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This paper deals with the development of a family of gradient-enhanced elasticity-
damage-plasticity models for the simulation of failure in metallic and composite ma-
terials. The model incorporates finite deformations and is developed with the as-
sumption of isotropy and isothermal conditions. The gradient enhancement applied
to the damage part of the model aims at removing pathological sensitivity to the
finite element discretization which can occur due to material softening.
The attention is focused on the algorithmic aspects and on the implementation of
the model using AceGen tool. The numerical verification tests of the described model
are performed using the Mathematica-based package AceFEM. Particularly, uniaxial
tension test for a bar with a variable cross-section and tension of a perforated plate
are examined.
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1. Introduction

The research presented in this paper is focused on the development of
a family of gradient-enhanced elasticity-plasticity-damage models in large strain
regime. The models can be used to reproduce the behaviour of metals and com-
posites, however, are not directly focused on a specific material.

A material model including damage can involve a descending stress-strain
branch (the post-peak regime). This situation can cause ill-posedness of the
boundary value problem which results in a pathological mesh-sensitivity in the
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numerical simulations. To obtain a material model which is able to reproduce
damage properly a regularization should be applied, for instance nonlocal mod-
els or higher-order gradient theories. Alternatively, discontinuous modelling us-
ing cohesive elements, e.g. [1], can be employed. The implicit gradient averaging
which is used in the presented model was firstly adopted by Peerlings et al. [2].
The majority of publications concerning gradient averaging for damage-plastic
models is restricted to the assumption of small strains. The finite strain for-
mulations are presented in publications of Steinmann [3] (hyperelastic-damage
continuum), Geers [4] (plasticity with softening) and Areias [5] (plasticity
coupled with damage). When applying the gradient regularization to the ge-
ometrically non-linear models one has to make a decision which configuration
should be chosen to perform averaging. What is more important, by accounting
for large strains the problem becomes more difficult due to softening caused by
the geometrical effects such as necking.

In the paper the attention is focused on the implementation aspects of the
presented model within the Mathematica-based packages AceGen/AceFEM
created by Korelc [6]. Due to the novel symbolic-numerical approach to the
finite element computations the particular solution algorithm taking the advan-
tage of automatic differentiation is applied. Moreover, the algorithm is flexible
and different material laws, for instance different yield criteria, can easily be
applied. The constitutive model presented in the second section is based mainly
on the concepts presented in [7], [5] and [8]. After the discussion of the im-
plementation and the solution algorithm the selected results of the numerical
simulations performed with AceFEM are presented. Particularly, the influence
of the applied finite element type on the obtained results, as well as the effects of
choice of configuration for averaging and of the strain measure governing damage
are investigated. Finally, some conclusions and suggestions for future work are
gathered.

2. Constitutive relations

The kinematical framework of the material model is based on a classical
multiplicative decomposition of the deformation gradient into its elastic and
plastic components [9]

F = FeFp.(2.1)

The main internal variable is assumed to be elastic left Cauchy–Green tensor

be = FeFeT .(2.2)

The free energy function is assumed as an isotropic function of the elastic left
Cauchy–Green tensor be, a scalar measure of accumulated plastic flow γ and
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a scalar damage parameter ω

(2.3) ψ = (1− ω)ψe(be) + ψp(γ).

The relationship between the Kirchhoff stress tensor and elastic left Cauchy–
Green tensor is expressed through the elastic part of free energy function and it
takes the form

(2.4) τ = 2
∂ψe

∂be
be.

The Kirchhoff stress tensor can be decomposed into its deviatoric and volumetric
parts:

(2.5) τ = pI + t, p = (τ : I)/3, t = τ − pI.

In the constitutive description damage is understood as the degradation of
the elastic free energy function with scalar damage variable ω

(2.6) ψe,d = (1− ω)ψe.

The scalar damage parameter ω grows from zero for the intact material to one
for a complete material destruction. The damage evolution law which determines
the value of ω is a function of a history parameter κ

(2.7) ω = fd(κ)

and can be formulated in different ways depending on the considered material,
see, e.g., [4]. The parameter κ in Eq. (2.7) is obtained through the formula

κ = max(ε̃, κ0),(2.8)

where κ0 describes the damage threshold and ε̃ is an equivalent local strain or
energy measure.

The choice of the damage governing quantity ε̃ which should be applied in
the model including large strains will be discussed now. In the literature differ-
ent measures can be encountered, for instance stored energy [3] or accumulated
plastic strain [5], [8]. In the paper we assume that the damage process is not
directly determined by the plastic flow but it is governed by a total deformation
measure. In particular, two measures are taken into account:

ε̃ = det(F )− 1,(2.9)

ε̃ =
√

(e+
1 )2 + (e+

2 )2 + (e+
3 )2,(2.10)
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where e+
i is a positive value of i -th eigenvalue of the Almansi strain tensor. The

first measure (2.9) is closely connected with the increase of the material volume
and can be related to the growth of the voids and cracks in the damage process.
According to this model damage will not occur for the incompressible materials
or for deformation involving volume reduction.

The second measure (2.10) is related to principal stretches by taking into
account the positive eigenvalues of Almansi strain tensor. Consequently, in the
second case incompressible materials can exhibit damage since also in a compres-
sion test the local measure can grow, however in a different way than for tension.
For a tensioned sample damage is governed by a longitudinal strain whereas for
compression by a transverse one. Thus, the choice of the proper deformation
measure should be connected with the physical behaviour of material, observed
in experiments.

The damage loading condition complemented with the set of Kuhn–Tucker
conditions reads:

Fd(ε̃, κ) = ε̃− κ ≤ 0, κ̇ ≥ 0, κ̇Fd(ε̃, κ) = 0.(2.11)

The plastic process is assumed to take place in the effective stress space,
i.e., it governs the behaviour of the undamaged skeleton of the material. This
approach is based on a principle of strain equivalence [10] which states that the
damaged material responds to a given stress τ in the same way as the undamaged
material responds to the effective stress τ̂

τ̂ =
τ

1− ω
.(2.12)

The plastic regime is defined through the yield function Fp which is an
isotropic function of the effective Kirchhoff stress tensor τ̂ and the measure
of accumulated plastic flow γ

Fp(τ̂ , γ) = f(τ̂ )−
√

2
3
(σy0 − q(γ)) ≤ 0.(2.13)

The function f(τ̂ ) represents selected plasticity function which in this work
is assumed to be the Burzyński–Drucker–Prager (BDP) or the Huber–Mises–
Hencky (HMH) criterion. The general formulation for the function f is written
in the form

f =
√

2J2 +
αp

3
I1,(2.14)

where αp is a material constant, I1 and J2 are invariants of the effective Kirchhoff
stress tensor τ̂ and its deviatoric part t̂:

I1 = τ̂ : I, J2 =
1
2
t̂2 : I.(2.15)
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In the following numerical simulations, instead of the material constants αp and
σy0 the initial yield threshold for tension σt0 and compression σc0 are given. The
relations between these constants are expressed as [7]

σy0 = 2

√
2
3

σc0σt0

σc0 + σt0
, αp = 3

√
2
3

σc0 − σt0

σc0 + σt0
.(2.16)

The function q(γ) can be derived from the plastic part of the free energy

(2.17) q(γ) = −dψp(γ)
dγ

and represents the yield strength evolution, for instance isotropic linear harden-
ing: q(γ) = −hγ.

The associative flow rule is assumed in the form [7]

−1
2
Lvbe = γ̇Nbe,(2.18)

where Lv is the Lie derivative of be and N is a normal to the yield function and
γ̇ is the plastic multiplier

Lvbe = F
∂

∂t
[(Cp)−1]FT, N =

∂Fp

∂τ̂
.(2.19)

3. Gradient enhancement

The incorporation of damage in the material description results in the de-
creasing stress-strain diagram which can cause the loss of ellipticity and ill-
posedness of the boundary value problem. This situation manifests itself in the
pathological mesh-sensitivity as the damage zone is localized in the smallest pos-
sible volume determined by the finite element discretization, for instance in one
row of elements. To prevent the numerical solution from the mesh-sensitivity
a regularization strategy is required. In the work an implicit gradient enhance-
ment is applied [2]. The approach is motivated by micro-defect interactions and
is numerically convenient.

In the gradient-enhanced damage model the local variable ε̃ is substituted in
damage condition (2.11a) with its non-local counterpart ε̄. The non-local variable
is specified by the averaging equation

ε̄− l2∇2ε̄ = ε̃(3.1)

with homogeneous natural boundary conditions [11]. The parameter l appear-
ing in Eq. (3.1) is a material-dependent length parameter commonly called the
internal length scale.
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The application of gradient enhancement to the material model including
large strains requires a decision which configuration is selected for averaging.
If the Lagrangian (material) averaging is applied, the derivatives of the strain
measure 3.1 are calculated with respect to the Lagrangian coordinates and the
internal length is defined in the undeformed configuration. Consequently, during
whole deformation process, the quantities for averaging are taken from the same
material domain.

On the other hand, if Eulerian (spatial) averaging is considered then the
internal length and the gradients in Eq. (3.1) are referred to the deformed con-
figuration.

4. Implementation

The implementation of the model described above is performed using Mathe-
matica-based packages AceGen and AceFEM developed by Korelc [6]. The
former is a code generator which is capable of automatic differentiation and
simultaneous optimization of expressions. The latter is a finite element environ-
ment which perfectly cooperates with AceGen, however, it can be replaced by
other program like Abaqus or FEAP.

The AceGen package is used to create a code in a special meta-language for
the calculation of contributions to the residual vector and the tangent matrix
at each integration point of the element. Due to automatic differentiation the
consistent tangent matrix is computed automatically and for that reason the
consistent linearization of constutive equations is not considered in the paper.

To create a computationally efficient code with AceGen a particular ap-
proach, different than classical, should be applied. In simple terms, the residual
vector Ru related to the virtual work formulation is computed as a derivative of
the free energy function with respect to the vector of unknown displacements.
If the relations between the approximated nodal displacements and the free en-
ergy function are specified properly, all differentiations and calculation of the
final value of Ru are performed automatically. Similarly, the tangent stiffness
matrix is calculated as a derivative of the residual vector Ru with respect to the
vector of unknowns. The detailed explanation of the approach is included in [12]
and [6].

The implementation of the described coupled model requires the definition
of two residual vectors

R = [Ru,Rε̃](4.1)

related to the equilibrium and the averaging equations.
In the work three types of elements are considered, but the general idea for

the coupled problem is the following: the elements are three-dimensional and
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are based on a standard 8-nodes or 20-nodes (serendipity) topology. They have
to describe the two fundamental unknown fields: displacements and averaged
measure. The first field is interpolated with the linear or quadratic shape function
whereas the second always uses linear interpolation.

In the following solution algorithm the vector of unknowns including both
the displacements and non-local variables is denoted by

p = [u1, u2, . . . , um, ε̄1, ε̄2, . . . , ε̄8],(4.2)

where m is the number of unknown nodal displacement components for consid-
ered element (24 or 60).

5. Solution algorithm

In this section, the AceGen solution algorithm for the elastic-plastic model
coupled with gradient-enhanced damage is described.

We consider a time interval [tn, tn+1] and we know the solution at tn, partic-
ularly, the deformation gradient Fn, the elastic left Cauchy–Green deformation
tensor be

n, the measure of accumulated plastic flow γn and the value of the dam-
age history parameter κn. The nodal displacements and the non-local averaged
measure ε̄ are prescribed at time tn+1. Thus, from a computational point of view,
the nonlinear material behaviour is treated as configuration-driven [7]. For the
sake of brevity, all quantities related to the current time step tn+1 are written
without indices.

As it was mentioned, damage and plasticity in the model are indirectly cou-
pled; thus, the code at the level of the individual Gauss point can be divided
into three parts including the implementation of:

• the plasticity problem in the effective stress space;
• the damage state in the real stress space;
• the residual vector including the equilibrium and averaging equations, and

the consistent tangent matrix.
Consequently, firstly the trial stress state is determined to verify if the plastic

regime is entered. Following [9] the relative deformation gradient is computed

f = FF−1
n ,(5.1)

where Fn is taken from the history and the current value of the deformation
gradient is calculated on a basis of interpolated current displacements function
F = I + ∂u

∂X .
Assuming that the relative deformation gradient is elastic the trial elastic left

Cauchy–Green tensor is calculated

(5.2) beT
tr = fbe

nf
T
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and the corresponding effective trial Kirchhoff stress tensor is derived from the
hyperelastic constitutive relation (2.4). Now the yield function (2.13) is computed
using the trial Kirchhoff stress tensor and the value of the accumulated plastic
strain measure from the previous time step. If the yield function has a negative
value then the step is indeed elastic: trial values are the solution in the effective
space and the damage should be resolved now. If, on the other hand, the yield
criterion is not satisfied, the solution of nonlinear equations including the return
map equations and the yield function must be solved [7]

{
Rbe = be − exp[−2(γ − γn)N(τ̂ (be))]be

tr = 0,

Ry = Fp(τ̂ (be), γ) = 0.
(5.3)

The system (5.3) consists of seven scalar equations (due to the symmetry
of be), with seven unknowns: six components of be and γ. To find a solution of
system (5.3) the Newton–Raphson procedure is applied. It should be also added
here that in the numerical procedure not the values of components of the elastic
left Cauchy–Green tensor be are computed but components of auxiliary ten-
sor be∗, which fulfill the relation be = fbe∗fT . The reason for this manipulation
is to obtain not only the values of the current tensor be components, but also the
functional dependence between the displacements and the deformation tensor be,
which can be otherwise lost in the iterative procedure of Newton–Raphson.

Now, when the plastic problem is solved and the tensor be is determined,
the next step is the verification of the damage condition (2.11a) which takes into
account the non-local deformation measure. If the averaged measure exceeds the
previous value of the damage history parameter κn, then damage increases in
relation to the previous time step, and a new value of the history parameter is
equal to κ = ε̄. Otherwise, there is no damage growth and the history parameter
does not change its value. The damage variable is computed from Eq. (2.7) using
the current value of the history parameter κ and is used for the calculation of
degraded free energy function (2.6).

For the uniformity of the residual vector derivation, the potential Π for the
averaging differential equation (3.1) is applied in the algorithm. The potential is
assumed in such a form that equation δΠ = 0 is equivalent to the weak form of
Eq. (3.1)

Π(ε̄, ε̃) =
1
2
[(ε̄− ε̃)2 + l2∇ε̄ · ∇ε̄],(5.4)

where the local deformation measure ε̃ is calculated from (2.9) or (2.10).
Depending on the selected configuration for material or spatial averaging, the

potential (5.4) can be expressed in two ways:
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Πmat(ε̄, ε̃) =
1
2

[
(ε̄− ε̃)2 + l2mat

∂ε̄

∂X
· ∂ε̄

∂X

]
,(5.5)

Πspat(ε̄, ε̃) =
1
2

[
(ε̄− ε̃)2 + l2spat

∂ε̄

∂x
· ∂ε̄

∂x

]
,(5.6)

where X and x indicate respectively the Lagrangian and Eulerian coordinates
whereas lmat and lspat are internal length parameters specified for initial and
current configurations. The relation between the parameters can be derived from
the assumption that Πmat = Πspat which leads to the formula

lspat = lmat

√
∂ε̄
∂X · ∂ε̄

∂X
∂ε̄
∂x · ∂ε̄

∂x

.(5.7)

The contribution to the residual vector for elements described in Section 4
can now be defined in the following form

(5.8) R =
[
∂(ψ −W ext)

∂u1
,
∂(ψ −W ext)

∂u2
, . . . ,

∂(ψ −W ext)
∂um

,
∂Π
∂ε̄1

,
∂Π
∂ε̄2

, . . . ,
∂Π
∂ε̄8

]
,

where W ext is work of the external loads.
Finally, the contribution to the consistent tangent matrix is derived with the

formula

K =
∂R
∂p

.(5.9)

To avoid the differentiation of all steps of the inner Newton–Raphson iterative
procedure, the definition of the automatic differentiation exception should be
performed to prescribe the derivatives of the internal variables with respect to
the independent solution vector. The detailed explanation of the definition of
exceptions in differentiation especially for elastic-plastic models is included in [6]
and [12].

As it was mentioned, the solution of the described model is obtained using
finite elements with first- or second-order interpolation. For the first kind of
elements the phenomenon of locking can be observed in plasticity which manifests
itself in the spurious hardening in numerical simulations. Apart from the increase
of the interpolation order, there are a few methods to prevent standard elements
from locking such as the enhanced assumed strain [13], the selective integration
or B-bar method [14]. In this work the F-bar approach of de Souza Neto et. al.
is applied [15]. The method involves the replacement of the deformation gradient
F with its modified counterpart F̄. The formulation is based on a multiplicative
split of the deformation gradient into its volumetric and isochoric parts

F = FisoFvol.(5.10)
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To calculate F̄ for a Gauss point the volumetric part of the deformation
gradient is taken from the centroid of the element whereas the isochoric part is
calculated at the proper integration point. The modified deformation gradient is
used for all computations and is saved in the history data to be used in the next
time step.

The summarized algorithm for the elastic-plastic-gradient-damage material
model is presented in Box 1.

Given at element level:
• Isoparametric interpolation.
• Current vector of nodal displacements and non-local variables:

p = [u1, u2, u3, . . . , u24, ε̄1, ε̄2, . . . , ε̄8].
• Integration point variables at the end of previous step, i.e., deformation gradient

Fn, elastic left Cauchy-Green tensor be
n, accumulated plastic flow measure γn, and

damage history parameter κn.
Find at element level:

• Contribution to residual vector and tangent matrix for final values of be, γ and κ.
Compute at each integration point:

• Current deformation gradient at given integration point F = I + ∂u
∂X

.
• For element with F-bar modification:

– Current deformation gradient at centroid of element F0.
– Modified deformation gradient [15]: F̄ = 3

q
det(F)
det(F0)

F.
– Replacement of deformation gradient F by F̄.

• Relative deformation gradient: f = FF−1
n .

• Trial elastic left Cauchy–Green tensor: be
tr = fbe

nfT .
• Strain potential: ψe(be

tr).
• Trial effective Kirchhoff stress tensor: τ̂tr = 2 ∂ψe

∂be
tr

be
tr.

• Yield function for trial effective stress: Fp(τ̂tr, γn).
• Yield condition:

If Fp < 0: state is admissible → be = be
tr, γ = γn.

Else, state is inadmissible → be and γ computed from:(
Rbe = be − exp[−2(γ − γn)N(τ̂ (be))]be

tr = 0,

Ry = Fp(τ̂ (be), γ) = 0.

• Damage loading function: Fd(ε̄, κ).
• Damage condition:

If Fd < 0 then there is no damage growth → κ = κn.
Else if Fd > 0 then damage grows → κ = ε̄.

• Damage variable: ω(κ) = 1− κ0
κ

(1− α + α exp(−β(κ− κ0)).
• Free energy: ψ(be, ω, γ) = (1− ω)ψe(be) + ψp(γ).
• Local strain measure, e.g.: ε̃ = det(F)− 1.
• Potential for averaging equation: Π(ε̄, ε̃) = 1

2

`
(ε̄− ε̃)2 + l2∇ε̄ · ∇ε̄

´
.

• Contribution to residual vector and tangent matrix:
R =

h
∂(ψ−W ext)

∂u1
, ∂(ψ−W ext)

∂u2
, . . . , ∂(ψ−W ext)

∂u24
, ∂Π

∂ε̄1
, ∂Π

∂ε̄2
, . . . , ∂Π

∂ε̄8

i
, K = ∂R

∂p
.

Box 1. Finite element algorithm for large strain elasto-plasticity coupled with gradient
damage (standard 8-nodes element).
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6. Results of numerical simulations

In order to assess the performance of the material model described above,
the selected results of numerical simulations are presented. All tests have been
performed using finite element environment AceFEM [6]. Due to the complexity
of the examined model selected aspects have been analysed. Firstly, test results
related to different finite element types are presented, secondly a comparison
of spatial and material averaging for the hyperelastic-gradient-damage model is
performed and finally simulations for the different non-local strain measures are
included.

In the following simulations two specimens are analysed: a bar with vari-
able cross-section along the length (VCSB) and a perforated plate (PP) – both
specimens are in tension. The dimensions and the boundary conditions of the
samples are presented in Figs. 1 and 3, whereas the applied discretizations in
Figs. 2 and 4.

Fig. 1. Geometry and boundary conditions for VCSB.

Fig. 2. Discretizations of VCSB: 20× 4× 4 (coarse mesh), 40× 8× 8 (medium mesh) and
80× 12× 12 (fine mesh).

The statement of the material laws and parameters which are applied in
the simulations are presented in Tables 1 and 2. If other formulas or values are
considered then it is stated in the test description.
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Fig. 3. Geometry and boundary conditions for PP.

Fig. 4. Discretizations of PP: 48, 192 and 432 elements.

Table 1. Summary of material laws used for numerical simulations.

Description Formula

Elastic free energy [9] ψe(be) = 0.5K[0.5(det(be)− 1)− 0.5ln(det(be))]

+0.5G(tr(det(be)−1/3be)− 3)

Damage evolution law [16] ω(κ) = 1− (κ0/κ) (1− α + α exp(−β(κ− κ0))

Measure governing damage ε = det(F)− 1

Plasticity function f(τ̂ ) =
√

2J2 + (αp/3)I

Table 2. Summary of material properties used for numerical simulations.

Property Symbol Value Unit

Young modulus E 200e9 Pa

Poisson ratio ν 0.3 –

Damage threshold κ0 0.04 –

Damage evolution law parameter αd 0.95 –

Damage evolution law parameter βd 5 –

Internal length scale for material averaging lmat 0.01 m

Internal length scale for spatial averaging lspat 0.01 m

Initial compression yield threshold σc0 1.225e9 Pa

Initial tension yield threshold σt0 1.225e9 Pa

Hardening modulus h 20e9 Pa
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6.1. Tests for different elements

The first group of simulations is performed for different types of the finite
elements. Particularly, the following ones are taken into account:

• elements H1 – standard eight-noded hexahedron with linear interpolation
of the displacement and non-local variable fields,

• elements H1+F̄ – eight-noded hexahedron with linear interpolation of the
unknown fields and the F-bar approach applied,

• elements H2S – standard 20-noded Serendipity hexahedron with quadratic
interpolation of displacements and linear interpolation of the non-local
variable field.

The first simulation is performed for the material model of hyperelasticity-
plasticity and the VCSB specimen. The diagram presenting the sum of reactions
on the supported end of the sample versus the displacement imposed at the
other end is shown in Fig. 5. It can be observed that the curves for elements
H1 differ significantly from the other curves and they depend on the adopted
discretization. The reason for that behaviour is the locking phenomenon which
causes a stiffer sample response. The results for elements H1 + F̄ and elements
H2S coincide in the pre-peak regime. For each diagram, softening of the material
can be observed which is caused by the geometrical effects – necking. This phe-
nomenon occurs although plasticity with hardening is applied. In the post-peak
regime the results differ for each mesh which motivates regularization.

Fig. 5. Sum of reactions vs displacements for different elements (hyperelasticity-plasticity,
VCSB).

The second test is performed using PP and hyperelastic-plastic model coupled
with gradient damage. In this test the damage threshold is assumed to be equal
to κ0 = 0.003 and material averaging is applied with internal length lmat = 0.02.

The graph presenting the sum of reactions vs enforced displacement is pre-
sented in Fig. 6. It can be noticed that the behaviour of the hyperelastic-plastic
material (dashed lines) is similar to the previous test: the results for elements
H1 + F̄ and H2S are similar whereas the model simulated with elements H1 ex-
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Fig. 6. Sum of reactions vs stretch ratio (hyperelasticity-gradient-damage-plasticity, PP).

hibits a larger stiffness. Also in this test, in spite of plasticity with hardening,
necking can be observed. If the model coupled with gradient damage is taken
into account, then the results for H1+F̄ and H2S coincide up to beginning of the
necking process (for u ≈ 0.024 m). It can be noticed that although the gradient
averaging is applied in the model it does not preserve the numerical results from
the mesh-sensitivity for the softening caused by geometrical effects.

Taking the observation from these simulations into account the following
computations are performed for elements H1 + F̄.

6.2. Spatial vs material averaging

As it was mentioned, gradient averaging applied to large strains can be per-
formed in the undeformed or in the current configuration. To investigate the
behaviour of models with these two kinds of averaging methods the following
numerical tests are performed.

Firstly, the VCSB example is analysed. The application of the sample whose
cross-section is variable along the length causes that the cross-section where
damage occurs at first is prescribed – it is the narrowest end of the bar. The
internal length parameter is assumed to be constant l = 0.01 during deformation
process and has the same value for both material and spatial averaging. This
group of tests is performed for the hyperelasticity-gradient-damage model.

Figure 7 depicts the sum of reactions for the enforced displacements.
Although the simulations are performed with identical material parameters,

the response for the two types of averaging differs significantly. Firstly, it can be
observed that the post-peak branch for the model with spatial averaging descends
more rapidly than for material averaging. Secondly, the application of spatial av-
eraging does not result in mesh-insensitivity: for each discretization the diagram
is different. The results for material averaging for all analysed discretizations are
close, and the diagrams for the second and the third mesh almost coincide.
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Fig. 7. Displacement vs reaction sum for material and spatial averaging and different
discretizations.

It is shown in Figs. 8 and 10 how the specimen deforms and how the first
component of the Green strain tensor Exx and damage variable ω are distributed.
Moreover, in Fig. 9 the evolution of Exx along the bar length is depicted.

Fig. 8. Deformed meshes at the end of tension test with Exx distribution for material
averaging (upper three pictures) and spatial averaging (lower three pictures) –

hyperelasticity-gradient-damage, VCSB.
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Fig. 9. Evolution of the first component of Green strain tensor Exx for material (on the left)
and spatial (on the right) averaging – medium mesh (hyperelasticity-gradient-damage,

VCSB).

Fig. 10. Deformed meshes at the end of tension test with damage variable ω distribution for
material averaging (upper three pictures) and spatial averaging (lower three pictures).



Gradient-enhanced damage model for large deformations. . . 423

It can be observed that for spatial averaging the deformation and the strain
distribution depend on the finite element discretization, whereas for material
averaging the response is similar for different meshes. It can be noticed in Fig. 9
that as the enforced displacement increases the strain localization zone gets
narrower for spatial averaging. For large enough deformation, strains concentrate
in one row of elements for all analysed discretizations. Although in the considered
description the gradient regularization is applied, it does not fully preserve the
numerical simulations from the pathological mesh-sensitivity.

It can be noticed in Fig. 10 that the damage zone is similar for all discretiza-
tions for spatial averaging although the deformation differs significantly. The
phenomenon is caused by irreversibility of the state of material damage. The
damage area which arises at the beginning of the loading process does not be-
come smaller even if deformations concentrate in the gradually smaller band and
the rest of the sample is unloaded.

Fig. 11. Evolution of material internal length whereas spatial is fixed and conversely, mesh
40× 8× 8.

The phenomenon of mesh-sensitivity observed for spatial averaging was no-
ticed by Steinmann [3], however without detailed explanation. To investigate
the reason for such a behaviour, the evolution of material or spatial length scale
parameters for the two kinds of averaging are studied (Fig. 11). The relation
between parameters presented in Fig. 11 is expressed through Eq. (5.7). In the
first diagram we can observe the evolution of the material internal length along
the bar for the medium mesh whereas the spatial one is fixed. The value of the
length parameter decreases in the damage zone with increasing loading. On the
other hand, if the material internal length is fixed, the value of the spatial one
grows at the end of the bar with the smaller cross-sectional area. It can also be
observed that for spatial averaging the corresponding material length scale at
the narrowest end of the bar decreases to the value less than 0.001 m whereas the
size of element for the medium mesh is equal to 0.0025 m. Numerical experiments
reveal that for the assumed material parameters and the VCSB specimen (mesh
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40× 8× 8) the application of the constant internal length for material averaging
less than 0.002 m results in the localization of strains in one row of elements.

For the deformation process performed for spatial averaging it can be ob-
served that the zone where the strains grow gradually narrows and finally re-
duces to one row of elements when the corresponding material, internal length
is small enough.

To conclude, the averaging performed with the constant spatial internal scale
and fixed mesh in the deformed configuration causes the effect that for strains
large enough the gradient enhancement does not preserve the solution from the
mesh sensitivity. For spatial averaging an adaptative mesh refinement can be
considered to remove the dependency on the discretization.

6.3. Tests for different strain measures

In the following simulations the dependence of the results on the adopted
strain measure which governs the damage evolution is investigated. Two measures
introduced in Section 2 are taken into account:

ε̃1 = det(F )− 1, ε̃2 =
√

(e+
1 )2 + (e+

2 )2 + (e+
3 )2.

Firstly, the simulations for VCSB are performed for the coarse and the
medium mesh, and the hyperelastic-damage model with material averaging. In
order to initiate the damage process at the same moment in the two considered
cases, the damage threshold is assumed different for each measure: κ0,ε̃1 = 0.04
and κ0,ε̃2 = 0.085.

In Fig. 12 the sum of reactions vs enforced displacements diagram is depicted.
It can be observed that the results significantly differ for the two measures. If
we assume the same damage evolution law with identical material parameters
(as in Tables 1 and 2), then the model with ε̃1 exhibits much lower stiffness
whereas for ε̃2 the sum of reactions is degraded to a lesser extent. To verify if the

Fig. 12. Sum of reactions for hyperelasticity-gradient-damage model with different
deformation measures – VCSB.
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difference is a result of the adopted parameters of the damage evolution law, the
tests for ε̃2 and the higher value of parameter βd = 20 are performed. It turns
out that although the sum of reactions reaches values smaller than previously,
the diagram behaves in a different way: the loss of stiffness is very rapid in the
first phase of the damage process and later it is more gentle, whereas for ε̃1
the diagram descends rather uniformly. In the post-peak regime the snap-back
would probably be observed if the arc-length control was applied instead of the
enforcing displacement.

When analysing the deformed mesh with the non-local variable distribution
(Fig. 13), the difference in the sample shape at the end of the deformation
process can be noticed. For each test the deformation of the finite element mesh is
different. Moreover, for ε̃1 the non-local variable is almost twice larger than for ε̃2.

Fig. 13. Deformed mesh and non-local variable distribution for: 1) ε̃1 and βd = 5, 2) ε̃2 and
βd = 5, 3) ε̃2 and βd = 20.

The second test is performed for the PP specimen with the same material
parameters as previously apart from the internal length which is assumed to be
l = 0.02 m. The sum of reactions vs displacement diagram (Fig. 14) is similar to
the response of VCSB: for the different measures governing damage the diagram
presents the various responses of the sample.

On the other hand, if the material model including plasticity coupled with
gradient damage is considered (Fig. 15), then the sum of reactions diagrams for
the models with different strain measures are very close (notice however that we
assumed κ0,ε̃1 = 0.003 and κ0,ε̃2 = 0.007).

Taking into account these results, we conclude that the strain measure applied
to the model is of high significance for hyperelasticity with damage and should be
carefully selected for a specific material to be analysed. For the material model
coupled with plasticity the choice of ε̃ does not influence the results strongly.
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Fig. 14. Sum of reactions for hyperelasticity with gradient damage with different
deformation measures – PP.

Fig. 15. Sum of reactions for hyperelasticity-gradient-damage-plasticity model with different
deformation measures – PP.

7. Conclusion

In this paper, the framework of the gradient-enhanced large-strain elasticity-
damage-plasticity model has been outlined. The model is based on the mul-
tiplicative decomposition of the deformation gradient (2.1), the Helmholtz free
energy in the form (2.3) and is limited to isotropy and isothermal conditions. The
gradient averaging is applied to the deformation measure which determines the
damage growth. The selected aspects of the implementation within AceGen pack-
age are discussed and the detailed presentation of solution algorithm is included.
The application of the advanced symbolic computation tool gives the authors the
possibility to focus on the analytical model instead on FEM programming.

The selected results of the computational tests for the analysed model have
been presented. Firstly, the influence of the adopted finite element types has
been investigated. The presented numerical results show that the standard eight-
noded hexahedral elements cannot properly reproduce plasticity due to the phe-
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nomenon of volumetric locking. The problem can be solved using the elements
with a higher-order approximation or by a proper modification of the standard
elements, for example the F-bar approach. Both possibilities have been con-
sidered in the work and it turns out that both are able to simulate a plastic
process successfully. Therefore, and because of a smaller cost of computations,
the standard elements with the F-bar amendment are employed in further com-
putations.

Since a comprehensive analysis of the configuration selection for gradient
averaging seems to be missing in the literature (apart from the publication of
Steinmann [3]), this issue has been examined in the paper. The numerical results
reveal that the averaging performed in the current configuration does not fully
prevent the results from the pathological mesh sensitivity as opposed to material
averaging. This situation is caused by the change of element size during localiza-
tion whereas the internal length parameter is assumed to have a constant value
in the current configuration during whole deformation process.

The problem of the choice of a deformation measure governing damage has
also been analysed. Two different measures have been taken into account and
tested using different specimens. It turns out that the selection of the deformation
measure can strongly influence the results for the hyper-elastic model coupled
with gradient averaging. Consequently, the application of a proper measure which
can correctly reproduce the behaviour of a real material is an important aspect
of constitutive modeling.

Moreover, it should be stressed that neglecting the assumption of small de-
formation induces also the geometrical effect of necking which causes mesh-
sensitivity in the simulations even though the gradient averaging is applied in
the model. The proper reproduction of geometrical softening observed for plas-
ticity should be further investigated. Moreover, an adaptive mesh refinement is
especially advisable for the spatial averaging. The research is also planned to be
extended towards thermo-mechanical coupling.

Acknowledgments

The authors acknowledge fruitful discussions on the research with Prof.
S. Stupkiewicz from IPPT, Warsaw, Poland.

The research has been carried out within the grant from Doctus-Małopolska
doctoral scholarship fund.

The contribution of the second author was supported by the European Union
through the European Social Fund within project “Cracow University of Tech-
nology development program – top quality teaching for the prospective Polish
engineers; University of the 21st century” (contract no.UDA-POKL.04.01.01-00-
029/10-00).



428 B. Wcisło, J. Pamin, K. Kowalczyk-Gajewska

References

1. H. Li, N. Chandra, Analysis of crack growth and crack tip plasticity in ductile materials
using cohesive zone models, Int. J. Plasticity, 19, 849–882, 2003.

2. R.H.J. Peerlings, R. de Borst, W.A.M. Brekelmans, J.H.P. de Vree, Gradient-
enhanced damage for quasi-brittle materials, Int. J. Numer. Meth. Engng., 39, 3391–3403,
1996.

3. P. Steinmann, Formulation and computation of geometrically non-linear gradient dam-
age, Int. J. Numer. Meth. Engng., 46, 5, 757–779, 1999.

4. M.G.D. Geers, Finite strain logarithmic hyperelasto-plasticity with softening: a strongly
non-local implicit gradient framework, Comput. Methods Appl. Mech. Engrg., 193, 3377–
3401, 2004.

5. P.M.A. Areias, J.M.A. César de Sá, C.A. Conceição, A gradient model for finite
strain elastoplasticity coupled with damage, Finite Elements in Analysis and Design, 39,
13, 1191–1235, 2003.

6. J. Korelc, Automation of primal and sensitivity analysis of transient coupled problems,
Computational Mechanics, 44, 631–649, 2009.

7. F. Auricchio, R. L. Taylor, A return-map algorithm for general associative isotropic
elasto-plastic materials in large deformation regimes, Int. J. Plasticity, 15, 1359–1378,
1999.

8. T. Żebro, K. Kowalczyk-Gajewska, J. Pamin, A geometrically nonlinear model of
scalar damage coupled to plasticity Technical Transactions, 20, 251–262, 2008; Series En-
vironmental Enginnering 3-Ś/2008.

9. J.C. Simo, T.J.R. Hughes, Computational Inelasticity. Interdisciplinary Applied Math-
ematics, Vol. 7, Springer, New York, 1998.

10. J. Lemaitre, Coupled elasto-plasticity and damage constitutive equations, Comput. Meth-
ods Appl. Mech. Engrg., 51, 31–49, 1984.

11. T. Belytschko, D. Lasry, A study of localization limiters for strain-softening in statics
and dynamics, Comput. & Struct., 33, 707–715, 1989.

12. P. Wriggers, Nonlinear Finite Element Methods, Springer, Berlin, Heidelberg, 2008.

13. J.C. Simo, M.S. Rifai, A class of mixed assumed strain methods and the method of
incompatible modes, Int. J. Numer. Meth. Engng., 29, 1595–1638, 1990.

14. T.J.R. Hughes, Generalization of selective integration procedures to anisotropic and non-
linear media, Int. J. Numer. Meth. Engng., 15, 1413–1418, 1980.

15. E.A. de Souza Neto, D. Peric, D.R.J. Owen, Computational Methods for Plasticity.
Theory and Applications, John Wiley & Sons, Ltd, Chichester, UK, 2008.

16. J. Mazars, G. Pijaudier-Cabot, Continuum damage theory – application to concrete,
ASCE J. Eng. Mech., 115, 345–365, 1989.

Received December 28, 2012; revised version April 15, 2013.




