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Abstract. This paper deals with the development of a family gradient-enhanced elasticity-
damage-plasticity models for the simulation of failure in metallic and composite materials. The
model incorporates finite deformations and is developed with the assumption of isotropy and
isothermal conditions. The gradient enhancement applied to the damage part of the model aims
at removing pathological sensitivity to the finite element discretization which can occur due to
material softening.

The attention is focused on the algorithmic aspects and on the implementation of the model
using AceGen tool for automatic code generation, thus circumventing the cumbersome deriva-
tion of the consistent tangent for the Newton’s method. Numerical verification tests of the
described model are performed with the Mathematica-based package AceFEM. Particularly,
uniaxial tension test for a bar with a variable cross-section and tension of a perforated plate
are examined.
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1 INTRODUCTION

The research presented in this paper is focused on the development of a family of gradient-
enhanced elasticity-plasticity-damage models in large strain regime. The models can be used to
reproduce the behaviour of metallic and composite materials.

A material model including damage involves a descending stress-strain branch (the post-peak
regime). The material softening causes ill-posedness of the boundary value problem which
results in pathological mesh-sensitivity in the numerical simulations. To obtain the material
model which is capable to properly reproduce damage a gradient regularization is applied [6].
Moreover, taking into account finite deformations the problem becomes more difficult due to
softening caused by the geometrical effects such as necking.

The paper is based on the concepts presented in papers [2], [1] and [5]. It includes a short
presentation of the considered model, solution algorithm, AceGen/FEM implementation aspects
[4] and selected results of computational tests. Finally, some conclusions and future work
suggestions are gathered.

2 CONSTITUTIVE RELATIONS

The family of geometrically non-linear models presented in the paper is derived adopting the
assumption of isotropy and isothermal conditions. The formulation is based on the multiplica-
tive split of deformation gradient F into its elastic and plastic parts:

F = F eF p (1)

We employ the elastic left Cauchy-Green tensor

be = F eF eT (2)

which is considered in the work as the main internal variable.
The free energy function is assumed as an isotropic function of the elastic left Cauchy-Green

tensor be, a scalar measure of plastic flow γ and a scalar damage parameter ω:

ψ = (1− ω)ψe(be) + ψp(γ) (3)

where the first term is associated with elasticity and damage and the second term with plasticity.

2.1 Hyperelasticity

The elastic part of the free energy ψe is a function of the elastic left Cauchy-Green tensor be.
Particularly, in the paper the free energy is decoupled into volumetric and deviatoric parts and
formulated as follows [7]

ψe =
κ

2

[
1

2
(Jbe − 1)− 1

2
ln(Jbe)

]
+
µ

2

(
tr(J

−1/3
be be)− 3

)
(4)

where κ and µ are material parameters (respectively bulk and shear modulus) and Jbe is the
determinant of the elastic left Cauchy-Green tensor.
The relation between the Kirchhoff stress tensor τ and the elastic left Cauchy-Green tensor be

is nonlinear and can be derived from the free energy function in the form:

τ = 2
∂ψe

∂be
be (5)

The Kirchhoff stress tensor can be split into its volumetric and deviatoric parts:

τ = pI + t, p = (τ : I)/3, t = τ − pI (6)
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2.2 Damage

When the scalar damage is added to the material description then the elastic free energy
function is degraded and takes the form:

ψe,d = (1− ω)ψe (7)

The scalar damage variable ω grows from zero for the intact material to one for a complete
material destruction and is computed from the damage growth function ω = fd(κ), where
κ = max(ε̃, κ0), ε̃ is an equivalent strain or energy measure and κ0 is the threshold. The damage
evolution law can be formulated in different ways, see e.g. [3], and the formulation is tuned to
the material of interest. In the following numerical simulations the exponential softening is
assumed (Figure 1):

ω(κ) = 1− κ0

κ
(1− α + α exp(−β(κ− κ0)) (8)

where α and β are material parameters. The deformation measure which governs damage for
materials undergoing large deformations is now assumed to be

ε̃ = det(F )− 1 (9)

This definition implies that damage is directly connected with the increase of material volume.
For incompressible materials or for simulations of sample compression damage will not occur.
Other measures can be applied as well, for instance maximum eigenvalue of the left Cauchy-
Green deformation tensor or elastic stored energy as in [8].
The damage condition takes the form:

Fd(ε̃, κ) = ε̃− κ ≤ 0 (10)

For Fd < 0 there is no growth of damage.
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Figure 1: Exponential damage growth functions for different model parameters

2.3 Plasticity

In this section material damage is neglected in the constitutive relation. The plastic part of
the free energy function is assumed in the form:

ψp(γ) =
1

2
hγ2 (11)
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where h is a material parameter identified with the hardening modulus. The plastic regime
is defined through the yield function Fp which is an isotropic function of the Kirchhoff stress
tensor τ and the plastic multiplier γ:

Fp(τ , γ) = f(τ )−
√

2

3
(σy0 − q(γ)) ≤ 0 (12)

The function q can be derived from the plastic part of the free energy:

q(γ) = −dψ
p(γ)

dγ
(13)

and represents the yield strength with for instance isotropic linear hardening: q(γ) = −hγ. The
function f is assumed to be the Burzyński-Drucker-Prager plasticity function f =

√
2J2 + αp

3
I1,

where αp is a material constant, I1 and J2 are invariants of the effective Kirchhoff stress tensor:

I1 = τ : I J2 =
1

2
t2 : I (14)

However, the solution algorithm is flexible and other yield criteria can easily be applied.
The associative flow rule is assumed in the form [2]:

− 1

2
Lvbe = γ̇Nbe (15)

where Lv is the Lie derivative of be and N is a normal to the yield function:

Lvbe = F
∂

∂t
[(Cp)−1]FT N =

∂F

∂τ
(16)

2.4 Elasticity-plasticity coupled with damage

In the paper an indirectly coupled model is considered, which means that the damage process
is governed by the deformation measure and is not directly determined by the plastic flow. The
plastic process is assumed to take place in the effective space, i.e. it governs the behaviour of the
undamaged skeleton of the material. Consequently, the yield function depends on the effective
Kirchhoff stress tensor τ̂ = τ/(1− ω) instead of τ and has the form as in eq. (12):

Fp(τ̂ , γ) = f(τ̂ )−
√

2

3
(σy0 − q(γ)) ≤ 0 (17)

3 GRADIENT ENHANCEMENT

Higher-order gradient continuum theories are motivated by micro-defect interactions. In the
gradient-enhanced damage model the local variable ε̃ is substituted with its non-local counter-
part ε̄ in damage condition (10). The non-local variable is specified by the averaging equation:

ε̄− l2∇2ε̄ = ε̃ (18)

with homogeneous natural boundary conditions. The parameter l appearing in equation (18) is
a material-dependent length parameter commonly called the internal or intrinsic length scale.
The Laplacian and the parameter l can be referred to either the deformed or the undeformed
configuration [8] (these two cases are called in the paper material or spatial averaging). The
gradient enhancement can prevent the numerical solution from pathological mesh-sensitivity.
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4 SOLUTION ALGORITHM

In this section the solution algorithm for the gradient-enhanced elasticity-damage-plasticity
model is described. From a computational point of view the nonlinear material behaviour is
treated as configuration driven [2]. We wish to solve a nonlinear evolutionary problem over
the time interval [tn, tn+1], knowing the solution at time tn, and current configuration (i.e. the
deformation gradient). Particularly, from the previous time step the deformation gradient Fn,
the elastic part of the Cauchy-Green tensor ben, the plastic multiplier γn and the value of the
damage history parameter κn are given. For the sake of brevity, all quantities related to the cur-
rent time step tn+1 are written without indices. The coupled problem consists of the equilibrium
and averaging equations to be solved.

Firstly, following [7], the relative deformation gradient is computed:

f = FF−1
n (19)

Assuming that all the relative deformation gradient is elastic the trial elastic left Cauchy-Green
tensor is calculated:

beTtr = fbenf
T (20)

The corresponding effective trial Kirchhoff stress tensor is obtained from the hyperelastic con-
stitutive relation (5). Now the plastic function (17) is calculated using the trial Kirchhoff stress
tensor and the value of the plastic multiplier from the previous time step. If the yield function is
negative, the step is indeed elastic and the trial values of the quantities are the solution. On the
other hand, if the yield criterion is not fulfilled and Fp > 0 the state is inadmissible and a plastic
correction should be performed. The return mapping is performed which requires a solution of
a nonlinear system of equations deduced from [2]:{

Rτ = be(τ̂ )− exp[−2(γ − γn)N (τ̂ )]betr = 0
Ry = Fp(τ̂ , γ) = 0

(21)

The system (21) consists of the seven scalar equations (due to the symmetry of be) with the
seven unknowns: six components of τ (due to the symmetry of the tensor) and γ. To find a
solution of the system (21) the Newton-Raphson procedure is applied.

The next step in the algorithm is the verification of the damage condition (10) taking into
account the non-local deformation measure. If the measure exceeds the previous value of the
damage history parameter κn, then damage increases in relation to the previous time step, and
a new value of the history parameter is equal to κ = ε̄. Otherwise, there is no damage growth
and the history parameter does not change its value.

The damage variable is computed from equation (8) using the current value of the history
parameter. The free energy taking into account elasticity and damage is obtained from (7).

For the uniformity of the residual vector derivation, the potential Π for the averaging differ-
ential equation (18) is applied in the algorithm. The potential originates from the weak form of
the equation (18) and is assumed in such a form that δΠ = 0 i.e.

Π(ε̄, ε̃) =
1

2

[
(ε̄− ε̃)2 + l2∇ε̄ · ∇ε̄

]
(22)

where the local deformation measure ε̃ is calculated from (9). Due to the application of the po-
tential Π, the residual vector including equilibrium and averaging equations, and the consistent
tangent operator can be now calculated as follows
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R =

[
∂(ψ −W ext)

∂u1

,
∂(ψ −W ext)

∂u2

, . . . ,
∂(ψ −W ext)

∂u24

,
∂Π

∂ε̄1
,
∂Π

∂ε̄2
, . . . ,

∂Π

∂ε̄8

]
K =

∂R

∂p
(23)

where p is a vector of degrees of freedom: the nodal displacements and values of non-local
variable, which is the non-local deformation measure. In eq. (23) it is assumed that linear
hexahedra are used for finite element interpolation of both the fields, but there is nothing against
using higher-order interpolation.

It can be noticed that in the algorithm the free energy function taken into account in the
residual vector does not include its plastic part. Indeed, the omitted part is used only for the
derivation of the function representing hardening (13).

The summarized algorithm for the elastic-plastic-gradient-damage material model is pre-
sented in Box 1.

Given at element level:
isoparametric interpolation, current vector of nodal displacements and non-local variables:
p = [u1, u2, u3, . . . , u24, ε̄1, ε̄2, . . . , ε̄8], integration point variables at the end of previous
step, i.e. deformation gradient F n, elastic left Cauchy-Green tensor ben, plastic strain mea-
sure γn, damage history parameter κn
Compute at each integration point:

• Relative deformation gradient: f = FF−1
n

• Trial elastic left Cauchy-Green tensor: betr = fbenf
T

• Strain potential: ψe(betr)

• Trial effective Kirchhoff stress tensor: τ̂ tr = 2 ∂ψe

∂betr
betr

• Yield function for trial effective stress: Fp(τ̂ tr, γn)

• Yield condition:
If Fp < 0 then state is admissible→ be = betr, γ = γn
Else if Fp > 0 then state is inadmissible→ be = exp[−2∆γN(τ̂ )]betr

where τ̂ and ∆γ computed from:
{
Rτ = be(τ̂ )− exp[−2(γ − γn)N(τ̂ )]betr = 0
Ry = Fp(τ̂ , γ) = 0

• Damage loading function: Fd(ε̄, κ)

• Damage condition:
If Fd < 0 then there is no damage growth→ κ = κn
Else if Fd > 0 then damage grows→ κ = ε̄

• Damage variable: ω(κ) = 1− κ0
κ (1− α+ α exp(−β(κ− κ0))

• Free energy: ψ(be, ω, γ) = (1− ω)ψe(be)

• Local strain measure: ε̃ = det(F )− 1

• Potential for averaging equation: Π(ε̄, ε̃) = 1
2

(
(ε̄− ε̃)2 + l2∇ε̄ · ∇ε̄

)
• Contribution to residual vector and tangent matrix for final values of be, γ and κ:
R =

[
∂(ψ−W ext)

∂u1
, ∂(ψ−W ext)

∂u2
, . . . , ∂(ψ−W ext)

∂u24
, ∂Π
∂ε̄1
, ∂Π
∂ε̄2
, . . . , ∂Π

∂ε̄8

]
K = ∂R

∂p

Box 1. Finite element algorithm for large strain elasto-plasticity coupled with gradient damage

6
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5 ACEGEN IMPLEMENTATION AND NUMERICAL SIMULATIONS

In order to assess the performance of the material model described above, selected re-
sults of numerical simulations are presented. The computational tests were performed using
Mathematica-based programs AceGen and AceFEM [4]. The former is a multi-language nu-
merical code generator which combines symbolic and algebraic capabilities of Mathematica,
automatic differentiation technique and simultaneous optimization of expressions. The latter is
a finite element engine which can be substituted by a different code like ABAQUS or FEAP.
Owing to the use of AceGen the analyst can focus on the examination of alternative formula-
tions, departing from thermodynamic potentials, and on alternative algorithmic setups.

In order to implement a material model using package AceGen, an algorithm for calculation
of the contribution to residual vector and tangent matrix at each integration point of element
should be written in special meta-language. This approach allows one to avoid the cumbersome
derivation of the consistent tangent for the Newton-Raphson method since the derivatives in
eq. (23) are computed by evoking automatic differentiation routines [4].

In the following computational tests three-dimensional, hexahedral, displacement-based,
isoparametric finite elements are applied. The applied elements have standard topology and
similar linear interpolation of the two fundamental unknown fields: displacements and aver-
aged measure.

5.1 Elastic coupled to gradient enhanced damage model

Figure 2: Geometry and boundary conditions for variable cross-section bar test

In this section the results of tests performed for the elastic-damage model with gradient av-
eraging are presented. All simulations are performed for a bar with variable cross-section along
the length. The bar is supported at one end and loaded with controlled displacement at the other.
The supports are defined in such a way that uniaxial stress state is kept during deformation. The
dimensions and boundary conditions are depicted in Figure 2.
The material parameters assumed in the simulations are as follows: Young modulus E =
200GPa, Poisson ratio ν = 0.3, damage threshold κ0 = 0.04, parameters for exponential
damage evolution law α = 0.95, β = 5.

Firstly, the simulations of spatial and material averaging for three discretizations of the spec-
imen (Figure 3) and the same material parameters are considered. The internal length for both
descriptions is l = 0.01m.

The diagrams presenting the sum of reactions on the supported end of the sample versus the
displacement imposed at the other end are shown in Figure 4.

Although the simulations were performed with identical material parameters, the response
for the two types of averaging differ significantly. Firstly, it can be observed that the post-peak
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Figure 3: Discretizations of the variable cross-section bar: 20x4x4, 40x8x8, 80x12x12
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500 000
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mesh 40x8x8

mesh 20x4x4
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Figure 4: Displacement vs reaction sum for material and spatial averaging and different discretizations

Figure 5: Deformed meshes at the end of tension test with damage variable ω distribution for material
averaging (on the left) and spatial averaging (on the right)

Figure 6: Deformed meshes at the end of tension test with Exx distribution for material averaging (on
the left) and spatial averaging (on the right)

branch for the model with spatial averaging descends more rapidly than for material averaging.
Secondly, the application of spatial averaging does not result in mesh-insensitivity: for each
discretization reaction diagram is different. The results for material averaging for all analyzed
discretizations are close, and the diagrams for the second and the third mesh almost coincide.

It is shown in Figures 5 and 6 how the specimen deforms and the first component of the Green
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Figure 7: Evolution of the first component of Green strain tensor Exx for material (on the left) and
spatial (on the right) averaging - medium mesh
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Figure 8: Evolution of material internal length whereas spatial is fixed and conversely

strain tensor Exx and damage variable ω are distributed. Moreover, in Figure 7 the evolution of
Exx along the bar length is depicted.

It can be observed that for spatial averaging the deformation and the strain distribution de-
pend on the finite element discretization, whereas for material averaging the response is similar
for different meshes. It can be noticed in Figure 7 that as the enforced displacement increases
the strain localization zone gets narrower for spatial averaging. For large enough deformation,
strains concentrate in one row of elements for all analyzed discretizations. Although in the con-
sidered description the gradient regularization is applied, it does not fully preserve numerical
simulations from the pathological mesh-sensitivity.

It can be noticed in Figure 5 that the damage zone is similar for all discretizations for spatial
averaging although deformation differs significantly. The phenomenon is caused by irreversibil-
ity of the state of material damage. The damage area which arises at the beginning of the loading
process does not decrease even if deformations concentrate in the gradually smaller band and
the rest of the sample is unloaded.

The ratio of element dimension and internal length for material averaging does not change
during deformation, whereas spatial averaging is performed in the current configuration thus the
deformed mesh is used for the calculation of gradients. A probable explanation of the mesh-
sensitivity for spatial averaging is that during deformation the dimensions of elements change
whereas the internal length is assumed to be constant. This aspect of spatial averaging was also
raised in the paper of Steinmann [8], who concluded from his numerical experiments that only
material averaging has all desirable features to reproduce the behaviour of elastic-damaging
material.
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Balbina Wcisło, Tomasz Żebro, Katarzyna Kowalczyk-Gajewska and Jerzy Pamin

In Figure 8 the evolution of the internal length parameter along the bar for the medium mesh
is presented. In the first graph we can observe the evolution of the material internal length
whereas the spatial one is fixed. The value of the length parameter decreases in the damage
zone with the increasing loading. On the other hand, if the material internal length is fixed, the
value of the spatial one grows at the end of the bar with smaller cross-sectional area.
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Figure 9: Displacement vs reaction sum and non-local variable distribution along the length for
different values of internal length parameter
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Figure 10: Evolution of non-local variable for internal lengths: l = 0.005m and l = 0.015m

Taking the observations from this test into account, the following numerical simulations are
performed only for the model including material averaging.

In the next test, the comparison of the material behaviour for different internal length param-
eter is carried out. In the simulation the medium mesh is concerned and three values of internal
length were taken into account: l = 0.005m, l = 0.010m, l = 0.015m. In Figures 9 and 10
the results obtained for this test are plotted. As expected, the larger is internal length parameter
is, the later the damage state is reached in the specimen and the more ductile the diagram in
the post-peak regime is. Figure 10 presents the evolution of the non-local deformation measure
along the bar for l = 0.005m and l = 0.015m.

5.2 Elastic-plastic-gradient-damage model

In this chapter the results for the material model which includes elasticity-plasticity coupled
with gradient damage are presented. Firstly, the model is tested using the variable cross-section
bar, then a perforated plate in tension is taken into account.
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Figure 11: Displacement vs sum of reactions for variable cross-section bar - comparison of results for
pure plasticity and coupled model

The geometry of the variable cross-section bar is the same as for the gradient-damage test,
however the bar is fully restrained at one end. The material parameters are as in Sect. 5.1 apart
from the damage threshold which now is assumed to be κ = 0.003. Additional parameters
related to plasticity are: initial yield stress for tension and compression: σy0 = 1.225GPa,
hardening modulus: h = 1%E. The test is performed for internal length scale l = 0.01m.
The material parameters are chosen in such a way that plasticity occurs first. The relations
between the enforced displacement and the sum of reactions for all considered discretizations
are presented in Figure 11.

The dashed diagrams in Figure 11 present the results of the test performed for the elastic-
plastic material, i.e. the damage threshold is not exceeded during the deformation process. It
can be observed that for different discretizations the diagrams vary starting from the beginning
of a plastic regime. This might be caused by locking problems, since the standard H1 finite
elements with the first order approximation are used in the analysis.

Figure 12: Deformed meshes at the end of tension test with plastic state (on the left) and damage
variable ω distribution (on the right)

Although hardening of the material is assumed, softening caused by geometrical effects
(necking) for the medium and the fine mesh is noticed. The area of the sample which exhibits
plasticity is presented in Figure 12 on the left. The finer finite element mesh is considered, the
smaller part of the sample enters the plastic state and the deformation concentrates in a narrower
zone.

Taking the damage into account the reaction diagrams (solid diagrams in Figure 11) change
in the relation to the plastic model. Instead of hardening, an immediate stiffness reduction
occurs in the sample. For the assumed material parameters, the damage growth occurs only in a
limited interval of the loading process which is shaded in the Figure 11 on the right (results for
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Figure 13: Evolution of non-local variable along the bar length and for the point at the loaded end for
elasticity-plasticity coupled with damage (fine mesh)
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Figure 14: Evolution of the damage variable ω along the bar length and for the point at the loaded end
for elasticity-plasticity coupled with damage (fine mesh)
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Figure 15: Evolution of the plastic multiplier for elasticity-plasticity and elasticity-plasticity coupled
with damage (fine mesh)

the fine mesh). From point B the assumed averaged deformation measure related to the change
of the volume ceases to increase (Figure 13), thus there is no damage growth and the damage
variable ω is fixed (Figure 14). The descending branch is now caused only by geometrical
softening in the plastic regime.

Figure 15 presents the results of simulations performed for the fine mesh, i.e. 80x12x12
elements. The effect of damage incorporation into the elastic-plastic model can be observed.
Particularly, for the model including damage the plastic multiplier which represents the amount
of plastic flow attains slightly larger values at the narrowest end of the sample, whereas the
plastic zone is slightly narrower.
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Figure 16: Geometry of perforated plate

Figure 17: Discretizations of the perforated plate in tension:48 elements, 192 elements and 432
elements

The following simulations are performed for the perforated plate in tension shown in Fig-
ure 16. Due to double symmetry of the specimen, only one quarter of the perforated plate is
considered. Similarly to the bar example, three discretizations are taken into account (Figure
17).

The material data are adopted as in previous test apart from the internal length parameter
which now is assumed to be l = 0.02m. The maximum displacement enforced at one end of the
sample is equal to d = 0.05m.

In Figure 18 the reaction diagrams for the considered cases are presented. In this test the
mesh-sensitivity is not so pronounced in the graph as it is for the variable cross-section bar in
tension, however, the differences in results are noticed in the interval of damage growth.

In Figures 19, 20 and 21 the deformed meshes and the distribution of chosen quantities are
presented. Similarly to the previous test, the area of the sample which exhibits plasticity differs
depending on the discretization (upper plots in Figure 19) and the finer the mesh is taken into
account the more concentrated the strain becomes in the process zone. It can also be noticed
that the maximum tensile stress does not concentrate at the narrowest part of the sample, but at
a certain distance from the vertical axis of symmetry (Figure 21).

6 CONCLUSIONS AND FUTURE WORK

In the paper the framework of the gradient-enhanced large-strain elasticity-damage-plasticity
model has been outlined. The model is based on the multiplicative decomposition of the de-
formation gradient (1), the Helmholtz free energy in the form (3) and is limited to isotropy and
isothermal conditions. The gradient averaging is applied to the deformation measure which
determines the damage growth. The numerical simulations are performed using packages Ace-
Gen/AceFEM and owing to this the consistent tangent matrix for the system of nonlinear equa-
tions is evaluated automatically.

The selected results of the computational tests for the gradient elasticity-damage and the
gradient elasticity-damage-plasticity have been presented. For the former model attention is fo-
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Figure 18: Displacement vs sum of reactions for perforated plate in tension

Figure 19: Deformed meshes at the end of tension test with plastic state (at the top) and Exx distribution
(at the bottom)

Figure 20: Deformed mesh at the end of tension test with damage variable ω (at the top) and non-local
variable distribution (at the bottom)

cused on the comparison of spatial and material description. The numerical simulations reveal
that spatial averaging does not fully preserve the solution from the pathological mesh-sensitivity
encountered in the damage tests. For this reason the remaining simulations are performed only
for material averaging. The results for the elastic-plastic-gradient-damage model are also pre-
sented. The simulations of the variable cross-section bar and the perforated plate in tension
show complex nonlinear deformation states which include not only softening due to damage
phenomenon but also necking.

In the subsequent research the simulations with other finite elements which are capable of
reproducing the plastic behaviour without locking are planned. The application of other defor-
mation or energy measure to govern damage should also be considered as not only the volumet-
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Figure 21: Cauchy stress σxx distribution in perforated plate

ric measure, as assumed in the paper in eq. (9), can be taken into account. Further, the research
is going to be extended towards thermo-mechanical coupling.
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