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A SYSTEMATIC STUDY OF LOAD CARRYING CAPACITY OF
ROTATIONALLY SYMMETRIC PLATES WiTH THE HUBER-MISES
YIELD CONDITION

JLSOKOLSUPEL and A, SAWCZ UK (WARSZAWA)

Rotationally symmetric. bending of rigid-plastic plates is considered, a technique of solving
the plastic plate equations is developed, and a systematic presentation of design data for plates
obeying the Huber-Mises yield condition is given. The proposed numerical procedure is presented
frst. Tt concerns arbitrarily loaded circular and annular plates. The collection of tables and diagrams
is then given, allowing to evaluate the load carrying capacities of rotationally symmetric metal
plates subjected either to pressure varying with radial coordinate or to wedge loads, The paper
gives a unified presentation of the theory and desing data for circular plates made of the Huber-
Mises material.

1. INTRODUCTION

Limit analysis of circular and annular plates is one of the most extensively stud-
ied branches of the plastic analysis of structures. A number of solutions was obtained
for particular loading and support conditions of plates with various yield criteria.
An account of the theory and the solutions available can be found in the mono-
graphs [1-8].

For piece-wise linear yield criteria, both for the isotropic and anisotropic plate
closed form, complete solutions to boundary value problems of incipient plastic
motion of such structures are usually straightforward to obtain. In the case of non-
linear conditions of yielding, e.g., the Huber-Mises criterion for metal plates, so-
lutions can be obtained through numerical procedures only. Horking and WANG
[9} produced the first results regarding the load carrying capacities of rigid-plastic
circular plaies under uniform pressure which obey the Huber-Mises vield criterion.
Eason [10] studied velocity fields at collapse of such plates thus complementing
the results obtained in Ref. [9] with explicit results. OschaTz [11] presented solutions
for plates when taking into account the transverse shear effect on yielding. GONTHER
and BrAUNING [12, 13] considered anisotropic circular plates as well as plates of
variables thickness and developed a suitable numerical procedure allowing also
to assess the influence of anisotropy on the load carrymg capacities of plates with
nonlinear yield criteria.

The most extensive study of circular plates obeying the Huber-Mises vield cri-
terion and subjected to uniformly distributed or ring loads is due to GUERLEMENT
and LaMBLIN [13] who produced a set of solutions containing typical distributions
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of bending moments at the yield point loads as well as the values of the load carrying
capacities for several cases of boundary conditions and load arrangements.

Although the number of available solutions is quite large, there was no unified
presentation of the problem both as regards the methods of numerical integration
of plastic plate equations at nonlinear yield criteria as well as the load carrying
‘capacities and the stress fields at collapse. However, for design purposes it is neces-
sary, in addition to the principles of finding the solution, to bave the results of
a systematic investigation of the problem, yielding a set of tables and diagrams
representing the collapse loads, bending moment fields and collapse mechanisms
for various loading and boundary conditions. Such an attempt was made in [15]
presenting the numerical method developed and partial results regarding complete
solutions to circular and annular plate problems of Limit analysis in the case of
the Huber-Mises yield condition. The method was developed further to account
for arbitrary rotationally symmetric loading and anisotropic nonlinear yield criteria
[16].

The present paper describes a technique of integrating the equations of rotation-
ally symmetric bending of rigid-plastic plates and gives a systematic exposition
of design data for plates with the Huber-Mises yield condition. Previously available
results were cheeked and new cases of loading were solved in order to arrive at
comprehensive presentation of collapse toads and bending moments for the plates in
guestion. The Tesults are presented in tables and graphs thus complementing the
solutions concerning the lincarly elastic range [17]. Whenever elastic-plastic solu-
tions were available, the results of the performed rigid-plastic analysis were con-
fronted with the existing data of Soxorovski [18, 19], OuasAr and MURAKAMI
[20, 21], HAYTHORTHWATTE [22] and ILIUSHIN [23].

In Section 2 the plate equations are discussed in the case of nonlinear yield cri-
teria. The adopted numerical procedure is outlined in the next section. Section 4
contains the collapse load and bending moments for circular plates under various
types of distributed loads. The results regarding partially loaded circular plates
as well as statically determinate annular plates are given in Sections 5 and 6. Section 7
deals with annular plates supported or clamped on both boundaries. The final
section contains some concluding remarks. The collection of tables and diagrams
allows to assess the load carrying capacities of rotationally symmetric metal plates
in typical situations occurring in technology.

2. PLATE BQUATIONS

In rotationally symmetric loading and boundary conditions plastic bending
of circular and annular plates is governed by ordinary differential equations. The
net of principal lines of moments and curvatures defines a system of polar coordi-
nates on the plate middle surface. A plate element and the coordinate system R, &
are shown in Fig. 1 where the adopted notation and the sign convention for the
stress resultants as well as for the displacement velocity are also specified.
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Let B denote the outer radius and M, be the plate yield moment. The rates of
carvature of the deflected surface W are denotled by K, and K,, whereas the radial
and the circumferential bending moments are A, and M,, respectively, and S,

FiG. 1.

denotes the radial transverse shear. The following dimensionless gquantities will
be employed in the analysis:

R WH
J':E? W;? ’ w,=HK,, Kp=HKy,
2.1
_ M, _ M, S B
fnr'—MO s Titg _MU > MO

The dimensionless distributed pressure and line load are, respectively,

PR? 0B

MP_MU Ed juq__MD:

(2.2)

where g denotes the collapse load multiplier.

The complete solution of a limit analysis problem for a plate consists in finding
the collapse load corresponding to the incipient plastic motion, the bending moment
distribution associated with the collapse load, and a deflection velocity of the plate
middle surface,

The set of equations consists of the equilibrivm requirements

(2.3) (rs) +rpp=0, (rm) —wmpy—rs=0

Rozprawy Iniynierskie — 2
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the curvature—displacement relations

!

w
2.4) Ke=W, Ke= T,
a yield condition
(2.5) F(m,, mg)—1=0 or  my==f(m,)
~and the plastic potential flow law '
( IF 8F) >0
(2.6) (10 ICg)==V 5}; o) v

with an appropriate generalization in the case of yield loci with singularities.
The plate equations split into two systems. Equations (2.3) and (2.5) reduce
to the following single equation:

@7 (rm) —f(m)+u [ ppdp+C=0

and the bending moment field can be specified if stress boundary conditions are
prescribed.
The deflection velocity is governed by the equation

y ’dmg_o
28 b =0,

which follows from Eqs. (2.4) and' (2.5). The deflection rate field depends on the
slope of the yield curve (2.5) and contains hinge lines. A circular hinge forms when

rr

50 x, W
. —=p—
( ) %o F W' -

and the slope of the deflected surface W suffers then a discontinuity, [w']#£0. Such
a circumferential hinge corresponds to these points of the yield curve (2.5) where
dm,

(2.10) o

The usual procedure of solving plate equations consists in integrating Eq. (2.7)
and then finding the associated velocity field from Eq. (2.8) for the boundary condi-
tions in question.

The boundary conditions are at the free edge

(2.11) we=w,,  HL=0,

at the simply supported boundary

(2.12) w={0, m=0

and at the clamped edge of the plate

(2.13) w={0 and w'=0 or [w']=0—-m,=exirm,,

according to Eq. (2.10).
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For a nonlinear yield condition the resulting differential equations are nonlinear
and require numerical procedures to arrive at the solution. At this stage there are
no differences between isotropic and orthotropic plates provided the principal
direction of moments and curvatures coincide with those of orthotropy.

Once the bending moments and the deflection velocity are obtained from Eqgs.
(2.7) and (2.8), there still remains to check the non-negativeness of the flow multiplier
v appearing in the associated flow law (2.6), thus

w' | F
(2.14) V=T %>0

in plastically deforming regions.

3. NUMERICAL PROCEDURE

We shall consider plates with the Huber-Mises yield condition

3.1 F=m?—m, my+m; — 1==0,
r 97

Fra., 2.

shown in Fig. 2. Circumferential hinge lines, according to Eq. (2.10), appear for
the stress states B and G marked on the vield ellipse in Fig. 2 and corresponding to

2
(3.2) =2y = X

Equation (2.7) specifying the radial moment becomes

dm, 1( 1

1
= - _ a2
(3.3) = | mgme V4 3mr+sr),
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where

k—1 Cjyq d

1
Ty T
6o o==ul 3 [ nodor [modr Y abpz
1 C; 1

C

and uT denotes the total load acting on the plate, hence

(3.5) T=2n {j‘ [pipdp+ Z’ 4 bi} .
1 1

In Eq. (3.4) § denotes the reaction at an internal support. The notation employed
is defined in Fig. 3 representing a radial section of an annular plate under stepwise
loading.

Chet ,||,
by I
A
Ci 1. i
. + !
By
Lo g {1
r
1 L
FG. 3.

For statically determinate cases, #=0 or fi=1, Eq. (3.3} can be integrated for
the appropriate stress boundary conditions. Otherwise, the integration of Eq. (3.3)
is accompanied by solving the equation governing the displacement velocity.

For the Huber-Mises yield condition Eq. (2.8) takes the form

(3.6) 2 (1 s )
. w4 w X ja=
* 4—3m?
since
1 -
(3.7) o=y (. Va—3m?).

Its solution is

(3.8 =C r ”i +—3.—r —lydtldp+C
. = L aAv
) " 1fexp[f 2t(‘3/4_3mf ) ] pCas

whereas €, and C, are to be determined from the kinematical boundary conditions.

For statically indeterminate cases a missing condition for evaluating the reaction
f entering Eq. {(3.4) is that of changing the sign of the circumferential curvature
of the deflection velocity (3.8). Requiring

(3.9 E,=0 thus w'=0
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one obtains r==r*% such that w(r*)=w, and

2 dn,

oYy — - I
(310) mr'(i )_iVE » dl‘ rzr*_

hence r* is obiained from the equation

1
3.11 T—= =0,
( ) Sr+_l,/3
which specifies the radius where the stress profile changes from the upper part

of the yield ellipse in Fig. 2 to the lower part BAKJHG.

A computer program was developed to yield numerical solutions to Eas. (3.3)
and (3.8). The flow chart and details of the program concerning the Huber-Mises
yield condition can be found on [15] and for an arbitrary nonlinear yield condition
in [16]. The essentials of the adopted procedure will only be given here in order
to make the numerical values presented in the following sections easy to interpret.

The program was arranged in three routines regarding the stress profile on the
yield condition. The first group of problems concerned the equation

dm, 1 i 1
(3.12) o =r(*zmm,.+3~1/4—3mf+sr),
where
E—1 Cjyy r 1
(.13 sr=—p{ ' [ piodot [ pupdo+ 3 q:bi)
1 G Ci 1

under the conditions, respectively,

-E,
3.14 : d =0 =2
(3.14) | m, (@)= ‘i/§ ani m, (D=0 o1 m( )—‘/§ .

0
The kinematical conditons for Eq. (3.8) were

(3.15) wlgl=wy, w(l)=0.

This group of problems therefore contained circular plates, plates with a rigid central
boss as well as annular plates with the internal edge free. The stress profile thus
belonged to the part BCDEFG of the yield ellipse in Fig. 2. Equation (3.12) was
integrated using the Runge-Kutta fourth-order method so as to meet the prescribed-
value at the outer boundary and thus find the corresponding value of the collapse
load multiplier .

The second group of problems considered was goverened by the equation

dm, 1 ( 1
drr 2

I —_—
(3.16) =—\—ym— Va3 +.w-)
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and Eq. (3.4) with f=1, under the conditions
(3.17) m(1)=0 and m(a)=0 or m,{a)= —Vzg
The kinematical boundary conditions for Egq. (3.8) were

(3.18) w(a)=0, w(l)=wy.

This group consisted thus of annular plates with the outer edge free. The stress pro-
file belonged to the part BAKIHG of the yield locus in Fig. 2. The integraiion tech-
nique was .he same as in the previous case.

The last group of studied problems concerned statically indeterminate plates,
thus annular plates hinged or clamped at both circumferences. For ar<r* Eq.
(3.16), is applied, whereas in the range r*<r<1 Eq. (3.12) should be applied, under
the conditions

+{) . 2
(3.19) H, (a)={ _% and m{)=0 or m(1}= ‘“"]73:1
Moreover,
(3.20) ) -2
. Hl, (’ ]/3

according to the requirement (3.9), whereas r* is obtained from Eq. (3.11}. Equations
(3.12) and (3.16) are solved using Eq. (3.4). The computation procedure is now
more involved since the reaction B has to be determined using the information
available from the transverse velocity field (3.8), and specifically the requirements
(3.9). The kinematical boundary conditions are

(3.21) w(@=0, w(EH=w,, u;(nmo.

The solution procedure requires several trials involving resolutions of Eq. (3.11)
and the technique is explained in [I5].

The program allows to find the complete limit analysis solutions for rotationally
symmetric plates subjected to an arbitrary number of wedge loads and piece-wise
continuous distributed loads as indicated in Fig. 3. The entire plate is in a plastic
state and the bending moments are continnous. The program compuics values
of the collapse load multiplier with a prescribed accuracy e. The results given in
the tables have the accuracy & (1)=0.001. The program prints the collapse load
multiplier u, the reaction f, the radius 7* of the stress profile change as well as the
values m,, mp and w at the required points of the plate radius.

4. CIRCURAY, PLATES UNDER DISTRIBUTED LOADS

For simply supported circular plates subjected to downwards directed disiributed
loading the stress profile corresponds to the segment CDE of the yield ellipse of
Fig. 2. When the plate cirenmference is clamped, the stress profile extends over
the region CDEFG.



Table 1

Load carrying Lad carrying

Simply _ capadty Clamped _capacity
supported Total : Total
K load # load

J&—{é é & $ $ \gzL - 6.517 20.472 %I & é é éé é 12,551 | 39.431
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Table 2

Beading moments and

Loading |
r | 0.000] 0050 | 0.100 | 0.150] 020 | 025 | 030 | 035 1
EETRRTER m, | 1.000 [10.998 | 0,992 0981”0967‘ 0.947 | 0.924 | 0.896
my | 1000 | 1002 | 1,008 | 1.017 | 1.030 | 1.045 | 1.061 1078
u=6.517 whvo | 1.000 | 0.091 | 0.978 | 0.955 | 0.924 | 0.836 | 0.841 | 0.792
Mé gﬂ w1000 0995 0.084 | 0.966 | 0.940 | 0,908 | 0.869 oszs
& \?ﬁ | 1000 | 1.004 | 1.015 | 1031 | 1.05F | 1.072 | 1.093 1112
{=13.0M wiwa | 1.000 | 0.989 | 0.972 | 0.945 | 0.909 | 0.865 | 0.816 | 0.762
l - m, | 1.000 | 1.000 | 0.999 0,998 | 0.993 | 0,987 | 0.977 | 0.963
AM l ms | 1.000 | £.000 | 1.001 1.003‘ 1.007 | 1.013 | 1.022 | 1.034
= 12.840 wiwe | 1.000 | 0.993 0983 0.965 | 0,940 | 0.909 | 0.870 | 0.826
/fﬂf@‘h\;\ Tm 1000 0997 0.988 | 0.974 | 0.953 | 0.926 'o'j'é'éé' 0.855
my | 1000 [1.003 | 1011 1025 1,041 | 1,060 | 1.080 | 1.100
(=8.322 g 1,000 | 0.990 | 0.975 | 0.949 | 0.915 | 0.873 | 0.826 | 0.773
Ny T 1.000 1,000 | 1.000 | 0.999 | 0.999 | 0.997 | 0.993 | 0.987
M m, | 1000 | 1,000 | 1000 | 1001 | 1.001 | 1,003 | 1.008 | 1013
p=21.188 i wheo | 1.000 | 0,994 | 0,985 | 0.969 | 0.947 | 0.919 | 0.834 | 0.844

Table 3

Bending moments and

Hoadivg "+ o000 0050 0.100 | 0.150 | 020 | 0:25 | 030 | 035 |

ny 1.000 1004 1.015 | 1.033 | 1.054 | 1.078 | 1.102 | 1.123

wiwg TOOO 0.988 0.970' 0.939 0.899 0852 0.798 | 0.740

TJ; _'_ / ni, | 1.000 0996 0.984 | 0.964 | 0.935 { 0.898 | 0.850 | 0.793
¥y d .

U

= 12,551

/((N m, | 1.000 ] 0.092 0971 | 0.935 0,386 0824 0.749 | 0.661
g : - 1.084 | 1.113

my | 1.000 | 1.008 | 1.027 | 1.054 1136 | 1150
un 24 915 wive | 1,000 | 0.984 | 0.960 | 0.923 | 0.874 | 0.819 | 0.758 | 0.696
h\\ ﬂ/ | 1000 | 1.000 | 0.998 | 0.094 | 0.985 | 0.973 | 0.953 | 0.925
7 et | 1.000 | 1.000 | 1002 1.006 | 1.013 1025 | 1.041 1.061

e OR A6 wiwe | 1.000 | ©.992 | 0979 | 0.958 | 0.928 | 0.890 ; 0.840 | 0.795
— m, | 1000 | 0.994 0978 170,950 | 0.916 | 0.858 0794 0‘?17

A vﬂ\h\

= 17515 wiwg | 1.000 0.986 | 0.954 | 0.930 0 885 0.8321 0774 0712

qu/é 078

m, | 1.600 | 1.000 | 1.000 | 0.999 | 0.997 | 0.993 | 0.986 | 0.973
L=42.687

AR

my | 1.000 1.006 1.021 | 1.044 1071 1.098 | 1.123 1.[42

IANRAN

"\'("\\‘*“‘ir

my | 1,600 | 1.000 1000 1.001 1003 1.007 § 1.014 § 1.025
whvg | 1.000 | 0.993 0983 0.963 0940 0.908 | 0.869 | 0.823

12287



Table 2 [ecent.)

deflection velocities

| 1.00

| 040 ] 045 [ 050 | 055 [ 0.60 [ 065 [ 070 [ 075 [ 080 | 0.85 | 0.90 | 0,95 |

0.862

0.823

0.779

0.730

1.096

1.112

1.127

1.139

0.675
1.148

0.613
1153

0.546
1154

0.472
1.148

0.738

0.681

0.621

0 76

0.722

0.663

0.559
0.602°

0.497

0.433

0.370

0.306

0.392

1136

0.243

0.537

0.469

0.401

0.331

1.129

0.705

1.141

0.646

I 150
0586

1.154

1.154

1.148

1138

1.124

0 261
1. 105

0.304

0.210

0.115

6,000

1.116

1.088

1.052

1.000

0.181

0.19?

0,119

0.059

0.000

0.126

0.061

0.000

1.082

1.057

1.029

1.000

0.525

0.944

0.920

0,839

0.851

0.464
0.805

1.048

1.064

1.083

0.777

0.722

0.664

1 101

0.602

1.120

0.403
0 749

1. 136

0 342
0.683

0 282
O 605

0.224

0,515 |

0.166
0.410

0.10%

0219

0.054
0.154

0.000
0.600

1,148

1154

1.153

0.537

0.471

0.404

0335

0.810

760

0.705

0.645

0.580

0.511

0.440

8.366

1.118

1.133

1.145

0.717

0.658

0.598

0977

0963

0.944 |

1.021

1 033

1.048

1 152
0 537

0.917
1.066

1.155

1.152

1,145

1.131

0.267
0291

LL13

0.475

0.413

0.351

0.290

0.882

1.086

0.798

0 745

0.689

0.628

0.564

0.836

0776

0.704

0230 |
0,612 | (

1 140
0. 199

0.216

1090

0.170
0.499

1.113

1.128

1.145

1.154

1.151

1.068
0.065

1] 0,060
1.033 |

0.056

10197

1.084

8.427

0.356

0.284

0.212

0.070

1.000

0.000
0.000
1,000

0.000

0.000

1 000

0 000

Table 3 Icont.]

deflection velocities

| 040 | 045 | 0.50 | 0.5 | 0.60 | 0.65 | 070 | 075 | 050 | 085 [ 000 | 095 | 100

0725

1.141

0.646

0. 555

1.154

0.562

0.679

i 0.553

0.334

0.'452
1 146
o 490'
10.206

1.155

1.124

0.632

0.505

1 087

0.443

0.336

1.125

0.206
1.087

0 063

—0.095

—0.269

—.45%

1 030

0.949

0.838

0.688

0.428

0.367

0 307

0.250

0 194

0.141

0 071
1 036
0 383

4).071

-0.218

—0.369

—0 522

-0.678

0.963

0.873

0,764

0.631

0.471

fO 668
0 482
0.091

~0.835

70.898
0.180

—1.155
—0.576

0.000

0.326

0.2711

0.218

0.168

0.12%

0.887

0,715

I 084
0 739

0.628 | 0.

1.129

0.616

6| 0413

0‘696
1 146
0 551

0,529

0.482

0.342

0.177

—0.016

-0.241

1154

1,150

1.077

0.992

0.485

0.289

0.227

0.289

ST BT

—(.300

-0.464

0 650
0.954

i, 153 .

1.140

1.113

1.068

10.520

0.885

1.041

1.085

0.399

0.757

0.816

0 684

0 857

0.166
70_632

0.521

1.134

0 177
0 186
1. 080

0.127

0.772 .

0.654

0.523

0.250

-0.057

0.971
6.183
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The load carrying capacities Tor several cases of loading are given in Table 1.
The values originally obtained in Ref. [12] are thus either reconfirmed or improved.
Tn Table 2 the bending moments at the plate collapse as well as the deflection
velocities at the incipient plastic motion are given for simply supported plates at
varioys loading conditions. Table 3 contains analogous results for clamped plates.
~ In order to visualize the differences in the bending moment distributions for simply
supporied and clamped plates, Fig. 4 given the respective diagrams concerning
uniformly distributed loads. For other loading conditions appropriate diagrams
can be found in [15]. A comparison of the respective deflection velocities is given
in Fig. 5. The characteristic inflection point of the velocity profile corresponds

Wywy
0 ) | ]
]
02l AEB . _ -
04 - —
Clamped
08 Simply —
supported

08 -~ -

10 | } i |
0 0? 04 i) 08 10
r

Fig. 5

to the stress state represented by the point D on the yield curve of Fig. 2. For the
other distributed loading the displacement velocities have similar profiles except
that the inflection peint occurs at slightly different radii. This can easily be seen
in Tables 2 and 3.

5. PARTIALLY-LOADED CIRCULAR PLATES

The load carrying capacities for plates loaded over an annulus or over a circle
are given in Table 4. In all these cases the stress profile runs over the part CDEFG
of the yield locus in Fig. 2.

Typical distributions of bending moments for plates loaded over a central area
are shown in Figs. 6 and 7 for simply supported and clamped plates, respectively.
It is to be remarked that when the loaded area shrinks, the bending moment for
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a simply supported plate tends 1o a singular distribution disclosed im [9, 10] for
point-loaded plates. For clamped plates discontinuities are expected both at the
center and at the support in the case of a point loaded plate [9].
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Tor plates loaded by ring of forces, characteristic bending moment distributions
are shown in Fig. 8 and 9. Since the stress profiles are similar to the previous cases,
the bending moments have a similar form, except that in the zone 0<r<a homo-
geneous bending takes place, the stress profile being represented by the point C
of the yield locus of Fig. 2.

My, Mg
-12

-08

-04

04

0a

Frac. T.



BYSTEMATIC STUDY OF L.OAT CAPACITY OF MOTATIONALLY SYMMETRIC PLATHES 233

Figure 10 shows the deflection velocities for centrally-loaded plates. Quite similar
shapes are obtained for a ring loading, except that the zone 0<r<a then deforms
into a sphere since both the curvaturcs are equal for the stress point C of the yield
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Fig, 9.

locus. With a broken line in Fig. 10, the approprizme velocity field is shown for a
plate loaded at the center by a concentrated force and simply supported. The veloc-
ity field is then w=w, (1—y/r), [10].
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#/ Wy

FiG. 10,

6. ANNULAR PLATES

For annular plates governed by Eq. (3.19) the load carrying capacities are assem-
bled in Table 5. Typical diagrams of bending moments are given in Figs. 11 and 12.
In the case of a simply supporled plate with the central opening, characteristic
features of the radial moment distribution have to be pointed out. The stress profiles
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run then over the segment EDB so that all the points of the respective part of the

yield curve are attained twice. The corresponding bending moments are plotted
m Fig. 11.
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If a plate is furnished with a rigid boss covering the central area, the stress profile
contains the point B of the yield locus of Fig. 2 and runs up to the point E or G,
depending upon the boundary conditions at the outer ciroumference. A characteristic
set of bending moment diagrams is shown in Fig. 12. The distribution of moments,
at the boss is to be pointed out. Further examples of moment fields can be found
- qn [15], No essentially new features, however, arc noticed.
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Annular plates, supported or clamped at the inner circumference, are governed
by Eg. (3.16) and therefore the corresponding stress profiles run over the part
BAKIHG of the yield curve in Fig. 2. The load carrying capacities are given in
Table 6, whereas Figs. 13 and 14 give bending moments. Some of the results presented
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were obiained earlier by GuerrLeMENT and LamBriv [14]. It is interesting to note
the bending moment field at a—»0 depending on whether the plate is simply supported
or clamped. mp, ing
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The deflection velocity profile is shown in Fig. 15 for the considered cantilever
annular plates.

Rozprawy Ingynierskie — 3
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7. STATICALLY INDETERMINATE PLATES

Annular plates supported at both boundaries and uniformly loaded on the entire
surface have the load carrying capacitics as given in Table 7. The stress profile for
such structures at collpase runs over a large part of the yield curve (3.1) and involves
both Eq. (3.12) and (3.16). The stress regime change takes place at r=r* following
from Eq. (3.11) and corresponds to the stress point B in Iig. 2. Positions of the
transition radius are given in Fig. 16. The value of the reaction at the internal
circumference follows from the solution of the coupled moment-deflection velocity
system of equations as explained in Section 3. A dimensionless parameter B specifying
the reaction is given in Table 7. Partial results regarding this type of plates were
given by Oscmatz [11]

Figs. 17 and 18 illostrate the bendmg moment fields in the cons1dered plates
for two cases of boundary conditions. Further examples can be found i in [15% For
the sake of completeness, deflection velocities are pIotted in Fig. 19, indicating the
stress profile transition radius #¥.

8. CONCLUDING REMARKS

The tables and diagrams presented in this paper constifute a comprehensive
colleciion of desing data for plates obeying the Huber-Mises yield condition. The
results were obtained at the issue of a systematic study and checked with the partial
results already available in the Hterature. The tables are original and all the diagrams
result from the computations performed with the program described in [15, 16}
and allow to study also statically indeterminate annulair plates.
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STRESZCZENIE

NOSNOSC GRANICZNA OBROTOWO-SYMETRYCZNYCH PLYT DLA WARUNKU

HUBERA-MISESA.

Przedmiotem pracy jest obrotowo-symetryczne zginanie sziywno-plastyeznych plyt, Material

plyty uplastyeznia sie zgodnie z warunkiem plastycznosel Hubera-Misesa, Zaproponowano proce-
dure numeryczng do obliczania noénosci graniczne] dowolnie obciazonych, okragltych i pierscie-
niowych plyt, takze statycznie niewyznaczalnych. Praca uzupelniona jest zestawem tablic 1 wykre-
sow, kiore podaja dane do proiektowania plyt metalowych dia praktycznie waznych przypadkdw
obcigzen,



244 J. SOKOE-SUPEL AND A. BAWCZUK

Pesmowme

HNPEAENBHAA HECYHIAS CIHOCOBHOCTE BPABIATEJH)HO~CHMMETPI/I‘:IHBIX
IINTAT A YCIOBUA I'VEEPA-MU3ECA

IIpeaveromM paboTHl ABLAETCH BPARTATENFHO-CHMMETPHYHLI H3THO IKECTKO-INIACTHICCKEX
AT, MaTepnan IUImTH TOPEXOIAT B IACTMYECKOE COCTOMHUE COTIACHO YCHORHEO TNACTHIHOCTH
I'yGepa-Mmnzeca. ITpexnokesa MECAeERAd NPOUSHYPA MV Pacdera HpenedbHON Hecymeil cunocob-
HOCTH BPOR3IBOEHO HAIPYAKCHHBIX, KPYTUILIX B KOJBIEBHX IIIHT, TAKKEe CIATHYECKH HeOUpedeleH-
Heix. PaboTa fononHeRa KOMIIEKTOM Tabiui B TPAgUKOR, KOTOPHE HPRBONST AZHHLIG AT TIPO-
eKTHPOBAHMA METAHICCKHX TUH JIITA MPAKTHECCKY BAXHEIX CNYYacs HATPY30K.
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