assume that the gene is regulated by its own product, which leads
to non-linear positive feedback and introduces bistability (biological meaning and basic concepts
for modelling switch-like behavior are shown in [3,4,9,10]). The model defines a time-continuous
Markov process. In the limit of zero noise the corresponding SPD distribution concentrates in the
decreasing vicinity of one of the two stable steady states. We aim to demonstrate that the relative
magnitudes of the two considered noises dictate in which of the two stable steady states the SPD
concentrates.



MODEL
We consider the stochastic model of gene expression with autoregulation in the so called Kepler-
Elston approximation, which assumes that the protein is synthesized directly from the gene [7].
Such an approximation is justified when the mRNA degradation rate is larger than the gene acti-
vation and inactivation rates. We assume that the gene may be in only one of two states – active
or inactive. The protein is synthesized with the constant rate Q when the gene is active and is
degraded with rate r; we chose time units in which r = 1. The autoregulation arises when gene
activation and inactivation rates (c(Y ) and b(Y )) depend on the level of synthesized protein Y .
Here, we focus on the case with positive feedback and assume that c(Y ) = c0 + c2Y

2/Q2,
b(Y ) = b0 and c0, c2, b0 > 0. The gene autoregulation model is illustrated on Fig. (1).

Figure 1. Model of gene expression with autoregulation. A) Cartoon of the model B)
Exact (stochastic) model and its three approximations.

• Exact stochastic model. The model defines a time continuous Markov process with an
infinite number of states described by two random variables: gene state S(t) ∈ {0, 1} and number
of protein molecules Y (t) ∈ N. Resulting transition propensities are





S = 0 → S = 1 c(Y ),
S = 1 → S = 0 b0,
Y = n → Y = n + 1 QS,
Y = n → Y = n− 1 n.

(1)

The system can be described by a countable set of ordinary differential equations (Master’s
Equations). Let gn denote the probability that {S, Y } = {1, n} and hn denote the probability that
{S, Y } = {0, n}, then





dgn

dt = Q(gn−1 − gn) + (n + 1)gn+1 − ngn + c(n)hn − b0gn, for n > 0
dhn

dt = (n + 1)hn+1 − nhn − c(n)hn + b0gn,
dg0
dt = −Qg0 + g1 + c(0)h0 − b0g0,

dho

dt = h1 − c(0)h0 + b0g0.

(2)

The above system in stationary case can be solved using a moment generation function for
c(n) = c0 + c1y using the method proposed in [6], however in our case c(n) = c0 + c2y

2 it leads
to third order ordinary differential equation, we failed to solve. We will thus estimate marginal
SPD fn = gn + hn corresponding to exact model by Monte Carlo simulations of the system (1).
• Model with gene switching noise only (Continuous model). Such a model is a good ap-

proximation, when the characteristic number of protein molecules is very large. In such case we
may consider y = Y/Q as a continuous variable which follows

dy

dt
= S − y, (3)



where S, as in the exact model, is given by the process (1). System (1)-(3) defines time continuous
piece-wise deterministic Markov process (see [2]). In this approximation gn(t), hn(t) are replaced
by the continuous probability density functions g(y, t), h(y, t), that satisfy

∂g

∂t
− ∂

∂y
(yg) = b0h− c(y)g, (4)

∂h

∂t
+

∂

∂y
((1− y)h) = −b0h + c (y) g. (5)

The above system, as shown in [5], has the following stationary solution

g(y) = Exp

[∫ y

0

( −b0

(1− s)
+

c(y)− 1
s

)
ds

]
, h(y) =

yg(y)
(1− y)

. (6)

For c(y) = c0 + c2y
2 marginal SPD f(y) takes the form:

f(y) = g(y) + h(y) = Ce
1
2 c2y2

yc0−1(1− y)b0−1, (7)

where C is such that
∫ 1

0
f(y) = 1.

• Model with transcriptional noise only (Discrete model). This approximation is justified
when transition rates c(n) and b0 are much larger than unity. In such case S may be replaced (see
[1]) by its expected value S = S(n) = c(n)/(c(n) + b0). In this approximation the stationary
marginal probabilities Fn are given by recurrence providing the analytical solution:

{
F1 = F0Qc0

br ,

Fn+1 = 1
n+1 (Fn(n + Q

r S(n))− Fn−1
Q
r S(n− 1)) for n > 0.

(8)

Since the recurrence (8) is linear with respect to F0, we can set F0 = 1, calculate all the Fn,
and then normalize them by dividing by

∑
Fn. Having analytical recurrence formula, for rational

parameters we are able to calculate the precise value for each element. The coefficient ε = 1/Q
will be considered as a measure of transcriptional noise.
• Deterministic model. Such model arises when the transition rates c(n) and b0 are much

larger than unity, and at the same time the characteristic number of protein molecules is very
large. In such case the protein level y is given by a single ordinary differential equation

dy

dt
= S(y)− y, where S(y) =

c(y)
c(y) + b0

. (9)

The stationary solutions of the equation (9) are the real roots of the third order polynomial

W = −c2y
3 + c2y

2 − (c0 + b0)y + c0 = 0. (10)

Here, we focus on the bistable case when W has 3 real roots such that 0 < y1 < y2 < y3 < 1. The
bistability domain in (c0/b0, c2/b0) parameter space is shown in Fig. 2. Steady states y1 and y3

are stable, while y2 is unstable. Due to the fact that W has the same coefficient at third and second
power, its roots satisfy y1 + y2 + y3 = 1. The original coefficients b0, c0, c2 may be recovered
from the roots by the following relations:

c0 =
b0y1y2y3

y1(y2 + y3) + y2y3(1− y1)
, c2 =

b0

y1(y2 + y3) + y2y3(1− y1)
. (11)

Due to relation y1 + y2 + y3 = 1 the (y1, y2, y3) parameter space may be reduced to domain D =
(y1, y2) in which y1 < y2 and 1 − y1 − y2 = y3 > y2, see Fig. 3. The coefficient δ = 1/b0 will
be considered as a measure of gene switching noise.



Figure 2. A) Bistability domain in (c0/b0, c2/b0) parameter space. B) Bistability do-
main in (y1, y2) space. In the subdomain coloured yellow the SPD of both models con-
centrates around y1, in green subdomain SPD of both models concentrates around y3. In
the red subdomain SPD of continuous model concentrates in y3 while SPD of discrete
model concentrates in y1

Figure 3. Stationary probability distributions; Discrete model: red points, Continuous
model: blue lines. Panels A, B, C corresponds to points A, B, C, see Fig. 2B. Panel
A: ε = 1/200, 1/1000, 1/2000, δ = 1/150, 1/800, 1/4050 Panel B: ε = 1/200,
1/1000, 1/2000, δ = 1/40, 1/180, 1/800. Panel C: ε = 1/200, 1/1000, 1/2000, δ =
1/600, 1/3000, 1/14500.

RESULTS
To estimate SPD for exact model we performed long-run Monte Carlo simulations of the system
(1) based on the Gillespie algorithm.

For the continuous model, based on the analytical solution, Eq. (7), we split domain D =
[0, 1] × [0, 1] 3 (y1, y2) into two subdomains DA1, DA3 (see Fig. 2B) such that (y1, y2) ∈DA1,
f(y) concentrates in the decreasing vicinity of y1, while for (y1, y2) ∈DA3, f(y) concentrates in
the decreasing vicinity of y3 in the limit of δ → 0. The line separating domains DA1, DA3 is given
in the implicit form:

(
1− y1

y1+y2
)(

y1

1− y1 − y2
)p1ep2= 1, (12)

where p1 =
y1y2(1− y1 − y2)

(1− y1)(1− y2)(y1 + y2)
and p2 =

2y1 + y2 − 1
2(1− y1)(y1 + y2)

.

For the discrete model, based on recurrence, Eq. (8), we split domain D = [0, 1] × [0, 1] 3
(y1, y2) into two subdomains DB1, DB3 (see Fig. 2B) such that for (y1, y2) ∈DB1, f(y) concen-
trates in the decreasing vicinity of y1, while for (y1, y2) ∈DB3, f(y) concentrates in the decreas-
ing vicinity of y3 in the limit of ε → 0. This result is based on numerics; we analyzed analytically
calculated SPD for decreasing ε down to ε = 1/20000.



Interestingly domains DA1, DB1 are different, i.e. there exist non-empty domain DAB =
DA3 ∩ DB1. In domain DAB SPD of continuous model concentrates around y1, while in the
discrete model SPD concentrates around y3 (see Fig. (2B)). For further analysis we chose three
sets of roots:

• A = {0.1, 0.35} ∈ DA1 ∩DB1,
• B = {0.15, 0.25} ∈ DA3 ∩DB3,
• C = {0.03, 0.25} ∈ DAB ;

Fig.(3) illustrates the SPD calculated for these points, for three values of ε and three values of δ.
Finally, we analyze the exact model with different ratio ε/δ, see Fig. 4. This analysis shows

that in the exact model not only the parameters of the system, but also the relative magnitudes of
two types of noise, influence the limit behavior for decreasing noise.

Figure 4. Approximation of SPD calculated for point C from the red subdomain, see
Fig. 2B. Panel A: ε = 1/200, δ = 1/300. Panel B: constant ε and decreasing δ (gene
switching noise) Panel C constant δ and decreasing ε (transcriptional noise) .

CONCLUSIONS
In this study we consider a stochastic model of gene expression with two types of noise; transcrip-
tional - due to the limited number of protein molecules and gene-switching noise - due to gene
activation and inactivation. Due to the nonlinear positive feedback the deterministic approxima-
tion of the considered model exhibits bistability. We analyzed two sub-models, each having only
one type of noise to find that SPDs corresponding two both sub-models (as well as SPD corre-
sponding to exact model with two types of noise) concentrate generically in the vicinity of one
of the two stable stationary points of the limiting deterministic model. However, for a significant



range of parameters the two SPDs corresponding to the two sub-models are qualitatively differ-
ent, in particular they may concentrate in the vicinities of different stationary points. In the exact
model the choice of a stationary point around which the SPD concentrates is defined by the relative
magnitude of two noises. Similar effect for stochastic dynamics in evolutionary games was found
in [8], where the choice of Nash equilibria depends on the assumed type of noise.

Our finding demonstrates that in systems with underlying bistability, in the zero noise limit in
which SPD generically converges to delta distribution in one of the stable points, the choice of
a particular fixed point depends on the type of noise. Since all regulatory networks operating in
cells with finite numbers of molecules have noise inherently embedded, an analysis of the exact
stochastic process may be necessary to predict system’s dynamics even in the qualitative way.
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